
Compact Issuer-Hiding Authentication, Application to
Anonymous Credential

Olivier Sanders

Orange, Applied Crypto Group

Cesson-Sévigné, France

olivier.sanders@orange.com

Jacques Traoré

Orange, Applied Crypto Group

Caen, France

jacques.traore@orange.com

ABSTRACT
Anonymous credentials are cryptographic mechanisms enabling

users to authenticate themselves with a fine-grained control on the

information they leak in the process. They have been the topic of

countless papers which have improved the performance of such

mechanisms or proposed new schemes able to prove ever-more com-

plex statements about the attributes certified by those credentials.

However, although these papers have studied in depth the problem

of the information leaked by the credential and/or the attributes,

almost all of them have surprisingly overlooked the information

one may infer from the knowledge of the credential issuer.

In this paper we address this problem by showing how one can

efficiently hide the actual issuer of a credential within a set of

potential issuers. The novelty of our work is that we do not re-

sort to zero-knowledge proofs but instead we show how one can

tweak Pointcheval-Sanders signatures to achieve this issuer-hiding

property in a compact way. This results in an efficient anonymous

credential system that indeed provides a complete control of the in-

formation leaked in the authentication process. Our construction is

moreover modular and can then fit a wide spectrum of applications,

notably for Self-Sovereign Identity (SSI) systems.

KEYWORDS
anonymous credentials, privacy-preserving authentication, crypto-

graphic protocols

1 INTRODUCTION
Authentication in the digital world often consists in presenting

certificates delivered by issuers to verifiers that can check them

with the sole knowledge of the issuers’ public keys. For example,

in the context of electronic passport, the issuers are governmental

agencies (or private companies mandated by governments) that

deliver certificates (embedded in the passport chip) that can be

verified worldwide. Similarly, the European Union digital Covid

certificate was issued by governmental health agencies, mostly to

attest to the vaccination status of European citizens. Here again,

the certificate was widely verifiable using, e.g., a dedicated appli-

cation. More generally, this approach is exactly the one used by

the W3C for its Verifiable Credentials [31], which represent the

core of Self-Sovereign Identity (SSI) systems [16], and is envisioned

by the future European Digital Identity (EUDI) wallet [12] where

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(3), 645–658
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0097

certificates will be issued by a set of (qualified or non-qualified)

Electronic Attestation of Attributes Providers and then verified by

Relying Parties.
This approach intrinsically relies on cryptographic digital signa-

tures that support the main requested features of those use-cases:

(1) centralised issuance, (2) public verification and (3) strong un-

forgeability assurances. However, digital signatures also come with

features that may be undesirable in some situations. For example,

each presentation of the certificate requires to transmit the under-

lying digital signature, which allows to trace users. Verification of

the signature additionally requires the knowledge of all the signed

data which is typically a problem in the context of digital identity

where certificates usually attest to several attributes such as the

name, date of birth, address, etc. It indeed means that controlling

the user’s age requires the knowledge of all the other attributes

which are totally irrelevant. Far from being contrived, these prob-

lems are exactly the ones faced by governments trying to enforce

age control to access adult-only websites, as is currently the case

in France [11] or United Kingdom [20].

These limitations of standard digital signatures led cryptogra-

phers to introduce anonymous credential, a mechanism replicating

the previous approach but in a privacy-preserving way. Concretely,

users of such systems still get certificates (called credentials) from
issuers that can then be presented while limiting the information

revealed in the process. Of course, this generic goal of “limiting the

information” encompasses different situations with different pri-

vacy requirements. For example, one may require different shows

of the same credential to be unlinkable [8, 9, 17, 25, 28] whereas, in

some cases, one simply seeks to break the link between credential

issuance and credential presentation [6]. Similarly, some systems

[7, 17] offer a binary control over the attributes in the sense that

the attributes can be either disclosed or hidden whereas others

[8, 9, 25, 28] allow to prove statements about the attributes without

revealing them. This diversity of features explains the absence of

widely accepted definitions and models, such as the ones [1, 2]

existing for groups signatures, despite 40 years of existence [10].

In all cases, it is important to note that anonymous credentials

are designed to replace digital signatures as smoothly as possible.

They indeed consider the same trust model and achieve the same

security property (unforgeability) as digital signatures but add this

additional layer of privacy protection. For example, in the context of

digital identity (e.g. passport) the issuer would issue an anonymous

credential instead of a digital signature. Thanks to this credential,

the user could reveal the requested information, for example that

he is over 18 years old, without leaking anything else. Just after that,

he could use the same credential to disclose his city of residence

(e.g. to have access to a preferential rate for public transport) while

645

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0097

Proceedings on Privacy Enhancing Technologies 2024(3) Sanders et al.

being untraceable. The possibilities are actually endless, hence the

diversity of constructions mentioned above.

However, a very recent line of works [3–5, 14, 15] has pointed out

the blindspot of such mechanisms, namely the inability of hiding

the credential issuer. Indeed, all the mechanisms mentioned above

have devised intricate ways of concealing the credential and/or

some attributes but all of them assume public knowledge of the

public key of the issuer who generated the credential. This is obvi-

ously a natural assumption when only one issuer is authorised in a

system but this does not reflect usual situations where credentials

are generally issued by different entities. Typically, passports and

Covid certificates are issued by different countries. The architecture

of the (EUDI) wallet mentioned above considered an even broader

set of issuers which can be local authorities, educational entities

(e.g. universities), private companies (e.g. banks), etc. In this context,
revealing the credential issuer might lead to leak the very informa-

tion we try to hide by using anonymous credentials. For example,

in the case of age control, one may want to hide information about

irrelevant attributes such as his address and this is exactly what

anonymous credentials enable to do. However, doing that by using

a credential issued by some local authority (e.g. a town hall) would

be contradictory as it would at least reveal the area of residence.

More generally, one can infer information on the user from the

sole knowledge of the credential issuer, which makes the anony-

mous credential approach incomplete. To fill this gap, the authors of

[3–5, 14, 15] propose solutions to hide the credential issuer among

a set of authorised issuers, which is also called a policy. The goal
of the user then becomes proving possession of a valid credential

from one of these issuers without telling which one.

The approach in [14] is conceptually the simplest one as it does

not require any action from the verifier. Concretely, the user will

raise each element of the issuer public key to some random power

and then generate an OR-proof that the resulting elements are

indeed a re-randomisation of one the keys in the policy. Thanks

to the properties of zero-knowledge proofs, one is ensured that

nothing leaks beyond that but it requires to send a number of

elements linear in the number 𝑁 of keys in the policy, which can

quickly become cumbersome. The constructions in [3, 15] follow

a similar approach, [15] managing to reduce the asymptotic size

complexity to log 𝑁 .

The solution described in the PETS 2022 paper [5] is very differ-

ent and relies on an intermediate primitive called aggregator. The

purpose of the latter resembles the one of accumulators but the

concrete instantiation consists in using a secret value sk to generate

witness elements𝑊 = 𝑔
sk
𝑥𝑖 for each element 𝑔

1

𝑥𝑖 in the authorised

set S. This is unfortunately very malleable as someone knowing 𝑥𝑖
could derive a new witness for any 𝑥 𝑗 without knowing sk. This
probably explains why the authors hash the attributes in the cre-

dential as it somehow breaks the malleability of the aggregator. In

all cases, this forces the user to reveal the full set of certified at-

tributes {𝑚𝑖 } (since classical zero-knolwedge proofs do not interact
smoothly with hash functions), which is something we usually try

avoid in anonymous credential system. In other words, [5] trades

attributes privacy for issuers privacy and so does not provide a

fully complete answer to our problem.

In [4], the authors propose an elegant solution to the problem

of issuer-hiding anonymous credential. Their core idea is that the

verifier of the credential does not only select the policy it wants

to enforce but it also signs each public key contained in the policy.

This makes the user’s work much easier as he can now prove that

his credential is valid for one of the authorised public keys by

only proving knowledge of a signature on his issuer’s public key.

This leads to a constant size proof, contrarily to [14]. However,

this makes the whole statement to prove rather complex. Indeed

one must prove knowledge of a credential and a signature 𝑆 on

potentially hidden attributes issued under an hidden public key

that is certified by 𝑆 . The complexity of the statement is obviously

reflected by the size of the proof of knowledge despite the clever

instantiation described in [4]. Concretely, showing a credential in

their case requires the user to send a presentation token of 688 Bytes
(see Section 5), which is still high.

Other Related Works. We also note that two very recent works

[13, 23] consider the problem of hiding the issuer but only achieve a

weaker form of this property. In [13], the authors introduce Protego,

a protocol that extends classical anonymous credentials with some

additional features such as revocation or auditability. Interestingly,

they consider a variant of their core construction, Protego Duo, that

provides some form of issuer-hiding. Concretely, their approach

shares some similarities with the one of [4] in the sense that the

verifier will also publish signatures on each issuer’s public key,

but the authors leverage the properties of mercurial signatures to

alleviate the zero-knowledge proof. This results in a more efficient

solution but the issuer-hiding property is ensured as long as issuers

are honest, a restriction that is not necessary in our contribution

and in the previous approaches we discussed. [23] considers a

different setting where attributes would be certified by several

issuers. Concretely, the credentials generated by those issuers can be

aggregated, assuming some synchronicity of the issuances, which

makes the size of the presentation token independent of the number

of aggregated credentials. The authors also consider the issuer-

hiding property, but with the same restriction as in [13], that is,

the issuers must be honest, an assumption we usually try avoid in

classical anonymous credential systems.

A decentralised approach is proposed in [19, 27] where creden-

tials are no longer signatures that can be locally verified but are

essentially assertions put on a public ledger (e.g. a blockchain).

Demonstrating authenticity of one’s attributes thus consists in

proving that the ledger indeed contains a corresponding assertion.

While this inherently hides the identity of the issuer (as the asser-

tion does not even need to be cryptographically bounded to the

issuer), it completely changes the anonymous credentials paradigm

as it prevents local verifiability and makes the ledger (and hence the

proof complexity) grows with the number of credentials. Moreover,

this approach does not directly allow to dynamically adjust the set

of issuers, as pointed out in [4].

Finally, we note that the multi-issuers setting has been consid-

ered by many other papers (e.g. [21, 22, 24]) but without trying to

conceal the issuers’ identities.

646

Compact Issuer-Hiding Authentication, Application to Anonymous Credential Proceedings on Privacy Enhancing Technologies 2024(3)

1.1 Our Contribution.
In this paper, we aim at designing an issuer-hiding anonymous

credential with shorter presentation tokens without relaxing any

privacy requirements. Instead of introducing a new generic frame-

work that we would then try to instantiate as in [4, 5, 14], we start

from one of the most common tools used to design standard anony-

mous credentials, namely PS signatures [25, 26], and then adapt it

to conceal all the information about the actual issuer. The advan-

tages of this approach is that it does not fundamentally change the

underlying credential and that it avoids zero-knowledge proofs and

thus the incompressible costs they entail.

Starting Point: PS signatures. PS signatures [25, 26] are pairing-
based digital signatures with two important properties that make

them amenable for anonymous credentials. First, they can be re-

randomized, meaning that raising each element of the signature

𝜎 to the same random power leads to a new signature 𝜎 ′ which is

still valid on the same attributes. This enables users to derive as

many variants of their credentials as necessary, which is the key to

untraceability: if one of the attributes is hidden (which can easily

be enforced) no one can tell if 𝜎 and 𝜎 ′ are related. Second, they
have a rather simple algebraic structure that interacts smoothly

with the celebrated Schnorr zero-knowledge protocol [30].

In practice, building an anonymous credential system based on

PS signature is rather straightforward. A credential on a set of

𝑛 attributes {m𝑖 }𝑛𝑖=1 is simply a PS signature on those attributes,

that is, a pair of elements 𝜎1 and 𝜎2 in a pairing-friendly group

G1 verifying 𝑒 (𝜎1, 𝑋
∏𝑛

𝑖=1 𝑌
m𝑖

𝑖
) = 𝑒 (𝜎2, 𝑔), where (𝑔,𝑋) are some

public parameters and {𝑌𝑖 }𝑛𝑖=1 constitute the issuer’s public key.

Presenting a credential then consists in re-randomising (𝜎1, 𝜎2) and
then proving knowledge of the attributes m𝑖 one wants to conceal

while revealing (or proving more complex statements about) the

others. The facts that the elements m𝑖 are involved as exponents of

the previous equationmakes such proofs very easy to produce using

[30], as explained above. However, when it comes to hiding the

issuer’s identity, the problem gets much more complicated as one

must now hide the elements 𝑌𝑖 that are specific to the issuer while

proving that they indeed belong to the set of authorised public keys

defined by the policy. As in [4], we could resort to zero-knolwedge

proofs for that but we would end up with the same problem, namely

a rather large proof to transmit when showing a credential.

Making PS signatures issuer-hiding. In our construction, we fol-

low a very different approach which consists in forcing the verifi-

cation equation to depend on all the public keys in the policy in the
same way. Concretely, if the policy defines a set of |J | authorised
public keys, then we replace

∏𝑛
𝑖=1 𝑌

m𝑖

𝑖
, which is specific to an is-

suer, by

∏𝑛
𝑖=1

∏
𝑗 ∈J 𝑌

m𝑖

𝑗,𝑖
which puts all issuers on the same level.

Obviously, this is just a first step as adding those elements naturally

unbalance the equation. We then show that one can compensate

for all those elements by adding a single group element 𝜎 to the

signature without jeopardising security. This is easier said than

done as one must ensure that 𝜎 is only used to remove the terms we

artificially added in the process. In particular, one must ensure that

𝜎 is not used to cancel elements that are crucial for the security of

PS signatures such as 𝑋 or 𝑌𝑖 . Of course, all of this must be done

without using any zero-knowledge proof, otherwise it would bring

us back to the situation of [4].

To this end, we will extend the policy by adding some elements,

generated by the verifiers, that the users will be forced to use to

compute 𝜎 . This way, we will limit the possibilities offered by the

latter element to what is strictly necessary for honest users and in

particular prevent malicious use of this element as shown in our

security analysis. We note that extending the policy with elements

generated by the verifier is already done in [4, 5] and this is actually

one of the key steps of their protocol. The same holds true in our

case although the nature of those elements is extremely different.

In [4] and [5], these are respectively signatures and aggregators. In

our case, these additional elements are essentially re-randomised

version of the public keys but with a few tweaks to prevent mal-

leability but also to keep track of the number of such elements used

to generate 𝜎 . As we shall explain in Section 3, this will be crucial

for security. There are also a few remaining challenges as, for exam-

ple, (𝜎1, 𝜎2) still provides information on the issuer. Fortunately, we

can solve them without adding new elements by slightly adapting

the protocol.

In the end, this means that our issuer-hiding variant of PS signa-

tures only consists in two elements 𝜎1 and 𝜎2, which are essentially

the ones from the original PS signature, and 𝜎 . In other words,

hiding issuer of PS signatures only adds one element to the cre-

dential, which seems optimal. As we believe that this variant of PS

signature could be of independent interest we chose to introduce a

new primitive, called Issuer-Hiding Authentication (IHA), which

can be seen as a lightweight version of Issuer-Hiding Anonymous

Credential (IHAC) in the sense that it only seeks to hide the issuer,

not the attributes. As we shall see, upgrading our IHA construc-

tion to get an IHAC system is rather straightforward, also there

are some subtleties to address. In other words, IHA can also be

seen as an intermediate primitive towards full-fledged IHAC which

allows to better understand the actual impact of each property on

the construction. Beyond the sole efficiency of our construction,

we believe that it provides new insights on the problem of hiding

the issuer of a credential. In particular , it shows that one does not

necessarily need to resort to the full arsenal of zero-knowledge

proofs to achieve this goal, which may lead to new contributions

in this area. At this stage, we note that the compactness of our

solution comes with a computational complexity larger than the

one in [4] when the number 𝑛 of attributes exceeds a few dozens.

An interesting direction for future contributions would then be a

construction that would improve both size and performance for all

families of parameters.

1.2 Organisation
In Section 2, we recall the definition of bilinear groups and a few

facts about PS signatures. In Section 3, we introduce IHA that will be

the cornerstone of the IHAC system presented in Section 4. Finally,

we evaluate the complexity of our construction in Section 5.

2 PRELIMINARIES
2.0.1 Bilinear Groups. Our construction requires bilinear groups

whose definition is recalled below.

647

Proceedings on Privacy Enhancing Technologies 2024(3) Sanders et al.

Definition 2.1. Bilinear groups are a set of three groups G1, G2,
and G𝑇 of order 𝑝 along with a map, called pairing, 𝑒 : G1 × G2 →
G𝑇 that is

(1) bilinear: for any 𝑔 ∈ G1, 𝑔 ∈ G2, and 𝑎, 𝑏 ∈ Z𝑝 , 𝑒 (𝑔𝑎, 𝑔𝑏) =
𝑒 (𝑔,𝑔)𝑎𝑏 ;

(2) non-degenerate: for any 𝑔 ∈ G∗
1
and 𝑔 ∈ G∗

2
, 𝑒 (𝑔,𝑔) ≠ 1G𝑇 ;

(3) efficient: for any 𝑔 ∈ G1 and 𝑔 ∈ G2, 𝑒 (𝑔,𝑔) can be efficiently

computed.

In [18], the authors introduced a classification of bilinear groups

according to the existence of efficiently computable homomor-

phisms between G1 and G2. The most interesting groups are ar-

guably those belonging to the “type-3” family as they are, by far,

the most efficient ones while supporting a broader set of computa-

tional assumptions. In this paper, we will only consider this type

of bilinear groups of prime order 𝑝 which is anyway required by

PS signatures [25].

2.0.2 PS Signature. PS signatures [25] are a popular tool for build-

ing privacy-preserving systems. They consist in two group elements

of G1, no matter the size 𝑛 of the signed vector (m1, . . . ,m𝑛), and
can be re-randomised by raising each element to the same ran-

dom power. They also benefit from a relatively simple algebraic

structure which interacts smoothly with Schnorr’s zero-knowledge

proof systems [30]. The original paper introduced two versions

of these signatures: the classical one, without any setup assump-

tion, and the one supporting sequential aggregation where a pair

(𝑋,𝑋) = (𝑔𝑥 , 𝑔𝑥) is made public in the system parameter. This

pair can for example be jointly generated by a set of issuers (or

any other parties) who would each compute (𝑔𝑥𝑖 , 𝑔𝑥𝑖), for some

random 𝑥𝑖 , and prove knowledge of the latter. If the proofs verify,

the resulting pair (𝑋,𝑋) would then be set as (∏𝑖 𝑔
𝑥𝑖 ,

∏
𝑖 𝑔

𝑥𝑖). We

will use this second version in our construction but will still refer

to it as “PS signatures” for sake of simplicity.

• Setup(1𝜆, 𝑛). This algorithm outputs the parameters 𝑝𝑝 con-

taining the description of type-3 bilinear groups (G1,G2,
G𝑇 , 𝑒) of order 𝑝 along with a set of generators (𝑔,𝑔) ∈
G1 × G2 and a pair (𝑋,𝑋) = (𝑔𝑥 , 𝑔𝑥) ∈ G1 × G2 for some

𝑥 ∈ Z𝑝 .
• Keygen(𝑝𝑝). This algorithm generates 𝑛 random scalars (𝑦1,
. . . , 𝑦𝑛) and sets sk as (𝑦1, . . . , 𝑦𝑛) and pk as (𝑌1, . . . , 𝑌𝑛) =
(𝑔𝑦1 , . . . , 𝑔𝑦𝑛).
• Sign(sk, (m1, . . . ,m𝑛)). On input a set of𝑛messages (m1, . . . ,

m𝑛), it generates a signature (𝜎1, 𝜎2) ← (𝑔𝑟 , 𝑋𝑟 ·𝑔𝑟 (
∑𝑛

𝑖=1 𝑦𝑖 ·m𝑖))
for some random 𝑟 ∈ Z𝑝 .
• Verify(pk, (m1, . . . ,m𝑛), (𝜎1, 𝜎2)). This algorithm returns 1

(accept) if (1)m𝑖 ≠ 0 ∀𝑖 and (2) 𝑒 (𝜎1, 𝑋 ·
∏𝑛

𝑖=1 𝑌
m𝑖

𝑖
) = 𝑒 (𝜎2, 𝑔)

and 0 otherwise.

3 ISSUER-HIDING AUTHENTICATION
As a first step towards an Issuer-Hiding Anonymous Credential

System, we introduce an intermediate primitive called issuer-hiding

authentication. It is essentially a signature scheme but verification

is done through an interactive protocol [Show, Verify], as in an

anonymous credential (AC) systems [17], and depends on a policy

P which is essentially a set of acceptable public keys. This protocol

allows the verifier to check that the user it is interacting with owns

a valid signature for one of these public keys, without being able to

tell which one. We however stress that this primitive only focuses

on hiding the issuer of a signature and thus do not try to conceal

some of the signed messages. This latter goal will be considered in

Section 4.

3.1 Security Model
3.1.1 Syntax. An issuer-hiding authentication mechanism scheme

is defined by sets of usersU, issuers I and verifiersV along with

the following algorithms and protocols.

• Setup(1𝜆, 𝑛). This algorithm outputs the public parameters

enabling to sign vectors of 𝑛 messages.

• IKeygen(𝑝𝑝). This algorithm is run by an issuer to gener-

ate its secret key sk𝐼 and a public key pk𝐼 consisting of 𝑛

elements pk𝐼 ,𝑖 , for 𝑖 ∈ [1, 𝑛].
• Sign(sk𝐼 , (m1, . . . ,m𝑛)). On input a set of 𝑛 messages (m1,

. . . ,m𝑛), this algorithm run by the issuer owning sk𝐼 gener-
ates a signature 𝜎 .

• VerifSign(pk𝐼 , (m1, . . . ,m𝑛), 𝜎). This algorithm enables to

check the validity of the signatures generated by the previous

algorithm. It outputs 1 (valid) or 0 (invalid).

• SetPolicy({pk𝑗,1} 𝑗 ∈J1 , . . . , {pk𝑗,𝑛} 𝑗 ∈J𝑛). On input a pol-

icy P consisting in 𝑛 sets of public key elements, the algo-

rithm generates a public component pkP of the policy along

with a secret component skP .
• AuditPolicy(P, pkP). On inputP and pkP , this algorithms

returns either 1 or 0.

• [Show((m1, . . . ,m𝑛), 𝜎, pk𝐼 ,P, pkP), Verify((m1, . . . ,m𝑛),
P, skP)]. This interactive protocol between a user and a veri-
fier is initiated by the former owning some signature 𝜎 under

public key pk𝐼 on some vector (m1, . . . ,m𝑛). At the end of

the interaction, the verifier returns either 1 or 0.

Remark. We chose to keep our definitions as general as possible by

considering different sets J1, . . . ,J𝑛 in the policy. This in particular

reflects the case where a policy would contain several public keys

from the same issuer that would coincide in some indices. For those

indices, our construction allows to include only one element in the

policy, regardless of the number of such keys. However, in practice,

we believe that the most general case will be the one where the

policy will contain a set of complete public keys, each with one

component per position, leading to J1 = . . . = J𝑛 .

3.1.2 Correctness. Let pk𝐼 be (pk𝐼 ,1, . . . , pk𝐼 ,𝑛). Correctness re-

quires that the [Show, Verify] protocol between honest users and

verifiers outputs 1 with probability 1 if the following two conditions

are satisfied:

(1) 𝜎 has been output by Sign(sk𝐼 , (m1, . . . ,m𝑛))
(2) ∃(𝑗1, . . . , 𝑗𝑛) ∈ J1 × . . . × J𝑛 such that pk𝐼 ,𝑖 = pk𝑗𝑖 ,𝑖 .

In other words, every honestly generated signature satisfying a

policy P should be accepted by the verifier.

Remark. In our system, each public key element pk𝐼 ,𝑖 is unambigu-

ously associated with a given position 𝑖 ∈ [1, 𝑛]. This is done to
retain a strong definition of unforgeability where a valid signature

on (m𝜋 (1) , . . . ,m𝜋 (𝑛)) -for any permutation 𝜋 of {1, . . . , 𝑛}- is con-
sidered as a valid forgery, even if a signature on (m1, . . . ,m𝑛) was
already issued. It is thus assumed that all sets {pk𝑗,𝑖 } 𝑗 ∈J𝑖 contained

648

Compact Issuer-Hiding Authentication, Application to Anonymous Credential Proceedings on Privacy Enhancing Technologies 2024(3)

public key elements corresponding to the position 𝑖 . The verifier,

who is honest during the unforgeability game, can easily enforce

this when it defines the policy P.

3.1.3 Policy Audit. As we explain above, each verifier selects a pol-

icy P and generates a corresponding data pkP through SetPolicy.
As we shall see, the latter provides some elements accelerating

users’ computations during signature presentation. For complete-

ness, we nevertheless need to consider the case where the verifier

generating pkP is malicious. In such a case, this entity could depart

from the specifications of the SetPolicy algorithm and generate

pkP so as to leak some information on the public keys related to

the signature presented by the user. This is not a specificity of our

scheme as [4, 5] face the same problem and therefore provide a way

to check the validity of the policy. In [4], the policy contains one sig-

nature per authorised public key. Checking the policy thus consists

in running the verification algorithm for every signature. In [5], the

policy
1
contains a zero-knowledge proof of well-formedness that

can be verified to check the policy. Finally, we note that [14] is also

theoretically vulnerable to this kind of attacks as one could place

invalid public keys in the policy. However, in their case, check-

ing the validity of the policy only consists in checking whether

the public keys are valid, which should not require cryptographic

computations.

In all cases, the AuditPolicy algorithm allows anyone to detect

a malicious policy and then denounce the verifier enforcing it. A

verifier publishing an ill-formed pkP would then take a consid-

erable risk, all the more so as we expect policy modifications to

remain rare in most scenarios: the verifier could go unpunished

only if no one runs AuditPolicy over the whole lifespan of the

policy. In situations where this policy check cannot be done once

and for all by some entity on behalf of all users, we could program

the users’ devices to run AuditPolicywith some probability 𝜖 after
the [Show, Verify] protocol. This way, policy verification does not

impact the performance of the signature presentation and, even

with a very low 𝜖 , one could ensure that at least one user will detect

an invalid policy with overwhelming probability.

Finally, we note that the AuditPolicy algorithm is unnecessary

if one only considers honest-but-curious adversaries.

3.1.4 Unforgeability. The first property we expect from an Issuer-

Hiding Authentication mechanism is unforgeability. It requires that

no user should be able to falsely claim possession of a signature on

(m1, . . . ,m𝑛) satisfying a policy P. This must hold true even if the

messages m1, . . . ,m𝑛 have been individually signed.

As in [4], we assume that the public keys accepted by the policy

belong to honest issuers. This looks like a natural restriction given

the issuer-hiding property we aim to achieve. We indeed recall that

the very purpose of the verification algorithm in our context is to

check that the user has received a signature from one of the issuers

accepted by the policy P. If one of these issuers is malicious, then

the adversary can generate valid signatures (with respect to P) on
any messages of its choice and the unforgeability property becomes

moot.

1
[5] does not use this specific terminology but their aggregator notion essentially plays

this role.

The formal definition of unforgeability is provided in Figure 1.

It makes use of the following oracles.

• OAdd𝐼 (): this oracle creates a new issuer key pair (sk𝐼 , pk𝐼)
and returns pk𝐼 . The set of all created issuers’ public key is

K .
• OSign(pk𝐼 , (m1, . . . ,m𝑛)): on input a vector of 𝑛 messages,

this oracle returns Sign(sk𝐼 , (m1, . . . ,m𝑛)).
• OSetPolicy({pk𝑗,1} 𝑗 ∈J1 , . . . , {pk𝑗,𝑛} 𝑗 ∈J𝑛): this oracle is

used to generate (skP , pkP for a policyP = {pk𝑗,1} 𝑗 ∈J1 , . . . ,
{pk𝑗,𝑛} 𝑗 ∈J𝑛). The adversary then receives pkP while skP
remains secret.

• OShow((m1, . . . ,m𝑛), pkP): this oracle is queried by the ad-

versary playing the role of the user. If no pkP was cre-

ated through a query to OSetPolicy on P, then the or-

acle aborts. Else, it runs the Verify part of the protocol on
((m1, . . . ,m𝑛),P, skP) and returns the corresponding bit.

3.1.5 Issuer-Hiding. The second property we expect from our prim-

itive is the issuer-hiding one which requires that the verifier, even

colluding with all issuers, is unable to identify under which public

key the presented signature has been signed. The adversary thus

controls all entities of our system except the user that runs the Show
protocol.

At this stage, we nevertheless need to make a few comments

on some inherent limitations of the issuer-hiding property. The

latter is indeed limited by the information leaked by the revealed

messages as they may give some hints on the potential issuers.

Typically, a proof of possession of a valid driving licence should

only involve public keys of entities authorised to issue this kind of

licences. Adding the public key of an university in the policy would

for example be pointless as one could trivially exclude it from the

list of potential issuers of the driving licence.

We therefore stress that the issuer-hiding property is meaningful

only if there are at least two issuers authorised for the presented

attributes in the policy selected by the verifier. This is an obvious

requirement of all papers targeting this property. In practice, this

calls for a quick check of the verifier’s policy which is completely

transparent by design in our case. The way it would be done con-

cretely obviously depends on the use case so we will not discuss it

further in this paper.

In our formal definition of this property, this will be modelled by

the fact that the adversary outputs (m1, . . . ,m𝑛) along with a policy
P = {pk𝑏,1}𝑏∈{0,1}, . . . , {pk𝑏,𝑛}𝑏∈{0,1} where (pk𝑏,1, . . . , pk𝑏,𝑛) is
the public key of some issuer 𝐼𝑏 , for 𝑏 ∈ {0, 1}. The adversary addi-

tionally outputs the corresponding signatures 𝜎 (0) and 𝜎 (1) along
with the elements in pkP that will be used in the Show protocol. In

other words, our adversary has a total control over all the elements

used in the latter protocol, which makes our model very strong. In

particular, it can maliciously generate the signatures and pkP , pro-
vided that they pass the sanity checks constituted by AuditPolicy
and VerifSign.

In the issuer-hiding experiment of Figure 1, the adversary keeps

some state 𝑠𝑡 and has access to the following oracle:

• OShow((m1, . . . ,m𝑛), 𝜎, pk𝐼 ,P, pkP): this oracle plays the

role of the user in the [Show, Verify] protocol. The adver-
sary has full control of its inputs as long as AuditPolicy(P,
pkP) = 1.

649

Proceedings on Privacy Enhancing Technologies 2024(3) Sanders et al.

Unforgeability Exp
𝑢𝑓

A (1
𝜆, 𝑛)

(1) 𝑝𝑝 ← Setup(1𝜆, 𝑛)
(2) P = {{pk𝑗,1} 𝑗 ∈J1 , . . . , {pk𝑗,𝑛} 𝑗 ∈J𝑛 } ← AO (𝑝𝑝)
(3) If ∃𝑖 ∈ [1, 𝑛] and 𝑗𝑖 ∈ J𝑖 such that pk𝑗𝑖 ,𝑖 ≠ pk𝑖 , for all
(pk

1
, . . . , pk𝑛) ∈ K , return 0

(4) (skP , pkP) ← SetPolicy(P)
(5) (m1, . . . ,m𝑛) ← AO (𝑝𝑝,P, pkP)
(6) If OSign(pk𝐼 , (m1, . . . ,m𝑛)) was queried for some pk𝐼 ∈ I

satisfying P, return 0

(7) return 𝑏 ← [A(), Verify((m1, . . . ,m𝑛),P, skP)]

Issuer-Hiding Exp𝑖ℎ−𝑏A (1𝜆, 𝑛)
(1) 𝑝𝑝 ← Setup(1𝜆, 𝑛)
(2) (m1, . . . ,m𝑛, pkP , 𝜎

(0) , 𝜎 (1) , pk(0)
𝐼
, pk(1)

𝐼
) ← AO (𝑝𝑝, 𝑠𝑡)

(3) If AuditPolicy({pk(0)
𝐼
, pk(1)

𝐼
}, pkP) = 0, return 0

(4) If VerifSign(pk(𝑏
′)

𝐼
, (m(𝑏

′)
1

, . . . ,m(𝑏
′)

𝑛), 𝜎) = 0 for some

𝑏 ′ ∈ {0, 1}, return 0

(5) 𝑏∗ ← [Show((m1, . . . ,m𝑛), 𝜎 (𝑏) , pk(𝑏)𝐼
,P, pkP)AO (𝑝𝑝, 𝑠𝑡)]

(6) Return (𝑏∗ = 𝑏).

Figure 1: Security Notions for Issuer-Hiding Authentication
Mechanisms

Let A be a probabilistic polynomial adversary. An IHA mecha-

nism is

• unforgeable if Adv𝑢𝑓 (A) = | Pr[Exp𝑢𝑓A (1
𝜆, 𝑛) = 1] | is negli-

gible for any A.

• anonymous if Adv𝑖ℎ = | Pr[Exp𝑖ℎ−1A (1𝜆, 𝑛) = 1]
− Pr[Exp𝑖ℎ−0A (1𝜆, 𝑛) = 1] | is negligible for any A.

3.2 Construction
Our first construction is designed as an Issuer-Hiding variant of

PS signatures. The system indeed works as the PS signatures we

recall in Section 2 except during the verification stage. Concretely,

a signature issued on (m1, . . . ,m𝑛) by an issuer with public key

(𝑌𝑗1,1, . . . , 𝑌𝑗𝑛,𝑛) is still a pair (𝜎1, 𝜎2) = (𝑔𝑟 , 𝑋𝑟 · 𝑔𝑟 (
∑𝑛

𝑖=1 𝑦 𝑗𝑖 ,𝑖
·m𝑖)).

What does change is the presentation of the signature that we

describe as an interactive protocol, prefiguring the Show protocol
of an anonymous credential system.

In classical digital signature or anonymous credentials systems,

verification takes as input a unique public key which acts as a

very basic policy. The presented signature or anonymous creden-

tial is either valid for this public key or it is rejected. In our sys-

tem, the verifier selects 𝑛 sets {𝑌𝑗,1} 𝑗 ∈J1 , . . . , {𝑌𝑗,𝑛} 𝑗 ∈J𝑛 of allowed

public keys that constitute the policy for the current authentica-

tion. The goal of the user is then to prove that it owns a PS signa-

ture on (m1, . . . ,m𝑛) valid for a vector of 𝑛 public key elements

(𝑌𝑗1,1, . . . , 𝑌𝑗𝑛,𝑛) without revealing anything on these elements be-

yond that 𝑌𝑗𝑘 ,𝑘 ∈ {𝑌𝑗,𝑘 } 𝑗 ∈J𝑘 , for all 1 ≤ 𝑘 ≤ 𝑛. In other words, it

proves that (m1, . . . ,m𝑛) has been certified by one of the authorised
issuers without revealing which one.

To achieve this goal, we need to move from the current veri-

fication equation of PS signatures, namely 𝑒 (𝜎1, 𝑋 ·
∏𝑛

𝑖=1 𝑌
m𝑖

𝑗𝑖 ,𝑖
) =

𝑒 (𝜎2, 𝑔), which inherently reveals the issuer, to an equation in-

volving in the same way all issuers’ public keys from the pol-

icy. More precisely, we would like to replace

∏𝑛
𝑖=1 𝑌

m𝑖

𝑗𝑖 ,𝑖
by some-

thing akin to

∏𝑛
𝑖=1 [

∏
𝑗 ∈J𝑖 𝑌𝑗,𝑖]

m𝑖
. Clearly, this does not work with

the original signature 𝜎1 and 𝜎2. We then add a new element

𝜎 =
∏𝑛

𝑖=1 [
∏

𝑗 ∈J𝑖\{ 𝑗𝑖 } 𝑌𝑗,𝑖]
m𝑖

to compensate for all the public keys

in the product above. By construction, 𝜎 satisfies

𝑒 (𝜎1, 𝑋 · 𝜎−1
𝑛∏
𝑖=1

[
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖) = 𝑒 (𝜎2, 𝑔).

We thus have our issuer-hiding verification equation but the

triplet (𝜎1, 𝜎2, 𝜎) would be a very poor solution to our problem.

First, because one can still infer information on the issuer from 𝜎2
and 𝜎 . Second, because the resulting signature scheme could be

trivially broken. For example, by setting 𝜎 =
∏𝑛

𝑖=1 [
∏

𝑗 ∈J𝑖 𝑌𝑗,𝑖]
m𝑖
,

one removes all the public keys from the verification equation. One

can thus claim a signature on any vector (m1, . . . ,m𝑛) by simply

setting 𝜎1 = 𝑔 and 𝜎2 = 𝑋 .

If we focus on the second problem we can see that it stems from

the inability to bound the number of public keys used to compute

𝜎 . Intuitively, we use 𝜎 to compensate for the public keys that we

artificially added to the equation. For each position 𝑖 , we indeed

added |J𝑖 | −1 elements𝑌
m𝑖

𝑗,𝑖
and they are exactly the ones we cancel

with 𝜎 . The latter element can thus legitimately be built from |J𝑖 |−1
public keys. If one exceeds this threshold then one can remove all
the public keys from J𝑖 and the verification becomes moot: this is

exactly the idea behind the forgery we have just described.

To enforce this threshold, the verifier will provide a set of ele-

ments 𝑇𝑗,𝑖 = (𝑌𝑗,𝑖 · 𝑔𝑏𝑖)𝑎 , for all public keys 𝑌𝑗,𝑖 in his policy, and

will force the prover to use them to build 𝜎 by raising the latter to

the power
1

𝑎 in the equation. Concretely, 𝜎 will now be computed

as

∏𝑛
𝑖=1 [

∏
𝑗 ∈J𝑖\{ 𝑗𝑖 }𝑇𝑗,𝑖]

m𝑖
and our verification equation becomes

𝑒 (𝜎1, 𝑋𝜎−
1

𝑎

𝑛∏
𝑖=1

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖) = 𝑒 (𝜎2, 𝑔) .

An honestly computed 𝜎 contains a component 𝑔𝑏𝑖 ·m𝑖 (|J𝑖 |−1)

which cancels the one in the equation above. Conversely, building 𝜎

from |J𝑖 | elements ormore leads to residual elements that invalidate

the equation with overwhelming probability.

Our security analysis will formalise this, showing that satisfy-

ing this equation without a valid PS signature on (m1, . . . ,m𝑛) is
not possible but we provide here the intuition behind the proof.

Indeed, let us consider a malicious prover trying to forge a valid

(𝜎1, 𝜎2, 𝜎) for (m1, . . . ,m𝑛) without a valid signature. It can com-

pute 𝜎 as

∏𝑛
𝑖=1 [

∏
𝑗 ∈J𝑖 𝑇

𝛼
(𝑖)
𝑗

𝑗,𝑖
], for any tuples (𝛼 (𝑖)

1
, . . . , 𝛼

(𝑖)
J𝑖) but

the condition we introduced means that

∑
𝛼
(𝑖)
𝑗

= m𝑖 (|J𝑖 | − 1),
for all 𝑖 ∈ [1, 𝑛]. Therefore, if we consider the left member of the

verification equation, we have

𝑒 (𝜎1, 𝑋𝜎−
1

𝑎

𝑛∏
𝑖=1

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖) = 𝑒 (𝜎1, 𝑋
𝑛∏
𝑖=1

∏
𝑗 ∈J𝑖

𝑌
m𝑖−𝛼 (𝑖)𝑗
𝑗,𝑖

)

650

Compact Issuer-Hiding Authentication, Application to Anonymous Credential Proceedings on Privacy Enhancing Technologies 2024(3)

which can be satisfied only if 𝜎2 = 𝜎
𝑥+∑𝑛

𝑖=1

∑
𝑗∈J𝑖 𝑦 𝑗,𝑖 (m𝑖−𝛼 (𝑖)𝑗)

1
.

Since

∑
𝑗 ∈J𝑖

𝛼
(𝑖)
𝑗

= m𝑖 (|J𝑖 | − 1), there is no 𝑖 such that 𝛼
(𝑖)
𝑗

= m𝑖

∀𝑗 ∈ J𝑖 . For all 𝑖 , there is thus at least one 𝑌𝑗,𝑖 that has a non-zero
exponent m𝑖 − 𝛼 (𝑖)𝑗 . If, for all 𝑖 , there is only one 𝑗𝑖 ∈ J𝑖 such
that (m𝑖 − 𝛼 (𝑖)𝑗) ≠ 0, then we must have 𝛼

(𝑖)
𝑗𝑖

= 0 and 𝛼
(𝑖)
𝑗

= 0

for all 𝑗 ≠ 𝑗𝑖 . If we simplify 𝜎2 accordingly, we get that (𝜎1, 𝜎2) is
exactly PS signature on (m1, . . . ,m𝑛), which would contradict the

EUF-CMA security of this signature scheme. Now, if there is some 𝑖

with at least two non-zero elements (m𝑖 − 𝛼 (𝑖)𝑗𝑏) for 𝑏 ∈ {0, 1}, then
(𝜎1, 𝜎2) is essentially an aggregate PS signature under the public

keys 𝑌𝑗𝑏 ,𝑖 . However PS signatures can only be sequentially aggre-

gated, meaning that aggregation is not possible without the help of

the second signer. As no issuer generates aggregated signatures in

our protocol, (𝜎1, 𝜎2) are necessarily forgeries, which, here again,

would contradict the security of PS signatures.

We have thus solved the forgeability problem mentioned above

but it remains to address the one regarding the information leaked

by 𝜎2 and 𝜎 . To this end we resort to a technique similar to the one

used in [28, 29]. We indeed add 𝜎−𝑡
1

to 𝜎2 and 𝑔
𝑎 ·𝑡

to 𝜎 , for some

random 𝑡 . Taken individually, the resulting 𝜎2 and 𝜎 are perfectly

uniform element that no longer leak anything on the issuer. One

must then combine these two elements using a pairing equation

to remove the masks 𝜎−𝑡
1

and 𝑔𝑎 ·𝑡 but then one essentially falls

back on the verification equation. Actually, our security proof will

essentially show that our system is unconditionally issuer-hiding.

While this is obviously a good point from the privacy standpoint,

this has a side-effect on the unforgeability proof. As the underlying

PS signature is now perfectly hidden, one can no longer reduce

unforgeability to the one of PS signatures, as sketched above. This

is the problem already experienced in [28, 29] which adapted the

original proof of PS signatures (in the Generic Group Model) to

their variants. We resort to the same solution here and will then

provide a tailored proof in the Generic Group Model (GGM) while

emphasizing that it relies on the same arguments as the original PS

proof.

3.2.1 The scheme. As explained above, the scheme only differs

from PS signatures during the [Show, Verify] step. To match the

syntax of anonymous credentials we nevertheless rename Keygen
as IKeygen to emphasize that it is run by an issuer.

• Setup(1𝜆, 𝑛). This algorithm outputs the parameters 𝑝𝑝 con-

taining the description of type-3 bilinear groups (G1,G2,
G𝑇 , 𝑒) of order 𝑝 along with a set of generators (𝑔,𝑔) ∈
G1 × G2 and a pair (𝑋,𝑋) = (𝑔𝑥 , 𝑔𝑥) ∈ G1 × G2 for some

𝑥 ∈ Z𝑝 .
• IKeygen(𝑝𝑝). This algorithm generates 𝑛 random scalars

(𝑦1, . . . , 𝑦𝑛) and sets sk𝐼 as (𝑦1, . . . , 𝑦𝑛) and pk𝐼 as (𝑌1, . . . ,
𝑌𝑛) = (𝑔𝑦1 , . . . , 𝑔𝑦𝑛).
• Sign(sk𝐼 , (m1, . . . ,m𝑛)). On input a set of 𝑛 messages (m1,

. . . ,m𝑛), this algorithm generates a signature (𝜎1, 𝜎2) ←
(𝑔𝑟 , 𝑋𝑟 · 𝑔𝑟 (

∑𝑛
𝑖=1 𝑦𝑖 ·m𝑖)) for some random 𝑟 ∈ Z𝑝 .

• VerifSign(pk𝐼 , (m1, . . . ,m𝑛), 𝜎). This algorithm checks the

validity of 𝜎 = (𝜎1, 𝜎2) on (m1, . . . ,m𝑛) by parsing pk𝐼 as

(𝑌1, 𝑌𝑛) and testing whether the following equation holds:

𝑒 (𝜎1, 𝑋 ·
𝑛∏
𝑖=1

𝑌
m𝑖

𝑖
) = 𝑒 (𝜎2, 𝑔).

Note that this is exactly the verification algorithm of PS sig-

natures.

• SetPolicy({𝑌𝑗,1} 𝑗 ∈J1 , . . . , {𝑌𝑗,𝑛} 𝑗 ∈J𝑛). On input 𝑛 sets of

G2 group elements such that 𝑌𝑗1,𝑖1 ≠ 𝑌𝑗2,𝑖2 for all pairs

(𝑖1, 𝑗1) ≠ (𝑖2, 𝑗2), the algorithm generates 𝑛 + 1 random

scalars 𝑎, 𝑏1, . . . , 𝑏𝑛 and computes 𝑆 = 𝑔𝑎 along with 𝑇𝑗,𝑖 ←
(𝑌𝑗,𝑖 · 𝑔𝑏𝑖)𝑎 for all 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ J𝑖 . It then produces

a zero-knowledge proof 𝜋 that the elements 𝑇𝑗,𝑖 are well

formed. An example of such a zero-knowledge proof is pro-

vided below. It then outputs the public part of the policy

pkP = [𝜋, 𝑆, {𝑇𝑗,1} 𝑗 ∈J1 , . . . , {𝑇𝑗,𝑛} 𝑗 ∈J𝑛] along with a secret

part skP = [𝑎, 𝑏1, . . . , 𝑏𝑛].
• AuditPolicy(P, pkP). This algorithm runs the verification

algorithm of the zero-knowledge proof 𝜋 and returns 1 if 𝜋

is correct and 0 otherwise.

• [Show((m1, . . . ,m𝑛), (𝜎1, 𝜎2), pk𝐼 ,P, pkP), Verify((m1, . . . ,

m𝑛),P, skP)]. This interactive protocol is initiated by the

user who first checks if the public key pk𝐼 = (𝑌1, . . . , 𝑌𝑛)
associated with his signature (𝜎1, 𝜎2) is compatible with

the policy P. This concretely means that ∃(𝑗1, . . . , 𝑗𝑛) ∈
J1 × . . .× J𝑛 such that 𝑌𝑖 = 𝑌𝑗𝑖 ,𝑖 . It then selects two random

scalars 𝑟 and 𝑡 and computes 𝜎 ′
1
← 𝜎𝑟

1
, 𝜎 ′

2
← 𝜎𝑟

2
· (𝜎 ′

1
)−𝑡 and

𝜎 ← 𝑆𝑡
∏𝑛

𝑖=1 [
∏

𝑗 ∈J𝑖\{ 𝑗𝑖 }𝑇𝑗,𝑖]
m𝑖
. The elements (𝜎 ′

1
, 𝜎 ′

2
, 𝜎)

are then sent to the verifier who returns 1 if (1) 𝜎 ′
1
≠ 1, (2)

∃𝑖 ∈ [1, 𝑛] : m𝑖 ≠ 0 and (3) the following equation holds:

𝑒 (𝜎 ′
1
, 𝑋𝜎−

1

𝑎

𝑛∏
𝑖=1

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖) = 𝑒 (𝜎 ′
2
, 𝑔) .

Else, it returns 0.

3.2.2 Correctness. Let (𝜎1, 𝜎2) be a signature under public keys
(𝑌𝑗1,1, . . . , 𝑌𝑗𝑛,𝑛) on (m1, . . . ,m𝑛) satisfying the verifier’s policy P
and (𝜎 ′

1
, 𝜎 ′

2
, 𝜎) be the elements generated by the user during the

Show protocol. We have:

𝑒 (𝜎 ′
1
, 𝑋𝜎−

1

𝑎

𝑛∏
𝑖=1

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖)

=𝑒 (𝜎 ′
1
, 𝑋 (𝑆𝑡

𝑛∏
𝑖=1

[
∏

𝑗 ∈J𝑖\{ 𝑗𝑖 }
𝑇𝑗,𝑖]m𝑖)−

1

𝑎

𝑛∏
𝑖=1

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖)

=𝑒 (𝜎 ′
1
, 𝑋 (𝑔𝑡

𝑛∏
𝑖=1

[
∏

𝑗 ∈J𝑖\{ 𝑗𝑖 }
𝑌𝑗,𝑖𝑔

𝑏𝑖]m𝑖)−1
𝑛∏
𝑖=1

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖)

=𝑒 (𝜎 ′
1
, 𝑋 · 𝑔−𝑡

𝑛∏
𝑖=1

𝑌
m𝑖

𝑗𝑖 ,𝑖
) = 𝑒 ((𝜎 ′

1
)𝑥−𝑡+

∑𝑛
𝑖=1 𝑦 𝑗𝑖 ,𝑖

m𝑖 , 𝑔) = 𝑒 (𝜎 ′
2
, 𝑔) .

3.2.3 Policy Audit. As discussed in Section 3.1, we include in pkP
a zero-knowledge proof 𝜋 attesting that it has been honestly gener-

ated. Our protocol does not prescribe any particular instantiation

but we note that Schnorr’s proofs [30] are very well suited to our

651

Proceedings on Privacy Enhancing Technologies 2024(3) Sanders et al.

case. It indeed results in a proof 𝜋 containing only 𝑛 + 2 scalars,
regardless of the number of public keys in P.

Concretely, let 𝐻 : {0, 1}∗ → Z𝑝 be a hash function. The en-

tity running SetPolicy produces 𝜋 by selecting 𝑛 + 1 random

scalars 𝑟0, . . . , 𝑟𝑛 and computes, for all 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ J𝑖 ,
𝐾𝑗,𝑖 ← 𝑇

𝑟0
𝑗,𝑖
· 𝑔𝑟𝑖 along with 𝐾 = 𝑆𝑟0 . It then computes 𝑐 ←

𝐻 (pkP , 𝐾, {𝐾𝑗,1} 𝑗 ∈J1 , . . . , {𝐾𝑗,𝑛} 𝑗 ∈J𝑛), 𝑧0 = 𝑟0 + 𝑐 · 𝑎−1 and 𝑧𝑖 =
𝑟𝑖 − 𝑏𝑖 · 𝑐 , ∀𝑖 ∈ [1, 𝑛]. It finally outputs 𝜋 ← (𝑐, 𝑧0, . . . , 𝑧𝑛).

The algorithm AuditPolicy then consists in computing 𝑐 ′ ←
𝐻 (pkP , 𝑆𝑧0 · 𝑔−𝑐 , {𝑇

𝑧0
𝑗,1
· 𝑔𝑧𝑖 · 𝑌−𝑐

𝑗,1
} 𝑗 ∈J1 , . . . , {𝑇

𝑧0
𝑗,𝑛
· 𝑔𝑧𝑖 · 𝑌−𝑐

𝑗,𝑛
} 𝑗 ∈J𝑛)

and checking whether 𝑐 = 𝑐 ′.

3.3 Security Analysis
The theorem below formalises the security claims we made in

Section 3.2.

Theorem 3.1. • Our construction is unforgeable in the generic
group model if 𝜋 is a zero-knowledge proof system.
• Our construction is issuer-hiding if 𝜋 is a sound proof system.

The proof 𝜋 affects the security of our system in the sense that

(1) an ill-formed pkP could leak information on the issuer’s identity

and (2) a proof 𝜋 that would not be zero-knowledge could leak infor-

mation on the scalars 𝑎 or 𝑏𝑖 , enabling the adversary to circumvent

the countermeasures embedded in the elements 𝑇𝑗,𝑖 . However, as

we explain above, the proof 𝜋 is only necessary to deal with active

adversaries that do not shy away from tampering with pkP . In
situations where one would only expect honest-but-curious adver-

saries, one could remove it altogether. In this case, the issuer-hiding

property would be ensured unconditionally.

3.3.1 Proof of the Issuer-Hiding Property. Let𝑏 be 1−𝑏. We consider

the following sequence of Games.

Game 𝑏, 0. This is exactly the game Exp𝑖ℎ−𝑏A described in Figure 1.

Game𝑏, 1.This is the same game as Game𝑏, 0 except that we abort at

the beginning of Step (5) if one of the elements in pkP is ill-formed.

Game 𝑏, 1. This is Game 𝑏, 1 where 𝑏 is replaced by 𝑏.

Game 𝑏, 0. This is exactly the game Exp𝑖ℎ−𝑏A described in Figure 1.

To prove the issuer-hiding property of our construction we will

prove that each of the latter three games is indistinguishable from

the game that precedes it.

Lemma 3.2. Any adversary able to distinguish Game 𝑏, 1 (resp.
𝑏, 1) from Game 𝑏, 0 (resp. 𝑏, 0) can be converted into an adversary
against the soundness of 𝜋 .

Proof. We only consider the Games 𝑏, 0 and 𝑏, 1 in our proof as

the latter works similarly in the case 𝑏, 0 and 𝑏, 1. We note that the

Games 𝑏, 0 and 𝑏, 1 are exactly the same until the potential abortion

in Step (5) whose probability need to be bounded. Such an event

implies that pkP passes the AuditPolicy test (Step (3)) which, in

our case, consists in verifying the proof 𝜋 . Any abortion would

then mean that an element in pkP is ill-formed even if 𝜋 is valid.

As 𝜋 is supposed to prove well-formedness of the elements in pkP ,
this would clearly contradict the soundness of 𝜋 , which concludes

our proof. □

Lemma 3.3. Games 𝑏, 1 and 𝑏, 1 are unconditionally indistinguish-
able.

Proof. Note that the Games 𝑏, 1 and 𝑏, 1 only differ in Step (5),

when running the Show protocol. Our proof strategy then consists

in showing that the output of Show in Game 𝑏, 1 (resp. Game 𝑏, 1)

is distributed independently of 𝑏, which ensures that no adversary

can distinguish whether it plays Game 𝑏, 1 or Game 𝑏, 1

Let us assume thatwe playGame𝑏, 1. By construction (𝜎 (𝑏)
1
, 𝜎
(𝑏)
2
)

is exactly (𝑔𝑟𝑏 , 𝑔𝑟𝑏 (𝑥+
∑

𝑖 𝑦𝑏,𝑖m𝑖)) for some 𝑟𝑏 . This can be checked

by running the verification algorithm of PS signatures. Let 𝑟 and 𝑡

be the scalars used to generate (𝜎 ′
1
, 𝜎 ′

2
, 𝜎) during the Show protocol.

We define 𝑟 ′ = 𝑟 · 𝑟𝑏 and 𝑢 = 𝑡 −∑𝑖 𝑦𝑏,𝑖 ·m𝑖 . We can then write

(1) 𝜎 ′
1
= (𝜎 (𝑏)

1
)𝑟 = 𝑔𝑟

′

(2) 𝜎 ′
2
= (𝜎 (𝑏)

2
)𝑟 · (𝜎 ′

1
)−𝑡) = 𝑔𝑟 ′ (𝑥−𝑢)

(3) 𝜎 = 𝑔𝑎 ·𝑡
∏𝑛

𝑖=1 [(𝑔𝑏𝑖𝑌𝑏,𝑖)
𝑎]m𝑖

= (𝑔𝑢)𝑎 ∏𝑛
𝑖=1 [(𝑔𝑏𝑖

∏
𝑗 ∈{0,1} 𝑌𝑗,𝑖)𝑎]m𝑖

Since 𝑟 and 𝑡 are uniformly random, 𝑟 ′ and 𝑢 are also uniformly

random and in particular do not leak any information on 𝑏. The

distribution of the elements (𝜎 ′
1
, 𝜎 ′

2
) is thus perfectly independent

of 𝑏. The element 𝜎 involves both 𝑌𝑏,𝑖 and 𝑌𝑏,𝑖
, in the same way

and is thus also independent of 𝑏.

Note that we can use exactly the same argument in the case of

Game 𝑏, 1. This means that, in both games, the output of the Show
protocol is independent of 𝑏, which concludes the proof. □

3.3.2 Proof of Unforgeability. As we explain in Section 3.2, it seems

impossible to directly rely on the unforgeability of PS signatures.

We will therefore adapt the arguments underlying the security

of PS signatures to our system, leading to the following proof in

the Generic Group Model. But first we need to deal with the zero-

knowledge proof 𝜋 , which is done by introducing an intermediary

game.

Game 0. This is exactly the unforgeability game described in Figure

1.

Game 1. This is the same game as Game 0 except at Step 4 where the

challenger runs SetPolicy as usual but now simulates the proof 𝜋 .

This game is then indistinguishable from the previous one if 𝜋 has

indeed be generated using a zero-knowledge proof system.

Lemma 3.4. In the generic group model, no adversary can succeed
in Game 1 with probability greater than 2(5 + 2(∑𝑛

𝑖=1 |J𝑖 |) + 3𝑞𝑆 +
𝑞𝐺)2/𝑝 , where 𝑞𝐺 is a bound on the number of group oracle queries
and 𝑞𝑆 is a bound on the number of OSign queries.

Proof of Lemma 3.4. Any adversary against our system has access

to the following elements:

• (𝑔,𝑋) and (𝑔,𝑋) from the public parameters;

• {𝑌𝑗,1} 𝑗 ∈J1 , . . . , {𝑌𝑗,𝑛} 𝑗 ∈J𝑛 from the public keys;

• 𝑆 = 𝑔𝑎 and {𝑇𝑗,1} 𝑗 ∈J1 , . . . , {𝑇𝑗,𝑛} 𝑗 ∈J𝑛 from the policy;

• (𝜎𝑘,1, 𝜎𝑘,2) by running OSign on (m𝑘,1, . . . ,m𝑘,𝑛) for some

public key 𝑌𝑗𝑘 ,1, . . . , 𝑌𝑗𝑘 ,𝑛 .

The main assumption of GGM proofs is that the adversary can

only obtain new group elements by querying the group operation

oracles. Therefore, any new element must be a known combination

of the initial elements listed above. To get a system of equations, we

652

Compact Issuer-Hiding Authentication, Application to Anonymous Credential Proceedings on Privacy Enhancing Technologies 2024(3)

associate each element with a formal polynomial representing its

exponent in base 𝑔 (for the elements in G1) and 𝑔 (for those in G2)
whose variables are the scalars unknown to the adversary, namely

𝑥 , 𝑎, {𝑏𝑖 }𝑛𝑖=1, {𝑦 𝑗,1} 𝑗 ∈J1 , . . . , {𝑦 𝑗,𝑛} 𝑗 ∈J𝑛 , along with 𝑟𝑘 such that

𝜎𝑘,1 = 𝑔
𝑟𝑘
. For example, 𝑋 will be associated with the polynomial

𝑥 , 𝑌𝑗,1 with 𝑦 𝑗,1 and so on.

Now let us assume that the adversary managed to produce a

forgery (𝜎∗
1
, 𝜎∗

2
, 𝜎∗). Since 𝜎∗

1
and 𝜎∗

2
are inG1, there must be known

scalars (𝛼, 𝛼 ′), (𝛽, 𝛽 ′), {(𝛾𝑘 , 𝛾 ′𝑘)}
𝑞𝑠
𝑘=1

, {(𝛿𝑘 , 𝛿 ′𝑘)}
𝑞𝑠
𝑘=1

such that the

polynomials [𝜎∗
1
] and [𝜎∗

2
] are respectively:

[𝜎∗
1
] = 𝛼 + 𝛽 · 𝑥 +

∑︁
𝑘

𝛾𝑘𝑟𝑘 +
∑︁
𝑘

𝛿𝑘 · 𝑟𝑘 (𝑥 +
𝑛∑︁
𝑖=1

𝑦 𝑗𝑘 ,𝑖 ·m𝑘,𝑖)

[𝜎∗
2
] = 𝛼 ′ + 𝛽 ′ · 𝑥 +

∑︁
𝑘

𝛾 ′
𝑘
𝑟𝑘 +

∑︁
𝑘

𝛿 ′
𝑘
· 𝑟𝑘 (𝑥 +

𝑛∑︁
𝑖=1

𝑦 𝑗𝑘 ,𝑖 ·m𝑘,𝑖)

Similarly, inG2, theremust be known𝛼”, 𝛽”, {𝛾”𝑗,1, 𝛿”𝑗,1} 𝑗 ∈J1 , . . . ,
{𝛾”𝑗,𝑛, 𝛿”𝑗,𝑛} 𝑗 ∈J𝑛 and 𝜖 such that

[𝜎∗] = 𝛼” + 𝛽” · 𝑥 + 𝜖” · 𝑎 +
∑︁
𝑖

∑︁
𝑗 ∈J𝑖
[𝛾”𝑗,𝑖 ·𝑦 𝑗,𝑖 +𝑎 · 𝛿”𝑗,𝑖 · (𝑏𝑖 +𝑦 𝑗,𝑖)]

Since (𝜎∗
1
, 𝜎∗

2
, 𝜎∗) is a valid forgery, it must pass the verification

test for the policyP and amessage (m1, . . . ,m𝑛) ≠ (m𝑘,1, . . . ,m𝑘,𝑛),
∀𝑘 ∈ [1, 𝑞𝑆], which means that

[𝜎∗
1
] · [𝑥 − 1

𝑎
[𝜎∗] +

∑︁
𝑖

m𝑖 (𝑏𝑖 (|J𝑖 | − 1) +
∑︁
𝑗 ∈J𝑖

𝑦 𝑗,𝑖)] = [𝜎∗2] (1)

Before developing this formula we note that all the monomials

in [𝜎∗] that are not a multiple of 𝑎 will end up with a factor
1

𝑎 that

cannot be cancelled by any of the other elements from the equations.

This means that the equations cannot be satisfied unless if those

monomials are 0, which concretely means that 𝛼” = 𝛽” = 𝛾”𝑗,𝑖 = 0,

∀𝑖 and 𝑗 ∈ J𝑖 . We thus get [𝜎∗
2
] =

[𝜎∗
1
]·[𝑥−𝜖”−

∑︁
𝑖

∑︁
𝑗 ∈J𝑖

𝛿”𝑗,𝑖 (𝑏𝑖+𝑦 𝑗,𝑖)+
∑︁
𝑖

m𝑖 (𝑏𝑖 (|J𝑖 |−1)+
∑︁
𝑗 ∈J𝑖

𝑦 𝑗,𝑖)] .

Now, we can notice that every monomial in [𝜎∗
1
] will be multi-

plied by 𝑥 in the right member, resulting in some cases inmonomials

of degree 2 in 𝑥 . However, there are no monomials of such a degree

in the left member of the equation. This means that we necessarily

have 𝛽 = 𝛿𝑘 = 0, ∀𝑘 .
At this stage, we therefore know that:

[𝜎∗
1
] = 𝛼 +

∑︁
𝑘

𝛾𝑘𝑟𝑘

[𝜎∗
2
] = 𝛼 ′ + 𝛽 ′ · 𝑥 +

∑︁
𝑘

𝛾 ′
𝑘
𝑟𝑘 +

∑︁
𝑘

𝛿 ′
𝑘
· 𝑟𝑘 (𝑥 +

𝑛∑︁
𝑖=1

𝑦 𝑗𝑘 ,𝑖 ·m𝑘,𝑖)

[𝜎∗] = 𝜖” · 𝑎 +
∑︁
𝑖

∑︁
𝑗 ∈J𝑖
[𝑎 · 𝛿”𝑗,𝑖 · (𝑏𝑖 + 𝑦 𝑗,𝑖)]

and we can thus rewrite the verification equation: [𝜎∗
2
] =

[𝛼+
∑︁
𝑘

𝛾𝑘𝑟𝑘]·[𝑥−𝜖”+
∑︁
𝑖

m𝑖 ·𝑏𝑖 (|J𝑖 |−1)+
∑︁
𝑗 ∈J𝑖
(m𝑖 ·𝑦 𝑗,𝑖−𝛿”𝑗,𝑖 (𝑏𝑖+𝑦 𝑗,𝑖))]

Themonomials of degree 0 in 𝑟𝑘 are themselves polynomials in 𝑥 ,

𝑏𝑖 and 𝑗𝑖 , which leads to the following relations on their coefficients:

𝛼 ′ = −𝛼 · 𝜖”;
𝛼 = 𝛽 ′;

0 = 𝛼
∑︁
𝑖

(m𝑖 · 𝑏𝑖 (|J𝑖 | − 1) +
∑︁
𝑗 ∈J𝑖
(m𝑖 · 𝑦 𝑗,𝑖 − 𝛿”𝑗,𝑖 (𝑏𝑖 + 𝑦 𝑗,𝑖))).

The last equation implies that either 𝛼 = 0 or we have, for all

𝑖 ∈ [1, 𝑛]:

m𝑖 (|J𝑖 | − 1) =
∑︁
𝑗 ∈J𝑖

𝛿”𝑗,𝑖 (1)

0 = m𝑖 − 𝛿”𝑗,𝑖 ,∀𝑗 ∈ J𝑖 (2)

However, the two equations cannot be simultaneously satisfied

unlessm𝑖 = 0 for all 𝑖 ∈ [1, 𝑛], which wouldmake the whole forgery

invalid. We can then conclude that 𝛼 = 0.

Now, for each 𝑘 , the degree 1 monomials in 𝑟𝑘 give:

𝛾 ′
𝑘
+ 𝛿 ′

𝑘
(𝑥 +

𝑛∑︁
𝑖=1

𝑦 𝑗𝑘 ,𝑖 ·m𝑘,𝑖)

= 𝛾𝑘 [𝑥 − 𝜖” +
∑︁
𝑖

m𝑖 · 𝑏𝑖 (|J𝑖 | − 1) +
∑︁
𝑗 ∈J𝑖
(m𝑖 · 𝑦 𝑗,𝑖 − 𝛿”𝑗,𝑖 (𝑏𝑖 + 𝑦 𝑗,𝑖))]

whichmeans that 𝛿 ′
𝑘
= 𝛾𝑘 and𝛾 ′

𝑘
= −𝛾𝑘 ·𝜖”. If𝛾𝑘 = 0∀𝑘 ∈ [1, 𝑞𝑆],

then [𝜎∗
1
] = 0 and (𝜎∗

1
, 𝜎∗

2
, 𝜎∗) would then not be a valid forgery.

We can then assume that there is at least one 𝑘 ∈ [1, 𝑞𝑆] such that

𝛾𝑘 ≠ 0. For this 𝑘 , we note that there is no monomial in 𝑏𝑖 in the

left member of the equation. We must then have, for all 𝑖 ∈ [1, 𝑛]:

m𝑖 (|J𝑖 | − 1) =
∑︁
𝑗 ∈J𝑖

𝛿”𝑗,𝑖 (1)

Similarly, considering the monomials in 𝑦 𝑗,𝑖 leads to the follow-

ing relations, ∀𝑖 ∈ [1, 𝑛]:

𝛿 ′
𝑘
·m𝑘,𝑖 = 𝛾𝑘 (m𝑖 − 𝛿”𝑗𝑘 ,𝑖) (2)
and 0 = m𝑖 − 𝛿”𝑗𝑘 ,𝑖 ,∀𝑗 ∈ J𝑖 \ { 𝑗𝑘 } (3)

Therefore, 𝛿”𝑗𝑘 ,𝑖 = m𝑖 ∀𝑗 ∈ J𝑖 \ { 𝑗𝑘 }. Plugging this result in (1)

means that 𝛿”𝑗𝑘 ,𝑖 = 0 and so (2) becomes 𝛿 ′
𝑘
· m𝑘,𝑖 = 𝛾𝑘 · m𝑖 . As

we have shown that 𝛿 ′
𝑘
= 𝛾𝑘 , this means that m𝑘,𝑖 = m𝑖 ∀𝑖 ∈ [1, 𝑛]

and so that (𝜎∗
1
, 𝜎∗

2
, 𝜎∗) is not a valid forgery. Therefore, no known

combination of the initial group elements can lead to a forgery,

which concludes the first part of the proof.

In practice, the variables of these formal polynomials will be

replaced by random scalars which could lead to accidental equalities,

where two elements associated with different polynomials would

be equal. This would lead the simulation (and hence the proof in the

GGM) to fail. To bound the probability of this bad event, we resort to

the Schwartz-Zippel lemma. We indeed note that the polynomials

in G1 and G2 are of degree at most 2, leading (through pairing

computations) to polynomials of degree at most 4 in G𝑇 . In parallel,

the adversary has access to (5+2(∑𝑛
𝑖=1 |J𝑖 |)+3𝑞𝑆 +𝑞𝐺) polynomials.

According to the Schwartz-Zippel lemma, the probability of this

bad event is then at most 2(5 + 2(∑𝑛
𝑖=1 |J𝑖 |) + 3𝑞𝑆 + 𝑞𝐺)2/𝑝 , which

remains negligible for polynomial 𝑞𝑆 and 𝑞𝐺 .

653

Proceedings on Privacy Enhancing Technologies 2024(3) Sanders et al.

4 ISSUER-HIDING ANONYMOUS
CREDENTIALS

In this section, we extend our IHA construction to build an Issuer-

Hiding Anonymous Credentials (IHAC) system. Actually, we have

done the bulk of thework in our previous section as we already dealt

with the unforgeability and issuer-hiding properties while retaining

essentially the same syntax as the one of IHAC. What remains to

be done is then to allow the user to control the information it

leaks on the signed messages m1, . . . ,m𝑛 . This will essentially be

achieved thanks to an appropriate zero-knowledge proof during

the [Show, Verify] protocol. Note that this proof can easily be

implemented in our case. Our verification equation is indeed

𝑒 (𝜎 ′
1
, 𝑋𝜎−

1

𝑎

𝑛∏
𝑖=1

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖) = 𝑒 (𝜎 ′
2
, 𝑔)

where the messages m1, . . . ,m𝑛 to be hidden are involved as

exponents. Although the elements 𝑔𝑏𝑖 are not public in our IHA

construction, we will show that they can be added to pkP without

jeopardising security. Schnorr-like proofs [30] are thus very well

suited to our case, either to perform selective disclosure of the

messages, or to prove more complex statements if necessary.

4.1 Security Model
We here essentially follow the model of [4] that we slightly adapt to

match the syntax of IHA. The main difference is that we do not con-

sider a generic policy 𝜙 for the messages but instead allow the user

to selectively disclose a subset {m𝑖 }𝑖∈I of the messages he wants

to reveal, where I ⊂ [1, 𝑛]. This makes the whole description

simpler and better matches the usual syntax of classical anony-

mous credential system [17]. We nevertheless stress that proving

more complex statements aboutm1, . . . ,m𝑛 would be rather simple

with our concrete construction given the form of the verification

equation.

4.1.1 Syntax. An IHAC system involves a set of issuers, users and

verifiers running some of the following algorithms. In this section,

themessagesm𝑖 (resp. the signature) will be called “attributes” (resp.

“credential”) to comply with the usual terminology of anonymous

credential systems.

• Setup(1𝜆, 𝑛). This algorithm outputs the public parameters

enabling to sign vectors of 𝑛 attributes.

• IKeygen(𝑝𝑝). This algorithm is run by an issuer to gener-

ate his secret key sk𝐼 and a public key pk𝐼 consisting of 𝑛

elements pk𝐼 ,𝑖 , for 𝑖 ∈ [1, 𝑛].
• Sign(sk𝐼 , (m1, . . . ,m𝑛)). On input a set of𝑛 attributes (m1, . . . ,

m𝑛), this algorithm run by the issuer owning sk𝐼 generates
a credential 𝜎 .

• VerifSign(pk𝐼 , (m1, . . . ,m𝑛), 𝜎). This algorithm enables to

check the validity of the certificates generated by the previ-

ous algorithm. It outputs 1 (valid) or 0 (invalid).

• SetPolicy({pk𝑗,1} 𝑗 ∈J1 , . . . , {pk𝑗,𝑛} 𝑗 ∈J𝑛). On input a pol-

icy P consisting in 𝑛 sets of public key elements, the algo-

rithm generates a public component pkP of the policy along

with a secret component skP .
• AuditPolicy(P, pkP): on input P and pkP , this algorithms

returns either 1 or 0.

Unforgeability Exp
𝑢𝑓 −𝑎𝑐
A (1𝜆, 𝑛)

(1) 𝑝𝑝 ← Setup(1𝜆, 𝑛)
(2) P = ({pk𝑗,1} 𝑗 ∈J1 , . . . , {pk𝑗,𝑛} 𝑗 ∈J𝑛) ← AO (𝑝𝑝)
(3) If ∃𝑖 ∈ [1, 𝑛] and 𝑗𝑖 ∈ J𝑖 such that pk𝑗𝑖 ,𝑖 ≠ pk𝑖 , for all
(pk

1
, . . . , pk𝑛) ∈ K , return 0

(4) (skP , pkP) ← SetPolicy(P)
(5) {m𝑖 }𝑖∈I⊂[1,𝑛] ← AO (𝑝𝑝, pkP)
(6) If OSign(pk𝐼 , (m∗1, . . . ,m

∗
𝑛)) was queried for some pk𝐼 ∈ K

satisfying P, with m∗
𝑖
= m𝑖 ∀𝑖 ∈ I, return 0

(7) return 𝑏 ← [A(), Verify({m𝑖 }𝑖∈I ,P, skP)]

Anonymity Exp𝑎𝑛𝑜−𝑏A (1𝜆, 𝑛)
(1) 𝑝𝑝 ← Setup(1𝜆, 𝑛)
(2) (I, (m(0)

1
, . . . ,m(0)𝑛), (m

(1)
1
, . . . ,m(1)𝑛), pkP , 𝜎 (0) , 𝜎 (1) ,

pk(0)
𝐼
, pk(1)

𝐼
) ← AO (𝑝𝑝, 𝑠𝑡)

(3) If ∃𝑖∗ ∈ I: m(0)
𝑖∗ ≠ m(1)

𝑖∗ , return 0

(4) If AuditPolicy({pk(0)
𝐼
, pk(1)

𝐼
}, pkP) = 0, return 0

(5) If ∃𝑏 ′ ∈ {0, 1}: VerifSign(pk(𝑏
′)

𝐼
, (m(𝑏

′)
1

, . . . ,m(𝑏
′)

𝑛), 𝜎) = 0,

return 0

(6) 𝑏∗ ← [Show((m(𝑏)
1
, . . . ,m(𝑏)𝑛), 𝜎 (𝑏) , pk

(𝑏)
𝐼
,P, pkP)AO (𝑝𝑝, 𝑠𝑡)]

(7) Return (𝑏∗ = 𝑏).

Figure 2: Security Notions for Issuer-Hiding Anonymous
Credentials

• [Show((m1, . . . ,m𝑛),I, 𝜎, pk𝐼 ,P, pkP), Verify({m𝑖 }𝑖∈I ,P,
skP)]. This interactive protocol between a user and a verifier
is initiated by the former who wants to show that the pre-

sented attributes {m𝑖 }𝑖∈I have been certified under some

public key pk𝐼 accepted by the policy P. At the end of the

interaction, the verifier returns either 1 or 0.

4.1.2 Security Properties. Correctness can be defined as in Section

3.1. The unforgeability property is also very similar to the one de-

fined in Figure 1 - and uses the same oracles- although we have to

slightly adapt the success condition as the adversary can choose

to only perform selective disclosure. The resulting experiment can

be found in Figure 2. The anonymity experiment described in the

same figure encompasses the issuer-hiding property and the pri-

vacy of unrevealed messages. The novelty compared to the issuer-

hiding property in Figure 1 is that the challenge signatures 𝜎 (0)

and 𝜎 (1) may now be associated to two different message vectors

(m(0)
1
, . . . ,m(0)𝑛) and (m

(1)
1
, . . . ,m(1)𝑛), provided that they coincide

in all indices 𝑖 ∈ I.
Let A be a probabilistic polynomial adversary. An IHAC mecha-

nism is

• unforgeable if Adv𝑢𝑓 (A) = | Pr[Exp𝑢𝑓A (1
𝜆, 𝑛) = 1] | is negli-

gible for any A.

• anonymous if Adv𝑎𝑛𝑜 = | Pr[Exp𝑎𝑛𝑜−1A (1𝜆, 𝑛) = 1]
− Pr[Exp𝑎𝑛𝑜−0A (1𝜆, 𝑛) = 1] | is negligible for any A.

4.2 Construction
Let Σ be the issuer-hiding authentication mechanism presented in

Section 3.2. We construct our IHAC system as follows.

654

Compact Issuer-Hiding Authentication, Application to Anonymous Credential Proceedings on Privacy Enhancing Technologies 2024(3)

• Setup(1𝜆, 𝑛). This algorithm runs Σ.Setup(1𝜆, 𝑛) and then

returns the resulting public parameters, namely the descrip-

tion of type-3 bilinear groups (G1,G2,G𝑇 , 𝑒) of order 𝑝 along
with a set of generators (𝑔,𝑔) ∈ G1 ×G2 and a pair (𝑋,𝑋) =
(𝑔𝑥 , 𝑔𝑥) ∈ G1 × G2 for some 𝑥 ∈ Z𝑝 .
• IKeygen(𝑝𝑝). This algorithm runs Σ.IKeygen(𝑝𝑝) and re-

turns the resulting keys sk𝐼 = (𝑦1, . . . , 𝑦𝑛) and pk𝐼 = (𝑌1, . . . ,
𝑌𝑛) = (𝑔𝑦1 , . . . , 𝑔𝑦𝑛).
• Sign(sk𝐼 , (m1, . . . ,m𝑛)). This algorithm runs Σ.Sign(sk𝐼 ,
(m1, . . . ,m𝑛)) to output a certificate (𝜎1, 𝜎2) ← (𝑔𝑟 , 𝑋𝑟 ·
𝑔𝑟 (

∑𝑛
𝑖=1 𝑦𝑖 ·m𝑖)) for some random 𝑟 ∈ Z𝑝 .

• VerifSign(pk𝐼 , (m1, . . . ,m𝑛), 𝜎). This algorithm returns Σ.
VerifSign(pk𝐼 , (m1, . . . ,m𝑛), 𝜎).
• SetPolicy({pk𝑗,1} 𝑗 ∈J1 , . . . , {pk𝑗,𝑛} 𝑗 ∈J𝑛). This algorithm

generates 𝑛 + 1 random scalars 𝑎, 𝑏1, . . . , 𝑏𝑛 and computes

𝑆 = 𝑔𝑎 , the elements 𝑔𝑏𝑖 (|J𝑖 |−1) , for 𝑖 = 1, . . . , 𝑛, along

with 𝑇𝑗,𝑖 ← (𝑌𝑗,𝑖 · 𝑔𝑏𝑖)𝑎 for all 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ J𝑖 . It
then produces a zero-knowledge proof 𝜋 that these elements

are well formed by adapting the solution described in Sec-

tion 3.2. It then outputs the public part of the policy pkP =

[𝜋, 𝑆, {𝑔𝑏𝑖 (|J𝑖 |−1) }𝑛
𝑖=1
, {𝑇𝑗,1} 𝑗 ∈J1 , . . . , {𝑇𝑗,𝑛} 𝑗 ∈J𝑛] alongwith

the secret part skP = [𝑎, 𝑏1, . . . , 𝑏𝑛].
• AuditPolicy(P, pkP). This algorithm runs the verification

algorithm of the zero-knowledge proof on 𝜋 and returns the

corresponding bit.

• [Show((m1, . . . ,m𝑛),I, 𝜎, pk𝐼 ,P, pkP), Verify({m𝑖 }𝑖∈I ,P,
skP)]. As in Σ.Show, the user is expected to own a certifi-

cate 𝜎 = (𝜎1, 𝜎2) under some public key pk𝐼 = (𝑌1, . . . , 𝑌𝑛)
such that ∃(𝑗1, . . . , 𝑗𝑛) ∈ J1 × . . . × J𝑛 with 𝑌𝑖 = 𝑌𝑗𝑖 ,𝑖 . It

then selects random scalars 𝑟 and 𝑡 and computes 𝜎 ′
1
← 𝜎𝑟

1
,

𝜎 ′
2
← 𝜎𝑟

2
· (𝜎 ′

1
)−𝑡 and 𝜎 ← 𝑆𝑡

∏𝑛
𝑖=1 [

∏
𝑗 ∈J𝑖\{ 𝑗𝑖 }𝑇𝑗,𝑖]

m𝑖
.

As it can no longer reveal anything about {m𝑖 }𝑖∈I , where
I = [1, 𝑛] \ I, it will generate a proof of knowledge 𝜋 ′ of
these values which satisfy the following equation:∏
𝑖∈I

𝑒 (𝜎 ′
1
, 𝑔𝑏𝑖 (|J𝑖 |−1)

∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖)m𝑖

= 𝑒 (𝜎 ′
2
, 𝑔) · 𝑒 (𝜎 ′

1
, 𝑋−1𝜎

1

𝑎

∏
𝑖∈I
[𝑔𝑏𝑖 (|J𝑖 |−1)

∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]m𝑖).

To this end, it can follow the Schnorr’s protocol [30] by

generating |I | scalars {𝑘𝑖 }𝑖∈I and compute𝐾 =
∏

𝑖∈I 𝑒 (𝜎
′
1
,

𝑔𝑏𝑖 (|J𝑖 |−1)
∏

𝑗 ∈J𝑖 𝑌𝑗,𝑖)
𝑘𝑖
. The latter is taken as input, along

with (𝜎1, 𝜎2, 𝜎) and pkP by a hash function 𝐻 to produce

a challenge 𝑐 which is used to compute 𝑧𝑖 = 𝑘𝑖 + 𝑐 · m𝑖 ,

for all 𝑖 ∈ I. Verification of (𝑐, 𝑧1, . . . , 𝑧𝑛) can then be done

by computing 𝑇 = 𝑒 (𝜎 ′
2
, 𝑔) · 𝑒 (𝜎 ′

1
, 𝑋−1𝜎

1

𝑎
∏

𝑖∈I [𝑔𝑏𝑖 (|J𝑖 |−1)∏
𝑗 ∈J𝑖 𝑌𝑗,𝑖]

m𝑖) along with 𝐾 ′ = 𝑇−𝑐
∏

𝑖∈I 𝑒 (𝜎
′
1
, 𝑔𝑏𝑖 (|J𝑖 |−1)∏

𝑗 ∈J𝑖 𝑌𝑗,𝑖)
𝑧𝑖

and then testing whether it leads to the same

value 𝑐 .

Remark. In alternative models for anonymous credentials, such as

the one from [17], the users generate some key pair (usk, upk) that
is used to bind the user and his credential. Concretely, this means

that the credential cannot be showed without the knowledge of usk.
As we use the model from [4], our users do not generate such a key

pair and we thus do not consider this property. We nevertheless

note that it could readily be added to our construction through a

minor tweak. One of the attributes (let us say m1) would have to

be defined as the user’s secret key usk. This would slightly change

the signing procedure as m1 could no longer be revealed but PS
signature can easily be generated on committed values as shown

in the original paper [25]. Now, since m1 will never be revealed

(that is, {1} ⊂ I), the user will prove knowledge of it during each
authentication, which clearly leads to the requested property. An

adversary able to illicitly use a given credential would have to prove

knowledge of the associated secret key which, in our case, would

imply an attack against the discrete logarithm assumption.

4.3 Security Analysis
The security analysis directly follows from the one of our IHA

system and is stated by the theorem below.

Theorem 4.1. • Our construction is unforgeable in the generic
group model if 𝜋 is a zero-knowledge proof system and 𝜋 ′ is
an extractable proof system.
• Our construction is anonymous if 𝜋 is a sound proof system
and 𝜋 ′ is a zero-knowledge proof system.

4.3.1 Proof of the Anonymity Property. The proof is very similar to

the one of Section 3.3 but we need to consider an extended sequence

of Games.

Game 𝑏, 0. This is exactly the game Exp𝑖ℎ−𝑏A described in Figure 1.

Game𝑏, 1.This is the same game as Game𝑏, 0 except that we abort at

the beginning of Step (5) if one of the elements in pkP is ill-formed.

Game 𝑏, 2. This is the same game as Game 𝑏, 1 except that we

simulate the proof 𝜋 ′ in Step (5).

Game 𝑏, 2. This is Game 𝑏, 2 where 𝑏 is replaced by 𝑏.

Game 𝑏, 1. This is Game 𝑏, 1 where 𝑏 is replaced by 𝑏.

Game 𝑏, 0. This is exactly the game Exp𝑖ℎ−𝑏A described in Figure 1.

Indistinguishability of Games𝑏, 0 (resp𝑏, 0) and𝑏, 1 (resp𝑏, 1) can

be proven exactly as in Section 3.3. It is also straightforward to show

that Games 𝑏, 1 (resp 𝑏, 1) and 𝑏, 2 (resp 𝑏, 2)are indistinguishable if

𝜋 ′ is zero-knowledge.
We therefore only need to adapt the proof of Lemma 3.3 to show

that Game 𝑏, 2 and Game 𝑏, 2 are also unconditionally indistinguish-

able. Note that in this case, we also need to prove that the output of

Show is independent of m𝑖 , for 𝑖 ∈ I, as these concealed messages

may leak information on 𝑏.

Here again, we know that (𝜎 (𝑏)
1
, 𝜎
(𝑏)
2
) = (𝑔𝑟𝑏 , 𝑔𝑟𝑏 (𝑥+

∑
𝑖 𝑦𝑏,𝑖m𝑖))

for some scalar 𝑟𝑏 . If we define 𝑟
′ = 𝑟 · 𝑟𝑏 and 𝑢 = 𝑡 −∑

𝑖∈I 𝑦𝑏,𝑖m𝑖 +∑
𝑖∈I 𝑦𝑏,𝑖m𝑖 , we can write

(1) 𝜎 ′
1
= 𝑔𝑟

′

(2) 𝜎 ′
2
= (𝜎 (𝑏)

2
)𝑟 · (𝜎 ′

1
)−𝑡) = 𝑔𝑟 ′ (𝑥−𝑢+

∑
𝑗∈{0,1}

∑
𝑖∈I 𝑦 𝑗,𝑖m𝑖)

(3) 𝜎 = 𝑔𝑎 ·𝑡
∏𝑛

𝑖=1 [(𝑔𝑏𝑖𝑌𝑏,𝑖)
𝑎]m𝑖 =

(𝑔𝑢)𝑎 ∏𝑖∈I [(𝑔𝑏𝑖
∏

𝑗 ∈{0,1} 𝑌𝑗,𝑖)𝑎]m𝑖

The elements 𝑟 ′ and 𝑢 are distributed as 𝑟 and 𝑡 (which are random)

and in particular are independent of both 𝑏 and {m𝑖 }𝑖∈I . Regarding
𝜎 ′
2
and 𝜎 , we note that they do not depend on {m𝑖 }𝑖∈I and that

they involve𝑦𝑏,𝑖 and𝑦𝑏,𝑖
in the same way for all 𝑖 ∈ I. They thus do

not leak any information on 𝑏. Finally, the last element generated

655

Proceedings on Privacy Enhancing Technologies 2024(3) Sanders et al.

𝑝𝑝 pk𝐼 cred pkP Show

[4] (2 + 𝑛)G1 +2G2 1G2 2G1 + 1G2 (1 + |J |)G1 + 3|J |G2 3G1 + 4G2 + 5Z𝑝
Ours 2G1 +2G2 𝑛G2 2G1

(1 + 𝑛 + 2𝑛 |J |)G2
+(𝑛 + 2)Z𝑝

2G1 + 1G2 + 1Z𝑝

Table 1: Size complexity.

pk𝐼 cred pkP Show Verify

[4] 1e2 4e1 + 1e2 (1 + |J |)e1 + 4|J |e2 (11+|I|)e1+5e2+7p (8 + 𝑛)e1 + 13p

Ours 𝑛e2 3e1 (1 + 2𝑛 + 4𝑛 |J |)e2
(1 + 𝑛 + |I|)e2 +

3e1 + p
(1+𝑛)e2+1e𝑇 +3p

Table 2: Computational complexity.

in the Show protocol is the proof 𝜋 ′ which is simulated since Game

𝑏, 2 and is thus independent of {m𝑖 }𝑖∈I . The distribution of the

output of Show is thus independent of 𝑏, which concludes the proof.

4.3.2 Proof of the Unforgeability Property. The proof relies on the

same arguments as the one of the IHA mechanism but we need to

slightly adapt the latter to take into account the modifications we

introduced for anonymous credentials.

We first note that, when producing its forgery, the adversary

no longer reveals the attributes m𝑖 for 𝑖 ∈ I. However, we can

easily revert to the previous situation by running the extraction

algorithm for 𝜋 ′. Our proof in the generic group model can thus

work exactly as the one in Section 3.3 except that the adversary

has now access to a few additional elements in pkP , namely the

ones in {𝑔𝑏𝑖 (|J𝑖 |−1) }𝑛
𝑖=1

. As they all belong to G2, they could only

be used to construct the element 𝜎∗ of the forgery. However, the
equation (1) of the unforgeability proof of Section 3.3 implies that

all these elements will end up with a factor
1

𝑎 in their exponent

and so can only have null coefficients to satisfy the verification

equation. In other words, these additional elements are useless

to the adversary and so do not change the security analysis but

only affects (marginally) the upper bound on the adversary success

probability which is now 2(5 + 𝑛 + 2(∑𝑛
𝑖=1 |J𝑖 |) + 3𝑞𝑆 + 𝑞𝐺)2/𝑝 .

5 PERFORMANCE
In this section, we compare the performance of our IHAC scheme

with the one of the instantiation proposed in [4] as the other two

main contributions [5, 14] from the state-of-the-art do not allow

like for like comparisons. Indeed, [14] only provides a generic so-

lution to the problem of hiding the issuer of a credential which

consists in an OR-proof that the issuer key is one of those from the

verifier’s list. This single proof is of size linear in |J |, the number

of public keys in the verifier’s list, and so cannot compete with

the sizes of the presentation tokens from [4] and our construction.

The situation of [5] is different as it only considers the problem

of hiding the issuer, not the one of leaking as few information as

possible on the attributesm1, . . . ,m𝑛 . In that sense, it is closer to an

IHAmechanism than to an anonymous credential system. However,

even in this context, we note that the user has to send 960 Bytes in

[5] whereas he can only send 192 Bytes with our construction of

Section 3, when using BLS12-381 curves in both cases.

We recall that we have considered the most general situation

where |J𝑖 | may be different from |J𝑗 | for some 𝑖 ≠ 𝑗 . For a proper

comparison with [4], we will nevertheless assume that |J1 | = . . . =
|J𝑛 | = |J |, which slightly disadvantages our construction.

For both [4] and our construction, the Show complexity does not

include the 𝑛 attributes that are either revealed or hidden in a proof

of knowledge. Note that, in all cases, this leads to 𝑛 elements of Z𝑝
when using the Schnorr’s proof of knowledge.

Table 1 shows that our public keys, and hence our policies, are

larger than those in [4] but that our Show protocol requires to

send less elements. Concretely, when instantiating the bilinear

groups with the BLS12-381 curve, the Show protocol requires to

send 688 Bytes in the case of [4] and 224 Bytes in the case of our

construction, hence a threefold improvement. We believe that this is

an interesting feature of our construction because the Show protocol
is usually the one subject to the most stringent requirements but

we note that [4] offers an interesting tradeoff in the case where

public elements (public keys or policies) would frequently change.

Table 2 evaluate the computational complexity of [4] and our

construction in the worst case, namely the one where all attributes

would be hidden. It only considers costly operations, namely expo-

nentiations (denoted e𝑖) and pairings (denoted p). In the case of our

construction, we note that the element 𝐾 can be computed as

𝐾 = 𝑒 (𝜎 ′
1
,
∏
𝑖∈I

[𝑔𝑏𝑖 (|J𝑖 |−1)
∏
𝑗 ∈J𝑖

𝑌𝑗,𝑖]𝑘𝑖)

so as to minimise the number of pairings. We have rewritten simi-

larly the elements in [4] for a fair comparison. We also recall that

the elements 𝑔𝑏𝑖 (|J𝑖 |−1) are provided in pkP and so do need to be

recomputed. This table illustrates the differences of the approach

in [4] and ours. In our case, the user’s computations in the Show
protocol involve more exponentiations but less pairings than in

[4]. The number of exponentiations is essentially the same during

verification but our protocol require to evaluate less pairings (3)

than in [4] (13).

As those figures involve different operations, we provide for each

of them concrete timings obtained by using the public MCL pairing

library
2
. The values indicated in Table 3 are average timings (in 𝜇𝑠)

obtained for 10000 runs on an Intel Core i7-8565U CPU @ 1.80GHz.

To compare the performance, we also need to set the values of 𝑛 and

|I | (and hence |I |) which, in practice, will depend on the considered
use-cases. For example, a passport usually certifies 𝑛 = 13 attributes.

Let us assume that one needs to reveal 3 attributes (e.g., Surname,

Given name, birthdate). In this case, Show takes about 6𝑚𝑠 for [4]

2
https://github.com/herumi/mcl

656

Compact Issuer-Hiding Authentication, Application to Anonymous Credential Proceedings on Privacy Enhancing Technologies 2024(3)

Operations e1 e2 e𝑇 p
Timings (𝜇𝑠) 63 119 196 589

Table 3: Timings per operation.

and 3.6𝑚𝑠 with our construction. Similarly, Verify takes 9𝑚𝑠 for

[4] and 3.6𝑚𝑠 with our construction. However, we stress that the

performance of [4] are asymptotically better than ours as large 𝑛

will compensate the constant number of pairings of this solution.

For example, if we assume that one must reveal half of her attributes

(|I | = |I | = 𝑛/2), then the computational complexity of the Show
protocol in [4] becomes smaller than ours as soon as 𝑛 > 31. The

threshold is 𝑛 = 109 for Verify. Our solution and the one in [4]

thus provide a tradeoff between size and computational complexity

for this family of parameters.

Swapping groups. We instantiate our construction so as to optimise

the sizes of the credential and of the elements sent by the user

during Show as these are usually the main metrics for anonymous

credentials. Concretely, we generate our credentials in G1 to min-

imise the number of elements in G2. This nevertheless implies that

most computations will be performed in G2, which is not ideal if

one favours computational performance. In the latter case, we recall

that the roles of G1 and G2 are interchangeable and so that one

can straightforwardly derive a variant of our scheme by simply

swapping groups G1 and G2. In that case, almost all computations

will be performed in G1 at the cost of twice larger credentials (192B
instead of 96B) and slightly larger (+48B) Show transcript. Regarding
computational complexity, the threshold where the Show protocol
of [4] would outperform ours is roughly 𝑛 = 70, still assuming that

|I | = 𝑛/2.

6 CONCLUSION
In this paper, we have proposed a new approach to hide all in-

formation about the issuer when presenting a credential, which

was so far an important source of leakage in classical anonymous

credentials systems. Our approach does not require heavy machin-

ery such as complex zero-knowledge proofs but instead simply

extends PS signatures with one additional element. It leads to a

Show transcript that is only slightly larger than the one of classical

systems, proving that the issuer-hiding feature is not necessarily

costly to add. In the process, we have introduced an intermediate

primitive, Issuer-Hiding Authentication, whose purpose is orthog-

onal, but complementary, to the one of anonymous credentials.

We believe it constitutes a worthwhile addition to the arsenal of

privacy-preservingmechanisms as it efficiently addresses a problem

that was, so far, mostly overlooked.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their numerous

comments and suggestions to improve this paper and Octavio Perez

Kempner for very helpful comments on a previous version of this

paper and for the discussions that followed. The authors are grateful

for the support of the ANR through project ANR-18-CE-39-0019-02

MobiS5.

REFERENCES
[1] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. 2003. Foundations of

Group Signatures: Formal Definitions, Simplified Requirements, and a Construc-

tion Based on General Assumptions. In Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings (Lecture Notes in Computer
Science, Vol. 2656), Eli Biham (Ed.). Springer, 614–629. https://doi.org/10.1007/3-

540-39200-9_38

[2] Mihir Bellare, Haixia Shi, and Chong Zhang. 2005. Foundations of Group Signa-

tures: The Case of Dynamic Groups. In Topics in Cryptology - CT-RSA 2005, The
Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, Febru-
ary 14-18, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3376), Alfred
Menezes (Ed.). Springer, 136–153. https://doi.org/10.1007/978-3-540-30574-3_11

[3] Osman Biçer and Alptekin Küpçü. 2019. Versatile ABS: Usage Limited, Revocable,

Threshold Traceable, Authority Hiding, Decentralized Attribute Based Signatures.

IACR Cryptol. ePrint Arch. (2019), 203.
[4] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin.

2021. Issuer-Hiding Attribute-Based Credentials. In Cryptology and Network
Security - 20th International Conference, CANS 2021, Vienna, Austria, December
13-15, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 13099), Mauro

Conti, Marc Stevens, and Stephan Krenn (Eds.). Springer, 158–178. https://doi.

org/10.1007/978-3-030-92548-2_9

[5] Daniel Bosk, Davide Frey, Mathieu Gestin, and Guillaume Piolle. 2022. Hidden

Issuer Anonymous Credential. Proc. Priv. Enhancing Technol. 2022, 4 (2022),

571–607. https://doi.org/10.56553/POPETS-2022-0123

[6] Stefan Brands. 2000. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. https://doi.org/10.7551/mitpress/5931.001.0001

[7] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf

Kohlweiss. 2015. Composable and Modular Anonymous Credentials: Definitions

and Practical Constructions. In Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 9453), Tetsu Iwata and Jung Hee

Cheon (Eds.). Springer, 262–288. https://doi.org/10.1007/978-3-662-48800-3_11

[8] Jan Camenisch and Anna Lysyanskaya. 2002. A Signature Scheme with Efficient

Protocols. In Security in Communication Networks, Third International Conference,
SCN 2002, Amalfi, Italy, September 11-13, 2002. Revised Papers (Lecture Notes
in Computer Science, Vol. 2576), Stelvio Cimato, Clemente Galdi, and Giuseppe

Persiano (Eds.). Springer, 268–289. https://doi.org/10.1007/3-540-36413-7_20

[9] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anony-

mous Credentials from Bilinear Maps. In Advances in Cryptology - CRYPTO 2004,
24th Annual International CryptologyConference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3152),
Matthew K. Franklin (Ed.). Springer, 56–72. https://doi.org/10.1007/978-3-540-

28628-8_4

[10] David Chaum. 1982. Blind Signatures for Untraceable Payments. In Advances in
Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August
23-25, 1982, David Chaum, Ronald L. Rivest, and Alan T. Sherman (Eds.). Plenum

Press, New York, 199–203. https://doi.org/10.1007/978-1-4757-0602-4_18

[11] CNIL. 2022. Online age verification: balancing privacy and the protection of

minors. https://www.cnil.fr/en/online-age-verification-balancing-privacy-and-

protection-minors.

[12] European Comission. 2023. The European Digital Identity Wallet Architec-

ture and Reference Framework. https://digital-strategy.ec.europa.eu/en/library/

european-digital-identity-wallet-architecture-and-reference-framework.

[13] Aisling Connolly, Jérôme Deschamps, Pascal Lafourcade, and Octavio Perez-

Kempner. 2022. Protego: Efficient, Revocable and Auditable Anonymous Creden-

tials with Applications to Hyperledger Fabric. In INDOCRYPT 2022.
[14] Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. 2022. Improved

Constructions of Anonymous Credentials from Structure-Preserving Signatures

on Equivalence Classes. In Public-Key Cryptography - PKC 2022 - 25th IACR Inter-
national Conference on Practice and Theory of Public-Key Cryptography, Virtual
Event, March 8-11, 2022, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 13177), Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe (Eds.). Springer,

409–438. https://doi.org/10.1007/978-3-030-97121-2_15

[15] Kaoutar Elkhiyaoui, Angelo De Caro, and Elli Androulaki. 2021. Multi-Issuer

Anonymous Credentials Without a Root Authority. IACR Cryptol. ePrint Arch.
(2021), 1669.

[16] Sovrin Foundation. 2022. Principles of SSI V3. https://sovrin.org/principles-of-

ssi/.

[17] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-

Preserving Signatures on Equivalence Classes and Constant-Size Anonymous

Credentials. J. Cryptol. 32, 2 (2019), 498–546. https://doi.org/10.1007/S00145-

018-9281-4

[18] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. 2008. Pairings

for cryptographers. Discrete Applied Mathematics 156, 16 (2008), 3113–3121.

https://doi.org/10.1016/j.dam.2007.12.010

657

https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-030-92548-2_9
https://doi.org/10.1007/978-3-030-92548-2_9
https://doi.org/10.56553/POPETS-2022-0123
https://doi.org/10.7551/mitpress/5931.001.0001
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-1-4757-0602-4_18
https://www.cnil.fr/en/online-age-verification-balancing-privacy-and-protection-minors
https://www.cnil.fr/en/online-age-verification-balancing-privacy-and-protection-minors
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://doi.org/10.1007/978-3-030-97121-2_15
https://sovrin.org/principles-of-ssi/
https://sovrin.org/principles-of-ssi/
https://doi.org/10.1007/S00145-018-9281-4
https://doi.org/10.1007/S00145-018-9281-4
https://doi.org/10.1016/j.dam.2007.12.010

Proceedings on Privacy Enhancing Technologies 2024(3) Sanders et al.

[19] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-

mous Credentials. In NDSS 2014.
[20] Open Rights Group. 2023. UK Online Safety Bill will mandate dangerous age veri-

fication for much of the web. https://www.openrightsgroup.org/publications/uk-

online-safety-bill-will-mandate-dangerous-age-verification-for-much-of-the-

web/.

[21] Chloé Hébant and David Pointcheval. 2022. Traceable Constant-Size Multi-

authority Credentials. In SCN 2022 (Lecture Notes in Computer Science).
[22] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. 2011. Attribute-Based

Signatures. In Topics in Cryptology - CT-RSA 2011 - The Cryptographers’ Track at
the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6558), Aggelos Kiayias (Ed.). Springer,
376–392. https://doi.org/10.1007/978-3-642-19074-2_24

[23] Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig.

2023. Aggregate Signatures with Versatile Randomization and Issuer-Hiding

Multi-Authority Anonymous Credentials. In CCS 2023.
[24] Tatsuaki Okamoto and Katsuyuki Takashima. 2013. Decentralized Attribute-

Based Signatures. In Public-Key Cryptography - PKC 2013 - 16th International
Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan,
February 26 - March 1, 2013. Proceedings (Lecture Notes in Computer Science,
Vol. 7778), Kaoru Kurosawa and Goichiro Hanaoka (Eds.). Springer, 125–142.

https://doi.org/10.1007/978-3-642-36362-7_9

[25] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures.

In Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings
(Lecture Notes in Computer Science, Vol. 9610), Kazue Sako (Ed.). Springer, 111–126.
https://doi.org/10.1007/978-3-319-29485-8_7

[26] David Pointcheval and Olivier Sanders. 2018. Reassessing Security of Randomiz-

able Signatures. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track
at the RSA Conference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings
(Lecture Notes in Computer Science, Vol. 10808), Nigel P. Smart (Ed.). Springer,

319–338. https://doi.org/10.1007/978-3-319-76953-0_17

[27] Michael Rosenberg, Jacob D. White, Christina Garman, and Ian Miers. 2023. zk-

creds: Flexible Anonymous Credentials from zkSNARKs and Existing Identity

Infrastructure. In SP 2023.
[28] Olivier Sanders. 2020. Efficient Redactable Signature and Application to Anony-

mous Credentials. In Public-Key Cryptography - PKC 2020 - 23rd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Edinburgh, UK,
May 4-7, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12111),
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas (Eds.).

Springer, 628–656. https://doi.org/10.1007/978-3-030-45388-6_22

[29] Olivier Sanders. 2021. Improving Revocation for Group Signature with Redactable

Signature. In Public-Key Cryptography - PKC 2021 - 24th IACR International
Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May
10-13, 2021, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12710),
Juan A. Garay (Ed.). Springer, 301–330. https://doi.org/10.1007/978-3-030-75245-

3_12

[30] Claus-Peter Schnorr. 1989. Efficient Identification and Signatures for Smart Cards.

In Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings (Lec-
ture Notes in Computer Science, Vol. 435), Gilles Brassard (Ed.). Springer, 239–252.

https://doi.org/10.1007/0-387-34805-0_22

[31] World Wide Web Consortium (W3C). 2023. Verifiable Credentials Data Model

v2.0. https://www.w3.org/TR/vc-data-model-2.0/.

658

https://www.openrightsgroup.org/publications/uk-online-safety-bill-will-mandate-dangerous-age-verification-for-much-of-the-web/
https://www.openrightsgroup.org/publications/uk-online-safety-bill-will-mandate-dangerous-age-verification-for-much-of-the-web/
https://www.openrightsgroup.org/publications/uk-online-safety-bill-will-mandate-dangerous-age-verification-for-much-of-the-web/
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-642-36362-7_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-76953-0_17
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/978-3-030-75245-3_12
https://doi.org/10.1007/978-3-030-75245-3_12
https://doi.org/10.1007/0-387-34805-0_22
https://www.w3.org/TR/vc-data-model-2.0/

	Abstract
	1 Introduction
	1.1 Our Contribution.
	1.2 Organisation

	2 Preliminaries
	3 Issuer-Hiding Authentication
	3.1 Security Model
	3.2 Construction
	3.3 Security Analysis

	4 Issuer-Hiding Anonymous Credentials
	4.1 Security Model
	4.2 Construction
	4.3 Security Analysis

	5 Performance
	6 Conclusion
	Acknowledgments
	References

