A Black-Box Privacy Analysis of Messaging Service Providers’
Chat Message Processing

Robin Kirchner*

Simon Koch

Noah Kamangar

Technische Universitat Braunschweig Technische Universitat Braunschweig Technische Universitat Braunschweig

Braunschweig, Germany

David Klein

Braunschweig, Germany

Braunschweig, Germany

Martin Johns

Technische Universitat Braunschweig Technische Universitit Braunschweig

Braunschweig, Germany

ABSTRACT

Online messaging has rapidly emerged as today’s primary commu-
nication platform, extending from personal, to business and even
to government channels. But can these services be trusted to main-
tain the privacy of your communication? This paper addresses this
question by evaluating 105 different online messaging platforms.
Utilizing “honey” messages and active HTTP(S), WebSocket, and
WebRTC traffic monitoring, along with continuous observation
of honey token access, we determine which messaging services
process user messages beyond mere transmission. We conduct a
large-scale honey token-based study on 69 popular web and 36
mobile messaging applications. Our findings reveal that 34 % of
messaging services show capabilities of server-side message anal-
ysis. Seven of these messengers evidently conduct an extended
analysis of the messages, reusing the results hours to an observed
maximum of a month after the chat concluded. This shows that
one cannot automatically expect the same confidentiality when
chatting via messengers compared to in-person communication.

KEYWORDS

Messenger privacy, privacy assessment, honey tokens.

1 INTRODUCTION

How much trust can we put into the confidentiality of our chat
messages? Chat applications for person-to-person communication
are ubiquitous, dominating the communication space. They are fre-
quently replacing in-person communication. While in-person com-
munication comes with clear confidentiality assumptions, including
the absence of third-party surveillance and analytics. However, it is
questionable whether those assumptions transfer to digital commu-
nication. This question becomes even more pressing when realizing
that the usage of chat applications even extends into governmental
channels. For example, the UK government puts sufficient trust in
the security of their communication over WhatsApp that govern-
mental topics are discussed via instant messaging [71].

*Corresponding author: Robin Kirchner, robin kirchner@tu-braunschweig.de.
This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a -

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(3), 674691

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0099

674

Braunschweig, Germany

Past work on mobile applications indicates that common as-
sumptions about the privacy provided by applications do not match
expectations [44, 61]. Regarding mobile apps, past measurements
have shown that data collection even extends beyond public decla-
rations and might be in breach of data protection regulations such
as the GDPR [42, 43, 62]. Measurements for personal computer and
web-based applications paint a similar picture [1, 75].

Given this mismatch between expectations and reality, the ques-
tion arises if our chats are as private as we expect them to be. Up
until now, this question has been addressed by studying the cryp-
tographic properties of secure messaging [e.g., 4, 5, 8, 15, 72, 98].
While this allows to uncover flaws in the underlying cryptographic
implementation, it is a manual approach and does not scale for
dozens of services. To overcome this scaling issue, we propose a
black-box, honey message-based approach.

By sending honey messages containing hard-to-guess monitored
URLs, we are able to detect whether a messaging provider processes
the content of chats to extract and analyze links. This allows us
to reason about a lower bound on how privacy-invasive common
messengers are. Despite having no insight into their implementa-
tion, any server-side visitation of our links provides clear evidence
for ongoing message analysis. Furthermore, we are able to monitor
our “honeypages” over an extended time period and can thus reason
on whether the results of the message analysis are short-lived or
kept and (re)used later, indicating persistent storage of the analysis
results. We regard only security measures, spam protection, and
link previews as explainable goals for such analysis.

In the same fashion, we also conduct our study on websites
that deploy chats powered by messaging service providers (MSPs)
which are often automated chats with companies. While support
chats do not necessarily carry the same privacy assumptions as
communication between private friends, we aim to answer whether
users can reasonably expect to be talking to company employees,
like they would in a phone support call, or if a third party analyzes
their messages.

This leads to three research questions we answer in this work:
RQ1. Can we define indicators showing us that private messages
are analyzed by messaging services?
RQ2. Can we detect who analyzes the messages and find reasons
for such practices?
RQ3. Can users of mobile applications expect more privacy than
web users?

To answer these research questions, we make the following four
technical contributions:

https://orcid.org/0000-0002-9056-3370
https://orcid.org/0000-0002-7638-4982
https://orcid.org/0000-0001-8468-8516
https://orcid.org/0000-0003-2574-5060
mailto:robin.kirchner@tu-braunschweig.de
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0099

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

We develop the honey messages framework providing and man-

aging monitored honey pages to enable token-based studies.

e In addition, to enable monitoring of web-based messengers, we
present an augmented browser-based testing approach for client-
side analysis of intercepted HTTP(S), Web Socket, and WebRTC
traffic to detect client-side leaks, using string similarity matching
with precomputed token-encodings.

e We conduct a study on 105 commercial messaging services, com-
prised of 36 apps, 28 messaging service provider (MSP) chats,
41 websites with chat functionality, including web messengers,
dating platforms and social networks.

e We found evidence for message analysis for 58 % of the apps,

49 % of the web messengers, and 14 % of the MSP service chats.

Notably, in an extreme case a messenger crawled links causing

nearly 80 server-side requests (SSRs); and another accessed our

page 30 days after the chat.

Our paper is structured as follows: First, we present background
information about message processing and reasons for such prac-
tices in Section 2. Then, we establish our methodology in Section 3,
where we also present our implementation of the honey messages
framework (ref. 3.2) and experiment approach. We detail our study
design, analysis approach and evaluation in Section 4. In Section 5,
we interpret and discuss our results by defining acceptable mes-
senger behavior (ref. 5.1) and giving details about specific conduct,
before presenting our key takeaways (ref. 5.8). We cover related
work in Section 6, and finally conclude our paper in Section 7.

2 BACKGROUND

People having private conversations consider the content to be
private and kept—within expectations—confidential. Meanwhile,
in the digital world, the number of messenger users is steadily
increasing [10]. In this section, we explain how the expectation
of privacy carries over into the digital world (ref. 2.1) and where,
during message transmission, this assumption might be violated
(ref. 2.2), before addressing reasons for the violation (ref. 2.3).

2.1 The Assumption of Confidentiality

To understand if chat messages are analyzed, we selected a set
of two different chat models—Messenger Chats and Service Chats.
We argue that either carries its own assumption of confidentiality,
which is violated if messages are automatically analyzed and their
content processed beyond transmission.

2.1.1 Messenger Chats. A user study of German teenage chat app
users showed that they expect their chat conversations to be pri-
vate between the involved parties [74] and Amnesty International
created a privacy score ranking for chat service providers in 2021,
indicating that Amnesty perceived an educational gap between
the privacy afforded by a service versus the expectations by the
users [37]. Either demonstrating that an assumption of confiden-
tiality exists similar to in-person conversations. Consequently, we
model the user to expect the same privacy when using a chat app
to converse with a friend, acquaintance, or relative as if the conver-
sation would happen in person. This implies that any third-party
access and analysis, especially if this involves the storage of data,
is in violation of this assumption.

675

Proceedings on Privacy Enhancing Technologies 2024(3)

2.1.2 Service Chats. Talking to a store clerk or service represen-
tative does not carry the same privacy assumptions as talking to
a personal friend. However, we assert that for privacy-conscious
users there are still privacy assumptions that carry over to the digi-
tal realm, similar to personal messages. Those exclude a permanent
record of the conversation and later analysis of the conversations.
This assumption is also backed by the GDPR [32] at least for hot-
lines. Companies even acknowledge this, as a common preamble to
being connected to a representative is the question of whether the
call may be monitored for analyzing the quality of the provided ser-
vice. Consequently, we model the privacy-conscious user to expect
the same privacy when using a service chat as if the conversation
would happen in person or via the telephone, implying no analysis
and permanent storage of message elements.

2.2 Analyzing Chat Messages

Transmitting a chat message commonly involves three steps: (1) sender
writes a message and sends it to the server; (2) server receives the
message and forwards it to the receiver; (3) the receiver receives the
message and displays it to the user (ref. Figure 1). Each step carries
its own potential for message analysis. The sender and receiver-
client necessarily have full access to the message contents as they
need to send it to the server (sender) or receive it and display the
content to the user (receiver). Consequently, the application used
could perform further processing besides their core task of sending
and receiving. The server has access to the content of the message
in case of incomplete encryption, i.e., if only the transmission of
the message between sender and server or server and receiver is
encrypted but not the message itself. While E2EE is highly desirable
from a privacy standpoint, it brings its own challenges, which may
be one of the reasons why not every chat service has this feature
enabled by default [e.g., 24, 91] or even at all [e.g., 18, 48]. Con-
sequently, there is potential to perform further processing on the
server, going beyond the core task of relaying the message.

Py Y DA PY
@ - .
Sender Backend Receiver

= =p =

Figure 1: Points of potential message processing in a
transport-encrypted setting,.

2.3 Reasons for Analyzing Messages

Now that we have answered where messages might be accessed, in
order to be able to answer RQ2, we need to consider why such access
might happen. In our context of presumed private communication, a
user can reasonably expect that their messages are confidential but
might concede some confidentially in favor of security and usability.
Overall we have identified two scenarios in which message analysis
arguably takes place for the benefit of the user (Spam, Scam &
Security, Link Preview) as well as two scenarios of analysis which
are not beneficial to the user (Surveillance, Business Incentives).

Proceedings on Privacy Enhancing Technologies 2024(3)

2.3.1 Spam, Scam & Security. Analyzing chat messages could allow
a messaging service to detect malicious patterns such as spam,
scam, or even phishing campaigns. Given the prevalence of such
campaigns on popular messengers such as WhatsApp [68] and their
documented financial impact [25], the drive for such features is
clear. It may also be reasonable to assume that some users would be
willing to trade some privacy in favor of protection against scam.

However, any security check has a strict logical time limit, as the
protective action has to happen before the receiving app displays
the message. At the moment the message is received and read, the
security mechanism is too late as the victim has possibly already
been exploited. Consequently, any message processing has to hap-
pen instantaneously and should be without any permanent records
if the message passes the check.

2.3.2 Link Previews. Link previews are a common convenience
feature in messaging apps. They allow the user to gain an intu-
ition about the content of the website they just received or sent.
OpenGraph [64] and Twitter [93] define a semi-standardized set of
meta-tag elements for this purpose.

However, previews need to occur at the time of sending or re-
ceiving a message to provide the user any benefits. Consequently,
message processing has to happen instantaneously in these situa-
tions and thus does not require a permanent record.

2.3.3 Surveillance. There is also evidence that companies and gov-
ernment organizations are collecting user data with the help of
messaging apps [22, 39, 66, 94]. This eavesdropping on chat com-
munication can be part of criminal investigations—or—espionage.
Past cases have shown that services deliver information about con-
versations when forced to [84], showing both the capability as well
as volition to access chat messages beyond the scope of improving
the security or experience of the user. Such an analysis of chat
messages involves storing messages as well as analysis results and
records can potentially be kept indefinitely.

2.3.4 Business Incentives. While the previous reasons generally
offer an advantage for the user, monetary interests conflicting with
the users’ privacy cannot be ruled out. If the technical possibility
exists, there would clearly be an incentive to gather users’ personal
thoughts and interests, e.g., for targeted advertising or to sell infor-
mation to data brokers. Such an analysis would clearly exceed the
scope a chat user expects.

3 BLACK-BOX PRIVACY ASSESSMENT

We covered that provider-level message analysis is theoretically
possible and discussed potential reasons, the messengers’ behavior
in terms of permanent storage, and privacy implications. In this
section, we first establish a high-level methodology capable of
detecting message analysis before describing our implementation
and experimental approach.

3.1 Methodology

Section 2.2 stated that user messages can be analyzed and processed
in various stages of a message’s transmission cycle. Unfortunately,
most of the situations in which messages can be processed are not
under our control. Specifically, the most privacy invasive side of
such a process, the server side, is out of our grasp. To address this

676

Kirchner et al.

shortcoming, we propose an approach to detect server-side access
to user messages’ content, detailed in this section.

Messengers have various claims about their security measures.
Verifying these claims and cryptographic properties would require
a disproportional effort out-of-scope for this work. We design our
methodology to be oblivious to the messengers’ stated security
protocol, thus independent of promises made by the vendor.

3.1.1 Behavioral Assessment. As static analysis is complex and
possibly non transferable across messengers, we opt for a dynamic
approach. We transmit specifically crafted messages containing
honey tokens that we subsequently monitor. If access to the tokens
inside a message is detected, it implies that at least parts of that
message must have been extracted and undergone processing by the
messaging application or service. This approach allows us to focus
on observable behavior and provides proof for message access.
To complement the token-based approach, we deploy traffic
interception for the mobile apps, as well as the website-based chats
allowing us to further study their behavior based on recorded traffic.

In summary, we aim to transmit chat messages including trace-
able elements. These elements have to be enticing for extraction
and analysis so that we subsequently can observe when they are
further processed. In combination with the network traffic inter-
ception, we provide two-dimensional monitoring: we can observe
access to the honey tokens from the client, backend, and receiver,
as well as observe client-side leaks through the network.

3.2 Honey Messages Framework

We implement the core of our methodology as the Honey Mes-
sages Framework, forming the foundation of our black-box messen-
ger study. The fundamental idea is to send unique URLSs (honey-
pages) and email addresses as honey tokens via the chosen message
providers pointing back to a web server controlled by us. The web
server acts as a honeypot and is the key component of the frame-
work. It is equipped with a REST API to programmatically request
unique honey tokens for each experiment.

3.2.1 Honeypage. We coin the monitored web pages behind the
URLs we send “honeypages”. Each page is served by a web server
recording all access and interaction with it via HTTP and HTTPS.
Figure 2 shows the structure of a honeypage URL. When a honey-
page experiment is created, the framework generates a new unique
URL referencing the experiment in the subdomain. We then trans-
mit this root link, depicted in the first line of the figure, via the
respective messenger. A honeypage links its subresources using the
URL path, as shown in the second line of Figure 2. When the page
is loaded, it tries to execute a script to create a fingerprint of the
requesting browser, using FingerprintJS2 [26]. Thereby, we aim to
detect very similar-appearing backends.

http(s):// blue-pets-test .our-domain.edu
http(s):// blue-pets-test .our-domain.edu

(Random) Experiment ID Resource ID

Figure 2: Honeypage subdomains (w) identify experiments
and paths () identify a resource.

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

3.2.2 Experiment Variations. To find indicators for the message
analysis reasons we discussed in Section 2.3, we use multiple types
of honeypages in each experiment. Each type is based on the regular
honeypage and adds specific characteristics to it, allowing us to
uncover different ways a service handles these pages.

Regular Honeypage. Our starting point is a basic HTML website,
including a title, style sheet, and a favicon in the HTML header. The
page’s body contains several typical resources, such as text blocks,
an image, a PDF file, as well as JavaScript. To detect crawling, this
kind of page includes links to two child pages, of which each also
has two more children. Visiting this page with a modern browser
results in ten HTTP requests before the page is fully loaded, which
forms the baseline of a full load.

Honeypage with Meta Tags. One of the discussed purposes of
message analysis is URL previews. During testing, we observed
that several messengers struggled to create such previews for the
regular honeypage. To aid this process, we supply a second type of
honeypage, which adds common “meta tags” to the page’s head, as
well as the corresponding image resources. We deploy the og:image,
og:title, and og:description meta tags. They are commonly used to
present the core content of a site in a conveniently retrievable way.
The intended audience for these meta tags are not visitors of the
website, but machines like web crawlers that automatically extract
information from it. By only processing the <head> section of the
page, these tags allow the machine to grasp a short summary of the
content without having to actually process all of it [64]. Similarly,
we deploy more specific meta tags like twitter:title, twitter:image,
and twitter:description specifically tailored for Twitter (X) cards [93].

Suspicious Honeypage. To check if messaging services conduct
security checks on URLs, we add a third honeypage variation: pages
hosting benign binaries flagged by antivirus solutions. This was
done to check if a URL containing such content would be treated
differently within the chat, perhaps indicating that the messaging
service is performing content analysis using (3rd-party) security
scanners. Secondly, we want to identify whether the messenger
provides a visual alert, warning the receiver about potential dangers
or even blocking the link if it is detected as potentially harmful.
In detail, the page includes links, binaries, and files that generate
false positives for virus scanners. While they contain no malicious
code, these files are flagged by the AVG virus scanner [6] and up
to 11 of VirusTotal’s [95] tests. We achieved this by compiling C~
programs with either an empty body, printf, or cout statements
using Visual Studio 2019 and 2022. Lastly, we linked the Eicar
homepage [20] and included a copy of the Eicar [20] antivirus
test file, which is harmless but designed to be flagged by antivirus.

Blocklisted URL. Another possible form of security scanning
would be to warn users about phishing attempts. To simulate such a
phishing attack we utilized VirusTotal’s academic API and checked
links from a current Pi-hole [67] phishing blocklist [33] against
VirusTotal’s database. Our selection process prioritized a URL that
was flagged as malicious by at least 25 security vendors and is
included in multiple blocklists. We opted for a page that, despite
being included in the blocklists, now returns HTTP 404.

We selected a—now—unavailable page for the same reason we
did not include any actually malicious files: As we have no insight

677

Proceedings on Privacy Enhancing Technologies 2024(3)

into the postprocessing done on the server of the service provider,
we aim to avoid causing unintended side effects. Thus, we opted to
select a page that does not actually serve harmful content yet is still
block-listed. This choice allows us to safely assess whether a mes-
saging service’s link analysis feature cross-references exchanged
URLs against known lists of malicious websites.

Honey Email Address. Finally, we transmit a unique email ad-
dress via the chat. We use a fresh Gmail address and append the
experiment’s identifier after the plus sign [63], e.g., honey+red-
pets-test@gmail.com. We monitor the address inbox looking for
incoming mail bound to our honey token email addresses.

3.3 Web Chat Instrumentation

To assist in the analysis of the interactions with web-based messen-
gers, we created a browser extension to automate repetitive steps
and instrument the messengers’ execution within the browser. To
bootstrap an individual experiment, our extension connects with
our honey messages framework to register the currently visited chat
application and to retrieve the honey tokens. Then during the execu-
tion of the experiment, the extension records outgoing HTTP(S) and
WebSocket traffic on the browser level using the chrome.debugger
API [13], thus, no further man-in-the-middle (MITM) interception is
required. This removes the requirement to break or circumvent SSL
like in the mobile setup. Similarly, WebRTC traffic is recorded by
the browser extension. To achieve this, the respective constructors
are instrumented using content scripts and code injection. After
each step in the experiment protocol (ref. 3.5), the extension takes
screenshots of the chat for later analysis of the displayed previews.

3.4 Mobile App Instrumentation

For our investigations of mobile messengers, we used the app in-
strumentation framework by Koch et al. [41, 42]. The framework
automatically installs the app and provides it with the required
permissions. In addition, it also offers the option to inject an MITM
proxy [69] into the internet connection and disables SSL certifi-
cate checks via Objection and Frida [31, 77]. We extend the tool by
connecting it to the honey messages framework aiding our experi-
ments. An Appium connection is utilized to paste the messages to
transmit directly into the phone’s clipboard.

3.5 Experiment Protocol

The two-person chats under investigation are carried out by one
researcher using one device for the sender and another for the
receiver, both connected to different networks with distinct IP
addresses. Both accounts are logged in, and the chat is opened
and stays open for both parties. While the receiver observes and
keeps the chat window in focus, the sender account is sending
our messages. MSP experiments require only the sender device
and begin with a notification (ref. Appendix C). This notification
informs and instructs any potential human reader to disregard our
experiments, preventing unnecessarily consuming their time.

For each messaging experiment, we conduct five sub-experiments
(ref. 3.2.2). Thereby, we generate three unique honeypage URLs and
a honey email address sequentially. Finally, we use a fixed block-
listed URL. We begin our experiments with the non-suspicious
tokens and finish with the blocklisted URL, to mitigate potential

Proceedings on Privacy Enhancing Technologies 2024(3)

Researcher

Messenger

Figure 3: @ The framework provides a monitored URL to
paste into the messenger’s web or app chat. @ Afterwards, @
the messenger may request the URL via client-side request,
or @ via SSR through unknown backend processes.

blockage that could arise due to suspicious actions. The experi-
ments proceed with the link to the honeypage containing meta
tags, followed by the link to the page without meta tags. Subse-
quently, we transmit the email address, followed by the link to the
page with suspicious content, and finally, the blocklisted link. The
blocklisted link stays the same for each experiment, as it is only
required to check for visual indicators or potential blockage of the
message. The web (ref. 3.3) and app instrumentations (ref. 3.4) aid
in carrying out the experiments.

Figure 3 depicts the simplified experiment concept that applies
to each sub-experiment involving honey tokens. In step (1), the
researcher uses the respective tool—browser extension or app in-
strumentation—to register the current experiment with the honey
messages framework. They then receive text with a new unique
honey token (URL or email address) to copy and paste. After pasting
the prepared message in the messenger’s input field, the researcher
has to wait for at least five seconds before sending the message
to allow potential client-side previews (2a) to occur. Following the
transmission of each message, the researcher pauses for another
five seconds to wait for potential server-side processes (2b) to finish.
Then, they capture a screenshot, recording the presence or absence
of a link preview and other visual artifacts. Not depicted, the mes-
senger serves the chat message to our controlled receiver client,
where the researcher does not further interact with the message.

Our experiments rely on the core guarantee that the framework
(ref. 3.2) ensures each experiment receives its own set of unique
honey tokens and that the researcher only transmits and views
the message for each experiment once. This is achieved by closing
conversations of concluded experiments and never reopening them.

4 STUDY DESIGN AND EVALUATION

In this section, we detail our experiments and results. We first
discuss our target selection (ref. 4.1), the specifics of our experiment
(ref. 4.2), and our approach to analyzing the experiments (ref. 4.3).
To this end, Table 1 forms the backbone, as it aggregates our findings
across all analyzed messengers. We conclude this section with our
evaluation of the results (ref. 4.3), which are interpreted in Section 5.

4.1 Target Selection

Our target selection comprises a total of 105 messaging services
comprised of three different categories: 36 mobile messaging apps,

678

Kirchner et al.

41 websites with chat functionality, as well as chats via 28 cus-
tomers of 12 broadly used messaging service providers (MSPs). A
full overview of all evaluated services is provided in Tables 3 to 5.
The selection criteria for each category are detailed below.

4.1.1 Web-based Messengers. To gain a sample of messaging ser-
vices, we first reviewed the top 250 websites listed on Tranco [46],
using website categories from Symantec Sitereview [89] to iden-
tify popular messaging-related websites. We supplemented our list
with additional services found in online rankings of messaging and
dating platforms [e.g., 2, 3]. In our selection process, we excluded
services that were not available in our region, services that required
payment, services with extensive verification procedures, and ser-
vices that necessitated the provision of foreign mobile numbers
or addresses for registration. Additionally, we could only test dat-
ing platforms where we were able to match our two profiles in a
reasonable time frame. This resulted in 41 web messenger targets.

Some messengers like WhatsApp tether their web app to the
mobile device. This way, communication is relayed through the
phone. Other services use standalone web apps. In general, multiple
services have both web and mobile clients. We decided to facilitate
our target selection independently of whether one or more types of
clients exist. Instead, we conducted our target selection individually
for each category of messengers we considered.

4.1.2 Mobile Messaging Apps. We visually inspected the Google
App Store for the top 100 apps contained in the categories Com-
munication, Social, and Dating for indicators that a chat feature
is provided. The filtered apps were then retrieved from a data set
downloaded on the 14th of April 2023 using an open source down-
loader [40], resulting in 36 APKs being available for further analysis.

4.1.3 Messaging Service Providers (MSPs). There is a myriad of dif-
ferent services available for developers and maintainers of websites
to build and manage their web applications and businesses. Among
these services, there are messaging service providers (MSPs) that
specialize in offering messaging capabilities as a service. Thus, they
could also be called chat-as-a-service providers. These providers
offer to handle the entire messaging feature that a developer might
want to embed in their page. The range of services supplied by MSPs
can vary, with some focusing on bot-driven chats, customer support,
live chats, or help desks. From a user’s point of view, these services
are often presented in chat boxes comparable to those of other mes-
senger categories. Thus, we evaluate whether their behavior differs.
Following an online ranking [35], we initially identified 7 common
third-party providers for chats as a service. We semi-automatically
extracted customer websites, i.e., websites using and embedding the
service’s chat feature, from the provider’s “customer success story”
pages and verified that a chat window was available on the customer
website. Upon closer investigation of the network traffic, we noticed
that some customers have migrated to other providers. Thus, our
final list encompasses 12 MSPs: Salesforce [73], LivePerson [51],
tawk.to [90], Intercom [36], Solvvy [79], LiveAgent [49], Drift [19],
Zendesk [100], LiveHelpNow [52], re:amaze [70], LiveChat [50], and
optimise-it [65]. Our list of tested websites can be seen in Table 4.

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

4.2 Experiment Description

Our experiments were carried out by three researchers over the
course of one week in May 2023. We conducted follow-up experi-
ments in November 2023. For our experiments, we used Chrome
113 on MacOS, Google Chrome 113 on Windows 10, Firefox 113
on Ubuntu, as well as Chrome 118 on MacOS. We used two rooted
Google Pixel 6A and created two novel Google accounts for either
smartphone using our SIM cards.

4.2.1 Experiment Preparation. To prevent unwanted side effects,
we created three pairs of personas, one for intercepted, and another
for app experiments without traffic interception. The last pair is
used to register accounts for web-based experiments. Each persona
received its own email address and phone number using three pairs
of new prepaid SIM cards. Based on the requirements of the service,
we created a new account for either user.

To establish a one-to-one chat session, there might be additional
preliminary steps which we detail in the following. The most com-
mon requirement is to befriend both accounts. However, some ser-
vices required additional steps to establish a chat session between
our accounts. In the case of dating apps using a swipe-and-match
concept [92], this involved swiping sufficiently long until both ac-
counts were able to match each other. To eliminate the impact
on the service or the other users, we did not interact with other
users at all and strictly kept communication and exchange of honey
links between the two experiment accounts. Other services, like
TikTok, required us to first use their service for a couple of hours
to lift a shadow-ban which prevented chatting and sending friend
requests. Once all preparatory actions were complete, we continued
to actually perform the experiment.

4.2.2 Experiment Realization. For each messenger, the five sub-
experiments (ref. 3.2.2, 3.5) were conducted sequentially, separated
by a waiting period between sending messages.

The honey messages framework (ref. 3.2) continuously monitors
all HTTP requests to our monitoring domain. Before our evaluation,
each experiment underwent at least 30 days of monitoring, and
data collection is still ongoing afterward. For our evaluation, we
manually encoded the visible resources by analyzing the screen-
shots taken during each experiment and noted visible indicators
regarding the suspicious and blocklisted pages.

4.3 Analysis Approach

For this study, we tested 105 messengers, comprised of 36 app,
41 web, and 28 MSP customer targets. Following our experiment
protocol (Section 3.5), we transmit four controlled honeypage URLs,
one block-listed URL, and for the MSP messengers, an additional
introductory message. Consequently, we sent at least 553 messages.
Since the start of our first experiment in June 2023, we receive 805
relevant individual HTTP requests, of which 700 were third-party
SSRs, and 105 client-side requests from our devices.

4.3.1 Analysis of Honey Token Access. To analyze the messengers’
behavior we checked all Web requests received by our honeypot
and cross-referenced them with the honeypage URLs we transmit.
From each request we learn when which resource was requested by
which IP address. Using GeolP [54], allows to additionally attribute
IPs to an Autonomous System Number (ASN) and its corresponding

679

Proceedings on Privacy Enhancing Technologies 2024(3)

location. Since our regular honeypages have links to other hon-
eypages, we can detect whether a service is crawling the URL, by
looking for access to the child-pages. Using the timestamps of our
experiments, we can derive whether a request was received after
the chat was concluded. We choose a threshold of one minute after
a message was sent until we count a request as late. Since each
HTTP request carries the sender’s IP, we can cross-reference them
with our device IPs to learn if a request came from the sender or
receiver client, or if it was an SSR.

Furthermore, as a check if visitors execute scripts, our honey-
pages contain JavaScript. In the process, we utilize Fingerprint]S2
(FPJS2) [26] to recognize identical or very similar visitors. Next, to
find associations between services, we cross-checked IP addresses
that sent requests to our server. We found 15 messengers sharing at
least one IP address with another. Finally, to simplify the process,
we manually checked the email inbox for messages addressed to
our honey token email addresses.

4.3.2 Traffic Interception. In addition to monitoring external re-
quests to our honeypages, we analyzed the outgoing traffic during
our experiments. If any of the transmitted URLs would be sent to
a third party, this would constitute a severe privacy violation. We,
therefore, scanned all outgoing traffic for these URLs, taking evasion
techniques such as CNAME cloaking [17] into account. While we
were able to frequently recognize CNAME redirect chains, namely
for 60 % of the analyzed messengers, we were not able to detect
any requests to obviously nefarious third parties. Most of these
chains ended at various content delivery networks or cloud hosting
providers where we are unable to attribute the destination service.

In this process, we followed best practices and precomputed
common encodings and hashes for the relevant parts of our honey
tokens. In alignment with state-of-the-art research [12, 21, 76, 82,
83], we used string similarity matching to look for the precomputed
values. Similar to Starov and Nikiforakis [83], we found that next
to plain text, tokens in the traffic were most frequently transmitted
URL-encoded, followed by Base64-encoding.

4.4 Evaluation

Table 1 provides a comprehensive overview of our results. It shows
all 45 messengers for which our honey tokens revealed practices
with privacy implications. This constitutes 43 % of the 105 tested
messengers. With 21 of 36 samples (58 %), we found indication for
message analysis by the majority of the apps. Nearly half of the web
messengers—20 of 41—access some of our honey tokens, followed
by 14 % of the MSP customer websites. The tokens of the remaining
15 apps, 21 web and 24 MSP messengers received no access.

We found that a total of 39 tested services (37 %) visibly conduct
link previews. With 56 %, apps have the highest ratio of messengers
that render a preview, followed by 39 % of web-based messengers
and only 7 % of MSPs. We found content blocking regarding URLs
by eight messengers, as well as blocking of email addresses by
two messengers, half app and half web, each. However, we did not
receive any emails at any of the addresses provided.

4.4.1 User-Agents. It can be considered fair practice to mark au-
tomated requests using the User-Agent HTTP header (UA), e.g.,
PreviewBot. To this end, we analyzed the UAs from SSRs related to

Kirchner et al.

Proceedings on Privacy Enhancing Technologies 2024(3)

Aggregated findings of the messenger experiments with access to the honeypages.

Table 1

=]
S
s
m | = Wl & - A
U hEdedaaon e DxEdn |8 N | = g n
m JIATIIID
S S S S S S S S S DS RS SRS RS SRR SR O RIS
7 PPPYM 9g0o00000000000000000 000000000 0000006 00000000000
) e e e (A [[([I (N (O A I B O A
M PPRS 10 0000000000000 000000e000e00e00000CeeeeeOelee 0O
SNSV# |— — — — o — o —~ — —~ —~ & &N = &N ~ — &N & ~|—~ = —~ = = N ~ = = = & ~« = N N ~ ~ N N ~ N|N " O F
SdI# |8 v = ¥ v v o N v A ¥« am v g ~l+ = VN NN N A= ®Mm O NN~ N®n |l g o on
=]
2 £ g - -
g £ £ = o 2 SR
A A A A A
WO O00000e0000e00e00000Ce000e@0000000000000000C|eeee
ISLELEN T I I N JON Jelel I I I Nelr I Nel I Neollolol el I NololeNel Jolel I ool W I I X I I W)
paasoambay# [& N~ N v S = A = m = NS N YN AN NN NS NN NN NN NN 0NN NNNNS[n e S
&
=
m Uﬁammm>#222322200133302222220222222223322222222222200
Y
SYSS# |+ ¢ o J 0w 8 B = = ¥ v G ¢ ~ 0o J a5 0o ol o ¥ Al o NN o ,m;nm AN o oo o %ol S ~
pmer (O O OO0 0O @0 00000000000 0O0OO0OOOOO0OOO0OOO0OOO0OO0O0O00O0O0O0O00O00O0
Hﬁﬁo«mo—.aowm#111619%111222119126111119111222116211122222w7
MD Oﬁﬂmmmufﬁ000302200120200100110110100022200121102020000
SYSS# [N N = B = a D = = n N = 8 T =m0 oo~ Yo Ao NN N0 OO = O m ol T
Mm@ ® ® @ ®0 0000000202200 000 2020000000000 "~~~00
5
Z
=
: , g %
g y g ag ks
Z 2 8 3 £ 2 3
5 3 - 2 LR
o < ~
z n P . 5 . & g -~ < - =2 YEliEl:
Ble 22 5 F28s..2%9:E888 3| .% o 48,6 IR R EENE
o o = 2 = o = X g) (TR I = 1= =2 5 B
ZiEigpy it e E LY Sl S e Y BEEET LT
R EACERESfEES i8S ErE|ARG388 S iSCE¥ESEsEET S8 EE L
19ZUISSIIA] OM ddy 1a8uassoy dSIW

@ (yes), O (no). @ means only the meta-honey page receives a preview. Red and green encode bad and good practice, respectively. A service crawled, if it followed links on the
honeypage. They conduct repeated requests, if the same resource was accessed multiple times by different IPs or by the same IP with a minimum delta of 1 second to account for

potential network-related resending. Late requests arrived > 1 min after the message was sent.

680

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

app and web messenger chats, as we have full control over both
participants in these chats. Since no interaction with honey to-
kens happens from our side and no eavesdropping is expected, all
requests must come from automated tasks. 31 web and app messen-
gers qualify for this analysis as they send SSRs with a User-Agent
header. MeetMe is left out, as it sends SSRs, but without the header.
Note that 12 messengers (39 %) use more than one UA for their
requests, with the upper bound being LinkedIn, which utilizes 7
different UAs, including various Chrome versions (86 to 104). In
this scope, we received 47 unique UAs which consist of 23 marked
as automated and 24 other UAs. We count UAs as automated if
they mentioning a messenger’s name, the term bot, or a tool, e.g.,
python-requests. Of the unique UAs, 40 % mention a messenger, 32 %
have the string bot, and 4 % mention a tool. Note that some contain
both a name and bot, e.g., TwitterBot. Regarding the messengers, the
majority marked all UAs as automated, while 10 messengers have at
least one unmarked UA. Four messengers—SoundCloud, Lark, ICQ,
nebenan.de App—stand out, as none of their UAs indicate that they
come from automated visits. Oddly, another six messengers mark
some, but not all UAs. These include Twitter, Discord, LinkedIn,
Quora, TamTam, and OK app. In Section 5, we further discuss the
interesting cases and complement our analysis in Appendix B.

4.4.2 JavaScript Execution. Our honeypage contains JavaScript
to test if visitors execute scripts, which only happened for four
messengers—Lark, LinkedIn, TamTam, and the OK app. We utilize
Fingerprint]JS2 (FPJS2) [26] to recognize identical or very similar
appearing visitors. Such a similarity appears, as OK app and Tam-
Tam share a common fingerprint, indicating a connection between
them (ref. 5.5). While all visits from Lark carry the same fingerprint,
TamTam’s and LinkedIn’s visits leave multiple different ones. Note-
worthy, LinkedIn carries 15 different fingerprints over 16 requests.

5 DISCUSSION

In this section, we interpret and discuss the messengers’ behavior
from the position of a high-privacy standard. We first argue which
behavior is acceptable for which analytic purpose. Then, we discuss
the behavior of each group of messengers.

5.1 Acceptable Message Analysis

We previously (ref. 2.3) stated which reasons and motivations a
messaging provider can have to analyze a user’s private messages,
namely spam, scam & security (ref. 2.3.1), link previews (ref. 2.3.2),
surveillance (ref. 2.3.3), and business incentives (ref. 2.3.4). While
surveillance and business incentives are unacceptable behavior for
us from a privacy standpoint, we concede that there could be a
case for security and usability. Here, we lay the foundation for our
discussion by defining practices we consider acceptable.

5.1.1 Acceptable Spam, Scam & Security Analysis. Analyzing the
content of a private message is a concerning practice. However,
spam and scam protection are goals for which a privacy-preserving
solution can be found. For instance, bulk sending of messages to un-
known accounts can be distinguished from regular traffic by a min-
imal metadata analysis, possible even if the messages themselves
are encrypted. To this end, the services have no need to review the
message content. Further practices, like URL cross-checking with

681

Proceedings on Privacy Enhancing Technologies 2024(3)

spam and block-lists, are feasible from the client-side. While it is
possible that such lists are incomplete and easier to update on a
server, we do not consider this to be sufficient reason to access user
messages on the server-side, breaking their confidentiality.

Since targeted scams and phishing are harder to detect, as ev-
idenced by spam mails that regularly evade sophisticated spam
filters, we can give no implementation recommendations for these
goals. Finding a client-side and privacy-preserving solution is a re-
search gap left open for future work, and we argue that a sacrifice in
perceived security in favor of privacy may be worth it. We consider
opt-in based chat moderation provided by messengers like What-
sApp or Facebook Messenger an acceptable compromise. There,
users are warned when being contacted by an unknown number
and given the option to report the chat in case of suspected fraud or
spam. The initial measure is possible without access to the clear text
and without permanent record of the chat. For the more in-depth
countermeasure, one of the involved parties has to explicitly opt-in,
as both messengers state they only gain access to recent messages
if one of the participants reports the conversation [23, 96].

5.1.2 Acceptable Link Preview Conduct. Evidently, creating link
previews is a common goal of many messengers, as about two out
of five display a form of link preview (ref. 4.3). The percentage
of services with a preview mechanism is highest for messaging
apps. We tried making it as easy as possible for the messaging
service to conduct privacy-preserving previews—i.e., conducting
only the necessary amount of SSRs—by providing meta tags in our
honeypage variation (ref. 3.2.2). It is evident from our findings that,
indeed, creating a link preview without meta tags seems to be a
challenge for many messengers, as 17 of 39 (44 %) messengers that
generally display previews, only display them for pages that supply
meta tags. However, our results also show that even with such tags,
ten messengers still conduct more requests than necessary.

In our view, requests from the server-side are more privacy-
intrusive than requests from the client-side. This is because, for
SSRs, the URL to be visited has to be extracted from the personal
message, transmitted to a server, and visited from there. It is non-
transparent for the user what else happens on the server-side when
a link is processed, so we discourage SSRs. The repeated requests
days to weeks after the chat highlight that long-term analysis of
the chats is done, proving the issue of server-side analysis abuse. In
contrast, when client-side requests happen, independently of their
purpose, the messaging server does not gain access to the message,
or URLs that were transmitted in the chat. However, receiver-side
previews can introduce additional security risks if the sender can
entice the receiver’s device to visit an arbitrary URL. Additionally,
it can pose a privacy risk, e.g., by leaking the receiver’s IP address
to the URL’s server. The same theoretically applies to sender-side
requests; however, in this case, the user at least knowingly typed or
pasted the URL into the chat box themselves. Thus, only sender-side
requests combine privacy and security advantages.

To answer if and how many SSRs are necessary for a link preview,
we need to differentiate between web and app-based messengers.

Web-based Previews. The Web and modern browsers bring
many security guarantees, strengthening security and privacy for
end-users. Specifically, the Same-origin policy (SOP) [57] by default
isolates web documents from different origins from another. Since

Proceedings on Privacy Enhancing Technologies 2024(3)

our honeypot does not set any access control (CORS) headers [56]
that can relax the SOP, a website from a foreign origin is unable to
programmatically access the content of our honeypages. Thus, a
strictly client-side preview of a page transmitted in the chat of a
browser-based web messenger is not directly possible. Theoretically,
it would be possible for the messenger to embed the website of
the URL in an iframe to display it for the user. Which, however,
would constitute a complete visit to the page. Also, we found no
messenger in our targets that does this.

Instead, if previews are desired, we suggest that a browser-based
messenger perform the preview with a single SSR. Still, the mes-
senger first needs to extract a URL from the chat and transmit it
to the server from where an SSR requests the page’s HTML con-
tent. Parsing this HTML serves two purposes. First, the title and
description can be extracted from the page’s header if available.
Since the preview process is not standardized, alternative strategies
are possible, like extracting the first heading and image from the
page. Second, parsing the HTML reveals if meta tags are present
and if they include a preview image (og:image, twitter:image), or if
a favicon is set. The title, description, and URL of the desired image
can then be transmitted to the client, which can conduct a privacy-
friendly client-side request to fetch the image. As a result, one SSR
collects enough information for the client to render a preview that
is in line with many previews visible in our study.

App-based Previews. Apps do not need to comply with policies
like the SOP, which makes app-based client-side requests possible.
Thus, apps can conduct the necessary requests in order to craft a
preview entirely from the client-side. Consequently, we consider
zero SSRs acceptable from the perspective of an app messenger.

To summarize, our privacy setting only considers one SSR accept-
able to preview a website in a browser-based chat and allows no
SSRs for app-based messengers. Following, we discuss the observed
conduct of the different messenger types in more detail.

5.2 'Web Messengers

Looking at Table 1—as expected (ref. 5.1.2)—nearly all web mes-
sengers with access requested our honeypage from the server-side.
The only exception is WhatsApp, which creates a preview entirely
from the sender-side. However, this is a special case that cannot
be compared to the others, as the WhatsApp web client is tethered
to the mobile device running the app, meaning the requests come
from the phone. Giving the web client the advantages of an app.
Overall, six of the messengers did render a link preview for
at least one honeypage type but requested more resources than
they show, namely ICQ, Lark, LinkedIn, TamTam, Twitter, and VK.
Additional three messengers—MeetMe, Pinterest, and SoundCloud—
visit links in the chat while not showing a visual representation of
the page. A discrepancy our different honeypage types can highlight
is that 8/17 web messengers that generally conduct previews only
render them for pages that have meta tags, as seen in Table 1 (©).
We observed an unexpectedly high number of distinct IP ad-
dresses from the web-based messengers. Steam, VK, and Slack, for
instance, respectively use 20, 16, and 14 distinct IPs in our hon-
eypage experiments. The messengers with a high number of IPs
seemingly process links in the form of a queue, where varying IPs
request different resources. VK requests the honeypage’s root once,

682

Kirchner et al.

and then subsequent requests to the subresources follow from vari-
ous IPs. Slack operates differently, as it requests the honeypage’s
root twice from different countries, as derived from the IP location.
Subsequent requests also use different IPs to request two pictures
four times each. With 70 %, the majority of browser-based mes-
sengers were found to request the same resources multiple times.
The reasons for the messengers’ conduct are unclear. However,
such practices can cause unnecessary load for website operators,
especially regarding comparatively larger resources like images.

Of the 19 messengers conducting SSRs, 10 marked their UAs
as bots. From the remaining messengers, three—SoundCloud, ICQ,
and Lark—stand out, as they showed no bot-indicators in their UAs.
MeetUp is also special, as it never sent a User-Agent header. Notably,
the remaining messengers marked some of their UAs, but also sent
requests with regular-appearing agents. Half of the messengers
used more than one UA for their requests.

We found measures to combat spam for three messengers. The
MeetMe dating website visually censors links in the chat while the
link is still visited once by MeetMe’s servers. Meetup and Pinterest
blocked us from sending our links. Another website, Quora, allowed
links but blocked our email address.

Message analysis with the goal of security checks was only
apparent for one web messenger, namely Twitter. As shown in
Section 4.3, only Twitter blocked the phishing link from being
sent. While related work [85] found that LinkedIn may also show a
Google Safe Browsing [34] warning, the blocklisted page we used
was not blocked. Interestingly, Google Safe Browsing indeed finds
no malicious content on the site, which could explain LinkedIn’s
behavior. However, VirusTotal and PhishTank [14] do flag the page.

5.2.1 LinkedIn. The web messenger that stands out most is LinkedIn
because it is the only one on our list that crawled the honeypage.

Specifically, it visited all links to other honeypages on the landing

page of our regular honeypage. Links on the resulting pages were

not followed, so LinkedIn crawled one level of child pages. Inter-
estingly, the service was one of the four messengers that executed

JavaScript and sent us an FPJS2 fingerprint (ref. 4.4.2). The purpose

of LinkedIn’s visits is not apparent and would require speculation.

What we can observe is a relatively high impact of sending a link

via LinkedIn, as one link caused nearly 80 SSRs distributed over the

linked website and child websites in a time frame of four minutes

after sending the link. Amongst these visits, the service also re-
quested all images on the page, which can cause increased load for

website operators. The crawling practice, the large number of dif-
ferent IP addresses, UAs (ref. 4.4.2), and fingerprints are indicators

for a specialized system in their backend, whose conduct clearly

cannot be explained by link previews alone. Interestingly, among

the browser versions signaled on LinkedIn’s UAs are browsers with

known exploits, e.g., CVE-2020-16015 for Chrome 86 [60]. We could

not find indicators for effective security checks that would warrant

such intense visitation practice, as neither our suspicious honey-
page, which is packed with resources and links flagged by anti-virus

tools, nor the blocklisted link were detected.

5.2.2 Steam. Another messenger that shows unprecedented be-
havior is Steam. The gaming platform shows a pattern of revisits
and repeatedly requested resources, as highlighted in Figure 4. We
received a series of reoccurring visits to our honeypage, each only

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

Requests
VK eex ¢® 15
TamTam @@%x ® 30
Quora ®ex * 45
Pinterest ®ox ‘ ;);)one p——
Meethle g * regulai]l;)loie_vp}‘:xge
Linkedln #0% 4@x ® meta honeypage
Lak &ex % suspicious honeypage
Imgur @ex
1CQ eex
Discord ®eox
Bumble ®eox
Badoo @ex
Twitter @o%
Telegram ®®%
Steam @@ % e é0 oox
SoundCloud ®ex
ZGD Snapchat ®ex
g Slack ®ex o
% Skype ®eox
= Bigo App tox
OK App eex £X)
Telegram App @ex
Robik Anti Filter App @ex
Robik Zed Filter App ®ex
Talaei App @®ex
LINE App ®ex
nebenan.de App @ex
VK App @ex
MoboNitro App eex
Snapchat App @ex
Skype App ®ex
Wink App eex
x-cart.com (Intercom) oo x ® *
waterpik.com (LiveHelpNow) L L) *
deputy.com (Drift) <®ex Pox
absorblms.com (Drift) ®ex eex
<60s 1h 12h 1d 7d 14d > 14d

Time between message and SSR

Figure 4: Time-bucket visualization of the amount of SSRs
received with delay after sending a honey message, separated
by the type of honeypage.

requesting the landing page and no further resources apart from
the HTML. After the initial visits, directly when sending the mes-
sage, the sequence commenced four days later, with one to seven
days between the visits. The final visit to our regular honeypage
was 30 days after sending our message. Interestingly, visits to our
meta and suspicious honeypage stopped after about half that time.
While the reasons are unclear, the requests necessitate that our
URLs are stored long-term to be regularly processed. After our
Steam chat, the respective honeypages—and no others—received
visits from Canadian IPs with an unusual UA. It explained that a
company, Expanse, regularly visits IPv4 addresses to identify “cus-
tomers’ presences on the Internet”. While the exact meaning of that
is unclear, it seems like Steam shares URLs in chats with a third
party that ends up scanning the respective links. Additionally, after
the Steam chats, we found indication that IPs previously seen in

683

Proceedings on Privacy Enhancing Technologies 2024(3)

Steam experiments and other requests carrying the Expanse UA,
probe honeypot subdomains unrelated to any experiments. Namely
two subdomains are probed, ns, which indicates a DNS probe and
api, with unknown purpose.

5.3 Apps

Apps are less restricted in terms of the SOP, compared to websites.
With regard to RQ3, our results show more variation in behavior
among the apps compared to the web messengers amongst each
other. Apps conducted requests from all possible positions in the
timeline of Figure 1—sender-client, server, and receiver-client. We
can group the apps based on their request origin:

e Only 4 messengers are in line with our recommendations from
Section 5.1.2, Botim, Signal, WhatsApp, and WhatsApp Business,
since they create previews only with sender-side requests.

o Twelve apps, Bigo, LINE, MoboNitro, OK, Robik Anti Filter, Ro-

bik Zed Filter, Skype, Snapchat, Talaei, Telegram, VK, and nebe-

nan.de conduct solely SSRs to URLs in the chat. Thereby, these
messengers fall short compared to privacy-preserving client-side
previews.

There is also a mix that can be observed: REALITY, Viber, and

“Messages, SMS, Text Messaging” (sms.messages) show similar

practices. All three seem to create a link preview from the sender

and the receiver-side. We discouraged receiver-side requests in

Section 5.1.2.

e One service—Wink—also follows the sender-and-receiver ap-
proach, but additionally causes seemingly unnecessary requests
from a server, with no clear signs about the intention (ref. 5.5).

An apparent difference between web-based and app messengers
is that apps show fewer repeated requests. However, with 48 %,
still, nearly half of the apps follow this practice, but apps give
more indicators for the underlying reasons. If sender and client-
side previews are done, as is the case for REALITY, Viber, Wink,
imoHD, and sms.messages, both clients need to access the resource,
which explains repetitions. However, LINE, OK, Snapchat, VK, and
nebenan.de solely conduct SSR, which makes repetitions similarly
hard to explain compared to web messengers. Overall, we recorded
fewer distinct IP addresses for the app-based messengers, which is
biased due to the client-side requests only apps do. Regarding the
SSR-only messengers, web-based messengers used on average six
backend IPs, and app messengers an average of five IPs, indicating
similar server-side mechanisms.

Meetup, just like its web version, blocked us from sending links.
Similarly, Likee Lite and nebenan.de disallowed URLs in the chat.
Interestingly, while preventing us from sending the message, nebe-
nan.de shows a preview of the link as long as it stays in the input
field of the chat. Walkietalkie, in turn, blocked our email token.

We could not find evidence that providers conduct server-side
security checks, i.e., the suspicious page was never blocked.

Only two apps visited our honeypage a considerable time after
the chat was closed, Bigo and OK. The former stands out, as it con-
ducts its first and only request eight hours after the chat concluded.
Remarkably, they only issue one SSR from a Singapore IP to the
root of the honey page. The latter, in turn, visited our page even
later. With 11 h after the chat, it issued the latest request from all
apps. Additionally, it conducted the most SSR compared to the other

Proceedings on Privacy Enhancing Technologies 2024(3)

apps and thereby loaded all ten resources of the honeypage. Similar
to the web messengers, most apps used bot indicators in their SSRs’
User-Agent headers. Only nebenan.de and OK did not make that
fact obvious. In contrast to web, most apps (77 %) utilize one UA.

O 17

1P 56
=P 37
=P 55

[65

1P 31
[Jip 20

[Jip 48

OIP 35
oIP 38
— OIP 58
=P 44
i =
= —1P 59
M —1P-70
=P 19
VK —IP 23 =
—1pP 2%
1P 30
—p-147511) VKONTAKTE-SPB-AS, RE[_]
=1P 04
—1p42
—1iP19
—1P-69
=P 11
=P 18
=1P53
—1P-0T
—1P61
=P 39
=1P 06
=P 66
=P 40

1P 02

1P 46

=1P-09
=1P-10,
=HP-11
=1P-12
=1P-21
=1P-27
=1P-32
=]P-34
=1P-43.
=1P-47.
=1P-50
=1P-52
=1P-57
=1P-60
=1P-61
=1P-62
=1P-63
=1P-67
=1P-68
=P 15
=Pt
= pPe2g
= P29

10Q

47764/ VK-AS, RU

D TamTam
[JOK App

CTalaei App -
—Telegram

=MoboNitro App
=Robik Anti Eilter App
="TFelegrain App.
[CJBumble

[IBadoo

G204/ TELEGRAM, VG [

12678/BADOO-U, OY| |

deputy.com (Drift) 14618 /AMAZON-AES, US

Dabsorblms.com (Drift)

EWink.App
=mgur

6167/CELLEO-PART, US

8151 /UNINET; MX =
=1P-51 7018/ ATTANTERNET4; US =
=IP

I 0135/ VODAFONE UK_ASN; @B=
—IP-51
—=1P07
—1P 26
—1P-03

Orp22
=IP-08

Figure 5: Connections of messengers, (pseudonymized) IPs
and ASNs. Includes only messengers with SSRs from IP ad-
dresses shared with another messenger.

5.4 MSP Chats

In our mental model, described in Section 2.1, privacy-conscious
users can reasonably expect to be communicating with the company
whose website they are visiting. For example, it is expected to
be talking to, e.g., a furniture store’s employees when using the

684

Kirchner et al.

company’s chat function. Our findings show that this is partially
the case, but we can also find indicators for access from the MSP.

Clearly, our honey pages were frequently accessed, resulting
from chats with companies using MSP services. Drift customers
were the only ones in our list that displayed previews, specifically
only when meta tags were present. Notably, all four companies that
visited our page conducted more requests than necessary. While it
was obvious in some instances that we talked only with bots, this is
not certain in some cases. Nevertheless, it is possible that a human
chat partner visited the links even though they were asked not to
click them. However, the high amount of distinct IP addresses and
the requesting of only selected resources by Drift and Intercom
customers indicates automatic processes.

What stands out is the two companies that use Drift as their
MSP share five AWS IP addresses, which indicates the access is
associated with the Drift MSP, which is not expected in our user’s
mental model. The remaining requests from non-shared IPs are
more likely to come from the companies themselves—the expected
behavior. Thus, likely, both the company and the MSP have access
to messages exchanged in the chat on the company’s website.

5.5

We already discussed that the two Drift customers share IP ad-
dresses, which likely belong to the common MSP. Upon further
investigating the IP addresses that request our honeypages in the
chats, additional apparent connections between messengers present
themselves. We display the messengers with at least one shared
IP address in Figure 5 and show the connection to the respective
ASNs. A shared ASN is not uncommon for cloud hosting providers.
However, two services using the same IP address is a strong in-
dicator of technical proximity. It shows that at least parts of the
user message, i.e., the URLs, are transmitted to a common network,
indicating the possibility of data sharing between the services.

We found multiple groups of services that are connected by com-
mon IPs and ASNs. Directly obvious are the apparent affiliation
of the Russian messengers VK, ICQ, TamTam, and the OK app, all
sharing the VK ASN. This view is strengthened by the browser
fingerprint shared between OK and TamTam (ref. 4.4.2). The affilia-
tion of the VK app and its browser-based pendant is no surprise,
as are their similarities in our results. Both their versions display a
nearly identical amount of requests and a similar number of utilized
distinct IPs, making a shared backend likely.

Another apparent connection concerns Telegram and Talaei,
MoboNitro, Robik Anti Filter, which visually appear to be Telegram
clones. This is strengthened as they share IPs, a common ASN
associated with Telegram, and appear identical in our evaluation.

Badoo and Bumble’s server-side practices also appear similar
(ref. Table 1), which is a connection users may not be aware of.
Their requests share IPs from the Badoo ASN in Cyprus.

Interestingly, Imgur and Wink app use a common IP to access
our honeypage. Notably, these requests mention getstream.io in the
User-Agent header. This is interesting, as apparently Stream.I0O—a
third-party in-app chat messaging provider [88]—visits links in
both chats. Since Wink already conducts sender- and receiver-side
requests, the SSR by Stream.IO is not necessary for their link pre-
view. Moreover, while the exact connection of these companies is

Messenger Affiliation

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

unapparent to us, Stream.JO lists both others in its featured clients
list and claims to have build-in Imgur support. Some additional
services do also share common UA strings. However, our analysis
did not unveil further information beyond the more robust IP/ASN
analysis, thus Appendix B features our full analysis.

Upon investigating the IP addresses, we cross-referenced all IPs
with the firehol_level1 [27] blocklist as of November 2023 to identify
possible known malicious IPs. Fortunately, no matches were found.

5.6 Ethical Considerations

We made sure that our study had a very low operational impact on
the services we analyzed. First, we conducted the one-on-one mes-
saging experiments in a controlled environment, meaning that we
sent our messages between two fresh accounts we controlled, which
makes all submissions ethically non-challenging. Second, we evalu-
ated customers of MSP providers, which were mostly comprised of
bot-driven chats but could involve live chats. To spare potential peo-
ples’ time, we started each conversation with a short introduction,
explaining the academic project, instructing the reader to ignore
our links, and giving the option to opt-out. When the chat was not
aborted by the other side, we continued with the experiment. While
we were mostly ignored and did not receive any opt-out replies,
two chats were closed prematurely by the other side.

In order to avoid drawing unnecessary attention from users
towards our profiles, we did not engage with other accounts during
the dating platform experiments. We only used their services to
match both our accounts in order to be able to test the chat feature.

5.7 Limitations and Outlook

This section covers limitations and future directions of our black-
box approach regarding visitor attribution, chat automation, other
honey token types, and the potential for false positives.

5.7.1 Visitor Attribution. Since our approach leaks unique URLs
to services, we control who first learns about these URLs and con-
sequently who appears to leak them once we receive visits to it. As
we have no insight into processes happening on the server-side, a
black-box approach is inherently limited in providing detailed infor-
mation for honeypage visitor attribution, i.e., if it is a third-party or
the messenger itself. Our most robust approach is IP/ASN-based at-
tribution. While requests from cloud-networks are not attributable
to individual parties without further insight, IP addresses shared
by multiple messengers are an indicator for technical proximity
of services. User-Agent headers complement our IP-analysis, as
they sometimes carry information provided by the visiting service.
However, since UA strings can be freely set, e.g., spoof a known
UA [59], they are less reliable than IP addresses. While using UAs
to detect software versions is broadly discouraged [58], they still
commonly include the names of other services in order to be treated
similarly. For example, Signal uses “WhatsApp/2” as their UA [78].

5.7.2 Chat Automation. Our research covers a wide range of dif-
ferent messengers—browser-based and apps. We have explored au-
tomation via APIs, app-automation tools like Appium, and browser-
automation tools like Playwright and Puppeteer. However, we
quickly noticed that this approach was infeasible due to frequent

685

Proceedings on Privacy Enhancing Technologies 2024(3)

changes in the applications, like changing API endpoints and ele-
ment IDs, as well as bot protection mechanisms, like CAPTCHAs
and bot bans. Thus, the manual approach currently scales best.

5.7.3 Non-text Honey Tokens. The messengers in scope of this
study do not have uniform support for alternative types of messages
like file attachments or images. Consequently, we opted for text-
messages for our honey probes. However, non-text messages may
be an interesting angle for future research in this domain.

5.7.4 False Positives. Any Internet-facing server, including ours,
can be subject to web scans. While we regularly received probing
attempts to well-known paths, e.g., /robots.txt, or to common sub-
domains, like owa, secure, ssl, or webmail, these requests are easy
to exclude from our findings. Since we utilize a previously unused
and hard-to-guess subdomain for each experiment, to produce a
false positive, an actor would have to correctly guess a subdomain
associated with an experiment and visits it at the right time in
an unobtrusive way. This is unlikely in multiple ways. For once,
there is no feedback from our system that the visited subdomain
belongs to an experiment, as we serve monitored honeypages on
all subdomains and the association of visits to experiments is done
afterwards. Second, large amounts of probing attempts would stand
out, and third, we would catch previous visits to later used sub-
domains. As a sanity check, we assured that no requests to any
experiment subdomains were received before the respective experi-
ment subdomain was allocated by us.

5.8 Key Takeaways

The main takeaway of our analysis is that there are no privacy
guarantees in online messaging and service providers do conduct
server-side message analysis. Some providers evidently store and
revisit transmitted URLs hours to weeks after initial transmission,
showing a clear violation of the user’s expected privacy. For the
majority of messengers, we found indicators that transmitted mes-
sages are at least partially processed on the server side. Concerning
our research questions, we can summarize our findings as follows:

RQ1: It is possible to establish a lower bound for message analy-
sis by service providers using honey pages and transmitting corre-
sponding unique URLs via chat messages.

RQ2: Partial inference about ongoing analysis and the corre-
sponding actors can be made based on observed network traffic.
Especially if late visits cannot be explained by usability or security
considerations. However, reasons for immediate message analysis
are not always obvious and might be overshadowed by previews.

RQ3: Apps, compared to web messengers, do show a more
promising behavior from a privacy perspective. However, there
are still app-based messengers conducting SSRs to links in the chat,
which is not required and gives room for improvement.

6 RELATED WORK

Most research related to messaging services focuses on the analy-
sis of the underlying protocols. Especially the implementation of
messaging encryption is a particularly active research topic [e.g.,
4,5, 8,15, 72, 98]. While broken cryptography does harm privacy,
such research is orthogonal to our work. Black-box approaches, like
ours, can even give signals of problematic cryptographic primitives

Proceedings on Privacy Enhancing Technologies 2024(3)

or the existence of out-of-band channels. Thus, black-box testing
can guide future protocol analysis research.

Recent previous work concerning privacy-violating data exfiltra-
tion of mobile applications focused on analyzing traffic on startup
of the application or after very limited interactions. Honey tokens
were seeded across the smartphone prior to the conducted studies
and looked for in the intercepted traffic. Such studies were done
for Android [61] as well as iOS [43] or both [44]. More interactive
studies were done by Nguyen et al. [62] for Android as well as by
Koch et al. [42] for i0S and Android, during which privacy consent
dialogues were extracted, analyzed, and interacted with to assess
their impact. However, none of those studies involved intricate app
interaction or the explicit transmission of honey data. Neither did
they reason about the further usage of observed transmitted data
beyond classifying whether the receiver domain is a known tracker.

As stated in Section 2.3, one reason for automatically interacting
with URLs inside chat messages is to provide link previews. In 2019,
Stivala and Pellegrino [85] studied the implementation of such
previews and researched ways for an attacker to hide malicious
content behind benign-looking previews. While parts of our study
also concern previews, we only detect their usage to analyze what
the message provider does on top, a question unanswered in the
literature so far. The concept of honeypots dates back to 1989 when
it was first described in literature [86] and was subsequently broadly
used in deception systems for intrusion detection. In recent years,
honeypots have proven to be a valuable tool for attack detection
and cyber forensics [e.g., 28-30, 47, 81]. The concept has been
extended to honeynets—networks consisting of multiple honeypot
systems designed to be compromised by hackers—that are, apart
from deception and intrusion detection, also beneficial for studying
the attackers’ tools and practices [80]. In Stoll’s book, bait files were
additionally deployed to draw the attackers’ interest, keeping them
occupied while they were unknowingly being traced. Most likely
inspired by that, security researcher de Barros [16] coined the term
“honey token” in 2003 for fictional data that is monitored similarly
to honeypots. Such data-based mechanisms generalize the idea of
honeypots and offer a more flexible way of trapping attackers into
revealing themselves. Yuill et al. [99] deployed enticing bait files on
a file server armed with alarms that are triggered when the files are
accessed. While we do not configure alarms for resources, bait files
roughly translate to the multitude of files, links, and subdomains
we serve with the honey messages framework.

Since then, the concept of honey tokens has been applied to trace
the source of phishing attempts by submitting links to supervised
resources to phishing forms to detect access by the phisher [55].
A similar concept was later used to equip Google spreadsheets
with false bank account details and fund transfer links to identify
accessors in case the sheets were leaked [45].

Other approaches use tokens like bogus credentials in database
systems [11, 38, 87], which either requires hackers to exfiltrate and
manually use the honey tokens in order for access to be detected or
requires setting alarms on database-level whenever the data items
are queried which is again susceptible to false positives. honey
tokens have also been used in form of images [53, 55], email ad-
dresses [97] and documents [9, 99]. All of these are not adapted
to targeted attacks but rather, more generally, offer a second line
of defense to detect an attacker during system exploration. In our

686

Kirchner et al.

work, we focus on text-based communication, which is why email
tokens are also included as honeydata. We exclude sending creden-
tials with our service because that would require more targeted
and sophisticated attacks, which we rule out of scope.

Furthermore, it is a common concept to deploy hard-to-reproduce
watermarks on physical currency and government documents to
obstruct counterfeiting attempts because replicas with missing wa-
termarks can then be identified as fake. This concept also finds
adaptation for the world of inherently easily reproducible digital
items, but instead of discouraging plagiarism by making the pro-
cess of replication more complicated, the digital watermarks may
be hidden and can later be used to recognize unlicensed copies.
Popular examples are trap streets and phantom settlements, which
are non-existent or misrepresented streets and cities, respectively,
that mapmakers include in their maps for the purpose of revealing
copyright infringements [e.g., 101]. Bercovitch et al. [7] apply this
idea by generating convincingly genuine-appearing data items from
tabular data used in production. The data is generated specifically
for each employee to “post-mortem” trace who leaked the data to
the public. Transferred to our work, such specifically generated
data translates to the generated URLs we created for each experi-
ment. Same as in the related approach, access to our URLs can be
attributed to the messenger the URL was submitted with.

To summarize, in contrast to previous work, we do not build a
deceptive system diverting attention from a production environ-
ment, nor do we address intrusion detection in terms of hacking
attempts. Instead, we combine the flexibility of honey tokens with
the detection capabilities of honeypots and actively expose specific
messaging providers to monitored tokens as opposed to positioning
the honeypot as a deception and waiting for access attempts.

7 CONCLUSION

In this paper, we presented the honey messages framework, a
tool capable of facilitating honey token-based experiments in both
browser and app-based online communication platforms.

Utilizing our framework, we conducted an extensive evaluation
of 105 platforms across both web-based and app-based environ-
ments. This examination focused on the behavior of these services
regarding transmitted URLs and email addresses in chat conversa-
tions. 34 % of the examined messaging services conduct server-side
access of URLs within private conversations, thus demonstrating
the capability and intent of server-side message analysis. Amongst
them, seven messengers showed concerning practices that signifi-
cantly encroach on user privacy expectations. Most alarmingly, we
observed requests to URLs mentioned in the chat, days after the
conversation was concluded. One messaging service even crawled
website links in the chat, and another conducted recurrent visits,
even a month after the conversation ended.

To our knowledge, our study represents the largest black-box
messenger privacy study to date. Our findings underscore the di-
verse and sometimes invasive behavior of messaging services with
respect to privacy, emphasizing the importance of ongoing research
and user awareness in this area. While beyond our scope, in order
to steer the community towards increased privacy awareness, we
recommend choosing open-source E2EE-only messengers, some of
which were included and positively stood out in our study.

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

AVAILABILITY

We published our Honeymessages framework, alongside a Python
API connector to interact with the framework’s REST API, and our
app analysis plugin on GitHub https://github.com/honeymessages.

ACKNOWLEDGMENTS

We are thankful for the valuable feedback and suggestions of our
anonymous shepherd and reviewers. We gratefully acknowledge
funding by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy — EXC
2092 CASA - 390781972 as well as from the European Union’s
Horizon 2020 research and innovation programme under project
TESTABLE, grant agreement No 101019206.

REFERENCES

(1]

[2

[

[10

(1]

[20

[21

Gunes Acar, Steven Englehardt, and Arvind Narayanan. 2020. No boundaries:
data exfiltration by third parties embedded on web pages. In Proc. of Privacy
Enhancing Technologies Symposium (PETS), Vol. 2020.4. De Gruyter.

Aeclieve Digital Marketing. 2023. Website Rankings For The Best Free Online
Chatting Sites. Online https://aelieve.com/rankings/websites/category/online-
communities/best-free-online-chatting-sites/. (2022-05-19).

Aeclieve Digital Marketing. 2023. Website Rankings For The Best Online
Dating Sites. Online https://aelieve.com/rankings/websites/category/online-
communities/best-online-dating-sites/. (2022-05-19).

Martin R. Albrecht, Lenka Marekova, Kenneth G. Paterson, and Igors Stepanovs.
2022. Four Attacks and a Proof for Telegram. In Proc. of IEEE Symposium on
Security and Privacy.

Joél Alwen, Sandro Coretti, and Yevgeniy Dodis. 2019. The Double Ratchet:
Security Notions, Proofs, and Modularization for the Signal Protocol.. In Proc.
of Conference on the Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT).

Avast Software s.r.0. 2023. AVG. Online https://avg.com. (2023-05-25).

Maya Bercovitch, Meir Renford, Lior Hasson, Asaf Shabtai, Lior Rokach, and
Yuval Elovici. 2011. HoneyGen: An Automated Honeytokens Generator. In Proc.
of IEEE International Conference on Intelligence and Security Informatics.
Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and
Srinivasan Raghuraman. 2022. A More Complete Analysis of the Signal Double
Ratchet Algorithm. In Proc. of Advances in Cryptology (CRYPTO).

Brian M Bowen, Shlomo Hershkop, Angelos D Keromytis, and Salvatore J
Stolfo. 2009. Baiting inside Attackers Using Decoy Documents. In Proc. of
International Conference on Security and Privacy in Communication Networks
(SECURECOMM,).

Laura Ceci. 2023. Number of mobile phone messaging app users worldwide from
2019 to 2025. https://www.statista.com/statistics/483255/number- of-mobile-
messaging-users-worldwide/. (2023-11-20).

A Cenys, Darius Rainys, L Radvilavicius, and Nikolaj Goranin. 2005. Imple-
mentation of Honeytoken Module in Dbms Oracle 9ir2 Enterprise Edition for
Internal Malicious Activity Detection. IEEE Computer Society’s TC on Security
and Privacy (2005).

Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering Informa-
tion Leakage from Browser Extensions. In Proc. of ACM Conference on Computer
and Communications Security (CCS).

Chrome Developers. 2023. API reference: chrome.debugger. Online https:
//developer.chrome.com/docs/extensions/reference/debugger/. (2022-05-19).
Cisco Talos. 2023. PhishTank. Online https://phishtank.org. (2023-11-22).
Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-
glas Stebila. 2017. A Formal Security Analysis of the Signal Messaging Protocol.
In Proc. of IEEE Symposium on Security and Privacy.

Augusto Paes de Barros. 2007. DLP and Honeytokens. (2020-05-22).

Yana Dimova, Gunes Acar, Lukasz Olejnik, Wouter Joosen, and Tom van
Goethem. 2021. The CNAME of the Game: Large-scale Analysis of DNS-based
Tracking Evasion. Proc. of Privacy Enhancing Technologies Symposium (PETS)
(2021).

Discord. 2023. Official Website. Online https://discord.com/. (2023-11-29).
Drift. 2023. Drift | Everything Starts With a Conversation. Online https://www.
drift.com/. (2023-10-26).

Eicar. 2022. Anti Malware Testfile. Online https://www.eicar.org/download-
anti-malware- testfile/. (2024-03-07).

Steven Englehardt, Jeffrey Han, and Arvind Narayanan. 2018. I never signed up
for this! Privacy implications of email tracking. In Proc. of Privacy Enhancing
Technologies Symposium (PETS).

687

[22]

[23

[24

[25

[26

[27
[28

[29]

[30]

[31

[32

[33

[34

[35]

[36

[37

[38

[39

[40]
[41]

[42]

[43]

[44

[45

[46

[47

Proceedings on Privacy Enhancing Technologies 2024(3)

Europol. 2023. Dismantling Encrypted Criminal EncroChat Communications
Leads to over 6.500 Arrests and Close to EUR 900 Million Seized. Online
https://www.europol.europa.eu/media- press/newsroom/news/dismantling-
encrypted-criminal-encrochat-communications-leads- to-over-6-500-arrests-
and-close-to-eur-900-million-seized. (2023-11-11).

Facebook Help Center. 2023. Report a conversation in Messenger. Online
https://www.facebook.com/help/messenger-app/833709093422928. (2023-11-
21).

Facebook Help Center. 2023. What end-to-end encryption on Messenger means
and how it works. Online https://www.facebook.com/help/messenger-app/
786613221989782. (2023-11-28).

Financial Ombudsman Service. 2023. Bank said victim of text mes-
sage scam was grossly negligent and won’t refund lost money. On-
line https://www.financial-ombudsman.org.uk/decisions- case-studies/case-
studies/bank-said-victim-text-message-scam-grossly-negligent. (2023-11-19).
Fingerprint]S. 2023. Browser fingerprinting library. Online https://github.com/
fingerprintjs/fingerprintjs. (2023-11-29).

FireHOL. 2023. FireHOL IP Lists. Online https://iplists.firehol.org/. (2023-11-28).
Daniel Fraunholz, Daniel Krohmer, Simon Duque Anton, and Hans Dieter Schot-
ten. 2017. Investigation of Cyber Crime Conducted by Abusing Weak or Default
Passwords with a Medium Interaction Honeypot. In Proc. of International Con-
ference on Cyber Security and Protection of Digital Services (Cyber Security).
Daniel Fraunholz, Marc Zimmermann, Simon Duque Anton, Jorg Schneider, and
Hans Dieter Schotten. 2017. Distributed and Highly-Scalable WAN Network
Attack Sensing and Sophisticated Analysing Framework Based on Honeypot
Technology. In Proc. of International Conference on Cloud Computing, Data Science
& Engineering-Confluence (Confluence).

Daniel Fraunholz, Marc Zimmermann, Alexander Hafner, and Hans D Schotten.
2017. Data Mining in Long-Term Honeypot Data. In Proc. of IEEE International
Conference on Data Mining Workshops (ICDMW).

Frida.re. 2023. Frida - A World Class Instrumentation Toolkit. Online https:
//frida.re/.

GDPRhub. 2023. BVWG - W274 2251055-1/5E. Online https://gdprhub.eu/index.
php?title=BVwG_-_W274_2251055-1/5E. (2024-03-07).

GitHub. 2023. GitHub: pihole-blocklists. Online https://github.com/topics/
pihole-blocklists. (2023-05-22).

Google. 2023. Safe Browsing. Online https://safebrowsing.google.com/. (2023-
11-22).

Harry Guiness. 2022. The 7 Best Live Chat Apps for Customer Support in 2023.
Online https://web.archive.org/web/20230414081634/https://zapier.com/blog/
best-customer-support-chat-apps/. (2023-10-26).

Intercom. 2023. The Best of Automation and Human Customer Service. Online
https://www.intercom.com. (2023-10-26).

Amnesty International. 2021. How private are your favourite messaging
apps? Online https://www.amnesty.org/en/latest/campaigns/2016/10/which-
messaging-apps-best-protect-your-privacy/.

Ari Juels and Ronald L Rivest. 2013. Honeywords: Making Password-Cracking
Detectable. In Proc. of ACM Conference on Computer and Communications Secu-
rity (CCS).

Brian Klais. 2022. New Research Across 200 i0OS Apps Hints That Surveillance
Marketing Is Still Going Strong. Online https://app.urlgeni.us/blog/new-
research-across-200-ios-apps-hints-surveillance- marketing- may-still-be-
going-strong.

Simon Koch. 2023. GitHub: App-Downloader. Online https://github.com/the-
ok-is-not-enough/app-downloader.

Simon Koch. 2023. GitHub: Scala-Appanalyzer. Online https://github.com/the-
ok-is-not-enough/scala-appanalyzer.

Simon Koch, Benjamin Altpeter, and Martin Johns. 2023. The OK Is Not Enough:
A Large Scale Study of Consent Dialogs in Smartphone Applications. In Proc. of
USENIX Security Symposium.

Simon Koch, Malte Wessels, Benjamin Altpeter, Madita Olvermann, and Martin
Johns. 2022. Keeping Privacy Labels Honest. In Proc. of Privacy Enhancing
Technologies Symposium (PETS).

Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max van Kleek, and Nigel
Shadbolt. 2022. Are iPhones Really Better for Privacy? Comparative Study of
i0S and Android Apps. In Proc. of Privacy Enhancing Technologies Symposium
(PETS).

Martin Lazarov, Jeremiah Onaolapo, and Gianluca Stringhini. 2016. Honey
Sheets: What Happens to Leaked Google Spreadsheets?. In Proc. of Workshop on
Cyber Security Experimentation and Test (CSET).

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened against Manipulation. In Proc. of Network and Distributed
System Security Symposium (NDSS).

Corrado Leita, Marc Dacier, and Frederic Massicotte. 2006. Automatic Handling
of Protocol Dependencies and Reaction to 0-Day Attacks with ScriptGen based
Honeypots. In Proc. of International Symposium on Recent Advances in Intrusion
Detection (RAID).

https://github.com/honeymessages
https://aelieve.com/rankings/websites/category/online-communities/best-free-online-chatting-sites/
https://aelieve.com/rankings/websites/category/online-communities/best-free-online-chatting-sites/
https://aelieve.com/rankings/websites/category/online-communities/best-online-dating-sites/
https://aelieve.com/rankings/websites/category/online-communities/best-online-dating-sites/
https://avg.com
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://developer.chrome.com/docs/extensions/reference/debugger/
https://developer.chrome.com/docs/extensions/reference/debugger/
https://phishtank.org
https://discord.com/
https://www.drift.com/
https://www.drift.com/
https://www.eicar.org/download-anti-malware-testfile/
https://www.eicar.org/download-anti-malware-testfile/
https://www.europol.europa.eu/media-press/newsroom/news/dismantling-encrypted-criminal-encrochat-communications-leads-to-over-6-500-arrests-and-close-to-eur-900-million-seized
https://www.europol.europa.eu/media-press/newsroom/news/dismantling-encrypted-criminal-encrochat-communications-leads-to-over-6-500-arrests-and-close-to-eur-900-million-seized
https://www.europol.europa.eu/media-press/newsroom/news/dismantling-encrypted-criminal-encrochat-communications-leads-to-over-6-500-arrests-and-close-to-eur-900-million-seized
https://www.facebook.com/help/messenger-app/833709093422928
https://www.facebook.com/help/messenger-app/786613221989782
https://www.facebook.com/help/messenger-app/786613221989782
https://www.financial-ombudsman.org.uk/decisions-case-studies/case-studies/bank-said-victim-text-message-scam-grossly-negligent
https://www.financial-ombudsman.org.uk/decisions-case-studies/case-studies/bank-said-victim-text-message-scam-grossly-negligent
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://iplists.firehol.org/
https://frida.re/
https://frida.re/
https://gdprhub.eu/index.php?title=BVwG_-_W274_2251055-1/5E
https://gdprhub.eu/index.php?title=BVwG_-_W274_2251055-1/5E
https://github.com/topics/pihole-blocklists
https://github.com/topics/pihole-blocklists
https://safebrowsing.google.com/
https://web.archive.org/web/20230414081634/https://zapier.com/blog/best-customer-support-chat-apps/
https://web.archive.org/web/20230414081634/https://zapier.com/blog/best-customer-support-chat-apps/
https://www.intercom.com
https://www.amnesty.org/en/latest/campaigns/2016/10/which-messaging-apps-best-protect-your-privacy/
https://www.amnesty.org/en/latest/campaigns/2016/10/which-messaging-apps-best-protect-your-privacy/
https://app.urlgeni.us/blog/new-research-across-200-ios-apps-hints-surveillance-marketing-may-still-be-going-strong
https://app.urlgeni.us/blog/new-research-across-200-ios-apps-hints-surveillance-marketing-may-still-be-going-strong
https://app.urlgeni.us/blog/new-research-across-200-ios-apps-hints-surveillance-marketing-may-still-be-going-strong
https://github.com/the-ok-is-not-enough/app-downloader
https://github.com/the-ok-is-not-enough/app-downloader
https://github.com/the-ok-is-not-enough/scala-appanalyzer
https://github.com/the-ok-is-not-enough/scala-appanalyzer

Proceedings on Privacy Enhancing Technologies 2024(3)

(48]

[49

(50

[51]

o
o)

=
20,

~
—

[72

[73

(74

[75

=
2

(77

[78

LinkedIn Security. 2023. Data encryption. Online https://security.linkedin.com/
content/security/global/en_us/index/our-security-practices. (2023-11-28).
LiveAgent. 2023. Simple Customer Support Software for Teams. Online https:
/lwww.liveagent.com/. (2023-10-26).

LiveChat. 2023. Web Live Chat Software & Online Customer Support. Online
https://www.livechat.com/. (2023-10-26).

LivePerson. 2023. The Best Conversational Al Platform for Business. Online
https://www.liveperson.com/. (2023-10-26).

LiveHelpNow LLC. 2023. Support Solutions for Better Business Communications.
Online https://livehelpnow.net/. (2023-10-26).

David Martin, Hailin Wu, and Adil Alsaid. 2003. Hidden Surveillance by Web
Sites: Web Bugs in Contemporary Use. Commun. ACM (2003).

MaxMind. 2020. GeoIP2 Databases. Online https://www.maxmind.com/en/
geoip-databases. (2020-05-22).

Craig M McRae and Rayford B. Vaughn. 2007. Phighting the Phisher: Using
Web Bugs and Honeytokens to Investigate the Source of Phishing Attacks. In
Proc. of Annual Hawaii International Conference on System Sciences (HICSS).
MDN. 2023. Cross-Origin Resource Sharing (CORS). Online https://developer.
mozilla.org/en-US/docs/Web/HTTP/CORS. (2023-11-21).

MDN. 2023. Same-origin policy. Online https://developer.mozilla.org/en-US/
docs/Web/Security/Same-origin_policy. (2023-11-21).

MDN. 2024. Browser detection using the user agent. Online
https://developer.mozilla.org/en-US/docs/Web/HT TP/Browser_detection_
using_the_user_agent. (2024-02-06).

Monperrus, Martin. 2023. GitHub: monperrus/crawler-user-agents. Online
https://github.com/monperrus/crawler-user-agents/tree/4288b18. (2024-02-06).
Marius Musch, Robin Kirchner, Max Boll, and Martin Johns. 2022. Server-Side
Browsers: Exploring the Web’s Hidden Attack Surface. In Proc. of ACM Asia
Conference on Computer and Communications Security (ASIA CCS). (2022-12-13).
Trung Tin Nguyen, Michael Backes, Ninja Marnau, and Ben Stock. 2021. Share
First, Ask Later (or Never?) Studying Violations of GDPR’s Explicit Consent in
Android Apps. In Proc. of USENIX Security Symposium.

Trung Tin Nguyen, Michael Backes, and Ben Stock. 2022. Freely given Consent?:
Studying Consent Notice of Third-Party Tracking and Its Violations of GDPR
in Android Apps. In Proc. of ACM Conference on Computer and Communications
Security (CCS).

Official Gmail Blog. 2008. 2 hidden ways to get more from your Gmail ad-
dress. Online https://gmail.googleblog.com/2008/03/2-hidden-ways-to-get-
more-from-yourhtml. (2023-11-25).

ogp.me. 2023. The Open Graph Protocol. Online https://ogp.me/. (2020-06-07).
Optimise-it. 2023. Chat Software. Online https://www.optimise-it.de/.
Thomas Perkins. 2022. It’s Their Word against Their Source Code - TikTok
Report - Internet 2.0. Online https://internet2-0.com/.

Pi-hole LLC. 2023. Network-wide Ad Blocking. Online https://pi-hole.net/.
(2023-05-22).

Police Service of Nothern Ireland. 2023. WhatsApp Family Impersonation
Scam. Online https://www.psni.police.uk/safety-and-support/keeping-safe/
protecting-yourself/scams-and-fraud/whatsapp-family-impersonation. (2023-
11-19).

Mitmproxy Project. 2023. Mitmproxy - an Interactive HTTPS Proxy. Online
https://mitmproxy.org/.

Re:amaze. 2023. Customer Service, Live Chat, and Helpdesk Solutions for Online
Businesses. Online https://www.reamaze.com/. (2023-10-26).

Reuters. 2022. UK watchdog seeks review into government use of WhatsApp,
messaging apps. Online https://www.reuters.com/world/uk/uk-watchdog-
seeks-review-into-government-use-whatsapp-messaging-apps-2022-07-11/.
(2022-7-11).

Paul Résler, Christian Mainka, and Jorg Schwenk. 2018. More is Less: On the
End-to-End Security of Group Chats in Signal, WhatsApp, and Threema. In
Proc. of IEEE Symposium on Security and Privacy.

Salesforce. 2023. The Customer Company. Online https://www.salesforce.com/.
(2023-10-26).

Leonie Schaewitz, Cedric A. Lohmann, Konstantin Fischer, and M. Angela Sasse.
2022. Bringing Crypto Knowledge to School: Examining and Improving Junior
High School Students’ Security Assumptions About Encrypted Chat Apps. In
Proc. of International Workshop on Socio-Technical Aspects in Security (STAST).
Asuman Senol, Gunes Acar, Mathias Humbert, and Frederik J. Zuiderveen
Borgesius. 2022. Leaky Forms: A Study of Email and Password Exfiltration
Before Form Submission. In Proc. of USENIX Security Symposium.

Asuman Senol, Gunes Acar, Mathias Humbert, and Frederik Zuiderveen Bor-
gesius. 2022. Leaky Forms: A Study of Email and Password Exfiltration Before
Form Submission. In Proc. of USENIX Security Symposium.

sensepost. 2023. Github: Objection - Runtime Mobile Exploration. Online
https://github.com/sensepost/objection.

Signal. 2024. GitHub: signalapp/Signal-Android user-agent. Online https:
//github.com/signalapp/Signal- Android/blob/71850e1e/app/src/main/java/
org/thoughtcrime/securesms/linkpreview/LinkPreviewRepository.java#L93.
(2024-02-06).

688

[79]
[80]
[81]

[82]

[83]

[84

[85

[86

[87

[88]

[89
[90

[91

[92]
[93

[94

[95
[96

[97]

[98]

[99

[100

[101

Kirchner et al.

Solvvy. 2023. Artificial Intelligence Customer Service & Support. Online https:
//web.archive.org/web/20230125194004/https://solvvy.com/. (2023-10-26).
Lance Spitzner. 2003. The Honeynet Project: Trapping the Hackers. IEEE Security
& Privacy (2003).

Lance Spitzner. 2003. Honeypots: Tracking Hackers. Vol. 1. Addison-Wesley
Reading.

Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. 2016. Are You Sure You Want
to Contact Us? Quantifying the Leakage of PII via Website Contact Forms. In
Proc. of Privacy Enhancing Technologies Symposium (PETS).

Oleksii Starov and Nick Nikiforakis. 2017. Extended Tracking Powers. In Proc.
of the International World Wide Web Conference (WWW).

Martin Steiger. 2018. Telegram liefert IP-Adressen und Telefonnummern an
Sicherheitsbehoerden. (2020-06-01).

Giada Stivala and Giancarlo Pellegrino. 2020. Deceptive Previews: A Study of
the Link Preview Trustworthiness in Social Platforms. In Proc. of Network and
Distributed System Security Symposium (NDSS).

Clifford Stoll. 1989. The Cuckoo’s Egg. Tracking a Spy through the Maze of
Computer Espionage.

Dominic Storey. 2009. Catching Flies with Honey Tokens. Network Security
(2009).

Stream.IO, Inc. 2024. Design + Build Any Chat Use Case. Online https://
getstream.io/chat. (2024-02-16).

Symantec. 2023. Sitereview. Online https://sitereview.bluecoat.com/.

Tawk.to. 2023. Live Chat Software, Ticketing & Knowledge Base. Online
https://www.tawk.to. (2023-10-26).

Telegram Support Force. 2023. End-to-End Encryption FAQ. Online https:
//tsf.telegram.org/manuals/e2ee-simple. (2023-11-28).

Tinder. 2023. Tinder Help. Online https://www.help.tinder.com.

Twitter. 2023. Summary Card. Online https://developer.twitter.com/en/docs/
twitter-for-websites/cards/overview/summary/. (2022-05-27).

ValdikSS. 2023. Encrypted Traffic Interception on Hetzner and Linode Targeting
the Largest Russian XMPP (Jabber) Messaging Service —. Online https://notes.
valdikss.org.ru/jabber.ru-mitm/. (2023-11-11).

VirusTotal. 2023. VirusTotal. Online https://virustotal.com. (2023-05-25).
WhatsApp Help Center. 2023. About Blocking and Reporting Contacts. Online
https://faq.whatsapp.com/414631957536067/?helpref=hc_fnav. (2023-11-21).
Ben Whitham. 2017. Automating the Generation of Enticing Text Content for
High-Interaction Honeyfiles. In Proc. of Annual Hawaii International Conference
on System Sciences (HICSS).

Jan Wichelmann, Sebastian Berndt, Claudius Pott, and Thomas Eisenbarth.
2021. Help, My Signal has Bad Device! - Breaking the Signal Messenger’s
Post-Compromise Security Through a Malicious Device. In Proc. of Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA).

Jim Yuill, Mike Zappe, Dorothy Denning, and Fred Feer. 2004. Honeyfiles: De-
ceptive Files for Intrusion Detection. In Proc. of IEEE SMC Information Assurance
Workshop (IAW).

Zendesk. 2023. Customer Service Software & Sales CRM. Online https://www.
zendesk.com. (2023-10-26).

Sarah Zhang. 2015. The Fake Places That Only Exist to Catch Copycat Map-
makers. Online https://gizmodo.com/the-fake-places-that-only-exist-to-catch-
copycat-cartog-1695414770. (2023-10-23).

APPENDIX

A

MESSENGERS

For reference, a complete listing of tested online messengers, mes-
saging apps, and MSP chats is given in Tables 3 to 5. Especially
the app’s package names are relevant for clear identification of the
corresponding app. The apps’ names and the MSP providers the
websites use were collected in May 2023.

A.1 Messengers Without Access

The paper mainly discussed messengers that accessed our honey to-
kens, as this proves some form of message analysis. Table 2 presents
the list of 60 messengers (57 %) we were able to conduct experiments
for, but did not find any indicators for message processing. The list
is comprised of 21 web messengers, 15 apps, and 24 MSP chats. This
means, neither of these messengers accessed our honeypage, was
found to exfiltrate it in their network traffic, or caused an email to
the honey token email address.

https://security.linkedin.com/content/security/global/en_us/index/our-security-practices
https://security.linkedin.com/content/security/global/en_us/index/our-security-practices
https://www.liveagent.com/
https://www.liveagent.com/
https://www.livechat.com/
https://www.liveperson.com/
https://livehelpnow.net/
https://www.maxmind.com/en/geoip-databases
https://www.maxmind.com/en/geoip-databases
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Browser_detection_using_the_user_agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Browser_detection_using_the_user_agent
https://github.com/monperrus/crawler-user-agents/tree/4288b18
https://gmail.googleblog.com/2008/03/2-hidden-ways-to-get-more-from-your.html
https://gmail.googleblog.com/2008/03/2-hidden-ways-to-get-more-from-your.html
https://ogp.me/
https://www.optimise-it.de/
https://internet2-0.com/
https://pi-hole.net/
https://www.psni.police.uk/safety-and-support/keeping-safe/protecting-yourself/scams-and-fraud/whatsapp-family-impersonation
https://www.psni.police.uk/safety-and-support/keeping-safe/protecting-yourself/scams-and-fraud/whatsapp-family-impersonation
https://mitmproxy.org/
https://www.reamaze.com/
https://www.reuters.com/world/uk/uk-watchdog-seeks-review-into-government-use-whatsapp-messaging-apps-2022-07-11/
https://www.reuters.com/world/uk/uk-watchdog-seeks-review-into-government-use-whatsapp-messaging-apps-2022-07-11/
https://www.salesforce.com/
https://github.com/sensepost/objection
https://github.com/signalapp/Signal-Android/blob/71850e1e/app/src/main/java/org/thoughtcrime/securesms/linkpreview/LinkPreviewRepository.java#L93
https://github.com/signalapp/Signal-Android/blob/71850e1e/app/src/main/java/org/thoughtcrime/securesms/linkpreview/LinkPreviewRepository.java#L93
https://github.com/signalapp/Signal-Android/blob/71850e1e/app/src/main/java/org/thoughtcrime/securesms/linkpreview/LinkPreviewRepository.java#L93
https://web.archive.org/web/20230125194004/https://solvvy.com/
https://web.archive.org/web/20230125194004/https://solvvy.com/
https://getstream.io/chat
https://getstream.io/chat
https://sitereview.bluecoat.com/
https://www.tawk.to
https://tsf.telegram.org/manuals/e2ee-simple
https://tsf.telegram.org/manuals/e2ee-simple
https://www.help.tinder.com
https://developer.twitter.com/en/docs/twitter-for-websites/cards/overview/summary/
https://developer.twitter.com/en/docs/twitter-for-websites/cards/overview/summary/
https://notes.valdikss.org.ru/jabber.ru-mitm/
https://notes.valdikss.org.ru/jabber.ru-mitm/
https://virustotal.com
https://faq.whatsapp.com/414631957536067/?helpref=hc_fnav
https://www.zendesk.com
https://www.zendesk.com
https://gizmodo.com/the-fake-places-that-only-exist-to-catch-copycat-cartog-1695414770
https://gizmodo.com/the-fake-places-that-only-exist-to-catch-copycat-cartog-1695414770

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

Table 2: Messengers without indicators for private message
analysis.

Web Messengers (21)

TikTok, Tumblr, Twitch, csdn.net, DeviantArt, Etsy, Facebook,
Flickr, gutefrage.net, KingsChat, Kleinanzeigen, Medium, Meetup,
Okcupid, Pixiv, Reddit, Tinder, Trillian, Vinted, Voxer, Zoom

App messengers (15)

Dogorama, Uplive, Google Meet, purp, Knuddels Chat, Meetup,
Vibes, TikTok, Tellonym, Walkie Talkie, noteit widget, PokeRaid,
message.me, social.free, Likee-Lite

MSP messengers (24)

adidas.com (SalesForce), anyvan.de (re:amaze), barracuda.com
(SalesForce), calm.com (Solvvy), cashflowtool.com (re:amaze),
catapultsports.com (Zendesk), chevrolet.com (LivePerson),
chupi.com (Zendesk), gelighting.com (SalesForce), getresponse.com
(LiveChat), greenbeanbattery.com (tawk.to), headspace.com
(Zendesk), ikea.com (optimise-it), kinguin.net (LiveChat), moo.com
(Intercom), nascar.com (LiveAgent), otrmeals.com (re:amaze),
printful.com (Zendesk), ryanair.com (Zendesk), bancsabadell.com
(Zendesk), slido.com (LiveAgent), soundcloud.com (Solvvy),
thunes.com (Intercom), trailersuperstore.com (LiveHelpNow)

B MESSENGER USER-AGENTS

Figure 6 displays a mapping of messengers to their utilized User-
Agent HTTP headers. Included are all messengers that issued SSRs
to our framework after the experiments. The full user agent strings
are listed in Table 6.

Some messengers did not include the header in their requests,
resulting in UA 46, “None”. MeetMe never sent a User-Agent header,
while Twitter, LinkedIn and Steam left out the header in some of
their SSRs. Most of the time, services with an obvious connection
used similar UAs. This includes the app and web version of Snapchat,
Skype, and VK, as well as the Telegram clones. Furthermore, some
connections we found in the IP/ASN analysis (ref. 5.5) are supported
by common user agents. As such, Badoo and Bumble declared
themselves as BadooBot, while TamTam and OK used OdklBot. The
more interesting cases of Steam, as well as Imgur and Wink app are
discussed in Section 5.2.2 and Section 5.3, respectively. Furthermore,
ICQ and LinkedIn share a common browser user agent (UA 09), but
there is no grounds to suspect anything else than a coincidence.

Section 4.4.1 discussed that overall about half of the distinct
UAs we received are marked as automated, i.e., they directly reveal
that they come from automated requests. The 23 UAs we consider
marked are coloured light blue on the right side of Figure 6. The
remaining 24 UAs are considered unmarked and coloured grey,
while the empty UA is coloured white.

It is also interesting to look at the messengers’ UAs in isolation
to account for the shared UAs used by multiple messengers, e.g., the
Telegram clones. For this, we regard the distinct UAs of each mes-
senger, disregarding empty UAs. In Figure 6, these are the 61 links
from messenger (left) to UA (right). Clearly marking automated
requests as such is better for transparency, but still 41 % have no
indication. Positively, we see that 38 % of UAs clearly mention their
respective messenger in the string. Another 18 % do not mention

689

Proceedings on Privacy Enhancing Technologies 2024(3)

the correct messenger, but are still clearly marked as automated,
due to mentioning the term bot. This share includes MoboNitro,
Talaei, and the Robik apps utilizing the TelegramBot string, which
does not match the messengers’ names. An additional 3 %—UA 35
and UA 40—do not name a messenger or have the term bot, but
still show that the requests are automated by indicating tools like
Python’s requests library.

[Jtmgur (US) getstream.io /opengraph-bot (like TwitterBot) fa... UA 03 D

[JWink App (US)
Mozilla/5.0 (compatible; BadooBot; +badoo.com) UA 13 D

[[JBadoo (CY)
[JBumble (CY) MEZlla/5.0 (iPhone; CPU.iPhoner@SymonikeNENUAT [
Moxzilla/5.0 AppleWebkit,537.36 (KHTML, like Gec... UA 15 []
[Juark Us)
Mozilla/5.0 (Windosws-Na0:05 Wii645 X645 579, UA 02 []
Movzilla, 5. Vi s NT 10.0: Win64: x64) Apple... UA 01
il 0/? a,/5.0 (andowa L, 0.0; “j"b x64) Apple... UA 01 [
Mozilla/5.0 (Windows NT 10.0: Win64: x64) Apple... UA 40 [
Mozilla/5:0(Windows NT 10.0; Witi64: <64 Apples=UA-06

Mozilla/5.0 (Windows NT 10.0; W67 <64 17266 UA-43
[CJSoundCloud (US) Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; r... UA 17
Mozilla/5.0 (Linux; Android 13; SM-Al27E)-Apples=UA-11

=
=
O
=
Mozilla (Linuxz-Android 10; POT-LX1)-AppleW==UA-12- =
Mozilla,/5:0-(Limix;_ Android.10;:Redmi-Note-7)-A==UA-31 =
DOK App (RU) OdkIBot /1.0 (sharc@odnoklassniki.ru) UA 10 D
Mozilla/5.0 (compatible; OdklBoty/ 1:0-like Linux... UA 28 D
TamTam (RU)
Mouilla,/ 5.0 (Lintx; Anidroid 13, SM=A515F) Apples=UA-04- =
Moz Y (Bimuxi.Android 1T; Redmii-Note 9-Pro-UA-20-=
Mozilla/5.0 (Linux; Android 11; CMA-EXT) AppleWr=UA=39-=

[ISkype (NL, IE)
[ISkype App (IE)

Mozilla/5.0 (Windows NT 6.1; WOWG64) SkypeUriPre...

UA 22 D

Slackbot, 10-(=hitpsz/apislackicon/fobots) UAN6> [T
Slackbot-LinkExpanding 1.0 (+https://api.slack.... UA 37 []
Slack-TmgProxy (rhttps://apistack-comyrobots)-UA=00-=

UA 08 D
UA 33 D
=

UA 47
UA 05

Twitterbot/1.0 UA 26
Morzilla/5.0 (Macintosh; Intel Mac OS X 10 _14_5)... UA 44

Dsmck (US, DE)

Snap-URL-Preview (bot; snapchat: ~https://devel...

DSnapchat (US, IE)
Snap URL Preview Service; bot; snapchat; https:..
DSnapchat App (US:IENfo7ila /5.0 (iPhone; CRU-iPhone-OS-id=2-2-Jike-:
Mozilla/5.0 (iPhone; CPU-iPhone OS2 2 like Ma...

Twitter (US)

[IMeetMe (US)

None UA 19

Steam (US) Expanse. a Palo Alto Networks company. searches... UA 18
— Valve ‘Steam HTTD_Client 1.0 (SteamChatURLLookup) UA 30
SteamCHhatImageProxy-UA-38

QICQ (RU) Mozilla/5.0 (Windows NT 10.0; Win64; x64) Apple... UA 07
LinkedInBot, 1.0 (compatible; Mozilla/5.0; Apach... UA 46

LinkedIn (US) Mozilla/5.0 (Windows NT 10.0: Win64; x64) Apple... UA 25
Mozillay 5.0, (Windows NT 10.0; Win64; x64) ApplenUA"35

— Mozilla/5.0"(Windows NT 10.0; Win64: x64) " ApplerUA"36
OVK (RU) Wizl -0, (W indows-NaL.10,0; WG 56D ApPlenmUATS
DVK App (RU) Mozilla/5.0 (Windows NE,10.0; Win64: X614y Appler=UA-41
DQUOM (Us) Mozilla,/5.0 (compatible; vkShare; +http://vk.co... UA 23

[Telegram (UK) Quora-Bot, 1.0 (http: / /www.quora.com) UA 21

[JMoboNitro App (UK) Mozilla/5.0"(Magintosh; Intel Mac OSX 1011 6)... UA 27
[]Talaci App (UK)

[JRobik Zed Filter App (UK)
[JRobik Anti Filter App (UK)
[Telegram App (UK)
DDiscord (US)
[CIBigo App (SG)
[JLINE App (JP)
[JPinterest (US)

TelegramBot (like TwitterBot) UA 24

Mozilla; 5.0 (compatible; Discordbot/2.0; +https... UA 32
Mozilla/5.0-(Macintosh; Tntel Mac OS X 11.6; rv... UA 09
python-requests/2.28.1 UA 29 []

facebookexternalhit /1.1;line-poker /1.0 UA 34 []

Mozilla/5.0 (compatible; Pinterestbot/1.0; +htt... UA 42 [[]

1 o 1 o o o o e o o

Figure 6: Connections of messengers and their UAs. UAs
marked as automated are coloured light blue (~). Messengers
have varied unordered colours for distinctiveness.

Proceedings on Privacy Enhancing Technologies 2024(3) Kirchner et al.

C MESSAGES SENT TO CUSTOMER SERVICE Table 5: Full list of all tested mobile app messengers.
AGENTS

We prepared two different message templates. The first was chosen
if no length constraints were imposed by the website, and the

All Apps (package name) (36)
Dogorama—The Dog Community (app.dogorama)

second was chosen if such constraints were in place. Wink—Friends & More (co.ninecount.wink)
“Dear person, Uplive—Live Stream, Go Live (com.asiainno.uplive)
Feel free to ignore this message, as it belongs to an ongo- Google Meet (com.google.android.apps.tachyon)
ing research project by the «Institute for Anonymous» purp—Make new friends (com.hubolabs.hubo)
of «Anonymous». Ignore the links below. There is noth- imo HD—Video Calls and Chats (com.imo.android.imoimhd)
ing you need to do. Let us know if you want us to exclude Knuddels Chat: Find friends (com.knuddels.android)

you from our evaluation. If possible, we will mark this
chat as resolved and give you a positive rating, if sup-
ported by this chat.

Thank you for your cooperation.” (Long Version)

Meetup: Social Events & Groups (com.meetup)

Messages, SMS, Text Messaging
(com‘messengenmessaging‘sms‘messages)
Skype (com.skype.raider)

Hi, we don’t want to waste your time, you can ig- Snapchat (com.snapchat.android)
nore this chat. We are researchers from «Anonymousx.
Ignore the following links. Let us know if you want to
opt-out. Thank you.” (Shorter Version)

Mobo nitro (com.telmemjplus.messenger)
Messenger Viber: Chats & Calls (com.viber.voip)
VK: music, video, messenger (com.vkontakte.android)

Table 3: Full list of all tested web-based messengers. WhatsApp Business (com.whatsapp.w4b)
WhatsApp Messenger (com.whatsapp)

All Web Messengers (41) Vibes—Dating, Match, Meet Up (com.xpartner)

Skype, Slack, Snapchat, SoundCloud, Steam, Telegram, TikTok, TikTok (com.zhiliaoapp.musically)

Tumblr, Twitch, Twitter, WhatsApp, Badoo, Bumble, csdn.net, nebenan.de (de.nebenan.app)
DeviantArt, Discord, Etsy, Facebook, Flickr, gutefrage.net, ICQ, Tellonym: Anonymous Q&A (de.tellonym.app)
Imgur, KingsChat, Kleinanzeigen, Lark, LinkedIn, Medium, MeetMe,

Meetup, Okcupid, Pinterest, Pixiv, Quora, Reddit, TamTam, Tinder,
Trillian, Vinted, VK, Voxer, Zoom Walkie Talkie—All Talk (io.walkietalkie)

Botim—Video and Voice Call (im.thebot.messenger)

LINE: Calls & Messages (jp.naver.line.android)

noteit widget—by sendit (me.bukovitz.noteit)

Table 4: Full list of all tested mobile MSP messengers. PokeRaid—Worldwide Remote Ra [sic] (me.pokeraid)
REALITY—Become an Anime Avatar (net.wrightflyer.le.reality)

All MSP messengers (28) Talaei messenger (org.eitagra.massenger)
absorblms.com (Drift), adidas.com (SalesForce), anyvan.de Robik Zed Filter (org.massengrrobik.grazed)
(re:amaze), barracuda.com (SalesForce), calm.com (Solvvy), Robik Anti Filter (org.messenger.robi)

cashflowtool.com (re:amaze), catapultsports.com (Zendesk),

chevrolet.com (LivePerson), chupi.com (Zendesk), deputy.com

(Drift), gelighting.com (SalesForce), getresponse.com (LiveChat),
greenbeanbattery.com (tawk.to), headspace.com (Zendesk), OK: Social Network (ru.ok.android)

ikea.com (optimise-it), kinguin.net (LiveChat), moo.com (Intercom), Bigo Live—Live Stream, Go Live (sg.bigo.live)
nascar.com (LiveAgent), otrmeals.com (re:amaze), printful.com
(Zendesk), ryanair.com (Zendesk), bancsabadell.com (Zendesk),

slido.com (LiveAgent), soundcloud.com (Solvvy), thunes.com
(Intercom), trailersuperstore.com (LiveHelpNow), waterpik.com SMS Messenger for Text & Chat (sms.messenger.social.free)

(LiveHelpNow), x-cart.com (Intercom) Likee Lite—Funny videos (video.like.lite)

Telegram Messenger (org.telegram.messenger.web)

Signal (org.thoughtcrime.securesms)

Messages: Chat & Message App
(sms.app.messages.app.message.box.message.me)

690

A Black-Box Privacy Analysis of Messaging Service Providers’ Chat Message Processing

Proceedings on Privacy Enhancing Technologies 2024(3)

Table 6: Companion table for Figure 6 with peudonyms, raw User-Agent strings, and the messengers using it.

ID Raw User-Agent String Messengers
UA 00 | Mozilla/5.0 (compatible; vkShare; +http://vk.com/dev/Share) VK, VK App
UA 01 Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0 nebenan.de App
UA 02 | Valve/Steam HTTP Client 1.0 (SteamChatURLLookup) Steam
Expanse, a Palo Alto Networks company, searches across the global IPv4 space multiple times per day to identify customers’
UA 03 presences on the Internet. If you would like to be excluded from our scans, please send IP addresses/domains to: scan- | Steam
info@paloaltonetworks.com
UA 04 | LinkedInBot/1.0 (compatible; Mozilla/5.0; Apache-HttpClient +http://www.linkedin.com) LinkedIn
UA 05 | Twitterbot/1.0 Twitter
UA 06 | Mozilla/5.0 (compatible; Pinterestbot/1.0; +http://www.pinterest.com/bot.html) Pinterest
UA 07 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36 nebenan.de App
UA 08 Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:79.0) Gecko/20100101 Firefox/79.0 nebenan.de App
UA 09 Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36 Lark
UA 10 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36 LinkedIn
UA 11 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36 LinkedIn
UA 12 | Mozilla/5.0 (Linux; Android 13; SM-A127F) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Mobile Safari/537.36 | OK App
UA 13 Slackbot 1.0 (+https://api.slack.com/robots) Slack
UA 14 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36 nebenan.de App
OPR/56.0.3051.52
UA 15 Mozilla/5.0 (compatible; OdklBot/1.0 like Linux; klass@odnoklassniki.ru) TamTam, OK App
UA 16 Mozilla/5.0 (compatible; BadooBot; +badoo.com) Badoo, Bumble
UA 17 Snap-URL-Preview (bot; snapchat; +https://developers.snap.com/robots) Snapchat, Snapchat App
UA 18 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.5060.134 Safari/537.36 LinkedIn
UA 19 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36 LinkedIn
UA 20 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.67 Safari/537.36 LinkedIn
UA 21 Mozilla/5.0 (Linux; Android 13; SM-A515F) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Mobile Safari/537.36 | TamTam
UA 22 Slackbot-LinkExpanding 1.0 (+https://api.slack.com/robots) Slack
UA 23 getstream.io/opengraph-bot (like TwitterBot) facebookexternalhit/1.1 (+http://www.facebook.com/externalhit_uatext.php) Imgur, Wink App
UA 24 Mozilla/S.O (iPhope; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit/604.1.38 (KHTML, like Gecko) Version/11.0 Mo- Lark
bile/15A372 Safari/604.1
UA 25 python-requests/2.28.1 Bigo App
UA 26 SteamChatImageProxy Steam
UA 27 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36 LinkedIn
UA 28 Mozilla/5.0 (Linux; Android 10; POT-LX1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Mobile Safari/537.36 OK App
UA 29 Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:51.0) Gecko/20100101 Firefox/51.0 SoundCloud
UA 30 Mozilla/5.0 (iPhone; CPU iPhone OS 12_2 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/12.1 Mo- Twitter
bile/15E148 Safari/604.1
UA 31 OdklIBot/1.0 (share@odnoklassniki.ru) TamTam, OK App
UA 32 Nl[ozilla/&O (iPhone; CPU iPhon? oS 147?72 like Mac OS X) AppleWebKit/537.1.43 (KHTML, like Gecko) Version/14.2 Mo- Snapchat App
bile/15E148 Snapchat/11.8.0.30 (like Safari/537.1, panda)
UA 33 Quora-Bot/1.0 (http://www.quora.com) Quora
UA 35 Mozilla/5.0 (Windows NT 6.1; WOW64) SkypeUriPreview Preview/0.5 skype-url-preview@microsoft.com Skype, Skype App
UA 36 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36 nebenan.de App
UA 37 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36 Quora
Telegram, MoboNitro App,
UA38 | TelegramBot (like TwitterBot) gﬁ;ﬁf’&éﬁbﬁ‘nﬁe}iﬁg
App, Telegram App
UA 39 Mozilla/5.0 (Linux; Android 11; CMA-LX1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Mobile Safari/537.36 | TamTam
UA 40 Mozilla/5.0 (Macintosh; Intel Mac OS X 11.6; rv:92.0) Gecko/20100101 Firefox/92.0 Discord
UA 41 Mozilla/5.0 (compatible; Discordbot/2.0; +https://discordapp.com) Discord
UA 42 IS\/;?:;Bz;g()a 6(Linux; Android 11; Redmi Note 9 Pro) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Mobile TamTam
UA 43 Slack-ImgProxy (+https://api.slack.com/robots) Slack
UA 44 facebookexternalhit/1.1;line-poker/1.0 LINE App
UA 45 Snap URL Preview Service; bot; snapchat; https://developers.snap.com/robots Snapchat, Snapchat App
UA 46 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3904.108 Safari/537.36 | Twitter
UA 47 Mozilla/5.0 (Linux; Android 10; Redmi Note 7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Mobile Safari/537.36 | OK App

691

	Abstract
	1 Introduction
	2 Background
	2.1 The Assumption of Confidentiality
	2.2 Analyzing Chat Messages
	2.3 Reasons for Analyzing Messages

	3 Black-Box Privacy Assessment
	3.1 Methodology
	3.2 Honey Messages Framework
	3.3 Web Chat Instrumentation
	3.4 Mobile App Instrumentation
	3.5 Experiment Protocol

	4 Study Design and Evaluation
	4.1 Target Selection
	4.2 Experiment Description
	4.3 Analysis Approach
	4.4 Evaluation

	5 Discussion
	5.1 Acceptable Message Analysis
	5.2 Web Messengers
	5.3 Apps
	5.4 MSP Chats
	5.5 Messenger Affiliation
	5.6 Ethical Considerations
	5.7 Limitations and Outlook
	5.8 Key Takeaways

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Messengers
	A.1 Messengers Without Access

	B Messenger User-Agents
	C Messages sent to Customer Service Agents

