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ABSTRACT
Range searching is the problem of preprocessing a set of points 𝑃 ,

such that given a query range 𝛾 we can efficiently compute some

function 𝑓 (𝑃 ∩ 𝛾). For example, in a 1 dimensional range counting
query, 𝑃 is a set of numbers, 𝛾 is a segment and we need to count

how many numbers of 𝑃 are in 𝛾 . In higher dimensions, 𝑃 is a set of

𝑑 dimensional points and the query range is some volume in R𝑑 . In
general, we want to compute more than just counting, for example,

the average of 𝑃 ∩𝛾 . Range searching has applications in databases

where some SELECT queries can be translated to range queries. It

had received a lot of attention in computational geometry where a

data structure called partition treewas shown to solve range queries

in time sub-linear in |𝑃 | using space only linear in |𝑃 |.
In this paper we consider partition trees under FHE where we

answer range queries without learning the value of the points or

the parameters of the range. We show how partition trees can be

securely traversed with 𝑂 (𝑡 · 𝑛1−
1

𝑑
+𝜖 + 𝑛1+𝜖 ) operations, where

𝑛 = |𝑃 |, 𝑡 is the number of operations needed to compare to 𝛾 and

𝜖 > 0 is a parameter. When the ranges are axis-parallel hyper-boxes

the running time is 𝑂 (𝑡 · 𝑛𝜖 + 𝑛 log𝑑−1 𝑛). As far as we know, this
is the first non-trivial bound on range searching under FHE and it

improves over the naïve solution that needs 𝑂 (𝑡 · 𝑛) operations.
Our algorithms are independent of the encryption scheme but

as an example we implemented them using the CKKS FHE scheme.

Our experiments show that for databases of sizes 2
23

and 2
25
, our

algorithms run ×2.8 and ×4.7 (respectively) faster than the naïve

algorithm.

The improvement of our algorithm comes from a method we

call copy-and-recurse. With it we efficiently traverse a 𝑟 -ary tree

(where each inner node has 𝑟 children) that also has the property

that at most 𝜉 of them need to be recursed into when traversing

the tree. We believe this method is interesting in its own and can

be used to improve traversals in other tree-like structures.

KEYWORDS
secure range searching, multi-party computation, cryptography,

secure protocols

1 INTRODUCTION
The problem of range queries or range searching has been studied

extensively. In this problem we are given a finite set of points

𝑃 ⊂ R𝑑 and a volume (range) 𝛾 ⊂ R𝑑 and wish to quickly compute
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some function 𝑓 (𝑃 ∩𝛾). For example, a database with sugar level,
age and LDL level columns, can be represented by 𝑃 ⊂ R2, where
a record with sugar level 𝑠 , age 𝑎 and LDL level 𝑙 is represented

by a point (𝑎, 𝑙) ∈ 𝑃 (𝑠 is an additional datum associated with the

point). Then, this query:

SELECT AVERAGE(sugar level) FROM patients
WHERE (age > 30) and (age < 40)

and (LDL level > 130) and (LDL level < 160);

can be answered by averaging the sugar levels associated with

points in 𝑃 that fall in the axis-parallel rectangle 𝛾 = {(𝑥,𝑦) | 30 <

𝑥 < 40 and 5 < 𝑦 < 10}.

Figure 1: A FHE-based system for delegating statistics-as-a-
service to an untrusted cloud. (1) The data owner (hospital)
encrypts and uploads a database to an untrusted cloud. (2)
A querier (doctor) encrypts their query and sends it to the
untrusted cloud. (3) The cloud performs the query under FHE
and (4) returns the result to the querier.

The privacy preserving range searching problem is to compute

𝑓 (𝑃 ∩𝛾) without sharing the inputs (i.e. 𝑃 or 𝛾 ). This is useful if for

example 𝑃 is a database of sensitive data (e.g., medical, financial,

etc.) that is kept at an untrusted cloud.

When the data owner and the querier collude but still use an un-

trusted cloud they can use a protocol based on oblivious RAM [34]

or private information retrieval. In such solutions the querier needs

to stay active (communicate and run computations) throughout

the protocol. When the data owner and the querier do not col-

lude multi-client ORAM [15, 30] can be used, but still the querier

needs to stay active during the protocol. If some leakage is allowed,

SSE [19–23] can be used. This hides the content of messages but

the access pattern still leaks. It has been shown that this leakage is

significant [24, 25, 29, 31].

In another line of solutions, which is more secure, the parties

engage in a protocol that computes an arithmetic circuit to compute

𝑓 (𝑃 ∩ 𝛾) either interactively (e.g. using beaver triples [8]) or in a

single round. The latter is done using Fully Homomorphic Encryp-

tion (FHE) which is a public key encryption where addition and

multiplication can be applied on ciphertexts. Unlike SSE or ORAM,

these solutions cannot compare 2 encrypted values and cannot

make decisions based on comparisons. Intuitively, this means that

these protocols cannot skip any point of 𝑃 , leading to a Ω(𝑛) lower
626
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bound. Although less efficient in CPU time, these solutions are more

secure than SSE (unlike SSE, they do not leak the access pattern)

and more efficient in network complexity than ORAM.

In this paper we focus on protocols that allow only Add and Mul

to compute 𝑓 (𝑃 ∩ 𝛾). Specifically, we focus on FHE although the

methods and techniques in this paper are generic.

As mentioned above, when using FHE, the naïve implementation

checks for every point 𝑝 ∈ 𝑃 whether 𝑝 ∈ 𝛾 for a total of 𝑂 (𝑡 · 𝑛)
operations, where 𝑛 = |𝑃 | and 𝑡 is the number of operations to

check whether 𝑝 ∈ 𝛾 . In plaintext, efficient solutions group points

together, check whether the entire group is contained in 𝛾 and

recursively continue only in groups that are partially contained in

𝛾 . These solutions rely heavily on comparisons and branching to

skip entire groups of points. This is impossible under FHE where

it is impossible to make a decision (branch) based on a condition

that depends on the input. More specifically, knowing whether a

condition on the input is met contradicts the semantic security

of FHE and therefore is impossible. Naïvely, when converting a

plaintext algorithm to run under FHE a branch based on a condition

𝐶 is replaced by: (1) computing a ciphertext 𝐸𝑛𝑐 (𝑐) where 𝑐 = 1 if

𝐶 is met and 𝑐 = 0 otherwise; (2) computing both branches and (3)

multiplexing by multiplying one branch by 𝐸𝑛𝑐 (𝑐) and the other

branch by (1 − 𝐸𝑛𝑐 (𝑐)). This can be used to add 𝑝 to the output

only when 𝑝 ∈ 𝛾 and needs to be repeated for each 𝑝 ∈ 𝑃 which is

why solutions that work well in plaintext do not (naïvely) extend

well to FHE. While the techniques described in this paper cannot

“break” the Ω(𝑛) lower bound, they apply the expensive test only

sub-linear number of times. Our technique still “visits” every 𝑝 ∈ 𝑃

but performs a cheaper operation on each point.

The ranges we consider in this paper are ranges that can be

described with a constant number of parameters (formally this is

called constant description complexity. See definition in Section 7.1).

In plaintext, range-searching can be solved using linear storage

with partition trees [32]. This tree-structure is built for a family

of ranges Γ and a set of points 𝑃 ⊂ R𝑑 . In the construction we

partition 𝑃 into𝑚 subsets 𝑃1, . . . , 𝑃𝑚 such that for any range 𝛾 ∈
Γ it can be quickly determined whether a subset 𝑃𝑖 is contained

(𝑃𝑖 ⊂ 𝛾 ), disjoint (𝑃𝑖 ∩ 𝛾 = ∅) or crosses 𝛾 . The geometric structure

admits a partition where only a small number of subsets cross 𝛾

and need further “attention”. In plaintext, this leads to an improved

running time of𝑂 (𝑡 · 𝑛1−
1

𝑑
+𝜖 ), where 𝑡 and 𝑛 are as before, 𝑑 is the

dimension 𝑃 ⊂ R𝑑 and 𝜖 > 0 is arbitrarily small (as usual there is a

multiplicative factor that grows as 𝜖 gets smaller).

Naïvely implementing a partition tree under FHE leads to𝑂 (𝑡 ·𝑛)
operations because, as mentioned earlier, the naïve approach ends

up checking every path of the tree which is equivalent to checking

whether 𝑝 ∈ 𝛾 for every 𝑝 ∈ 𝑃 . Our algorithm has improved time

bound summarized in Table 1. In the general case it is𝑂 (𝑡 ·𝑛1−
1

𝑑
+𝜖 +

𝑛1+𝜖 )1. Recall that 𝑂 (𝑛) is a lower bound and 𝑂 (𝑡 · 𝑛1−
1

𝑑
+𝜖 ) is the

running time of the plaintext algorithm. Our improved time bound

comes from using a method we call “copy-and-recurse”. With it

we traverse a partition tree efficiently under FHE. The copy-and-

recurse method can be applied when traversing a 𝑟 -ary tree (i.e.

each inner node has 𝑟 children) that also has a bound 𝜉 < 𝑟 on

1
In the special case where Γ is the set of axis-parallel hyper-boxes we show better

times:𝑂 (𝑡 · 𝑛𝜖 + 𝑛 log
𝑑−1 𝑛)

the number of children that need to be recursed into. The method

uses selection matrices to generate a copy of 𝜉 children and their

subtrees (under FHE) and recurses into the copied subtrees. The

time spent by the algorithm copying subtrees is linear in the tree

size, however, the function that compares a range is used only a

sublinear number of times. This leads to an algorithm that needs

only𝑂 (𝑡 ·𝑛1−
1

𝑑
+𝜖 +𝑛1+𝜖 ) operations. The choice of 𝑟 and the bound

𝜉 determine the value of 𝜖 . We demonstrate our copy-and-recurse

method on partition trees that solve the range searching problem

but our method can be used in other tree based solutions and we

expect it to be of interest for other solutions as well.

To demonstrate the performance of our algorithm we provide a

C++ code that implements it. We use the HElayers library [3] using

HEaan [17] as the underlying cryptographic library implementing

CKKS [12]. Our experiments show that our method is ×4.6 faster
than the naïve implementation for a database of 32M records. We

expect our algorithm to have impact in practice as well as in theory

as databases often have significantly more records.

In Figure 1 we show a system that implements privacy preserving

range searching. On the left is a data-owner (e.g. a hospital) wishing

to provide analytics-as-a-service (AAAS) and charge customers

per query. To save IT and maintenance costs they encrypt and

upload their database to an untrusted (honest but curious) cloud.

Such services are given, for example by IBM [26], CryptoLab [18]

and Duality [33]. Paying customers can query the database to get

various statistics by sending an encrypted query range to the cloud,

receiving the encrypted result and decrypting it. Each party can

use its own key and transcipher the database from the data-owner

key to the client key [4].

1.1 Our Contribution
We list below our contributions in this paper.

• The copy-and-recurse method. Given a tree, 𝑇 , and a re-

cursive plaintext algorithm,𝐴, that traverses𝑇 and computes

a function 𝑓 on nodes it visits, such that: (1) 𝑇 is a full 𝑟 -ary

tree (i.e. each inner node has 𝑟 children); (2) 𝐴 continues in

recursion on at most 𝜉 = 𝑟𝑐 < 𝑟 nodes, then we show how

𝑇 can be traversed under FHE, such that 𝑓 is applied only a

sub-linear number of times 𝑛𝑐+𝜖 < 𝑛. We note that the FHE

version of 𝐴 has a linear overhead because it still needs to

consider all the nodes in 𝑇 . In the cases we focus on in this

paper this overhead is less costly than applying 𝑓 on all 𝑇 .

In a nutshell, the method traverses a tree as we now (briefly)

describe. When visiting a node:

– Compute (under FHE) an indicator vector indicatingwhich

children need to be recursed into. There are at most 𝜉 such

children.

– Use the indicator vector to construct a selection matrix to

generate a copy of the 𝜉 children and their subtrees.

– Recurse into the copies of 𝜉 children.

• Analgorithm to answer privacy preserving range queries.
We show how to build a FHE-friendly partition tree that effi-

ciently answers range searching queries (see [1, 2, 32]). In a

nutshell, a partition tree is built with a parameter 𝑟 > 0, a

family of ranges Γ and points 𝑃 ⊂ R𝑑 where each inner node

has 𝑂 (𝑟 ) children. When traversing the tree with a query
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This 𝑑 = 1 (segments) 𝑂 (𝑡 · 𝑛𝜖 + 𝑛)
work 𝑑 > 1 axis-parallel boxes 𝑂 (𝑡 · 𝑛𝜖 + 𝑛 log𝑑−1 𝑛)
(FHE) 𝑑 > 1 general ranges 𝑂 (𝑡 · 𝑛1−1/𝑑+𝜖 + 𝑛1+𝜖 )
Naive (FHE) 𝑂 (𝑡 · 𝑛)

Table 1: A summary of our work to solve privacy preserving
range searching under FHE. When 𝑑 = 1 (and the ranges are
segments), when the ranges are axis-parallel boxes and when
the ranges are general semi-algebraic ranges, where 𝑛 is the
number of points in the database and 𝜖 > 0 is arbitrarily
small. Also, 𝑡 is the complexity to compare a range to a point
or a simplex. The last line shows the naïve FHE solution.

𝛾 ∈ Γ at most 𝜉 = 𝑂 (𝑟1−
1

𝑑 ) children need to be recursed into

at each node. Our algorithm then uses the copy-and-recurse

technique and is implemented by an arithmetic circuit of

size𝑂 (𝑡 ·𝑛1−
1

𝑑
+𝜖 +𝑛1+𝜖 ), where 𝑡 is the size of an arithmetic

circuit that compares to 𝛾 and 𝜖 > 0 is a parameter that can

be arbitrarily small (as usual, there is a multiplicative factor

that grows when 𝜖 decreases).

• Generalized range searching problem definition. We

generalize the classic range searching problems (counting

and reporting) to output 𝑓 (𝑃 ∩𝛾) for a large set of functions.
Specifically, our protocol works with any function 𝑓 that can

be computed in a divide and conquer way, i.e., there exists

another function 𝑔 such that 𝑓 (𝐴∪𝐵) = 𝑔(𝑓 (𝐴), 𝑓 (𝐵)). This
is summarized in the following theorem:

Theorem 1.1. Let 𝑃 ⊂ R𝑑 be a set of 𝑛 points, Γ ⊂ 2
R𝑑

a family of semi-algebraic ranges, 𝑇 a full partition tree as
output from Algorithm 6, a function 𝑓 that can be computed
in a divide and conquer manner and 𝑡 and ℓ are the size and
depth of the circuit that compares a range to a simplex, then
given 𝛾 ∈ Γ, 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ (Algorithm 3) securely evaluates
𝑓 (𝛾 ∩ 𝑃) in a circuit whose size is 𝑂 (𝑡 · 𝑛1−

1

𝑑
+𝜖 + 𝑛1+𝜖 ) and

depth is 𝑂 (ℓ · log𝑛).

Here and throughout the paper we use 2
R𝑑

to denote the

power set ofR𝑑 , i.e., the set of all subsets ofR𝑑 . In the special

case where Γ is the set of all axis-parallel hyper-boxes in R𝑑 ,

the circuit size is only 𝑂 (𝑡 · 𝑛𝜖 + 𝑛 log𝑑−1 𝑛).
• Implementation and experiments for privacy preserv-
ing range searching.We implemented our algorithm into

a system that answers privacy preserving range searching

queries. Our algorithm is generic and can be implemented

with any scheme. In this paper we used the HElayers frame-

work [3] with HEAAN [17] as the cryptographic library.

1.2 Paper Organization
The rest of the paper is organized as follows: in Section 2 we review

the related work and in Section 3 we give some preliminaries and

notations (we defer the ones that relate to computational geometry

to Section 7.1). In Section 4 we state the main problem this paper

solves. In Section 5 we describe our copy-and-recurse method. In

Section 6 we describe a FHE-friendly partition tree to solve the

1-dim privacy preserving range searching counting problem. In

Section 7 we show how to extend our solution to 𝑑 dimensions. In

Section 8 we analyze our algorithm with respect to the size and

depth of the arithmetic circuit that implements it and its security.

In Section 9 we show how to extend our solution from counting to

more generic functions. In Section 10 we describe the experiments

we have done and finally we conclude in Section 11.

2 RELATEDWORK
2.1 Range Searching
In the range searching problem (in plaintext) we are given a set of 𝑛

points 𝑃 ⊂ R𝑑 and a family of ranges Γ (usually of infinite size) and

wish to efficiently compute 𝑃 ∩ 𝛾 (or some function on it) for any

𝛾 ∈ Γ. The problem has been studied extensively in computational

geometry. In a seminal work Matoušek [32] showed how to build a

data structure called partition tree of𝑂 (𝑛) size where for any 𝛾 ∈ Γ,

where Γ is the set of all halfspaces in R𝑑 bounded by a hyperplane,

𝑃 ∩ 𝛾 can be computed in 𝑂 (𝑛1−1/𝑑+𝜖 ) time. Later, Agarwal and

Matoušek [1] extended this result to ranges of constant description

complexity in time 𝑂 (𝑛1−1/𝑐+𝜖 ), where 𝑐 = 𝑑 , for 𝑑 = 2, 3 and 𝑐 =

2𝑑−4, for 𝑑 ≥ 4 (for the case of 𝑑 ≥ 4 a later work by Vldalen [28] is

needed). Using tools from algebraic geometry Agarwal, Matoušek

and Sharir [2] improved this running time to 𝑂 (𝑛1−1/𝑑+𝜖 ).
In the privacy preserving context, the private information re-

trieval (PIR) problem can be answered with range searching as

we describe now. In PIR, one party (the server) has an array 𝑇

and a second party (the client) has an index 𝑥 ∈ Z. The goal

is to output 𝑇 [𝑥] to the client while hiding 𝑥 from the server

and 𝑇 [𝑖], for 𝑖 ≠ 𝑥 from the client. To answer PIR with range

searching replace each entry in the table, 𝑇 [𝑖], with a 2D point

(𝑖,𝑇 [𝑖]), for 𝑖 = 1, . . . , 𝑛 and report the (single) point in the range

𝛾𝑥 = {(𝑎, 𝑏) ∈ R2 | 𝑥 − 0.5 < 𝑎 < 𝑥 + 0.5}. In [9] a lower bound of

Ω(𝑛) was shown for the PIR problem, which holds for the privacy

preserving range searching query as well.

In the privacy setting, the problem can be solved with different

techniques as we now mention. See also Table 2.

2.2 Symmetric Searchable Encryption (SSE)
SSE schemes offer a trade off between efficiency and revealing some

well defined information about queries and stored data. See for ex-

ample [19–23]. SSE schemes are less secure than other schemes.

Even a semi-honest adversary that follows the protocol learns sig-

nificant knowledge, for example the access pattern. Indeed, several

attacks have been proposed that use this leakage. See for exam-

ple [24, 25, 29, 31]. Structured encryption (STE) is closely related

to SSE. Using STE also leaks some well-defined leakage profile.

Unlike these solutions our solution is based on FHE which does

not leak the access pattern (or the content of inputs and intermedi-

ate values). Specifically, our protocol “visits” every element in the

database which hides the access pattern.

2.3 Oblivious-RAM (ORAM) and Private
Information Retrieval (PIR)

When the data-owner and the querier collude they may use an

ORAM-based scheme [34]. Such a scheme uses the cloud as an

oblivious RAM, i.e., a memory bank that can be accessed for reading
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ORAM MCORAM SSE FHE

PIR [14] This

[34] [15, 30] [19–23] work

2-party ✓ ✓ ✓ ✓
Passive querier ✓ ✓ ✓
Secure ✓ ✓ ✓ ✓
Sublinear time ✓ ✓ ✓
Sublinear cmp ✓ ✓ ✓ ✓

Table 2: Comparing different cryptographic techniques for
range searching. 2-party means the data owner and the
querier can be 2 different non-colluding parties. Passive
queriermeans the querier does not need to stay online dur-
ing the execution. Secure means there are no known attacks
against this technique. Sublinear timemeans there are pro-
tocols that achieve sublinear running time. Sublinear cmp
means the protocols call the compare function a sublinear
number of times.

and writing in an oblivious manner. Oblivious here means the cloud

does not learn the content of the database and also it does not learn

which element in the database was accessed (thus hiding the access

pattern). The basic recipe is to keep the database in the cloud using

ORAM. The querier then searches the database by locally executing

the plaintext algorithm where a local access to the database is

replaced with a remote ORAM access. For example, to traverse a

binary search tree, the querier obliviously reads the root, locally

decides on the child it should continue with (left or right) and

obliviously reads that child node and so on. When the data owner

and the queriers do not collude multi-client ORAM [15, 30] can be

used.

Since the protocol makes only read operations it can also be

implemented using a series of PIR queries, each obliviously reading

an element stored on the cloud. In both cases (ORAM or PIR) the

querier needs to be active throughout the protocol. As the querier

follows the protocol they read and learn the content of (at least part

of) the database.

Unlike these solutions, with FHE the processing is done by the

cloud and the querier is passive, i.e., they only send the input and

receive the output. Also, with FHE the data-owner can encrypt the

database once (e.g. using AES) and use transciphering to re-crypt

the database with the querier’s key (see [4] for example).

2.4 Fully Homomorphic Encryption
As mentioned in the introduction, we are interested in a solution

based on FHE. FHE has better privacy than SSE. Specifically, nothing

on the content of the inputs, intermediate values, access pattern

or output leaks to the cloud. In addition, unlike ORAM, FHE has

efficient communication complexity. This comes at a cost of being

less efficient in CPU. The main difference from SSE and ORAM/PIR

solution is FHE cannot make decisions based on the content of

intermediate values. For example, when traversing a search tree

the protocol cannot follow a single path. Instead it visits all the

nodes in the tree which makes the search tree inefficient. Indeed,

previous solutions [14] compared all data records to the query range

to compute the output.

[7] [6] [16] copy-and-recurse

Encoding agnostic ✓ ✓ ✓

Sublinear ✓ ✓
Encrypted ✓ ✓ ✓
Range searching ✓

Table 3: Comparing our copy-and-recurse method to other
works under FHE. Encoding agnosticmeans input is not re-
stricted to be encrypted bit-wise. Sublinearmeans the num-
ber of comparisons performed is sublinear in the number of
leaves (a crossed checkmark means a heuristic that may re-
sult in a sublinear number of comparisons). Encryptedmeans
encrypted trees are also supported. Range searchingmeans
range searching is efficiently supported.

Although we also go over all data records (which is unavoidable

under FHE) the function used for comparison (which dominates

the running time) is called only a sublinear number of times.

2.5 Traversing a Tree Under FHE
One of our contributions is the copy-and-recurse method which

efficiently traverses a tree under FHE. A recent work by Azogagh

et al. [7] describes how to efficiently traverse a decision tree using

FHE. In their implementation they evaluate a single path instead of

the entire tree. At each node of the decision tree they compare a

variable to a parameter, where they blindly retrieve the variable and

the parameter from an array of variables and parameters. Here, the

index of the node that the traversing reaches is encrypted and used

to fetch the right variable and parameter. However, it is not clear

how to extend their ideas to answering range searching queries.

Another recent work by Cong et al. [16] discussed homomorphic
traversing where they show how to efficiently traverse a decision

tree. To use their techniques the values at each decision node need

to be bit-wise encrypted i.e., each bit in its own ciphertext. The

thresholds in the tree need to be given in plaintext. Then they

express the conditions at decision node as boolean polynomials

and compute all polynomials together while applying a heuristic

that finds mutual subpolynomials and computing them once. In

the worst case, their technique still leads to 𝑂 (𝑛) conditions be-
ing evaluated. Their technique relies heavily on the input being

encrypted in binary and also the thresholds being given in plain-

text. Furthermore, it is not clear how to extend their techniques to

answer range searching. In [6] Akavia et al. showed how to train

a decision tree and use it for prediction, however their method

evaluates the conditions at all nodes of the tree leading to 𝑂 (𝑡 · 𝑛)
operations, where 𝑡 is the number of operations to compute a condi-

tion at a node. In [35] the authors also considered prediction using

decision trees but here as well they tested the conditions at each

node of the tree again leading to 𝑂 (𝑡 · 𝑛) operations. In [36] the

authors considered a solution that uses garbled circuits and ORAM

to achieve sub-linear prediction time with a decision tree, however

their solution requires the querier to be active and collude with the

data owner. We summarize these works in Table 3.

629



Proceedings on Privacy Enhancing Technologies 2024(3) Kushnir et al.

2.6 Computing a Function Over Database
Records That Match a Query Function

Given a set 𝑃 ⊂ Z𝑚 of 𝑛 points and a function ℎ : Z𝑚 → Z,
Iliashenko et al. showed in [27] how to preprocess 𝑃 s.t. given an

encrypted value 𝑥 , it can efficiently compute the number of points

whose image is 𝑥 , i.e. report |{𝑝 ∈ 𝑃 | ℎ(𝑝) = 𝑥}|. This can be

formulated as a range searching query where a range is of the form

𝛾𝑥 = {𝑝 ∈ Z𝑚 | ℎ(𝑝) = 𝑥}. However, they require that 𝛾𝑥 be given

in plaintext. Moreover, they do not show how to compute 𝑓 (𝑃 ∩ 𝛾)
for functions 𝑓 or ranges 𝛾𝑥 other than what mentioned above.

Cheon et al. [14] considered encrypted queries over an encrypted

database. They propose a search-and-compute method, where they

search for records that match a query and then compute a function

𝑓 (addition, average, min, max, etc.) on those records. However, to

find the records matching a query they apply a 𝐼𝑠𝑀𝑎𝑡𝑐ℎ function on

all records, for a total of𝑂 (𝑡 · 𝑛) operations, where 𝑛 is the number

of records and 𝑡 is the number of operations to evaluate 𝐼𝑠𝑀𝑎𝑡𝑐ℎ.

3 PRELIMINARIES
To improve readability we split the preliminaries into two parts. We

give here the preliminaries that are needed to understand the 1-dim

case and in Section 7 we give more preliminaries in computational

geometry that are needed for the 𝑑-dim case.

Number Representation. Our algorithms work over the reals and

are stated in this paper as such. Computers use finite space to repre-

sent numbers and therefore cannot truly work over the reals. There

are several number representations (e.g. fixed point representation)

to address this problem. In this paper we are not concerned with

how numbers are represented and require only the existence of

addition and multiplication operations.

Power set. For a set 𝐴, we use 2𝐴 to denote the power set of 𝐴,

i.e., the set of all subsets of 𝐴.

Divide and conquer functions. In this paper we are concerned

with functions that take a set as input. We say such a function, 𝑓

can be computed in a divide and conquer manner if 𝑓 (𝐴∪𝐵) can be

computed from 𝑓 (𝐴) and 𝑓 (𝐵), when 𝐴 and 𝐵 are disjoint sets. For

example, for the cardinality function we have |𝐴∪𝐵 | = 𝑓 (𝐴∪𝐵) =
𝑓 (𝐴) + 𝑓 (𝐵) = |𝐴| + |𝐵 |. More generally, there exists a function 𝑔

such that 𝑓 (𝐴 ∪ 𝐵) = 𝑔(𝑓 (𝐴), 𝑓 (𝐵)).

Selection matrix. A selection matrix 𝑀 ∈ {0, 1}𝜉×𝑑 , with 𝜉 < 𝑑

is a matrix that has the property that it selects elements of a vector.

Intuitively, a selection matrix is a generalization of the multiplexer
(Mux) operation that selects one of 2 inputs. More formally:𝑀 ·𝑥𝑇 =

(𝑥𝑖1 , . . . , 𝑥𝑖𝜉 ), where 𝑥 = (𝑥1, . . . , 𝑥𝑑 ). Intuitively, to construct 𝑀

we set 𝑀𝑟,𝑐 = 1 if 𝑖𝑟 = 𝑐 , i.e. if the 𝑐-th element in 𝑥 is the 𝑟 -th

element in𝑀 · 𝑥𝑇 , otherwise we set𝑀𝑟,𝑐 = 0. Algorithm 1 shows

how to construct a selection matrix. An overview and analysis of

this algorithm is given in Section A.

Trees. We use 𝑣 to denote a node in a tree. We use dot (".") to

denote members of 𝑣 , so for example, 𝑣 .𝑐ℎ𝑖𝑙𝑑 [1], . . . , 𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑟 ] are
the children of 𝑣 . We also denote the root of the tree by 𝑟𝑜𝑜𝑡 . The

height of a node 𝑣 is the number of nodes on the path from 𝑣 to the

root and the height of a tree is the maximal height of its nodes.

Algorithm 1: 𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥𝑟,𝜉 (⟦𝑐⟧)

Parameters: 𝜉 < 𝑟 .

Input: A vector ⟦𝑐⟧, where 𝑐 ∈ {0, 1}𝑟 , s.t. ∑ 𝑐𝑖 ≤ 𝜉 .

Output: A selection matrix ⟦𝑀⟧ that selects the non-zero

elements in 𝑐 .

1 for ( 𝑟𝑜𝑤 = 1, . . . , 𝑟 )
2 ⟦𝑀 [1, 𝑟𝑜𝑤]⟧ := ⟦𝑐 [𝑟𝑜𝑤]⟧ ·∏𝑟𝑜𝑤−1

𝑖=1 (1 − ⟦𝑐 [𝑖]⟧)
3 for ( 𝑐𝑜𝑙 = 2, . . . , 𝜉 )
4 for ( 𝑟𝑜𝑤 = 1, . . . , 𝑟 )
5 ⟦𝑀 [𝑐𝑜𝑙, 𝑟𝑜𝑤]⟧ := ⟦𝑐 [𝑟𝑜𝑤]⟧∑𝑟𝑜𝑤−1

𝑘=1

(
⟦𝑀 [𝑐𝑜𝑙 −

𝑖, 𝑘]⟧∏𝑟𝑜𝑤−1
ℎ=𝑘+1 (1 − ⟦𝑐 [ℎ]⟧)

)
6 Output: ⟦𝑀⟧

3.1 Fully Homomorphic Encryption
Our algorithms and protocols can be implemented using FHE or

other MPC schemes that supports addition and multiplications.

However, to improve readability we describe our protocol using

FHE.

FHE (see e.g. [11, 12]) is an asymmetric encryption scheme that

also supports + and × operations on ciphertexts. More specifically,

a FHE scheme is the tuple E = (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐,𝐴𝑑𝑑,𝑀𝑢𝑙𝑡), where:

• 𝐺𝑒𝑛(1𝜆, 𝑝) gets a security parameter 𝜆 and an integer 𝑝 and

generates the keys 𝑝𝑘 and 𝑠𝑘 .

• 𝐸𝑛𝑐𝑝𝑘 (𝑚) gets a message𝑚 and outputs a ciphertext ⟦𝑚⟧.
• 𝐷𝑒𝑐𝑠𝑘 (⟦𝑚⟧) gets a ciphertext ⟦𝑚⟧ and outputs a message

𝑚′
.

• 𝐴𝑑𝑑𝑝𝑘 (⟦𝑎⟧, ⟦𝑏⟧) gets two ciphertexts ⟦𝑎⟧, ⟦𝑏⟧ and outputs

a ciphertext ⟦𝑐⟧.
• 𝑀𝑢𝑙𝑡𝑝𝑘 (⟦𝑎⟧, ⟦𝑏⟧) gets two ciphertexts ⟦𝑎⟧, ⟦𝑏⟧ and outputs

a ciphertext ⟦𝑑⟧.

Correctness is the requirement that𝑚 =𝑚′
, 𝑐 = 𝑎 + 𝑏 mod 𝑝 and

𝑑 = 𝑎 · 𝑏 mod 𝑝 . In an approximated FHE (e.g. CKKS [12]) we

require that𝑚 ≈𝑚′
, 𝑐 ≈ 𝑎 + 𝑏 and 𝑑 ≈ 𝑎 · 𝑏.

Semantic security is the requirement that given 𝑝𝑘, ⟦𝑚1⟧, . . . ,
⟦𝑚𝑝𝑜𝑙𝑦 (𝜆)⟧,𝑚1, . . . ,𝑚𝑝𝑜𝑙𝑦 (𝜆) ,where 𝑝𝑜𝑙𝑦 (𝜆) is a number that poly-

nomially depends on 𝜆, then given ⟦𝑚0⟧, the value of𝑚0 is known

in probability negligible in 𝜆.

Using additions and multiplications we can construct any arith-

metic circuit and compute any polynomial P(𝑥1, . . .) on the cipher-

texts ⟦𝑥1⟧, . . .. For example, in a client-server system, the client

encrypts her data and sends it to the server who computes a poly-

nomial P on the encrypted input. The output is also encrypted

and is returned to the client who then decrypts it. The semantic

security of FHE guarantees the server does not learn anything on

the content of the client’s data.

When evaluating an arithmetic circuit, we are concerned with

the size of 𝐶 , denoted size(𝐶), which is the number of operators in

𝐶 and with the depth of𝐶 , denoted depth(𝐶), which is the maximal

number of multiplication gates on a path of𝐶 . The time to evaluate

a circuit is then𝑇𝑖𝑚𝑒 = 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 · size(𝐶), where in many schemes

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 grows when depth(𝐶) increases.
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3.2 Notation
Abbreviated syntax. To make our algorithms and protocols more

intuitive to read we use ⟦·⟧𝑝𝑘 to denote a ciphertext. When 𝑝𝑘 is

clear from the context we omit it. We use an abbreviated syntax:

• ⟦𝑎⟧ + ⟦𝑏⟧ is short for 𝐴𝑑𝑑𝑝𝑘 (⟦𝑎⟧, ⟦𝑏⟧).
• ⟦𝑎⟧ · ⟦𝑏⟧ is short for𝑀𝑢𝑙𝑡𝑝𝑘 (⟦𝑎⟧, ⟦𝑏⟧).
• ⟦𝑎⟧ + 𝑏 is short for 𝐴𝑑𝑑𝑝𝑘 (⟦𝑎⟧, 𝐸𝑛𝑐𝑝𝑘 (𝑏)).
• ⟦𝑎⟧ · 𝑏 is short for𝑀𝑢𝑙𝑡𝑝𝑘 (⟦𝑎⟧, 𝐸𝑛𝑐𝑝𝑘 (𝑏)).

3.3 Comparisons Under FHE
A major obstacle when running under FHE is not being able to

perform comparisons, i.e. to get a plaintext bit indicating whether

one encrypted message is smaller than another. Informally, this is

impossible because it contradicts the semantic security of FHE. Such

a comparison could have been useful, for example, when traversing

a binary search tree under FHE to continue into only one child of a

node (and not both).

There areworks (e.g. [13]) for implementing a 𝐼𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 (⟦𝑐1⟧, ⟦𝑐2⟧)
function that returns a ciphertext whose message is the indicating

bit (whether or not 𝑐1 < 𝑐2). In a nutshell, such works implement

a bi-variate polynomial 𝐼𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 (𝑥,𝑦) =
{
1, if 𝑥 < 𝑦

0, otherwise.

(or its

approximated version in the case of CKKS). The implementation

details of this polynomial depends on the underlying FHE scheme

and the way numbers are represented. With this primitive, it is

easy to construct more complicated tests, e.g., whether a value 𝑥 is

contained inside a range (𝑎, 𝑏).

3.3.1 Making Tests Under FHE. We assume the existence of 2 func-

tions 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 (described in detail below). Our

protocol uses these functions as black-boxes. We are not concerned

with how these functions are implemented and express the com-

plexity bounds of our protocol with respect to 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and

𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 (see below the definition of 𝑡 and ℓ , parameters that

capture the “hardness” these functions).

For the 1-dim case, these functions are (see also Figure 2):

• 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔(⟦𝜎⟧, ⟦𝛾⟧). This function gets as input two en-

crypted segments 𝜎,𝛾 ⊂ R. The value of 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 is a

ciphertext ⟦𝑐⟧, where 𝑐 = 1 if 𝜎 ⊆ 𝛾 and 𝑐 = 0 otherwise.

• 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔(⟦𝜎⟧, ⟦𝛾⟧) . This function gets as input two en-

crypted segments 𝜎,𝛾 ⊂ R. The value of 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 is a

ciphertext ⟦𝑐⟧, where 𝑐 = 1 if 𝛾 crosses 𝜎 (i.e. intersects but

not contains) and 𝑐 = 0 otherwise.

The 𝑑-dimensions version of these functions is similar except that

it gets a simplex 𝜎 ⊂ R𝑑 and a range 𝛾 ⊂ R𝑑 . See more details in

Section 7. See also Figure 2.

3.4 Size and Depth of Computing
We define 𝑡 and ℓ as the size and depth of the sub-circuit that

computes 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔. These parameters capture

the “hardness” of comparing a range to a simplex in FHE.

We note that the implementation of 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔

varies with the FHE scheme and the way numbers are represented

(as does the primitive 𝐼𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 they depend on). Looking ahead,

in Section 7 we consider the problem in high dimensional settings.

Figure 2: A range 𝛾 and simplices 𝜎1, 𝜎2, 𝜎3 and 𝜎4. Above (a) is
a setting in 1-dim, where the range is a segment and simplices
are non-intersecting segments. Below (b) is a setting in 2-dim,
where the range is an octagon and the simplices are (possibly
intersecting) triangles. In both cases 𝜎1 and 𝜎3 cross 𝛾 , 𝜎2 is
contained in 𝛾 and 𝜎4 is disjoint from 𝛾 .

There, the implementation of these functions also depends on the

shape of the query ranges. In addition, in approximate schemes

the implementation of 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 depends on

𝑛 = |𝑃 |. These functions need to be more accurate when 𝑛 grows

since any error they incur is aggregated over more points. We

therefore have ℓ = ℓ (𝑛) and 𝑡 = 𝑡 (𝑛). The exact details depend on

the the implementation and the parameters of the cryptographic

scheme. Also, from the practical perspective most of the running

time is spent executing these functions. Therefore it makes sense

for the complexity to be expressed as a function of 𝑡 and ℓ which

capture the hardness of 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔.

4 PROBLEM STATEMENT
In this paper we gradually introduce the ultimate problem we con-

sider. We start by a simple problem of counting in 1-dim. Then we

extend the problem to higher dimensions and finally, we extend

the problem to more general functions.

Simple problem: Counting in 1-dim. First we consider the count-
ing problem in 1-dim. In this problem we are given a set 𝑃 ⊂ R of

𝑛 numbers. We preprocess 𝑃 in linear time into a data structure

D of linear size, such that given a query segment 𝛾 = [𝛾𝑎, 𝛾𝑏 ] we
efficiently compute |𝛾 ∩ 𝑃 | = |{𝑝𝑖 | 𝛾𝑎 ≤ 𝑝𝑖 ≤ 𝛾𝑏 }|.

Extension to higher dimensions. We then extend this problem

to higher dimensions. That is, 𝑃 ⊂ R𝑑 and the query range 𝛾 is a

volume that can be described with a constant number of parameters.

Here 𝛾 is taken from a family of ranges Γ. The family of ranges Γ
is known at the time D is constructed. See for example Figure 2

(bottom) for an example in 2-dim, where Γ is the set of all octangles.

Extension to more general functions. Finally, we extend our solu-

tion to compute efficiently 𝑓 (𝑃 ∩ 𝛾), where 𝑓 is a function that can

be computed in a divide and concur manner.

In all cases our privacy guaranty is thatD does not leak anything

on 𝑃 except 𝑛 and 𝑑 . Also, during the computation of the query

nothing leaks on 𝑃 or on 𝛾 .
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4.1 Security Model
For simplicity, we consider here a model with 3 parties: (1) data

owner that owns 𝑃 , (2) querier that performs range search queries

and (3) the cloud to which the database and queries are uploaded

to and performs the computation. This security model is motivated

by the growing trend of providing analytics-as-a-service and out-

sourcing that service to the cloud (to save maintenance and other

IT costs). See for example solutions by IBM [26], CryptoLab [18]

and Duality [33]. In the example of Figure 1 the hospital is the data

owner and doctors are the queriers.

Protocol 2 shows an overall view of a system implementing our

secure range searching protocol.

Protocol 2: 𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙

Parties: Data owner, Querier, Cloud.
Parameters: 𝑑 > 0 the dimension of the space;

Γ ⊂ 2
R𝑑

a family of ranges.

Data owner input: A set 𝑃 ⊂ R𝑑 of 𝑛 points.

Querier input: A pair (𝑠𝑘, 𝑝𝑘) of secret and public keys.

Ranges 𝛾1, . . . , 𝛾𝑐 ∈ Γ, where 𝑐 ∈ N is polynomial

in the security parameter of (𝑠𝑘, 𝑝𝑘) .
The cloud has no input.
Querier output: |𝑃 ∩ 𝛾𝑖 |, for 𝑖 = 1, . . . , 𝑐 .

The cloud and the data owner have no output.
1 Querier performs:
2 Send 𝑝𝑘 to the Cloud and to Data owner.

3 Data owner performs:
4 Choose a parameter 0 < 𝑟 < 𝑛.

5 (𝑇 ′, 𝜉, ℎ) := Build a partition tree for 𝑃 and Γ with

parameter 𝑟 . // See Section 6

6 𝑇 := 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑛, 𝑟, ℎ,𝑇 ′). // See Algorithm 6

7 ⟦𝑇⟧ := encrypt 𝑣 .𝑣𝑎𝑙, 𝑣 .𝜎 for every 𝑣 ∈ 𝑇 .

8 Send ⟦𝑇⟧, 𝑛, Γ, 𝜉, 𝑟, ℎ to Cloud.

9 foreach 𝑖 = 1, . . . , 𝑐 do
10 Querier performs:
11 ⟦𝛾𝑖⟧ := Enc𝑝𝑘 (𝛾𝑖 )
12 Send ⟦𝛾𝑖⟧ to Cloud.

13 Cloud performs:
14 ⟦𝑥𝑖⟧ := 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑛,𝑑,Γ,𝜉,𝑟,ℎ (⟦𝑇⟧, ⟦𝛾𝑖⟧) // See

Algorithm 3

15 Send ⟦𝑥𝑖⟧ to querier.

16 Querier performs:
17 𝑥𝑖 := Dec𝑠𝑘 (⟦𝑥𝑖⟧)
18 Output 𝑥𝑖

We consider computationally-bounded, semi-honest adversaries.

We assume the querier doesn’t collude with the cloud or the data

owner. The semantic security of FHE guarantees that the cloud

learns nothing on the content of 𝛾 or 𝑃 .

4.2 Multiple Queriers
Protocol 2 considers a single querier. The protocol can be extended

to multiple queriers without keeping an encrypted version of the

database for each querier by using transciphering aswe now explain.

Suppose there are 𝑞 queriers 𝑄1, . . . , 𝑄𝑞 where the key pair of 𝑄𝑖

is (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ). In line 2 each querier sends their public key to the

data owner. Prior to running Line 7 the data owner generates an

AES key 𝑎𝑘 . In Line 7 the data owner encrypts 𝑇 using 𝑎𝑘 . Denote

this as ⟦𝑇⟧𝑎𝑘 . In Line 8 the data owner additionally sends ⟦𝑎𝑘⟧𝑝𝑘𝑖 ,
i.e., 𝑎𝑘 encrypted using 𝑝𝑘𝑖 , for 𝑖 = 1, . . . , 𝑞. When answering a

query sent by 𝑄𝑖 we make the following changes: before executing

Line 14 the cloud uses ⟦𝑎𝑘⟧𝑝𝑘𝑖 to decrypt ⟦𝑇⟧𝑎𝑘 under FHE. This

transciphers ⟦𝑇⟧𝑎𝑘 into ⟦𝑇⟧𝑝𝑘𝑖 . See for example [4] for an example

for transciphering AES into CKKS. Then the cloud continues as

usual with ⟦𝑇⟧𝑝𝑘𝑖 and returns the answer to 𝑄𝑖 .

The full algorithm is given in Appendix B.

5 COPY-AND-RECURSE
Before describing our solution to the range search problem we need

to describe our copy-and-recurse method and how it is used to

traverse a tree efficiently under FHE.

5.1 Prerequisites
Given a 𝑟 -ary tree𝑇 (where each node has 𝑟 children) that needs to

be traversed, we can use copy-and-recurse if the following holds:

• 𝑇 is full - i.e., all inner nodes have 𝑟 children and all leaves

have the same height.

• There exists an upper bound 𝜉 < 𝑟 such that at each node at

most 𝜉 children need to be recursed into.

For example, full binary trees meet these prerequisites with 𝑟 = 2

and 𝜉 = 1 because we recurse into exactly one child. In Section 6 and

Section 7 we describe partition trees and how they are efficiently

traversed using copy-and-recurse. In Section 7.3 we discuss how to

transform a tree 𝑇 to a full tree by adding “empty” nodes.

5.2 How It Works
We now show how to efficiently traverse a tree 𝑇 with the prereq-

uisites in Section 5.1. We start at the root of 𝑇 and perform:

(1) Determine (under FHE) which children need to be recursed

into. Specifically, we compute a binary vector of 𝑟 indicator

bits 𝜒 = (𝜒1, . . . , 𝜒𝑟 ), where 𝜒𝑖 = 1 iff we need to recurse

into the 𝑖-th child. The specifics of computing 𝜒 depends

on the application. Looking ahead, when answering a range

search we recurse into children that cross the query range

(more details are given in Section 6).

(2) Build a selection matrix to generate (under FHE) a copy of

the children (and their subtrees) that we need to recurse

into. From the prerequisites mentioned in Section 5.1 only

copies of 𝜉 < 𝑟 are generated since at most 𝜉 children need

to be recursed into. We stress that under FHE this is done

my multiplying the vector of children by a 𝜉 × 𝑟 selection

matrix and that takes time at least linear in the tree size.

(3) Recurse. After making copies of 𝜉 < 𝑟 children we recurse

into the copied subtrees by going back to Step 1 with the

root of each subtree.

These steps are executed until a leaf is reached. See Figure 3 for

an example of using copy-and-recurse on a binary search tree (𝑟 =

2, 𝜉 = 1) with 𝑛 leaves. Applying copy-and-recurse at each node we
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determine which subtree to recurse into by computing the value of

a comparison, 𝑐𝑚𝑝𝑖 . Then multiplying by a selection matrix to copy

that subtree. The figure depicts (the more familiar) Mux operation

since a 1 × 2 selection matrix is identical to a𝑀𝑢𝑥 . We continue in

recursion until we reach a leaf. Eventually, the decision function

was called only log𝑛 times (computing 𝑐𝑚𝑝1, 𝑐𝑚𝑝2 and 𝑐𝑚𝑝3).

Figure 3: An example of copy-and-recurse method used with
a full binary tree with 𝑛 = 8 leaves. The black nodes are the
nodes the plaintext algorithm visits as it traverses the tree.
First (a) the FHE algorithm visits the root of the tree. Based
on a comparison whose output is 𝑐𝑚𝑝1 ∈ {0, 1} a copy of the
right child and its subtree is generated by multiplexing both
children (𝑀𝑢𝑥 (𝑙, 𝑟 , 𝑐𝑚𝑝1) = 𝑐𝑚𝑝1 ·𝑟 +(1−𝑐𝑚𝑝1) ·𝑙). Multiplexing
is equivalent to a 1×2 selectionmatrix. Next, (b) the algorithm
continues in the copied subtree. Again it generates a copy
of the left child and its subtree using 𝑀𝑢𝑥 . Similarly that
happens at (c). In (d) the FHE algorithm reaches a leaf and
reports it. Using copy-and-recurse, the expensive decision
function was called log𝑛 times, as oppose to the naïve FHE
algorithm that calls the decision function 𝑂 (𝑛) times.

Discussion. The complexity analysis of copy-and-recurse is given

in Section 8 as part of the analysis of answering a range search.

Intuitively, the total cost of copying subtrees in the process is linear

because the size of the subtrees diminish exponentially. Consider

an algorithm that in plaintext traverses a tree and performs some

additional work at each node it visits (e.g. a comparison). It can

be migrated to run under FHE using copy-and-recurse, such that

the additional work is performed on the same number of nodes

as the plaintext algorithm. The extra cost of running under FHE

with copy-and-recurse is only the cost of multiplying by a selection

matrix.

6 1-DIM PARTITION TREES
We now continue to describe how range searching can be answered

efficiently. To simplify the description we consider here the 1-dim

counting problem, i.e., to preprocess a set 𝑃 of 𝑛 numbers, 𝑝1 ≤
. . . ≤ 𝑝𝑛 ∈ R, such that given a range [𝑎, 𝑏], we report the number

of elements in the range, i.e. |{𝑝𝑖 | 𝑎 ≤ 𝑝𝑖 ≤ 𝑏}|. In Section 7

we explain how to extend this to higher dimensions and more

complicated ranges. Our solution uses partition trees (introduced

by Matoušek in [32]) and traverses them efficiently using the copy-

and-recurse method. Next we show a partition for the 1-dim case

with the property 𝜉 = 2 (i.e., at each node, at most 2 children need

to be recursed into).

6.1 The Partition Tree
A partition tree, 𝑇 , is a tree data structure constructed for a set

𝑃 . In this section, we assume each inner node of 𝑇 has the same

number of children, 𝑟 . We also assume that all leaves have the same

height. See Figure 4 for an example. A partition tree that meets

these assumptions is easy to construct in the 1-dim case as we show

below.

Each node of the tree is associated with a subset of 𝑃 . For a node

𝑣 , we denote by 𝑆𝑣 the subset associated with it. Additionally we

require:

• 𝑆𝑟𝑜𝑜𝑡 = 𝑃 . The root is associated with the entire set 𝑃 .

• |𝑆𝑙𝑒𝑎𝑓 | = 1. A leaf is associated with a single element.

• The subsets associated with the children of 𝑣 form a partition

of 𝑆𝑣 , i.e. ∪𝑖𝑆𝑣.𝑐ℎ𝑖𝑙𝑑 [𝑖 ] = 𝑆𝑣 and 𝑆𝑣.𝑐ℎ𝑖𝑙𝑑 [𝑖 ] ∩ 𝑆𝑣.𝑐ℎ𝑖𝑙𝑑 [ 𝑗 ] = ∅,
for 𝑖 ≠ 𝑗 .

We stress that 𝑆𝑣 is used when building the tree but it is not
kept at 𝑣 . We now list the data that we do keep at each node 𝑣 :

• (For inner nodes) 𝑐ℎ𝑖𝑙𝑑 [1], . . . , 𝑐ℎ𝑖𝑙𝑑 [𝑟 ] - the children nodes.

• ⟦|𝑆𝑣 |⟧ - the encryption of |𝑆𝑣 |. We note that for a full tree

|𝑆𝑣 | = 𝑟𝑑𝑖𝑠𝑡 , where 𝑑𝑖𝑠𝑡 is the number of nodes in a path

(distance) from 𝑣 to a leaf. This makes storing ⟦|𝑆𝑣 |⟧ redun-

dant, but we still mention it here because this is changed in

Sections 7 and 9.

• ⟦𝜎⟧ = ⟦
[
𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥

]
⟧ - i.e., the encryption of the segment

defined by 𝜎𝑚𝑖𝑛 = min 𝑆𝑣 and 𝜎𝑚𝑎𝑥 = max 𝑆𝑣 . We call the

segment [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ] the bounding segment of 𝑆𝑣 because
𝑆𝑣 ⊂ [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 ].

6.2 Building a Partition Tree
We now describe how to build a partition tree. Recall that we are

given 𝑝1 ≤ . . . ≤ 𝑝𝑛 ∈ R and a parameter 𝑟 . Also, recall that for

simplicity we consider the case of a full tree which means 𝑛 = 𝑟ℎ ,

for some ℎ ∈ N.
We start with 𝑣 = 𝑟𝑜𝑜𝑡 and set 𝑆𝑣 = 𝑆𝑟𝑜𝑜𝑡 = 𝑃 . Then we:

• Set 𝑣 .𝑣𝑎𝑙 = |𝑆𝑣 |.
• Set ⟦𝑣 .𝜎⟧ = ⟦[min 𝑆𝑣,max 𝑆𝑣]⟧.
• Partition 𝑆𝑣 into 𝑟 subsets 𝑃1 = (𝑝1, . . . , 𝑝𝑛/𝑟 ),
𝑃2 = (𝑝𝑛/𝑟+1, . . . , 𝑝2𝑛/𝑟 ), . . ., 𝑃𝑟 = (𝑝𝑛−𝑟+1, . . . , 𝑝𝑛).

• Recursively build a sub-tree for 𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] until we have

|𝑆𝑣 | = 1.

6.3 Traversing a Partition Tree
In this section we describe how to traverse a partition tree to com-

pute |𝑃 ∩ 𝛾 |.
As we traverse the tree we keep a counter 𝑐𝑜𝑢𝑛𝑡 (encrypted) that

will eventually hold |𝑃 ∩ 𝛾 |. At the beginning we set 𝑐𝑜𝑢𝑛𝑡 = 0.

When at a node 𝑣 we consider each child𝑢𝑖 = 𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖], compare its

bounding segment, ⟦𝑢𝑖 .𝜎⟧, to𝛾 to determine whether it is contained,
disjoint or crosses and act as follows:

(1) contained. If 𝑢𝑖 .𝜎 is contained in 𝛾 then all the points in

𝑆𝑢𝑖 should be counted and we add 𝑢𝑖 .𝑣𝑎𝑙 = |𝑆𝑢𝑖 | to 𝑐𝑜𝑢𝑛𝑡

without recursing into the subtree of 𝑢𝑖 .

(2) disjoint. If 𝑢.𝜎 and 𝛾 are disjoint then none of the points in

𝑆𝑢𝑖 should be counted and we skip 𝑢𝑖 without recursing into

its subtree.
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(3) cross. If 𝑢.𝜎 crosses 𝛾 (i.e. it intersects but not contained)

we need to recurse into the subtree of 𝑢𝑖 to determine which

of the points in 𝑆𝑢𝑖 are contained in 𝛾 .

As already hinted, we can efficiently traverse the partition tree

using copy-and-recurse. As mentioned in Section 5.1 to do that we

need to show that at each node we need to recurse into at most 𝜉

children for some bound 𝜉 < 𝑟 . In the next lemma we prove that a

query segment can cross at most 2 of 𝑟 segments (where any pair

overlap in at most one point). This proves that for a 1-dim partition

tree we have 𝜉 = 2.

Lemma 6.1. Let 𝜎1 = [𝜎𝑚𝑖𝑛1
, 𝜎𝑚𝑎𝑥1 ], . . . , 𝜎𝑟 = [𝜎𝑚𝑖𝑛𝑟 , 𝜎𝑚𝑎𝑥𝑟 ] be

𝑟 segments, where 𝜎𝑚𝑖𝑛1
≤ 𝜎𝑚𝑎𝑥1 ≤ . . . ≤ 𝜎𝑚𝑖𝑛𝑟 ≤ 𝜎𝑚𝑎𝑥𝑟 . Then, a

segment 𝛾 = [𝛾𝑚𝑖𝑛, 𝛾𝑚𝑎𝑥 ] crosses at most 2 segments of 𝜎1, . . . , 𝜎𝑟 .

The claim is intuitive (see Figure 2) and we omit the proof. The

implications of this lemma is that at most 2 children need to be

recursed into and therefore we can use copy-and-recurse with 𝜉 = 2.

Figure 4 shows an example of a partition tree that was built for

the numbers 1, 2, 4, 4, 5, 7, 7, 8, 8 and 𝑟 = 3 and how it is used to

count the numbers that lie in a query segment 𝛾 = [4, 7].

Figure 4: An example of a 1-dim partition tree that was built
for the numbers 1,2,4,4,5,7,7,8,8 with 𝑟 = 3. At each node 𝑣

we show 𝑆𝑣 and the bounding segment of 𝑆𝑣 (for readability
we omit this for some leaves). The figure also shows how the
tree is traversed for counting all values in a query segment
𝛾 = [4, 7]. Nodes with 𝑣 .𝜎 ⊂ 𝛾 are marked with solid black.
All values in these nodes can be counted without recursing.
Nodes with 𝑣 .𝜎 ∩𝛾 = 𝜙 are marked with black dots. All values
in these nodes can be ignored. Nodes the traversal doesn’t
reach (because an ancestor is one of the cases above) are
marked with white. Nodes with 𝑣 .𝜎 crossing 𝛾 are marked
with black stripes. These nodes should be recursed into to
determine how many of the values they represent are in 𝛾 .

In Algorithm 3 we describe in pseudo-code how a partition tree

is traversed efficiently to compute |𝑃 ∩ 𝛾 | for the 1-dim case.

In Section 7 we extend this algorithm to higher dimensions and

in Section 9 we extend it to compute more general function 𝑓 (𝑃∩𝛾).

Algorithm overview. Algorithm 3 implements privacy preserving

range counting in 1-dim. The public parameters of the algorithm
are: 𝑛 and 𝑟 , where 𝑛 = |𝑃 | is the number of points and 𝑟 is the

number of children each inner node has.

The input of the algorithm is ⟦𝑇⟧ and ⟦𝛾⟧. 𝑇 is a partition tree

and 𝛾 is a segment. We use a ciphertext notation for 𝑇 because the

(private) content stored at each node (𝑣 .𝜎 and 𝑣 .𝑣𝑎𝑙 ) are encrypted.

Algorithm 3: 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑛,𝑟 (⟦𝑇⟧, ⟦𝛾⟧)

Parameters: 𝑛 = |𝑃 |
𝑟 the number of children each inner node has.

Input: A full tree 𝑇 where 𝑣 is its root; an encrypted segment ⟦𝛾⟧
Output: ⟦𝑥⟧, where 𝑥 = |𝑃 ∩ 𝛾 |.

1 if 𝑣 is a leaf then
// check whether 𝑣 .𝜎 ⊂ 𝛾

2 ⟦𝐶𝑜𝑛𝑡⟧ := 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔(⟦𝑣 .𝜎⟧, ⟦𝛾⟧)
3 Output ⟦𝐶𝑜𝑛𝑡⟧ · ⟦𝑣 .𝑣𝑎𝑙⟧
4 else
5 foreach 𝑖 = 1, . . . , 𝑟 do

// check whether 𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎 ⊂ 𝛾

6 ⟦𝐶𝑜𝑛𝑡 [𝑖]⟧ := 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔(⟦𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎⟧, ⟦𝛾⟧)
7 ⟦𝑥⟧ :=

∑𝑟
𝑖=1⟦𝐶𝑜𝑛𝑡 [𝑖]⟧ · ⟦𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝑣𝑎𝑙⟧

8 foreach 𝑖 = 1, . . . , 𝑟 do
// check whether 𝑐.𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎 crosses 𝛾

9 ⟦𝐶𝑟𝑜𝑠𝑠 [𝑖]⟧ := 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔(⟦𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎⟧, ⟦𝛾⟧)
10 ⟦𝑀⟧ := 𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥𝑟,2 (⟦𝐶𝑟𝑜𝑠𝑠⟧) // See

Algorithm 1

11 ⟦𝑐ℎ𝑖𝑙𝑑 ′⟧ := 𝑀 · ⟦𝑣 .𝑐ℎ𝑖𝑙𝑑⟧
12 ⟦𝐶𝑟𝑜𝑠𝑠 ′⟧ := 𝑀 · ⟦𝐶𝑟𝑜𝑠𝑠⟧
13 ⟦𝑥⟧ := ⟦𝑥⟧ +𝐶𝑟𝑜𝑠𝑠 ′[1] ·

𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑛/𝑟,𝑟 (⟦𝑐ℎ𝑖𝑙𝑑 ′[1]⟧, ⟦𝛾⟧))+
𝐶𝑟𝑜𝑠𝑠 ′[2] · 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑛/𝑟,𝑟 (⟦𝑐ℎ𝑖𝑙𝑑 ′[2]⟧, ⟦𝛾⟧))

14 Output ⟦𝑥⟧

We note that the structure of 𝑇 (which node is the child of which)

is not encrypted.

The output of the algorithm is ⟦𝑥⟧ where 𝑥 = |𝑃 ∩ 𝛾 |.
Algorithm 3 works recursively. When it is first called it operates

on the root of the tree. Then it recurses into some of the children of

the root by calling itself with the input being 𝑐ℎ𝑖𝑙𝑑 ′[𝑖], a copy of a

subtree of a child as generated by multiplying the selection matrix.

The recursion stops when it reaches a leaf. While traversing the

partition tree the algorithm sums ⟦𝑣 .𝑣𝑎𝑙⟧ from various nodes (as

we explain below). The improved efficiency of the algorithm comes

from the property (proved in Lemma 6.1) that at most 𝜉 = 2 children

need to be recursed into. This is done under 𝐹𝐻𝐸 by multiplying

the vector of 𝑟 children by a 𝜉 × 𝑟 selection matrix to get a copy of

𝜉 children and their subtrees. Lemma 6.1 proves that the children

we actually need to recurse into are among the 2 children we copy.

Algorithm 3 starts by checking the stopping condition of the

recursion (Line 1). For a leaf, 𝑣 , it checks whether 𝑣 .𝜎 ⊆ 𝛾 (Line 2).

This is done by calling the function 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 which returns

⟦𝑐⟧, where 𝑐 = 1 if 𝑣 .𝜎 ⊆ 𝛾 and 0 otherwise. Then we use ⟦𝑐⟧ as a

multiplexer to output |𝑆𝑣 | or 0 (Line 3).
When 𝑣 is an inner node (Lines 4-14) the algorithm checks for

each child of 𝑣 whether its bounding segment, 𝜎 , is contained in

𝛾 (Line 6). If 𝑆𝑣.𝑐ℎ𝑖𝑙𝑑 [𝑖 ] ⊂ 𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎 ⊂ 𝛾 we can count 𝑣 .𝑣𝑎𝑙 =

|𝑆𝑣.𝑐ℎ𝑖𝑙𝑑 [𝑖 ] | without checking the points of 𝑆𝑣.𝑐ℎ𝑖𝑙𝑑 [𝑖 ] . Then, the al-
gorithm finds children whose bounding segment crosses 𝛾 (Line 9).

These values are kept in a 𝑟 -dimensional binary vector 𝐶𝑟𝑜𝑠𝑠 . The
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copy-and-recurse method is implemented by multiplying by a se-

lection matrix 𝑀 . The matrix is generated (Line 10) using the

𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 algorithm (see Algorithm 1). Then the algo-

rithm computes𝑀 ·𝑣 .𝑐ℎ𝑖𝑙𝑑 (Line 11) to generate a copy of 𝜉 children

(here we regard 𝑣 .𝑐ℎ𝑖𝑙𝑑 as a vector (𝑣 .𝑐ℎ𝑖𝑙𝑑 [1], . . . , 𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑟 ]) with
𝑟 elements where each element is a subtree). The output is a vector

𝑐ℎ𝑖𝑙𝑑 ′ with only 2 elements. Similarly we copy 𝐶𝑟𝑜𝑠𝑠 into 𝐶𝑟𝑜𝑠𝑠 ′.
We then recurse into the subtrees in 𝑐ℎ𝑖𝑙𝑑 ′ to check a finer partition
(i.e., into smaller sets) of their points (Line 13). We add the output

of these recursions into the output of the algorithm.

7 RANGE SEARCHING IN HIGHER
DIMENSIONS

In this sectionwe explain howpartition trees are extended to answer

range searching in 𝑑 dimensions.

In 𝑑-dim the input 𝑃 ⊂ R𝑑 is a set of 𝑑 dimensional points. The

query range is some volume 𝛾 ⊂ R𝑑 , e.g., a sphere, a polytope,

etc. See more on this below. At each node 𝑣 we keep a bounding
simplex2 𝑣 .𝜎 that contains all the points in 𝑆𝑣 .

The concept of partition tree is generic and can be used in 𝑑

dimensions as long as we supply a 𝑑-dim version of a partition

theorem. Unlike the 1-dim case, in 𝑑-dim it is not trivial to find

a partition to subsets of equal sizes bounded by simplices where

the number of simplices crossing a query is bounded. Even the

simple planar case with query ranges being the area under a query

line received a lot of attention from the computational geometry

community in the past. Looking ahead, the machinery we use can

handle arbitrary ranges in 𝑑-dim as long as they are not “too com-

plex” as we now explain.

In what follows we give some computational geometry prelimi-

naries that were deferred until now to improve readability and then

we describe the changes that need to be made in Algorithm 3 to

support multiple dimensions.

7.1 Computational Geometry Preliminaries
In this section we explain some terminology in computational ge-

ometry.

Range space. A range space is a pair (𝑋, Γ), where 𝑋 is a set and

Γ ⊂ 2
𝑋
is a family of subsets, called ranges. We consider 𝑋 = R𝑑

for some 𝑑 .

Range Searching. The range searching problem studied in com-

putational geometry is: given a set of 𝑛 points 𝑃 ⊂ R𝑑 and a family

of ranges Γ, preprocess 𝑃 into a data structure D, such that given a

range 𝛾 ∈ Γ and using D we can efficiently compute |𝑃 ∩ 𝛾 |.

Algebraic Range. A 𝑑-dimensional algebraic range is a subset

𝛾 ⊂ R𝑑 defined by an algebraic surface given by a function that

divides R𝑑 into two regions (e.g. above and below).

Semi-algebraic Range. A 𝑑-dimensional semi-algebraic range is

a subset 𝛾 ⊂ R𝑑 that is a conjunction and disjunction of a bounded

number of algebraic ranges. Simply put, a semi-algebraic range is

the result of intersections and unions of algebraic ranges.

2
A simplex in R𝑑 is the convex hull of 𝑑 + 1 points.

Constant Description Complexity. The description complexity of

a range is the number of parameters needed to describe it. One

example is a half-space range bounded by a plane in R3 𝑎𝑥 + 𝑏𝑦 +
𝑐𝑧 + 1 = 0 which has 3 parameters 𝑎, 𝑏, and 𝑐 . Another example is a

sphere (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + (𝑧 − 𝑐)2 ≤ 𝑟2, which has 4 parameters:

𝑎, 𝑏, 𝑐, 𝑟 . The description complexity may depend on 𝑛 (for example

a star-shaped volume in R3 with 𝑛 “spikes” has 𝑂 (𝑛) parameters).

There is a connection between the number of parameters and the

“hardness” of the range searching problem. Intuitively, it is harder to

answer queries when ranges have more parameters. The machinery

we use requires the ranges to have a constant number of parameters

in their description (i.e., to have a constant description complexity).

Elementary Cell Partition (or Simplicial Partition). Given a set

𝑃 ⊂ R𝑑 of 𝑛 points, an elementary cell partition (or simplicial

partition) is a collection Π = {(𝑃1, 𝜎1), . . . , (𝑃𝑚, 𝜎𝑚)} where 𝑃𝑖 ’s
are disjoint subsets such that ∪𝑃𝑖 = 𝑃 and each 𝑃𝑖 ⊂ 𝜎𝑖 , where 𝜎𝑖
is simplex. We say the size of the partition is𝑚.

Crossing Number. Given a simplicial partition Π = {(𝑃1, 𝜎1), . . . ,
(𝑃𝑚, 𝜎𝑚)} and a range 𝛾 , the crossing number of 𝛾 with respect to

Π is the number of simplices𝛾 crosses, i.e. |{𝜎𝑖 | 𝜎𝑖 ⊈ 𝛾 and 𝜎𝑖 ∩𝛾 ≠

∅, for 𝑖 = 1, 2, . . . ,𝑚}|.

Partition Theorem. In a seminal work [32] Matoušek showed a

non-trivial partition with small crossing number when Γ is the set

of halfspaces bounded by hyperplanes. In [1] it was extended to

general semi-algebraic ranges with constant description complexity.

The most recent partition theorem is due to [2] who improved the

bound on the crossing number. Their result is summarized in the

following theorem.

Theorem 7.1 (From [2]). Given a set 𝑃 of 𝑛 points in R𝑑 , for some
fixed 𝑑 , a family of semi-algebraic ranges of constant description
complexity Γ and a parameter 𝑟 ≤ 𝑛, an elementary cell partition Π =

{(𝑃1, 𝜎1), . . . , (𝑃𝑚, 𝜎𝑚)} can be computed in randomized expected
time 𝑂 (𝑛𝑟 + 𝑟3) such that:

(1) ⌊𝑛/𝑟⌋ ≤ |𝑃𝑖 | < ℎ⌊𝑛/𝑟⌋ for every 𝑖 and some constant ℎ.
(2) The crossing number of Π is 𝑂 (𝑟1−1/𝑑 ).

7.2 Changes to Algorithms
We now describe the changes needed to be made in Algorithm 3 to

support higher dimensions.

As mentioned above, in 𝑑 dimensions we use Theorem 7.1 when

constructing the partition tree. The tree constructed with this the-

orem has 𝑟/ℎ ≤ 𝑚 ≤ 𝑟 children at each node and the height of a

leaf is ⌊log𝑟 𝑛⌋ ≤ ℎ𝑒𝑖𝑔ℎ𝑡 ≤ ⌊log𝑟/ℎ 𝑛⌋. This follows from the subset

sizes at node 𝑣 being ⌈|𝑆𝑣 |/𝑟⌉ ≤ 𝑚 ≤ ℎ⌈|𝑆𝑣 |/𝑟⌉.
The variable number of children and variable leaf height raises 2

problems: (1) the tree structure may leak information on the input

and (2) the copy-and-recurse prerequisites are not met. To solve

these 2 problems we describe in Section 7.3 how a partition tree can

be filled by adding empty nodes. For the remainder of this section

we assume the given tree is full.

Changes to 𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 . The changes needed to ap-
ply to 𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 to support high dimension include

getting 𝑑 and Γ as parameters, where 𝑑 is the dimension and Γ is
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the family of all possible query ranges. 𝑑 and Γ are used when the

partition tree is constructed (they are needed by the Theorem 7.1).

Changes to 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ. The changes to 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ in-

clude:

• The parameters include 𝑑, Γ, 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔

(more precisely, only 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 are needed

but their implementation depends on 𝑑 and Γ).
• Call𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 with 𝑟 and 𝜉 as parameters. (Line 10)

• Recurse into the 𝜉 children that were copied (Line 13).

7.3 Hiding Tree Structure
As mentioned above using Theorem 7.1 results in a partition tree

that is not full. This has security issues. Also, it does not meet the

prerequisites of the copy-and-recurse method. In this section we

give a recipe to “fill” trees by adding empty nodes to them (as we

explain below) until the tree becomes full i.e.: (1) each node has the

maximal number of children and (2) all leaves are at the maximal

height. As our analysis below shows, this addresses the security

problem because the structures of 2 full trees (built with the same

parameters 𝑛 and 𝑟 ) are indistinguishable. Our analysis also shows

the size of the tree grows from 𝑂 (𝑛) to 𝑂 (𝑛1+𝜖 ). We first define an

empty node and then explain how they are added.

Definition 7.2 (Empty Node). An empty node is a node 𝑣 that is

associatedwith an empty set, 𝑆𝑣 = ∅ and its simplex is a degenerated

empty simplex, 𝑣 .𝜎 = ∅.

To hide the structure of a tree we add empty nodes until (1) all in-

ner nodes have 𝑟 children and (2) the height of each leaf is ⌈log𝑟/ℎ 𝑛⌉.
For completeness we describe this algorithm in Appendix D.

We conclude this section by stating 2 lemmas whose proofs are

given in Appendix D.

Lemma D.1. Let 𝑃 be a set of 𝑛 points in R𝑑 , Γ a family of ranges,
𝑟 < 𝑛 a parameter and ℎ a parameter such that any simplicial par-
tition of 𝑃 ′ with respect to Γ, Π = {(𝑃 ′

1
, 𝜎1), . . . , (𝑃 ′𝑚, 𝜎𝑚)} satisfies

|𝑃 ′ |/𝑟 < |𝑃 ′
𝑖
| < ℎ · |𝑃 ′ |/𝑟 and let 𝑇 = 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑇 ′, 𝑛, 𝑟, ℎ), where 𝑇 ′

is a partition tree built for 𝑃 and Γ, then the height of 𝑇 is ⌈log𝑟/ℎ 𝑛⌉

and it has a total of 𝑛
1

1−⌈log𝑟 ℎ⌉ = 𝑂 (𝑛1+𝜖 ) nodes.

LemmaD.2. Let 𝑃1, 𝑃2 ⊂ R𝑑 be 2 sets of points with |𝑃1 | = |𝑃2 | = 𝑛

and 𝑇 ′
1
,𝑇 ′

2
be 2 partition trees built for 𝑃1 and 𝑃2, respectively, with

the same parameters 𝑟, ℎ then 𝑇1 and 𝑇2 have the same structure,
where 𝑇𝑖 = 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑛, 𝑟, ℎ,𝑇 ′

𝑖
), for 𝑖 = 1, 2.

8 SIZE AND DEPTH ANALYSIS
In this section we analyze the size and depth of a circuit that im-

plements 𝑃𝑃𝐶𝑜𝑛𝑢𝑡 (Algorithm 3) to compute |𝑃 ∩ 𝛾 |. We start by

analyzing the size and depth of 𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 which is used

by 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ.

8.1 Analyzing Building Selection Matrix
Depth and size analysis. The Analysis of the size and depth of

a circuit implementing 𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥𝑟,𝜉 is summarized in

the following lemma.

Lemma 8.1. Computing 𝑀 [𝑐𝑜𝑙, 𝑟𝑜𝑤] for 1 ≤ 𝑐𝑜𝑙 ≤ 𝜉 and 1 ≤
𝑟𝑜𝑤 ≤ 𝑟 can be done with a circuit of depth 𝑂 (𝜉 · log 𝑟 ) and size
𝑂 (𝜉 · 𝑟2).

Proof. We prove the lemma by induction on 𝜉 . For 𝜉 = 1 we

have𝑀 [1, 𝑟𝑜𝑤] := 𝑐 [𝑟𝑜𝑤] ·∏𝑟𝑜𝑤−1
𝑖=1 (1−𝑐 [𝑖]) which can be done for

all 1 ≤ 𝑟𝑜𝑤 ≤ 𝑟 in a circuit of depth 𝑂 (log 𝑟𝑜𝑤) and size 𝑂 (𝑟𝑜𝑤).
Computing for all rows in parallel we get a circuit of depth𝑂 (log 𝑟 )
and size 𝑂 (𝑟2).

Assuming it holds for all 𝜉 ′ < 𝜉 we prove it holds for 𝜉 . Since we

have𝑀 [𝜉, 𝑟𝑜𝑤] = 𝑐 [𝑟𝑜𝑤]∑𝑟𝑜𝑤−1
𝑘=1

(
𝑀 [𝜉 − 𝑖, 𝑘]∏𝑟𝑜𝑤−1

ℎ=𝑘+1 (1 − 𝑐 [ℎ])
)

this can be done for all 1 ≤ 𝑟𝑜𝑤 ≤ 𝑟 with a circuit whose depth is

𝑂 (log 𝑟 + (𝜉 − 1) log 𝑟 ) and size is 𝑂 (𝑟2 + (𝜉 − 1)𝑟2), which proves

the claim. □

8.2 Analyzing PPRangeSearch
We now turn to analyze 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ (Algorithm 3). As men-

tioned in Section 3.3.1 we denote by 𝑡, ℓ the size and depth of the

circuit that realizes 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 or 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔.

Analyzing the space of a tree is now easy.

Lemma 8.2 (Space). Let 𝑃,𝑇 be as in Lemma D.1, where |𝑃 | = 𝑛

and 𝑟 < 𝑛 is a parameter, then 𝑇 needs space of 𝑂 (𝑛1+𝜖 ), where the
value of 𝜖 depends on 𝑟 and can be made arbitrarily small.

Proof. From Lemma D.1 the number of nodes is 𝑛
1

1−log𝑟 ℎ
. Since

we keep𝑂 (1) data with each node the total space is𝑂 (𝑛1+𝜖 ), where
𝜖 =

log𝑟 ℎ

1−log𝑟 ℎ
can be made arbitrarily small by choosing a large 𝑟 . □

We now turn to analyze the size and depth of the circuit that

computes a range search query.

Theorem 1.1. Let 𝑃 ⊂ R𝑑 be a set of 𝑛 points, Γ ⊂ 2
R𝑑 a fam-

ily of semi-algebraic ranges, 𝑇 a full partition tree as output from
Algorithm 6, a function 𝑓 that can be computed in a divide and con-
quer manner and 𝑡 and ℓ are the size and depth of the circuit that
compares a range to a simplex, then given 𝛾 ∈ Γ, 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ
(Algorithm 3) securely evaluates 𝑓 (𝛾 ∩ 𝑃) in a circuit whose size is
𝑂 (𝑡 · 𝑛1−

1

𝑑
+𝜖 + 𝑛1+𝜖 ) and depth is 𝑂 (ℓ · log𝑛).

Informally, the correctness follows from the plaintext algorithm

that Algorithm 3 implements. The bound on the circuit size is

proved by solving the recursion formula of the circuit size. The

circuit depth is proved by induction on the tree height. For lack of

space, we give the full proof in Appendix C.

8.3 Axis-Parallel Hyperboxes
The case where Γ ⊂ R𝑑 is the set of axis-parallel hyper-boxes

can be solved more efficiently. Then 𝛾 ∈ Γ is a conjunction of 𝑑

1-dimensional ranges (the projections of𝛾 on each axis). In this case,

we follow a standard method (see for example Section 16.2 in [10])

to answer range queries. In a nutshell, we build a 1-dim partition

tree 𝑇 1
for the projection of 𝑃 on the first axis. At each node 𝑣 of

𝑇 1
(that represents 𝑆𝑣 ) we build a secondary 1-dim partition tree

𝑇 2

𝑣 for the point of 𝑆𝑣 projected onto the second axis, and so on. To

analyze the storage complexity we start at the last level 𝑇𝑑
. Each

tree there has space that is linear in the number of points stored

in it. A tree 𝑇 𝑖
, for 𝑑 = 1, . . . , (𝑑 − 1), keeps a tree 𝑇 𝑖+1

𝑣𝑖
, at every
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node 𝑣𝑖 ∈ 𝑇 𝑖
. It is easy to prove by induction that the total size of

a multi-level data structure with 𝑑 levels is 𝑂 (𝑛 log𝑑−1 𝑛) which
leads to a circuit size of𝑂 (𝑡 ·𝑛𝜖 +𝑛 log𝑑−1). We give a more detailed

explanation in Section C.1.

8.4 Privacy Analysis
In this section we discuss the privacy of the inputs in the presence

of dishonest adversaries. As mentioned above, we consider 3 parties:

(1) the data owner; (2) the cloud and (3) the querier who also holds

the secret key and gets the output. We assume the querier does

not collude with the cloud and claim the cloud does not learn

anything on the context of the encrypted input it receives. The

view of the querier includes only its input and output. The view of

the data owner includes only its input. For the cloud, we consider a

computationally bounded, semi-honest (a.k.a. honest but curious)

adversary that follows the protocol but tries to infer additional

information to what is stated above.

Informally, the security of our algorithm stems from the semantic

security of FHE. For lack of space we discuss the security more

formally in Appendix E.

9 EXTENDING TO GENERIC FUNCTIONS
Until now we have discussed the counting problem in which we

compute |𝑃 ∩ 𝛾 |. In this section we show how we can modify

𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ to compute 𝑓 (𝑃 ∩ 𝛾) for functions 𝑓 that can be

computed in a divide and conquer manner. Note that computing

|𝑃 ∩ 𝛾 | is a special case in which 𝑓 (𝐴) = |𝐴|.
Looking at 𝑓 we see that its input

3
is a subset of 𝑃 and its output

is a value 𝑣 ∈ 𝑉 which we have no restriction on (e.g., for the

counting problem we have 𝑉 = N). Additionally, we require that 𝑓
can be computed in a divide and conquer manner. For the case of

counting, we have 𝑓 (𝐴 ∪ 𝐵) = 𝑓 (𝐴) + 𝑓 (𝐵).
In what follows we describe the changes that need to be made on

𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ. In Appendix F we give a few useful applications

that use different functions 𝑓 and 𝑔.

Changes needed to be made on 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ:

• Set 𝑣 .𝑣𝑎𝑙 = 𝑓 (𝑆𝑣), i.e. each node in the partition tree keeps

the value of 𝑓 applied on 𝑆𝑣 .

• The output when 𝑣 is a leaf (Line 3) is ⟦𝐶𝑜𝑛𝑡⟧ · ⟦𝑣 .𝑣𝑎𝑙⟧ +
(1 − ⟦𝐶𝑜𝑛𝑡⟧) · 𝑓 (∅), i.e. return 𝑣 .𝑣𝑎𝑙 if 𝐶𝑜𝑛𝑡 = 1 and 𝑓 (∅)
otherwise.

• Adding the contribution of children that are contained in 𝛾

should use 𝑔 and be:

foreach 𝑖 = 1, . . . , 𝑟 do
⟦𝑥⟧ := ⟦𝐶𝑜𝑛𝑡 [𝑖]⟧ · 𝑔(⟦𝑥⟧, ⟦𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝑣𝑎𝑙⟧, ⟦𝛾⟧)+

(1 − ⟦𝐶𝑜𝑛𝑡 [𝑖]⟧) · ⟦𝑥⟧
• Adding the contribution of children that cross 𝛾 should use

𝑔 and be:

foreach 𝑖 = 1, . . . , 𝜉 do
⟦𝑥⟧ := ⟦𝐶𝑟𝑜𝑠𝑠 [𝑖]⟧ · 𝑔(⟦𝑥⟧, 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑐ℎ𝑖𝑙𝑑 ′[𝑖], 𝛾))+

(1 − ⟦𝐶𝑟𝑜𝑠𝑠 ′[𝑖]⟧) · ⟦𝑥⟧

3
we avoid the more acceptable terms “domain” and “range” to avoid confusion.

In Appendix B we give the complete algorithm. In Appendix F

we give a few useful applications for privacy preserving range

searching.

10 EXPERIMENTS
In this section we report experiments comparing our copy-and-

recurse method with partition trees to the naïve solution (described

below). As far as we know there are no better solutions.

What we tested. Our method is generic for dimension 𝑑 , range

family Γ and function 𝑓 as defined in previous sections, but for the

experiments we set the parameters as follows. In the first experi-

ment we set 𝑑 = 1 (i.e. 𝑃 ⊂ R) and Γ is the set of all segments. In

the second experiment we set 𝑑 = 2 (i.e. 𝑃 ⊂ R2) and Γ is the set

of all axis-parallel rectangles. In both experiments, motivated by

databases, we set 𝑓 (𝑃 ∩ 𝛾) = |𝑃 ∩ 𝛾 |. When running our method

we used several values of 𝑟 . Specifically, we set 𝑟 = 3, 5, 7, 9.

Setup. Our method is independent of a specific FHE scheme, and

so in our experiments we used the CKKS scheme [12], which is a

popular scheme. To implement the 𝐼𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑟 function we used the

work of [13]. For both the naïve and our algorithms we used the

HELayers framework [3] which can work with any cryptographic

library. In our experiments we used the HEaaN library [17] as the

implementation for CKKS. We set the parameters of the keys to

have 128 bits of security with 𝑠𝑙𝑜𝑡𝑠 = 2
15

slots, chain length 12,

integer precision of 18 bits and fractional precision of 42 bits. With

these parameters the scheme also supported bootstrapping. The

system we used had 64 cores (128 threads) of AMD EPYC 7742 CPU

with 500 GB memory and NVIDIA A100-SXM4-80GB GPU.

Packing and SIMD. Our technique is independent of SIMD, but

in our experiments we stored each number 𝑝 ∈ 𝑃 in a different slot

for a total of 2
15

elements of 𝑃 in a single ciphertext.

The naïve solution. The naïve solution we implemented is similar

to that of Cheon et al. [14] in the sense that given a set 𝑃 of 𝑛 points

and a range 𝛾 we check for each point 𝑝 whether 𝑝 ∈ 𝛾 , for a total of

𝑂 (𝑛) such checks. We remind that the points were packed in SIMD

manner, so that only 𝑂 (𝑛/𝑠𝑙𝑜𝑡𝑠) checks are actually needed. In our

experiments, checking whether 𝑝 ∈ 𝛾 was made by comparing

𝑝 ∈ 𝑃 to the endpoints of 𝛾 . The output of these comparisons was a

binary vector 𝜒 of size 𝑛 with 1 for 𝑝 ∈ 𝛾 and 0 for 𝑝 ∉ 𝛾 . Summing

the elements of 𝜒 yields |𝑃 ∩ 𝛾 |.

What we measured. To compare our method to the naïve method

we ran both algorithms and measured their running time over

different database sizes.

10.1 Results in 1-dim
Our results are summarized in Table 4 and in Figure 5. Table 4

shows the running time (reported in minutes) of 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ

algorithm with different values of 𝑟 and of the naïve algorithm. The

algorithms were run multiple times and the reported result is the

minimum of the measured running times (this is to eliminate skews

in running times). Each column reports the running time of the

algorithm specified in the column’s title. For example, the running

times of 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ using the copy-and-recurse algorithmwith

𝑟 = 3 are reported in the 2nd column. Each row reports the running
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time of the algorithms over database of different size. For example,

the 4th row shows the case where |𝑃 | = 2
21
. These results also

appear in Figure 5. The 𝑥-axis is the size of 𝑃 and the 𝑦-axis is the

running time of the algorithm.

We see that our method is faster when |𝑃 | ≥ 2
23
. For example,

when |𝑃 | = 2
23

the naïve method took 49.36minutes to run whereas

our algorithm took less than 17 minutes when setting 𝑟 = 3. The

time difference grows in our favor as number of points increases.

For example, when |𝑃 | = 2
25

the naïve took 197.04 minutes and

our code took 42.71 minutes. This is expected and follows from our

analysis as we now explain.

The naïve time is linear with a factor of 𝑡 ≈ 6 · 10−6 as expected
since its time complexity is 𝑂 (𝑡 · 𝑛). Indeed, the running times

grows approximately four folds when we increase |𝑃 | four folds.
For example, the ratio between the running times for |𝑃 | = 2

19
and

for |𝑃 | = 2
17

is 3.89.

The running time of 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ using copy-and-recurse

method is, largely speaking, linear. The running times grows ap-

proximately four folds when we increase |𝑃 | four folds. This is
expected and follows from our analysis that the running time is

𝑂 (𝑟 · 𝑡 · 𝑛log𝑟 2 + 𝑟 · 𝑛) = 𝑂 (𝑡 · 𝑛𝜖 + 𝑛). Indeed, when 𝑛 < 𝑡1+
𝜖

1−𝜖 the

term 𝑡𝑛𝜖 is dominant. It becomes less dominant as 𝑛 grows. That

is why we see sub-linear growth when |𝑃 | > 2
21
. For a fixed 𝑛,

the choice of 𝑟 affects the running time and our algorithm is more

efficient than the naïve when 𝑟 · 𝑡 · 𝑛log𝑟 2 + 𝑟 · 𝑛 < 𝑡 · 𝑛. For large
𝑛 that is when 𝑟 < 𝑡

time to copy a node of𝑇
. The choice of 𝑟 in higher

dimension is more complicated and is referred to in Section C. The

results for are also summarized in Figure 5.

|𝑃 | 𝑟 = 3 𝑟 = 5 𝑟 = 7 𝑟 = 9 Naïve

2
15

0.38 0.39 0.39 0.38 0.21

2
17

1.86 1.47 1.47 1.47 0.74

2
19

6.97 7.15 6.85 6.35 2.92

2
21

16.07 18.01 14.84 26.96 11.59

2
23

16.98 23.38 48.24 38.94 49.36

2
25

42.71 56.27 100.72 74.59 197.04

Table 4: The running time (inminutes) when running a range
count query, i.e., finding |𝑃 ∩𝛾 | where 𝑃 ⊂ R. The first column
is the size of the database, |𝑃 |. The next 4 columns are the
running time of 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ using copy-and-recurse with
𝑟 = 3, 5, 7, 9. The last column is the running time of the naïve
method.

10.2 Results in Higher Dimensions
We also repeated our experiment in 2 dimensions where Γ was the

set of all axis-parallel rectangles. In this case we used the multi-level

data structure described in Section 8.3. The results are summarized

in Table 5. As before the naïve algorithm is linear while our algo-

rithm is sub-linear. For example, when |𝑃 | = 2
25

our method took

700 minutes, while the naïve algorithm took 910 minutes.

11 CONCLUSION
We showed a method we call copy-and-recurse that can efficiently

traverse trees with the mentioned prerequisites. We showed how to

Figure 5: The running time of range counting, i.e., finding
|𝑃∩𝛾 |where 𝑃 ⊂ R. The 𝑥-axis is the size of 𝑃 . The𝑦-axis is the
running time of the algorithm in minutes. The blue (solid)
line shows the running time of the naive method. The other
lines show the running time of 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ using copy-
and-recurse method using a partition tree with 𝑟 = 3, 5, 7, 9,
where 𝑟 is the number of children of every inner node.

|𝑃 | 2
17

2
19

2
21

2
23

2
25

Naïve 3 14 54 213 910

𝑟 = 4 13 64 161 335 700

Table 5: The running time (inminutes) when running a range
count query in 2 dimensions, i.e., finding |𝑃 ∩𝛾 | where 𝑃 ⊂ R2.
The first row is the size of 𝑃 . The second row is the running
time of 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ using copy-and-recurse with 𝑟 = 4.
The last row is the running time of the naïve method.

efficiently implement partition trees under FHE with this method.

Partition trees are useful for solving range query problems. In this

paper we have seen a few applications that can be stated as range

searching problems. Specifically, many database queries can be

stated as range queries.

We showed how to solve the general case of semi-algebraic

ranges where more complex ranges yield a higher running time.

We also showed the special case of axis-parallel hyper-boxes that

can be solved more efficiently.

The efficiency of our results comes from the way we traverse

the partition tree which takes advantage of its properties, namely

there is a bound 𝜉 on the number of children we need to recurse

into. We then recurse into 𝜉 children thus achieving similar results

as the plaintext algorithm (which adds to the 𝑂 (𝑛1+𝜖 ) overhead of

copy-and-recurse). We believe the copy-and-recurse method can

be useful in more tree and tree-like constructions.

We implemented a system to demonstrate the efficiency of our

method. Our implementation shows that our method outperforms

the naive implementation even for small values of 𝑛.
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A BUILDING THE SELECTION MATRIX
In this section we describe and analyze Algorithm 1 implementing

𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥𝑟,𝜉 (⟦𝑐⟧), a function that generates the selec-

tion matrix,𝑀 , used in Algorithm 3. The function has 2 parameters

𝑟 and 𝜉 . In addition, it gets as input an encrypted vector ⟦𝑐⟧, where
𝑐 ∈ {0, 1}𝑟 and 𝜉 is an upper bound of the number of non-zero ele-

ments in 𝑐 . The output of 𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥𝑟,𝜉 (⟦𝑐⟧) is a matrix

𝑀 ∈ {0, 1}𝜉×𝑟 , such that for any vector 𝑥 ∈ R𝑟 we have

(𝑀 · 𝑥) [ 𝑗] =
{
𝑥 [𝑖] if 𝑐 [𝑖] is the 𝑗-th value of 1.

0 if 𝑐 [𝑖] has less than 𝑗 non-zero elements.
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To understand how Algorithm 1 works we note that𝑀 [𝑖, 𝑗] = 1

iff 𝑐 [𝑖] is the 𝑗-th cell with a value of 1. Algorithm 1 starts by setting

(Line 2)

𝑀 [1, 𝑖] = 𝑐 [𝑖]
𝑖−1∏
𝑘=1

(1 − 𝑐 [𝑘]) .

It is easy to see that𝑀 [1, 𝑖] = 1 iff 𝑐 [𝑖] is the first non-zero element

in 𝑐 , i.e. 𝑐 [𝑖] = 1 and 𝑐 [𝑘] = 0 for 1 ≤ 𝑘 < 𝑖 . Then, Algorithm 1

continues by setting (Line 5)

𝑀 [ 𝑗, 𝑖] = 𝑐 [𝑖]
𝑖−1∑︁
𝑘=1

(
𝑀 [ 𝑗 − 𝑖, 𝑘]

𝑖−1∏
ℎ=𝑘+1

(1 − 𝑐 [ℎ])
)

which we now explain. 𝑀 [ 𝑗 − 𝑖] [𝑘] = 1 iff 𝑐 [𝑘] is the ( 𝑗 − 1)-st
element with a value of 1.

∏𝑖−1
ℎ=𝑘+1 (1− 𝑐 [ℎ]) = 1 iff 𝑐 [𝑘 + 1] = . . . =

𝑐 [𝑖 − 1] = 0. Putting these together and summing for all values of

𝑘 < 𝑖 we get that
∑𝑖−1
𝑘=1

(
𝑀 [ 𝑗 − 𝑖, 𝑘]∏𝑖−1

ℎ=𝑘+1 (1 − 𝑐 [ℎ])
)
= 1 if there

are exactly 𝑗 − 1 values of 1 in 𝑐 [1], . . . , 𝑐 [𝑖 − 1]. Multiplying this

by 𝑐 [𝑖] we get that𝑀 [ 𝑗, 𝑖] = 1 iff 𝑐 [𝑖] is the 𝑗-th value of 1.

B PROTOCOLS FOR THE GENERIC CASE
In this section we give in full two protocols that were mentioned

above and where described only by listing the differences from a

previous protocol. Specifically,𝑀𝑢𝑙𝑡𝑖𝑄𝑢𝑒𝑟𝑖𝑒𝑟𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 (Pro-

tocol 4) generalizes 𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 (Protocol 2) to the

multi-querier case and 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ (Algorithm 5) generalizes

𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ (Algorithm 3) to the case of a general function 𝑓 .

𝑀𝑢𝑙𝑡𝑖𝑄𝑢𝑒𝑟𝑖𝑒𝑟𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 includes the changes to efficiently

support multiple queriers by encrypting 𝑇 using AES (we use AES

as an example for an efficient encryption scheme) and then transci-

phering the AES-encrypted 𝑇 into FHE-encrypted 𝑇 .

𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ is more general than just computing a count of

the points, |𝑃 ∩ 𝛾 |. Specifically, instead of using |𝐴 ∪ 𝐵 | = |𝐴| + |𝐵 |
it uses 𝑓 (𝐴 ∪ 𝐵) = 𝑔(𝑓 (𝐴), 𝑓 (𝐵)). This change is reflected in how

the contribution of various nodes is added into the output.

C PROOF OF THEOREM 1.1
In this Section we give the proof to Theorem 1.1.

Theorem 1.1. Let 𝑃 ⊂ R𝑑 be a set of 𝑛 points, Γ ⊂ 2
R𝑑 a fam-

ily of semi-algebraic ranges, 𝑇 a full partition tree as output from
Algorithm 6, a function 𝑓 that can be computed in a divide and con-
quer manner and 𝑡 and ℓ are the size and depth of the circuit that
compares a range to a simplex, then given 𝛾 ∈ Γ, 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ
(Algorithm 3) securely evaluates 𝑓 (𝛾 ∩ 𝑃) in a circuit whose size is
𝑂 (𝑡 · 𝑛1−

1

𝑑
+𝜖 + 𝑛1+𝜖 ) and depth is 𝑂 (ℓ · log𝑛).

Proof. In what follows we prove the correctness of the algo-

rithm and then the size and depth of the circuit.

Correctness. The correctness of the plaintext algorithm for range

searching was proven in [1, 2, 32]. Our construction deviates from

the plaintext algorithm in 3 ways: (1) it adds empty nodes; (2) it

always recurses into 𝜉 children (for inner nodes) and (3) it uses the

𝐶𝑟𝑜𝑠𝑠 and 𝐶𝑜𝑛𝑡 indicator arrays to conditionally aggregate values

into the output. These do not change the functionality of algorithm.

Protocol 4:𝑀𝑢𝑙𝑡𝑖𝑄𝑢𝑒𝑟𝑖𝑒𝑟𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔

Parties: Data owner, 𝑞 Queriers 𝑄1, . . . , 𝑄𝑞 , Cloud.

Parameters: 𝑑 > 0 the dimension of the space;

Γ ⊂ 2
R𝑑

a family of ranges.

Data Owner Input: A set 𝑃 ⊂ R𝑑 of 𝑛 points, AES key 𝑎𝑘 .

Querier 𝑄 𝑗 Input: A pair (𝑠𝑘 𝑗 , 𝑝𝑘 𝑗 ) of secret and public keys.

Ranges 𝛾
𝑗

1
, . . . , 𝛾

𝑗
𝑐 ∈ Γ, where 𝑐 ∈ N is polynomial

in the security parameter of (𝑠𝑘 𝑗 , 𝑝𝑘 𝑗 ).
The Cloud has no input.
Querier 𝑄 𝑗 Output: |𝑃 ∩ 𝛾

𝑗
𝑖
|, for 𝑖 = 1, . . . , 𝑐 .

The cloud and the data owner have no output.
1 Querier 𝑄 𝑗 Performs:
2 Send 𝑝𝑘 𝑗 to the Cloud and to the Data owner.

3 Data owner Performs:
4 Choose a parameter 0 < 𝑟 < 𝑛.

5 (𝑇 ′, 𝜉, ℎ) := Build a partition tree for 𝑃 and Γ with

parameter 𝑟 . // See Section 6

6 𝑇 := 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑛, 𝑟, ℎ,𝑇 ′). // See Algorithm 6

7 ⟦𝑇⟧𝑎𝑘 := encrypt 𝑣 .𝑣𝑎𝑙, 𝑣 .𝜎 for every 𝑣 ∈ 𝑇 using 𝑎𝑘 .

8 ⟦𝑎𝑘⟧𝑝𝑘 𝑗
= Enc𝑝𝑘 𝑗

(𝑎𝑘), for 𝑗 = 1, . . . , 𝑞.

9 Send ⟦𝑇⟧𝑎𝑘 , ⟦𝑎𝑘⟧𝑝𝑘1 , . . . , ⟦𝑎𝑘⟧𝑝𝑘𝑞 , 𝑛, Γ, 𝜉, 𝑟, ℎ to Cloud.

10 foreach 𝑗 = 1, . . . , 𝑞 do
11 Cloud performs:
12 ⟦𝑇⟧𝑝𝑘 𝑗

= 𝑡𝑟𝑎𝑛𝑠𝑐𝑖𝑝ℎ𝑒𝑟 (⟦𝑇⟧𝑎𝑘 , ⟦𝑎𝑘⟧𝑝𝑘 𝑗
).

13 foreach 𝑖 = 1, . . . , 𝑐 do
14 Querier 𝑄 𝑗 performs:
15 ⟦𝛾𝑖⟧𝑝𝑘 𝑗

:= Enc𝑝𝑘 𝑗
(𝛾𝑖 )

16 Send ⟦𝛾𝑖⟧𝑝𝑘 𝑗
to Cloud.

17 Cloud performs:
18 ⟦𝑥𝑖⟧𝑝𝑘 𝑗

:=

𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑛,𝑑,Γ,𝜉,𝑟,ℎ (⟦𝑇⟧𝑝𝑘 𝑗
, ⟦𝛾𝑖⟧𝑝𝑘 𝑗

)
// See Algorithm 3

19 Send ⟦𝑥𝑖⟧𝑝𝑘 𝑗
to querier.

20 Querier performs:
21 𝑥𝑖 := Dec𝑠𝑘 𝑗

(⟦𝑥𝑖⟧𝑝𝑘 𝑗
)

22 Output 𝑥𝑖

Circuit Size. At each inner node, 𝑣 , Algorithm 3: (1) computes

𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑟 times; (2) builds a selection matrix

𝑀 ; (3) multiply the vector of children by 𝑀 to get a vector of 𝜉

children of 𝑣 and (4) recurses into 𝜉 children of 𝑣 . Computing all

𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 takes 𝑂 (𝑡 · 𝑟 ) time. From Lemma 8.1,

computing the selection matrix takes 𝑂 (𝑟2 · 𝜉). Denote the size of
each child (including its subtree) by 𝑆 (𝑛) then copying 𝜉 children

(out of 𝑟 ) takes 𝑂 (𝑟 · 𝜉 · 𝑆 (𝑛)). When 𝑑 = 1 we have 𝑆 (𝑛) = 𝑂 (𝑛)
(since the partition procedure generates a complete tree) and when

𝑑 > 1 we have 𝑆 (𝑛) = 𝑂 ((𝑛/𝑟 )
1

1−log𝑟 ℎ ) = 𝑂 ((𝑛/𝑟 )1+𝜖 ), where
1 + 𝜖 = 1

1−log𝑟 ℎ
(this follows from Lemma D.1).

It follows that the time to compute a range query is given by the

following recursion rule:
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Algorithm 5: 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ𝑛,𝑟 (⟦𝑇⟧, ⟦𝛾⟧)

Parameters: 𝑛 = |𝑃 |
𝑟 the number of children each inner node has.

Input: A full tree 𝑇 where 𝑣 is its root; an encrypted segment ⟦𝛾⟧
Output: ⟦𝑥⟧, where 𝑥 = |𝑃 ∩ 𝛾 |.

1 if 𝑣 is a leaf then
// check whether 𝑣 .𝜎 ⊂ 𝛾

2 ⟦𝐶𝑜𝑛𝑡⟧ := 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔(⟦𝑣 .𝜎⟧, ⟦𝛾⟧)
3 Output ⟦𝐶𝑜𝑛𝑡⟧ · ⟦𝑣 .𝑣𝑎𝑙⟧
4 else
5 foreach 𝑖 = 1, . . . , 𝑟 do

// check whether 𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎 ⊂ 𝛾

6 ⟦𝐶𝑜𝑛𝑡 [𝑖]⟧ := 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔(⟦𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎⟧, ⟦𝛾⟧)
7 ⟦𝑥⟧ = ⟦𝑓 (∅)⟧
8 foreach 𝑖 = 1, . . . , 𝑟 do
9 ⟦𝑥⟧ := ⟦𝐶𝑜𝑛𝑡 [𝑖]⟧ · 𝑔(⟦𝑥⟧, ⟦𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝑣𝑎𝑙⟧)+

(1 − ⟦𝐶𝑜𝑛𝑡 [𝑖]⟧) · ⟦𝑥⟧
10 foreach 𝑖 = 1, . . . , 𝑟 do

// check whether 𝑐.𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎 crosses 𝛾

11 ⟦𝐶𝑟𝑜𝑠𝑠 [𝑖]⟧ := 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔(⟦𝑣 .𝑐ℎ𝑖𝑙𝑑 [𝑖] .𝜎⟧, ⟦𝛾⟧)
12 ⟦𝑀⟧ := 𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥𝑟,𝜉 (⟦𝐶𝑟𝑜𝑠𝑠⟧)// See

Algorithm 1

13 ⟦𝑐ℎ𝑖𝑙𝑑 ′⟧ := 𝑀 · ⟦𝑣 .𝑐ℎ𝑖𝑙𝑑⟧
14 ⟦𝐶𝑟𝑜𝑠𝑠 ′⟧ := 𝑀 · ⟦𝐶𝑟𝑜𝑠𝑠⟧
15 foreach 𝑖 = 1, . . . , 𝜉 do
16 ⟦𝑥⟧ := ⟦𝐶𝑟𝑜𝑠𝑠 ′[𝑖]⟧ · 𝑔(⟦𝑥⟧, ⟦𝑐ℎ𝑖𝑙𝑑 ′[𝑖] .𝑣𝑎𝑙⟧)+

(1 − ⟦𝐶𝑟𝑜𝑠𝑠 ′[𝑖]⟧) · ⟦𝑥⟧
17 Output ⟦𝑥⟧

𝑇 (𝑛) ≤ 𝑂 (𝑟 · 𝑡) +𝑂 (𝑟2 · 𝜉) +𝑂 (𝑟 · 𝜉 · 𝑆 (𝑛/𝑟 )) + 𝜉 ·𝑇 (ℎ ·𝑛/𝑟 ) (1)

When 𝑑 > 1we have 𝑆 (𝑛) = (𝑛/𝑟 )1+𝜖 and 𝜉 = 𝑂 (𝑟1−1/𝑑 ). Then this

solves to

𝑇𝑑>1 (𝑛) =
log𝑟/ℎ 𝑛−1∑︁

𝑖=0

𝑂 ((𝑟 ·𝑡+𝑟2·𝜉)·𝜉𝑖 )+
log𝑟/ℎ 𝑛−1∑︁

𝑖=0

𝑂 (𝑟 ·𝜉 ( 𝑛

𝑟 𝑖+1
)1+𝜖 ·𝜉𝑖 )

= (𝑟 · 𝑡 + 𝑟2 · 𝜉) 𝜉
log𝑟/ℎ 𝑛 − 1

𝜉 − 1

+𝑂 (𝑟 · 𝑛1+𝜖 ·
1 − ( 𝜉

𝑟 1+𝜖
)log𝑟/𝑛 +1

1 − 𝜉

𝑟 1+𝜖

)

= 𝑂 ((𝑟 · 𝑡 + 𝑟2 · 𝜉)𝜉 log𝑟/ℎ 𝑛 + 𝑟 · 𝑛1+𝜖 ) = 𝑂 (𝑡 · 𝑛1−1/𝑑+𝜖2 + 𝑛1+𝜖3 ),

where 𝜖2 = (1 − 1

𝑑
) log𝑟 ℎ

1−log𝑟 ℎ
and 𝜖3 =

𝜖2
1−log𝑟 ℎ

.

For the case 𝑑 = 1 we have from Lemma 6.1 𝜉 = 2, ℎ = 1 and

𝑆 (𝑛) = 𝑂 (𝑛). Putting these into Equation 1 we get

𝑇𝑑=1 (𝑛) =
log𝑟 𝑛−1∑︁

𝑖=0

𝑂 ((𝑟 · 𝑡 +𝑟2 · 𝜉) · 𝜉𝑖 ) +
log𝑟 𝑛−1∑︁

𝑖=0

𝑂 (𝑟 · 𝜉 ( 𝑛

𝑟 𝑖+1
) · 𝜉𝑖 )

= (𝑟 · 𝑡 + 𝑟2 · 𝜉) 𝜉
log𝑟 𝑛 − 1

𝜉 − 1

+𝑂 (𝑟 · 𝑛 ·
1 − ( 𝜉𝑟 )

log𝑟/𝑛 +1

1 − 𝜉
𝑟

)

= 𝑂 ((𝑟 · 𝑡 + 𝑟2 · 2)2log2 𝑛 ·log𝑟 2 + 𝑟 · 𝑛)

= 𝑂 (𝑟 · 𝑡 · 𝑛log𝑟 2 + 𝑟2 · 𝑛log𝑟 2 + 𝑟 · 𝑛) = 𝑂 (𝑡 · 𝑛𝜖 + 𝑛),

where 𝜖 = log𝑟 2.

Circuit depth. We prove the circuit depth by induction on the

height of 𝑇 . For a tree 𝑇 of height 1 the root has 𝑟 leaf children.

The circuit starts with 𝑟 instances of 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝑟 instances

of 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 in parallel whose depth is ℓ . Then the circuit has a

𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 subcircuit whose depth is 𝑂 (𝜉 log𝑟 ). Then
the circuit has an instance of matrix multiplication whose depth is

constant. The total depth is ℓ +𝑂 (𝜉 · log 𝑟 ).
Assuming the circuit depth of a tree of height (𝑑 − 1) is (𝑑 −

1)ℓ + (𝑑 − 1)𝑂 (𝜉 · log 𝑟 ) we prove for a tree of height 𝑑 . For a

tree of height 𝑑 > 1 the circuit has 𝑟 instances of 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔

and 𝑟 instances of 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 in parallel. Then the algorithm has

a 𝐵𝑢𝑖𝑙𝑑𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 subcircuit followed by 𝜉 subcircuits that

compute range search queries on subtrees of height (𝑑 − 1). This
yields a circuit depth of 𝑑 · ℓ +𝑑 ·𝑂 (𝜉 log 𝑟 ) = 𝑂 (ℓ · log𝑛). Since the
tree height is log𝑟/ℎ 𝑛 and 𝜉 is a parameter that depends on 𝑟 . □

Corollary C.1. When 𝑑 > 1 and for fixed values of 𝑡 and 𝑛, our
algorithm improves over the naïve algorithm for values of 𝑟 for which:

log
2 𝑟 − (𝑑 + 1) log𝑛 log 𝑟 + log𝑛 log 𝑟 < 0

and

((1 − 𝑑) log𝑛 logℎ − log 𝑡) log2 𝑟 − 2 log 𝑡 logℎ log 𝑟 − log
2 ℎ < 0.

We remind that in approximate schemes (e.g., CKKS) 𝑡 = 𝑡 (𝑛) is
a function of 𝑛 because it needs to be more accurate to keep the

aggregated noise small.

Proof. The running time of our algorithm is

𝑂 (𝑟 · 𝑡 · 𝑛1−1/𝑑+𝜖2 + 𝑟 · 𝑛1+𝜖3 )

where 𝜖2 = (1 − 1

𝑑
) log𝑟 ℎ

1−log𝑟 ℎ
and 𝜖3 =

𝜖2
1−log𝑟 ℎ

, while the naïve

algorithm takes 𝑂 (𝑡 · 𝑛). We get that

𝑟 · 𝑡 · 𝑛1−1/𝑑+𝜖2 < 𝑡 · 𝑛

when

log
2 𝑟 − (𝑑 + 1) log𝑛 log 𝑟 + log𝑛 log 𝑟 < 0.

In addition, we get that

𝑟 · 𝑛1+𝜖3 < 𝑡 · 𝑛

when

((1 − 𝑑) log𝑛 logℎ − log 𝑡) log2 𝑟 − 2 log 𝑡 logℎ log 𝑟 − log
2 ℎ < 0.

□
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C.1 Axis-Parallel Hyper-Boxes
In this subsection we consider the special case of axis-parallel hyper-

boxes. An axis-parallel hyper-box 𝛾 ⊂ R𝑑 , defined by the parame-

ters 𝑎1, . . . , 𝑎𝑑 and 𝑏1, . . . , 𝑏𝑑 , is the range

𝛾 = {(𝑥1, . . . , 𝑥𝑑 ) ∈ R𝑑 | 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 , for 𝑖 = 1, . . . , 𝑑}.
In this special case we can construct a multi-level data-structure

that is more efficient than the generic data-structure when 𝑑 > 1.

A multi-level data structure is a common practice (see for ex-

ample [10]), but we iterate it here in a nutshell. In what follows

we use 𝐷 (𝑑) (𝑛) to denote a 𝑑-level data structure built on 𝑛 points,

and we use 𝑃𝑟𝑜 𝑗 (𝑃, {𝑥1}) and 𝑃𝑟𝑜 𝑗 (𝑃, {𝑥2, . . . , 𝑥𝑑 }) to denote the

projection of 𝑃 onto the 𝑥1 axis and onto the subspace spanned by

𝑥2, . . . , 𝑥𝑑 , respectively.

Given 𝑃 = {𝑝1, . . . , 𝑝𝑛} ⊂ R𝑑 we construct the data structure in

the following recursive way.We construct a primary 1-dim partition

tree𝑇 (1)
for the points 𝑃𝑟𝑜 𝑗 (𝑃, 𝑥1). At every vertex 𝑣 we construct a

secondary data structure for the points 𝑃𝑟𝑜 𝑗 (𝑆𝑣, {𝑥2, . . . , 𝑥𝑑 }). The
values for 𝑇 (2)

are 𝑃𝑟𝑜 𝑗 (𝑆𝑣, {𝑥2}). We then continue in recursion

to build 𝑇 (3)
from every node 𝑢 of 𝑇 (2)

and so on. See Figure 6 for

an example.

Figure 6: A multi-level data structure for the points 𝑃 =

{(1, 3, 5), (2, 6, 7), (3, 9, 3), (4, 2, 0)}. The primary tree,𝑇 (1) , (left))
built for the values 1, 2, 3, 4 (the projection of 𝑃 onto the 𝑥1-
axis, shown in bold). Each node 𝑣 keeps a secondary tree
for the points in 𝑆𝑣 built for the projections of 𝑆𝑣 onto the
𝑥2-axis. The figure shows only the secondary tree 𝑇 (2) built
for the root of 𝑇 (1) . In this example it is built for the values
2, 3, 6, 9 (shown in bold). Each node 𝑢 of each of the secondary
trees keeps a ternary tree for the points in 𝑆𝑢 built for the
projections of 𝑆𝑢 onto the 𝑥3-axis. The figure shows (on the
right) only the ternary tree𝑇 (3) built for the root of𝑇 (2) that
is depicted. In this example the values are 0, 3, 5, 7 (shown in
bold).

Lemma C.2. The size of the 𝑑-level data structure described above
of a set of points 𝑃 ⊂ R𝑑 , where |𝑃 | = 𝑛 is 𝑆 (𝑛) = 𝑛 log𝑑−1 𝑛.

Proof. We prove this claim by induction. The case 𝑑 = 1 follows

immediately from Theorem 1.1. Assume that for a (𝑑 − 1)-level
data structure for (𝑑 − 1) dimensions the storage complexity is

𝑂 (𝑛 log𝑑−1 𝑛). We now prove it for a data structure built for 𝑑

levels (and dimensions). Denote by 𝑇 (1)
the primary tree. Each

node 𝑣 of𝑇 (1)
keeps a (𝑑 − 1)-level data structure of 𝑆𝑣 . We remind

that the depth of 𝑇 (1)
is log𝑛. We denote by floor the set of nodes

with the same distance from the root. There are 𝑟 𝑖 nodes in the

𝑖-th floor, each associated with
𝑛
𝑟 𝑖

points. Each node is associated

with a (𝑑 − 1)-level data structure. By the induction assumption the

storage complexity of a (𝑑 − 1)-level data structure for𝑚 points is

𝑂 (𝑚 log
𝑑−2𝑚). It follows that the total storage complexity is

𝑆 (𝑛) =
log𝑟 𝑛∑︁

0

𝑟 𝑖𝑂 ( 𝑛
𝑟 𝑖

log
𝑑−2 𝑛

𝑟 𝑖
) = 𝑂 (𝑛 log𝑑−1 𝑛) .

□

Lemma C.3. Answering a range searching query for axis-parallel
hyper-boxes with the multi-level data structure described above re-
quires a circuit of size𝑂 (𝑡 ·𝑛𝜖 +𝑛 log𝑑−1 𝑛), where 𝜖 > 0 is arbitrarily
small and 𝑡 is as in Theorem 1.1.

Proof. We prove this claim by induction on the dimension 𝑑 ,

which is also the number of levels in the data structure. For 𝑑 = 1,

it follows from Theorem 1.1 that 𝑇 (𝑛) = 𝑂 (𝑡 · 𝑛𝜖 + 𝑛). Denote the
time to query a multi-level data structure for 𝑛 points with 𝑑 levels

as 𝑇 (𝑑) (𝑛), and assume 𝑇 (𝑑−2) (𝑛) = 𝑂 (𝑡 · 𝑛𝜖 + 𝑛 · log(𝑑−2) 𝑛).
When answering a query with a 𝑑-level data structure at each

inner node we: (1) compute 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 𝑟 times;

(2) for each child 𝑣 , compute 𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ on the next level data

structure built at 𝑣 , multiply it by the output of 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and

add it to 𝑐𝑜𝑢𝑛𝑡 ; (3) build selection matrix𝑀 ; (4) multiply the vector

of children by 𝑀 to get a vector of 𝜉 = 2 children and (5) recurse

into 2 children of 𝑣 .

Computing all 𝐼𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 and 𝐼𝑠𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 takes 𝑂 (𝑡 · 𝑟 ) time.

From Lemma 8.1 (and remembering that 𝜉 = 2), computing𝑀 takes

𝑂 (𝑟2). Copying 𝜉 = 2 children (out of 𝑟 ) takes 𝑂 (𝑟 · 𝑛 · log𝑑−1 𝑛)
since by Lemma C.2 the size of each sub tree is 𝑂 (𝑛 · log𝑑−1 𝑛).
Computing 𝑟 queries on the next level data structure takes

𝑟𝑇 (𝑑−1) (𝑛/𝑟 ) = 𝑂 (𝑟 · 𝑡 · (𝑛/𝑟 )𝜖 + 𝑟 · (𝑛/𝑟 ) · log𝑑−2 (𝑛/𝑟 ))

by the induction assumption.

Denote by𝑇 (𝑑) (𝑛) the time to answer a query with a 𝑑-level data

structure of 𝑛 points for axis-parallel hyper-box ranges. It follows

that 𝑇 (𝑑) (𝑛), when 𝑑 > 1, is given by the following recursion rule:

𝑇 (𝑑) (𝑛) ≤ 𝑂 (𝑟 · 𝑡) +𝑂 (𝑟2) +𝑂 (𝑟 · (𝑛/𝑟 ) log𝑑−1 (𝑛/𝑟 )))

+𝑂 (𝑟 ·𝑇 (𝑑−1) (𝑛/𝑟 )) + 𝜉 ·𝑇 (𝑑) (𝑛/𝑟 ) .
Putting in the induction assumption we get:

𝑇 (𝑑) (𝑛) ≤ 𝑂 (𝑟 · 𝑡) +𝑂 (𝑟2) +𝑂 (𝑛 log𝑑−1 𝑛)+

𝑂 (𝑟 · (𝑡 · 𝑛𝜖𝑑−1 + 𝑛 log𝑑−2 𝑛)) + 2 ·𝑇 (𝑑) (𝑛/𝑟 ) .

This solves to

𝑇 (𝑑) (𝑛) ≤ 𝑂 (𝑟 · 𝑡 · 𝑛log𝑟 2) +𝑂 (𝑟2 · 𝑛log𝑟 2) +𝑂 (𝑟 · 𝑛 log𝑑−1 𝑛)+

𝑂 (𝑡 · 𝑛𝜖𝑑−1+log𝑟 2) +𝑂 (𝑛 log𝑑−2 𝑛) ≤ 𝑂 (𝑡 · 𝑛𝜖 + 𝑛 log𝑑−1 𝑛)

= 𝑂 (𝑡 · 𝑛𝜖 + 𝑛 log𝑑−1 𝑛),

where 𝜖 = 𝑑 · log𝑟 2. □
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D HIDING TREE STRUCTURE
In this section we describe Algorithm 6 which we call 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 that

adds empty nodes to an input tree 𝑇 as mentioned in Section 7.3.

Algorithm 6: 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑛, 𝑟, ℎ,𝑇 ′)

Input: Number of points 𝑛 = |𝑆𝑟𝑜𝑜𝑡 |; the parameters 0 < 𝑟 < 𝑛;

0 < ℎ as specified in the partition theorem; A tree 𝑇 ′
.

Output: A full tree 𝑇 where all inner nodes have 𝑟 children

and all leaves have distance ⌈log𝑟/ℎ 𝑛⌉ from the root.

1 while There are nodes with less than 𝑟 children or leaves
whose distance from the root is less than ⌈log𝑟/ℎ 𝑛⌉ do

2 Add an empty child node to an inner node that has less

than 𝑟 children.

3 Add 𝑟 empty children nodes to leaves whose distance

from the root is less than ⌈log𝑟/ℎ 𝑛⌉.

In Figure 7 we show an example of a partition tree and its full

version after empty nodes have been added to it.

Figure 7: An example of a partition tree before (left) and after
(right) applying 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒. On the left is a partition tree for 4
points 𝑝1, . . . , 𝑝4. On the right is a full version of the same tree.
All the inner nodes need to have the samenumber of children,
so empty nodes are added to the root. All leaves need to be at
the same distance from the root, so empty nodes are added
to the rightmost node (that represents 𝑝4) and as children of
the newly added child of the root. All empty nodes have the
value 𝑣 .𝑣𝑎𝑙 = 𝑓 (∅) and empty bounding simplex 𝑠0.

Lemma D.1. Let 𝑃 be a set of 𝑛 points in R𝑑 , Γ a family of ranges,
𝑟 < 𝑛 a parameter and ℎ a parameter such that any simplicial par-
tition of 𝑃 ′ with respect to Γ, Π = {(𝑃 ′

1
, 𝜎1), . . . , (𝑃 ′𝑚, 𝜎𝑚)} satisfies

|𝑃 ′ |/𝑟 < |𝑃 ′
𝑖
| < ℎ · |𝑃 ′ |/𝑟 and let 𝑇 = 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑇 ′, 𝑛, 𝑟, ℎ), where 𝑇 ′

is a partition tree built for 𝑃 and Γ, then the height of 𝑇 is ⌈log𝑟/ℎ 𝑛⌉

and it has a total of 𝑛
1

1−⌈log𝑟 ℎ⌉ = 𝑂 (𝑛1+𝜖 ) nodes.

Proof. From the partition theorem, at each node 𝑣 we have a

partition with 𝑛𝑣/𝑟 ≤ |𝑃𝑖 | ≤ ℎ · 𝑛𝑣/𝑟 . It follows that the number

of children at each node is at most 𝑟 and the height of the tree is

at most ⌈log𝑟/ℎ 𝑛⌉. The number of nodes is therefore 𝑟
⌈log𝑟/ℎ 𝑛⌉ =

𝑟 ⌈log𝑟 𝑛
1

1−log𝑟 ℎ ⌉ = 𝑂 (𝑛
1

1−log𝑟 ℎ ) = 𝑂 (𝑛1+𝜖 ). □

We conclude with a Lemma stating that the structure of a full

tree does not leak information on 𝑃 .

LemmaD.2. Let 𝑃1, 𝑃2 ⊂ R𝑑 be 2 sets of points with |𝑃1 | = |𝑃2 | = 𝑛

and 𝑇 ′
1
,𝑇 ′

2
be 2 partition trees built for 𝑃1 and 𝑃2, respectively, with

the same parameters 𝑟, ℎ then 𝑇1 and 𝑇2 have the same structure,
where 𝑇𝑖 = 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑛, 𝑟, ℎ,𝑇 ′

𝑖
), for 𝑖 = 1, 2.

Proof. The number of children in each node of 𝑇 ′
1
and 𝑇 ′

2
is at

most 𝑟 for both trees and does not depend on 𝑃 . In addition, the

height of𝑇 ′
1
and𝑇 ′

2
is at most ⌈log𝑟/ℎ 𝑛⌉. Since 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 adds nodes

to have a full tree of height ⌈log𝑟/ℎ 𝑛⌉ where each inner node has

exactly 𝑟 children 𝑇1 and 𝑇2 have the same structure. □

E SECURITY ANALYSIS
In this section we prove the privacy against the cloud. The data

owner has no output. The querier output is only 𝑓 (𝑃∩𝛾1), . . . , 𝑓 (𝑃∩
𝛾𝑐 ) which is required by the problem statement. Both don’t have

anything else in their view and therefore learn nothing else.

Theorem E.1. Algorithm 3 is secure against a computationally
bounded, semi-honest cloud.

Before we prove this theorem we define the view of the cloud, i.e.

the set of all messages it sees during the execution of the protocol.

The view of the cloud is

view𝐶=(𝑝𝑘,𝑑,𝑛,Γ,ℎ,𝜉,𝑟,𝑐,⟦𝛾1⟧,...,⟦𝛾𝑐⟧,⟦𝑇⟧,⟦𝑓 (𝑃∩𝛾1)⟧,...,⟦𝑓 (𝑃∩𝛾𝑐 )⟧,⟦𝐼1⟧,⟦𝐼2⟧,...),

where𝑝𝑘 is the public key aswas received from the querier,𝑑, 𝑛, Γ, ℎ, 𝑟
and 𝜉 are the parameters the partition tree was built with and were

received from the data owner, ⟦𝛾1⟧, . . . , ⟦𝛾𝑐⟧ and ⟦𝑇⟧ which is

the partition tree whose structure is given but the content in its

nodes: ⟦𝑣 .𝑣𝑎𝑙⟧ and ⟦𝑣 .𝜎⟧, for every node 𝑣 ∈ 𝑇 , is encrypted. In

addition, the view includes ⟦𝑓 (𝑃 ∩ 𝛾1)⟧, . . . , ⟦𝑓 (𝑃 ∩ 𝛾𝑐 )⟧ and all

the intermediate values (⟦𝐼1⟧, ⟦𝐼2⟧, . . .) that are generated during

the execution of Algorithm 3. For simplicity, we reorder

view𝐶 = (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, structure of 𝑇, ⟦𝑚1⟧, ⟦𝑚2⟧, . . .),
where ⟦𝑚1⟧, . . . are the ciphertexts in its view.

Before proving Theorem E.1 we prove a lemma claiming that a

more restricted view (one that does not include the structure of 𝑇 )

view𝑟𝑒𝑠𝑡𝑟
𝐶 = (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, ⟦𝑚1⟧, ⟦𝑚2⟧, . . .) .

is computationally indistinguishable from this view:

view𝑍 = (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, ⟦0⟧, ⟦0⟧, . . .) .

Lemma E.2. view𝑟𝑒𝑠𝑡𝑟
𝐶

is computationally indistinguishable from
view𝑍 .

Proof. Consider this set of views:

view𝑟𝑒𝑠𝑡𝑟
𝐶 = view0

𝐶
= (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, ⟦𝑚1⟧, ⟦𝑚2⟧, . . .)

view1

𝐶 = (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, ⟦0⟧, ⟦𝑚2⟧, . . .)
view2

𝐶 = (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, ⟦0⟧, ⟦0⟧, . . .)
.
.
.

view𝑍 = (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, ⟦0⟧, ⟦0⟧, . . .),

where view(𝑖)
𝐶

is different from view(𝑖−1)
𝐶

by replacing ⟦𝑚𝑖⟧ with

⟦0⟧, for 𝑖 = 1, 2, . . .. Then if view𝑟𝑒𝑠𝑡𝑟
𝐶

and view𝑍 are distinguishable

then there exists some 𝑖 for which view𝑖
𝐶
is distinguishable from

view(𝑖−1)
𝐶

, but this means that ⟦𝑚𝑖⟧ is distinguishable from ⟦0⟧
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without having 𝑠𝑘 . Since the number of ciphertexts is polynomial in

the security parameter of 𝑠𝑘 , the view this contradicts the semantic

security of FHE. □

The proof of Theorem E.1 is now easy.

Proof of Theorem E.1. To prove against a semi-honest compu-

tationally bounded cloud we construct a simulator𝒮 whose output,

when given only the public parameters (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐) is com-

putationally indistinguishable from an adversarial cloud’s view in

the protocol.

The simulator operates as follows: (1) generates a dummy set

𝑃 ′ ⊂ R𝑑 of 𝑛 points; (2) build a partition tree 𝜏 ′ for 𝑃 ′ with param-

eters 𝑑, 𝑛, 𝜉, 𝑟, ℎ and applies 𝜏 := 𝐹𝑖𝑙𝑙𝑇𝑟𝑒𝑒 (𝑛, 𝑟, ℎ, 𝜏 ′); (3) encrypts 𝛾
and 𝑣 .𝑣𝑎𝑙 and 𝑣 .𝜎 for every node 𝑣 ∈ 𝜏 ; (3) executes Algorithm 3

𝑃𝑃𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ; (4) outputs the view of the simulator

view𝑆 = (𝑝𝑘, 𝑑, 𝑛, Γ, ℎ, 𝜉, 𝑟, 𝑐, structure of 𝜏, ⟦𝑚1⟧, ⟦𝑚2⟧, . . .)

By Lemma D.2 𝑇 and 𝜏 have the same structure. By Lemma E.2 the

restricted simulator view (without the structure of 𝜏) view𝑟𝑒𝑠𝑡𝑟
𝑆

is

computationally indistinguishable from view𝑍 which is indistin-

guishable from view𝑟𝑒𝑠𝑡𝑟
𝐶

. We conclude that the simulator’s view is

computationally indistinguishable from the cloud’s view. □

F APPLICATIONS
In this section we give a few applications for our privacy preserving

range searching.

Counting. Counting is the problem of computing |𝑃 ∩𝛾 |, i.e. how
many points of 𝑃 are in 𝛾 . For this we set 𝑓 : 2

𝑃 → N be defined as

𝑓 (𝐴) = |𝐴| and 𝑔 : N × N→ N be defined as 𝑔(𝑎, 𝑏) = 𝑎 + 𝑏.

Reporting. Reporting is the problem of outputting the points in

𝑃 ∩𝛾 . Here we do not report the points explicitly. Instead we report
𝑂 (log𝑛) canonical subsets 𝑆𝑣1 , . . . , 𝑆𝑣𝑚 such that ∪𝑖𝑆𝑣𝑖 = 𝑃 ∩ 𝛾 . As

hinted, the canonical subsets are going to be the sets associated

with nodes in the partition tree (more specifically, the nodes whose

simplex is contained in 𝛾 and their father’s simplex is not) and to

report them we assign an id to each node and output the id of the

node. For this we set 𝑓 : 2
𝑃 → 2

N
, that is, 𝑓 maps a set 𝐴 ⊂ 𝑃 into

the set ids of canonical subsets whose union is 𝐴. 𝑓 is defined as

𝑓 (𝑆𝑣) = 𝐼𝐷 (𝑆𝑣), where 𝐼𝐷 (·) is a function returning a unique id

for each subset 𝑆𝑣 associated with a node. Similarly 𝑔 is set to be

𝑔 : 2
N × 2

N → 2
N
and is defined as 𝑔(𝐴, 𝐵) = 𝐴 ∪ 𝐵.

We also note that techniques such as [5] can be used to efficiently

output 𝑃 ∩ 𝛾 if |𝑃 ∩ 𝛾 | is small.

Min. The min problem is to report min𝑝∈𝑃∩𝛾 (𝑐𝑜𝑠𝑡 (𝑝)), where
𝑐𝑜𝑠𝑡 : 𝑃 → R is some cost function. To report minimum we set

𝑓 : 2
𝑃 → R and define 𝑓 (𝐴) = min𝑝∈𝐴 (𝑐𝑜𝑠𝑡 (𝑝)) and 𝑔(𝑎, 𝑏) =

min(𝑎, 𝑏).
We note that computing minimum under FHE is a costly opera-

tion to compute. Using a circuit that realizes a partition tree using

copy-and-recurse method instantiates only 𝑂 (log𝑛) instances of
the subcircuit implementing the minimum operation, as oppose to

𝑂 (𝑛) instances using the naive way.

Averages and k-Means Clustering. The average of a set𝐴 is𝐴𝑣𝑔(𝐴) =∑
𝑝∈𝐴 𝑝

|𝐴 | . Since division is costly under FHE, it is customary to re-

turn the pair (∑𝐴 𝑝, |𝐴|). We set 𝑓 : 2
𝑃 → 𝑃 × R and define

𝑓 (𝐴) = (𝑆𝑢𝑚𝐴, 𝑆𝑖𝑧𝑒𝐴), where 𝑆𝑢𝑚𝐴 =
∑
𝐴 𝑎 and 𝑆𝑖𝑧𝑒𝐴 = |𝐴|.

The average then can be computed 𝐴𝑣𝑔(𝐴) = 𝑆𝑢𝑚𝐴/𝑆𝑖𝑧𝑒𝐴 .
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