
Divisible E-Cash for Billing in Private Ad Retargeting
Kevin Liao

MIT and Harvard Law School
Henry Corrigan-Gibbs

MIT
Dan Boneh

Stanford University

ABSTRACT
This paper presents new techniques for private billing in systems
for privacy-preserving online advertising. In particular, we show
how an ad exchange can use an e-cash scheme to bill advertisers
for ad impressions without learning which client saw which ad:
The exchange issues electronic coins to advertisers, advertisers pay
publishers (via clients) for ad impressions, and publishers unlink-
ably redeem coins with the exchange. To implement this proposal,
we design a new divisible e-cash scheme that uses modern zero-
knowledge proofs to reduce the ad exchange’s computational costs
by roughly 250× compared to the previous state-of-the-art. With
our new e-cash scheme, our private-billing infrastructure adds little
overhead to existing private ad-retargeting systems: less than 63 ms
of latency, negligible client computation, less than 3.2 KB of client
communication, and a combined server operating cost (advertisers,
publishers, and exchange) of less than 1% of ad spend, an over 5×
savings compared to the previous state-of-the-art.

1 INTRODUCTION
Retargeted ads are the ads that “follow you around the web.” Say
you visit the website of a shoe retailer, add a pair of shoes to your
shopping cart, and then browse away without making the purchase.
Over the next week, as you browse through your favorite news
sites and blogs, you see ads for that particular pair of shoes.

Behind the scenes, an ad exchange has been tracking your web-
browsing activity using third-party cookies [26], creating a profile
of your demographics and interests based on the websites you
have visited. When an opportunity arises to show you an ad, the
exchange coordinates with a number of advertisers, and other in-
termediaries, to auction off the chance to show an ad someone with
your exact demographics and your exact interests to the highest
bidder. In the time you wait for a webpage to load, a multitude of ad-
vertisers and intermediaries have gained access to your preferences
and online behavior. Finally, the exchange charges advertisers and
pays publishers based on your ad impressions (views) and clicks.

Privacy-conscious users have long recognized the invasive pri-
vacy practices of targeted advertising [43, 44, 48, 56, 57, 76]. To
address these issues, over the past two decades, academic re-
searchers have proposed a handful of ideas for private ad target-
ing [16, 46, 66, 71, 74, 78, 88, 96, 103]. More recently, with major
browser vendors deprecating third-party cookies [44, 77, 94, 100],
a new wave of industry proposals has cropped up, blending new
and existing ideas to support various kinds of targeted advertising
in a third-party-cookieless world [3, 24, 54, 55, 98, 99].

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 5–23
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0104

Recent private ad-retargeting proposals [3, 54, 99], such
as Google’s Protected Audience API [3] (formerly known as
FLEDGE [54]), shift the retargeting pipeline, traditionally done
by the exchange, to the client’s web browser: the client’s browser
tracks retargeting opportunities, runs ad auctions with advertis-
ers, and serves ads on publisher websites, all without involvement
from the exchange. This not only grants clients privacy, but also
transparency into and control over retargeting.

These proposals, however, do not address privacy of the billing
process: how the exchange will correctly charge advertisers and
pay publishers for ad impressions, without requiring the exchange
to collect sensitive client data.

Our approach. In this paper, we propose that the exchange
use an e-cash scheme [40] to privately bill for ad impressions with-
out needing to learn clients’ web-browsing activity: The exchange
issues electronic coins to advertisers, advertisers pay publishers
(with messages proxied through the client’s browser) for ad im-
pressions, and publishers redeem coins with the exchange. E-cash
payments are unlinkable, meaning that an adversarial exchange
cannot determine which advertiser paid which publisher—which
potentially leaks sensitive information about clients’ web-browsing
behavior. All the exchange learns is what it can infer from advertiser
expenditures and publisher earnings. By combining our private-
billing scheme with a Protected-Audience-like retargeting system,
we construct a system for online advertising with end-to-end pri-
vacy guarantees.

One practical barrier is that existing e-cash schemes may be too
computationally expensive to deploy for advertising at web scale.
A long line of work on divisible e-cash [15, 22, 34–37, 82, 84] has
yielded state-of-the-art schemes with very low asymptotic costs [22,
36, 37, 84]. Yet, these schemes remain concretely expensive—they
require two pairing operations per unit spent (e.g., per $0.01 spent).
We estimate that the computational cost of e-cash validation alone
would require an ad exchange to spend 5% of its total ad revenue
(Section 6). In contrast, our scheme requires a number of pairings
that is only logarithmic (instead of linear) in the maximum spend
value.

To circumvent this barrier, we design a new divisible e-cash
scheme with reduced concrete costs. Most divisible e-cash schemes,
including ours, rely on constrained pseudorandom functions (“con-
strained PRFs”) [21]. Prior e-cash schemes [22, 36, 37, 84] are based
on costly pairing-based constrained PRFs, since these schemes com-
pose naturally with the Groth-Sahai zero-knowledge proofs [69, 70]
that these constructions use.

In contrast, in our construction, we do not need to prove state-
ments in zero-knowledge about the constrained PRF, so we can
rely on simple and fast symmetric-key-based constrained PRFs [63].
Our construction does require the coin spender (i.e., advertiser) to
generate a zero-knowledge proof of inclusion in a Merkle tree.

5

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0104

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

To do so, we use modern succinct zero-knowledge proofs (zk-
SNARKs) [68, 89], which are heavily optimized for exactly this
type of statement.

Still, applying zk-SNARKs directly does not yield a scheme that
meets our efficiency targets out of the box. To start, zk-SNARKs
have relatively high proof-generation costs, which can be detrimen-
tal to latency. Fortunately, in our application setting, we can move
proof generation completely offline to eliminate their online latency
cost. In addition, we devise a further latency optimization by relying
on a new (but entirely reasonable) collision-resistance assumption
of the pseudorandom generator underlying our constrained PRF.

Experimental results. We implement our divisible e-cash
scheme (and auxiliary schemes) in 3.4k lines of Rust code. In our
experimental evaluation, we measure the overhead our scheme
would add to Protected-Audience-like systems. First, we find that
our scheme adds less than 63 ms of latency. For our target of placing
ads on websites in under 150 ms, this leaves ample time for other
parts of the private ad-retargeting process, such as ad auctioning
and ad serving. For clients, our scheme adds negligible computation
and less than 3.2 KB of communication, just over 0.1% of the average
page weight of 2.2 MB [92]. For servers, our scheme adds a com-
bined server operating cost (advertiser, publisher, and exchange)
of less than 1% of ad spend (vs. 5% of ad spend for double-spend
detection alone using existing schemes), comprised primarily of
proof precomputation by advertisers. If we isolate the exchange’s
computational costs, then our scheme achieves a roughly 250×
reduction compared to existing schemes.

Limitations. While achieving a combined server operating cost
of less than 1% of ad spend is a significant improvement, Meta’s
private ad measurement system (an orthogonal problem to private
ad targeting) has a target (though not yet achieved) operating cost
of 0.1% of ad spend [85]. Still, our 250× reduction in the exchange’s
computational costs is favorable, since costs are spread across mul-
tiple parties rather than concentrated at the exchange. A fruitful
direction for future work is to further reduce operating costs while
maintaining comparable latency and client costs, and the same
privacy guarantees as our divisible e-cash scheme.

Furthermore, we have not yet integrated our divisible e-cash
scheme for testing into the Protected Audience API, since it has
been under development in the course of this research. As API
features become available, integrating our scheme with the API
and collecting end-to-end benchmarks will shed light on what a
realistic latency overhead for our scheme should be, though we
expect our current latency overhead to be sufficiently low.

Finally, we do not present new solutions for ad-fraud detection
or ad-exchange auditability. As is the case in today’s advertising
ecosystem, our system does not guarantee that, in the presence
of malicious clients, advertiser payments necessarily lead to client
ad impressions. Moreover, we do not address head-on the issue of
malicious ad exchanges overcharging advertisers or underpaying
publishers, though our system may obviate much of the need for
auditing at the exchange, since auctions are delegated to clients.

Contributions. The main contributions of this paper are:

• the identification of private billing as a missing piece in
recent private ad-retargeting systems and a proposed fixed
using e-cash (Section 2),
• a new divisible e-cash scheme with optimizations that lead

to low latency, low client cost, and low server operating cost
payments (Section 4), and
• an open-source implementation (Section 5), which is publicly

available at https://github.com/kev-liao/private-billing, and
experimental evaluation (Section 6) of our scheme.

2 MOTIVATION AND GOALS
In this section, we overview the current, non-private ad-retargeting
ecosystem, how the Protected Audience API [3] aims to address
privacy issues in today’s ecosystem, and gaps in the API that this
research aims to fill.

2.1 Ad retargeting today
The web-advertising ecosystem is vast and complex [47]. In the
context of ad retargeting, we focus on the primary participants:
clients browse the web, visiting advertiser and publisher websites;
advertisers pay to retarget ads to clients who have previously visited
their websites; publishers monetize their websites by showing ads
to clients; and the exchange acts as broker, matching advertisers to
publishers.

Today, the ad-retargeting pipeline is centered on the exchange.
The exchange tracks clients’ web-browsing activity via third-party
cookies [26] and identifies retargeting opportunities when clients
visit advertiser websites. When a client visits a publisher’s website,
the exchange initiates an auction with the client’s visited advertisers.
The advertisers submit sealed bids to the exchange for the price
they are willing to pay for ad interactions (impressions and clicks),
the auction determines the winning advertiser and the clearing
prices for the interactions, and the winning advertiser serves an
ad to the client on the publisher’s website. Finally, the exchange
charges advertisers and pays publishers for interactions, and shares
measurement data with advertisers to help them optimize their
campaigns. The central role of the exchange gives it unchecked
access to clients’ web-browsing activity.

2.2 Private ad retargeting with the Protected
Audience API

Recent private ad-retargeting proposals [3, 54, 99] shift the retar-
geting pipeline, traditionally done by the exchange, to the client’s
web browser. In this paper, we focus on Google’s Protected Audi-
ence API [3], which is currently under testing and development in
Chrome.1

The unhighlighted parts of Figure 1 describe the Protected Au-
dience API at an abstract level; the highlighted parts describe our
private-billing extension, which we describe shortly. At a high-level,
the client’s browser tracks the advertisers they visit to later set up
retargeting opportunities (step 0-B). Upon visiting a publisher web-
site that wants to serve a retargeted ad (step 1), the browser runs
a local auction with its visited advertisers to determine a winning

1Much of this research was conducted when the Protected Audience API was known
as FLEDGE [54]. Parts of the API still refer to its former name [91].

6

https://github.com/kev-liao/private-billing

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

0-A: Advertisers obtain coins from exchange. Advertisers
exchange hard currency (e.g., U.S. dollars) for electronic
coins to pay publishers for ad impressions.

0-B: Client visits advertiser websites. When a client visits an
advertiser’s website, the advertiser invokes a JavaScript API
to store a callback URL on the client’s browser. The browser
uses this callback to later run ad auctions.

1: Client visits publisher website. When the client visits a
publisher’s website, the publisher invokes a JavaScript API
to indicate its desire to serve a retargeted ad on its page.

2: Client runs ad auction. The client’s browser initiates an ad
auction (e.g., a first-price, open-bid auction) by calling the
stored callback URLs for the advertisers it has visited. Each
callback returns the corresponding advertiser’s bid for the
impression. The browser runs the auction and notifies the
winning advertiser of the clearing price for the impression.

3: Winning advertiser sends ad and coins to client. The
winning advertiser sends the URL of its ad creative to the
client’s browser along with coins amounting to the clearing
price.

4: Client and publisher forward coins to exchange. The
client’s browser forwards the coins to the publisher, who
forwards them to the exchange.

5: Exchange checks validity of coins. If the coins are valid and
have not been double-spent, then the exchange accepts,
sends the publisher hard currency for the value of the
redeemed coins, and notifies the client of acceptance
through the publisher. Otherwise, the exchange rejects and
the client’s browser retries with the next winner of the
auction.

6: Client displays ad. If the exchange accepts, then the client’s
browser displays the ad on the publisher’s website in an
isolated fenced frame [59], which prevents the publisher
from learning who the winning advertiser is.

Figure 1: Combined workflow of private ad retargeting with the Protected Audience API [3] and private billing with e-cash
(this work). The parts corresponding to private billing are highlighted; everything else is part of Protected Audience.

advertiser (step 2). The winning advertiser sends its ad to the client
(step 3) and the browser displays the ad in a fenced frame [59] (step
6), which prevents the publisher from seeing the displayed ad and
inferring the winning advertiser.

The Protected Audience API seems to obviate the need for a tra-
ditionally privacy-invasive exchange in the ad-retargeting process.
Moreover, clients themselves serve as proxies between advertisers
and publishers, so an advertiser cannot link a publisher’s identity
to a client (and vice versa). This not only improves client privacy,
but also grants clients transparency into and control over the retar-
geting process. However, the Protected Audience API postpones
the question of billing and how it will be achieved privately. That is,
absent an exchange, it is unclear how advertisers will be correctly
charged and publishers correctly paid. Presumably, an exchange ex-
ists out-of-band from the ad-retargeting protocol to perform billing,
but it is further unclear how this would be achieved without the
sensitive client data it collects today.

To sharpen the point: The Protected Audience API trivially sup-
ports payments but not privacy for ad clicks. Ad clicks inherently
reveal client and publisher identities (through client IPs and Ref-
erer headers [9], respectively) to the advertiser and the exchange,
which allows the exchange to tally clicks. However, the Protected
Audience API supports privacy but not payments for ad impres-
sions. Ad impressions alone hide client and publisher identities
from the advertiser and the exchange by design through the use of
fenced frames. In the absence of clicks, the exchange does not learn
which ads were served on which publisher websites, so it cannot
easily tally impressions. Yet, private billing is a necessary piece of
a functioning private-advertising system.

2.3 Adding private billing to the Protected
Audience API

To accommodate private billing, we propose to reinstate a limited
exchange that uses an e-cash scheme [40] to privately bill for ad im-
pressions without needing to learn clients’ web-browsing activity:
The exchange issues electronic coins to advertisers, advertisers pay
publishers (with messages proxied through the client’s browser)
for ad impressions, and publishers redeem coins with the exchange.
Importantly, e-cash payments are unlinkable, meaning that a coin’s
redemption cannot be traced back to its respective issuance. There-
fore, the exchange learns nothing about clients, except what it can
infer from advertiser expenditures and publisher earnings.

The highlighted parts of Figure 1 describe how to integrate pri-
vate billing with e-cash into the Protected Audience API. Steps 0-A
and 0-B are “offline,” meaning they run in the background, while
steps 1–6 are “online,” meaning they are latency-critical. Offline,
advertisers pay the exchange in hard currency for electronic coins,
which will later be used to pay publishers for ad impressions (step
0-A). As in the original Protected Audience API, the client’s browser
tracks retargeting opportunities and initiates a local auction upon
visiting a publisher’s website (steps 0-B, 1, 2). After determining
the winning advertiser and the clearing price for the impression,
the winning advertiser sends to the browser its ad along with coins
amounting to the clearing price (step 3). The browser forwards
these coins to the publisher, who then forwards them to the ex-
change (step 4). The exchange checks that the coins are valid and
have not been double-spent (step 5). If the exchange accepts, then it
pays the publisher in hard currency for the value of the redeemed
coins (this can delayed to the end of a billing cycle). Otherwise,
the exchange rejects and the browser retries with the next winner
of the auction. Finally, the browser displays the ad only after the
exchange accepts (step 6).

7

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

The end result is that the advertiser does not learn what website
the client visited, and the publisher does not learn what ad the
client’s browser displayed on its page. Yet, the parties are properly
billed and compensated.

2.4 Goals
To this end, we require the e-cash scheme to meet several properties.
For intuition, we present them here informally as the system-level
properties they would achieve.

• Correctness. If all parties are honest, then the exchange cor-
rectly charges advertisers and pays publishers.
• Unforgeability. When an honest exchange interacts with a

coalition of adversarial advertisers and publishers, the ex-
change’s total revenue is always non-negative. That is, a
coalition of adversarial advertisers cannot extract more hard
currency from the exchange than they put in.
• Unlinkability. An attacker who controls the exchange learns

nothing about the client’s web-browsing activity, except
what the exchange can infer from advertiser expenditures
and publisher earnings.

To scale e-cash to the volume of traffic present in today’s web-
advertising ecosystem while preserving (or even improving) user
web-browsing experience, the scheme should allow the Protected
Audience API to meet the following efficiency targets:

• Low latency. Ads should be placed on publisher websites in
under 150 ms [47].
• Low client costs. Client computation and communication

costs should be less than 1% of average page load time and
average page weight, respectively.
• Low server operating costs. The combined server operating

cost for advertisers, publishers, and the exchange should be
less than 1% of ad spend.

There are several important non-goals for private billing. The
first is specific to this work while the remaining three are inherited
from the Protected Audience API. Private billing need not provide:

• Malicious client protection. We do not prevent a malicious
client from stealing the publisher’s share of the coins. This
is to some degree inevitable and is true of ad retargeting
today, since a client can always set up its own website as a
publisher and retarget ads to itself. See Section 7 for more
discussion.
• Fraud protection. We do not guarantee that ad impressions

are the result of legitimate traffic. For example, they may be
the result of a click bot [10].
• Bid privacy. We do not hide advertiser bids from other parties

(i.e., other advertisers, clients, publishers, or the exchange).
• Privacy after ad click. We aim to protect client privacy only

up to the point that a client clicks on an advertiser’s ad. After
that point, we allow the advertiser to learn the identity of
the referring publisher.

3 BACKGROUND
This section summarizes the cryptographic primitives we will use
to build up to our divisible e-cash scheme.

Notation. For 𝑎, 𝑏 ∈ N, the notation [𝑎] refers to the set
{1, 2, . . . , 𝑎}, and [𝑎, 𝑏] or [𝑎, 𝑏) is standard interval notation. For a
finite set 𝑆 , the notation 𝑟 $← 𝑆 refers to choosing 𝑟 independently
and uniformly at random from 𝑆 . For strings 𝑎, 𝑏 ∈ {0, 1}∗, the
notation 𝑎∥𝑏 refers to string concatenation.

Pseudorandom function (PRF). A pseudorandom function
𝐹 : K × X → Y is a function that can be computed by a determin-
istic, polynomial-time algorithm such that on input (𝑘, 𝑥) ∈ K ×X
the algorithm outputs 𝑦 ← 𝐹 (𝑘, 𝑥) ∈ Y [20]. Security for a PRF
says that for a randomly chosen key 𝑘 , the function 𝐹 (𝑘, ·) is indis-
tinguishable from a random function from X to Y.

Concretely, we use the VOPRF of Jarecki et al. [73], which we
recall here. Let G be a group of prime order 𝑞 with generator 𝑔, let
𝐻 : {0, 1}∗ → G be a hash function modeled as a random oracle, and
let 𝐹 (sk, 𝑥) ≜ 𝐻 (𝑥)sk, where sk $← Z𝑞 and pk = 𝑔sk. To obliviously
evaluate 𝐹 (sk, 𝑥), the client sends the blinded input 𝐻 (𝑥)𝑟 for a
random 𝑟 ∈ Z𝑞 , the server raises the blinded input to the secret key
sk, and the client unblinds the signed, blinded input by raising it to
1/𝑟 , recovering 𝐻 (𝑥)sk. To verify 𝐹 (sk, 𝑥) = 𝐻 (𝑥)sk, the server also
returns a discrete log equality proof DLEQ (𝑔, pk, 𝐻 (𝑥)𝑟 , 𝐻 (𝑥)𝑟 ·sk),
which proves for a tuple (𝑔, ℎ,𝑢, 𝑣) ∈ G4 that there exists 𝛼 ∈ Z𝑞
such that ℎ = 𝑔𝛼 and 𝑣 = 𝑢𝛼 [42].

Verifiable oblivious pseudorandom function (VOPRF). A
verifiable oblivious pseudorandom function (VOPRF) is a protocol
that allows a client holding secret input 𝑥 and public key pk to
evaluate a PRF 𝐹 (sk, 𝑥) with a server holding secret key sk [73].
Security for a VOPRF says that the evaluation should be verifiable
(the client can verify its correctness with pk) and oblivious (the
server learns nothing about 𝑥).

Constrained pseudorandom function (CPRF). A con-
strained PRF (CPRF) is a PRF that additionally allows deriving,
from a principal key 𝑘 ∈ K , a constrained key 𝑘S for a subset
S ⊆ X [21]. This constrained key allows evaluating 𝐹 (𝑘, 𝑥) for
every 𝑥 ∈ S, but reveals nothing about the value of the function at
points outside S.

CPRF.Constrain(𝑘,S) → 𝑘S . Given principal key 𝑘 ∈ K and sub-
set S ⊆ X, output constrained key 𝑘S .

CPRF.Eval(𝑘S, 𝑥) → 𝑦. Given constrained key 𝑘S and input 𝑥 ∈
S ⊆ X, output 𝑦 ∈ Y.

Security for a CPRF is analogous to security for a PRF, but applies to
both principal keys and constrained keys. In addition, a constrained
key 𝑘S must reveal nothing about the PRF values at points outside
of S. A CPRF is key-pseudorandom if a sequence of constrained
keys for pairwise disjoint sets is indistinguishable from a sequence
of random strings.

Goldreich-Goldwasser-Micali (GGM) PRF. The GGM
PRF [63] allows constrained evaluation on sets of bitstringsSwhose
members begin with a common prefix. Let𝐺 : {0, 1}𝑠 → {0, 1}2𝑠 be
a length-doubling pseudorandom generator (PRG) [20]. Let 𝐺0 (𝑥)
(or𝐺1 (𝑥)) denote the 𝑠 most (or least) significant bits of𝐺 (𝑥), so that
𝐺 (𝑥) = 𝐺0 (𝑥)∥𝐺1 (𝑥). The GGM PRF on key 𝑘 ∈ {0, 1}𝑠 and input
𝑥 ∈ {0, 1}𝑛 is defined as 𝐹 (𝑘, 𝑥) = 𝐺𝑥𝑛 (𝐺𝑥𝑛−1 (. . . (𝐺𝑥2 (𝐺𝑥1 (𝑘))))),
where 𝑥1∥ · · · ∥𝑥𝑛 is the binary representation of 𝑥 .

8

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

Intuitively, the GGM PRF defines a binary tree on the input
domain, where each leaf has label 𝑥 ∈ {0, 1}𝑛 and value 𝐹 (𝑘, 𝑥) ∈
{0, 1}𝑠 , and each internal node has label 𝑝 ∈ {0, 1}𝑚≤𝑛 and value
𝐹 (𝑘, 𝑝) ∈ {0, 1}𝑠 . The internal node 𝐹 (𝑘, 𝑝) is a constrained key for
the domain S𝑝 ⊆ X of inputs prefixed by 𝑝 . For convenience, we
define an additional algorithm CPRF.Expand(𝑘S, 𝑛) → y, which
takes constrained key𝑘S and𝑛 ∈ N, and computes the𝑛-level GGM-
expansion of 𝑘S into the size-2𝑛 vector y of length-𝑠 bitstrings.

Merkle tree. A Merkle tree built out of a collision-resistant hash
function allows one to compute a hash 𝑟 (called a “Merkle root” or
simply “root”) of a vector of 𝑛 elements x = (𝑥1, . . . , 𝑥𝑛). Later, a
prover can generate a short proof 𝜋 validating that an element 𝑥
is in the vector with root 𝑟 . The verifier, knowing 𝑟 , can check the
proof efficiently. Formally, a Merkle tree is defined by the following
algorithms:
Merkle.Hash(x) → 𝑟 . Given vector x, output Merkle root 𝑟 .
Merkle.Prove(𝑥, x) → 𝜋 . Given element 𝑥 and vector x, output

proof 𝜋 that 𝑥 ∈ x.
Merkle.Verify(𝑥, 𝑟, 𝜋) → 𝑏. Given element 𝑥 , Merkle root 𝑟 , and

proof 𝜋 , output 𝑏 = 1 if 𝜋 is valid and 𝑏 = 0 otherwise.
Security for a Merkle tree says that an adversary cannot output a
Merkle root 𝑟 and then fool the verifier into accepting a proof for an
element 𝑥 not in the vector with root 𝑟 . We also require a statistical
assumption about the underlying hash function 𝐻 , namely that it
is also a hiding commitment: If 𝑟 is uniform and unknown to the
adversary and ℎ = 𝐻 (𝑥, 𝑟), then (𝑥, ℎ) is indistinguishable from
(𝑦,ℎ), where 𝑦 is uniform.

Commitment scheme. A commitment scheme allows a sender
to commit to a secret message and later verifiably reveal the message
to a receiver. Formally, a commitment scheme is defined by the
following algorithms:
Commit(𝑚) → (com, open). Given message 𝑚, output

commitment-opening pair (com, open).
VerifyCom(𝑚, com, open) → 𝑏. Given message 𝑚, commitment

com, and opening open, output 𝑏 = 1 if the opening is valid
and 𝑏 = 0 otherwise.

Security for a commitment scheme says that the commitment
should be hiding, i.e., the commitment to a message𝑚 reveals no
information about𝑚, and binding, i.e., the sender cannot cheat by
opening a commitment to message𝑚 to a different message𝑚′.

Signature scheme. A signature scheme allows a signer to au-
thenticate a message that a receiver can later verify. Formally, a
signature scheme is defined by the following algorithms:
Sig.KeyGen(1𝜆) → (sk, pk). Given security parameter 1𝜆 , output

signing-verification key pair (sk, pk).
Sig.Sign(sk,𝑚) → 𝜎 . Given signing key sk and message𝑚, output

signature 𝜎 .
Sig.Verify(pk, 𝜎,𝑚) → 𝑏. Given verification key pk, signature 𝜎 ,

and message 𝑚, output 𝑏 = 1 if 𝜎 is a valid signature of 𝑚
under pk and 𝑏 = 0 otherwise.

Security for a signature scheme (known as existentially unforge-
able under chosen message attacks (EUF-CMA) [64]) says that an
adversary cannot create a valid signature for a previously unsigned
message.

Succinct non-interactive argument of knowledge (SNARK).
An arithmetic circuit 𝐶 : F𝑙 × F𝑚 → F𝑛 over a finite field F takes
a statement-witness pair (𝜙,𝑤) ∈ F𝑙 × F𝑚 as input and produces
𝐶 (𝜙,𝑤) ∈ F𝑛 as output. The arithmetic circuit satisfiability problem
of𝐶 is captured by the relation R𝐶 = {(𝜙,𝑤) ∈ F𝑙 ×F𝑚 : 𝐶 (𝜙,𝑤) =
0𝑛} and has language L𝐶 = {𝜙 ∈ F𝑙 : ∃𝑤 ∈ F𝑚 s.t. 𝐶 (𝜙,𝑤) = 0𝑛}.
A succinct non-interactive argument of knowledge (SNARK) for
arithmetic circuit satisfiability is defined by the following algo-
rithms:

SNARK.KeyGen(1𝜆,𝐶) → (pk, vk). Given security parameter 1𝜆
and arithmetic circuit 𝐶 , output proving key pk and verifica-
tion key vk.

SNARK.Prove(pk, 𝜙,𝑤) → 𝜋 . Given proving key pk, statement 𝜙 ,
and witness 𝑤 such that (𝜙,𝑤) ∈ R𝐶 , output proof 𝜋 for
𝜙 ∈ L𝐶 .

SNARK.Verify(vk, 𝜙, 𝜋) → 𝑏. Given verification key vk, statement
𝜙 , and proof 𝜋 , output 𝑏 = 1 if 𝜋 is valid and 𝑏 = 0 otherwise.

Security for a zk-SNARK says that the system should be complete
(honest prover convinces honest verifier), knowledge-sound (an
extractor can extract a valid witness from a convincing prover), and
zero-knowledge (verifier learns nothing) [62].

4 E-CASH FOR PRIVATE BILLING
In this section, we first define e-cash and the relevant properties for
our private-billing application (Section 4.1). As a warm up, we then
describe a simple e-cash scheme that is efficient, but, owing to a
small amount of leakage (i.e., the denominations of coins), does not
quite achieve the unlinkability property we are after (Section 4.2).
Finally, we describe a divisible e-cash scheme that fixes this leakage
(Section 4.3) and crucial optimizations (Section 4.4).

4.1 Definition
We define e-cash as a two-party protocol involving a customer
and a bank. The bank issues electronic coins to the customer in
exchange for hard currency, and the customer redeems coins with
the bank to reclaim hard currency. Importantly, e-cash payments
are unlinkable, meaning the bank cannot link a coin’s redemption
with its respective issuance.

Formally, e-cash is defined by the following algorithms:

Bank.Setup(1𝜆) → (st, pp). Given security parameter 1𝜆 , the bank
outputs initial state st, which can include secret keys and
a list of serial numbers of redeemed coins to detect double-
spending, and public parameters pp, which can include pub-
lic keys and other cryptographic parameters. For notational
simplicity, the remaining algorithms implicitly take in pp.

Bank.Issue(st, req, 𝑛) → (st, rsp) . Given state st, issue request req
from the customer, and issue amount𝑛 ∈ N, the bank outputs
updated state st and issue response rsp.

Bank.Redeem(st, cs, 𝑛) → (st, 𝑏) . Given state st, coins cs from the
customer, and redemption amount 𝑛 ∈ N, the bank outputs
updated state st, which may include new serial numbers, and
bit 𝑏 for whether or not the redemption was successful.

Cust.Setup(1𝜆) → wlt. Given security parameter 1𝜆 , the customer
outputs initial wallet wlt.

9

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

Cust.IssueRequest(wlt, 𝑛) → (wlt, req) . Given wallet wlt and is-
sue amount 𝑛 ∈ N, the customer outputs updated wallet wlt
and issue request req.

Cust.IssueProcess(wlt, rsp) → wlt. Given wallet wlt and issue re-
sponse rsp from the bank, the customer outputs updated
wallet wlt, which may include newly issued coins.

Cust.RedeemRequest(wlt, 𝑛) → (wlt, cs). Given wallet wlt and re-
demption amount 𝑛 ∈ N, the customer outputs updated wal-
let wlt and coins cs. The output cs will be the empty set ∅ if
there are insufficient funds in the wallet.

For private billing in Protected Audience, the bank corresponds to
the exchange and customers correspond to advertisers and pub-
lishers. To make a payment, the advertiser sends a redemption
request (coins) through the client’s browser to the publisher, who
redeems the coins with the exchange. For more details on how these
algorithms fit into Protected Audience, see Appendix D.

We require the e-cash scheme to satisfy several properties. An
e-cash scheme is correct if, when honest customers interact with an
honest bank, issuances add the correct values to customer balances
and redemptions (with sufficient funds) subtract the correct values
from customer balances.

Definition 4.1 (Correctness). We say that an e-cash scheme run-
ning with 𝐶 customers is correct if, for all efficient adversaries A,
the adversary wins the following game with negligible probability
in the security parameter 𝜆.
• The challenger runs

(st, pp) ← Bank.Setup(1𝜆),
wlt𝑖 ← Cust.Setup(1𝜆) for 𝑖 ∈ [𝐶],

sets wlt𝑖 ← 0 for 𝑖 ∈ [𝐶] and 𝑏 ← 1, and sends pp to A.
• The adversaryA can send polynomially many issue and redeem

requests to the challenger, each time specifying a customer
𝑖 ∈ [𝐶]:
– On issue request of value 𝑛, the challenger runs

(wlt𝑖 , req) ← Cust.IssueRequest(wlt𝑖 , 𝑛),
(st, rsp) ← Bank.Issue(st, req, 𝑛),

wlt𝑖 ← Cust.IssueProcess(wlt𝑖 , rsp),
and sets bal𝑖 ← bal𝑖 + 𝑛.

– On redeem request of value 𝑛 ∈ [0, bal𝑖], the challenger runs
(wlt𝑖 , cs) ← Cust.RedeemRequest(wlt𝑖 , 𝑛),
(st, 𝑏) ← Bank.Redeem(st, cs, 𝑛),

and sets bal𝑖 ← bal𝑖 − 𝑛.
We say that A wins the game if 𝑏 = 0.

An e-cash scheme is unforgeable if malicious customers cannot
redeem coins for more value than was issued to them.

Definition 4.2 (Unforgeability). We say that an e-cash scheme is
unforgeable if, for all efficient adversariesA, the adversary wins the
following game with negligible probability in the security parameter
𝜆.
• The challenger runs (st, pp) ← Bank.Setup(1𝜆), sends pp to
A, and sets bal← 0.
• The adversaryA can send polynomially many issue and redeem

requests to the challenger:
– On issue request req of value 𝑛, the challenger runs
(st, rsp) ← Bank.Issue(st, req, 𝑛), sends rsp to A, and sets
bal← bal + 𝑛.

– On redeem request cs of value𝑛, the challenger runs (st, 𝑏) ←
Bank.Redeem(st, cs, 𝑛), sends 𝑏 toA, and sets bal← bal−𝑛
if 𝑏 = 1.

We say that A wins the game if bal < 0.

An e-cash scheme is unlinkable if a malicious bank cannot link
redemptions to issuances or link redemptions to the same wallet
as long as customers have sufficient funds. (A malicious bank can,
however, learn when customers run out of funds, which is inherent.)

Definition 4.3 (Unlinkability). We say that an e-cash scheme is
unlinkable if, for all efficient adversaries A, the following game is
won with negligible advantage in the security parameter 𝜆.
• The challenger runs

𝑏 $← {0, 1},
(st, pp) ← Bank.Setup(1𝜆),

wlt𝑖 ← Cust.Setup(1𝜆) for 𝑖 ∈ {0, 1},
and sends (st, pp) to A.
• The adversaryA can send polynomially many issue and redeem

requests, and a challenge request to the challenger:
– On issue request of value 𝑛 for customer 𝑖 ∈ {0, 1}:
∗ The challenger runs

(wlt𝑖 , req) ← Cust.IssueRequest(wlt𝑖 , 𝑛)
and sends req to A.
∗ The adversary A sends rsp to the challenger.
∗ The challenger runs

wlt𝑖 ← Cust.IssueProcess(wlt𝑖 , rsp).
– On redeem request of value 𝑛 for customer 𝑖 ∈ {0, 1}:
∗ The challenger runs

(wlt𝑖 , cs) ← Cust.RedeemRequest(wlt𝑖 , 𝑛)
and sends cs to A.

– On challenge request of value 𝑛:
∗ The challenger runs

(wlt𝑖 , cs𝑖) ← Cust.RedeemRequest(wlt𝑖 , 𝑛)
for 𝑖 ∈ {0, 1}, and sends cs𝑏 to A.
∗ If cs𝑖 = ∅ for any 𝑖 ∈ {0, 1}, then the game terminates

and A loses.
• A outputs 𝑏 ′.

We say that A wins the game if 𝑏 = 𝑏 ′.

E-cash schemes sometimes require additional properties, such as
traceability (the identity of double-spenders will be revealed) [41],
but these turn out to be superfluous in our application setting, so
we do not require them (see Section 7 for more discussion).

4.2 A simple e-cash scheme
As a warm up, we begin with a simple e-cash scheme that is efficient,
but has a small amount of leakage. Although this leakage may be
tolerable in practice, the simple scheme ends up satisfying a weaker
notion of unlinkability than the one we set out to achieve.

Our construction. As a starting point, the VOPRF of Jarecki et
al. [73] directly yields a simple, single-denomination e-cash scheme.
To start, the bank generates and holds a signing key sk ∈ Z𝑞 .
To request a coin, the customer samples a random serial number
𝑥 ∈ {0, 1}𝜆 , blinds it as 𝐻 (𝑥)𝑟 ∈ G for 𝑟 $← Z𝑞 , obtains the VOPRF
output 𝐹 (sk, 𝐻 (𝑥)𝑟) = 𝐻 (𝑥)𝑟 ·sk, and unblinds it to obtain 𝑐 ←
𝐻 (𝑥)sk, a verifiably signed coin with serial number 𝑥 . To redeem

10

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

𝑐 , the customer sends (𝑥, 𝑐) to the bank, which checks that 𝑐 =
𝐹 (sk, 𝐻 (𝑥)) and that 𝑥 has not been previously spent. The customer
repeats this protocol as needed for larger payments.

Correctness, unforgeability, and unlinkability of the single-
denomination scheme is straightforward. However, since there
is only a single denomination, the scheme works poorly when cus-
tomers want to make payments for vastly different amounts. In
the ads context, prices vary widely: The average cost per thousand
impressions can range from $3 to almost $40 [1]. Moreover, bids
should be sufficiently granular to allow for bid micro-optimization.
As a result, payments can require many coins.

To fix the inefficiencies of the single-denomination scheme, our
simple e-cash scheme supports coins of different denominations—
namely power-of-two-valued denominations, 20, 21, . . . , 2ℓ , for
some parameter ℓ ∈ N—by running ℓ + 1 single-denomination
schemes concurrently (each with a different signing key). The full
details of our simple scheme are presented in Construction A of
Appendix A.

Efficiency. The efficiency benefits of the simple scheme are two-
sided. For coin issuance, a 𝑣-valued coin, for 𝑣 ∈ {20, 21, . . . , 2ℓ },
reduces customer/bank computation/communication and customer
storage by a factor of 𝑣 over the single-denomination scheme. For
coin redemption, customers can redeem value 𝑛 ∈ [0, 2ℓ+1) using
a number of coins equal to the Hamming weight of 𝑛, resulting in
𝑂 (ℓ) customer/bank computation/communication costs.

Security. Unfortunately, the efficiency of the simple scheme
comes with a small loss in security. Unlinkability only holds for
coins of the same denomination, since the bank learns the denom-
inations of requested coins. Therefore, if only a few issuances of
coins with value, say, 2ℓ , occur, then redemption of these coins can
be linked back to the small set of issuances, which is a rather weak
privacy guarantee. In practice, this small amount of leakage may
be tolerable, since rare denominations may be unlikely. Still, a bank
that learns coin issuance patterns over time may be able to further
de-anonymize redemptions, so we believe it prudent to patch this
leakage.

4.3 A divisible e-cash scheme
To recover the security of the single-denomination scheme while re-
taining the efficiency of the simple scheme, we construct a divisible
e-cash scheme, drawing from an existing line of work [15, 22, 34–
37, 82, 84]. The main idea of divisible e-cash is to allow customers to
efficiently request a fixed number of unit-valued coins, which can
then be efficiently and unlinkably redeemed in batches of varying
size.

While state-of-the-art divisible e-cash schemes [22, 36, 37, 84]
rely on complicated Groth-Sahai non-interactive zero-knowledge
proofs [69, 70] and concretely expensive pairing-based CPRFs, our
scheme instead takes advantage of more modern zk-SNARKs [68,
89], which allows us to use a symmetric-key-based, GGM-based
CPRF while maintaining good concrete efficiency.

Our construction. We present the full details of our divisible e-
cash scheme in Construction 1 and explain the high-level ideas here.
To start, the bank runs Bank.Setup, which generates key pairs for
signatures and zk-SNARKs, initializes its double-spend list to keep

<latexit sha1_base64="vJtEVLrfqnvIrJ7+3877RDx3UzM=">AAACgXicbVFdSxtBFJ2stbVRWz8e+7I0CAoSdiW0gghCH+xLIS1GxWSRu5O7Ojg7u87cUdMh/8LX9n/133R2XcQmvTBwOPeeM/cjLaUwFEV/WsHCq8XXb5betpdXVt+9X1vfODWF1RwHvJCFPk/BoBQKByRI4nmpEfJU4ll686XKn92hNqJQJzQpMcnhSolMcCBPXYwIH8gdH3+bXq51om5URzgP4gZ0WBP9y/UWjMYFtzkq4hKMGcZRSYkDTYJLnLZH1mAJ/AaucOihghxN4uqWp+GWZ8ZhVmj/FIU1+1LhIDdmkqe+Mge6NrO5ivxfbmgp20+cUKUlVPzpo8zKkIqwmj8cC42c5MQD4Fr4XkN+DRo4+S21Rz/w1vqKfuN2EieuarC2mk0SHWYgDe7WzvEhaYuJkyJFvwJVbWBGcAf61ibup+jNmz3LEqfwnh7qAf1R4tkTzIPTvW78qdv73usc7TbnWWIf2Ee2zWL2mR2xr6zPBowzxR7ZL/Y7WAh2gijYeyoNWo1mk/0TwcFfG6XGSQ==</latexit> GG
M

<latexit sha1_base64="gK3rMyJqlvaCpz1T2z/SRTxZscY=">AAACg3icbVFNa9tAEF0rzUedjybtsRdREyg0GCmYJhdDoJcenRAnAUuY0XqULFmtlN3ZpO7iv5Fr+7f6b7pSRGntDgge7828Hb3JKikMRdGvTrD2an1jc+t1d3tnd+/N/sHbK1NazXHMS1nqmwwMSqFwTIIk3lQaocgkXmf3X2r9+hG1EaW6pHmFaQG3SuSCA3kqmU9dgpURslSL6X4v6kdNhasgbkGPtTWaHnQgmZXcFqiISzBmEkcVpQ40CS5x0U2swQr4PdzixEMFBZrUNUsvwkPPzMK81P5TFDbs3xMOCmPmReY7C6A7s6zV5P+0iaX8NHVCVZZQ8ZeHcitDKsM6gXAmNHKScw+Aa+F3DfkdaODkc+omF/hgfceodbuMU1cv2Fgti0TDHKTBo8Y5HpK2mDopMvQRqDqBpYFH0A82dd/FYNXsz1jqFD7Rt+YH/VHi5ROsgqvjfvy5Pzgf9M6O2vNssffsA/vIYnbCzthXNmJjxlnFntkP9jNYDz4Fx8HgpTXotDPv2D8VDH8D7FzHjw==</latexit>~n

<latexit sha1_base64="1VbwegUETnByN1v4mQft3d+ogbM=">AAACenicbVFNT9tAEN0YSmkoX+XIxSJCAoEiG0WFCxISF46hJYCUWNF4Mw6rrNdmd5Y2tfgJvZbfxn/hwNpYVZsw0kpPb+a9nY84l8JQEDw3vIXFD0sflz81Vz6vrq1vbH65NpnVHHs8k5m+jcGgFAp7JEjiba4R0ljiTTw5L/M3D6iNyNQVTXOMUhgrkQgO5Kjv02Ew3GgF7aAKfx6ENWixOrrDzQYMRhm3KSriEozph0FOUQGaBJf42BxYgznwCYyx76CCFE1UVL0++ruOGflJpt1T5Ffsv4oCUmOmaewqU6A7M5sryfdyfUvJSVQIlVtCxd8+Sqz0KfPLwf2R0MhJTh0AroXr1ed3oIGTW09z8A3vravo1m5XYVSUDVZWs0mi0wSkwcPKOTwlbTEqpIjRrUCVG5gRPIC+t1HxS3Tmzf7KokLhD/pZDeiOEs6eYB5cH7XDr+3OZad1dlifZ5ltsx22x0J2zM7YBeuyHuNszH6zP+yp8eLtePvewVup16g1W+y/8DqvGDTEFg==</latexit>~0
<latexit sha1_base64="OdFPaUf69gVtwuaG5E/1DsMQInI=">AAACenicbVFNT9tAEN0YKDSl5evIxSKq1KooslEEXJCQuHAMLQGkxIrGm3FYZb02u7NAsPgJvZbfxn/hwNpYVZsw0kpPb+a9nY84l8JQEDw3vIXFpQ/LKx+bn1Y/f1lb39i8MJnVHHs8k5m+isGgFAp7JEjiVa4R0ljiZTw5KfOXt6iNyNQ5TXOMUhgrkQgO5Khf02E4XG8F7aAKfx6ENWixOrrDjQYMRhm3KSriEozph0FOUQGaBJf42BxYgznwCYyx76CCFE1UVL0++l8dM/KTTLunyK/YfxUFpMZM09hVpkDXZjZXku/l+paSw6gQKreEir99lFjpU+aXg/sjoZGTnDoAXAvXq8+vQQMnt57m4CfeWFfRrd3Ow6goG6ysZpNERwlIg7uVc3hE2mJUSBGjW4EqNzAjuAV9Y6PiQXTmzf7KokLhHd1XA7qjhLMnmAcXe+1wv90567SOd+vzrLBttsO+sZAdsGN2yrqsxzgbs9/sD3tqvHg73nfvx1up16g1W+y/8DqvGkjEFw==</latexit>~1

<latexit sha1_base64="aTWBiKXXEpGS4SGVox7F+/mHRqw=">AAACqnicbVFdi9NAFJ3Gr7V+dfXRl8EirBBKshT1pbAgiI912e6uNLFMpje7QyeTdOZmTR2yf8Nf46v+Bv+Nk2wQbb0wcLjnnjP3IymkMBgEv3rerdt37t7bu99/8PDR4yeD/aenJi81hxnPZa7PE2ZACgUzFCjhvNDAskTCWbJ61/BnV6CNyNUJbgqIM3ahRCo4Q5daDMLNoqIT+v5g5dPq1XWEUKFNc11fVzQSikY28MOo/mwjCesIpKwXg2EwCtqguyDswJB0MV3s91i0zHmZgUIumTHzMCgwtkyj4BLqflQaKBhfsQuYO6hYBia27Ww1fekyS+o6ck8hbbN/KyzLjNlkiavMGF6aba5J/o+bl5i+ja1QRYmg+M1HaSkp5rRZFF0KDRzlxgHGtXC9Un7JNOPo1tmPjmFduopp53YSxrZpsLXaJhEnKZMG/NY5nKAuIbZSJOBWoJoNbAmumF6Xsf0qxrtmf2SxVfAFq3ZAd5Rw+wS74PRwFL4ejT+Oh0d+d5498py8IAckJG/IEflApmRGOPlGvpMf5Kfne8feJ29+U+r1Os0z8k94y99auNWw</latexit>

~G = � (:, G) for G 2 {0, 1}✓

<latexit sha1_base64="pspUKVazXKqcXEWcLd/OU/36YTo=">AAACf3icbVFNT9tAEN24BUJaKJQjl1Wjqj2gyEZRaQ+RInHhGCoCkRILjTdjWLFem91Z2tTiT/QKf4x/w9pYVZt0pJWe3sx7Ox9JoaSlMHxqBa9er61vtDc7b95ubb/b2X1/bnNnBI5FrnIzScCikhrHJEnhpDAIWaLwIrk5rvIXd2iszPUZLQqMM7jSMpUCyFOTGSrFB/zwcqcb9sI6+CqIGtBlTYwud1swm+fCZahJKLB2GoUFxSUYkkLhfWfmLBYgbuAKpx5qyNDGZd3wPf/omTlPc+OfJl6zfytKyKxdZImvzICu7XKuIv+XmzpKv8al1IUj1OLlo9QpTjmvpudzaVCQWngAwkjfKxfXYECQ31Fn9h1vna8YNW5nUVxWDdZWy0miQQrK4kHtHA3IOIxLJRP0K9DVBpYEd2BuXVz+kv1Vsz+yuNT4g37WA/qjRMsnWAXnh73oS69/2u8OD5rztNk++8A+s4gdsSE7YSM2ZoIp9ps9sMegFXwKekH4Uhq0Gs0e+yeCb89OTMSJ</latexit>

✓ = 2

<latexit sha1_base64="pspUKVazXKqcXEWcLd/OU/36YTo=">AAACf3icbVFNT9tAEN24BUJaKJQjl1Wjqj2gyEZRaQ+RInHhGCoCkRILjTdjWLFem91Z2tTiT/QKf4x/w9pYVZt0pJWe3sx7Ox9JoaSlMHxqBa9er61vtDc7b95ubb/b2X1/bnNnBI5FrnIzScCikhrHJEnhpDAIWaLwIrk5rvIXd2iszPUZLQqMM7jSMpUCyFOTGSrFB/zwcqcb9sI6+CqIGtBlTYwud1swm+fCZahJKLB2GoUFxSUYkkLhfWfmLBYgbuAKpx5qyNDGZd3wPf/omTlPc+OfJl6zfytKyKxdZImvzICu7XKuIv+XmzpKv8al1IUj1OLlo9QpTjmvpudzaVCQWngAwkjfKxfXYECQ31Fn9h1vna8YNW5nUVxWDdZWy0miQQrK4kHtHA3IOIxLJRP0K9DVBpYEd2BuXVz+kv1Vsz+yuNT4g37WA/qjRMsnWAXnh73oS69/2u8OD5rztNk++8A+s4gdsSE7YSM2ZoIp9ps9sMegFXwKekH4Uhq0Gs0e+yeCb89OTMSJ</latexit>

✓ = 2

<latexit sha1_base64="ViT+xxE/osoluhU+3HQngMSQddg=">AAAChHicbVFNb9NAEN0YKCV8tXDkYhEhcYgimwbaS1ElLlyQQtW0lZJVNd6M21XWa2d3tjRd9Xf0Cj+Lf8PatVBJGMnS03szb8dvskpJS0nyuxM9ePho4/Hmk+7TZ89fvNzafnVsS2cEjkWpSnOagUUlNY5JksLTyiAUmcKTbP6l1k8u0VhZ6iNaVsgLONcylwIoUHxKeEX+G5q5wpuzrV4ySJqK10Hagh5ra3S23YHprBSuQE1CgbWTNKmIezAkRTDsTp3FCsQcznESoIYCLffN1jfxu8DM4rw04dMUN+z9CQ+FtcsiC50F0IVd1Wryf9rEUb7HvdSVI9Ti7qHcqZjKuI4gnkmDgtQyABBGhl1jcQEGBIWgutNDXLjQMWrdjlLu6wUbq1WRaD8HZbHfOKf7ZBxyr2SGIQJdJ7AycAlm4bi/lsN1s79j3Gv8QVfND4ajpKsnWAfHHwbpp8Hw+7B30G/Ps8nesLfsPUvZLjtgX9mIjZlgC3bLfrJf0UbUj3aij3etUaedec3+qejzH8L/x+w=</latexit>

M
er

kl
e

<latexit sha1_base64="uCnmI+4ESuX8z+FbwRP+yDeaR8I=">AAACfXicbVFNT9tAEN24pYW0FGiPvViNkHqIIruKgAsSEheOaUUCUmJF480YtqzXZneWElb5D1zhn/Fr2rWxUJt0pJWe3sx7Ox9pKYWhKHpqBa9er715u77Rfvd+88PW9s7HkSms5jjkhSz0eQoGpVA4JEESz0uNkKcSz9Kr4yp/doPaiEKd0rzEJIcLJTLBgTw1mk9dFC2m252oF9URroK4AR3WxGC604LJrOA2R0VcgjHjOCopcaBJcImL9sQaLIFfwQWOPVSQo0lc3e4i3PXMLMwK7Z+isGb/VjjIjZnnqa/MgS7Ncq4i/5cbW8oOEidUaQkVf/4oszKkIqxmD2dCIyc59wC4Fr7XkF+CBk5+Q+3JD7y2vmLQuJ3GiasarK2Wk0SHGUiD3do5PiRtMXFSpOhXoKoNLAluQF/bxN2J/qrZiyxxCn/RbT2gP0q8fIJVMPrWi/d6/e/9zlG3Oc86+8y+sK8sZvvsiJ2wARsyzn6ye/bAHlu/g92gG/SeS4NWo/nE/olg/w/0acVc</latexit>~00
<latexit sha1_base64="rbX0IH4pg/dpYqjnA5DOS+Lqdrg=">AAACfXicbVFNT9tAEN24pYW0FGiPvViNkHqIIruKgAsSEheOaUUCUmJF480YtqzXZneWElb5D1zhn/Fr2rWxUJt0pJWe3sx7Ox9pKYWhKHpqBa9er715u77Rfvd+88PW9s7HkSms5jjkhSz0eQoGpVA4JEESz0uNkKcSz9Kr4yp/doPaiEKd0rzEJIcLJTLBgTw1mk9dFC+m252oF9URroK4AR3WxGC604LJrOA2R0VcgjHjOCopcaBJcImL9sQaLIFfwQWOPVSQo0lc3e4i3PXMLMwK7Z+isGb/VjjIjZnnqa/MgS7Ncq4i/5cbW8oOEidUaQkVf/4oszKkIqxmD2dCIyc59wC4Fr7XkF+CBk5+Q+3JD7y2vmLQuJ3GiasarK2Wk0SHGUiD3do5PiRtMXFSpOhXoKoNLAluQF/bxN2J/qrZiyxxCn/RbT2gP0q8fIJVMPrWi/d6/e/9zlG3Oc86+8y+sK8sZvvsiJ2wARsyzn6ye/bAHlu/g92gG/SeS4NWo/nE/olg/w/2fsVd</latexit>~01

<latexit sha1_base64="Eu0yS++U0dEh1lQdspHmQ61Stmw=">AAACfXicbVFNT9tAEN24pYW0FGiPvViNkHqIIruKgAsSEheOaUUCUmJF480YtqzXZneWElb5D1zhn/Fr2rWxUJt0pJWe3sx7Ox9pKYWhKHpqBa9er715u77Rfvd+88PW9s7HkSms5jjkhSz0eQoGpVA4JEESz0uNkKcSz9Kr4yp/doPaiEKd0rzEJIcLJTLBgTw1mk9dHC2m252oF9URroK4AR3WxGC604LJrOA2R0VcgjHjOCopcaBJcImL9sQaLIFfwQWOPVSQo0lc3e4i3PXMLMwK7Z+isGb/VjjIjZnnqa/MgS7Ncq4i/5cbW8oOEidUaQkVf/4oszKkIqxmD2dCIyc59wC4Fr7XkF+CBk5+Q+3JD7y2vmLQuJ3GiasarK2Wk0SHGUiD3do5PiRtMXFSpOhXoKoNLAluQF/bxN2J/qrZiyxxCn/RbT2gP0q8fIJVMPrWi/d6/e/9zlG3Oc86+8y+sK8sZvvsiJ2wARsyzn6ye/bAHlu/g92gG/SeS4NWo/nE/olg/w/2f8Vd</latexit>~10
<latexit sha1_base64="TBUDAXX5ittkaHWqobcahuZLS9I=">AAACfXicbVFNaxsxEJW3X6n7lbTHXpaaQA/GrIpJegkEcsnRLbETsBczK88marTajTRK4wj/h1zTf9Zf02o3S2ntDggeb+Y9zUdWKWkpSX52okePnzx9tvW8++Llq9dvtnfeTmzpjMCxKFVpzjKwqKTGMUlSeFYZhCJTeJpdHtX502s0Vpb6hJYVpgWca5lLARSoyXLuOV/Nt3vJIGki3gS8BT3Wxmi+04HZohSuQE1CgbVTnlSUejAkhcJVd+YsViAu4RynAWoo0Ka+aXcV7wZmEeelCU9T3LB/KzwU1i6LLFQWQBd2PVeT/8tNHeWfUy915Qi1ePgodyqmMq5njxfSoCC1DACEkaHXWFyAAUFhQ93ZV7xyoWLUup3w1NcNNlbrSaKDHJTFfuPMD8g4TL2SGYYV6HoDa4JrMFcu9bdyuGn2R5Z6jd/pphkwHIWvn2ATTD4N+N5g+GXYO+y359li79kH9pFxts8O2TEbsTET7Bu7Y/fsR+dXtBv1o8FDadRpNe/YPxHt/wb4lMVe</latexit>~11

<latexit sha1_base64="2+xbPhdCyhHjbWOuO3q+476VCWA=">AAACenicbVFNT9tAEN24QCFQPsqRi0WE1KooslHU9oKE1AvH8BFASqxovBknK9ZrsztLm1r8BK70t/W/cGBtLAQJI6309Gbe2/mIcykMBcH/hvdhYXHp4/JKc3Xt0/rG5tbnC5NZzbHHM5npqxgMSqGwR4IkXuUaIY0lXsbXv8r85S1qIzJ1TtMcoxTGSiSCAznqbDIMhputoB1U4c+DsAYtVkd3uNWAwSjjNkVFXIIx/TDIKSpAk+AS75oDazAHfg1j7DuoIEUTFVWvd/6eY0Z+kmn3FPkV+1pRQGrMNI1dZQo0MbO5knwv17eU/IwKoXJLqPjzR4mVPmV+Obg/Eho5yakDwLVwvfp8Aho4ufU0B6d4Y11Ft3Y7D6OibLCymk0SHSYgDe5XzuEhaYtRIUWMbgWq3MCM4Bb0jY2Kv6Izb/YiiwqFv+lPNaA7Sjh7gnlwcdAOv7c7J53W0X59nmW2w3bZFxayH+yIHbMu6zHOxuyePbB/jUdv1/vqfXsu9Rq1Zpu9Ca/zBPSvxAU=</latexit>

⌘0
<latexit sha1_base64="oOinOJWPsrC2x7LbI5k95naq3VI=">AAACenicbVFNT9tAEN24QCFQPsqRi0WE1KooslHU9oKE1AvH8BFASqxovBknK9ZrsztLm1r8BK70t/W/cGBtLAQJI6309Gbe2/mIcykMBcH/hvdhYXHp4/JKc3Xt0/rG5tbnC5NZzbHHM5npqxgMSqGwR4IkXuUaIY0lXsbXv8r85S1qIzJ1TtMcoxTGSiSCAznqbDIMh5utoB1U4c+DsAYtVkd3uNWAwSjjNkVFXIIx/TDIKSpAk+AS75oDazAHfg1j7DuoIEUTFVWvd/6eY0Z+kmn3FPkV+1pRQGrMNI1dZQo0MbO5knwv17eU/IwKoXJLqPjzR4mVPmV+Obg/Eho5yakDwLVwvfp8Aho4ufU0B6d4Y11Ft3Y7D6OibLCymk0SHSYgDe5XzuEhaYtRIUWMbgWq3MCM4Bb0jY2Kv6Izb/YiiwqFv+lPNaA7Sjh7gnlwcdAOv7c7J53W0X59nmW2w3bZFxayH+yIHbMu6zHOxuyePbB/jUdv1/vqfXsu9Rq1Zpu9Ca/zBPbDxAY=</latexit>

⌘1

<latexit sha1_base64="gr6NpsrZwcgFhZRmrEGfYJV7Cl4=">AAACgXicbVFdS+NAFJ1Gd9Xqrh/7uC/BIihISaSoIIKwLz52xarYhnIzvbGDk0mcuaPW4L/YV/d/7b/ZSQyirRcGDufec+Z+xLkUhoLgX8Obm//ydWFxqbm88u376tr6xoXJrObY45nM9FUMBqVQ2CNBEq9yjZDGEi/j219l/vIetRGZOqdJjlEKN0okggM56no8HGBuhMzUcK0VtIMq/FkQ1qDF6ugO1xswGGXcpqiISzCmHwY5RQVoElzic3NgDebAb+EG+w4qSNFERdXys7/lmJGfZNo9RX7FvlcUkBozSWNXmQKNzXSuJD/L9S0lh1EhVG4JFX/9KLHSp8wv5/dHQiMnOXEAuBauV5+PQQMnt6Xm4AzvrKvo1m7nYVSUDVZW00mi4wSkwd3KOTwmbTEqpIjRrUCVG5gS3IO+s1HxJDqzZm+yqFD4QI/VgO4o4fQJZsHFXjvcb3d+d1onu/V5FtlPtsm2WcgO2Ak7ZV3WY5wp9oe9sL/enLfjBd7ea6nXqDU/2Ifwjv4DcIrGcg==</latexit>

⌘n

<latexit sha1_base64="fEcTs4PJ4uFC5Wv5puhBg8teQJA=">AAACvXicbVFdb9MwFHXD1ygf6+CRF4sKaUilSqYKeKmYBA97LGjdJjUhctzb1ZrjpPbNlmKyH8Sv4XX7NXPSCkHLlSwd3XPP8f1IcikM+v5Ny7t3/8HDRzuP20+ePnu+29l7cWKyQnMY80xm+ixhBqRQMEaBEs5yDSxNJJwmF59r/vQStBGZOsZlDlHKzpWYCc7QpeLOl3lc0iE92p/Htgx/+lWPrlBQvb0OEUq0s0xX1yUNhaKh9XtBWH23oYQFDUFK+o4eVHGn6/f9Jug2CNagS9YxivdaLJxmvEhBIZfMmEng5xhZplFwCVU7LAzkjF+wc5g4qFgKJrLNuBV94zJT6tpyTyFtsn8rLEuNWaaJq0wZzs0mVyf/x00KnH2MrFB5gaD46qNZISlmtN4dnQoNHOXSAca1cL1SPmeacXQbboffYFG4itHa7TiIbN1gY7VJIg5nTBroNc7BEHUBkZUiAbcCVW9gQ3DJ9KKI7A8x2Db7I4usgissmwHdUYLNE2yDk4N+8L4/+DroHvbW59khr8hrsk8C8oEckiMyImPCyS/ym9yQW++TB5701KrUa601L8k/4V3dAdoW3Lo=</latexit>

⌘G = � (⌘G k0,⌘G k1) for G 2 {0, 1}✓�2

<latexit sha1_base64="ajsQg/8/NeU5gqWqHAuDbAVvano=">AAAClHicbVFdaxNBFJ2sXzV+pQq+9GUwCBVC2C1B+9BAoQh9kihNW0iWZXZytxk6O7uduVMTxzz4a3zVn+O/cXaziCZeGDjcc8+Z+5GWUhgMw1+t4M7de/cf7DxsP3r85Omzzu7zc1NYzWHMC1noy5QZkELBGAVKuCw1sDyVcJFen1T8xS1oIwp1hssS4pxdKZEJztCnks7ePFnQIT3dXyZuMf0arnp0jaLVm6TTDfthHXQbRA3okiZGyW6LTWcFtzko5JIZM4nCEmPHNAouYdWeWgMl49fsCiYeKpaDiV09xYq+9pkZzQrtn0JaZ/9WOJYbs8xTX5kznJtNrkr+j5tYzA5jJ1RpERRff5RZSbGg1UroTGjgKJceMK6F75XyOdOMo19ce/oJbqyvGDVuZ1HsqgZrq00ScZgxaaBXO0dD1BZiJ0UKfgWq2sCG4JbpGxu7L2KwbfZHFjsFn3FRD+iPEm2eYBucH/Sjt/3Bx0H3uNecZ4fskVdkn0TkHTkmp2RExoSTb+Q7+UF+Bi+Do+AkeL8uDVqN5gX5J4IPvwGO7sxy</latexit>

⌘G = � (~G k0,~G k1)
<latexit sha1_base64="2ty6w/MIMVTwnd6SSIdhnfrwCrw=">AAACnHicbVFdaxQxFM2OX3X9avVRkOAi+LAuE1lsXwoFfRBEWKW7LeyMJZO904ZmMtPkpu4axnd/ja/6U/w3ZqaD6K4XAodzzz25H1mlpMU4/tWLrl2/cfPW1u3+nbv37j/Y3nk4s6UzAqaiVKU5zrgFJTVMUaKC48oALzIFR9n56yZ/dAnGylIf4qqCtOCnWuZScAzUyfYgQViiz0tTf13SRGqa+HjIkvqTT0Ap+oKyOqjiUdwG3QSsAwPSxeRkp8eTRSlcARqF4tbOWVxh6rlBKRTU/cRZqLg456cwD1DzAmzq22lq+iwwCxo6Ck8jbdm/KzwvrF0VWVAWHM/seq4h/5ebO8z3Ui915RC0uPood4piSZvV0IU0IFCtAuDCyNArFWfccIFhgf3kI1y4oJh0bocs9U2DrdV6EnE/58rCsHVm+2gcpF7JDMIKdLOBtYJLbi5c6r/I8abZn7LUa/iMy3bAcBS2foJNMHs5Yq9G4w/jwcGwO88WeUyekueEkV1yQN6SCZkSQb6R7+QH+Rk9id5E76L3V9Ko19U8Iv9ENPsNFAvQEw==</latexit>

for G 2 {0, 1}✓�1

Figure 2: Divisible e-cash tree of height ℓ = 2. The leaves of
the Merkle tree are coin serial numbers generated by GGM-
expanding a principal key 𝑘 . Each node of the Merkle tree
represents a batch of coins with value equal to the number
of leaf nodes under it.

track of the serial numbers of spent coins, and publishes public
parameters. The customer runs Cust.Setup, which initializes its
wallet state to empty.

To begin the issuance protocol, the customer runs
Cust.IssueRequest for amount 𝑛 = 2ℓ , which is fixed by pa-
rameter ℓ ∈ N. In this algorithm, the customer generates a principal
GGM CPRF key and computes its ℓ-level GGM-expansion into 2ℓ
leaves. Each leaf is a serial number corresponding to a unit-valued
coin. The customer also computes a Merkle root over these leaves.

Intuitively, each Merkle tree node succinctly describes a batch of
coins with value equal to the number of leaves underneath. Figure 2
shows a Merkle tree of height ℓ = 2 with four leaves𝑦00, 𝑦01, 𝑦10, 𝑦11,
each of unit value. The internal node ℎ0 has value two, covering
leaves 𝑦00, 𝑦01. The corresponding constrained key 𝑦0 succinctly
represents and generates these leaves. For clarity, we henceforth
refer to an entire Merkle tree as a full tree and its root as the full
root to distinguish from a subtree and its root.

The customer then sends a commitment to the full root to the
bank in an issuance request. Upon receiving the request, the bank
runs Bank.Issue, which returns a signature of the commitment to
the customer. Finally, the customer runs Cust.IssueProcess, which
verifies the signature and populates its wallet with coins that can
now be spent.

To begin the redemption protocol, the customer runs
Cust.RedeemRequest for amount 𝑛 ∈ [0, 2ℓ+1). At a high-level,
the customer finds in its wallet a number of subtrees (equal to the
Hamming weight of𝑛) that cover𝑛 unspent leaves. For each subtree,
the customer sends to the bank as part of its redemption request
the constrained key covering the subtree leaves, the subtree root,
and a zk-SNARK proof of the following statement: “Given the root
of a subtree root (the statement), I know a signature 𝜎 , commitment
com, opening information open, full root root∗, and Merkle proof
𝜋path (the witness) such that:

• the signature is on the commitment to the full root:
Sig.Verify(pk, 𝜎, com) = 1 with bank public key pk,

11

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

• the commitment opens to the full root:
VerifyCom(root∗, com, open) = 1, and
• the Merkle proof is a valid subtree membership proof:

Merkle.Verify(root, root∗, 𝜋path) = 1.”
Upon receiving the request, the bank runs Bank.Redeem. For

each subtree in the request, the bank first recovers the subtree leaves
by expanding the constrained key and then checks the following:
• no leaves have been double-spent,
• the subtree is consistent, i.e., the leaves hash to the root of

the subtree (which is also the zk-SNARK statement), and
• the zk-SNARK proof is valid.

If all checks pass and a total of 𝑛 coins are deemed valid, then the
bank accepts. Otherwise, the bank rejects.

Efficiency. For coin issuance, the customer generates a request
for 2ℓ coins by constructing a height-ℓ full tree, which requires
𝑂 (2ℓ) PRG evaluations, 𝑂 (2ℓ) hashes, and a single commitment.
The bank, on the other hand, issues these 2ℓ coins by producing a
single signature. For customer storage, there is a trade-off: Although
storing the principal CPRF key used to generate the 2ℓ leaves is
sufficient, storing (parts of) the GGM tree and Merkle tree saves
from needing to recompute subtrees when redeeming coins.

For coin redemption, the customer generates a request to re-
deem 𝑛 ∈ [0, 2ℓ+1) coins using a number of subtrees equal to
the Hamming weight of 𝑛, resulting in 𝑂 (ℓ) customer computa-
tion/communication costs. Notably, this involves generating and
sending 𝑂 (ℓ) zk-SNARK proofs. The bank verifies 𝑂 (ℓ) zk-SNARK
proofs, checks consistency for 𝑂 (ℓ) subtrees, which requires 𝑂 (2ℓ)
PRG evaluations and 𝑂 (2ℓ) hashes, and checks double-spends for
𝑂 (2ℓ) leaves.

Security. Construction 1 meets a relaxed correctness property,
which only requires correctness for redemptions with sufficient
funds and sufficient unspent subtrees. That is, for a redemption
of amount 𝑛, the customer can find a number of unspent subtrees
equal to the Hamming weight of 𝑛 that cover 𝑛 leaves. We analyze
the security of Construction 1 in Appendix B, where we prove the
following properties:

Lemma 4.4 (Unforgeability). Construction 1 is an unforgeable
e-cash scheme assuming the signature scheme is EUF-CMA-secure,
the commitment scheme is binding, the zk-SNARK proof system is
knowledge-sound, and theMerkle tree is built from a collision-resistant
hash function.

Lemma 4.5 (Unlinkability). Construction 1 is an unlinkable e-
cash scheme assuming the commitment scheme is hiding, the CPRF is
secure and key-pseudorandom, the Merkle tree hash function is a hid-
ing commitment, and the zk-SNARK proof system is zero-knowledge.

4.4 Divisible e-cash optimizations
Our divisible e-cash scheme, as described in Construction 1, does
not yet meet our efficiency requirements out of the box. In the
context of private billing for Protected Audience, zk-SNARK proof
generation and verification, which can be expensive, are currently
on the online, latency-critical path. We therefore introduce several
latency and operating-cost optimizations to rectify this.

zk-SNARK proof precomputation for lower latency. Our
first task is to move the 𝑂 (ℓ) zk-SNARK proof generations in
Cust.RedeemRequest offline. We observe that the zk-SNARK
proofs are not tied to any information unknown ahead of time,
besides perhaps the value of the redemption request. Still, the cus-
tomer can get around this by precomputing proofs for subtrees of
each size in advance. For example, for full trees of height ℓ = 2,
customers prepare subtrees of heights 0, 1, and 2 ahead of time,
and replenish whenever subtrees are used. As a result, there will
always be a set of prepared subtrees covering a number of leaves
that sum to any allowed redemption value. Moving proof genera-
tion offline substantially decreases latency and allows us to choose
a zk-SNARK optimized along other measures, such as proof size,
instead of prover time.

SNARK-friendly primitives for smaller circuits. Our choice
of zk-SNARK is thus Groth16 [68], which enjoys the smallest
proof size and fastest verifier time (both constant) among existing
SNARKs [89]. Although Groth16’s prover time is 𝑂 (𝑛 log𝑛), where
𝑛 is the circuit size (in multiplication gates or equivalently R1CS
constraints), we can reduce the size of our arithmetic circuits (and
hence precomputation costs) by using SNARK-friendly primitives.
For our Merkle tree, hash-based commitment, and Schnorr signa-
ture constructions, we instantiate all hashing with Poseidon [65],
a SNARK-friendly hash function. This leads to circuits that are
several orders of magnitude smaller than those using traditional
hash functions—the circuit for proving leaf knowledge in a Merkle
tree of 230 elements is around 7k R1CS constraints using Poseidon,
compared to 826k using SHA-256 or 630k using Blake2s [65].

Collision-resistant PRG for faster redemption. Although
Poseidon is efficient to compute in an arithmetic circuit, it is slow to
compute natively—0.03 ms of CPU time on our evaluation testbed
(Section 6). In Construction 1, 𝑂 (2ℓ) native Poseidon hashes are
required for the customer to construct a full tree and for the bank
to check consistency of redeemed subtrees.

While these hashes are unavoidable on the customer, we find
a way to optimize them out on the bank. Instead of the customer
proving subtree membership and the bank checking subtree consis-
tency, the customer proves membership of only the leftmost leaf of
the subtree and the bank relies on an additional collision-resistance
property of the PRG underlying GGM—an unusual requirement for
a PRG—to guarantee subtree consistency.

For any general PRG, this optimization is insecure. Consider the
following attack in reference to Figure 2: A malicious customer
first redeems leaves 𝑦10 and 𝑦11, proving membership of 𝑦10 with
respect to root ℎ𝜖 , and the bank stores 𝑦10 and 𝑦11 in its double-
spend list. Next, the customer finds a different GGM key 𝑘 ′ that
expands into leaves𝑦00, 𝑦′01, 𝑦

′
10, 𝑦

′
11, where𝑦10 ≠ 𝑦′10 and𝑦11 ≠ 𝑦′11.

The customer redeems all of these leaves, proving membership
of 𝑦00 with respect to the same root ℎ𝜖 , and the bank will accept,
since 𝑦10 ≠ 𝑦′10 and 𝑦11 ≠ 𝑦′11. Thus, the customer has successfully
redeemed six leaves from a full tree with four leaves.

To prevent such an attack, we require the underlying PRG to
be “left-collision-resistant.” That is, given a length-doubling PRG
𝐺 (𝑘) = 𝐺0 (𝑘)∥𝐺1 (𝑘), it should be hard to find 𝑘 ≠ 𝑘 ′ such that
𝐺0 (𝑘) = 𝐺0 (𝑘 ′). (𝐺1 can also have the same property, though it is
unnecessary.) The PRG 𝐺 (𝑘) = 𝐺0 (𝑘)∥𝐺1 (𝑘) = 𝐻 (𝑘 ∥0)∥𝐻 (𝑘 ∥1) is

12

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

Construction 1. Divisible e-cash scheme. Let parameter ℓ ∈ N be the height of a full tree.

Bank.Setup(1𝜆) → (st, pp).
• Generate signing key pair (skΣ, pkΣ) ← Sig.KeyGen(1𝜆).
• Generate proving and verifying key
(pkΠ, vkΠ) ← SNARK.KeyGen(1𝜆,𝐶), where the coin validity
circuit 𝐶 is for the following relation: “Given the root of a
subtree root (the statement), I know a signature 𝜎 , commitment
com, opening information open, full root root∗, and Merkle proof
𝜋path (the witness) such that:
– the signature is on the commitment to the full root:

Sig.Verify(pkΣ, 𝜎, com) = 1,
– the commitment opens to the full root:

VerifyCom(root∗, com, open) = 1, and
– the Merkle proof is a valid subtree membership proof:

Merkle.Verify(root, root∗, 𝜋path) = 1.”
• Set double-spend list dsl← ∅.
• Set state st← (skΣ, dsl).
• Set public parameters pp← (1𝜆, pkΣ, pkΠ, vkΠ).
• Output (st, pp).

Bank.Issue(st, req, 𝑛) → (st, rsp) .
• If 𝑛 ≠ 2ℓ , then output (st,⊥).
• Parse st as (skΣ, dsl).
• Parse req as com.
• Compute signature 𝜎 ← Sig.Sign(skΣ, com).
• Set response rsp← 𝜎 .
• Output (st, rsp).

Bank.Redeem(st, cs, 𝑛) → (st, 𝑏) .
• If 𝑛 ∉ [0, 2ℓ+1), then output (st, 0).
• Parse state st as (skΣ, dsl).
• Set initial state st0 ← st.
• Set amount𝑚 ← 0.
• For (𝑖, 𝑘S, 𝜙, 𝜋) in cs:

– Compute y← CPRF.Expand(𝑘S, ℓ − 𝑖).
– If y ∩ dsl ≠ ∅ or Merkle.Hash(y) ≠ 𝜙 or

SNARK.Verify(vk𝜋 , 𝜙, 𝜋) = 0, then output (st0, 0).
– Add y to dsl in st and set𝑚 ←𝑚 + 2ℓ−𝑖 .

• If 𝑛 =𝑚, then output (st, 1). Otherwise, output (st0, 0).

Cust.Setup(1𝜆) → wlt.

• Set wallet wlt← ∅.
• Output wlt.

Cust.IssueRequest(wlt, 𝑛) → (wlt, req).
• Generate principal key 𝑘 ← CPRF.KeyGen(1𝜆).
• Compute full tree leaves y← CPRF.Expand(𝑘, ℓ).
• Compute full root root∗ ← Merkle.Hash(y) and store the full

tree tree.
• Compute commitment (com, open) ← Commit(root∗).
• Set request req← com.
• Add (𝑘, root∗, tree, com, open,⊥) to wlt.
• Output (wlt, req).

Cust.IssueProcess(wlt, rsp) → wlt.

• Parse response rsp as 𝜎 .
• Find (𝑘, root∗, tree, com, open,⊥) ∈ wlt such that

Sig.Verify(pkΣ, 𝜎, com) = 1 and update ⊥ to 𝜎 .
• Output wlt.

Cust.RedeemRequest(wlt, 𝑛) → (wlt, cs) .
• Set initial wallet wlt0 ← wlt.
• Set coins cs← ∅.
• Let 𝑛ℓ ∥ · · · ∥𝑛0 be the binary representation of 𝑛.
• For 𝑖 ∈ [0, ℓ] such that 𝑛𝑖 = 1:

– Find (𝑘, root∗, tree, com, open, 𝜎) ∈ wlt such that tree
contains an unredeemed subtree with root root covering 2𝑖
leaves with labels S and mark the subtree as redeemed. If
no such subtree exists, then output (wlt0,∅).

– Compute constrained key 𝑘S ← CPRF.Constrain(𝑘,S).
– Build Merkle proof 𝜋path ← Merkle.Prove(root, x), where
x is the vector of depth-𝑖 nodes of tree.

– Build zk-SNARK proof 𝜋 ← SNARK.Prove(pkΠ, 𝜙,𝑤),
where the statement is 𝜙 ← root and the witness is
𝑤 ← (𝜎, root∗, com, open, 𝜋path).

– Add (𝑖, 𝑘S, 𝜙, 𝜋) to cs.
• Output (wlt, cs).

left-collision-resistant in the random oracle model, since it is hard
to find 𝑘 ≠ 𝑘 ′ such that 𝐻 (𝑘 ∥0) = 𝐻 (𝑘 ′∥0). This effectively forces
the customer to “commit” to all full tree leaves upon generating a
principal CPRF key.

This optimization leads to a few simplifications to Construction 1
that we present in full in Construction B of Appendix C. At a high-
level, the proof statement becomes: “Given the leftmost leaf of a
subtree leaf (the statement), I know a signature 𝜎 , commitment com,
opening information open, full root root∗, and Merkle proof 𝜋path
(the witness) such that:

• the signature is on the commitment to the full root:
Sig.Verify(pk, 𝜎, com) = 1 with bank public key pk,

• the commitment opens to the full root:
VerifyCom(root∗, com, open) = 1, and
• the Merkle proof is a valid leaf membership proof:

Merkle.Verify(leaf, root∗, 𝜋path) = 1.”
In Bank.Redeem, for each subtree, instead of checking consis-

tency, the bank simply checks equality between the leftmost leaf of
the subtree and the leaf used in the proof statement. We prove that
this optimization is secure in Appendix C.

5 IMPLEMENTATION
We implement our simple and divisible e-cash schemes in approx-
imately 3.4k lines of Rust code. The code is publicly available at
https://github.com/kev-liao/private-billing.

13

https://github.com/kev-liao/private-billing

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

For our simple e-cash scheme (Section 4.2), we adapt an exist-
ing Rust implementation of VOPRFs [7] defined over the Ristretto
group [51] of Curve25519. The implementation supports batch
DLEQ proofs [72], which cover multiple VOPRF evaluations with a
single proof. This allows a customer (advertiser) to batch together
issuance requests and the bank (exchange) to attest to the valid-
ity of the issued coins with a single proof, substantially reducing
computation and communication costs.

For our divisible e-cash scheme (Section 4.3), we implement our
zk-SNARKs using arkworks [14], a Rust ecosystem for zk-SNARK
programming. We define the arithmetic circuit for coin validity over
the scalar field of BLS12-381, a pairing-friendly elliptic curve [23].
To keep the circuit small, we use Poseidon [65] for all of our hash-
ing purposes. Further, we implement Schnorr signatures over the
JubJub curve [102], whose base field is the BLS12-381 scalar field,
giving fast, in-circuit elliptic curve operations. Our arithmetic cir-
cuits comprise just under 10k R1CS constraints. We use arkwork’s
Groth16 [68] implementation for proof generation and verifica-
tion. For a general GGM-based CPRF, we instantiate the length-
doubling PRG with two AES calls: 𝐺 (𝑘) = AES(𝑘, 0𝜆)∥AES(𝑘, 1𝜆).
For the collision-resistant PRG optimization (Section 4.4), we use
BLAKE3 [5] as the underlying hash function.

6 EVALUATION
In this section, we benchmark our simple e-cash (SEC) and di-
visible e-cash (DEC) schemes, analytically compare our divisible
scheme with the state-of-the-art, and ask whether our schemes
add acceptable latency, client costs, and operating costs to private
ad-retargeting systems, such as Protected Audience. We run our
experiments on an Amazon EC2 c5.metal instance using one core
of an Intel Xeon Platinum 8275CL CPU clocked at 3.0 GHz. The
machine runs Linux kernel version 5.10.149-133.644.amzn2.x86_64
and Rust version 1.65.0.

6.1 Benchmarks and comparisons
Figure 3 shows the costs for issuance. The top left plot varies the
batch size for SEC (i.e., the number of coins per issuance request)
and shows that customer/bank computation grows linearly. The
top center plot varies the batch size for DEC (i.e., the number of
unit-valued coins/tree leaves per issuance request) for DEC and
shows that Cust.IssueRequest computation grows linearly, while
other costs are constant and negligible (less than 1 ms). The top
right plot also varies the batch size for DEC and shows that the
cost for precomputing a zk-SNARK proof grows logarithmically.
The bottom table shows that communication costs for SEC grow
linearly with the batch size, while communication costs for DEC
are independent of the batch size.

Figure 4 shows the costs for redemption. For our divisible e-
cash scheme, we fix ℓ = 11. We elide the computation costs for
Cust.RedeemRequest, since they are constant and negligible (less
than 1 ms) for both SEC and DEC with precomputation. The left
plot varies the redeem value and shows that the communication
costs of Cust.RedeemRequest for both schemes are proportional to
the Hamming weight of the redeem value. The right plot varies the
redeem value and shows: (1) the computation costs of Bank.Redeem
for SEC, DEC, and unoptimized DEC without the collision-resistant

PRG optimization (uDEC) are also proportional to the Hamming
weight of the redeem value, and (2) the collision-resistant PRG
optimization is significant.

To the best of our knowledge, no prior divisible e-cash schemes
have been implemented and state-of-the-art schemes [22, 36, 37, 84]
are particularly challenging to implement due to their use of Groth-
Sahai proofs [69, 70], so Table 1 analytically compares our divisible
e-cash scheme with the state-of-the-art. We report computation
costs (in asymmetric operations) and communication costs for re-
demption, where 𝑛 is the redeem value, |𝐶 | is the circuit size, 𝐸𝑖 is
exponentiations in G𝑖 , and 𝑃 is pairings. We elide issuance costs,
since they are less critical for our application and all schemes are
efficient in this regard. Zero-knowledge proof generation costs
in Cust.RedeemRequest are higher in our scheme, but precompu-
tation turns them into an offline cost. Asymptotic and concrete
communication costs are sufficiently low across all schemes. Fi-
nally, our scheme reduces the number of pairings in Bank.Redeem
from 𝑂 (𝑛) to 𝑂 (log𝑛), which more than makes up for the higher
proof generation costs, as we will show.

6.2 Main results
We now interpret our benchmarks in the context of private billing
for Protected Audience.

Our simple e-cash scheme, though leaky, is practically
efficient and still improves privacy. Support for coins of vary-
ing denominations allows advertisers to exchange large amounts
of hard currency for electronic coins efficiently. Although the ex-
change learns the denominations of issued coins, unlinkability still
holds for coins of the same denomination and this small amount
of leakage may be tolerable in practice. Moreover, the use of the
concretely efficient VOPRF of Jarecki et al. [73], which is standard-
ized [49] and deployed in Privacy Pass [50], leads to essentially
negligible overheads for latency, client costs, and server operating
costs.

Our divisible e-cash scheme adds less than 63ms of latency.
With precomputation, Bank.Redeem becomes the only online cost
and takes at most 63 ms for a spend of 4095 (Figure 4 right). Today’s
ad-retargeting pipeline aims to place ads on publisher websites in
under 150 ms [47], so our scheme leaves ample time for other parts
of the retargeting process, such as ad auctioning and ad serving.
The collision-resistant PRG optimization is crucial, since latency
would otherwise reach 172 ms. There are also other tricks to reduce
latency, which we discuss in Section 7.

Our divisible e-cash scheme adds negligible computation
and less than 3.2 KB of communication to web clients. A web
client simply forwards coins to the publisher, which adds negligible
computation and less than 3.2KB of communication (Figure 4 left)—
just over 0.1% of the average page weight of 2.2 MB [92].

Our divisible e-cash scheme adds a combined server op-
erating cost of less than 1% of ad spend, an over 5× savings
compared to existing schemes. We use the following cost fig-
ures to calculate the combined server operating cost (advertiser,
publisher, and exchange) of our scheme relative to ad spend: As
of November 2022, a c5.metal instance with 96 vCPUs is priced

14

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

0
50

100
150
200
250
300
350
400
450
500

25 26 27 28 29 210 211

CP
U

tim
e

(m
s)

SEC batch size

Cust.IssueProcess
Bank.Issue

Cust.IssueRequest

0
10
20
30
40
50
60

25 26 27 28 29 210 211

DEC batch size

Cust.IssueProcess
Bank.Issue

Cust.IssueRequest

170
180
190
200
210
220

25 26 27 28 29 210 211

DEC batch size

Precompute

SEC DEC

Communication (bytes) Cust.IssueRequest 52 · batchSize 40
Bank.Issue 52 · batchSize 72

Figure 3: Issuance computation costs for SEC (top left), DEC (top center), and DEC coin precomputation (top right); issuance
communication costs (bottom).

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

20 22 24 26 28 210 212

Co
m

m
un

ic
at

io
n

(K
B)

Cust.RedeemRequest value

SEC
DEC

0
20
40
60
80

100
120
140
160
180

20 22 24 26 28 210 212

CP
U

tim
e

(m
s)

Bank.Redeem value

SEC
DEC

uDEC

Figure 4: Redemption customer communication (left) and bank computation (right) costs for SEC, DEC, and unoptimized DEC
without the collision-resistant PRG (uDEC). For DEC and uDEC, we fix ℓ = 11 (i.e., batch size is 2ℓ).

CPST [36, 37], BPS [22] PST [84] This work (DEC)
Cust.RedeemRequest* 𝑂 (log𝑛) 𝐸1 +𝑂 (log𝑛) 𝑃 𝑂 (1) 𝐸1 +𝑂 (1) 𝑃 𝑂 (log𝑛 · |𝐶 |) 𝐸1 +𝑂 (log𝑛 · |𝐶 |) 𝐸2
Communication 𝑂 (log𝑛) 𝑂 (1) 𝑂 (log𝑛)
Bank.Redeem 𝑂 (𝑛) 𝑃 𝑂 (𝑛) 𝑃 𝑂 (log𝑛) 𝑃

Table 1: Comparison of computation costs (in asymmetric operations) and communication costs for redemption in state-of-the-
art divisible e-cash schemes, where 𝑛 is the redeem value, |𝐶 | is the circuit size (in multiplication gates), 𝐸𝑖 is exponentiations in
G𝑖 , and 𝑃 is pairings. *We include precomputation costs in Cust.RedeemRequest.

at $4.08/hour or $0.0425/hour/core [4]. We elide data transfer and
storage costs, since they turn out to be negligible in our calcula-
tions. According to a 2021 survey [1], the average cost per thousand
impressions (CPM) on the most popular ad platforms range from
$3.12 (Google Display Ads), which is the conservative cost figure
we use, to $38.40 (Google Search Ads).

In our experiments, by fixing ℓ = 11, the most one can spend
per payment is 4095 coins, which provides more-than-sufficient
granularity for bidding. To spend this amount, the advertiser’s non-
negligible computation costs are 2×55 = 111 ms for requesting two
batches of 2048 unit-valued coins (Figure 3 center) and 11 × 210 =
2310 ms for precomputing the eleven batches to-be-spent (Figure 3
right). The exchange’s non-negligible computation cost is 63 ms for
redemption (Figure 4 right). The publisher’s computation costs are
negligible. In total, each impression requires at most 2.48 seconds of
CPU time, or 0.69 hours of CPU time per thousand impressions. At

$0.0425/hour/core and $3.12 CPM, the combined server operating
cost of our divisible e-cash scheme is less than $0.03 CPM, which is
less than 1% of ad spend.

On the other hand, state-of-the-art divisible e-cash schemes [22,
36, 37, 84] require two pairings per unit spent for double-spend
detection, so 8190 pairings to spend 4095 coins. At 1.5 ms per pairing
on our testbed, double-spend detection alone would require an
operating cost of 5% of ad spend.

Our divisible e-cash scheme reduces exchange computa-
tional costs by roughly 250× compared to existing schemes.
The cost of pairings for e-cash validation dominates the exchange’s
computational costs in both our scheme and in existing schemes.
The 33 pairings required in our scheme (three pairings per Groth16
verification) compared to the 8190 pairings required in existing

15

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

schemes presents a roughly 250× reduction in exchange computa-
tional costs. This is favorable, since costs are spread across multiple
parties rather than concentrated at the exchange.

7 DISCUSSION
Can’t malicious clients steal coins and redeem them for

their own gain? Detecting ad fraud, such as botnet or click-farm-
generated traffic and publishers displaying “hidden ads,” is a chal-
lenging problem that exists both today and in our system [53]. Our
proposal to route e-cash through clients seems to simplify ad fraud—
a malicious client could collect coins from every bidding advertiser,
and then either let the coins go to waste or redeem them for their
own gain. Fortunately, there are ways to mitigate this.

First, we address the incentives a malicious client may have to
redeem coins for themselves. We envision a system where pub-
lishers have commercial relationships with the exchange and have
sole redemption capabilities. A fitting analogy is Apple’s App Store,
where developers must pay a fee to enroll in the program and
submit apps [2]. In our system, publishers must enroll with the
exchange to serve ads and receive payments. Of course, this does
not prevent a malicious client from registering as a publisher and
directing ads to themselves, a problem that persists in the current
advertising ecosystem.

While this prevents a malicious client from redeeming coins
(short of enrolling as a publisher), they could still let them expire,
wasting advertisers’ resources. To mitigate this, the exchange can
issue an auction ID to the publisher, which is then bound to the
winning advertiser’s coins, ensuring only the designated publisher
can redeem them. Additionally, the winning advertiser can attach
an opaque payment ID to their coins upon payment. The exchange
regularly publishes redeemed auction-payment ID pairs, which the
advertiser can check against to verify that their payment actually
went through. If there are discrepancies, the advertiser can blocklist
the malicious client. More details about this mitigation can be found
in Appendix D.1.

Although there are many tricks that can help mitigate ad fraud,
it is difficult to eradicate completely. We posit that ad fraud in the
Protected Audience API, incorporating our private billing solution,
is no worse than existing forms of ad fraud. In fact, it may pave
the way for innovative detection techniques, since advertisers can
establish direct relationships with clients and retain control over
their marketing targets.

Can’t malicious exchanges overcharge advertisers and
underpay publishers? Another concern in today’s advertising
ecosystem is that centralized ad exchanges can rig auctions to over-
charge advertisers and underpay publishers [60]. Given the lack of
transparency into today’s exchanges, auditing may be the only way
to hold them accountable, which can be costly and yet uncompre-
hensive. While we do not address this issue head-on, our system
may ease the audit burden. Our system may obviate much of the
need for auditing at the exchange, since auctions are delegated
to clients (though this introduces other challenges as discussed).
Instead, auditing at the exchange can ensure that advertisers and
publishers receive fair exchange rates, i.e., similarly situated parties
receive similar exchange rates. See related work (Section 8) for
systems that aim to address this issue.

Why isn’t there an end-to-end private billing implementa-
tion and evaluation on top of the Protected Audience API?
Many features of the Protected Audience API are still under de-
velopment as of this research. Moreover, given that the API is
experimental, features are likely to change. Therefore, we have not
yet integrated our divisible e-cash scheme for testing with the API.
As the API matures, integrating our private billing solution with
the API and collecting end-to-end benchmarks will be important
future work to understand the end-to-end latency of the combined
system.

Does the latency overhead of our divisible e-cash scheme
meet the demands of real-world ad delivery? Our divisible e-
cash system introduces at most 63 ms of latency to the ad delivery
process, comfortably below the industry benchmark of 150 ms.
This leaves 87 ms for additional steps (e.g., ad auctioning) outside
the scope of our work, which unfortunately prove challenging to
measure in practice. While it is difficult to reach a definitive answer
without end-to-end benchmarks, we believe the latency overhead
is sufficiently low and still there are further tricks to make latency
essentially negligible.

For example, considering the high probability of legitimate adver-
tiser payments, the exchange can employ an “optimistic” verifica-
tion strategy to expedite the process. Rather than check zk-SNARK
proofs and double-spends online, the exchange can immediately
accept the coins, notify the client, and conduct the checks offline.
Alternatively, the exchange could verify the leading-order coins
and optimistically accept the remainder. Should any coins later be
deemed invalid, the exchange can, for instance, inform the client
(via the publisher) to blocklist the cheating advertiser. Although
this approach might permit a small degree of double-spending, the
trade-off for faster ad deliveries could prove worthwhile.

In any case, even if our system includes additional network trips,
ad-tech companies optimize for exactly this by, e.g., moving data
centers closer to clients and exchanges, or moving the media itself
closer via CDNs [93].

Does our divisible e-cash scheme offer server operating
costs low enough for practical deployment? Attaining a server
operating cost below 1% of ad spend is a considerable improve-
ment over the previous state-of-the-art. However, it is worth noting
that Meta’s private ad measurement system, which solves an or-
thogonal problem to private ad targeting, aims for an ambitious
(albeit unrealized) operating cost of 0.1% of ad spend [85]. Given
that online advertising is an over half-trillion dollar industry [52],
important future work is to further reduce server operating costs
while retaining the same privacy guarantees. Using an alternative
zk-SNARK backend, such as Spartan [89], should significantly re-
duce server operating costs with only a modest increase in latency
and communication. Moreover, as zk-SNARK technology continues
to evolve, our e-cash scheme stands to reap the benefits of these
advancements.

What are some ethical considerations of working on tar-
geted advertising? Today’s web advertising model is problematic:
Studies suggest that ad targeting can fuel discrimination, negatively
influence behavior, cause mental distress, and more [81, 86]. It may
even bear responsibility for hateful speech and misinformation

16

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

online [56, 58, 61]. Nevertheless, we feel compelled to develop tech-
niques for private ad targeting for two reasons. First, advertising
is what pays for most of the “free” Internet [57, 76], and will al-
most certainly remain essential to the Internet economy for the
foreseeable future. Second, advertising today relies on the large-
scale collection and analysis of user preferences. Therefore, this
work aims to develop techniques that reconcile the essential role
of advertising in funding the tech ecosystem with the critical need
for stronger user privacy protections online.

8 RELATEDWORK
Private ad targeting. Academic work on private ad targeting

stretches back over two decades to the work of Juels [74], which
first proposed shifting ad targeting to the client and fetching ads us-
ing private information retrieval (PIR) [46]. Many follow-on works
have adopted, improved, and extended these ideas: on-device ma-
chine learning [71, 96] or locality sensitive hashing [78, 88] for ad
targeting; more efficient PIR [66, 78, 88] or batch downloads [96]
for ad fetching; homomorphic encryption [66, 96, 103] or anony-
mous tokens [16, 88] for ad reporting; secure coprocessors and
oblivious RAM for running exchanges [16]; and verifiability for ad
auctions [13, 83, 104].

Some of these ideas have recently made their way into browsers.
Google’s Privacy Sandbox [6] is trialing solutions for private ad tar-
geting in Chrome without third-party cookies—TURTLEDOVE [99]
and FLEDGE [54] for ad retargeting, and Topics [55] (previously
FLoC [98]) for interest-based targeting. Our divisible e-cash scheme
offers a private billing solution missing in the ad-retargeting sys-
tems. The Brave browser has also deployed its own private ad-
targeting system [24]. A recently proposed extension (concurrent
with our work) suggests using a scheme analogous to our sim-
ple (leaky) e-cash scheme to pay clients for ad interactions [25].
Our divisible e-cash scheme offers a drop-in replacement to fix
the same leakage present in their scheme. Major browser vendors
have also proposed solutions for the orthogonal problem of private
ad-conversion measurement [80, 95, 101].

Electronic cash. Chaum [40] presented the first electronic cash
(e-cash) scheme. A vast body of work has since extended e-cash
with additional properties, such as traceability [41], auditability [87],
small wallet sizes [28], money laundering detection [29], fair ex-
change [33], and more. These features significantly expand e-cash’s
utility to a variety of application settings.

For our private ad-retargeting setting, we take a minimalist ap-
proach to e-cash design. We tailor our e-cash scheme to take ad-
vantage of the setting’s unique dynamics (e.g., market incentives),
resulting in a scheme that may not be as full-featured as prior
schemes, but is relatively simple and more efficient along metrics
most critical to our setting.

For example, traceability has been a particularly important fea-
ture of e-cash schemes—if a customer spends a coin twice, their
identity will be revealed [41]. This property not only discourages
double-spending, but also reduces redemption latency: Merchants
can confidently release goods to buyers before the bank completes
its double-spending check, knowing they can seek recourse if dis-
crepancies are later detected.

However, we find that in our private ad-retargeting setting, trace-
ability is unnecessary. Owing to the efficiency of our divisible e-cash
scheme, the exchange can quickly check for any double-spending
attempts before informing the client, via the publisher, to display
the ad. Moreover, advertisers who attempt to defraud the system
by using spent coins are only hurting their own bottom lines: If the
exchange rejects their coins, then their ads will remain unseen by
potential clients.

E-cash has also inspired the vast bodies of work on anonymous
credentials [12, 17, 18, 27, 30–32, 38, 39, 50, 90, 97] and decentralized
cryptocurrencies [8, 11, 19, 45, 67, 75, 79]. While all of these tools are
relevant to the problem of private billing, our minimalist approach
leads us to a different part of the design space. For example, we
have not identified the attribution-proving features of anonymous
credentials or the decentralization features of cryptocurrencies as
strictly necessary to our specific ad-retargeting setting. Still, they
may prove useful as new requirements emerge or in adjacent private
ad-targeting settings. For instance, cryptocurrencies may eliminate
the reliance on a trusted, centralized exchange: A client can run
a smart contract to hold a fair auction, where advertisers deposit
collateral and the winner’s assets are transferred to the publisher.

Instead, we find that divisible e-cash schemes are best positioned
to meet the utility and efficiency demands of private billing in
private ad-retargeting systems. Starting from a long line of work
on divisible e-cash [15, 22, 34–37, 82, 84], our divisible e-cash
scheme uses modern zk-SNARKs [68, 89] and a symmetric-key-
based CPRF [63], which leads to concrete efficiency improvements
over prior schemes that rely on Groth-Sahai proofs [69, 70] and
pairing-based CPRFs [21]. These instantiations enable optimiza-
tions along measures most critical to our application—latency, client
costs, and server operating costs—whereas prior schemes focus
optimizations on spend latency (i.e., zero-knowledge proof gen-
eration) and communication. Again, our application setting also
allows us to focus on core e-cash properties—unforgeability and
unlinkability—whereas prior schemes support richer properties,
such as traceability.

9 CONCLUSION
Recent private ad-retargeting systems, such as the Protected Au-
dience API, allow a client to receive retargeted ads privately: the
exchange does not learn which advertisers and publishers the client
has visited, and advertisers and publishers do not learn which of
the other the client has visited. This work identifies a missing piece
in such systems—private billing for ad impressions—and proposes
a straightforward fix—e-cash. Prior e-cash schemes are not well-
suited to this setting, so our key contribution is a new divisible
e-cash scheme that achieves strong privacy guarantees and meets
crucial efficiency requirements: low latency, low client costs, and
low server operating costs. We hope the Protected Audience API
will upstream our proposed fix and that this work will inform the
design of future private ad-targeting systems.

ACKNOWLEDGMENTS
We thank our shepherd, Niklas Carlsson, and the anonymous re-
viewers for their valuable feedback. This work was funded in part

17

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

by the NSF under Award CNS-2054869 and a Graduate Research Fel-
lowship, the Simons Foundation, UBRI, NTT Research, Capital One,
Facebook, Google, Mozilla, NASDAQ, and MIT’s FinTech@CSAIL
Initiative.

REFERENCES
[1] 2021. Online Advertising Costs in 2021. https://www.topdraw.com/insights/is-

online-advertising-expensive/.
[2] 2023. Apple Developer Program. https://developer.apple.com/programs/.
[3] 2024. Protected Audience API Overview. https://developers.google.com/privacy-

sandbox/relevance/protected-audience.
[4] Accessed: 2022-11-25. Amazon EC2 On-Demand Pricing. https://

aws.amazon.com/ec2/pricing/on-demand/.
[5] Accessed: 2022-11-25. BLAKE3. https://github.com/BLAKE3-team/BLAKE3.
[6] Accessed: 2022-11-25. Building a more private, open web. https://

privacysandbox.com/.
[7] Accessed: 2022-11-25. Challenge Bypass using the Ristretto group. https:

//github.com/brave-intl/challenge-bypass-ristretto.
[8] Accessed: 2022-11-25. Monero. https://www.getmonero.org.
[9] Accessed: 2022-11-25. Referer. https://developer.mozilla.org/en-US/docs/Web/

HTTP/Headers/Referer.
[10] Accessed: 2022-11-25. What is click fraud? | How click bots work. https:

//www.cloudflare.com/learning/bots/what-is-click-fraud/.
[11] Accessed: 2022-11-25. Zcash. https://z.cash.
[12] Norio Akagi, Yoshifumi Manabe, and Tatsuaki Okamoto. 2008. An Efficient

Anonymous Credential System. In FC.
[13] Sebastian Angel and Michael Walfish. 2013. Verifiable auctions for online ad

exchanges. In SIGCOMM.
[14] arkworks contributors. 2022. arkworks zkSNARK ecosystem. https://

arkworks.rs.
[15] Man Ho Au, Willy Susilo, and Yi Mu. 2008. Practical Anonymous Divisible

E-Cash from Bounded Accumulators. In FC.
[16] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. 2012. ObliviAd:

Provably Secure and Practical Online Behavioral Advertising. In IEEE S&P.
[17] Foteini Baldimtsi and Anna Lysyanskaya. 2013. Anonymous Credentials Light.

In CCS.
[18] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-

skaya, and Hovav Shacham. 2009. Randomizable Proofs and Delegatable Anony-
mous Credentials. In CRYPTO.

[19] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anony-
mous Payments from Bitcoin. In IEEE S&P.

[20] Dan Boneh and Victor Shoup. 2020. A graduate course in applied cryptography.
Draft 0.5 (2020).

[21] Dan Boneh and Brent Waters. 2013. Constrained Pseudorandom Functions and
Their Applications. In ASIACRYPT.

[22] Florian Bourse, David Pointcheval, and Olivier Sanders. 2019. Divisible E-Cash
from Constrained Pseudo-Random Functions. In ASIACRYPT.

[23] Sean Bowe. 2017. BLS12-381: New zk-SNARK Elliptic Curve Construction.
https://electriccoin.co/blog/new-snark-curve/.

[24] Brave. 2020. An Introduction to Brave’s In-Browser Ads. https://brave.com/
intro-to-brave-ads/.

[25] Brave. 2022. Security and privacy model for ad confirmations.
https://github.com/brave/brave-browser/wiki/Security-and-privacy-model-
for-ad-confirmations.

[26] Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. 2016. An Empir-
ical Study of Web Cookies. In WWW.

[27] Jan Camenisch and Els Van Herreweghen. 2002. Design and implementation of
the idemix anonymous credential system.

[28] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2005. Compact
E-Cash. In EUROCRYPT.

[29] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. 2006. Balancing
Accountability and Privacy Using E-Cash (Extended Abstract). In SCN.

[30] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic Accumulators and
Application to Efficient Revocation of Anonymous Credentials. In CRYPTO.

[31] Jan Camenisch and Anna Lysyanskaya. 2002. A Signature Scheme with Efficient
Protocols. In SCN.

[32] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anony-
mous Credentials from Bilinear Maps. In CRYPTO.

[33] Jan Camenisch, Anna Lysyanskaya, and Mira Meyerovich. 2007. Endorsed
E-Cash. In IEEE S&P.

[34] Sébastien Canard and Aline Gouget. 2007. Divisible E-Cash Systems Can Be
Truly Anonymous. In EUROCRYPT.

[35] Sébastien Canard and Aline Gouget. 2010. Multiple Denominations in E-cash
with Compact Transaction Data. In FC.

[36] Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. 2015.
Divisible E-Cash Made Practical. In PKC.

[37] Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. 2015.
Scalable Divisible E-cash. In ACNS.

[38] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. 2014. Algebraic MACs
and Keyed-Verification Anonymous Credentials. In CCS.

[39] Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The Signal Private
Group System and Anonymous Credentials Supporting Efficient Verifiable En-
cryption. In CCS.

[40] David Chaum. 1982. Blind Signatures for Untraceable Payments. In CRYPTO.
[41] David Chaum, Amos Fiat, and Moni Naor. 1988. Untraceable Electronic Cash.

In CRYPTO.
[42] David Chaum and Torben P. Pedersen. 1992. Wallet Databases with Observers.

In CRYPTO.
[43] Brian X. Chen. 2021. The Battle for Digital Privacy Is Reshaping the Internet.

https://www.nytimes.com/2021/09/16/technology/digital-privacy.html.
[44] Brian X. Chen and Kate Conger. 2021. What the Privacy Battle Upending the

Internet Means for You. https://www.nytimes.com/2021/09/16/technology/
personaltech/internet-privacy-chrome-safari.html.

[45] Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers,
and Pratyush Mishra. 2017. Decentralized Anonymous Micropayments. In
EUROCRYPT.

[46] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private
Information Retrieval. J. ACM 45, 6 (1998), 965–981.

[47] Clearcode. 2021. The AdTech Book. https://adtechbook.clearcode.cc/.
[48] Bennett Cyphers and Gennie Gebhart. 2019. Behind the One-Way Mirror: A

Deep Dive Into the Technology of Corporate Surveillance. https://www.eff .org/
wp/behind-the-one-way-mirror.

[49] Alex Davidson, Armando Faz-Hernandez, Nick Sullivan, and Christopher A.
Wood. 2022. Oblivious Pseudorandom Functions (OPRFs) using Prime-Order
Groups. https://datatracker.ietf .org/doc/pdf/draft-irtf-cfrg-voprf-15.

[50] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously. Proc.
Priv. Enhancing Technol. 2018, 3 (2018), 164–180.

[51] Henry de Valence. 2018. The Ristretto Group. https://ristretto.group/.
[52] Statista Research Department. 2023. Digital advertising spending world-

wide from 2021 to 2026. https://www.statista.com/statistics/237974/online-
advertising-spending-worldwide/.

[53] Artyom Dogtiev. 2022. Ad Fraud Statistics. https://www.businessofapps.com/
ads/ad-fraud/research/ad-fraud-statistics/.

[54] Sam Dutton. 2022. FLEDGE API. https://developer.chrome.com/docs/privacy-
sandbox/fledge/.

[55] Sam Dutton. 2022. The Topics API. https://developer.chrome.com/docs/privacy-
sandbox/topics/.

[56] Gilad Edelman. 2020. Follow the Money: How Digital Ads Subsidize the Worst
of the Web. https://www.wired.com/story/how-digital-ads-subsidize-worst-
web/.

[57] Gilad Edelman. 2020. Why Don’t We Just Ban Targeted Advertising? https:
//www.wired.com/story/why-dont-we-just-ban-targeted-advertising/.

[58] Laura Edelson, Tobias Lauinger, and Damon McCoy. 2020. A Security Analysis
of the Facebook Ad Library. In IEEE S&P.

[59] Dominic Farolino. 2022. Fenced frame. https://wicg.github.io/fenced-frame/.
[60] Sara Fischer and Ina Fried. 2022. Lawsuit: Google, Facebook execs conspired to

manipulate ad auctions. https://www.axios.com/2022/01/18/google-facebook-
conspired-manipulate-ad-auctions-states-lawsuit.

[61] Jeff Gary and Ashkan Soltani. 2019. First Things First: Online Ad-
vertising Practices and Their Effects on Platform Speech. https:
//knightcolumbia.org/content/first-things-first-online-advertising-practices-
and-their-effects-on-platform-speech.

[62] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge University Press.

[63] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1984. How to Construct
Random Functions (Extended Abstract). In FOCS.

[64] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A Digital Signature
Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput.
17, 2 (1988), 281–308.

[65] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In USENIX Security.

[66] Matthew Green, Watson Ladd, and Ian Miers. 2016. A Protocol for Privately
Reporting Ad Impressions at Scale. In CCS.

[67] Matthew Green and Ian Miers. 2017. Bolt: Anonymous Payment Channels for
Decentralized Currencies. In CCS.

[68] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT.

[69] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for
Bilinear Groups. In EUROCRYPT.

18

https://www.topdraw.com/insights/is-online-advertising-expensive/
https://www.topdraw.com/insights/is-online-advertising-expensive/
https://developer.apple.com/programs/
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://developers.google.com/privacy-sandbox/relevance/protected-audience
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://github.com/BLAKE3-team/BLAKE3
https://privacysandbox.com/
https://privacysandbox.com/
https://github.com/brave-intl/challenge-bypass-ristretto
https://github.com/brave-intl/challenge-bypass-ristretto
https://www.getmonero.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://www.cloudflare.com/learning/bots/what-is-click-fraud/
https://www.cloudflare.com/learning/bots/what-is-click-fraud/
https://z.cash
https://arkworks.rs
https://arkworks.rs
https://electriccoin.co/blog/new-snark-curve/
https://brave.com/intro-to-brave-ads/
https://brave.com/intro-to-brave-ads/
https://github.com/brave/brave-browser/wiki/Security-and-privacy-model-for-ad-confirmations
https://github.com/brave/brave-browser/wiki/Security-and-privacy-model-for-ad-confirmations
https://www.nytimes.com/2021/09/16/technology/digital-privacy.html
https://www.nytimes.com/2021/09/16/technology/personaltech/internet-privacy-chrome-safari.html
https://www.nytimes.com/2021/09/16/technology/personaltech/internet-privacy-chrome-safari.html
https://adtechbook.clearcode.cc/
https://www.eff.org/wp/behind-the-one-way-mirror
https://www.eff.org/wp/behind-the-one-way-mirror
https://datatracker.ietf.org/doc/pdf/draft-irtf-cfrg-voprf-15
https://ristretto.group/
https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/
https://www.statista.com/statistics/237974/online-advertising-spending-worldwide/
https://www.businessofapps.com/ads/ad-fraud/research/ad-fraud-statistics/
https://www.businessofapps.com/ads/ad-fraud/research/ad-fraud-statistics/
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://developer.chrome.com/docs/privacy-sandbox/topics/
https://developer.chrome.com/docs/privacy-sandbox/topics/
https://www.wired.com/story/how-digital-ads-subsidize-worst-web/
https://www.wired.com/story/how-digital-ads-subsidize-worst-web/
https://www.wired.com/story/why-dont-we-just-ban-targeted-advertising/
https://www.wired.com/story/why-dont-we-just-ban-targeted-advertising/
https://wicg.github.io/fenced-frame/
https://www.axios.com/2022/01/18/google-facebook-conspired-manipulate-ad-auctions-states-lawsuit
https://www.axios.com/2022/01/18/google-facebook-conspired-manipulate-ad-auctions-states-lawsuit
https://knightcolumbia.org/content/first-things-first-online-advertising-practices-and-their-effects-on-platform-speech
https://knightcolumbia.org/content/first-things-first-online-advertising-practices-and-their-effects-on-platform-speech
https://knightcolumbia.org/content/first-things-first-online-advertising-practices-and-their-effects-on-platform-speech

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

[70] Jens Groth and Amit Sahai. 2012. Efficient Noninteractive Proof Systems for
Bilinear Groups. SIAM J. Comput. 41, 5 (2012), 1193–1232.

[71] Saikat Guha, Bin Cheng, and Paul Francis. 2011. Privad: Practical Privacy in
Online Advertising. In NSDI.

[72] Ryan Henry. 2014. Efficient Zero-Knowledge Proofs and Applications. Ph. D.
Dissertation. University of Waterloo, Ontario, Canada.

[73] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. 2014. Round-Optimal
Password-Protected Secret Sharing and T-PAKE in the Password-Only Model.
In ASIACRYPT.

[74] Ari Juels. 2001. Targeted Advertising. . .And Privacy Too. In CT-RSA.
[75] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. 2013. Zero-

coin: Anonymous Distributed E-Cash from Bitcoin. In IEEE S&P.
[76] Rani Molla. 2019. The cost of an ad-free Internet: $35 more per month. https:

//www.vox.com/recode/2019/6/24/18715421/internet-free-data-ads-cost.
[77] Mozilla. 2021. Enhanced Tracking Protection in Firefox for desktop. https://

support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop.
[78] Muhammad Haris Mughees, Gonçalo Pestana, Alex Davidson, and Benjamin

Livshits. 2021. PrivateFetch: Scalable Catalog Delivery in Privacy-Preserving
Advertising. arXiv preprint arXiv:2109.08189 (2021).

[79] Satoshi Nakamoto. 2008. A peer-to-peer electronic cash system.
[80] Maud Nalpas, Sam Dutton, and Alexandra White. 2022. Attribution Re-

porting. https://developer.chrome.com/en/docs/privacy-sandbox/attribution-
reporting/.

[81] Rae Nudson. 2020. When targeted ads feel a little too targeted.
https://www.vox.com/the-goods/2020/4/9/21204425/targeted-ads-fertility-
eating-disorder-coronavirus.

[82] Tatsuaki Okamoto and Kazuo Ohta. 1991. Universal Electronic Cash. InCRYPTO.
[83] Gonçalo Pestana, Iñigo Querejeta-Azurmendi, Panagiotis Papadopoulos, and

Benjamin Livshits. 2021. THEMIS: A Decentralized Privacy-Preserving Ad
Platform with Reporting Integrity. arXiv preprint arXiv:2106.01940 (2021).

[84] David Pointcheval, Olivier Sanders, and Jacques Traoré. 2017. Cut Down the
Tree to Achieve Constant Complexity in Divisible E-cash. In PKC.

[85] James Reyes and Sanjay Saravanan. 2022. Building the next generation of digital
advertising with MPC. https://iacr.org/submit/files/slides/2022/rwc/rwc2022/
104/slides.pdf.

[86] Emma Roth. 2021. Facebook and Instagram will delete ‘sensitive’ ad targeting
groups linked to race, politics. https://www.theverge.com/2021/11/9/22773038/
meta-detailed-targeting-ads-facebook-instagram-messenger.

[87] Tomas Sander and Amnon Ta-Shma. 1999. Auditable, Anonymous Electronic
Cash Extended Abstract. In CRYPTO.

[88] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas Devadas. 2021. AdVeil: A
Private Targeted-Advertising Ecosystem. IACR Cryptol. ePrint Arch. (2021).

[89] Srinath T. V. Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs
Without Trusted Setup. In CRYPTO.

[90] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. 2019. Coconut: Threshold Issuance Selective Disclosure Cre-
dentials with Applications to Distributed Ledgers. In NDSS.

[91] Tristram Southey. 2023. Protected Audience API: Our new name for
FLEDGE. https://privacysandbox.com/news/protected-audience-api-our-new-
name-for-fledge.

[92] John Teague. 2022. Page Weight. https://almanac.httparchive.org/en/2021/page-
weight.

[93] Headerbidding Team. 2023. Addressing Latency Issue in Digital Advertising.
https://headerbidding.co/latency-issue-digital-advertising/.

[94] David Temkin. 2021. Charting a course towards a more privacy-first web.
https://blog.google/products/ads-commerce/a-more-privacy-first-web/.

[95] Martin Thomson. 2022. Privacy Preserving Attribution for Advertising. https://
blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/.

[96] Vincent Toubiana, Arvind Narayanan, Dan Boneh, Helen Nissenbaum, and
Solon Barocas. 2010. Adnostic: Privacy Preserving Targeted Advertising. In
NDSS.

[97] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. 2010. BLAC:
Revoking Repeatedly Misbehaving Anonymous Users without Relying on TTPs.
ACM Trans. Inf. Syst. Secur. 13, 4 (2010), 39:1–39:33.

[98] WICG. 2021. Federated Learning of Cohorts (FLoC). https://github.com/WICG/
floc.

[99] WICG. 2021. TURTLEDOVE. https://github.com/WICG/turtledove.
[100] John Wilander. 2017. Intelligent Tracking Prevention. https://webkit.org/blog/

7675/intelligent-tracking-prevention/.
[101] John Wilander. 2021. Introducing Private Click Measurement, PCM. https:

//webkit.org/blog/11529/introducing-private-click-measurement-pcm/.
[102] Zcash. 2017. What is Jubjub? https://bitzecbzc.github.io/technology/jubjub/

index.html.
[103] Ke Zhong, Yiping Ma, and Sebastian Angel. 2022. Ibex: Privacy-preserving Ad

Conversion Tracking and Bidding. In CCS.
[104] Ke Zhong, Yiping Ma, Yifeng Mao, and Sebastian Angel. 2022. Addax: A fast,

private, and accountable ad exchange infrastructure. IACR Cryptol. ePrint Arch.
(2022), 1299.

A SIMPLE E-CASH
We present our simple e-cash scheme in Construction A.

B DIVISIBLE E-CASH SECURITY ANALYSIS
We now analyze the security of our divisible e-cash scheme pre-
sented in Construction 1.

Lemma B.1 (Unforgeability). Construction 1 is an unforgeable
e-cash scheme assuming the signature scheme is EUF-CMA-secure,
the commitment scheme is binding, the zk-SNARK proof system is
knowledge-sound, and theMerkle tree is built from a collision-resistant
hash function.

Proof. Let A be an adversary that participates in the unforge-
ability game from Definition 4.2. The adversary outputs a sequence
of issue and redeem requests, and wants to satisfy bal < 0 at the
end of the game. We argue that this can only happen with negli-
gible probability by stepping through a sequence of games, where
Game 0 is the original unforgeability game.

Game 1. Recall that the adversary generates redeem requests
with parameters cs and 𝑛. Every cs is a set of tuples (𝑖, 𝑘S, 𝜙, 𝜋),
where 𝜋 is a zk-SNARK proof of knowledge of some witness
(𝜎, root∗, com, open, 𝜋path).

In this game, in addition to the winning condition, the adversary
must also output valid SNARK witnesses{(𝜎 𝑗 , root∗𝑗 , com𝑗 , open𝑗 , 𝜋path, 𝑗)

}
𝑗 ∈[𝑄] ,

one witness for every element of cs over all redeem requests. Each
witness corresponds to a tuple (𝑖 𝑗 , 𝑘S, 𝑗 , 𝜙 𝑗 , 𝜋 𝑗) in some cs in some
redeem request. Because the zk-SNARK is knowledge-sound, there
is an extractor that lets us construct an adversary A ′ from A that
satisfies this requirement with about the same probability as A’s
winning probability in Game 0.

Game 2. In this game, we strengthen the winning condition and
require that in order to win, the adversary must further ensure that
for all 𝑗 ∈ [𝑄], redeem request number 𝑗 is made where com𝑗 is
equal to a string req used in an earlier issue request. Because the
signature scheme is EUF-CMA-secure, this additional constraint
only negligibly changes the adversary’s winning probability. Recall
that every issue request causes 2ℓ to be added to the variable bal.

Game 3. In this game, we further strengthen the winning condition
and require that in order to win, the adversary must further ensure
that for every pair 𝑢, 𝑣 ∈ [𝑄], if com𝑢 = com𝑣 , then root∗𝑢 = root∗𝑣 .
Because the commitment scheme is binding, this additional con-
straint only negligibly changes the adversary’s winning probability.

Game 4. We strengthen the winning condition one last time and
require that in order to win, the adversary must further ensure that
for every pair 𝑢, 𝑣 ∈ [𝑄], if root∗𝑢 = root∗𝑣 and 𝜋path,𝑢 and 𝜋path,𝑣
either leads to the same node in the tree or leads to two nodes
where one dominates the other, then the quantities

y𝑢 ← CPRF.Expand(𝑘S,𝑢 , ℓ − 𝑖𝑢) and
y𝑣 ← CPRF.Expand(𝑘S,𝑣, ℓ − 𝑖𝑣)

computed in Bank.Redeem satisfy y𝑣 ⊆ y𝑢 . Because the Merkle
tree is built from a collision-resistant hash function, this additional

19

https://www.vox.com/recode/2019/6/24/18715421/internet-free-data-ads-cost
https://www.vox.com/recode/2019/6/24/18715421/internet-free-data-ads-cost
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://developer.chrome.com/en/docs/privacy-sandbox/attribution-reporting/
https://developer.chrome.com/en/docs/privacy-sandbox/attribution-reporting/
https://www.vox.com/the-goods/2020/4/9/21204425/targeted-ads-fertility-eating-disorder-coronavirus
https://www.vox.com/the-goods/2020/4/9/21204425/targeted-ads-fertility-eating-disorder-coronavirus
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/104/slides.pdf
https://iacr.org/submit/files/slides/2022/rwc/rwc2022/104/slides.pdf
https://www.theverge.com/2021/11/9/22773038/meta-detailed-targeting-ads-facebook-instagram-messenger
https://www.theverge.com/2021/11/9/22773038/meta-detailed-targeting-ads-facebook-instagram-messenger
https://privacysandbox.com/news/protected-audience-api-our-new-name-for-fledge
https://privacysandbox.com/news/protected-audience-api-our-new-name-for-fledge
https://almanac.httparchive.org/en/2021/page-weight
https://almanac.httparchive.org/en/2021/page-weight
https://headerbidding.co/latency-issue-digital-advertising/
https://blog.google/products/ads-commerce/a-more-privacy-first-web/
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://github.com/WICG/floc
https://github.com/WICG/floc
https://github.com/WICG/turtledove
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://bitzecbzc.github.io/technology/jubjub/index.html
https://bitzecbzc.github.io/technology/jubjub/index.html

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

Construction A. Simple e-cash scheme. Let parameter ℓ ∈ N be the max log-denomination.

Bank.Setup(1𝜆) → (st, pp).
• Choose a group G of prime order 𝑞 with generator 𝑔, a hash

function 𝐻 : {0, 1}∗ → G.
• For 𝑖 ∈ [0, ℓ]:

– Sample signing key sk𝑖 $← Z𝑞 .
– Compute public key pk𝑖 ← 𝑔sk

𝑖 .
• Set spent serial numbers dsl← ∅.
• Set state st← (sk0, . . . , skℓ , dsl).
• Set public parameters

pp← (1𝜆, 𝑞,G, 𝑔, 𝐻, 𝑘, pk0, . . . , pkℓ).
• Output (st, pp).

Bank.Issue(st, req, 𝑛) → (st, rsp) .
• If 𝑛 ∉ {20, 21, . . . , 2ℓ }, then output (st,⊥).
• Parse state st as (sk0, . . . , skℓ , dsl).
• Parse request req as 𝜏 .
• Set log-denomination 𝑖 ← log(𝑛).
• Compute blind signature �̃� ← 𝜏sk𝑖 .
• Compute proof 𝜋 ← DLEQ (𝑔, pk𝑖 , 𝜏, �̃�).
• Set response rsp← (�̃�, 𝜋).
• Output (st, rsp).

Bank.Redeem(st, cs, 𝑛) → (st, 𝑏) .
• If 𝑛 ∉ [0, 2ℓ+1), then output (st, 0).
• Parse state st as (sk0, . . . , skℓ , dsl).
• Set initial state st0 ← st.
• Set amount𝑚 ← 0.
• For (𝑖, 𝑥, 𝜎) ∈ cs:

– If 𝑥 ∈ dsl, then output (st0, 0).
– If 𝜎 = 𝐻 (𝑥)sk𝑖 , then add 𝑥 to dsl and set𝑚 ←𝑚 + 2𝑖 .

• If 𝑛 =𝑚, then output (st, 1). Otherwise, output (st0, 0).

Cust.Setup(1𝜆) → wlt.

• Set wallet wlt← ∅.
• Output wlt.

Cust.IssueRequest(wlt, 𝑛) → (st, req) .
• Set log-denomination 𝑖 ← log(𝑛).
• Sample serial number 𝑥 $← {0, 1}𝜆 .
• Sample blinding factor 𝑟 $← Z𝑞 .
• Compute blinded coin 𝜏 ← 𝐻 (𝑥)𝑟 .
• Set request req← 𝜏 .
• Add (𝑖, 𝑥, 𝑟) to wlt.
• Output (wlt, req).

Cust.IssueProcess(wlt, rsp) → wlt.

• Parse response rsp as (�̃�, 𝜋), where 𝜋 is a proof for
DLEQ (𝑔, pk𝑖 , 𝜏, �̃�).
• If proof 𝜋 is not valid, then output wlt.
• Find (𝑖, 𝑥, 𝑟) ∈ wlt, where 𝜏 = 𝐻 (𝑥)𝑟 . If no such coin exists,

then output wlt.
• Compute signed coin 𝜎 ← �̃�1/𝑟 .
• Update the coin to (𝑖, 𝑥, 𝜎) in wlt.
• Output wlt.

Cust.RedeemRequest(wlt, 𝑛) → (wlt, cs) .
• Set initial wallet wlt0 ← wlt.
• Set coins cs← ∅.
• Let 𝑛ℓ−1 | | · · · | |𝑛0 be the binary representation of 𝑛.
• For 𝑖 ∈ [0, ℓ − 1] such that 𝑛𝑖 = 1:

– Find and remove (𝑖, 𝑥, 𝜎) from wlt and add it to cs. If no
such coin exists, then output (wlt0,∅).

• Output (wlt, cs).

constraint only negligibly changes the adversary’s winning proba-
bility.
Completing the proof. We now argue that the adversary cannot
win Game 4. Indeed, each issue request from A adds 2ℓ to the
variable bal. Every redeem request from A spends a disjoint set of
leaves from one of the trees created in an issue request, where each
tree has 2ℓ leaves. Therefore, at the end of the game, we must have
bal ≥ 0, meaning that the adversary cannot win.

Finally, because the winning probability in Game 4 is zero, and
the winning probability in Game 0 is at most negligibly different
than in Game 4, it follows that the winning probability in Game 0
is negligible, as required. □

Lemma B.2 (Unlinkability). Construction 1 is an unlinkable e-
cash scheme assuming the commitment scheme is hiding, the CPRF is
secure and key-pseudorandom, the Merkle tree hash function is a hid-
ing commitment, and the zk-SNARK proof system is zero-knowledge.

Proof. Let A be an adversary that participates in the unlinka-
bility game from Definition 4.3. The adversary outputs a sequence

of issue and redeem requests with a challenge request, and wants
to satisfy 𝑏 = 𝑏 ′ at the end of the game. We argue that this can only
happen with negligible advantage by stepping through a sequence
of games, where Game 0 is the original unlinkability game.

In what follows, let Adv𝑖 be A’s advantage in Game 𝑖 , let Advzk

be A’s advantage against the zero-knowledge property of the zk-
SNARK, let Advhid be A’s advantage against the hiding property
of the commitment, let Advkp be A’s advantage against the key-
pseudorandomness property of the CPRF, let Advmt be A’s advan-
tage against the hiding commitment property of the Merkle tree
hash function.

Game 1. In this game, we modify the challenger to simu-
late the zk-SNARKs. Instead of computing (pkΠ, vkΠ) ←
SNARK.KeyGen(1𝜆,𝐶) in Bank.Setup, the challenger invokes a
simulator S to obtain (pkΠ, vkΠ, 𝜏) ← S(1𝜆,𝐶), where 𝜏 is
some trapdoor information. For each of at most 𝑄𝑟 redeem
requests and for each of the at most ℓ zk-SNARK proofs, in-
stead of building the proof as 𝜋 ← SNARK.Prove(pkΠ, 𝜙,𝑤) in

20

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

Cust.RedeemRequest, the challenger again invokes the simula-
tor to obtain 𝜋 ← S(pkΠ, 𝜙, 𝜏). Because the zk-SNARK is zero-
knowledge, we have |Adv1 − Adv0 | ≤ ℓ ·𝑄𝑟 · Advzk.

Game 2. In this game, we modify the challenger to replace com-
mitments with random elements from the commitment space
C. For each of at most 𝑄𝑖 issue requests, instead of computing
(com, open) ← Commit(root∗) in Cust.IssueRequest, the chal-
lenger samples com $← C. Because the commitment scheme is
hiding, we have |Adv2 − Adv1 | ≤ 𝑄𝑖 · Advhid.

Game 3. In this game, we modify the challenger to replace con-
strained keys with random strings and zk-SNARK statements 𝜙 as
Merkle hashes over leaves generated by expanding the now-random
constrained keys.

For each of at most 𝑄𝑟 issue requests and for each of at most
ℓ subtrees, instead of computing 𝑘S ← CPRF.Constrain(𝑘,S)
and sending 𝜙 = Merkle.Hash(CPRF.Expand(𝑘S, ℓ − 𝑖)) in
Cust.RedeemRequest, the challenger samples 𝑘𝑟 $← {0, 1}𝜆 and
sends 𝜙𝑟 ← Merkle.Hash(CPRF.Expand(𝑘𝑟 , ℓ − 𝑖)). Because the
CPRF is key-pseudorandom and the Merkle tree hash function is
a hiding commitment, we have |Adv3 − Adv2 | ≤ ℓ ·𝑄𝑟 · (Advkp +
Advmt).
Completing the proof. We now argue that the adversary has no
advantage in Game 3. Indeed, all of the responses provided toA are
independent of 𝑏, so Adv3 = 0. By summing over A’s advantages
in the hybrid games, we can bound Adv0 ≤ ℓ ·𝑄𝑟 · (Advzk +Advkp +
Advmt) +𝑄𝑖 · Advhid, which is negligible, as required.

□

C OPTIMIZED DIVISIBLE E-CASH
We present our optimized divisible e-cash scheme in Construction B
(its differences with Construction 1 are highlighted) and prove its
security.

Lemma C.1 (Unforgeability). Construction B is an unforgeable
e-cash scheme assuming the signature scheme is EUF-CMA-secure,
the commitment scheme is binding, the zk-SNARK proof system is
knowledge-sound, the Merkle tree is built from a collision-resistant
hash function, and the CPRF PRG is collision-resistant.

Proof. The proof is essentially the same as the proof for
Lemma B.1, except there is an additional game in which we
strengthen the winning condition as follows: In order to win, the
adversary must generate a collision on the leftmost leaf of a re-
deemed subtree. Because the CPRF PRG is collision-resistant, this
additional constraint only negligibly changes the adversary’s win-
ning probability. □

Lemma C.2 (Unlinkability). Construction B is an unlinkable e-
cash scheme assuming the commitment scheme is hiding, the CPRF is
secure and key-pseudorandom, the Merkle tree hash function is a hid-
ing commitment, and the zk-SNARK proof system is zero-knowledge.

Proof. The proof is essentially the same as the proof for
Lemma B.2. □

D PROTECTED AUDIENCE API WITH
PRIVATE BILLING

Here, we walk through how private billing with e-cash maps onto
Protected Audience (Figure 5).

Step 0-A: Advertisers obtain coins from exchange. Advertis-
ers (each indexed by 𝑖 ∈ [𝑘]) and the exchange begin by running the
client and server setups, respectively, for the e-cash scheme. Adver-
tisers trade in hard currency (USD𝑖) to the exchange for electronic
coins (stored in updates to wallet wlt𝑖) to later pay publishers for
ad impressions. (Alternatively, advertisers can pay hard currency
to the exchange at the end of a billing period.)

For the divisible e-cash scheme, advertisers will also precompute
zk-SNARK proofs offline. If an advertiser knows the distribution of
values it will spend, it can precompute proofs accordingly to save
on precomputation costs (instead of naïvely precomputing a proof
for every leaf of every tree in its wallet).

Step 0-B: Client visits advertiser websites. When a client
visits an advertiser’s website and performs certain actions, such
as placing an item in a shopping cart, the advertiser invokes a
Protected Audience JavaScript API to store a callback URL (cbURL𝑖)
on the client’s browser. The client’s browser uses this callback to
later run ad auctions.

Step 1: Client visits publisher website. When the client visits
a publisher’s website, the publisher invokes a Protected Audience
JavaScript API to indicate its desire to serve a retargeted ad on its
page.

Step 2: Client runs ad auction. The client’s browser initiates
an ad auction (e.g., a first-price, open-bid auction) by calling the
stored callback URLs for the advertisers it has visited. Each callback
returns the corresponding advertiser’s bid (bid𝑖) for the impression.
The client’s browser runs the auction (argmax for a first-price auc-
tion) and notifies the winning advertiser (win to advertiser 𝑗) of the
clearing price for the impression (implicit in a first-price auction).

Step 3: Winning advertiser sends ad and coins to client.
The winning advertiser sends the URL of its ad creative (adURL),
which is used to render the ad, to the client’s browser, along with
coins (cs) amounting to the clearing price.

Step 4: Client and publisher forward coins to exchange.
The client’s browser forwards the coins to the publisher, who for-
wards them to the exchange.

Step 5: Exchange checks validity of coins. If the coins are
valid and have not been double-spent, then the exchange accepts
(𝑏 = 1), sends the publisher hard currency (USD) for the value of the
redeemed coins, and notifies the client of acceptance through the
publisher. (Alternatively, the exchange can pay hard currency to the
publisher at the end of a billing period.) Otherwise, the exchange
sends rejects (𝑏 = 0) and the client’s browser retries with the next
winner of the auction.

Step 6: Client displays ad. If the exchange accepts, then the
client’s browser displays the ad on the publisher’s website in an
isolated “fenced frame” [59], which prevents the publisher from
learning who the winning advertiser is.

21

Proceedings on Privacy Enhancing Technologies 2024(4) Kevin Liao, Henry Corrigan-Gibbs, and Dan Boneh

Construction B. Divisible e-cash scheme with collision-resistant PRG optimization. Let parameter ℓ ∈ N be the height of a full tree.

Bank.Setup(1𝜆) → (st, pp).
• Generate signing key pair (skΣ, pkΣ) ← Sig.KeyGen(1𝜆).
• Generate proving and verifying key
(pkΠ, vkΠ) ← SNARK.KeyGen(1𝜆,𝐶), where the coin validity
circuit 𝐶 is for the following relation: “Given the leftmost leaf of
a subtree leaf (the statement), I know a signature 𝜎 , commitment
com, opening information open, full root root∗, and Merkle proof
𝜋path (the witness) such that:
– the signature is on the commitment to the full root:

Sig.Verify(pk, 𝜎, com) = 1 with server public key pk,
– the commitment opens to the full root:

VerifyCom(root∗, com, open) = 1, and
– the Merkle proof is a valid leaf membership proof:

Merkle.Verify(leaf, root∗, 𝜋path) = 1.”
• Set double-spend list dsl← ∅.
• Set state st← (skΣ, dsl).
• Set public parameters pp← (1𝜆, pkΣ, pkΠ, vkΠ).
• Output (st, pp).

Bank.Issue(st, req, 𝑛) → (st, rsp) .
• If 𝑛 ≠ 2ℓ , then output (st,⊥).
• Parse st as (skΣ, dsl).
• Parse req as com.
• Compute signature 𝜎 ← Sig.Sign(skΣ, com).
• Set response rsp← 𝜎 .
• Output (st, rsp).

Bank.Redeem(st, cs, 𝑛) → (st, 𝑏) .
• If 𝑛 ∉ [0, 2ℓ+1), then output (st, 0).
• Parse state st as (skΣ, dsl).
• Set initial state st0 ← st.
• Set amount𝑚 ← 0.
• For (𝑖, 𝑘S, 𝜙, 𝜋) in cs:

– Compute y← CPRF.Expand(𝑘S, ℓ − 𝑖).
– If y ∩ dsl ≠ ∅ or y[0] ≠ 𝜙 or SNARK.Verify(vk𝜋 , 𝜙, 𝜋) = 0,

then output (st0, 0).
– Add y to dsl in st and set𝑚 ←𝑚 + 2ℓ−𝑖 .

• If 𝑛 =𝑚, then output (st, 1). Otherwise, output (st0, 0).

Cust.Setup(1𝜆) → wlt.

• Set wallet wlt← ∅.
• Output wlt.

Cust.IssueRequest(wlt, 𝑛) → (wlt, req).
• Generate principal key 𝑘 ← CPRF.KeyGen(1𝜆).
• Compute full tree leaves y← CPRF.Expand(𝑘, ℓ).
• Compute full root root∗ ← Merkle.Hash(y) and store the full

tree tree.
• Compute commitment (com, open) ← Commit(root∗).
• Set request req← com.
• Add (𝑘, root∗, tree, com, open,⊥) to wlt.
• Output (wlt, req).

Cust.IssueProcess(wlt, rsp) → wlt.

• Parse response rsp as 𝜎 .
• Find (𝑘, root∗, tree, com, open,⊥) ∈ wlt such that

Sig.Verify(pkΣ, 𝜎, com) = 1 and update ⊥ to 𝜎 .
• Output wlt.

Cust.RedeemRequest(wlt, 𝑛) → (wlt, cs) .
• Set initial wallet wlt0 ← wlt.
• Set coins cs← ∅.
• Let 𝑛ℓ | | · · · | |𝑛0 be the binary representation of 𝑛.
• For 𝑖 ∈ [0, ℓ] such that 𝑛𝑖 = 1:

– Find (𝑘, root∗, tree, com, open, 𝜎) ∈ wlt such that tree
contains an unredeemed subtree with leftmost leaf leaf
covering 2𝑖 leaves with labels S and mark the subtree as
redeemed. If no such subtree exists, then output (wlt0,∅).

– Compute constrained key 𝑘S ← CPRF.Constrain(𝑘,S).
– Build Merkle proof 𝜋path ← Merkle.Prove(leaf, x), where
x is the vector of leaves of tree.

– Build SNARK proof 𝜋 ← SNARK.Prove(pkΠ, 𝜙,𝑤), where
the statement is 𝜙 ← leaf and the witness is
𝑤 ← (𝜎, root∗, com, open, 𝜋path).

– Add (𝑖, 𝑘S, 𝜙, 𝜋) to cs.
• Output (wlt, cs).

Protected Audience with private billing meets all of the stated
goals: Correctness is straightforward and revenue preservation
follows from unforgeability of the e-cash scheme. It achieves privacy
against the exchange, since the exchange’s interactions involve only
issuing coins to advertisers and redeeming coins from publishers. It
achieves privacy against advertisers and publishers due to the use
of fenced frames, which unlinks client interactions with advertisers
and publishers outside the attacker’s coalition. A formal proof of
security for the system is left as future work.

D.1 Protected Audience API with malicious
client mitigation

In order to protect against malicious clients wasting advertisers’
resources, the exchange must now be involved in ad auctions, but
additional message roundtrips can be avoided. The extended Pro-
tected Audience API workflow with malicious client mitigations is
as follows, with changes highlighted.

Step 0-A: Advertisers obtain coins from exchange. Advertis-
ers (each indexed by 𝑖 ∈ [𝑘]) and the exchange begin by running the
client and server setups, respectively, for the e-cash scheme. Adver-
tisers trade in hard currency (USD𝑖) to the exchange for electronic
coins (stored in updates to wallet wlt𝑖) to later pay publishers for

22

Divisible E-Cash for Billing in Private Ad Retargeting Proceedings on Privacy Enhancing Technologies 2024(4)

<latexit sha1_base64="hGpKR8fYFnoGCg35aHX5/i84x/g=">AAACuHicbVHbbtNAEN2YWwm3FB55WREhFSmKbBQBQqqoxAuPATVtpdgK4/XY3Wa9dnfHpcHK5/A1vMIDf8PaNYgmjLTS2TNz5hqXSlry/V8978bNW7fv7Nzt37v/4OGjwe7jI1tURuBMFKowJzFYVFLjjCQpPCkNQh4rPI6X7xv/8QUaKwt9SKsSoxwyLVMpgBy1GLw742GGZHmYA53atAaT5XC53vvzj2WyXsgRD1VSkB3xa/zyxWIw9Md+a3wbBB0Yss6mi90ehEkhqhw1CQXWzgO/pMjVJSkUrvthZbEEsYQM5w5qyNFGdTvpmj93TMLTwrinibfsv4oacmtXeewi2z43fQ35P9+8ovRNVEtdVoRaXBVKK8Wp4M3aeCINClIrB0AY6Xrl4hQMCHLL7Yef8LxyEdMu22EQ1U2DbapNJ9F+CsriqM0c7JOpMKqVjNGtQDcb2BBcgDmvovqrnGwn+yuLao1f6LId0B0l2DzBNjh6OQ5ejScfJ8ODUXeeHfaUPWN7LGCv2QH7wKZsxgT7xr6zH+yn99b77GWevAr1ep3mCbtmnvkNNE/csQ==</latexit>

9 argmax(bid8 , . . . , bid:)

<latexit sha1_base64="F7UbTs9LpfprZrMGyTiVFNGiC0o=">AAACrXicbVFNb9NAEN2Yj5bwlcKRy4oIiUMVbBRBL5EqwYEDh1DVbaXYROP1OF11/dHdcWhYpT+EX8MV/gH/hrVrIUgYaaW3M/Pezr5JKiUN+f6vnnfr9p27O7v3+vcfPHz0eLD35MSUtRYYilKV+iwBg0oWGJIkhWeVRsgThafJxbumfrpEbWRZHNOqwjiHRSEzKYBcaj4YR4RXZN9LUylYcUj5UsL6OsqBzk1mIQ2PPrpr2ySz9XXCJzyYD4b+yG+Db4OgA0PWxXS+14MoLUWdY0FCgTGzwK8otqBJCoXrflQbrEBcwAJnDhaQo4lt+701f+EyKc9K7U5BvM3+zbCQG7PKE9fZjr1Za5L/q81qyg5iK4uqJizEzUNZrTiVvPGKp1KjILVyAISWblYuzkGDIOdoPzrCy9p1TDu14yC2zYCt1GaRaJKBMrjfKgcT0jXGVskEnQVF48AGYQn6so7tVzneFvtDi22BX+iq/aBbSrC5gm1w8noUvBmNP42Hh/vdenbZM/acvWQBe8sO2Qc2ZSET7Bv7zn6wn94rL/Qi7/NNq9frOE/ZP+EtfgOhMthf</latexit>

Display ad via adURL if 1 = 1

<latexit sha1_base64="wB81/2k9Tq9QdBDmsyfqzhYkfjU=">AAACjHicbVFdSxtBFJ1sv2xqNepjXwZDwYcQdkvQggQEQfqYFqNCsiyzk7s6ODu7mbmjTYf8lr7an9R/09l1EU16YeFw7r1nzp6bllIYDMO/reDV6zdv3228b3/Y/Li13dnZvTCF1RzGvJCFvkqZASkUjFGghKtSA8tTCZfp7WnVv7wDbUShznFRQpyzayUywRl6KunsTXOGNyZzGubLRPSoSkTS6Yb9sC66DqIGdElTo2SnxaazgtscFHLJjJlEYYmxYxoFl7BsT62BkvFbdg0TDxXLwcSudr+knz0zo1mh/aeQ1uzzDcdyYxZ56idrr6u9ivxfb2Ix+xo7oUqLoPjjQ5mVFAtaRUFnQgNHufCAcS28V8pvmGYcfWDt6Q+YWz8xatTOo9hVBmup1SbiMGPSQK9WjoaoLcROihR8BKpKYGXhjum5jd0vMVgXe1qLnYJ7/Fn/oD9KtHqCdXDxpR8d9gffB92TXnOeDfKJ7JMDEpEjckK+kREZE04W5Dd5IH+CrWAQHAfDx9Gg1ezskRcVnP0DWk/KSQ==</latexit>req8 ,=8
<latexit sha1_base64="PbXZ9lEpOH6zwFVrvdK6b5Pl2lo=">AAAChXicbVHBbtNAEN0YaEKgJYEjF4sIiUMb2SgqXCoiceEYUNNWSkw03ozbVddrZ3e2bVjlP7jCX/E3rF0LQcJIlp7ezLx9fpOWUhiKol+t4MHDR3vtzuPuk6f7B896/ednprCa45QXstAXKRiUQuGUBEm8KDVCnko8T68/Vv3zG9RGFOqU1iUmOVwqkQkO5Kmv8xzoymROm3KzEIveIBpGdYW7IG7AgDU1WfRbMF8W3OaoiEswZhZHJSUONAkucdOdW4Ml8Gu4xJmHCnI0iattb8LXnlmGWaH9pyis2b83HOTGrPPUT9Y2t3sV+b/ezFL2PnFClZZQ8fuHMitDKsIqg3ApNHKSaw+Aa+G9hvwKNHDySXXnX3Bl/cSkUTuNE1cZrKW2m0QnGUiDh7VyfELaYuKkSNFHoKoEthZuQK9s4r6J0a7Yn7XEKbylu/oH/VHi7RPsgrO3w/h4OPo8GowPm/N02Ev2ir1hMXvHxuwTm7Ap40yz7+wH+xm0g6NgFBzfjwatZucF+6eCD78B7czIcQ==</latexit>rsp8

<latexit sha1_base64="OeePUj9lmEEQl0nU1dKVmDSgYZA=">AAACkXicbVHLThsxFHWGPmhoS4BNpW6shqpdoGimingskCK6qcQmrUhASkaRx7kDFh7PYF8DwQpf0237P/0bPMOoahOuZOnonnuO7yMppDAYhn8awcqz5y9err5qrr1+83a9tbE5NLnVHAY8l7k+S5gBKRQMUKCEs0IDyxIJp8nl15I/vQZtRK5OcFZAnLFzJVLBGfrUpPVujHCLbiiMQLottj8Z6hHM6aTVDjthFXQZRDVokzr6k40GG09zbjNQyCUzZhSFBcaOaRRcwrw5tgYKxi/ZOYw8VCwDE7tqhDn96DNTmubaP4W0yv6rcCwzZpYlvjJjeGEWuTL5FDeymO7HTqjCIij++FFqJcWclvugU6GBo5x5wLgWvlfKL5hmHP3WmuMfcGV9Rb92O4liVzZYWS2SiIcpkwZ2KufoELWF2EmRgF+BKjewILhm+srG7k50l83+ymKn4AZvqwH9UaLFEyyD4ZdOtNvpfu+2ezv1eVbJe/KBfCYR2SM98o30yYBwck9+kl/kd7AVHAS94OixNGjUmi3yXwTHD425y5o=</latexit>

Visit 8’s site
<latexit sha1_base64="Q+eQmErKs7aDYpKWGPWk/OZvMAY=">AAACiXicbVHBTttAEN240NJAS4BjL1ajSj2gyK4iQJWQkLj0wCFFBJASKxpvxrBivTa7s2nDKn/Sa/kn/qZrY1VtwkiWnt7MvH1+k5ZSGIqip1bwam399ZuNt+3NrXfvtzs7u5emsJrjkBey0NcpGJRC4ZAESbwuNUKeSrxK706r/tUMtRGFuqB5iUkON0pkggN5atLpjHOgW5M5ng7PzxYTMel0o15UV7gK4gZ0WVODyU4LxtOC2xwVcQnGjOKopMSBJsElLtpja7AEfgc3OPJQQY4mcbX1RfjJM9MwK7T/FIU1+++Gg9yYeZ76ydrocq8iX+qNLGVHiROqtISKPz+UWRlSEVY5hFOhkZOcewBcC+815LeggZNPqz0+x3vrJwaN2kWcuMpgLbXcJDrOQBrcr5XjY9IWEydFij4CVSWwtDADfW8T9yD6q2J/1xKn8Af9rH/QHyVePsEquPzSiw96/e/97sl+c54N9oF9ZJ9ZzA7ZCfvGBmzIOJuxX+w3eww2gzg4Cr4+jwatZmeP/VfB6R+aPMkZ</latexit>

cbURL8

<latexit sha1_base64="vJ5O7K4iemG7MPoKRiDFpF/IsyI=">AAACinicbVHfaxNBEN6cP1pj1UQffVkMgg8l3JWgFikU9MHHKE1aSI4wt5lrl+7tXXdn28Ylf4qv+jf537h3PUQTBwY+5pvv29mZrFLSUhz/6kT37j94uLP7qPt478nTZ73+86ktnRE4EaUqzVkGFpXUOCFJCs8qg1BkCk+zy481f3qNxspSn9CqwrSAcy1zKYBCadHrzwlvyU+llcRD4nrRG8TDuAm+DZIWDFgb40W/A/NlKVyBmoQCa2dJXFHqwZAUCtfdubNYgbiEc5wFqKFAm/pm9jV/HSpLnpcmpCbeVP9WeCisXRVZ6CyALuwmVxf/x80c5e9TL3XlCLW4eyh3ilPJ60XwpTQoSK0CAGFkmJWLCzAgKKyrO/+KVy50jFu3kyT19YCN1SZJdJSDsrjfOCdHZBymXskMwwp0vYENwTWYK5f6b3K0bfZHlnqNN3TbfDAcJdk8wTaYHgyTt8PRl9HgeL89zy57yV6xNyxh79gx+8zGbMIEu2Hf2Q/2M9qLDqLD6MNda9RpNS/YPxF9+g0gzMnJ</latexit>

Visit site
<latexit sha1_base64="IRrnIWFg7GF7yOUAKIo+N2Zlo5U=">AAACl3icbVFNa9tAEF2rH0ndL6c5lUJZ6hR6CEYqJu0lNBAoOfTghDgJWMKM1qNkyWql7I7SOItv/TW9tn+m/6YrRZTW7sDCY968t/ORlkpaCsNfneDe/QcP19YfdR8/efrseW/jxYktKiNwLApVmLMULCqpcUySFJ6VBiFPFZ6ml/s1f3qNxspCH9O8xCSHcy0zKYB8atp7HRPekNsHpfhWnANd2MyJdHz0ZTGVW4tprx8Owib4Koha0GdtjKYbHYhnhahy1CQUWDuJwpISB4akULjoxpXFEsQlnOPEQw052sQ1gyz4W5+Z8aww/mniTfZvhYPc2nme+sqm1WWuTv6Pm1SUfUyc1GVFqMXdR1mlOBW83gqfSYOC1NwDEEb6Xrm4AAOC/O668RFeVb5i1LodR4mrG2yslkmi3QyUxe3GOdolU2HilEzRr0DXG1gSXIO5qhJ3K4erZn9kidP4lW6aAf1RouUTrIKT94NoZzA8HPb3ttvzrLNX7A17xyL2ge2xAzZiYybYN/ad/WA/g5fBp+BzcHBXGnRazSb7J4LD339XzqI=</latexit>

Call cbURL8
<latexit sha1_base64="k+c1499U1H9/i9ZvSdGwvXgJErc=">AAAChXicbVHBTttAEN24pUBKWyjHXqxGlTjQyK4i4IKK1AvHFBFASkw03oxhxXptdmeBdJX/6BX+ir9hbSxEk45k6enNzNvnN2kphaEoemwFb94uvVteWW2/X/vw8dP6xucTU1jNccALWeizFAxKoXBAgiSelRohTyWeple/qv7pDWojCnVM0xKTHC6UyAQH8tT5KAe6NJlLxWQ2FuP1TtSN6goXQdyADmuqP95owWhScJujIi7BmGEclZQ40CS4xFl7ZA2WwK/gAoceKsjRJK62PQu/eWYSZoX2n6KwZl9vOMiNmeapn6xtzvcq8n+9oaVsL3FClZZQ8eeHMitDKsIqg3AiNHKSUw+Aa+G9hvwSNHDySbVHR3ht/US/UTuOE1cZrKXmm0T7GUiD27VyvE/aYuKkSNFHoKoE5hZuQF/bxP0RvUWxl7XEKbylu/oH/VHi+RMsgpMf3Xin2/vd6xxsN+dZYV/YV7bFYrbLDtgh67MB40yzv+yePQTLwfegF+w8jwatZmeT/VPBzyeeOMhL</latexit>

bid8
<latexit sha1_base64="T9G2i8XCY053GWrFu7GNH1bkeEs=">AAACg3icbVFNT9tAEN0YaGn6AbTHXiyiSpWKIhtF0EskpF44BkQAKbbQeDOGFeu12Z2Fpqv8Da7wt/g3XRurKgkjWXp6M/P2+U1WSWEoip46wcrq2pu36++67z98/LSxufX51JRWcxzzUpb6PAODUigckyCJ55VGKDKJZ9n1r7p/dovaiFKd0KzCtIBLJXLBgTyVJAXQlcndnVDzi81e1I+aCpdB3IIea2t0sdWBZFpyW6AiLsGYSRxVlDrQJLjEeTexBivg13CJEw8VFGhS15ieh988Mw3zUvtPUdiw/284KIyZFZmfbEwu9mrytd7EUv4zdUJVllDx54dyK0MqwzqBcCo0cpIzD4Br4b2G/Ao0cPI5dZNjvLF+YtSqncSpqw02UotNomEO0uBOoxwPSVtMnRQZ+ghUncDCwi3oG5u6P2KwLPZvLXUK7+h384P+KPHiCZbB6W4/3usPjga9g532POvsK9tm31nM9tkBO2QjNmacVeyePbDHYC34EewGg+fRoNPufGEvKhj+Bemux44=</latexit>

win
<latexit sha1_base64="VSZBXzTVd4k6oVAioxte4OkF5rI=">AAAClHicbVFNbxMxEHWWrxK+UpC49GIRIXGIot0qAg5UqlQhcUAoVE1bKVlFs85sa9Xr3drjQrBy4NdwhZ/Dv8G7XRAkjGTped688fhNVilpKY5/dqIbN2/dvrN1t3vv/oOHj3rbj49t6YzAiShVaU4zsKikxglJUnhaGYQiU3iSXRzU/MkVGitLfUTLCtMCzrTMpQAKqXlvZ1YAndvcC7sa8N8XWEwO36/mvX48jJvgmyBpQZ+1MZ5vd2C2KIUrUJNQYO00iStKPRiSQuGqO3MWKxAXcIbTADUUaFPf/GLFn4fMguelCUcTb7J/KzwU1i6LLFQ2Y65zdfJ/3NRR/jr1UleOUIvrh3KnOJW8toQvpEFBahkACCPDrFycgwFBwbju7BAvXagYt92OktTXAzat1kmivRyUxUHTOdkj4zD1SmYYLNC1A2uCKzCXLvVf5Giz2R9Z6jV+os/NB8NSkvUVbILj3WHycjj6OOrvD9r1bLEd9oy9YAl7xfbZOzZmEybYV/aNfWc/oqfRm+ggentdGnVazRP2T0QffgFJ9c24</latexit>

cs, adURL <latexit sha1_base64="DqZkDr55WkBhZhXprfYnXN1QE/E=">AAACgnicbVFNT9tAEN0YSiGlfB65WERIFUKRDVHbQ5GQuPSYVgSQEguNN2NYsV6b3VnadJWf0Wv5Xfybro2FIGEkS09vZt4+v0lLKQxF0WMrWFh8t/R+eaX9YfXj2vrG5ta5KazmOOCFLPRlCgalUDggQRIvS42QpxIv0tvTqn9xj9qIQp3RpMQkh2slMsGBPDUc5UA3JnPcTK82OlE3qiucB3EDOqyp/tVmC0bjgtscFXEJxgzjqKTEgSbBJU7bI2uwBH4L1zj0UEGOJnG152m455lxmBXaf4rCmn254SA3ZpKnfrL2ONuryLd6Q0vZ18QJVVpCxZ8eyqwMqQirAMKx0MhJTjwAroX3GvIb0MDJx9Qe/cQ76yf6jdpZnLjKYC012yQ6zkAaPKiV42PSFhMnRYo+AlUlMLNwD/rOJu6P6M2LPa8lTuEv+l3/oD9KPHuCeXB+2I0/d3s/ep2Tg+Y8y2yH7bJPLGZf2An7zvpswDgr2F/2jz0Ei8F+EAdHT6NBq9nZZq8q+PYfxfHHDA==</latexit>cs <latexit sha1_base64="DqZkDr55WkBhZhXprfYnXN1QE/E=">AAACgnicbVFNT9tAEN0YSiGlfB65WERIFUKRDVHbQ5GQuPSYVgSQEguNN2NYsV6b3VnadJWf0Wv5Xfybro2FIGEkS09vZt4+v0lLKQxF0WMrWFh8t/R+eaX9YfXj2vrG5ta5KazmOOCFLPRlCgalUDggQRIvS42QpxIv0tvTqn9xj9qIQp3RpMQkh2slMsGBPDUc5UA3JnPcTK82OlE3qiucB3EDOqyp/tVmC0bjgtscFXEJxgzjqKTEgSbBJU7bI2uwBH4L1zj0UEGOJnG152m455lxmBXaf4rCmn254SA3ZpKnfrL2ONuryLd6Q0vZ18QJVVpCxZ8eyqwMqQirAMKx0MhJTjwAroX3GvIb0MDJx9Qe/cQ76yf6jdpZnLjKYC012yQ6zkAaPKiV42PSFhMnRYo+AlUlMLNwD/rOJu6P6M2LPa8lTuEv+l3/oD9KPHuCeXB+2I0/d3s/ep2Tg+Y8y2yH7bJPLGZf2An7zvpswDgr2F/2jz0Ei8F+EAdHT6NBq9nZZq8q+PYfxfHHDA==</latexit>cs
<latexit sha1_base64="ORM5UNiOZYx3+hgQ06apPjhFl8g=">AAACeHicbVFNSxxBEO0dk2jWJH4dvTQuogFZZmRRL4KQi8c1uCrsDlLTW6ONPT1jd7W6Dv6CXJMf51/xZM84hLibgobHq3qv6yMplLQUhs+tYO7Dx0/zC5/bi1++fltaXlk9s7kzAgciV7m5SMCikhoHJEnhRWEQskTheXLzo8qf36GxMtenNCkwzuBKy1QKIE+dJJfLnbAb1sFnQdSADmuif7nSgtE4Fy5DTUKBtcMoLCguwZAUCp/aI2exAHEDVzj0UEOGNi7rTp/4pmfGPM2Nf5p4zf6rKCGzdpIlvjIDurbTuYr8X27oKD2IS6kLR6jF20epU5xyXo3Nx9KgIDXxAISRvlcursGAIL+c9ugn3jpf0W/cTqO4rBqsraaTRIcpKIs7tXN0SMZhXCqZoF+BrjYwJbgDc+vi8lH2Zs3+yuJS4z091AP6o0TTJ5gFZ7vdaK/bO+l1jnaa8yywdbbBtlnE9tkRO2Z9NmCCIfvFfrM/rZeAB1vB97fSoNVo1ti7CHZfAXLjw1w=</latexit>

1
<latexit sha1_base64="ORM5UNiOZYx3+hgQ06apPjhFl8g=">AAACeHicbVFNSxxBEO0dk2jWJH4dvTQuogFZZmRRL4KQi8c1uCrsDlLTW6ONPT1jd7W6Dv6CXJMf51/xZM84hLibgobHq3qv6yMplLQUhs+tYO7Dx0/zC5/bi1++fltaXlk9s7kzAgciV7m5SMCikhoHJEnhRWEQskTheXLzo8qf36GxMtenNCkwzuBKy1QKIE+dJJfLnbAb1sFnQdSADmuif7nSgtE4Fy5DTUKBtcMoLCguwZAUCp/aI2exAHEDVzj0UEOGNi7rTp/4pmfGPM2Nf5p4zf6rKCGzdpIlvjIDurbTuYr8X27oKD2IS6kLR6jF20epU5xyXo3Nx9KgIDXxAISRvlcursGAIL+c9ugn3jpf0W/cTqO4rBqsraaTRIcpKIs7tXN0SMZhXCqZoF+BrjYwJbgDc+vi8lH2Zs3+yuJS4z091AP6o0TTJ5gFZ7vdaK/bO+l1jnaa8yywdbbBtlnE9tkRO2Z9NmCCIfvFfrM/rZeAB1vB97fSoNVo1ti7CHZfAXLjw1w=</latexit>

1

<latexit sha1_base64="eZN1Kg6sgKWMHseA6gbub6tizss=">AAADDXicbVLNbtQwEPaGv7L8tXDkYrFC2qJVlFQLrYQiVeLCcUHdtlISVY4z6VrrOKnttGytPAMnrvAU3BBXnoF34CFwsilqdxnJ0ni++T7PjCcpOVPa8373nFu379y9t3G//+Dho8dPNreeHqqikhSmtOCFPE6IAs4ETDXTHI5LCSRPOBwl83cNfnQOUrFCHOhFCXFOTgXLGCXahsKIMkk5pMavTzYHnuu1htcdv3MGqLPJyVbvT5QWtMpBaMqJUqHvlTo2RGpmNet+VCkoCZ2TUwitK0gOKjZtzTV+aSMpzgppj9C4jV5nGJIrtcgTm5kTPVOrWBP8HxZWOtuLDRNlpUHQ5UNZxbEucDMAnDIJVPOFdQiVzNaK6YxIQrUdUz/6CGeVzZh0agd+bJoCW6lVUOsgI1zBqFX2Ay0riA1nCdgRiGYCK4RzIs+q2Fyy8brYP1psBFzoT22DN7rWbH5pIxalRZ4Tkb66+r7QVhk1cHi1C8Gwacptrtux6eNrFokihVDNSAnBkj9KJbkYMSFAYvtc4Lmv7UfiVmIbm4Ffv62b/fBXt2HdOdxx/Tfu+MN4sD/sNmUDPUcv0BD5aBfto/dogqaIogJ9QV/RN+ez89354fxcpjq9jvMM3TDn11+4Cfn7</latexit>

1

<latexit sha1_base64="xN0Ni9UnWobNxqda0QT8qkgPLGw=">AAADDXicbVLNbtQwEPaGv7L8tXDkYrFC2qJVlFQLrYQiVeLCcUHdtlISVY4z6VrrOKnttGytPAMnrvAU3BBXnoF34CFwsilqdxnJ0ni++T7PjCcpOVPa8373nFu379y9t3G//+Dho8dPNreeHqqikhSmtOCFPE6IAs4ETDXTHI5LCSRPOBwl83cNfnQOUrFCHOhFCXFOTgXLGCXahsKIMkk5pGanPtkceK7XGl53/M4ZoM4mJ1u9P1Fa0CoHoSknSoW+V+rYEKmZ1az7UaWgJHROTiG0riA5qNi0Ndf4pY2kOCukPULjNnqdYUiu1CJPbGZO9EytYk3wf1hY6WwvNkyUlQZBlw9lFce6wM0AcMokUM0X1iFUMlsrpjMiCdV2TP3oI5xVNmPSqR34sWkKbKVWQa2DjHAFo1bZD7SsIDacJWBHIJoJrBDOiTyrYnPJxuti/2ixEXChP7UN3uhas/mljViUFnlORPrq6vtCW2XUwOHVLgTDpim3uW7Hpo+vWSSKFEI1IyUES/4oleRixIQAie1zgee+th+JW4ltbAZ+/bZu9sNf3YZ153DH9d+44w/jwf6w25QN9By9QEPko120j96jCZoiigr0BX1F35zPznfnh/Nzmer0Os4zdMOcX38Buqn5/A==</latexit>

2

<latexit sha1_base64="yc98tnH3rIJfWWbVCYvuS7krOyg=">AAADDXicbVLNbtQwEPaGv7L8tXDkYrFC2qJVlMC2IKFIlbhwXFC3rZREleNMutY6Tmo7LVsrz8CJKzwFN8SVZ+AdeAicbIraXUayNJ5vvs8z40lKzpT2vN8958bNW7fvbNzt37v/4OGjza3HB6qoJIUpLXghjxKigDMBU800h6NSAskTDofJ/F2DH56BVKwQ+3pRQpyTE8EyRom2oTCiTFIOqXlVH28OPNdrDa87fucMUGeT463enygtaJWD0JQTpULfK3VsiNTMatb9qFJQEjonJxBaV5AcVGzammv83EZSnBXSHqFxG73KMCRXapEnNjMneqZWsSb4PyysdPYmNkyUlQZBlw9lFce6wM0AcMokUM0X1iFUMlsrpjMiCdV2TP3oI5xWNmPSqe37sWkKbKVWQa2DjHAFo1bZD7SsIDacJWBHIJoJrBDOiDytYnPBxuti/2ixEXCuP7UNXutas/mFjViUFnlORPri8vtCW2XUwOHlLgTDpim3uW7Hpo+vWCSKFEI1IyUES/4oleR8xIQAie1zgefu2I/ErcQ2NgO/fls3++GvbsO6c/DS9Xfd8YfxYG/YbcoGeoqeoSHy0Wu0h96jCZoiigr0BX1F35zPznfnh/Nzmer0Os4TdM2cX38BvUn5/Q==</latexit>

3
<latexit sha1_base64="8tDt0QyImotl6P2nY4Q8mDFqq/Y=">AAADDXicbVLNbtQwEPaGv7L8tXDkYrFC2qJVlFQLrYQiVeLCcUHdtlISVY4z6VrrOKnttGytPAMnrvAU3BBXnoF34CFwsilqdxnJ0ni++T7PjCcpOVPa8373nFu379y9t3G//+Dho8dPNreeHqqikhSmtOCFPE6IAs4ETDXTHI5LCSRPOBwl83cNfnQOUrFCHOhFCXFOTgXLGCXahsKIMkk5pGZcn2wOPNdrDa87fucMUGeTk63enygtaJWD0JQTpULfK3VsiNTMatb9qFJQEjonpxBaV5AcVGzammv80kZSnBXSHqFxG73OMCRXapEnNjMneqZWsSb4PyysdLYXGybKSoOgy4eyimNd4GYAOGUSqOYL6xAqma0V0xmRhGo7pn70Ec4qmzHp1A782DQFtlKroNZBRriCUavsB1pWEBvOErAjEM0EVgjnRJ5Vsblk43Wxf7TYCLjQn9oGb3St2fzSRixKizwnIn119X2hrTJq4PBqF4Jh05TbXLdj08fXLBJFCqGakRKCJX+USnIxYkKAxPa5wHNf24/ErcQ2NgO/fls3++GvbsO6c7jj+m/c8YfxYH/YbcoGeo5eoCHy0S7aR+/RBE0RRQX6gr6ib85n57vzw/m5THV6HecZumHOr7+/6fn+</latexit>

4
<latexit sha1_base64="CAC7d/0npmmSzQUw5Gsf6RNbRyw=">AAADDXicbVLNbtQwEPaGv7L8tXDkYrFC2qJVlKAtrYQiVeLCcUHdtlISVY4z6VrrOKnttGytPAMnrvAU3BBXnoF34CFwsilqdxnJ0ni++T7PjCcpOVPa8373nFu379y9t3G//+Dho8dPNreeHqqikhSmtOCFPE6IAs4ETDXTHI5LCSRPOBwl83cNfnQOUrFCHOhFCXFOTgXLGCXahsKIMkk5pGanPtkceK7XGl53/M4ZoM4mJ1u9P1Fa0CoHoSknSoW+V+rYEKmZ1az7UaWgJHROTiG0riA5qNi0Ndf4pY2kOCukPULjNnqdYUiu1CJPbGZO9EytYk3wf1hY6WwvNkyUlQZBlw9lFce6wM0AcMokUM0X1iFUMlsrpjMiCdV2TP3oI5xVNmPSqR34sWkKbKVWQa2DjHAFo1bZD7SsIDacJWBHIJoJrBDOiTyrYnPJxuti/2ixEXChP7UN3uhas/mljViUFnlORPrq6vtCW2XUwOHVLgTDpim3uW7Hpo+vWSSKFEI1IyUES/4oleRixIQAie1zgefu2I/ErcQ2NgO/fls3++GvbsO6c/ja9d+44w/jwf6w25QN9By9QEPko120j96jCZoiigr0BX1F35zPznfnh/Nzmer0Os4zdMOcX38Bwon5/w==</latexit>

5
<latexit sha1_base64="UVc0J8nY8NB5dS8NOfTqCpf80TE=">AAADDXicbVLNbtQwEPaGv7L8tXDkYrFC2qJVlKClrYQiVeLCcUHdtlISVY4z6VrrOKnttGytPAMnrvAU3BBXnoF34CFwsilqdxnJ0ni++T7PjCcpOVPa8373nFu379y9t3G//+Dho8dPNreeHqqikhSmtOCFPE6IAs4ETDXTHI5LCSRPOBwl83cNfnQOUrFCHOhFCXFOTgXLGCXahsKIMkk5pGanPtkceK7XGl53/M4ZoM4mJ1u9P1Fa0CoHoSknSoW+V+rYEKmZ1az7UaWgJHROTiG0riA5qNi0Ndf4pY2kOCukPULjNnqdYUiu1CJPbGZO9EytYk3wf1hY6WwvNkyUlQZBlw9lFce6wM0AcMokUM0X1iFUMlsrpjMiCdV2TP3oI5xVNmPSqR34sWkKbKVWQa2DjHAFo1bZD7SsIDacJWBHIJoJrBDOiTyrYnPJxuti/2ixEXChP7UN3uhas/mljViUFnlORPrq6vtCW2XUwOHVLgTDpim3uW7Hpo+vWSSKFEI1IyUES/4oleRixIQAie1zgee+sR+JW4ltbAZ+/bZu9sNf3YZ15/C16++44w/jwf6w25QN9By9QEPko120j96jCZoiigr0BX1F35zPznfnh/Nzmer0Os4zdMOcX38BxSn6AA==</latexit>

6

<latexit sha1_base64="Nta+reZXVoAtxdso96kEGd6XNkQ=">AAACi3icbVFda9tAEDyrX6mbNE762BdRU8hDMFJj0hAaSCmBProlTgK2MKvzKjlyOil3e6ndw3+lr+1fyr/pSRGlsbMgGGZm51a7aSmFoSi6awVPnj57/mLtZfvV+sbrzc7W9pkprOY45IUs9EUKBqVQOCRBEi9KjZCnEs/T6y+Vfn6L2ohCndK8xCSHSyUywYE8Nelsjwln5D5PvYmE8c7FpNONelFd4SqIG9BlTQ0mWy0YTwtuc1TEJRgziqOSEgc+kUtctMfWYAn8Gi5x5KGCHE3i6uEX4XvPTMOs0P5TFNbs/x0OcmPmeeqdOdCVWdYq8jFtZCk7SJxQpSVU/P6hzMqQirDaRDgVGjnJuQfAtfCzhvwKNHDyW2iPv+ON9Y5Bk3YaJ64asI5aFomOMpAGd+vk+Ii0xcRJkVZLVdUGlhpuQd/YxP0U/dWwf22JU/iDZvUP+qPEyydYBWcfevF+r/+t3z3ebc6zxt6yd2yHxewjO2Zf2YANGWcz9ov9Zn+CjWAvOAw+3VuDVtPzhj2o4OQvq1DKew==</latexit>

Advertisers
<latexit sha1_base64="lferhIy5NhJdksBPStAE5CjSbhA=">AAAChHicbVFNb9NAEN24UEr4auHIxSJC4hBFNg20l6JKvXAMqGkrJatqvBm3q67Xzu5saVjld/RKf1b/DWvXQpAwkqWnN/Pejt9klZKWkuS+E208erz5ZOtp99nzFy9fbe+8PrGlMwLHolSlOcvAopIaxyRJ4VllEIpM4Wl2dVT3T6/RWFnqY1pUyAu40DKXAihQfEp4Q/5ISdS0PN/uJYOkqXgdpC3osbZG5zsdmM5K4YqgFgqsnaRJRdyDISkULrtTZ7ECcQUXOAlQQ4GW+2brZfw+MLM4L034NMUN+7fCQ2HtosjCZAF0aVd7Nfm/3sRRvs+91JUj1OLhodypmMq4jiCeSYOC1CIAEEaGXWNxCQYEhaC60+84d2Fi1Lodp9zXCzZWq02igxyUxX7jnB6Qcci9khmGCHSdwIrgGszccf9TDtfN/si41/iDbpofDEdJV0+wDk4+DtLPg+G3Ye+w355ni71l79gHlrI9dsi+shEbM8Hm7Jb9YnfRZtSPdqNPD6NRp9W8Yf9U9OU3wK/H6w==</latexit>

Client
<latexit sha1_base64="S8SNqPDGLve/iWVd33fX9QdVdS0=">AAACiXicbVHfSxtBEN5cbWtjf8T62JfDIPgg4a6EVgqC4IuPaTEqJEeY28yZxb29c3c2NV3yn/RV/yf/G/fOo9TEgYWP+eb7ZnYmLaUwFEUPreDVxus3bzfftbfef/j4qbP9+dwUVnMc8kIW+jIFg1IoHJIgiZelRshTiRfp9UnFX8xRG1GoM1qUmORwpUQmOJBPTTqdMeEtuYFNfbMZ6uWk0416UR3hOogb0GVNDCbbLRhPC25zVMQlGDOKo5ISB5oEl7hsj63BEvg1XOHIQwU5msTVoy/DPZ+Zhlmh/VMU1tn/FQ5yYxZ56itzoJlZ5arkS9zIUnaYOKFKS6j4U6PMypCKsNpDOBUaOcmFB8C18LOGfAYaOPlttce/8Mb6ikHjdhYnrhqwtloliY4ykAYPauf4iLTFxEmRol+BqjawIpiDvrGJ+yP662b/ZIlT+Jtu6w/6o8SrJ1gH51978bde/2e/e3zQnGeTfWG7bJ/F7Ds7ZqdswIaMszn7y+7YfbAVxMFh8OOpNGg1mh32LIKTR4UDyYk=</latexit>

Publisher <latexit sha1_base64="hl2XrNw6Lxf/CnPMtWPKvW50c4M=">AAACiHicbVFNa9tAEF2raZu6H3HaYy8iJtBDMFIxSXMIhJZAj26Jk4AtzGg9cpasVsrubGJ38S/pNf1R/TddKaIkdgYEj/dm3o7epKUUhqLobyt4tvH8xcvNV+3Xb96+2+psvz8zhdUch7yQhb5IwaAUCockSOJFqRHyVOJ5evWt0s9vUBtRqFNalJjkMFMiExzIU5PO1phwTu5kzi9BzXA56XSjXlRXuA7iBnRZU4PJdgvG04LbHBVxCcaM4qikxIEmwSUu22NrsAR+BTMceaggR5O4evNluOuZaZgV2n+Kwpp9OOEgN2aRp74zB7o0q1pFPqWNLGVfEidUaQkVv38oszKkIqxiCKdCIye58AC4Fn7X0CeggZMPqz3+idfWdwwat9M4cdWCtdWqSHSUgTS4VzvHR6QtJk6KFH0EqkpgZeAG9LVN3C/RXzf7P5Y4hbc0r3/QHyVePcE6OPvci/d7/R/97vFec55N9pHtsE8sZgfsmH1nAzZknFn2m92xP0E7iIKD4PC+NWg1Mx/Yowq+/gM3ncj0</latexit>

Exchange
<latexit sha1_base64="csG2ijdNyyrGHTB42JSmH17prfI=">AAADEXicbVLNbtQwEPaGv7L8tXDkYrFCatFqlVTLj4RWqsSFGwvqtpWSUDnOpGut46T2pO3WylNw4QpvwQ1x5Ql4CN4BJ7ugdstIlsbzzfd5ZjxJKYVB3//V8a5dv3Hz1trt7p279+4/WN94uGeKSnOY8EIW+iBhBqRQMEGBEg5KDSxPJOwnszcNvn8C2ohC7eK8hDhnR0pkgjN0oY8Rwhnad1nW8OvD9Z4/8FujV51g6fTI0saHG53fUVrwKgeFXDJjwsAvMbZMo+AS6m5UGSgZn7EjCJ2rWA4mtm3ZNX3qIinNCu2OQtpGLzIsy42Z54nLzBlOzSrWBP+HhRVmr2IrVFkhKL54KKskxYI2M6Cp0MBRzp3DuBauVsqnTDOOblLd6AMcVy5jvFTbDWLbFNhKrYKIo4xJA/1WORihriC2UiTgRqCaCawQTpg+rmJ7LoZXxf7RYqvgFM/aBi91jWJ27iIO5UWeM5U+i7jQbtRp6KqMGjj8uw6jzaapQXPdim2XXrBIFSmEZspKGC34/VSz075QCjR1z438wXP3kbSV2KK2F9Sv67rrFiRYXYerzt72IHgxGL4f9nb6y1VZI4/JE7JJAvKS7JC3ZEwmhBNNPpMv5Kv3yfvmffd+LFK9zpLziFwy7+cfHpf7rg==</latexit>

O�ine

<latexit sha1_base64="Na7M1QEmMY/dZmBfnXJAGT8OwQI=">AAADEHicbVLNbhMxEHaWvxL+WjhysYiQWhRFuyi0SChSJS7cCKhpK+2uKq930ljxejf2bNvU2pfgwhXeghviyhvwELwD3k1AbcJIlsbzzfd5ZjxJIYVB3//V8m7cvHX7zsbd9r37Dx4+2tx6fGjyUnMY8Vzm+jhhBqRQMEKBEo4LDSxLJBwl07c1fnQG2ohcHeC8gDhjp0qMBWfoQnGEcIH2varp1clmx+/5jdF1J1g6HbK04clW63eU5rzMQCGXzJgw8AuMLdMouISqHZUGCsan7BRC5yqWgYltU3VFn7tISse5dkchbaJXGZZlxsyzxGVmDCdmFauD/8PCEsevYytUUSIovnhoXEqKOa1HQFOhgaOcO4dxLVytlE+YZhzdoNrRR5iVLmO4VDsIYlsX2EitgoiDMZMGuo1yMEBdQmylSMCNQNUTWCGcMT0rY3sp+uti/2ixVXCOF02D17pGMb10EYfyPMuYSl9EXGg36jR0VUY1HP7dhsF23VSvvu7Etk2vWKTyFEIzYQUMFvxuqtl5VygFmrrnBn7vlftI2kjsUNsJqjdV1XYLEqyuw7pz+LIX7Pb6H/qd/e5yVTbIU/KMbJOA7JF98o4MyYhwMiOfyRfy1fvkffO+ez8WqV5ryXlCrpn38w/8evtG</latexit>

Online

<latexit sha1_base64="JqBjWPwTg+Bme5mAmkOpS9FUFxk=">AAADF3icbVLNbtNAEN6YvxJ+mpYjlxUBqUVRZKPwI6FIRVw4BtS0lWwrWq8nzSr22t0dt0lXfhAuXOEtuCGuHPsQfQfWTorahJFWmp1vvm9nZifKE6HRdS8azq3bd+7e27jffPDw0ePN1tb2gc4KxWHIsyRTRxHTkAgJQxSYwFGugKVRAofR9GOFH56C0iKT+zjPIUzZsRRjwRna0Ki1HXCheAKxCRBmaD6U5ajVdrtubXTd8ZZOmyxtMNpqXAZxxosUJPKEae17bo6hYQqFlS6bQaEhZ3zKjsG3rmQp6NDUxZf0hY3EdJwpeyTSOnqdYViq9TyNbGbKcKJXsSr4P8wvcPwuNELmBYLki4fGRUIxo9UkaCwUcEzm1mFcCVsr5ROmGEc7r2bwBU4KmzFYqu17oakKrKVWQcT+mCUaOrWy10dVQGgSEYEdgawmsEI4ZeqkCM256K2L/aOFRsIZzuoGb3SNYnpuIxblWZoyGb+8+kXfVhlUsH+1FP2dqqludd0NTZNes0BmMfh6wnLoL/idWLGzjpASFLXP9d3ua/uRtJbYpabtle/LsmkXxFtdh3Xn4FXXe9Ptfe61954vV2WDPCXPyA7xyFuyRz6RARkSTmbkG/lOfjhfnZ/OL+f3ItVpLDlPyA1z/vwFwPj9pw==</latexit>

A

<latexit sha1_base64="NOO/SN6mxpbCVpsLebUDTNLJydI=">AAADF3icbVLNbtNAEN6YvxJ+mpYjlxUBqUVRZKPwI6FIFVw4BtS0lWwrWq8nzSr22t0dt0lXfhAuXOEtuCGuHPsQfQfWTorahJFWmp1vvm9nZifKE6HRdS8azq3bd+7e27jffPDw0ePN1tb2gc4KxWHIsyRTRxHTkAgJQxSYwFGugKVRAofR9GOFH56C0iKT+zjPIUzZsRRjwRna0Ki1HXCheAKxCRBmaD6U5ajVdrtubXTd8ZZOmyxtMNpqXAZxxosUJPKEae17bo6hYQqFlS6bQaEhZ3zKjsG3rmQp6NDUxZf0hY3EdJwpeyTSOnqdYViq9TyNbGbKcKJXsSr4P8wvcPwuNELmBYLki4fGRUIxo9UkaCwUcEzm1mFcCVsr5ROmGEc7r2bwBU4KmzFYqu17oakKrKVWQcT+mCUaOrWy10dVQGgSEYEdgawmsEI4ZeqkCM256K2L/aOFRsIZzuoGb3SNYnpuIxblWZoyGb+8+kXfVhlUsH+1FP2dqqludd0NTZNes0BmMfh6wnLoL/idWLGzjpASFLXP9d3ua/uRtJbYpabtle/LsmkXxFtdh3Xn4FXXe9Ptfe61954vV2WDPCXPyA7xyFuyRz6RARkSTmbkG/lOfjhfnZ/OL+f3ItVpLDlPyA1z/vwFw5r9qA==</latexit>

B

<latexit sha1_base64="yyzTObKmazjaApWxmVGKf63g004=">AAACYXicbVBNT9tAEN2Yj0L4SugxlxURUpBQZCMovTWCS49UbQApNtF6Mw6rrNer3TFtZPnn8Gu40kPP/SPdmBRBYKSV3r6Z0bz3Yi2FRd//U/OWlldWP6yt1zc2t7Z3Gs3dS5vlhkOfZzIz1zGzIIWCPgqUcK0NsDSWcBVPzmf9qzswVmTqB041RCkbK5EIztBRw8aXTpgyvLVJYbE8pP8/WpcHNBwD2mfqjKlJ9ztgrstOcBNKd2PEDoaNtt/1q6JvQTAHbTKvi2GzVg9HGc9TUMgls3YQ+BqjghkUXEJZD3MLmvEJG8PAQcVSsFFROS3pvmNGNMmMewppxb7cKFhq7TSN3WQle7E3I9/rDXJMPkeFUDpHUPzpUJJLihmdxUZHwgBHOXWAcSOcVspvmWEcXbivrkgRg/OiFqw801Gh4Cf+qpS49ILFrN6Cy6Nu8Kl78u243Tuc57hGWmSPdEhATkmPfCUXpE84uScP5JH8rv311r2Gt/s06tXmOx/Jq/Ja/wAqMbn4</latexit>

(st, pp) Bank.Setup(1_)

<latexit sha1_base64="P1Lp5l2IFgaQ3EkwgJ9m1yGf/8c=">AAACe3icdVDBTttAEN24lIa0paEcuayIKqVVFNlVaXtE5QK3IJEElFjRejMOq6zX7u64bWT52/gOPoArfAESG2MikpQnrfT2zTzNzAsSKQy67nXFebXxevNNdav29t377Q/1nY89E6eaQ5fHMtbnATMghYIuCpRwnmhgUSChH0yP5vX+H9BGxOoMZwn4EZsoEQrO0Eqj+kVzGDG8NGFmMG/Rp482ST4Sn+lwAmgW6i+mpu0TY1LIX7DBb2trUWW9o3rDbbsF6DrxStIgJTqjnUptOI55GoFCLpkxA89N0M+YRsEl5LVhaiBhfMomMLBUsQiMnxUZ5PSTVcY0jLV9CmmhPndkLDJmFgW2s1h2tTYX/1cbpBj+9DOhkhRB8cdBYSopxnQeKB0LDRzlzBLGtbC7Un7JNONoY1+aIkUA9ha1cspC9jMFf/FfsYlNz1vNap30vra97+2D02+Nw1aZY5XskX3SJB75QQ7JMemQLuHkityQW3JXuXcazhen7HUqpWeXLME5eAD/PsVY</latexit>(st, rsp8) Bank.Issue(st, req8 ,=8)

<latexit sha1_base64="5v4nXTfbi1uHtQE7QOVs7vt1MPc=">AAACd3icbVBNb9NAEN2YAmkokJYjh64aUSVSFNmIjx4juHBMUfMhJVa0Xo/TbdZra3cMRJZ/Gb+EI1f4Bdy6cRKUjz5ppDdvZjQzL0ilMOi6vyrOo6PHT55Wj2vPTp6/eFk/PRuYJNMc+jyRiR4FzIAUCvooUMIo1cDiQMIwmH9e1offQBuRqBtcpODHbKZEJDhDK03r/eYkZnhrotxg0aZBi05mgIZu1E9MzTtfIQSIi93WTcLNVhKIsJjetab1httxS9BD4q1Jg6zRm55WapMw4VkMCrlkxow9N0U/ZxoFl1DUJpmBlPE5m8HYUsViMH5e/l/QN1YJaZRoGwppqW5P5Cw2ZhEHtrO8c7+2FB+qjTOMrvxcqDRDUHy1KMokxYQuzaSh0MBRLixhXAt7K+W3TDOO1vKdLVIEYH9Re6/8l/1cwXf8UV5i3fP2vTokg7cd70Pn/fW7Rre99rFKXpML0iQe+Ui65AvpkT7h5Cf5Tf6Qv5V/zrlz6TRXrU5lPfOK7MDx7gFgXsNG</latexit>(st,1) Bank.Redeem(st, cs, bid9)

<latexit sha1_base64="exyLfR/DLFxmanMGKDWhW1tlMt4=">AAACVXicbVDbSsNAEN3Ee71VffRlsQgKUhLvj4IvPipaFZpYNttJXbrZhN2JWkI/xK/xVb9A/BjBbayi1YGFwzkzO3NOlElh0PPeHHdsfGJyanqmMjs3v7BYXVq+NGmuOTR4KlN9HTEDUihooEAJ15kGlkQSrqLu8UC/ugNtRKousJdBmLCOErHgDC3Vqu4ECcNbExf3EvstQYMOoKFf5HFusH4OmGf9Df8mkPbfNttsVWte3SuL/gX+ENTIsE5bS04laKc8T0Ahl8yYpu9lGBZMo+AS+pUgN5Ax3mUdaFqoWAImLEp3fbpumTaNU22fQlqyPycKlhjTSyLbWZ49qg3I/7RmjvFhWAiV5QiKfy6Kc0kxpYOoaFto4Ch7FjCuhb2V8lumGUcb6K8tUkRgvagRK990WCi4x4fyEpueP5rVX3C5Xff363tnu7WjrWGO02SVrJEN4pMDckROyClpEE4eyRN5Ji/Oq/PujruTn62uM5xZIb/KXfwAtzq2hg==</latexit>

wlt8 Cust.Setup(1_)
<latexit sha1_base64="WBAP41jEjV7zwKb2bNLDrMoJ80A=">AAACZ3icbVDbSsNAEN3Ge71VBRF8WS2CgpREvD0KIvioYlVoQ9hsJ3Vxs4m7E7WEfpFf46P6Bf6F21jFVgcGDufMMGdOmEph0HVfS87I6Nj4xORUeXpmdm6+srB4ZZJMc6jzRCb6JmQGpFBQR4ESblINLA4lXId3xz39+gG0EYm6xE4KfszaSkSCM7RUUDlpxgxvTZQ/SuwGgjbbgIZ+k8eZwdoFtADiC7jPwGB3c3Bhm6pAbAWVqltzi6J/gdcHVdKvs2ChVG62Ep7FoJBLZkzDc1P0c6ZRcAndcjMzkDJ+x9rQsFCxGIyfF/926YZlWjRKtG2FtGB/b+QsNqYTh3ayMDus9cj/tEaG0aGfC5VmCIp/HYoySTGhvfBoS2jgKDsWMK6F9Ur5LdOMo4144IoUIdhf1NArP7SfK3jEp8KJTc8bzuovuNqpefu1vfPd6tF2P8dJskrWySbxyAE5IqfkjNQJJ8/khbyR99KHM+8sOytfo06pv7NEBspZ+wSk5r2R</latexit>

wlt8 Cust.RedeemRequest(wlt8 ,=8)

<latexit sha1_base64="2RXPeZbGoajml9IswVHQvFB/QEk=">AAACcXicbVDBSiNBEO2MrqvR1agn8dIYBJeVMLPsrh4FL3oyglEhGUJPpyY26ekZumpWw5DP8mOWveoX+AN2xigm+qDh9atXVNWLMq2QfP9fxZub/7LwdXGpurzybXWttr5xiWluJbRkqlN7HQkErQy0SJGG68yCSCINV9HgeFy/+gsWVWouaJhBmIi+UbGSgpzUrZ11EkE3GBe3mkZdxTt9IOSv4nGO1DhFzKFpUwmIo71p//6b1WLm/t+7tbrf8EvwjySYkDqboNldr1Q7vVTmCRiSWiC2Az+jsBCWlNQwqnZyhEzIgehD21EjEsCwKC8f8V2n9HicWvcM8VJ931GIBHGYRM5Z7jlbG4uf1do5xYdhoUyWExj5MijONaeUj2PkPWVBkh46IqRVblcub4QVklzYU1O0isDdYmZOeZPDwsAt3ZWbuPSC2aw+ksufjeBP4/f5r/rR/iTHRbbNdtgeC9gBO2InrMlaTLJ79p89sMfKk7flcW/nxepVJj2bbArej2f0WMJg</latexit>

wlt8 Cust.IssueProcess(wlt8 , rsp8)

<latexit sha1_base64="Euc9+Tly2Oca0y2gL28QvgOMuew=">AAACgXicdVBRj9JAEF6Kesh5Cvroy0ZyCSSEtBc9TXwh4cVHJHJHAk2z3U5h77bbujsVSdOf54/wN/iq7y4FicfpJJN88818mZkvzKQw6Lrfa079wcNHJ43HzdMnZ0+ftdrPr0yaaw5TnspUz0JmQAoFUxQoYZZpYEko4Tq8HW37119AG5GqT7jJwE/YUolYcIaWClpBd5EwXJm4WEssg5s+/VNzU/boYgloDtQoNziYQASQTOBzDgbL/8pDEdm6F7Q67sCtgt4H3h50yD7GQbvWXEQpzxNQyCUzZu65GfoF0yi4hLK5yA1kjN+yJcwtVCwB4xeVEyU9t0xE41TbVEgr9m9FwRJjNkloJ6s7j3tb8l+9eY7xO78QKssRFN8tinNJMaVbW2kkNHCUGwsY18LeSvmKacbRmn9nixQh2F/U0SsH2i8UrPFrdYl1zzv26j64uhh4l4M3H193hv29jw3ykrwiXeKRt2RIPpAxmRJOvpEf5Cf55dSdnuM6F7tRp7bXvCB3wnn/G6Evx3s=</latexit>(wlt9 , cs) Cust.RedeemRequest(wlt9 , bid9)

Figure 5: Workflow of Protected Audience with e-cash-based private billing.

ad impressions. (Alternatively, advertisers can pay hard currency
to the exchange at the end of a billing period.)

For the divisible e-cash scheme, advertisers will also precompute
zk-SNARK proofs offline. If an advertiser knows the distribution of
values it will spend, it can precompute proofs accordingly to save
on precomputation costs (instead of naïvely precomputing a proof
for every leaf of every tree in its wallet).

Step 0-B: Client visits advertiser websites. When a client
visits an advertiser’s website and performs certain actions, such
as placing an item in a shopping cart, the advertiser invokes a
Protected Audience JavaScript API to store a callback URL (cbURL𝑖)
on the client’s browser. The client’s browser uses this callback to
later run ad auctions.

Step 0-C: Exchange preallocates auction IDs to publish-
ers offline. The exchange preallocates a set of unique auction IDs
to publishers, which they later use to run valid and identifiable
auctions.

Step 1: Client visits publisher website. When the client visits
a publisher’s website, the publisher invokes a Protected Audience
JavaScript API to indicate its desire to serve a retargeted ad on its
page and includes an auction ID (aucID) in the HTTP response.

Step 2: Client runs ad auction. The client’s browser initiates
an ad auction (e.g., a first-price, open-bid auction) by calling the
stored callback URLs for the advertisers it has visited. Each callback
returns the corresponding advertiser’s bid (bid𝑖) for the impression.
The client’s browser runs the auction (argmax for a first-price auc-
tion) and notifies the winning advertiser (win to advertiser 𝑗) of the
clearing price for the impression (implicit in a first-price auction).

Step 3: Winning advertiser sends ad and coins to client.
The winning advertiser sends the URL of its ad creative (adURL),
which is used to render the ad, to the client’s browser, along with
a ciphertext ct = Enc(pkx, cs∥aucID∥payID), where pkx is the ex-
change’s public key, the coins cs amount to the clearing price, and
payID is an opaque payment ID.

Step 4: Client and publisher forward ciphertext to ex-
change. The client’s browser forwards the ciphertext to the pub-
lisher, who forwards it to the exchange.

Step 5: Exchange decrypts and checks validity of
coins. The exchange decrypts the ciphertext to obtain
(cs, aucID, payID) ← Dec(skx, ct). If the coins are valid and
have not been double-spent, then the exchange accepts (𝑏 = 1),
sends the publisher hard currency (USD) for the value of the
redeemed coins, and notifies the client of acceptance through the
publisher. (Alternatively, the exchange can pay hard currency
to the publisher at the end of a billing period.) Otherwise, the
exchange sends rejects (𝑏 = 0) and the client’s browser retries with
the next winner of the auction.

Step 6: Client displays ad. If the exchange accepts, then the
client’s browser displays the ad on the publisher’s website in an
isolated “fenced frame” [59], which prevents the publisher from
learning who the winning advertiser is.

Step 7: Exchange publishes auction-payment ID pairs. The
exchange publishes the auction-payment ID pair (aucID, payID),
which allows the advertiser to check that their payment went
through.

23

	Abstract
	1 Introduction
	2 Motivation and goals
	2.1 Ad retargeting today
	2.2 Private ad retargeting with the Protected Audience API
	2.3 Adding private billing to the Protected Audience API
	2.4 Goals

	3 Background
	4 E-cash for private billing
	4.1 Definition
	4.2 A simple e-cash scheme
	4.3 A divisible e-cash scheme
	4.4 Divisible e-cash optimizations

	5 Implementation
	6 Evaluation
	6.1 Benchmarks and comparisons
	6.2 Main results

	7 Discussion
	8 Related work
	9 Conclusion
	Acknowledgments
	References
	A Simple e-cash
	B Divisible e-cash security analysis
	C Optimized divisible e-cash
	D Protected Audience API with private billing
	D.1 Protected Audience API with malicious client mitigation

