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ABSTRACT
Face images are a rich source of information that can be used to
identify individuals and infer private information about them. To
mitigate this privacy risk, anonymizations employ transformations
on clear images to obfuscate sensitive information, all while re-
taining some utility. Albeit published with impressive claims, they
sometimes are not evaluated with convincing methodology.

Reversing anonymized images to resemble their real input — and
even be identified by face recognition approaches — represents
the strongest indicator for flawed anonymization. Some recent
results indeed indicate that this is possible for some approaches. It
is, however, not well understood, which approaches are reversible,
and why. In this paper, we provide an exhaustive investigation in
the phenomenon of face anonymization reversibility. Among other
things, we find that 11 out of 15 tested face anonymizations are at
least partially reversible and highlight how both reconstruction and
inversion are the underlying processes that make reversal possible.
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1 INTRODUCTION
In today’s world, biometric data is pervasively captured as more
sensors are recording us in larger quantity and quality. Take, for
example, the increasing usage of surveillance cameras, autonomous
vehicles that scan their surroundings, mixed reality devices, or
sensors in various smart devices. This development poses chal-
lenges to individual privacy, as extensive sensitive information can
be inferred from our biometric data. Examples are abound, and
they include identity [11, 71], personal preferences [30], sexuality
[27, 56], health status [35] and medical conditions [30]. Some sug-
gested biometric data protection techniques attempt to prevent this
threat. One class of these systems aims at irreversibly transforming
face images in such a way that privacy-sensitive inferences are
no longer possible, while trying to retain the utility of the image.
There are many proposals [41] on how to design such anonymiza-
tions, however, the evaluation methodology to quantify how much
privacy protection they offer is still lacking.

We observe a severe problemwith the common evaluationmethod-
ology: they frequently rely on weak attacker models that assume an
attacker is unaware of the anonymization. An attacker who is aware
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of the modifications is stronger (and we claim: more realistic!) as
they can actively try to remove the protection. Today, the most
common method to build such an attacker is to train recognition
systems on protected data (e.g. [39]). This helps the recognition
system to adapt to changes caused by the anonymization.

However, we argue that training recognition systems on pro-
tected data is not optimal, as these systems were never designed to
work on protected data. Instead, we pursue an alternative direction
in which the anonymized image is attempted to be reversed to its
clear image in an intermediate step before the recognition system
performs the identification. Preventing reversal is a key require-
ment for biometric privacy, but it is often overlooked in evaluation.
For an anonymization to protect individuals, it must be a one-way-
function for any arbitrary adversary and therefore reversibility is
the worst-case failure of such a protection technique.

The literature for face images [57, 66] already has shown that
specific reversing techniques such as deblurring, denoising and
super-resolution can be successful at reversing basic anonymiza-
tions. A recent paper by Hao et al. [19] attempts to use a general
purpose machine learning model for a variety of face anonymiza-
tions and achieves higher identification accuracies, showing that
some of them are reversible. These initial results show that there
might be a general approach to reversing anonymizations. We are
the first to investigate in-depth if reversibility is a widespread prob-
lem and try to assess what makes some anonymizations reversible.
It is still an open research question which (groups of) anonymiza-
tions are reversible, to what extent reversibility generalizes, and
how the evaluation of identification on reversed data compares to
the common evaluation methodology.

Our main contribution in this paper is an exhaustive investiga-
tion of the phenomenon of face anonymization reversibility. We
try to answer the question: How and when can face anonymization
techniques be reversed? For this, we design and conduct a large
number of experiments that investigate different aspects of this
question. In particular, we consider the following:

• We define an evaluation methodology that uses a general
de-anonymization before face recognition and test it on a
large number of face anonymizations. This allows us to sys-
tematically investigate which (groups of) anonymizations
are reversible;

• To investigate what makes reversal possible we design and
test a general machine learning model based on two under-
lying processes: reconstruction and inversion;

• We test specialized and general de-anonymizations, as well
as the common anonymization evaluation methodology on a
large number of face anonymizations to highlight differences
between them;

24

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0105


Fantômas: Understanding Face Anonymization Reversibility Proceedings on Privacy Enhancing Technologies 2024(4)

• We test cases where training and test data does not match
or is from different data sets to investigate to which extent
de-anonymizations generalize;

• We conduct a user study to assess the perceived visual appeal
of anonymized images to investigate if there is a trade-off
between reversibility and utility.

2 BACKGROUND
Here we present the background and terminology which is required
to understand our work and the assumptions it is based on.

Following established vocabulary [23] we use biometric charac-
teristics to describe the biological and behavioral characteristics
that can be used to extract biometric features which in turn can
be used by biometric recognition to identify individuals or infer
attributes, such as age [9] and sex [50] about them. To prevent
biometric recognition privacy enhancing technologies (PETs)
are employed which obfuscate the private information in the data
from internal and external observers. The specific term of anony-
mization refers to PETs which remove all identifiers that directly
identify individuals. Anonymization takes biometric clear data
as input and outputs anonymized data. While the use cases for
anonymization can vary widely, by definition their output is always
anonymous, i.e. it is impossible to identify individuals from the data.
For the remainder of this work, we will assume a data publishing
model as our system model, as such the biometric data must be
anonymized before it is published to a third party. This implies that
the anonymization must not be reversible as else a malicious third
party can simply remove the anonymization to access the data. An
example of this system model would be a user who anonymizes
their data before uploading it to a social media site, for example
anonymizing their own faces or the ones of bystanders. We will call
anonymized data on which anonymization reversal was attempted
de-anonymized data.

2.1 Anonymization Evaluation State of the Art
The most common evaluation methodology today to test the anon-
ymization of biometric data is to measure the recognition accuracy
with a biometric recognition system. By comparing the accuracy of
the clear and anonymized data the protection of the anonymization
can be determined.

Newton et al. [45] proposed to differentiate these experiments by
which data was used for enrollment and testing of the recognition
system. In their approach, naive recognition uses clear data as
enrollment data, and then anonymized data is used as test data.
Parrot recognition on the other hand enrolls the recognition sys-
tem on anonymized data before it is tested against anonymized
data, which most of the time improves performance as the recogni-
tion system can adapt to the anonymized data better. The parrot
recognition approach was further improved by Srivastava et al. [63]
who split the parrot recognition case into a semi-informed attacker
who only knows the anonymization method but not its parameters
and an informed attacker who knows the anonymization method
and its exact parameters. In addition, McPherson et al. [39] adapt
the recognition model to three anonymizations by training it on
the specific anonymized data. A recent initiative to build a com-
mon methodology how to evaluate speaker anonymization is the

VoicePrivacy [67] challenge. Similar to the methodologies above,
they define the attackers by how much access to anonymized train-
ing data they have.

A different evaluation approach considers the reversibility of
anonymizations. Early versions [57, 66] used de-anonymizations
specific for individual anonymizations to test their reversibility.
More recently, Hao et al. [19] used the general image-to-image
machine learning model Pix2Pix [24] to attack multiple anonymiza-
tions. While their initial results indicate that general reversal might
be possible, they are not well understood and limited in the number
of anonymizations considered. Besides evaluating against a biomet-
ric recognition system it is also possible to evaluate against human
evaluators who attempt to recognize individuals, as done in [31].
However, this is less common because it is much easier to run auto-
mated biometric recognition methods than to conduct user studies.
Also, McPherson et al. [39] and Hao et al. [19] claim that humans
may no longer be the gold standard for human identification.

3 RELATEDWORK
Template protection is closely related to biometric data anonymiza-
tion as its goal is to remove all attributes, except the identity, from
the data. ISO-24745 [65] requires template protection schemes to be
irreversible. Cappelli et al. [5] reconstructed fingerprints from tem-
plates. De-anonymization attacks are a common threat to biometric
template schemes as a survey by Gomez et al. [16] shows. Biomet-
ric data anonymization schemes share the same system model as
template protection schemes and hence also must be irreversible to
protect user privacy. However, the attacks on template protection
schemes are not directly applicable as template protection schemes
try to keep the identity of a subject while anonymizations try to
remove it.

Evaluation methodology improvement is a common research sub-
ject, that is not only explored for biometric data anonymization but
also in the field of biometric recognition. Philips et al. [49] suggested
partitioning of the used biometric data set according to the quality
of the data samples. The reasoning for this methodology is that it
becomes easier to judge the robustness of recognition algorithms.
Stolerman et al. [64] looked critically at the usage of a closed-world
assumption for stylometry recognition. They found that many sty-
lometry methods fail when an open-world assumption is utilized.
Goga et al. [15] were able to show that the matching of profiles
across social networks is not as easy as previously thought by mak-
ing the assumptions in their evaluation more realistic. Arp et al. [1]
had a look at the used methodologies for using machine learning
in the security field and identified common mistakes. Hanisch et
al. [18] investigated how the specific selection of the identities of
the evaluation data set can be used to create a more challenging
evaluation data set for biometric anonymization. Wenger et al. [74]
performed a systematization of knowledge of face anonymization
techniques that focus on preventing online face recognition. As one
of the design properties of face anonymization, they identify the
longer-term robustness of the technique, thus taking into account
that face recognition techniques evolve and get better over time.
All these works highlight that it is important to critically look at the
used evaluation methodologies to further drive the development of
the field e.g. anonymizations towards better privacy protection.
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Specialized reversibility attacks for biometric data anonymization
techniques have been proposed in the past. Xu et al. [61] train a
convolutional neural network to reconstruct blurred faces. Lu et
al. [37] have proposed a super-resolution approach that removes
Pixelation from face images. A denoising and deblurring approach
was proposed by Zamir et al. [75] who use an auto-encoder to
recover a restored version of an image. Further methods performing
deblurring are by Krishnan et al. [29], Pan et al. [48], and Tsai et
al. [69]. Tekli et al. [66] have created a framework that evaluates
image anonymization and can apply three different specialized
reversibility attacks on the images. While for this specific use-case
of deblurring and denoising images methods exist it is not clear
how they compare to a general reversibility attacker. Missing is also
a systematic evaluation of how the reversibility approach works
against various types of anonymization.

4 EVALUATION METHODOLOGY
In this section, we first explain why we require the evaluation of
reversibility and then define our attacker model. We will use the
resulting evaluation methodology throughout this paper.

4.1 Analysis
As we already mentioned in the introduction, most evaluations of
biometric data anonymizations assume a weak attacker which is
not aware of the anonymization that was performed on the data.
This is an unrealistic limitation of the attacker as anonymizations
are often easy to detect (e.g. a blurred face) and we assume that
a dedicated attacker will always be able to detect that the data is
anonymized. Further, for PETs, we are most commonly interested
in worst-case performance, so assuming a strong attacker is only
natural.

A strategy [45, 68] that has been proven to be successful for
worst-case evaluation is the retraining of biometric recognition
systems using anonymized samples to adapt the model to the an-
onymization. However, biometric recognition systems have never
been designed for dealing with anonymization and hence we expect
that a dedicated approach to reverse the data anonymization can be
more successful. Looking at the literature [57, 66] we find that some
specialized approaches to reverse anonymizations already exist (e.g.
deblurring) and are successful, indicating that de-anonymization
attacks might be possible against other anonymizations. However,
developing specialized approaches for every anonymization would
be time-consuming and the results would not be directly compara-
ble across anonymizations. Recently, Hao et al. [19] used Pix2Pix
[24] as a general de-anonymization to test reversibility of some
anonymizations. Pix2Pix is a general image-to-image translation
model that can be trained with any set of image pairs. By train-
ing it using pairs of anonymized and clear images, the reversal
can be learned and later applied to anonymized images. However,
their experiments are limited in the anonymizations considered
and leave open how and when exactly reversal is possible and how
it compares to naive and parrot recognition. In this work, we want
to investigate these questions in detail and therefore define our at-
tacker model and the resulting reversibility evaluationmethodology
in the following.

4.2 Attacker Model
The goal of our attacker is to identify individuals in anonymized
biometric recordings, by reversing the anonymization of the data.
To achieve this goal, the attacker knows that the recordings are
anonymized, however, in order to make the attacker general and
agnostic to the anonymization we regard the anonymization as a
black box for which neither the parameters nor the anonymization
method itself are known. This information is additionally known
in the case of specialized de-anonymizations. Further, the attacker
has access to a clear data set of biometric recordings which does
not have to include the individuals under attack and therefore
could for example be a large publicly-available research data set.
This set can be anonymized using the black box anonymization
(similar to encryption oracles in cryptography) which results in
a corresponding anonymized data set. This is based on the
assumption that generally an attacker can detect and identify the
anonymization used and apply it themselves. For the identification
of individuals the attacker also possesses clear enrollment data
and anonymized test data, as in the common methodology. Since
our adversary should evaluate the robustness of the anonymization
against being reversed, we assume a pessimistic scenario for the
anonymization. This means that the anonymizationmust work even
in a worst-case scenario. This in turn means that we pick an easy
identification scenario as this is a hard anonymization scenario [18].
For our attacker, this means that the face images to be anonymized
and then attacked are of high quality and contain clearly identifiable
faces [54]. We assume that if the anonymization is not reversible on
these high quality images, it will not be reversible on lower quality
images.

A visual example of the data sets in our attacker model can be
found in Figure 1. The success of the attack will be measured by how
well the attacker can identify the individuals in the test data set (not
how well the anonymized data was de-anonymized). We consider
the attacker to be successful if they can identify individuals in the de-
anonymized recordings more successfully than in the anonymized
recordings. A comparison of our attacker model to existing ones
can be found in Table 1.

A simple real-world example of our attacker would be an at-
tacker that tries to identify individuals on a social media site that
anonymizes faces in images (e.g. the faces of bystanders in the
background) before they are shared online. By uploading its clear
data set, the attacker receives the corresponding anonymized data
set and can then perform its de-anonymization attack.

Table 1: Comparison of attacker models in regards to which
information and data they have access to.

Model naive parrot special. ours
Knowledge of ...
... manipulation ✗ ✓ ✓ ✓

... manipulation method ✗ ✗ ✓ ✗

... manipulation parameters ✗ ✗ ✓ ✗

Access to data pairs ✗ ✗ ✗ ✓
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Figure 1: Data access of the attacker model. For training, the
model has access to both anonymized and respective clear
images, for testing only anonymized images are available.

4.3 Reversibility Evaluation
Based on our attacker model, we design an evaluation methodology
to test reversibility of biometric anonymization. The idea of the
methodology is to perform general de-anonymization before the
identification is tested on the data. To keep the de-anonymization
general we keep it agnostic to the anonymization under test by
using machine learning to learn a model that transforms the an-
onymized data back into its corresponding clear data and there-
fore de-anonymizes the data. This way the attacker can be easily
adapted to any anonymization, simply by the training data of the de-
anonymization being anonymized using the specific anonymization
method that is being evaluated.

Figure 2: Recognition attacker models and their respective
data usage for training and testing the biometric recognition
system they use for their attack.

After the training of the model, we use it to de-anonymize the
test data. To now perform the identification we use a biometric
recognition system in which we enroll clear data samples of the
individuals we wish to identify and test against the de-anonymized
test data (for a comparison to previous methodologies, see Figure 2).
We select clear data as the enrollment data because due to the de-
anonymization the data is closer to clear than anonymized data.
This assumption was confirmed in an experiment, in which the
average accuracy (Facenet, VGG-Face2 & ArcFace) for all fifteen
anonymizations was 49.2% with clear data and 27.1% with anon-
ymized data for enrollment with data de-anonymized using our
approach (see Section 5) as test data. The identification accuracy of
the recognition system on the de-anonymized data is a metric of the
anonymization’s ability to protect the privacy of individuals in the
biometric recordings. If the recognition system is able to identify
individuals, then either anonymized data is sufficient to identify
individuals (the case caught by previous evaluation methodology)
or the anonymization was reversible.

5 DESIGN
For our investigation into the phenomenon of face anonymization
reversibility, we want to better understand what makes reversal
possible. To do this, we design a new machine learning model that
is specifically designed for general de-anonymization and not based
on previous models like Pix2Pix [24] which have not been originally
been designed to reverse anonymizations. Hence, Pix2Pix can only
demonstrate that reversibility is possible but does not allow us
to reason why reversing anonymizations is possible. We do not
necessarily want to create the best-performing model, but rather
purposely design amodel that helps us understand the phenomenon
of reversibility.

For the design, we are guided by two underlying processes: re-
construction and inversion. Reconstruction exploits the correlations
and dependencies in the biometric data to recover removed infor-
mation. Take for example face images in which due to the structure
of the face it is clear where the position of the eyes is, or how the
color of one eye most of the time also gives you the color of the
other eye. Inversion on the other hand is the direct undoing of the
operation that the anonymization performed on the data. While
reconstruction will always result in small differences to the origi-
nal (lossy), inversion can also perfectly reverse (lossless). A model
trained to de-anonymize anonymized data will use a combination
of both.

Considering that both our input and output are images, we decide
to select an under-complete auto-encoder as the base model. Auto-
encoders compress the input into a small latent code that represents
the input before decoding it back into the same domain as the
input making them popular choices as a method to remove noise
from images called denoising auto-encoders [17, 62]. The benefit of
auto-encoders is that the encoder and decoder learn the intrinsic
dependencies in the data which can help with the reconstruction of
data that was obfuscated by anonymization. A specialized version
of auto-encoders that use this ability are auto-encoders which are
used as generators for deepfakes [42, 46].

For denoising, we find both auto-encoders with linear and con-
volutional layers being used. Many common face anonymizations
perform localized changes in the image and therefore convolutional
layers with their locality and translation invariance properties seem
like the obvious choice. In these cases, the dominant process is
reconstruction. Convolutional layers are also the more common
option whenever dealing with images, since there is the concept
of neighborhoods and relative positions of pixels as opposed to
linear layers that rather work with vectors and interpret them as
simple lists of values. In situations in which convolutional layers
can solve a problem, they should also generally be preferred over
linear layers as they have fewer trainable parameters which will
speed up the training process.

Our attacker’s machine-learning model is supposed to be gen-
eral. In other words, it should be able to reverse any anonymiza-
tion. While many anonymizations perform only local modifications,
some apply global changes to the image, as for instance permuta-
tions. It hence is not sufficient to use convolutional layers, with
local effects, but functionality to invert global changes has to be
implemented.
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Such a scenario is not considered by the convolutional-only
architecture of Pix2Pix [24], the model used for reversal by Hao et
al. [19].

Figure 3: Design of our machine learning model

In linear layers, the locality principle does not exist and outputs
can depend on any (or all) inputs including those that would not
be considered close enough by a convolutional layer. Therefore,
a machine learning model that is actually general, would use lin-
ear and not convolutional layers. However, linear layers require
memory proportional to input size times output size. Considering
that we are working with high-resolution RGB images we choose
to use a model with a single linear layer between the encoder and
decoder to keep the model size feasible. A visual representation of
the described model is shown in Figure 3.

In the encoder part, the model uses two convolutional layers
with following activation functions and max pooling layers. The
max pooling layers reduce the dimension of the input, each of them
halving the width and height of the image. The decoder is designed
symmetrically: two transposed convolutional layers followed by
activation functions. Each of them quadruples the number of pixels,
resulting in an output resolution that matches the input.

As we are using RGB images, our input data has three channels.
The first convolutional layer of the encoder increases this to a
specified number of features. We consider this number of features
a hyperparameter for which we conduct experiments to find a
suitable value. However since the number of features influences the
size of the linear layer, it is limited by the available GPU memory.
To reduce the number of channels back to three in the output,
the decoder part also includes a convolutional layer after the two
transposed convolutional layers. For the activation function we
considered Sigmoid, Tanh, and ReLU (rectified linear unit), but
empirically found LeakyReLU to perform best.

Similarly, we also test multiple options for loss functions to be
used during model training. This includes standard regression loss
functions such as mean squared error (MSE) and mean absolute
error (MAE) as well as computer vision-specific ones like struc-
tural similarity (SSIM) [73]. We acknowledge that more advanced
loss functions such as an identity loss function that reduces the
difference in recognized identity rather than the difference in pixel
values might also be very suitable in this use-case, but choose to
keep this general de-anonymization purposely simple to be able to
understand the results better.

6 TECHNIQUES
In this section, we introduce all the anonymization and de-anonym-
ization techniques that we use in our experiments. For each, we
consider both commonly used basic methods as well as state-of-
the-art approaches. We make sure that our selection of methods
covers all categories that are relevant for our scenario.

6.1 Anonymizations
For all introduced anonymizations, an example image can be found
in Figure 4.

6.1.1 Basics. Basic anonymizations are the most commonly used
methods as they are easy to implement and often provide straight-
forward parameters to control the privacy-utility trade-off. Their
main utility goal is to keep the image similar to the original one.

Eye Mask. The pixels in the eye area of the face are removed and
replaced by a black bar.

Block Permutation. The face image is split into equally-sized
blocks which are then permuted. The same permutation is used for
all images. Note that we add Block Permutation as a trivial example
of reversible anonymization in order to test our de-anonymization
methodology.

Pixel Relocation [7]. Cichowski and Czyzewski introduce an anon-
ymization designed for videos that is based on relocating individual
pixels using a fixed permutation. It is designed to be reversible
when a secret key is known.

Gaussian Noise. For every pixel of every channel in the image,
random noise is drawn from a Gaussian distribution and added to
the pixel’s value.

Gaussian Blur. The face area of the image is blurred using Gauss-
ian blur. This is done by performing a convolution on the image
with a Gaussian kernel matrix.

Pixelation. The resolution of the image is reduced. The parameter
is the number of remaining pixels on either axis.

6.1.2 Adversarial Machine Learning. Anonymizations in this cate-
gory achieve their privacy protection by attacking the face recog-
nition machine learning models that are used to identify individu-
als. These data poising attacks have been criticized as they target
specific face recognition models and therefore do not offer any
protection anymore when new models get implemented in the fu-
ture [51]. As thesemethods explicitly do not protect against humans,
the term ’anonymization’ may be considered incorrect (rather: de-
identification or anti-facial-recognition). Nevertheless, due to their
similarity, we add one such method to our comparison: Fawkes [60]
adds "imperceptible pixel-level changes" to face images. Fawkes’
use-case assumes that the anonymized images are used to train
the recognition system and can therefore "poison" the information
base so that later recognition attempts on non-anonymized data
fail. Its utility goal is to allow human observers to still recognize the
person in the image. The idea is to compute minimal perturbations
for an image that cause significant changes in the output of the
face recognition model. We use the open-source implementation
by Fawkes’ authors Shan et al.

6.1.3 Overlay. k-RTIO [52] (K-randomized transparent image over-
lays) adds a semi-transparent overlay to the face image. Based on
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Clear Eye Mask Block Permut. Pixel Reloc. Gauss. Noise Gauss. Blur Pixelation Fawkes

k-RTIO DP Pix DP Snow DP Samp k-Same-Pixel k-Same-Eigen DeepPrivacy CIAGAN

Figure 4: Different face anonymization methods we consider

the image’s identifier and a secret key, images from a known over-
lay image data set are selected. The overlay images are then block
permuted based on the secret key and combined. This combination
is overlayed on the face image. This anonymization is designed
to be reversible with the knowledge of the secret key. The use
case is the disruption of face recognition systems that may run on
cloud hosted images while preserving enough utility so that the
anonymized images might still be usable in the cloud environment
without the need to download and de-anonymize them.

6.1.4 Differential Privacy. A commonly used framework in anon-
ymizations is Differential Privacy (DP) which allows formal and
provable privacy guarantees. By definition, an adversary cannot
effectively distinguish between the outputs of a differentially pri-
vate mechanism. In the case of face anonymization, this would
theoretically guarantee that images cannot be re-identified by a
face recognition method. The utility goal in this category generally
is to keep the image similar to the original one.

DP Pix [12]. The image is first pixelated by averaging the pixels
within blocks. Then a Laplace perturbation is added to the pixelized
image. The algorithm was originally designed for grayscale images,
we adapt it to RGB images by performing all algorithm steps for
each channel separately. We implement DP Pix ourselves using the
description in [12] and the pseudo-code in [53].

DP Snow [26]. A configurable percentage of pixels in the image
are replaced with gray pixels. When 𝛿 is the percentage of replaced
pixels, this anonymization is (0, 𝛿)-differentially private according
to John et al. [26]. The stated utility goal is to preserve the landmarks
of the face.

DP Samp [53, 72]. This method was originally proposed for video
anonymization in [72] and adapted for grayscale images in [53].
We further adapt it for RGB images. Our variant works as follows:
K-Means is used to generate 𝑘 clusters from the pixels of the image.
For each cluster, the number of pixels within a threshold to the
mean cluster color is counted. Based on these frequencies, each
cluster is allocated a fraction of the overall privacy budget. The
privacy budget of a cluster determines how many pixels within the
cluster are randomly sampled. The sampled pixels from all clusters
are then used to linearly interpolate the remaining pixels for the

final anonymized image. We implement DP Samp ourselves based
on the pseudo-code in [53].

6.1.5 k-Anonymity. A different formal framework that allows for
privacy guarantees is k-anonymity. Its basic idea is to modify the
data in such a way that any single point is equally likely to belong
to any of k identities. This reduces the re-identification accuracy to
a theoretical maximum of 1/𝑘 . Utility is achieved by grouping indi-
viduals that share similar attributes, resulting in the anonymized
image preserving these attributes.

For face anonymization, k-anonymity was first formalized and
proposed by Newton et al. in [45]. They however make some as-
sumptions that are unsuitable for our use-case (andmany real-world
scenarios) including that there is only a single image per identity
and no other images or identities are added after the initial anony-
mization [40, 43]. Further, there is no straightforward way to split
the anonymized data set into multiple parts without breaking the
formal privacy guarantee.

We therefore implement a variation on their approach. We create
an anonymization background data set that contains the images
of identities which are not used anywhere else in our framework.
We train a PCA on the images in this data set and save their rep-
resentations in a database. When anonymizing an image, we find
the 𝑘 − 1 closest images in the PCA-space (only one per identity).
The anonymized image is then the average of the original image
and the 𝑘 − 1 closest images from the background data set. This
allows us to anonymize multiple images for the same person and
to later split the anonymized data set into multiple parts without
adverse effects. For k-Same-Pixel [45] the 𝑘 images are averaged
in the pixel-space while for k-Same-Eigen [45], the anonymized
image is the inverse transform of the average of the 𝑘 images’ PCA
representations.

6.1.6 Synthesis. Anonymizations in this category replace the en-
tire face in the image with a new synthetic one. Since this removes
the majority of identifying features of the original face, recognition
systems fail to match these images to the correct person. At the
same time, utility can be achieved by creating synthetic faces that
preserve specific attributes of the original one.
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DeepPrivacy [21]. Hukkelås et al. use a conditional generative
adversarial network which considers original pose and background
of the image. It has the goal to preserve a variety of attributes of
the original face while protecting the privacy of the individual. We
use the authors’ open-source implementation.

CIAGAN [38]. The approach byMaximov et al., CIAGAN, is based
on conditional generative adversarial networks together with a
novel identity control discriminator. The goal is to remove iden-
tification characteristics of people while keeping the necessary
features required for detection, recognition and tracking. Anon-
ymized images are supposed to be high-quality and realistic for
human observers. We use the authors’ open-source implementation.

Additional examples in this category include AnonFaces [33]
and StyleID [32] which we did not include as we expect them to
show the same results as DeepPrivacy and CIAGAN.

6.2 De-Anonymizations
In the following, we want to introduce de-anonymizations which
can be compared to our general de-anonymization model.

6.2.1 Basics. Basic de-anonymizations are tools from the area of
image processing and have not been specifically designed to re-
verse biometric anonymizations. However, they can still improve
recognition results for a wide range of anonymizations.

Linear/Bicubic interpolation. For Pixelation, we simply use linear
or bicubic interpolation to upsample the image back to its original
size. For any other anonymization, the images are first downsam-
pled and then back up using linear or bicubic interpolation. The
intermediate resolution is determined by calculating the SSIM of the
re-upsampled image and the original clear image for all images in
the de-anonymization training data set for a variety of intermediate
resolutions. The intermediate resolution that achieves the highest
average SSIM is then used on the test data set.

Wiener filter [22]. This applies a wiener filter to the image.We test
both a versionwhere the parameters are determined by testing them
on the training data set and choosing the ones with highest SSIM
and version based on [47] that blindly estimates the parameters
for every image individually. We use the implementations from the
scikit-image library [70].

Richardson-LucyDeconvolution [13, 55].This applies a Richardson-
Lucy deconvolution on the image. Parameters are blindly estimated
on a picture by picture basis using the approach from [13] and the
implementation from the scikit-image library [70].

Wavelet denoising [6]. This applies the adaptive wavelet thresh-
olding for image denoising approach by Chang et al. as implemented
in the scikit-image library [70].

6.2.2 State-of-the-art Approaches. Anonymizations that blur, pix-
elate or add noise to images are very similar to processes that
naturally happen to photos that reduce their quality. Significant
amounts of research have been done to mitigate these natural pro-
cesses which have resulted in deblurring, super resolution and
denoising approaches. We can use state-of-the-art approaches from
these areas as de-anonymizations for our artificially degraded im-
ages to improve recognition accuracy. We planned to use face spe-
cific approaches such as [61] and [48], however we were unable to
get the authors’ open-source implementations working.

Deep-Face Super-Resolution [37]. This face super resolution ap-
proach uses two recurrent neural networks with iterative collabo-
ration for face image recovery and landmark estimation. The goal
is to recover high-quality face images from low-resolution images.
We use the authors’ open-source implementation and abbreviate it
as "DIC SR".

Blind deconv. using a normalized sparsity measure approach [29].
Here, a mathematical model is used to reverse blurring on images
without knowledge of the used blurringmethod.We use the authors’
open-source implementation. We abbreviate this method as "Norm
sparsity".

MPRNet [75]. Using a machine learning model with a multi-
stage architecture using encoder-decoder pairs in combination with
a high-resolution branch that retains local information, MPRNet
attempts to restore high-quality images from degraded inputs. The
authors provide pre-trained models for denoising and deblurring
as well as an open-source implementation that we use.

Stripformer [69]. Blurred images are restored using a machine
learning model with a transformer-based architecture. We use the
authors’ open-source implementation as well as the model which
they trained on the GoPro dynamic scene deblurring data set by
Nah et al. [44].

Pix2Pix [24]. Using a conditional neural network, deep learning
is used for general image-to-image translation. It is used by Hao et
al. in [19] to test the reconstruction of obscured face images.

6.2.3 Specialized Approaches. For some anonymizations, special-
ized approaches for the exact anonymization that was used can be
implemented.

Interpolation. For the anonymization DP Snow, we interpolate
every completely gray pixel from its eight neighboring pixels while
ignoring any neighboring completely gray pixels. Considering the
high-resolution property of the used images, this makes the reason-
able assumption that neighboring pixels have similar colors and
that hard edges are rare in natural face photos.

Learn permutation. For Block Permutation and Pixel Relocation,
we can use the access to training images with the exact same per-
mutation to learn this permutation and then apply the inverse on
the test images. This works by matching the pixel colors from clear
to anonymized images.

7 EXPERIMENTS
In this section, we design, conduct and show the results of our
experiments that evaluate reversibility. We first present the expec-
tations that we want to test based on the aspects of reversibility
that we want to investigate. Then we explain the corresponding
experiments and their results. The evaluation of utility can be found
in Section 8 and finally the comparison with human observers can
be found in Appendix D.

7.1 Expectations
Our main goal is an exhaustive investigation in the phenomenon of
anonymization reversibility. For this, we consider the main aspects
that we presented in the introduction. For each, we determine
expectations which we then test in experiments.

The first aspect considers which anonymizations or groups of
anonymizations can or cannot be reversed. E1.1: We expect that
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permutations (Block Permutation, Pixel Relocation) can be per-
fectly reversed, meaning that we recover the exact pixel by pixel
clear image. This is because these anonymizations do not actually
remove any information from the image. E1.2: As synthesis and
k-anonymity based anonymizations override (almost) all identify-
ing information in the image, we expect that these anonymizations
cannot be reversed. E1.3: For any other anonymization, we expect
them to be partially reversible which means that reversal will result
in higher accuracies than naive and parrot recognition but will not
reach the clear data baseline.

The second aspect is about our purpose-built machine learning
model that allows us to understand what makes reversibility pos-
sible. E2.1: We expect that this model is able to at least partially
reverse any anonymization that any other method can reverse. This
would mean that the two processes responsible for reversal are
actually reconstruction and inversion. E2.2: We also expect our
model to significantly outperform Pix2Pix for any global anon-
ymization, namely Block Permutation and Pixel Relocation. Our
model includes a linear layer that allows global inversion, i.e., not
only anonymizations that perform the same transformation on all
neighborhoods of pixels can be reversed.

The third aspect is the comparison of specialized de-anonymiza-
tions, general de-anonymizations, naive and parrot recognition.
E3.1:We expect that all general and specialized de-anonymizations
result in higher accuracies than naive recognition and in many
cases even parrot recognition. This is because a successful de-
anonymization will result in individuals being more identifiable
in the reversed images. E3.2: We also expect that for any anony-
mization where a specialized de-anonymization exist, all general
de-anonymizations can partially reverse the anonymization, but
will generally have lower performance than the specialized de-
anonymization. This is because specialized de-anonymizations can
be specifically designed for the target de-anonymization while gen-
eral approaches have to be anonymization-agnostic.

For the forth aspect, we investigate the generalizability of general
de-anonymizations. E4.1:When considering cases where training
and test data were not anonymized using the exact same anonymiza-
tion, we expect that identification accuracy decreases as parameters
get less similar and do not expect de-anonymization to work at all
if the anonymization method does not match. E4.2: We expect that
training the general de-anonymization on a different data set than
the one used to test the anonymization will result in slightly lower
identification accuracy, but will generally still work.

7.2 Experiment Design
To test E1-3, we perform re-identification experiments. Initially,
we generate a baseline by running our experiments without any
anonymization or de-anonymization. Then, for every anonymiza-
tion which we introduced in the previous section, we test multi-
ple configurations. Like previous evaluation methodologies, we
test naive and parrot recognition on the anonymized data with-
out any de-anonymization. We additionally test the reversibility
evaluation methodology, both with any relevant specialized de-
anonymizations as well as the general de-anonymizations Pix2Pix
and our model. The de-anonymizations tested for every anonymi-
zation can be found in Appendix C. This sparse table once again

highlights that general de-anonymization is needed to evaluate
anonymizations because for many, no specialized approaches have
been proposed.

For E4, we also conduct re-identification experiments. We anon-
ymize data using Gaussian Blur (kernel 29) and de-anonymize this
data using models trained on images that were anonymized using
Gaussian Blur (kernel 21, 25, 29, 33, 37), Gaussian Noise (sigma 200),
DP Snow or Pixelation (size 16). Additionally, we train both general
de-anonymizations on one data set and then de-anonymize images
of a different data set for all anonymizations.

7.3 Data Sets
We primarily use a subset of the commonly used CelebA data set
[36] as the base set for our experiments.We create our subset by sort-
ing the identities in CelebA by their number of images and choose
the top 5000 identities. This is done because for the re-identification
experiments, having more images per identity is preferential to al-
low for successful matching and to reduce the impact of outliers.
From those 5000 identities, we randomly choose 200 for our an-
onymization background set and 4800 for the evaluation data set
of which 300 are for the test set and the remaining 4500 identities
are used for de-anonymization training. For our tests involving a
different data set, we use a random subset of DigiFace-1M [2] with
the same subset sizes as CelebA. Both datasets contain a variation
of face poses and accessories matching our social media scenario.
More information about the used data sets can be found in Table 2.

Before our experiments, we run all images of our CelebA subset
through a pre-processing pipeline. Detecting a face bounding box is
a first processing step of the majority of face-specific (de-) anonymi-
zations and is usually performed by a state-of-the-art face detection
algorithm that is not directly part of the actual (de-) anonymization.
Therefore, to improve performance and to remove any effects that
degraded face detection on anonymized images may have on our
results, we perform this face detection step once and then disable
it whenever possible in subsequent methods.

Table 2: Properties of used data sets CelebA and DigiFace-1M

CelebA [36] DigiFace-1M [2]
No. of identities 10,177 110,000
No. of images 202,599 1,220,000
No. of images in our subset 136,485 140,000
Avg. images per identity in
our subset

27.3 28

Data origin Celebrity images Synthetic
from www

Our pre-processing is based on the pipeline of LightFace [59] and
works as follows:We use RetinaFace [10] to detect the bounding box
of any faces in the images. Note, that we do not use the bounding
boxes provided by CelebA as we found them to be inaccurate at
times and in order to resemble a standard face recognition pipeline
more closely. We choose the face with the largest bounding box
that is fully in the image and crop the image to the smallest square
that fully includes the face when rotated so that both eyes are on
a horizontal line above the nose. Selecting the largest face in the
image assumes a worst-case attacker, as the largest face in most
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cases contains the most identifying information and thus will be the
most difficult to anonymize. Since anonymizations should protect
people’s identities even in worst-case scenarios, we consider this
choice is reasonable for evaluating anonymizations. These images
are then resized to a resolution of 224x224 pixels which is the
standard input size for LightFace. We skip the pre-processing for
DigiFace-1M as these synthetic images are already cropped to the
face area.

7.4 Evaluation Framework
In order to run our experiments, we implemented an evaluation
framework (Figure 5 contains an overview of the data usage) that
allows us to run the different experiments described in Section 7.2.

In a first step, the framework creates an anonymized data set. For
this our subset of CelebA or DigiFace-1M (already pre-processed)
is split into evaluation data set and background data set. Then the
specified anonymization creates an anonymous copy of the eval-
uation data set, potentially using the background set. Afterwards,
evaluation and anonymized data set are disjointly split into training
data set for the de-anonymization, the enrollment data set, and the
test data set. Enrollment and test share the same identities but con-
tain different images while the training data contains all clear and
anonymized images for all other identities. The training set is used
to train the de-anonymization before it is used to de-anonymize
the test data set. Finally, a face recognition method identifies the
images in the de-anonymized test data set using the enrollment set
and these results are used to calculate the metrics. Because we have
no clear indication which face recognition model may work the
best on (de-) anonymized data, we test multiple. We use pre-trained
models of multiple state-of-the-art recognition models which are
integrated into the LightFace framework: Facenet [58], VGGFace2
[4] and ArcFace [11]. Additionally, we use a combination of the face
recognition model (fr-knn) [14] which uses a pre-trained feature ex-
tractor based on [28] and then classifies using k-nearest neighbours.
The framework was implemented in python (version 3.8) using the
numpy (version 1.19.5) and scikit-learn (version 1.0.1) libraries.

Metrics. Our goal is to measure the identifying information con-
tained in de-anonymized images. For this, our main metrics are
the accuracies per identity of different face recognition models
when performing re-identification experiments. We then calculate
the mean accuracy over all tested identities and a 95%-confidence
interval.

Parameters. Most anonymizations can be configured using pa-
rameters that determine their privacy-utility trade-off. We choose
these parameters based on common choices in related work or (if
applicable) the method’s author’s recommendation. We strive to
evaluate the anonymizations on a realistic privacy-utility trade-off.
The specific parameters for each anonymization are included Ap-
pendix A. Further parameters of de-anonymizations and the results
of the hyperparameter search for our model can also be found in
Appendix B.

The code of our evaluation framework is available as part of an
overall evaluation framework for biometric anonymization, which
can be found at https://github.com/kit-ps/seba.

Figure 5: Data usage of our evaluation framework. The upper
part depicts how the data sets are used for the anonymization,
the bottom left show how the de-anonymization approach
is trained and applied, and the right bottom shows how the
recognition system is used.

7.5 Results
In the following, we first present our general findings as illustrated
by the selection of figures in this section. Afterwards, we consider
each of our expectations and to what extent we find evidence for
them in our results.

7.5.1 General Findings. Example images that were de-anonymized
using our model can be found in Figure 6. An overview over the
results for naive and parrot recognition, Pix2Pix, and our model
can be found in Figure 7 for CelebA and Figure 31 for DigiFace-
1M. This plot includes the results for the different experiments
for all anonymizations. Generally, a high value indicates that the
experiment showed that the images still contained enough personal
information to identify an individual. Therefore a successful an-
onymization would result in low values for all experiments. For
naive and parrot recognition as well as Pix2Pix and our model, the
average of all recognition models is shown. We find that for many
anonymizations accuracies exceeding 50% can be measured and
that for most anonymizations, Pix2Pix and our model results in
significantly higher values than the other experiments.

This section also includes plots for the anonymizations Block
Permutation (Figure 8), Gaussian Blur (Figure 9) and DP Snow
(Figure 10). Plots with all de-anonymizations as well as plots for all
other anonymizations can be found in Appendix F. In these plots,
different de-anonymizations are compared against the baseline of
clear data as well as naive and parrot recognition on the anonymized
data. High differences between naive or parrot recognition and a
de-anonymization indicate that this method was able to reverse the
anonymization and to re-create an image on which face recognition
methods were able to identify an individual. For Block Permutation,
we find that the specialized learn permutation de-anonymization is
able reach clear level performance with our model not much lower.
Pix2Pix however is not able to reverse Block Permutation, similarly
to a version of our model without linear layer. This highlights
inversion as the main underlying principle enabling reversibility for
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Clear Eye Mask Block Permut. Pixel Reloc. Gauss. Noise Gauss. Blur Pixelation Fawkes

k-RTIO DP Pix DP Snow DP Samp k-Same-Pixel k-Same-Eigen DeepPrivacy CIAGAN

Figure 6: De-anonymized images for different anonymization methods using our model

Figure 7: Average recognition accuracy for every anonymization method for baseline, naive, parrot, de-anonymized via our
model, and de-anonymized via Pix2Pix; on 300 identities of CelebA.

Figure 8: Recognition accuracy for Block Permutation (block-
size 32), given for baseline, naive, parrot, de-anon. via learn
permutation, via Pix2Pix, via Conv. AE (our model without
linear layer), and via our model; on 300 identities of CelebA.

Block Permutation. While the specialized approaches for Gaussian
Blur are able to increase identification accuracies over naive and
parrot level, they are below our model and Pix2Pix which also do
not reach clear level.

In Figure 11, the effects of training our model on DigiFace-1M
and testing on CelebA can be seen. For each anonymization the
accuracies of our model when trained on CelebA are compared
to when training on DigiFace-1M. We find that for most anony-
mizations our model generalizes well. In Figure 12 for our model

Figure 9: Recognition accuracy for Gaussian Blur (kernel
29), given for baseline, naive, parrot, de-anon. via bicubic
interpolation, via Richardson-Lucy, via Norm-Sparsity, via
Pix2Pix, and via our model; on 300 identities of CelebA.

and Figure 17 for Pix2Pix, the effects of the training data not ex-
actly matching the testing data can be seen. In all cases, the test
data was anonymized using Gaussian Blur (kernel 29), the gen-
eral de-anonymization was however trained with data that was
anonymized using other anonymizations. We find that the best
result is achieved when training and testing data match and the
performance decreases as the two data sets get less similar.

7.5.2 Evaluating our Expectations. Our results in Figure 7 indi-
cate that E1.1-3 are true. We find that face recognition on images
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Figure 10: Recognition accuracy for DP Snow, given for base-
line, naive, parrot, de-anon. via bicubic interpolation, via
Wiener Filter, via interpolate gray, via Pix2Pix, and via our
model; on 300 identities of CelebA.

Figure 11: Difference in recognition accuracywhen ourmodel
is trained on DigiFace-1M instead of CelebA for all anonymi-
zations; tested on 300 identities of CelebA.

Figure 12: Recognition accuracy for Gaussian Blur (kernel
29), given for de-anon. via our model using Gaussian Blur
(Kernel 21, 25, 29, 33, 37), Gaussian Noise (sigma 200), DP
Snow, or Pixelation (size 16) as training data for our de-anon.
model; on 300 identities of CelebA.

de-anonymized using our model performs at almost baseline per-
formance for permutations (E1.1). For none of the anonymizations
in the categories synthesis and k-Anonymity does any identifica-
tion accuracy of our model exceed 15% (E1.2), see Figure 7, see
k-Same-Pixel (Figure 23), k-Same-Eigen, DeepPrivacy (Figure 24)
and CIAGAN (Figure 25). For all other anonymizations, we find
as predicted in E1.3 that they can be partially reversed and de-
anonymizations thereby increase re-identification and similarity

metrics. We do find that the level of de-anonymization varies signif-
icantly between anonymizations from close to perfect for DP Snow
(Figure 10) to very little improvement in DP Samp (Figure 22).

We also find evidence for E2.1-2. Especially, we find all anonymi-
zations with specialized de-anonymizations according to Table 4,
are categorized as either partially or highly reversible in Figure 14.
This means that no specialized de-anonymization used a different
reversal processes than the two on which our model is built, other-
wise it would not have been able to reverse these anonymizations
(E2.1). For the permutations (see Figure 8 and Figure 19), we see
large differences between Pix2Pix and our model as expected (E2.2),
confirming that the linear layer that is exclusive to our model is
necessary to handle global inversions. We also find evidence for
the necessity of the linear layer in our model by comparing its
result to a version without the linear layer. The identification ac-
curacy is increased by adding the linear layer particularly for the
permutation-based anonymizations (see Figure 8 & 19), but also for
DP Pix, Eye Masking, k-RTIO and Pixelation (see Figures 29, 18, 21
& 28).

When considering E3.1, we find that as expected all de-anonymi-
zations achieve higher accuracies than naive recognition, see Fig-
ure 7. However, there are some exceptions in which parrot recogni-
tion performs better than our model and even naive recognition is
within a small margin, namely Eye Masking, DeepPrivacy, CIAGAN
and k-Same-Eigen. All these anonymizations share that they remove
large parts of the face and the only option for a de-anonymization
therefore is to reconstruct these areas using the general structure
of faces. We see this as an indication that no information is better
for the face recognition than incorrectly reconstructed information.
We also find E3.2 to be often correct, however also find cases in
which the general de-anonymizations match or even outperform
specialized approaches. We attribute this to the general approaches
being trained on only face images while specialized approaches
often may also be used on non-face images.

Our results in Figures 12 & 17 and Figure 11 also indicate the
correctness of E4.1 and E4.2, respectively.

7.6 Why are Some Anonymizations Reversible?
Based on our findings, we present here what we consider the main
reasons why anonymizations are vulnerable to reversal.

7.6.1 The identifying information has only been obfuscated and
not removed. Some approaches only generalize the information
contained in the image by averaging it, for example Pixelation,
Gaussian blur, or DP Samp. We find these approaches to be partially
reversible because the identifying information is only obfuscated
and not removed, making them susceptible to reconstruction of
the original information. Furthermore, only shuffling the identi-
fying information in the image, as Block Permutation and Pixel
Relocation do, is susceptible to inversion and therefore allows the
anonymization to be completely reversed. In comparison, the an-
onymizations that remove or override the identifying information
in the face are the least reversible, DeepPrivacy and CIAGAN both
generate new faces and thus effectively remove the identifying
information from the face in the image. A similar effect can be seen
with the k-anonymity based approaches, which also overwrite the
identifying information with the data of other faces.
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7.6.2 Not all identifying information has been anonymized. Anony-
mizations that consider only parts of the face are reversible, as Eye
Mask shows. So focusing only on parts of the face is not enough
to remove its identification potential. The same problem can be
observed with the anonymizations that apply random noise to the
images (DP Snow and Gaussian Noise). Since these techniques do
not change every pixel, the overall characteristics of the face re-
main intact and the original image can be reconstructed using the
unchanged pixels and the learned general knowledge about face
anatomy (see Figure 6 the reconstructed eye section for Eye Mask).
This means that all parts of a face contain identifying information.
This is reinforced by the knowledge that earlier not-machine learn-
ing face recognition approaches used proportions of the entire face
to identify individuals [25].

7.6.3 Reliance on potentially unsuitable formal guarantees. We
tested multiple anonymizations that are based on methods proven
to fulfill the notion of DP. However, our general de-anonymization
attacker was still able to partially reverse these anonymizations
While this could be due to our adaptation for RGB images, it could
possibly also be a result of the proof’s inability to capture the real-
world problem. For example the proof for DP Snow defines two
neighboring images as differing in one pixel and not as showing
two different identities. While our attacker cannot recover the exact
color of removed pixels, the identity remains recoverable. Further,
DP assumes that the data is uncorrelated, which for pixels in an
image is not the case. This highlights that blindly relying on formal
guarantees might be dangerous without an additional empirical
evaluation in a more realistic scenario.

8 UTILITY
After our exhaustive investigation into reversibility, we now want
to consider utility in order to make conclusions about which anony-
mizations to use in practice. After all, a complete evaluation of any
anonymization requires both privacy and utility to be evaluated.
We considered both a human-centric evaluation via a user study
and a computational evaluation via similarity metrics. In this sec-
tion we will focus on the the design and results of our user study.
The utility evaluation using computational metrics can be found in
Appendix E.

The utility goals that anonymizations try to satisfy are diverse
and difficult to compare. We therefore focus on utilities that fit our
data publishing scenario well. This means that when users upload
an image to a social media site in which either they themselves
or bystanders are anonymized, they want this picture to still be
visually appealing and/or appear natural. To evaluate to which
extent the considered anonymizations fulfill this goal, we design a
user study adapted from previous work by Hasan et al., Cyr et al.
and Li et al. [8, 20, 34].

We randomly select 10 images (five male, five female) from the
CelebA dataset which we anonymize with each of our 15 anonymi-
zations. Participants are shown each picture exactly once with a
random anonymization (including none) though any anonymiza-
tion may only appear once per participant. Participants are asked
via a seven point Likert scale from strongly disagree (0.0) to strongly
agree (1.0) if they agree with three statements: (1) The picture is
visually appealing. (2) The picture shows a natural human being.

(3) I would use this anonymization when using social media. We
recruit 505 participants (limited to individuals who regularly use so-
cial media), which results in an average of 28.1 (standard deviation
5.2) votes per image. We excluded 55 participants because of failed
attention checks, which results in 450 participants (205 female, 244
male, 1 preferred not to say) with an average age of 33.2 (standard
deviation 11.1) years. In Figure 13 we show the mean over all votes
for each anonymization and a 95% confidence interval.

When comparing the three statements, we find them to generally
correlate. However, naturalness scores usually higher than visual
appeal and usability does not exceed 0.45 as a maximum or 0.15 as a
minimum. This indicates that the overall willingness of participants
to use anonymizations (even when they are imperceptible in the
case of clear) is not very high, even though over 60% of partici-
pants agreed with the statement "I am worried about automatic
face recognition on social media." Visual appeal could be limited by
the resolution of the images and the crop to the face region which
might be negatively perceived for a social media scenario. This
could potentially also be improved by showing the participants
anonymized images of themselves. For these reasons, we focus on
naturalness for our further analysis. When comparing anonymiza-
tions, we find as expected clear imags to achieve the highest scores.
Fawkes also achieves high scores which is not surprsing considering
it is designed to be imperceptible. Commonly used methods such as
Eye Masking, Noise and Blurring score above average which could
be due to them being familiar to users.

As a takeaway, we create a reversibility metric and plot it over
the naturalness utility values in Figure 14. Reversibility is here
defined as the average accuracy improvement of de-anonymization
over naive recognition compared to clear level. This allows us to
categorize anonymizations into irreversible, partially reversible,
and highly reversible.
We find that while Fawkes clearly provides the most utility, it is
also highly reversible. Of the anonymizations with above average
(0.57) naturalness, DeepPrivacy is the only one that achieves low
reversibility with the k-Anonymity-based methods closely behind.
While one might generally except a trade-off between reversibility
and utility, this is indeed not what we find. Instead, some of the
anonymizations that are partially (or even highly) reversible, also
do not provide high levels of utility while anonymizations that are
irreversible in some cases are also able to provide decent utility.
This indicates that the privacy-utility trade-off that is generally
expected for easy-to-parameterize anonymizations (such as noise
injection) does not seem to apply to the comparison between dif-
ferent anonymization methods. It is also important to note that
privacy and reversibility are not the same, although they are closely
related. Nevertheless, this plot allows for a direct comparison of
the reversibility of anonymizations (given specific configuration
parameters).

9 ETHICAL CONSIDERATIONS
The user study data collection was approved by the ethics com-
mission of the Karlsruhe Institute of Technology (research project
"Evaluierung von Gesichtsanonymisierungen") and was conducted
in accordance with the Declaration of Helsinki. All data was col-
lected as an anonymous online survey in Feburary 2024 using an
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Figure 13: User study agreement scores for our three statements (visual appeal, naturalness and usability) for clear and all
anonymizations.

Figure 14: Reversibility over Utility (here: naturalness) for
all anonymizations on CelebA and a categorization of anon-
ymizations in irreversible, partially reversible, and highly
reversible.

online recruitment platform1. Participation took a median of four
minutes and participants were paid an average of £12.68 per hour.

Responsible disclosure: As all of the tested evaluations in this
paper have been selected from the scientific literature there are no
vendors or specific anonymization services, that we are aware of,
that can be contacted to disclose our findings to.

10 LIMITATIONS
While we consider the simplicity of our machine learning model’s
design to be a feature which allows a better understanding of its
results, we acknowledge that a more advanced model might result
in even better de-anonymization results. Improvements like this
may include further tuning of hyperparameters, longer training
with more data or improvements to the data pre-processing. Further,
we consider that SSIM as a loss function does not ideally capture
our goal which is the reconstruction of the identity in the image,
not the pixel values. Therefore, an identity loss function rather than
an image similarity loss function like SSIM could be more suitable.
Overall, we think that these limitations are negligible and do not
diminish our conclusions.

1https://www.prolific.com/

11 CONCLUSION AND FUTUREWORK
There are significant privacy risks associated with the collection
of biometric data which facilitates the requirement for anonymiza-
tions. Face anonymizations are commonly evaluated using a weak
attacker model without considering reversibility. At the same time,
strong attackers for specific anonymizations have been shown to
be successful and general de-anonymizations have been shown
to be feasible. An in-depth understanding of face anonymization
reversibility was however still missing. In this work, we investigate
this phenomenon exhaustively by considering different aspects and
conducting a large number of experiments.

We find that a majority of anonymization methods is at least
partially reversible and therefore protects the privacy of individuals
less than previously thought, at least under our parameter choices.
Our general de-anonymization is able to successfully reverse anon-
ymized images in 11 out of 15 cases. In comparison to the common
methodology, and often even specialized approaches, the general
de-anonymizations result in significantly increased identification
accuracy. This highlights the need for strong attacker models when
evaluating anonymizations. When considering what makes reversal
possible, we find that the underlying processes are reconstruction
and inversion. We find that while trained general de-anonymization
also work on other data sets, when the anonymization method does
not match between training and test data, results suffer significantly.
Finally, considering the utility of anonymizations, we find that in
general, there does not seem to be a reversibility-utility trade-off
between different anonymizations, but rather anonymizations can
be both irreversible and provide decent utility.

We also analyze what causes anonymizations to be reversible.
Based on this, takeaways can be derived for future anonymiza-
tion designers. Irreversible anonymizations should remove and
replace identifying information in the data, as obfuscations can be
reconstructed or inverted. Also, all identifying information must be
anonymized because any remaining information might be used to
reconstruct the data. Finally, while formal guarantees might allow
for a better quantification, it should be considered good practice to
add an empirical evaluation.

In conclusion, in this work, we have conducted an exhaustive
investigation of face anonymization reversibility in order to under-
stand how and when reversal is possible. This understanding will
help construct anonymizations that are actually irreversible and
thereby better protect the privacy of individuals in the future.
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A ANONYMIZATION PARAMETERS
Table 3 shows the used parameters for all anonymization methods.
Methods that do not have any configurable parameters are excluded.

Table 3: Parameters of anonymization methods

Method Parameters
Block Permutation block size 32
Pixel Relocation steps 50
Gaussian Noise 𝜎 200
Gaussian Blur kernel size 29
Pixelation size 16
Fawkes mode high
DP Pix 𝜖 5, 𝑏 12,𝑚 16
DP Snow 𝛿 0.5
DP Samp 𝜖 25, 𝑘 24,𝑚 12
k-Same-Pixel 𝑘 10
k-Same-Eigen 𝑘 10

B DE-ANONYMIZATION PARAMETERS
For all specialized de-anonymizations as well as Pix2Pix, we use
the standard hyperparameters recommended by their authors. For
our model, we conduct a hyperparameter search by running a
variety of configurations testing de-anonymization performance
on a data set anonymized using Gaussian Blur (kernel 29). For each
considered hyperparameter, we test multiple options and choose
the one that results in the best performance in this experiment.
We choose LeakyReLU as our activation function, SSIM as our loss
function, an initial learning rate of 0.0001 and a batch size of 64. We
were able to further improve results by adding a reduce-on-plateau
learning rate adaption to our training that multiplies the current
learning rate by 0.75 if the validation loss does not improve for
five epochs. We train for a maximum of 200 epochs but stop early
when we do not measure an improvement in validation loss for 20
epochs.

C (DE-) ANONYMIZATION COMBINATIONS
Table 4 shows the tested de-anonymizations for every anonymiza-
tion in this paper.

D HUMAN EVALUATION OF REVERSIBILITY
We conduct a user-study to test whether machine learning face
recognition on de-anonymized images can identify individuals bet-
ter than human observers on anonymized images. Both McPherson
et al. [39] and Hao et al. [19] claim that their results indicate that
humans are no longer the gold standard for evaluating the effective-
ness of anonymizations. However they don’t provide any evidence
for this claim. As we want to investigate reversibility and thereby
its impacts on machine learning face recognition as well as human
observers, we therefore conduct this experiment.

The experiments in the previous section use a large number
of images in the enrollment set (ca. 6000) which means that this
experiment design is not feasible for a user study. We therefore opt
to conduct face verification experiments where participants decide
whether two face images, one of which is anonymized, show the
same person. The rationale is that if a participant is not able to
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Table 4: Combinations of anonymization and de-anonymi-
zation methods evaluated as part of this paper
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Eye Mask ✓ ✓

Block Permut. ✓ ✓ ✓

Pixel Reloc. ✓ ✓ ✓

Gauss. Noise ✓ ✓ ✓ ✓ ✓a ✓ ✓

Gauss. Blur ✓ ✓ ✓ ✓ ✓ ✓b ✓ ✓

Pixelation ✓ ✓ ✓ ✓ ✓

Fawkes ✓ ✓ ✓ ✓ ✓a ✓ ✓

DP Pix ✓ ✓ ✓ ✓a ✓ ✓

DP Snow ✓ ✓ ✓ ✓ ✓a ✓ ✓ ✓

DP Samp ✓ ✓

k-Same-Pixel ✓ ✓

k-Same-Eigen ✓ ✓

DeepPrivacy ✓ ✓

CIAGAN ✓ ✓

k-RTIO ✓ ✓
a Denoising b Deblurring

recognize that two images belong to the same person, the anony-
mization was successful at protecting this person’s identity.

Figure 15: F1 Scores of the user study and face verification
on de-anonymized images via our model for eleven anony-
mizations.

To reduce the scope of the study, we do not test anonymizations
that are very similar to others while making sure to include an
anonymization from every category. For each anonymization, we
randomly choose 8 pairs of images of which 4 pairs show women
and 4 pairs show men (as determined by the CelebA attributes) and
of which 4 pairs show the same person in both images and 4 do
not. For each pair of images, we ask participants (n=98; minimum
number of votes per image pair=34) whether both images show
the same person and they can answer ’yes’, ’no’ or ’not sure’. We
also use three machine learning models (Facenet, VGG-Face2 and
ArcFace) to verify the identity on the same chosen images, using
the de-anonymized image via our model instead of the anonymized
image. For each anonymization, we calculate the F1-Score over all
responses/models on all matching image pairs.

The results of our user study are shown in Figure 15. We find the
expectation that machine learning outperforms human observers
to be generally correct. However, for the vast majority of anon-
ymizations, the scores are very close to each other, within 0.15.
The slightly lower scores of user study could be attributed to a
tendency to choose the ’not sure’ option which is not available to
the machine learning models. Block Permutation is the only an-
onymization where face recognition performs significantly better
which could be a result of it changing the overall structure of the
image. The only cases of human observers performing better are
DP Samp and DeepPrivacy, which, however, have low scores in
both cases.

Our results show that the combination of reversing anonymiza-
tion and then performing face recognition generally outperforms
human observers.

We acknowledge that our user study could be improved by col-
lecting more data. Both more participants and more samples per
anonymization could be used to further increase confidence in our
results. In the current form, the random choice of images per an-
onymization leads to high variances when the identity decision is
already difficult on clear images.

The user study data collection was approved by our university’s
institutional review board and was conducted in accordance with
the Declaration of Helsinki. All data was collected as an anonymous
online survey in October 2022. The recruitment was done by adver-
tising on social media, via email, and through direct recruitment of
colleagues and friends. We did not collect socioeconomic data or
pay compensation.

E COMPUTATIONAL UTILITY EVALUATION
Besides our human-centric evaluation, here we perform a utility
evaluation using computational similarity metrics. We consider
three main goals. The first is for the anonymized image to be similar
to the original, the second is to preserve the face attributes, and the
third is to preserve the landmark locations of the face.

We measure the similarity of the images by using the Learned
Perceptual Image Patch Similarity (LPIPS) [76]. For attribute sim-
ilarity, we calculate the mean absolute error between attributes
(sex, race, emotion and age) recognized by DeepFace [59] (using
rooted mean squared error on sub-attributes where necessary). For
landmark similarity we used the mean Euclidean distance of the six
keypoints detected by Google AI’s mediapipe’s face detector [3]. We
normalize all three metrics between 0 and 1 using the absolute mini-
mum and maximum recorded for any image for any anonymization.
Higher values always indicate better utility.

The results of these three metrics for all our anonymizations can
be found in Figure 16. We find that all scores are fairly high and
surprisingly find the three metrics to be similar for most anonymi-
zations. The notable exception being noise-based anonymizations
achieving significantly lower perceptual similarity.

F FURTHER RESULTS
This section includes further results from the experiments we per-
formed in the context of this work. For an overview over all an-
onymizations when using the DigiFace-1M data set, see Figure 31.
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Figure 16: Mean utility and 95% confidence interval via perceptual similarity (LPIPS), attribute similarity, and landmark
similarity for all anonymizations; on 300 identities of CelebA.

See Figure 17 for the results of the experiments in which Pix2Pix is
trained with other anonymizations than it is tested with. For the
results for specific anonymizations, see Figure 18 for Eye Mask-
ing, Figure 19 for Pixel Relocation, Figure 20 for Fawkes, Figure 21
for k-RTIO, Figure 22 for DP Samp, Figure 23 for k-Same-Pixel,
Figure 24 for DeepPrivacy, Figure 25 for CIAGAN, Figure 26 for
Gaussian Noise, Figure 27 for Gaussian Blur, Figure 28 for Pixelation,
Figure 29 for DP Pix and Figure 30 for DP Snow.

For all of these plots, "(DF)" refers to the model being trained
on the DigiFace-1M data set while being tested on CelebA and
"[P]" refers to parrot which means that the enrollment data set was
anonymized instead of clear.

Figure 17: Recognition accuracy for Gaussian Blur (kernel
29), given for de-anon. via Pix2Pix trained on Gaussian Blur
(Kernel 21, 25, 29, 33, 37), Gaussian Noise (sigma 200), DP
Snow, or Pixelation (16)

Figure 18: Recognition accuracy for Eye Masking, given
for baseline, naive, parrot, de-anon. via Pix2Pix trained on
DigiFace-1M, via Pix2Pix, via our model without linear layer,
via our model trained on DigiFace-1M, via our model; on 300
identities of CelebA.

Figure 19: Recognition accuracy for Pixel Relocation, given
for baseline, naive, parrot, de-anon. via Learn Permuta-
tion, via Pix2Pix trained on DigiFace-1M, via Pix2Pix, via
our model without linear layer, via our model trained on
DigiFace-1M, via our model; on 300 identities of CelebA.
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Figure 20: Recognition accuracy for Fawkes, given for base-
line, naive, parrot, de-anon. via bicubic interpolation, via
Wiener Filter, via MPRNet (Denoising), via Pix2Pix, via our
model; on 300 identities of CelebA.

Figure 21: Recognition accuracy for k-RTIO, given for base-
line, naive, parrot, de-anon. via Pix2Pix trained on DigiFace-
1M, via Pix2Pix, via our model without linear layer, via our
model trained on DigiFace-1M, via our model; on 300 identi-
ties of CelebA.

Figure 22: Recognition accuracy for DP Samp, given for base-
line, naive, parrot, de-anon. via Pix2Pix trained on DigiFace-
1M, via Pix2Pix, via our model trained on DigiFace-1M, via
our model; on 300 identities of CelebA.

Figure 23: Recognition accuracy for k-Same-Pixel, given
for baseline, naive, parrot, de-anon. via Pix2Pix trained on
DigiFace-1M, via Pix2Pix, via our model trained on DigiFace-
1M, via our model; on 300 identities of CelebA.

Figure 24: Recognition accuracy for DeepPrivacy, given for
baseline, naive, parrot, de-anon. via Pix2Pix trained on
DigiFace-1M, via Pix2Pix, via our model trained on DigiFace-
1M, via our model; on 300 identities of CelebA.

Figure 25: Recognition accuracy for CIAGAN, given for base-
line, naive, parrot, de-anon. via Pix2Pix trained on DigiFace-
1M, via Pix2Pix, via our model trained on DigiFace-1M, via
our model; on 300 identities of CelebA.
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Figure 26: Recognition accuracy for Gaussian Noise, given for baseline, naive, parrot, de-anon. via bicubic interpolation,
via linear interpolation, via Wiener Filter, via unsupervised Wiener Filter, via Richardson-Lucy interpolation, via Wavelet
Denoising, via MPRNet (Denoising), via Pix2Pix trained on DigiFace-1M, via Pix2Pix, via our model trained on DigiFace-1M,
via our model; on 300 identities of CelebA.

Figure 27: Recognition accuracy for Gaussian Blur, given for baseline, naive, parrot, de-anon. via bicubic interpolation, via linear
interpolation, via Wiener Filter, via unsupervised Wiener Filter, via Richardson-Lucy interpolation, via Stripformer, via Norm
Sparsity, via MPRNet (Deblurring), via Pix2Pix trained on DigiFace-1M, via Pix2Pix, via our model trained on DigiFace-1M, via
our model; on 300 identities of CelebA.

Figure 28: Recognition accuracy for Pixelation, given for baseline, naive, parrot, de-anon. via bicubic interpolation, via linear
interpolation, via DIC-SR, via DICGAN-SR, via Pix2Pix trained on DigiFace-1M, via Pix2Pix, via our model without linear layer,
via our model trained on DigiFace-1M, via our model; on 300 identities of CelebA.
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Figure 29: Recognition accuracy for DP Pix, given for baseline, naive, parrot, de-anon. via bicubic interpolation, via linear
interpolation, via Wiener Filter, via Richardson-Lucy interpolation, via MPRNet (Denoising), via Pix2Pix trained on DigiFace-
1M, via Pix2Pix, via our model without linear layer, via our model trained on DigiFace-1M, via our model; on 300 identities of
CelebA.

Figure 30: Recognition accuracy for DP Snow, given for baseline, naive, parrot, de-anon. via bicubic interpolation, via linear
interpolation, via Wiener Filter, via unsupervised Wiener Filter, via Richardson-Lucy interpolation, via Wavelet Denoising,
via MPRNet (Denoising), via Interpolate Gray, via Pix2Pix trained on DigiFace-1M, via Pix2Pix, via our model trained on
DigiFace-1M, via our model; on 300 identities of CelebA.

Figure 31: Average recognition accuracy for every anonymization method for baseline, naive, parrot, de-anonymized via our
model, and de-anonymized via Pix2Pix; on 300 identities on DigiFace-1M.
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