
Unlinkable Policy-Compliant Signatures for
Compliant and Decentralized Anonymous Payments

Christian Badertscher
Input Output

Zürich, Switzerland
christian.badertscher@iohk.io

Mahdi Sedaghat
COSIC, KU Leuven
Leuven, Belgium

ssedagha@esat.kuleuven.be

Hendrik Waldner
University of Maryland

College Park, USA
hwaldner@umd.edu

ABSTRACT

Privacy-preserving payment systems face the difficult task of bal-

ancing privacy and accountability: on one hand, users should be

able to transact privately and anonymously, on the other hand, no

illegal activities should be tolerated. The challenging question of

finding the right balance lies at the core of the research on account-

able privacy that stipulates the use of cryptographic techniques for

policy enforcement. Current state-of-the-art systems are only able

to enforce rather limited policies, such as spending or transaction

limits, or assertions about single participants, but are unable to en-

force more complex policies that for example jointly evaluate both,

the private credentials of sender and recipient, situations that occur

in cross-border payments, let alone to do this without auditors in

the loop during payment. This severely limits the cases where de-

centralized virtual assets can be used in accordance with regulatory

compliance such as the Financial Action Task Force (FATF) travel

rule, while retaining strong privacy features.

We present unlinkable Policy-Compliant Signatures (ul-PCS),

an enhanced cryptographic primitive extending the work of

Badertscher et al. (TCC 21). We give rigorous definitions, formally

proven constructions, and benchmarks using our prototype de-

veloped using CharmCrypto which gives the first insights into

feasibility of PCS. Unlinkable PCS has the following unique combi-

nation of features: 1 It is an enhanced signature scheme where the

public key encodes in a privacy-preserving way the user’s verifiable

credentials (obtained from a credential authority). 2 Signatures

can be created (and later publicly verified) by additionally speci-

fying a recipient’s public key aside of the to-be-signed message.

A valid signature can only ever be created if the attributes 𝑥𝑆 of

the signer and the attributes 𝑥𝑅 of the receiver fulfill some global

policy 𝐹 (𝑥𝑆 , 𝑥𝑅). 3 The signature can be created by the signer just

knowing the recipient’s public key; there is no further interaction

needed and no information is leaked (beyond the validity of the

policy). 4 Once credentials are obtained, a user can generate fresh

public keys without interacting with the credential authority.

Bymerging the act of signing a transaction with the act of provid-

ing an assurance about the involved participants being compliant

with complex policies, yet retain that participants are able to change

public keys without the involvement of an authority, we formally

show how ul-PCS is a step towards improving regulatory compli-

ance of privacy coins such as Monero or Zcash.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(4), 226ś267

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0115

KEYWORDS

Digital Signatures, Decentralized Anonymous Payments, Account-

able Privacy, Policy-Compliant Signatures

1 INTRODUCTION

The inception of Bitcoin [55] and its novel approach to implement

a transaction ledger via a blockchain brought to light a new type

of payment system that does not rely on trusted parties like a

central bank, but instead uses distributed ledger technology to settle

direct transactions between parties and to protect against double-

spends. Besides Bitcoin, decentralized anonymous payment (DAP)

systems, such as Zcash [12] and Monero [3], have been proposed

to improve privacy and anonymity guarantees. In these systems,

parties enjoy full transaction privacy and anonymity, which makes

it challenging to hold parties accountable for their actions, let alone

for a regulator to be assured regulatory compliance is met. This

led to the study of accountability and auditability in the context of

distributed payment systems with the main goal of understanding

the necessary adoption requirements of these systems in various

jurisdictions [26].

The core meaning of auditability is to provide means to a reg-

ulator to ask for specific pieces of information, based on a legal

system defining a catalogue of admissible questions, and be given

the answer in a faithful way [26]. Clearly, an auditor only needs

to (reactively) ask for information that the system does not proac-

tively enforce by itself. This policy enforcement is precisely how

accountability for private payment systems, or accountable privacy

for short, has been defined in [26, 42]. However, in many of the cur-

rently proposed systems, the granularity of accountable privacy is

not very high, and the focus lies on (functions about) the monetary

value of transactions or spending limits on accounts [25, 42, 56, 64],

where more centralized designs typically allow for a richer set

of provable statements. To make matters worse, auditability is of-

ten equated explicitly or implicitly with the ability of an auditor

to revoke the privacy and anonymity of transactions of any indi-

vidual user (or given a key to supervise or view the transaction

log) [4, 9, 23, 28, 30, 52]. While this trivially avoids the need for

more sophisticated policy enforcement techniques, it goes without

saying that such a powerful revocation capability is problematic as

it could be subject to abuse. In light of this, an important question

arises:

How fine-grained can we enforce policies on the

transaction level?

A blueprint followed by several works [35, 61, 65] to obtain

accountable privacy in DAP systems is to consider transaction types

for specific use cases where each use case is governed by a policy

whose compliance can be enforced. In exchange for a potentially

226

https://orcid.org/0000-0002-1507-6927
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0115

limited scope, users get back full and unrevocable anonymity for

these transactions. For example the UTT system [61] defines a

digital analogon of cash: the so-called budget coins are issued in a

limited fashion to certified users. As soon as the user has obtained

the coins, they can transact in a cryptographically secure way that,

among other things, ensures full, unrevocable privacy.

Central to the success of such systems is the level of granularity

for which one can enforce policy compliance. The richer the class

of cryptographically enforceable policies, the easier it is to define

different transaction types. In view of the developing ecosystem

on digital credential systems [20, 27, 63], more legal policies can be

translated to the digital world, such as predicates about which two

individuals are allowed to transact based on age or residency, or on

accredited attributes like financial reliability, credit worthiness, or

other real-word certifications. More concretely, this leads to more

fine-grained transaction types for which full privacy can be guar-

anteed. An example could be to lift certain limits for, e.g., residents

spending coins in shops that are certified to only sell goods for ev-

eryday life. If such policies are enforceable by cryptographic means

in a DAP system, this would heavily boost the privacy of users

while satisfying regulatory needs. Unfortunately, there is no DAP

system that supports this functionality and integrates smoothly

with a credential issuance infrastructure. One reason is the strong,

at first sight contradictory, set of requirements, which are that (1)

all credentials of a user must remain private, even during payment;

(2) it must be possible to perform policy evaluation jointly on both,

sender and receiver, attributes (such as whether they have the same

residence, or whether they belong to jurisdictions across which

money transfers are permitted); and (3) compatibility with DAP

systems must be guaranteed, which means that evaluation must be

possible whenever the sender knows just the recipient’s public key

(and no further interaction is required to submit the transaction)

and that compliance is publicly verifiable. We note in passing that

even centralized designs such as Platypus [65] currently do not

support this stronger type of joint policy evaluation (but admit

individual attestations of users about their own attributes toward

the central bank).

In this work, we give a generically applicable cryptographic

policy-enforcement mechanism that is compatible to be sued in tan-

demwith a DAP systems, i.e., it satisfies properties (1)-(3) above. The

mechanism is genericÐit has the interface of a signature schemeÐ

and can be composed with larger systems to complement existing

solutions to achieve fine-grained accountable privacy, either via use

in smart contracts, as a layer-2 system in connection to a mainchain,

or updating the address format of a mainchain (via a hard fork).

However, our solution is not limited to decentralized ledgers, and

can also be applied to centralized designs to reduce the information

leakage about a transaction towards the auditor.

1.1 Contributions

Definitions. We introduce the enhanced cryptographic primitive

called unlinkable policy-compliant signatures, a stronger version of

policy-compliant signatures introduced by Badertscher, Matt, and

Waldner [7]. We give precise definitions of unforgeability, attribute-

hiding, and unlinkability. Since privacy (resp. anonymity) and un-

forgeability are intertwined in this definition, special care must be

taken to arrive at a reasonable definition.

Generic solution. We provide a generic solution to the problem

that realizes ul-PCS for arbitrary policies 𝐹 (𝑥,𝑦) defined for sender
and receiver attributes 𝑥 and 𝑦, respectively, and formally prove its

security. Despite its seemingly theoretical focus, the main practical

challenges in instantiating this primitive are the predicate encryp-

tion (PE) scheme and the non-interactive zero-knowledge (NIZK)

proof systems. We present an implementation of our generic con-

struction for the inner-product (IP) predicate, i.e., for vectors 𝑥 and

𝑦 of attributes (encoded as field elements) such that 𝐹 (𝑥,𝑦) = 1

iff the inner product of 𝑥 and 𝑦 is zero. This predicate is known

to be sufficient to realize many real-world policies including set

membership (e.g., used in identity-based revocation systems), CNF

formulas and exact threshold clauses (with conjunctive or disjunc-

tive clauses) as well as hidden-vector encryption enabling various

sorts of comparisons as well as conjunctions of the above state-

ments [7].

More efficient constructions and implementations. We provide two

additional, specific constructions for certain policy classes that are

more lightweight in terms of required cryptographic tools and have

the additional features of constant-sized public keys and signatures,

as well as constant verification time. We provide (academic) pro-

totype implementations in Python and utilize the Charm-crypto

framework [2] for all constructions we present in this work.

For the experiments, we use a PC (laptop) with Intel Core i7-

9850H CPU@ 2.60 GHz and 16 GB memory over the BN-254 curves.

Our benchmarks demonstrate that the signing execution time for

the specific schemes is less than 2 seconds for reasonably complex

policy sizes. The verification procedure of signatures takes around

1.6 seconds, with public keys in the order of 28 kbytes, and signature

sizes of about 16 kbytes (all independent of the number of attributes).

Our prototypes for the specific policy classes thus suggest that,

although ul-PCSmay at first sight appear like a heavy cryptographic

tool, they can enforce policies with reasonable practical efficiency.

Finally, our prototype for the generic solution gives a first es-

timate about the real-world complexity of general-purpose PCS

designs. Due to its relationship with predicate-encryption (which

we explain in Section 2 below), the performance is largely influ-

enced by the choice of PE scheme. We run our benchmarks in the

range of 𝑛 = 5 up to 50 attributes. Signing takes 3 seconds for 𝑛 = 5

and each additional attribute incurs, on average in that range, an

estimated cost of 340 ms. For verification, we obtain around 4.5

seconds for 𝑛 = 5 with an average cost per additional attribute of

around 420 ms. Public key sizes on the other hand grow linearly,

starting at 79 kbytes for 𝑛 = 5, and incurring a cost of roughly

9.9 kbytes per additional attribute (which means that even for 50

attributes, we have key sizes similar to McEliece cryptosystems).

Signatures are about 42 kbytes for 𝑛 = 5 and grow by 5.14 kbytes

per additional attribute. We compare these characteristics with the

suggested PCS construction from [7], for which we provide the first

prototype (using the same underlying PE scheme), which enables

us to directly observe the overhead that our generic anonymity

enhancement techniques impose.

227

Application to payment systems and beyond. We formally show

how to combine ul-PCS with UTxO ledgers, as well as with DAP

systems like Zcash or Monero to ensure fine-grained policies on the

transaction level without the involvement of an auditor. To this aim,

we build on a recent abstract framework by Engelmann et al. [33]

(PETS’22) to modularly compose ul-PCS with so-called one-time

accounts, effectively coupling addresses with private credentials.

This proposal therefore puts forth an enriched Layer-1 address

format (and thus would either require a hard fork or would have

to be a sidechain with this added functionality). We point out that

this solution does not introduce any additional trust assumptions

beyond what a credential issuance infrastructure would need. We

further show that credential issuance, more formally, setup and

key-generation, can be distributed across a set of servers to avoid

a single point of failure. This is an important consideration, since

corrupting the credential issuer usually enables an adversary to

generate keys by itself, which it can then use to brute force the

attributes of every participant in the system by checking to which

participants it is able to send based on its self-issued attributes.

Finally, in the centralized settings of CBDC constructions [52, 65],

we showcase how the sue of ul-PCS extends the set of policies that

could be automatically enforced.

2 TECHNICAL OVERVIEW AND RELATED
WORK

In this section, we give an in-depth overview of the technical con-

tributions of this work. We describe the security goal of ul-PCS and

the inherent complications to realize such a strong notion. After-

wards, we outline the constructions we present in this work and

the different types of policies that we support. Finally, we provide

an overview how DAPs can be enhanced with ul-PCS in the context

of FATF regulations [37], finding a good balance between privacy

and regulatory-friendliness, as outlined in the previous section. We

conclude with an overview of related work.

Figure 1: Usage of an unlinkable policy-compliant signature

scheme: 1.) Alice with credentials 𝑥 and Bob with creden-

tials 𝑦, run through a registration process with a credential

authority. 2.) At any point, they can decide to re-randomize

their keys in order to break any link to their previous actions.

3.) Alice generates a signature, e.g., on a private transaction,

with Bob’s public key as the destination address. The fact

that a valid signature emerges proves that 𝐹 (𝑥,𝑦) = 1.

2.1 Realizing ul-PCS for Various Policy Types

We begin by recalling the model behind PCS, put forth in [7]. The

model involves three main roles as depicted in Figure 1: the Creden-

tial Issuing Authority (CA), Signers and Verifiers. The policy can be

defined for a set of senders’ attributes S and receivers’ attributes

R such that a predicate function 𝐹 : S × R → {0, 1} determines

which senders, with a given set of attributes, are allowed to create a

signature for which receivers, again with a set of attributes. If 𝑥 and

𝑦 denote the (private) attributes of sender and receiver, respectively,

then creating a valid signature is allowed iff 𝐹 (𝑥,𝑦) = 1. Existen-

tial unforgeability demands that a signer cannot generate a valid

signature for a recipient, identified by its public key (presumably en-

coding attributes 𝑦), unless it has obtained the secret key associated

with 𝑥 (issued by the CA) such that 𝐹 (𝑥,𝑦) = 1. Attribute hiding

guarantees that nobody learns any meaningful information about

the attributes of the signer and targeted verifier except, of course,

the bit that they jointly fulfill the policy when a valid signature

emerges. We introduce a missing feature: unlinkability. A user must

be able to change the representation (i.e., its public key) without

interactingwith the authority, to break the link between its actionsÐ

while retaining all security features above. Since ul-PCS combines

anonymity with, for example, unforgeability requirements, the ex-

isting security games must be adapted. A resulting challenge is

that winning conditions must remain well-defined, even if keys are

re-randomized (possibly done by the adversary) and attributes are

hidden.

Design challenges. At first sight, the problem might appear not

too difficult as it (superficially) resembles anonymous credential

(AC) systems [21, 27], which are well-studied and play a key role

in privacy-preserving applications by enabling users to authenti-

cate themselves while ensuring the unlinkability of their actions. A

credential in this context is typically a signature on the attributes.

During the authentication process, users can demonstrate their pos-

session of a credential that satisfies a specific access policy without

revealing any details about the real identity of the user, except that

they meet the criteria of the access policy. While one can notice

some similarities with our goal set out above, ul-PCS possesses

distinctive properties that deviate crucially from the intuition about

how AC systems are used.

The first difference is in the representation of the credentials.

In ul-PCS the credential is an inherent part of the public informa-

tion as its intended use case is as an address in a payment system,

cf. Section 2.2. In contrast, credential systems typically assume that

claims do stay private until shown in a credential-show operation.

In many implementations, a credential is simply a set of attributes

signed by an authority. Our re-randomization requirement means

that we have to find a privacy-preserving representation of users’

credentials that is fully re-randomizable without contacting the au-

thority again. This departs from the standard requirements of an AC

system, which mainly focus unlinkability between two credential-

show operations toward a service provider.

Furthermore, generic credential-show algorithms are not nec-

essarily privacy-preserving, unless they involve assertions proved

in zero-knowledge. In this context, these are properties that a user

proves about its private attributes. In contrast, in order to fulfill

the desired goals of ul-PCS the signer/sender needs to assert a

228

policy that involves the private attributes of itself and the receiverÐ

without having the receiver disclose the information to the sender.

Thus, any ul-PCS system must satisfy a set of seemingly incompat-

ible requirements which makes the problem highly non-trivial to

solve.

Scheme for generic policies. We first consider the case for generic

policies that achieve the goal of an arbitrary joint check of the

sender’s and receiver’s attributes encoded (in a privacy-preserving

manner) in their public keys. The standard PCS construction in [7]

relies on three main cryptographic primitives: (Predicate-Only)

Predicate Encryption, Digital Signatures and Non-Interactive Zero-

Knowledge (NIZK) proofs which can all be instantiated in the stan-

dard model. The high-level idea of this construction is that public

keys of parties, acting as receivers, contain a PE-ciphertext de-

cryptable by the signer/sender, only upon policy satisfaction. The

signature and NIZK are needed to achieve unforgeability and to

prove multiple relations during the signing process. Following this

paradigm, we present the first unlinkable PCS scheme supporting

any policy in Section 4. We build our scheme using those building

blocks and integrate a method that allows a party to evolve its

public key, according to a pseudo-random sequence tied to their at-

tributes. A critical hurdle to overcome in this setting is that, during

the process of refreshing the key, a party cannot add new attributes

that have not been issued to that party. We present more details on

this in the technical sections.

2.1.1 Schemes for more specific policy classes. Despite the fact that

PE is the most elegant conceptual fit for general PCS, it impacts

efficiency and public-key sizes since there is a direct implication

between PCS and PE. In more detail, the reduction presented in [7]

shows that PCS gives rise to PE encryption (for a related predicate),

and, furthermore, that a PCS public key can be turned into a PE

ciphertext. This implication becomes even more dominant in the ul-

PCS case since, in this case, it is required, as part of the construction,

to prove the well-formedness of the public key. To improve this

situation, we show how, for specialized policies, it is possible to

avoid PE in order to obtain more practically performing schemes.

We consider two specific policy classes:

Scheme for role-based policies. We consider role-based access-

control (RBAC) matrices. Such a matrix can be seen as a function

𝐹 : [𝑛𝑅] × [𝑛𝑅] → {0, 1} (for a given, presumably relatively small,

set of 𝑛𝑅 number of roles) and captures which roles 𝑖 can transact

towards which role 𝑗 , namely iff 𝐹 (𝑖, 𝑗) = 1. Depending on the

structure of such a matrix, one can implement a wide range of

access control policies, where łaccess controlž here rather means

which role is allowed to send a signed message (or transaction)

to which other role akin to information flow in [22]. Of particu-

lar interest is the special case of equality, i.e., the identity matrix

𝐹 (𝑖, 𝑗) = 1 iff 𝑖 = 𝑗 [5] as we recall below. We present an approach

based on accumulators (which are realizable based on pairing-based

signatures of a specific type) instead of PE. For general RBAC ma-

trices, the scheme satisfies what we call outsider-secure attribute

hiding, sometimes referred to as transaction-graph obfuscation or

confidentiality [23, 26] (aside of unforgeability and unlinkability).

This security notion captures the inability of an attacker to infer

any useful information by just analyzing the transaction graph of a

blockchain. For the special case of the equality policy the scheme

satisfies all security properties (in particular full attribute-hiding).

The equality policy is particularly useful in contexts where users

and/or services are clustered into groups or categories based on

their real-world credentials, and to ensure that transactions are

conducted within those groups.

Scheme for separable policies. Separable policies are policies that

admit the simple representation 𝐹 (𝑥,𝑦) = 𝑆 (𝑥) ∧𝑅(𝑦), and thus be-
long to the important class of predicates w.r.t. individual assertions

about an entity’s attributes, e.g., the ones supported by centralized

solutions like Platypus [65]. We show that those policies can be re-

alized by unlinkable PCS schemes in an efficient way, where the PE

part can be replaced by standard public-key encryption. We point

out some of the applications of these policies: on one hand, 𝑆 (𝑥)
could be the predicate that a sender has undergone KYC regulations,

while a priori anyone can be a receiver (𝑅(𝑦) = 1). Translated to

our scheme, and its associated usage in a DAP system, this means

that anyone can immediately start off and receive coins, while only

being able to spend them later, once KYC regulations have been met.

The second, more technical use-case, appears in Zcash-like DAP

systems: the three transaction types in Zcash, namely Mint, Burn,

and Pour transactions can directly be captured as simple attributes,

such that Mint is an action from a sender-only public key / address

(𝑆 (𝑥) = 1, 𝑅(𝑥) = 0, no receiving possible), Burn is a transaction

toward a receiver-only public key (𝑆 (𝑥) = 0, 𝑅(𝑥) = 1, no send-

ing possible), and the normal use-case is a user that can send and

receive (𝑆 (𝑥) = 𝑅(𝑥) = 1). Combining this observation with the

results of Section 6, gives a generic way to let the monetary policy

be governed by accredited users while preserving their privacy

and anonymity. In addition, when integrating Zcash with other

ledger-based currencies, one can steer which users are allowed to

convert base currency in exchange for newly minted zerocoins.

2.2 DAPs, FATF, and ul-PCS

Virtual assets is the technical and legal term referring to decen-

tralized digital tokens that are considered cryptocurrencies. Such

virtual assets can either be stored in self-hosted wallets, or stored

in a hosted (or custodial) wallet on a virtual-asset exchange, more

generally referred to as virtual-asset service provider (VASP) [37].

While digital assets serve real financial and investment needs, to

protect the ecosystem from fraudulent and criminal activities, the

Financial Action Task Force (FATF) demands that VASPs comply

with the so-called travel rule1. The travel rule mandates that VASPs

maintain identifying information behind any address they store,

as well as to collect and exchange information about sender and

receiver when funds move from one hosted wallet to another, and

further verify that certain (legal) policies are satisfied, such as re-

strictions on capital flow between jurisdictions of the involved

entities.

The travel rule puts a lot of burden on VASPs. Identifying the

financial beneficiary behind any address is similar to solving the

lookup problem in PKI infrastructures: it must be efficiently possible

for any VASP, when given an address addr, to obtain the identi-

fying information behind addr, and most importantly, the VASP

1https://sanctionscanner.com/blog/financial-action-task-force-fatf-travel-rule-140

229

https://sanctionscanner.com/blog/financial-action-task-force-fatf-travel-rule-140

that is hosting addr (if any). Since these checks are the precursor

for sensitive information exchanges about financial individuals,

the accuracy of such an association is of utmost importance: a

(curious) VASP should not be able to learn such information if it

cannot present a proof that it is the custodian of either the sending

or receiving wallet. It must further also be possible to determine

whether a wallet is hosted at all. Realizing such a lookup service as

an overlay over decentralized tokens is a difficult endeavor, as per-

sonal information is stored, maintained, transferred, and replicated

on various VASPs, which is not just a concern related to privacy,

but also mandates that information about an individual must be

consistent. Even if these issues were resolved, it appears that the

FATF travel rule does not align well with anonymous payment

systems. This is due to the strong anonymity guarantees that these

assets offer, which deems them suspicious, mainly due to a lack of

technological capabilities of reconciling accountability and privacy

efficiently for decentralized assets.

In this paper, we put forth a mechanism, which we formalize

later in Section 6, enabling the reconciliation of the above views,

the silver lining being that an address addr already provides an en-

coding of credentials with itÐencoded in a privacy-preserving way

via the help of a credential authority issuing any sort of attributes

to participants. This achieves a separation of duties: the identifying

information is carried by the address itself, and its privacy features,

such as recoverability or privacy revocation features, is up to the

credential system, not the VASPs. While the idea of connecting

addresses with credentials is not really novel, what ul-PCS adds to

the system is the combination of two new features:

1. It enables that an address carries anonymous credentials, but

also has the look-and-feel of common cryptocurrencies: a user can

create fresh addresses by itself that carry the same information,

without the need to contact the credential authority.

2. Asset transfers can be automatically governed by a policy

𝐹 (𝑥,𝑦), where 𝑥 are the attributes of the sender and 𝑦 are the

attributes of the receiver. That is, a transaction transferring a token

from addr𝑥 to addr𝑦 can never be accompanied by a valid signature

unless 𝐹 (𝑥,𝑦) = 1. Furthermore, nothing more is leaked by such

signatures other than the validity of the policy.

These two features combined can improve the complex situation

faced by VASPs considerably, while maintaining user privacy. As

we define formally in Section 6.1, compliance checks based on

ul-PCS and spending rights in a DAP system can be seen as two

separate steps, similar to multi-signatures. A VASP can formally

host an address by controlling just the DAP private key, while the

ul-PCS private key always remains with the user. This separation

further limits the impact of a (potentially misbehaving) credential

issuer in the transaction system. To conduct an asset transfer, the

user and the VASP must both provide the signature. Still, a user

can have many different unlinkable addresses with various VASPs

thanks to the re-randomization property that allows it to create

fresh addresses. Finally, while the above solution works best if the

underlying blockchain allows native support of such addresses and

multi-signatures, we point out that blockchains with smart-contract

capabilities can support these types of operations by defining a

custom token controlled by two keys.

Asset transfers implemented this way are guaranteed to follow

the policyÐwithout ever requiring from the involved parties to dis-

close any information about their attributesśand reliefs the VASPs

from collecting (or transmitting) information that are made for

the sole purpose of checking compliance of the mentioned policy

(of course, there might still be a need to collect information that

is not formalized by a digital policy in which case ul-PCS helps

reducing the amount of collected information). Furthermore, the

asset transfer is non-interactive in the same sense as common cryp-

tocurrencies are: the sender does not need more information to

transfer the asset than the knowledge of the recipient’s address.

It further allows the VASP to outsource the task of KYC to ac-

credited authorities. Here, the authorities issue attributes to reflect

a user’s KYC status which are then in charge of delivering the asso-

ciated information, if requested by legal enforcement. We discuss

such possibilities in Section 6.4. Furthermore, a VASP itself (such

as a mixing service) can carry a ul-PCS key representing attributes

accredited to it. This way, a policy can specify what types of users

are allowed to use which specific services. Only those users would

be able to transfer assets into an account of a VASP that satisfies

the rules. We discuss this example in more detail in Section 6.3.

In summary, the proposed approach is a paradigm change in

handling accountability in transaction systems. Instead of enforcing

an overlay-structure where every VASP collects the same type of

information, which arguably is rather intrusive, we put forth a

cryptographic mechanism that turns this view upside down. More

precisely, we intimately connect the addresses to the credentials

with automated compliance checks, while allowing a user to be

represented by fresh addresses with different services.

2.3 Prototypes and Benchmarks

We provide a full prototype implementation for all the schemes

we present in this work. These are the first working prototypes

of policy-compliant signatures in general, for which we provide

the results in Section 5. Our prototype should be seen as an aca-

demic prototype that contains a first faithful implementation of

all building blocks including the zero-knowledge proof systems,

however, without production-grade optimizations (we mention a

few as open directions). Yet, even without these modifications, the

main benefit of the prototypes, besides obtaining concrete runtime

estimates, is the required dovetailing of the zero-knowledge system

with other cryptographic primitives. It is highly non-trivial how a

concrete instantiation of our generic scheme would actually look

like (and to what extent it follows from standard tools). For that

instantiation, we pick a predicate-encryption scheme for the class

of inner-product (IP) policies [57]. Those schemes are theoretically

efficient and inner-product predicates are known to realize vari-

ous complex policies [51] such as DNF/CNF formulas, threshold

clauses, or polynomial evaluations, which directly translate to the

PCS setting [7]. Furthermore, since hidden-vector encryption can

be realized from IP, it follows that IP is sufficient to implement all

policies from [17].

The main challenge to overcome from a practical perspective is

to achieve that a user is able to provably re-encrypt the particular PE

ciphertexts without introducing new attributes. While this is easy

on paper, we must implement this securely by using a combination

230

of structure-preserving signatures on equivalence classes and the

observation that the particular PE ciphertexts are closely related

to generalized Pedersen commitments for which we can achieve

re-randomization via its homomorphic property. We thereby are

able to show that we can couple the particular PE scheme, which is

based on dual pairing vector spaces, with standard NIZK systems

(such as Groth-Sahai and Sigma protocols). The full specification

of all our prototypes are given in Appendices F and G.

2.4 Related Work

Since ul-PCS are signatures, they can be composed with any trans-

action system to capture more fine-grained policies. We already

contrasted this paper with [7], which serves as the basis we extend.

Therefore, we now focus on an overview of how ul-PCS can im-

prove the expressiveness of existing payment systems. We present

the technical details on this later in Section 6.

In the context of distributed payment systems, the focus of prior

works that support accountable privacy is on using NIZKs to prove

statements about the content of a transaction such as, e.g., a se-

quence of transactions are below a spending limit in total or below

a receiving limit in total [42, 61, 64]. These policies are extremely

useful and the involved NIZKs are practical. The systems are there-

fore able to publicly convince an auditor that certain actions are

within limits but do not give assertions about the credentials of the

involved parties and it seems hard to obtain unrevocable privacy

for more than cash-like transactions [61]. Enriched with digital

credentials, however, more classes of transactions can be defined.

Parties involved in a payment could be accredited (trusted) insti-

tutions or shops, for which a sending or receiving limit is lifted. A

PCS signature signing the transaction can assure money flow only

between two such institutions. Furthermore, certain coins can be

issued for a specific purpose to individuals, or capital flow control

can be ensured based on the credentials tied to a person’s public

key, and the PCS signature can attest compliance.

In the context of recent CBDC proposals [52, 65], Platypus [65]

is a very elaborate and nuanced system. During payments, where

interactionwith a central bank is required, it is proposed to carefully

distinguish types of transactions and, depending on this, the bank

might request further information, in plain or via zero-knowledge

proofs. Although being centralized, the system does not admit

to prove statements about sender and receiver of a transaction

simultaneously, e.g., to control whether cash flow between two

individuals is compliant with capital control. In such a scenario,

information needs to be revealed to the central bank. However, the

approach we take to make this possible in ul-PCS can be directly

applied to such centralized designs and enrich them with even

more fine-grained policies. The same holds for Peredi [52], which,

compared to Platypus, does not put forth a fine-grained transaction

model and presents a revocation-based auditability solution.

Finally, in a recent work on updatable PCS [6] it is shown how

to update the policy without changing the keys of the users. In this

setting, an interactive version of PCS is considered with support by

generic two-party protocols (2PC), but where public keys cannot

be re-randomized. Our approach of adding unlinkability would be

applicable to that setting too and our runtime estimates can serve

as a lower bound for their schemes due to their higher complexity.

3 UNLINKABLE PCS: FORMAL DEFINITION

Now, we present the syntax of unlinkable policy-compliant signa-

tures (ul-PCS) that match the outlined use cases above. We discuss

ways to decentralize the setup and key generation later in Section 6.

In the technical sections that follow, we follow standard notation

which we recall in Appendix A for completeness.

Definition 3.1 (Unlinkable Policy-Compliant Signatures). Let

{𝑋𝜆}𝜆∈N be a family of attribute sets and denote byX𝜆 the powerset
of 𝑋𝜆 . Further let F = {F𝜆}𝜆∈N be a family of sets F𝜆 of predicates

𝐹 : X𝜆×X𝜆 → {0, 1}. Then an unlinkable policy-compliant signature

(ul-PCS) scheme for the functionality class F𝜆 is a tuple of five PPT

algorithms ULPCS = (Setup,KeyGen,RandKey, Sign,Verify):

Setup(1𝜆, 𝐹): On input a unary representation of the security pa-

rameter 𝜆 and a policy 𝐹 ∈ F𝜆 , output a master public and

secret key pair (mpk,msk).
KeyGen(msk, 𝑥): On input the master secret key msk and a set

of attributes 𝑥 ∈ X𝜆 , output a public and secret key pair

(pk, sk).
RandKey(mpk, sk): On input the master public key mpk and a

secret key sk, output a new public-secret-key pair (pk′, sk′).
Sign(mpk, sk𝑆 , pk𝑅,𝑚): On input the master public key mpk, a

sender secret key sk𝑆 , a receiver public key pk𝑅 and a mes-

sage𝑚, output either a signature 𝜎 or ⊥.
Verify(mpk, pk𝑆 , pk𝑅,𝑚, 𝜎): On input the master public key mpk,

a sender public key pk𝑆 , a receiver public key pk𝑅 , a message

𝑚 and a signature 𝜎 , output either 0 or 1.

Correctness. A ul-PCS scheme is correct if in any execution, hon-

estly generated signatures computed using honestly generated pri-

vate and public keys, potentially re-randomized multiple times,

reflect the policy. Compared to standard PCS, it is easier to capture

this as a correctness experiment, since the interaction introduced

with re-randomization leads tomore complex scenarios. We present

the formal game in Appendix B.1.

Detectability Relation. Compared to the requirements of a standard

PCS scheme, the requirements for an unlinkable PCS scheme pose

a definitional challenge: we need to capture unforgeability and

policy-compliance in a security game but, at the same time, keys

are randomized (potentially by the adversary) and no efficient algo-

rithm could detect whether this is in fact a valid forgeryÐsince all

attributes are private and parties are not traceable. We solve this

definitional issue by introducing what appears to be a quite natural

requirement: any ul-PCS scheme must satisfy a detectability rela-

tion which intuitively captures the property that a party, knowing

its own initial secret key, can detect whether a valid public key

is in fact derived from it (that is, a party can detect its own pub-

lic keys in a ledger). Using this detection property, the challenger

in the security game can determine which keys belong to which

oracle queries. The algorithm is called Detect, and takes as input

a target public key, and the keys generated by the challenger for

different parties. The algorithm must return the index of the party

that the target key belongs to. Looking ahead, this must hold even

if the adversary is in charge of re-randomizations. Clearly, such an

algorithm must satisfy a non-triviality condition: when keys are

honestly generated and re-randomized, the algorithm detects only

231

correct relations and never confuses parties.2 The formal defini-

tion of detectability can be found in Appendix B.2. We point out

that this form of detectability is very different from tracingÐthe

property or feature that an additional entity, the auditor, is able to

trace parties by means of a special viewing or revocation key. This

property is not entirely new and has already been introduced in the

context of, e.g., Monero [3]. In Section 6, we give more details on

how to embed ul-PCS in larger contexts and discuss the traceability

requirement appearing in the literature on CBDCs.

3.1 Security Games

Before presenting the notions of unforgeability, attribute-hiding

and unlinkability, we describe the adversarial capabilities in the dif-

ferent security games. To keep track of all honestly generated keys,

corrupted keys and generated signatures, we define the initially

empty sets QK , QC and QS, respectively.

Key-Generation Oracle QKeyGen(·): On the 𝑖-th input of an at-

tribute set 𝑥𝑖 , generate (pk
0
𝑖 , sk

0
𝑖) ← KeyGen(msk, 𝑥𝑖), and add

((𝑖, 0), pk0𝑖 , sk
0
𝑖 , 𝑥𝑖) to QK . Return pk0𝑖 .

Left-or-Right Key-Generation Oracle QKeyGenLR𝛽 (·, ·): On
the 𝑖-th input of a pair of attribute sets 𝑥𝑖,0 and 𝑥𝑖,1, generate

(pk0𝑖 , sk
0
𝑖) ← KeyGen(msk, 𝑥𝑖,𝛽), add ((𝑖, 0), pk

0
𝑖 , sk

0
𝑖 , 𝑥𝑖,0, 𝑥𝑖,1)

to QK , and return pk0𝑖 .

Key-Randomization Oracle QRandKey(·): On input an index

𝑖 , if QK contains entries ((𝑖, 0), pk0𝑖 , sk
0
𝑖 , . . .), . . . , ((𝑖, 𝑐𝑖), pk

𝑐𝑖
𝑖 ,

sk
𝑐𝑖
𝑖 , . . .), then compute (pk𝑐𝑖+1𝑖 , sk

𝑐𝑖+1
𝑖) ← RandKey(mpk, sk

𝑐𝑖
𝑖)

and add ((𝑖, 𝑐𝑖 + 1), pk
𝑐𝑖+1
𝑖 , sk

𝑐𝑖+1
𝑖 , . . .) to QK and return pk

𝑐𝑖+1
𝑖 .

Corruption Oracle QCor(·): On input an index 𝑖 , if QK con-

tains entries ((𝑖, 𝑗), pk
𝑗
𝑖 , sk

𝑗
𝑖 , . . .) for 0 ≤ 𝑗 ≤ 𝑐𝑖 for some 𝑐𝑖 ≥

0, then copy these entries from QK to QC and return the list

(sk0𝑖 , . . . , sk
𝑐𝑖
𝑖).

Signing Oracle QSign(·, ·, ·): On input an index pair (𝑖, 𝑗), a

public key pk′ and a message 𝑚, if QK contains an entry

((𝑖, 𝑗), pk
𝑗
𝑖 , sk

𝑗
𝑖 , . . .), then compute 𝜎 ← Sign(mpk, sk

𝑗
𝑖 , pk

′,𝑚),

add ((𝑖, 𝑗), pk
𝑗
𝑖 , pk

′,𝑚, 𝜎) to QS and return the signature.

Randomization-Challenge Oracle QRandKey𝛽 (·): On receiv-

ing a query 𝑖 , do the following: if 𝛽 = 0 then set (pk′, sk′) ←
RandKey(mpk, sk), and if 𝛽 = 1 set (pk′, sk′) ← KeyGen(msk, 𝑥),
where 𝑥 is taken from the entry ((𝑖, 0), pk, sk, 𝑥) of QK , and sk is

taken from the entry ((𝑖, 𝑗), pk, sk, 𝑥) of QK with highest 𝑗 for the

given 𝑖 . Add ((𝑖, 𝑗 + 1), pk′, sk′) to QK and return pk′.

Notice that the randomization-challenge oracle is one way of for-

malizing key evolution. Following our application story, we assume

a party updates its most recent key (similar to key-evolving sig-

natures). Other equivalent options are possible as well. For nota-

tional convenience, if the set QK contains the sequence ((𝑖, 0),
pk0𝑖 , sk

0
𝑖 , . . .), . . . , ((𝑖, 𝑐𝑖), pk

𝑐𝑖
𝑖 , sk

𝑐𝑖
𝑖 , . . .) we denote by QK𝑖 the se-

quence of keys [(pk0𝑖 , sk
0
𝑖), . . . , (pk

𝑐𝑖
𝑖 , sk

𝑐𝑖
𝑖)] of party 𝑖 .

3.2 Security of ul-PCS

Unforgeability. Unforgeability captures the property that signatures

by honest parties cannot be forged and that it is not possible to

2It is instructive to observe that such (private-key) detectability relations are also
studied in the context of RCCA variants [8].

create valid signatures that are not policy-compliant. In more detail,

an adversaryA creates a valid forgery if: (a) it is able to generate a

valid signature for a public key belonging to an honest/uncorrupted

party, or (b) it is able to generate a valid signature for a key that has

never been issued for an attribute set3, or (c) it is able to generate

a valid signature for a key pair pk𝑆 , pk𝑅 where the corresponding

attributes do not fulfill the policy 𝐹 . We capture all these conditions

in the security game in Figure 2. To efficiently evaluate condition (c),

wemake use of the mentioned detection algorithm since not all keys

are generated by the challenger, but potentially modified keys by

an adversary. The formal definition can be found in Appendix B.3.

EUF-CMAULPCS (1𝜆,A)

(𝐹, st) ← A1 (1
𝜆)

(mpk,msk) ← Setup(1𝜆, 𝐹)

(pk, pk∗,𝑚∗, 𝜎∗) ← A

QKeyGen(·),QRandKey(·),
QCor(·),QSign(·, ·, ·)
2 (st,mpk)

Let 𝑖max be the number of queries made to QKeyGen(·)

𝑆 ← Detect(mpk, pk, (QK1, . . . ,QK𝑖max))

𝑅 ← Detect(mpk, pk∗, (QK1, . . . ,QK𝑖max))

Let 𝑥𝑆 and 𝑥𝑅 denote the attributes in case 𝑆, 𝑅 ≠ ⊥

Output: Verify(mpk, pk, pk∗,𝑚∗, 𝜎∗) = 1 ∧[[
∃(𝑖, 𝑗), sk, 𝑥 ∀(𝑖 ′, 𝑗 ′), 𝜎 : ((𝑖, 𝑗), pk, sk, 𝑥) ∈ QK \ QC∧

((𝑖 ′, 𝑗 ′), pk, pk∗,𝑚∗, 𝜎) ∉ QS
]
∨

[
(𝑆 ≠ ⊥) ∧ (𝑅 ≠ ⊥) ⇒ 𝐹 (𝑥𝑆 , 𝑥𝑅) = 0

]]

Figure 2: Unforgeability Game of ULPCS.

Attribute-Hiding. The adversary has access to four of the oracles

introduced in the previous section: (1) a challenge oracle, to which

it can submit an attribute pair (𝑥0, 𝑥1) and receives as a reply the

public key pk corresponding to 𝑥𝛽 , for 𝛽 chosen by the challenger;

(2) a rerandomization oracle, to which it can submit indices 𝑖 and

then receives as a reply the rerandomization of the public key that

corresponds to this index; (3) a corruption oracle, to which it can

submit an index and then receives as a reply the secret key that

corresponds to the public key associated with the index; and (4) a

signing oracle, to which the adversary can submit an index pair

(𝑖, 𝑗) as well as a public key pk and a message𝑚 and then receives

as a reply a signature generated using the 𝑗 ’th rerandomization of

the 𝑖’th secret key for the public key pk over the message𝑚. The

goal of the adversary in this game is to determine the bit 𝛽 , and

thus to observe a difference between the two settings.

To prevent the adversary from trivially winning the game, we

need to specify validity requirements that exclude those distin-

guishing strategies that are simply based on how the system is

supposed to operate (i.e., correctness) [59]). First, the adversary is

only allowed to ask for the corruption of an index 𝑖 , if the chal-

lenge query for this index consists of the same attribute sets, i.e.

𝑥0 = 𝑥1. Second, the adversary is only allowed to ask signing

queries for an index (𝑖, 𝑗) and receiver key pk such that it holds

3This is captured by the second part of the or-condition which is a logical implication.
true if the key has not been output by the key generation generation oracle.

232

that 𝐹 (𝑥0, 𝑦0) = 𝐹 (𝑥1, 𝑦1) where (𝑥0, 𝑥1) is the 𝑖’th key challenge

query and (𝑦0, 𝑦1) are the possible attributes associated with pk. To

determine the attributes (𝑦0, 𝑦1) of pk, we make, again, use of the

detectability of the scheme and execute the detection algorithm us-

ing pk as an input. The game is described in Figure 3. We formally

define attribute-hiding in Appendix B.4.

AHULPCS
𝛽

(1𝜆,A)

(𝐹, st) ← A1 (1
𝜆)

(mpk,msk) ← ULPCS.Setup(1𝜆, 𝐹)

𝛼 ← A
QKeyGenLR𝛽 (·, ·),QRandKey(·),QCor(·),QSign(·, ·, ·)
2 (st,mpk)

Output: 𝛼

Figure 3: The Attribute-Hiding game for ULPCS.

Unlinkability. Unlinkability captures the property that a party can

re-randomize its key such that it is not possible to tell afterwards

whether this party is acting again or whether it is another party

that freshly joined the system. Coupled with attribute-hiding, this

leads to strong privacy guarantees: observing a signature between

two freshly re-randomized public keys does not reveal anything

beyond the assertion that the attributes behind the keys satisfy the

policy without any link to a party’s other actions in the system.

The simple single user unlinkability security game (for the case

|QK| = 1) in Figure 4 is parameterized by the challenge bit 𝛽 . It

formalizes that an adversary is not able tell apart a user that evolves

its key from fresh keys with the same attribute, while all łversionsž

of the original key are in use to sign off arbitrary messages towards

arbitrary recipients (the adversary can create arbitrary users and

know their secrets). We show in Appendix C that this intuitive

game is sufficient to imply security for the multi-user setting. We

present the definition formally in Appendix B.5.

For all of the presented security notions, we also consider its

bounded 𝑇Rand version, where 𝑇Rand is a parameter (polynomially

in the security parameter). In this bounded version of the differ-

ent notions (i.e.𝑇Rand-unforgeability,𝑇Rand-attribute-hiding,𝑇Rand-

unlinkable) the adversary is restricted to only making at most𝑇Rand
rerandomization queries for each obtained key. Looking ahead,

bouding the number of rerandomizations admits solutions based

on simpler cryptographic assumptions leading to more efficient

schemes, which is one goal of this work. Our concrete schemes

achieve 𝑇Rand bounded security and in the instantiations we set

𝑇Rand = 216 − 1.

LinkULPCS
𝛽

(1𝜆,A)

(𝐹, st1) ← A1 (𝜆)

(mpk,msk) ← Setup(1𝜆, 𝐹)

(𝑥, st2) ← A
KeyGen(msk, ·)
2 (mpk, st1)

(pk, sk) ← KeyGen(msk, 𝑥); QK ← ((1, 0), pk, sk, 𝑥)

𝛼 ← A
KeyGen(msk, ·),QRandKey𝛽 (·),QSign(·, ·, ·)

3 (pk, st2)

Output: 𝛼

Figure 4: Single-Challenge Unlinkability game of ULPCS.

4 CONSTRUCTIONS

4.1 ul-PCS for Generic Policies

We first present the construction for generic policies in Figure 5.

The main idea is to equip a public key with the encryption of the

user’s attributes. For this we use a predicate-encryption scheme

that supports the predicate class 𝑓𝑥 (𝑦) ≔ 𝐹 (𝑥,𝑦), where 𝐹 is the

policy. Crucially, there must be a link to the issuance of attribute 𝑥

towards a user by the authority (CA). This link is established via

pseudorandom identifiers derived from a PseudoRandom Function

(PRF) that are developed over the course of key updates. Critically,

such key updates are not only bound to the attributes, but also to

the functional key of the PE scheme, and to a signature public keyÐ

a master public key that grants the user the right to authorize fresh

signature public keys to itself, reminiscent of identity-based signa-

ture schemes. Those fresh keys can be published as part of a new

version of the public key, and signed with the master signature pri-

vate key. Note that due to the unlinkability requirement, the master

signature keys as well as the generated signatures must remain pri-

vate. The NIZK proof in the public key assures the well-formedness

of the key, resulting in fresh-looking re-randomizations that are,

however, bound to what an authority granted to a user. Finally,

when signing, the sender first checks that the recipient’s public key

is valid and, then proves eligibility by proving that knowledge of

a (certified) functional key sk𝑓𝑥 of the PE scheme that is able to

decrypt the ciphertext in the recipient’s public key. The final step

is signing the message and the proof using the newest signature

public key. We require two NIZK languages for our approach: L1

refers to the language of valid public keys;L2 refers to the language

of eligible signatures:

Language L1: A statement 𝑥st ≔ (𝑇Rand, IDctr, vk
ctr
sig
, ctctr, vk

𝐴
sig
,

mpkPE) is in the language L1 if it holds for a witness𝑤st ≔ (k, ctr,

vksig, sksig, 𝑥, 𝜎
1
sig
, 𝜎2

sig
, 𝜎ctr) that:

• ctr < 𝑇Rand
• ctctr = PE.Enc(mpkPE, 𝑥)
• IDctr = PRF.Eval(k, ctr)
• DS.Verify(vk𝐴

sig
, (k, 𝑥), 𝜎1

sig
) = 1

• DS.Verify(vk𝐴
sig
, (k, vksig), 𝜎

2
sig
) = 1

• DS.Verify(vksig, (vk
ctr
sig
, IDctr), 𝜎ctr) = 1

Language L2: A statement 𝑥st ≔ (ID𝑆 , ct𝑅, vk
𝐴
sig
) is in the lan-

guage L2 if it holds for a witness𝑤st ≔ (k, ctr, sk𝑓𝑥 , 𝜎
3
sig
) that:

• PE.Dec(sk𝑓𝑥 , ct𝑅) = 1

• ID𝑆 = PRF.Eval(k, ctr)
• DS.Verify(vk𝐴

sig
, (k, sk𝑓𝑥), 𝜎

3
sig
) = 1

The helper function ValidPK(mpk, pk) in Figure 5 checks the

public-key’s well-formedness by verifying the NIZKL1
proof of pk

and outputs 1 if it verifies, and 0 otherwise. We refer to Appendix E

for the formal security analysis that establishes the following:

Theorem 4.1. The ul-PCS scheme for generic policies based on

pseudo-random functions, predicate encryption, unforgeable signa-

tures and extractable NIZK systems for languages L1 and L2 is𝑇Rand
unforgeable, attribute-hiding, and unlinkable, where 𝑇Rand is polyno-

mial in the security parameter.

Looking ahead, we can pick𝑇Rand = 216 − 1 in our instantiations.

233

Setup(1𝜆, 𝐹):

CRSRand ← NIZKL1
.Setup(1𝜆)

CRSSign ← NIZKL2
.Setup(1𝜆)

(sk𝐴
sig
, vk𝐴

sig
) ← DS.Setup(1𝜆)

(mpkPE,mskPE) ← PE.Setup(1𝜆)

mpk ≔ (𝑇Rand, 𝐹 ,CRSRand,CRSSign, vk
𝐴
sig
,mpkPE)

msk ≔ (𝐹, sk𝐴
sig
,mskPE)

Return (mpk,msk)

KeyGen(msk, 𝑥):

Parse msk as defined above

k← {0, 1}𝜆

(sksig, vksig) ← DS.Setup(1𝜆)

sk𝑓𝑥 ← PE.KeyGen(mskPE, 𝑓𝑥) //𝑓𝑥 ≔ 𝐹 (𝑥, ·)

𝜎1
sig
← DS.Sign(sk𝐴sig, (k, 𝑥)), 𝜎

2
sig
← DS.Sign(sk𝐴sig, (k, vksig))

𝜎3
sig
← DS.Sign(sk𝐴sig, (k, sk𝑓𝑥))

usk ≔ (k, vksig, sksig, 𝜎
1
sig
, 𝜎2

sig
, 𝜎3

sig
, 𝑥, sk𝑓𝑥)

Return (pk0, sk0) ← RandKey(mpk, (usk,−1,⊥))

RandKey(mpk, sk) :

Parse mpk, usk as defined above and sk = (usk, ctr, ·)

ctr ≔ ctr + 1

If ctr ≥ 𝑇Rand: return ⊥

IDctr ≔ PRF.Eval(k, ctr)

(vkctrsig, sk
ctr
sig) ← DS.Setup(1𝜆)

𝜎ctr ← DS.Sign(sksig, (vk
ctr
sig, IDctr))

ctctr ← PE.Enc(mpkPE, 𝑥)

𝜋ctr ← NIZKL1 .Prove(CRSRand,

(𝑇Rand, IDctr, vk
ctr
sig, ctctr, vk

𝐴
sig,mpkPE), (usk, 𝜎ctr))

pkctr ≔ (IDctr, vk
ctr
sig, ctctr, 𝜋ctr)

Return (pkctr, skctr ≔ (usk, ctr, sk
ctr
sig))

Sign(mpk, sk, pk𝑅,𝑚) :

Parse mpk, sk ≔ (usk, ctr, skctr) and usk as above

If ValidPK(mpk, pk𝑅) = 0 : return ⊥

ID𝑆 ≔ PRF.Eval(k, ctr)

If PE.Dec(sk𝑓𝑥 , ct𝑅) = 0 : return ⊥

𝜋𝑠 ← NIZKL2 .Prove(CRSSign, (ID𝑆 , ct𝑅, vk
𝐴
sig), sk)

𝜎 ← DS.Sign(skctr, (𝑚, pk𝑅, 𝜋𝑠))

Return (𝜋𝑠 , 𝜎)

Verify(mpk, pk𝑆 , pk𝑅,𝑚, 𝜎) :

Parse mpk as defined above and 𝜎 = (𝜋, 𝜎′)

If ValidPK(mpk, pk𝑆) = 0 or ValidPK(mpk, pk𝑅) = 0, return ⊥

Return (NIZKL2 .Verify(CRSSign, (pk𝑆 , pk𝑅), 𝜋)

∧ DS.Verify(vk𝑆 , (𝑚, pk𝑅, 𝜋), 𝜎
′))

Figure 5: Our generic unlinkable PCS scheme.

4.2 ul-PCS for Specific Policy Types

Separable policies. For separable policies, we observe that we can

avoid PE and replace it by ordinary encryption which also allows

for more efficient proofs. The crucial observation is that in policies

of the form 𝑆 (𝑥) ∧ 𝑅(𝑦) the matching part can be separated as

well. The scheme that we formally describe in Appendix D.1 for

completeness establishes:

Theorem 4.2. ul-PCS for separable policies is achievable based on

pseudo-random functions, IND-CPA-secure encryption, unforgeable

signatures and extractable NIZK systems for languages L1 and L2,

as defined in Appendix D.1.

Role-based policies. For role-based policies, we observe that for

each łrecipientž, we can accumulate who is allowed to sign toward

this recipient. We can use a very weak form of an accumulator

(cf. Appendix A.6) realizable by weakly-secure short signatures [14]

and suitably pair it with structure preserving signatures on equiva-

lence classes (cf. Appendix A.5) to re-randomize the accumulator

value while leaving the inclusion witnesses intact. The policy can be

evaluated via an inclusion check which admits an efficient (pairing-

based) NIZK. This optimized scheme achieves outsider-security AH

for arbitrary role-based matrices, and full attribute hiding for more

specific policies such as the equality policy (or any permutation

matrix). The scheme given in Appendix D.2 thus establishes:

Theorem 4.3. ul-PCS scheme for role-based policies is achievable

based on pseudo-random functions, structure-preserving signatures

on equivalence classes, standard (unforgeable) signatures, a weakly-

sound accumulator, and extractable NIZK systems for languages L1

and L2, as defined in Appendix D.2.

5 INSTANTIATIONS AND PERFORMANCE

The full documentation on how we instantiate the scheme and real-

ize the NIZK relations effectively are given in Appendices F and G

due to space constraints. Here, we quickly survey the deployed

algorithms before reporting on the measured performance.

We require three different types of signature schemes to instanti-

ate the proposed constructions. For structure-preserving signatures

on equivalence-classes (SPS-EQ) we use the construction proposed

in [39]. For standard digital signatures, we mainly employ BLS

signatures [16]. However, if we need a Groth-Sahai (GS) friendly

relation, we use the structure-preserving signatures (SPS) proposed

in [39]Ðfor example when users need to prove the knowledge of

hidden messages and signatures that successfully verify under the

verification key of the CA.

We utilize the Dodis-Yampolskiy PseudoRandom Function

(PRF) [31] as a well-known and efficient PRF that operates over a

cyclic group G of prime order 𝑝 .

The proposed generic ul-PCS scheme in Figure 5 relies on PE.

We use the Okamoto-Takashima [57] scheme based on dual pairing

vector spaces that realizes the inner-product predicate functionality.

The proposed ul-PCS scheme with separable policies relies on

public key encryptions for which we use ElGamal encryption [32].

To realize the NIZK relations, we rely on three well-known proof

systems: Sigma protocols [60], Groth-Sahai proofs [47], and range-

proofs [18]. The syntax of these proof systems can be found in Ap-

pendix F. Building all relationships and bridging between the proof

systems is far from trivial and we give the full specification (based

on which the prototype is based) of how we realize the relations

in Appendix G for completeness. A summary of which statements

are processed by which proof system is depicted in Figure 6.

234

the core infrastructure underneath. The high-level transaction me-

chanic is as follows: in a transaction, one declares knowledge of

(input) notes contained in the ledger state and presents their nulli-

fiers plus a NIZK proof that they are constructed correctly based

on the input notes. Importantly, the transaction reveals no link to

the input notes other than their containment in the ledger state

(the nullifiers ensure that no note can be spent more than once).

Finally, a transaction specifies a new set of output notes, and an

application-dependent proof that the output notes stand in a par-

ticular relation with the input notes (such as that the sum of all

inputs equals the sum of all outputs minus a given fee). We refer

to [12] and [33] on how these systems can be constructed based on

an OTA scheme.

We now present two constructions how to combine PCS with

OTA to achieve accounts that are bundled with private attributes

aboutwhich policy compliance can be proved. The first construction

is the generic composition of PCS and OTA and embeds PCS via the

use of recursive SNARKS. The second construction constitutes an

efficiency improvement in case the PCS is unlinkable and realizes

the vision presented in Section 2.2. Due to space constraints, we

defer the description of Construction I to Appendix I.2.

Construction II. We present an efficient way to compose the two

schemes while retaining essentially the same privacy guarantees as

the first construction above by leveraging the unlinkability feature

of the ul-PCS scheme. First, we describe the scheme and argue

about its security. The scheme works as follows: the sender creates

a note according to the OTA scheme and PCS-signs a commitment

to the note such that it verifies with the sender’s and recipient’s

current PCS public keys respectively. We leave the format of the

note unchanged and transmit the additional information as well

as the commitment opening as part of the ciphertext of the OTA

scheme. The nullifier on the other hand will be the OTA nullifier,

both PCS public keys, the PCS signature on the commitment, plus

another PCS signature created by the recipient on the OTA nullifier,

and a NIZK that proves knowledge of the opening information of

the commitment. (Recall that PCS-Signing requires specifying a

target public key which is not relevant at this step. For simplicity,

we assume that a party can łsign towards itselfž, in which case

standard signatures are a special case of PCS.) In summary, a party

can only claim ownership of a note (by constructing the nullifier) if

it possesses the underlying OTA private key (to decrypt the output

and to generate the OTA nullifier) and possesses the PCS private

key that corresponds to the PCS public key towards which the note

was created, i.e., for which the signature on the note successfully

verifies. We observe that this construction avoids a NIZK about

PCS signatures and gets away with just a simple commitment proof.

The scheme is formally given below. We note that the only change

to the interface is that KeyGen can have black-box access to a

PCS key-gen oracle and that it is parameterized by an attribute 𝑥 .

Thanks to this modularity, the OTA security requirements remain

well-defined and we give an analysis in Appendix I.3.

Setup: Run (mpk,msk) ← ul-PCS.Setup and pp ← OTA.Setup

and define the public parameter p← (mpk, pp). For simplicity, p

is implicitly provided to all algorithms below and not explicitly

mentioned.

KeyGen
KeyGenPCS (msk, ·)
𝑥 : Run (pkota, skota) ← OTA.KeyGen and

obtain (pkpcs, skpcs) for attribute 𝑥 via an oralce call. Define pk =

(pkota, pkpcs) and sk = (skota, skpcs).

NoteGen((pk𝑅ota, pk
𝑅
pcs), ®𝑎, (𝑟1, 𝑟2)): Run note ← OTA.NoteGen(

pkota, ®𝑎, 𝑟1).

Enc((pk𝑅ota, pk
𝑅
pcs), ®𝑎, (𝑟1, 𝑟2), (skota, skpcs), 𝜉): Re-create the note

note using 𝑟1 as above and compute Com ← Commit(note; 𝑟2).
Run (sk′pcs, pk

′
pcs) ← ul-PCS.RandKey(skpcs) and store the new

PCS keys. Run𝜎note ← ul-PCS.Sign(sk′pcs, pk
𝑅
pcs,Com). Compute

𝐶 ← Enc
(
pk𝑅ota, (®𝑎, (𝑟1, 𝑟2), pk

′
pcs, pk

𝑅
pcs, 𝜎note), 𝜉

)
.

Receive(note,𝐶, (skota, skpcs)): Compute OTA.Receive(note,𝐶,
skota).

NulEval((sk𝑅ota, sk
𝑅
pcs), ®𝑎, (𝑟1, 𝑟2), pk

𝑆
pcs, pk

𝑅
pcs, 𝜎note): Verify that

pk𝑅pcs is the public key corresponding to sk𝑅pcs (otherwise,

abort). Generate nul′ ← OTA.NulEval(sk, 𝑟1), compute 𝜎nul
← ul-PCS.Sign(sk𝑅, pk𝑅, nul′), and recreate the commit-

ment Com (using ®𝑎, 𝑟1, and 𝑟2). Check that ul-PCS.Verify(

pk𝑆pcs, pk
𝑅
pcs,Com, 𝜎note) = 1 (otherwise abort). Finally, output

nul← (nul′,Com, pk𝑆pcs, pk
𝑅
pcs, 𝜎note, 𝜎nul).

For this scheme, we require a NIZK for the following language,

which is known to admit efficient proof systems [33][Section 5]:

𝐿′ = {(𝑠𝑡,Com, nul′) | ∃(note, skota, ®𝑎, 𝑟1, 𝑟2) : note ∈ 𝑠𝑡

∧ Com = Commit(note, 𝑟2) ∧ note = NoteGen(𝑃 (skota), ®𝑎, 𝑟1)

∧ nul′ = NulEval(skota, 𝑟1)}.

6.2 Distributed Setup and User Enrollment

In credential systems, issuance is often distributed across a set of

servers to avoid a single point of failure. Such failures may for

example include the leakage or malicious revelation of the master

secret key. Hence, the security of the system is improved if the

system’s setup values and user enrollment are implemented by

distributed processes with the property that only a large collusion

of servers would be able to recreate crucial secret values. This is

important in our context, because the revelation of the master secret

key would (necessarily) limit the achievable level of attribute hiding

in practice, as it allows an attacker to self-issue credentials and

determine w.r.t. which participants it can generate valid signatures.

In Appendix H, we showcase how our constructions can be

implemented in the distributed setting. In general, the idea is to

have the master secret-key shared among the servers (plus addi-

tional shared randomness), and have a client obtain partial results

𝑟𝑖 ← KeyGen(msk𝑖 , 𝑥), and perform client-side aggregation to re-

construct the full output of KeyGen. Such a process ensures that,

unless a certain threshold of servers collude (e.g. up to 𝑛 − 1 in an

honest-but-curious scenario), the CA’s have no advantage over any

other party in the system.

6.3 Compliant Mixing Services

To obfuscate the transaction graph in (plain) UTxO systems, several

techniques have been proposed for Bitcoin [40, 54, 62], all of them

requiring the ability that a party can generate fresh public keys (i.e.,

addresses) at will. For example, in amixer solution like Obscuro [62],

parties would communicate privately a new return address to the

237

mixer, send coins, and the mixer sends back the coins to the shuffled

return addresses of many users.

As a special case of Construction II above, those services can be

made compliant using unlinkable PCS at the transaction level (cou-

pling spending keys and PCS keys into one address) and thanks to

the re-randomization property, this is compatible with such obfus-

cation techniques. Both users and service providers could thereby

be equipped with credentials certifying that they are accredited in

their jurisdiction (or have been KYCed) while still profiting from

such services.

6.4 Application within Centralized Designs

Due to its low-level nature of being a signature scheme tied to digital

credentials, there is a lot of flexibility in the usage of a PCS scheme.

For example, if an application requires traceability or revocation,

the user is still free to follow standard procedures to register its

public key with a PKI to bind it to a real-world identity, or to secret

share its private key with revocation servers that would enable

traceability. Having a PKI in place can assist in disincentivizing

users from sharing private keys, if that is deemed a concern, as well

as any standard technique, such as PKI-assured non-transferability,

can be used for this purpose [20] just like with ordinary credential

or signature systems.

This is relevant for highly regulated applications including cen-

tral bank digital currencies that seek comprehensive regulatory com-

pliance [52], which is often achieved by enabling full anonymity

revocation on any transaction of a user when under investigation.

However, more recent trends in CBDCs including Platypus [65]

present an alternative path for better balancing accountability and

privacy by providing unconditional privacy to transactions for

which policy compliance can be proven cryptographically. Here,

PCS greatly broadens the scope of such assurances by enabling

joint predicates over both sender and receiver attributes including

specific combinations of age, citizenship, place of residency, more

technical attributes like governing (tax) jurisdiction or financial

score, and more generally certified attributes by external auditors

(cf. the chosen policy classes for separable policies or RBAC, and of

course the richer set computable by inner-product predicates).

ACKNOWLEDGMENTS

The second author is supported in part by the Research Council KU

Leuven C1 on Security and Privacy for Cyber-Physical Systems and

the Internet of Things with contract number C16/15/058 and by Cy-

berSecurity Research Flanders with reference number VR20192203.

The third author is supported by an MC2 Postdoctoral Fellowship.

REFERENCES
[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, KristiyanHaralambiev, andMiyako

Ohkubo. 2010. Structure-Preserving Signatures and Commitments to Group
Elements. In CRYPTO 2010 (LNCS, Vol. 6223), Tal Rabin (Ed.). Springer, Heidelberg,
209ś236. https://doi.org/10.1007/978-3-642-14623-7_12

[2] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael
Rushanan, Matthew Green, and Aviel D. Rubin. 2013. Charm: a framework for
rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3, 2
(June 2013), 111ś128. https://doi.org/10.1007/s13389-013-0057-3

[3] Kurt M. Alonso and Jordi Herrera Joancomartí. 2018. Monero - Privacy in the
Blockchain. Cryptology ePrint Archive, Report 2018/535. https://eprint.iacr.org/
2018/535.

[4] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar
Elkhiyaoui, and Björn Tackmann. 2020. Privacy-preserving auditable token

payments in a permissioned blockchain system. In AFT ’20: 2nd ACM Conference
on Advances in Financial Technologies, New York, NY, USA, October 21-23, 2020.
ACM, 255ś267. https://doi.org/10.1145/3419614.3423259

[5] Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi. 2019.
Match Me if You Can: Matchmaking Encryption and Its Applications. In
CRYPTO 2019, Part II (LNCS, Vol. 11693), Alexandra Boldyreva and Daniele Mic-
ciancio (Eds.). Springer, Heidelberg, 701ś731. https://doi.org/10.1007/978-3-030-
26951-7_24

[6] Christian Badertscher, Monosij Maitra, Christian Matt, and Hendrik Wald-
ner. 2024. Updatable Policy-Compliant Signatures. In PKC 2024, Part I (LNCS,
Vol. 14601), Qiang Tang and Vanessa Teague (Eds.). Springer, Heidelberg, 105ś132.
https://doi.org/10.1007/978-3-031-57718-5_4

[7] Christian Badertscher, Christian Matt, and Hendrik Waldner. 2021. Policy-
Compliant Signatures. In TCC 2021, Part III (LNCS, Vol. 13044), Kobbi Nissim and
Brent Waters (Eds.). Springer, Heidelberg, 350ś381. https://doi.org/10.1007/978-
3-030-90456-2_12

[8] Christian Badertscher, Ueli Maurer, Christopher Portmann, and Guilherme Rito.
2021. Revisiting (R)CCA Security and Replay Protection. In PKC 2021, Part II
(LNCS, Vol. 12711), Juan Garay (Ed.). Springer, Heidelberg, 173ś202. https:
//doi.org/10.1007/978-3-030-75248-4_7

[9] Amira Barki and Aline Gouget. 2020. Achieving privacy and accountability in
traceable digital currency. Cryptology ePrint Archive, Paper 2020/1565. https:
//eprint.iacr.org/2020/1565 https://eprint.iacr.org/2020/1565.

[10] Paulo S. L. M. Barreto andMichael Naehrig. 2006. Pairing-Friendly Elliptic Curves
of Prime Order. In SAC 2005 (LNCS, Vol. 3897), Bart Preneel and Stafford Tavares
(Eds.). Springer, Heidelberg, 319ś331. https://doi.org/10.1007/11693383_22

[11] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan Håstad, Joe Kilian,
Silvio Micali, and Phillip Rogaway. 1990. Everything Provable is Provable in
Zero-Knowledge. In CRYPTO’88 (LNCS, Vol. 403), Shafi Goldwasser (Ed.). Springer,
Heidelberg, 37ś56. https://doi.org/10.1007/0-387-34799-2_4

[12] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous
Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459ś474. https://doi.org/10.1109/SP.2014.36

[13] Frank Blom, Niek J Bouman, Berry Schoenmakers, and Niels de Vreede. 2021.
Efficient secure ridge regression from randomized gaussian elimination. In Cy-
ber Security Cryptography and Machine Learning: 5th International Symposium,
CSCML 2021, Be’er Sheva, Israel, July 8ś9, 2021, Proceedings 5. Springer, 301ś316.

[14] Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.
In EUROCRYPT 2004 (LNCS, Vol. 3027), Christian Cachin and Jan Camenisch (Eds.).
Springer, Heidelberg, 56ś73. https://doi.org/10.1007/978-3-540-24676-3_4

[15] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption from
the Weil Pairing. In CRYPTO 2001 (LNCS, Vol. 2139), Joe Kilian (Ed.). Springer,
Heidelberg, 213ś229. https://doi.org/10.1007/3-540-44647-8_13

[16] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the
Weil Pairing. In ASIACRYPT 2001 (LNCS, Vol. 2248), Colin Boyd (Ed.). Springer,
Heidelberg, 514ś532. https://doi.org/10.1007/3-540-45682-1_30

[17] Dan Boneh and Brent Waters. 2007. Conjunctive, Subset, and Range Queries on
Encrypted Data. In TCC 2007 (LNCS, Vol. 4392), Salil P. Vadhan (Ed.). Springer,
Heidelberg, 535ś554. https://doi.org/10.1007/978-3-540-70936-7_29

[18] Fabrice Boudot. 2000. Efficient Proofs that a Committed Number Lies in an
Interval. In EUROCRYPT 2000 (LNCS, Vol. 1807), Bart Preneel (Ed.). Springer,
Heidelberg, 431ś444. https://doi.org/10.1007/3-540-45539-6_31

[19] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and
More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 315ś334. https://doi.org/10.1109/SP.2018.00020

[20] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revocation. In
EUROCRYPT 2001 (LNCS, Vol. 2045), Birgit Pfitzmann (Ed.). Springer, Heidelberg,
93ś118. https://doi.org/10.1007/3-540-44987-6_7

[21] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous
Credentials from Bilinear Maps. In CRYPTO 2004 (LNCS, Vol. 3152), Matthew
Franklin (Ed.). Springer, Heidelberg, 56ś72. https://doi.org/10.1007/978-3-540-
28628-8_4

[22] Ebru Celikel Cankaya. 2011. Bell-LaPadula Confidentiality Model. Springer US,
Boston, MA, 71ś74. https://doi.org/10.1007/978-1-4419-5906-5_773

[23] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed E. Kosba, Ari Juels, and Elaine Shi.
2017. Solidus: Confidential Distributed Ledger Transactions via PVORM. In ACM
CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu (Eds.). ACM Press, 701ś717. https://doi.org/10.1145/3133956.3134010

[24] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.
2012. Malleable Proof Systems and Applications. In EUROCRYPT 2012 (LNCS,
Vol. 7237), David Pointcheval and Thomas Johansson (Eds.). Springer, Heidelberg,
281ś300. https://doi.org/10.1007/978-3-642-29011-4_18

[25] Panagiotis Chatzigiannis and Foteini Baldimtsi. 2021. MiniLedger: Compact-Sized
Anonymous and Auditable Distributed Payments. In ESORICS 2021, Part I (LNCS,
Vol. 12972), Elisa Bertino, Haya Shulman, and Michael Waidner (Eds.). Springer,

238

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/s13389-013-0057-3
https://eprint.iacr.org/2018/535
https://eprint.iacr.org/2018/535
https://doi.org/10.1145/3419614.3423259
https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/978-3-031-57718-5_4
https://doi.org/10.1007/978-3-030-90456-2_12
https://doi.org/10.1007/978-3-030-90456-2_12
https://doi.org/10.1007/978-3-030-75248-4_7
https://doi.org/10.1007/978-3-030-75248-4_7
https://eprint.iacr.org/2020/1565
https://eprint.iacr.org/2020/1565
https://eprint.iacr.org/2020/1565
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-1-4419-5906-5_773
https://doi.org/10.1145/3133956.3134010
https://doi.org/10.1007/978-3-642-29011-4_18

Heidelberg, 407ś429. https://doi.org/10.1007/978-3-030-88418-5_20
[26] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2021.

SoK: Auditability and Accountability in Distributed Payment Systems. InACNS 21,
Part II (LNCS, Vol. 12727), Kazue Sako and Nils Ole Tippenhauer (Eds.). Springer,
Heidelberg, 311ś337. https://doi.org/10.1007/978-3-030-78375-4_13

[27] David Chaum. 1985. Security without Identification: Transaction Systems to
Make Big Brother Obsolete. Commun. ACM 28, 10 (oct 1985), 1030ś1044. https:
//doi.org/10.1145/4372.4373

[28] Yu Chen, Xuecheng Ma, Cong Tang, and Man Ho Au. 2020. PGC: Decentralized
Confidential Payment System with Auditability. In Computer Security ś ESORICS
2020, Liqun Chen, Ninghui Li, Kaitai Liang, and Steve Schneider (Eds.). Springer
International Publishing, Cham, 591ś610.

[29] Elizabeth C. Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and Daniel
Slamanig. 2023. Threshold Structure-Preserving Signatures. In Advances in
Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and
Application of Cryptology and Information Security, Guangzhou, China, December
4-8, 2023, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 14439), Jian
Guo and Ron Steinfeld (Eds.). Springer, 348ś382. https://doi.org/10.1007/978-
981-99-8724-5_11

[30] Ivan Damgård, Chaya Ganesh, Hamidreza Khoshakhlagh, Claudio Orlandi, and
Luisa Siniscalchi. 2021. Balancing Privacy and Accountability in Blockchain
Identity Management. In CT-RSA 2021 (LNCS, Vol. 12704), Kenneth G. Paterson
(Ed.). Springer, Heidelberg, 552ś576. https://doi.org/10.1007/978-3-030-75539-
3_23

[31] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function
with Short Proofs and Keys. In PKC 2005 (LNCS, Vol. 3386), Serge Vaudenay (Ed.).
Springer, Heidelberg, 416ś431. https://doi.org/10.1007/978-3-540-30580-4_28

[32] Taher ElGamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In CRYPTO’84 (LNCS, Vol. 196), G. R. Blakley and David
Chaum (Eds.). Springer, Heidelberg, 10ś18.

[33] Felix Engelmann, Thomas Kerber, Markulf Kohlweiss, and Mikhail Volkhov.
2022. Zswap: zk-SNARK Based Non-Interactive Multi-Asset Swaps. Proc. Priv.
Enhancing Technol. 2022, 4 (2022), 507ś527. https://doi.org/10.56553/popets-
2022-0120

[34] Alex Escala and Jens Groth. 2014. Fine-Tuning Groth-Sahai Proofs. In PKC 2014
(LNCS, Vol. 8383), Hugo Krawczyk (Ed.). Springer, Heidelberg, 630ś649. https:
//doi.org/10.1007/978-3-642-54631-0_36

[35] EspressoSystems. 2022. Specification: Configurable Asset Privacy. GitHub.
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf

[36] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.
Odlyzko (Ed.). Springer, Heidelberg, 186ś194. https://doi.org/10.1007/3-540-
47721-7_12

[37] Financial Actions Task Force. 2023. International Standards on Combating Money
Laundering and the Financing of Terrorism and Proliferation. https://www.fatf-
gafi.org/en/publications/Fatfrecommendations/Fatf-recommendations.html.

[38] Lance Fortnow. 1987. The Complexity of Perfect Zero-Knowledge (Extended
Abstract). In 19th ACM STOC, Alfred Aho (Ed.). ACM Press, 204ś209. https:
//doi.org/10.1145/28395.28418

[39] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-
Preserving Signatures on Equivalence Classes and Constant-Size Anonymous
Credentials. Journal of Cryptology 32, 2 (April 2019), 498ś546. https://doi.org/10.
1007/s00145-018-9281-4

[40] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. 2019. Aggregate Cash
Systems: A Cryptographic Investigation of Mimblewimble. In EUROCRYPT 2019,
Part I (LNCS, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.). Springer, Heidel-
berg, 657ś689. https://doi.org/10.1007/978-3-030-17653-2_22

[41] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. 2008. Pairings for
cryptographers. Discrete Applied Mathematics 156, 16 (2008), 3113ś3121. https:
//doi.org/10.1016/j.dam.2007.12.010 Applications of Algebra to Cryptography.

[42] Christina Garman, Matthew Green, and Ian Miers. 2016. Accountable Privacy
for Decentralized Anonymous Payments. In FC 2016 (LNCS, Vol. 9603), Jens
Grossklags and Bart Preneel (Eds.). Springer, Heidelberg, 81ś98.

[43] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to Construct
Random Functions. Journal of the ACM 33, 4 (Oct. 1986), 792ś807. https:
//doi.org/10.1145/6490.6503

[44] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, 218ś229. https://doi.org/10.1145/28395.
28420

[45] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A Digital Signature
Scheme Secure Against Adaptive Chosen-message Attacks. SIAM J. Comput. 17,
2 (April 1988), 281ś308.

[46] Jens Groth. 2009. Linear Algebra with Sub-linear Zero-Knowledge Arguments. In
CRYPTO 2009 (LNCS, Vol. 5677), Shai Halevi (Ed.). Springer, Heidelberg, 192ś208.
https://doi.org/10.1007/978-3-642-03356-8_12

[47] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for
Bilinear Groups. In EUROCRYPT 2008 (LNCS, Vol. 4965), Nigel P. Smart (Ed.).

Springer, Heidelberg, 415ś432. https://doi.org/10.1007/978-3-540-78967-3_24
[48] Christian Hanser and Daniel Slamanig. 2014. Structure-Preserving Signatures

on Equivalence Classes and Their Application to Anonymous Credentials. In
ASIACRYPT 2014, Part I (LNCS, Vol. 8873), Palash Sarkar and Tetsu Iwata (Eds.).
Springer, Heidelberg, 491ś511. https://doi.org/10.1007/978-3-662-45611-8_26

[49] Gottfried Herold, Max Hoffmann, Michael Klooß, Carla Ràfols, and Andy Rupp.
2017. New Techniques for Structural Batch Verification in Bilinear Groups with
Applications to Groth-Sahai Proofs. InACMCCS 2017, BhavaniM. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press, 1547ś1564. https:
//doi.org/10.1145/3133956.3134068

[50] Ioanna Karantaidou and Foteini Baldimtsi. 2021. Efficient Constructions of Pairing
Based Accumulators. In CSF 2021 Computer Security Foundations Symposium,
Ralf Küsters and Dave Naumann (Eds.). IEEE Computer Society Press, 1ś16.
https://doi.org/10.1109/CSF51468.2021.00033

[51] Jonathan Katz, Amit Sahai, and Brent Waters. 2008. Predicate Encryption
Supporting Disjunctions, Polynomial Equations, and Inner Products. In EURO-
CRYPT 2008 (LNCS, Vol. 4965), Nigel P. Smart (Ed.). Springer, Heidelberg, 146ś162.
https://doi.org/10.1007/978-3-540-78967-3_9

[52] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. 2022. PEReDi:
Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery,
New York, NY, USA, 1739ś1752. https://doi.org/10.1145/3548606.3560707

[53] Ueli M. Maurer. 2009. Unifying Zero-Knowledge Proofs of Knowledge. In
AFRICACRYPT 09 (LNCS, Vol. 5580), Bart Preneel (Ed.). Springer, Heidelberg,
272ś286.

[54] Gregory Maxwell. 2013. CoinJoin: Bitcoin privacy for the real world. https:
//bitcointalk.org/?topic=279249.

[55] Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system. (2009).
Whitepaper, http://bitcoin.org/bitcoin.pdf.

[56] Neha Narula, Willy Vasquez, and Madars Virza. 2018. Zkledger: Privacy-
Preserving Auditing for Distributed Ledgers. In Proceedings of the 15th USENIX
Conference on Networked Systems Design and Implementation (Renton, WA, USA)
(NSDI’18). USENIX Association, USA, 65ś80.

[57] Tatsuaki Okamoto and Katsuyuki Takashima. 2012. Adaptively Attribute-Hiding
(Hierarchical) Inner Product Encryption. In EUROCRYPT 2012 (LNCS, Vol. 7237),
David Pointcheval and Thomas Johansson (Eds.). Springer, Heidelberg, 591ś608.
https://doi.org/10.1007/978-3-642-29011-4_35

[58] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. In CRYPTO’91 (LNCS, Vol. 576), Joan Feigenbaum (Ed.).
Springer, Heidelberg, 129ś140. https://doi.org/10.1007/3-540-46766-1_9

[59] Phillip Rogaway and Yusi Zhang. 2018. Simplifying Game-Based Definitions
- Indistinguishability up to Correctness and Its Application to Stateful AE. In
CRYPTO 2018, Part II (LNCS, Vol. 10992), Hovav Shacham andAlexandra Boldyreva
(Eds.). Springer, Heidelberg, 3ś32. https://doi.org/10.1007/978-3-319-96881-0_1

[60] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart
Cards. In CRYPTO’89 (LNCS, Vol. 435), Gilles Brassard (Ed.). Springer, Heidelberg,
239ś252. https://doi.org/10.1007/0-387-34805-0_22

[61] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. 2022. UTT: Decentralized Ecash with Ac-
countable Privacy. Cryptology ePrint Archive, Report 2022/452. https:
//eprint.iacr.org/2022/452.

[62] Muoi Tran, Loi Luu, Min Suk Kang, Iddo Bentov, and Prateek Saxena. 2018.
Obscuro: A Bitcoin Mixer Using Trusted Execution Environments. In Proceedings
of the 34th Annual Computer Security Applications Conference (San Juan, PR, USA)
(ACSAC ’18). Association for ComputingMachinery, New York, NY, USA, 692ś701.
https://doi.org/10.1145/3274694.3274750

[63] W3C. 2022. Verifiable Credentials Data Model v1.1. https://www.w3.org/TR/vc-
data-model/. https://www.w3.org/TR/vc-data-model/

[64] Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun. 2019. PRCash:
Fast, Private and Regulated Transactions for Digital Currencies. In FC 2019 (LNCS,
Vol. 11598), Ian Goldberg and Tyler Moore (Eds.). Springer, Heidelberg, 158ś178.
https://doi.org/10.1007/978-3-030-32101-7_11

[65] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. 2022. Platypus:
A Central Bank Digital Currency with Unlinkable Transactions and Privacy-
Preserving Regulation. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (Los Angeles, CA, USA) (CCS ’22). As-
sociation for Computing Machinery, New York, NY, USA, 2947ś2960. https:
//doi.org/10.1145/3548606.3560617

239

https://doi.org/10.1007/978-3-030-88418-5_20
https://doi.org/10.1007/978-3-030-78375-4_13
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/978-981-99-8724-5_11
https://doi.org/10.1007/978-981-99-8724-5_11
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.56553/popets-2022-0120
https://doi.org/10.56553/popets-2022-0120
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://github.com/EspressoSystems/cap/blob/main/cap-specification.pdf
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/28395.28418
https://doi.org/10.1145/28395.28418
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-030-17653-2_22
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1145/3133956.3134068
https://doi.org/10.1145/3133956.3134068
https://doi.org/10.1109/CSF51468.2021.00033
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1145/3548606.3560707
https://bitcointalk.org/?topic=279249
https://bitcointalk.org/?topic=279249
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1007/0-387-34805-0_22
https://eprint.iacr.org/2022/452
https://eprint.iacr.org/2022/452
https://doi.org/10.1145/3274694.3274750
https://www.w3.org/TR/vc-data-model/
https://doi.org/10.1007/978-3-030-32101-7_11
https://doi.org/10.1145/3548606.3560617
https://doi.org/10.1145/3548606.3560617

A EXTENDED PRELIMINARIES

A.1 Notation

We denote the security parameter by 𝜆 and use 1𝜆 as its unary

representation. We call a randomized algorithm A probabilistic

polynomial time (PPT) if there exists a polynomial 𝑝 (·) such that

for every input 𝑥 the running time ofA(𝑥) is bounded by 𝑝 (|𝑥 |). A
function negl(𝜆) is called negligible if for every positive polynomial

𝑝 (𝜆), there exists 𝜆0 such that for all 𝜆 > 𝜆0 : negl(𝜆) < 1/𝑝 (𝜆). If
clear from the context, we sometimes omit 𝜆 for improved read-

ability. The set {1, . . . , 𝑛} is denoted as [𝑛] for a positive integer
𝑛. For the equality check of two elements, we use ł=ž. The assign

operator is denoted with ł≔ž, whereas randomized assignment is

denoted with 𝑎 ← 𝐴, with a randomized algorithm 𝐴 and where

the randomness is not explicit. If the randomness is explicit, we

write 𝑎 ≔ 𝐴(𝑥 ; 𝑟) where 𝑥 is the input and 𝑟 is the randomness. For

algorithmsA and B, we writeAB(·) (𝑥) to denote thatA gets 𝑥 as

an input and has black-box oracle access to B, that is, the response
for an oracle query 𝑞 is B(𝑞).

A.2 Bilinear Group Setup

Some of our schemes require a bilinear group setup. We use multi-

plicative notation to refer to group operations.

Definition A.1 (Bilinear Groups [15]). An asymmet-

ric bilinear group generator BG(1𝜆) returns a tuple

pp := (G1,G2,G𝑇 , 𝑝, 𝑒,G1,G2), such that G1, G2 and G𝑇
are cyclic groups of the same prime order 𝑝 , G1 ∈ G1 and G2 ∈ G2
are the generators, and 𝑒 : G1 × G2 → G𝑇 is an efficiently

computable bilinear pairing with the following properties;

• non-degeneracy: 𝑒 (G1,G2) ≠ 1G𝑇 ,

• bilinearity: ∀ 𝑎, 𝑏 ∈ Z𝑝 : 𝑒 (G𝑎
1 ,G

𝑏
2) = 𝑒 (G1,G2)

𝑎𝑏
=

𝑒 (G𝑏
1 ,G

𝑎
2) .

Throughout this work, we rely on Type-III bilinear groups for the

distinct cyclic groupsG1 ≠ G2, where there is no efficient algorithm

to compute a nontrivial homomorphism in both directions [41]. This

type is known as the most efficient choice.

A.3 Pseudorandom Functions

We recall the definition of a pseudorandom function (PRF) as it has

been defined in [43].

Definition A.2 (Pseudorandom Function). A pseudo-random func-

tion is a keyed function PRF : {0, 1}𝜆 × X → Y, where evaluation
is done via an efficient algorithm PRF.Eval(k, 𝑥). For 𝛽 ∈ {0, 1}, we
define the experiment INDPRF

𝛽
in Figure 9, where the oracle O is

defined as:

O(𝑥) =

{
PRF.Eval(k, 𝑥) if 𝛽 = 0

RF(𝑥) if 𝛽 = 1
.

withRF(𝑥) denoting a random function.We define the advantage

of an adversary A in the following way:

AdvINDPRF,A (𝜆) = | Pr[IND
PRF
0 (𝜆,A)] − Pr[INDPRF

1 (𝜆,A)]| .

A pseudorandom function PRF is secure, if for any polynomial-

time adversary A, there exists a negligible function negl such that:

AdvIND
PRF,A

(𝜆) ≤ negl(𝜆).

INDPRF
𝛽
(𝜆,A)

k← {0, 1}𝜆

𝛼 ← AO(·) (1𝜆)

Output: 𝛼

Figure 9: Security Game for PRF

A.4 Digital Signatures

We recap the definition of digital signatures as well as existential

unforgeability [45].

Definition A.3 (Digital Signatures). A digital signature scheme

(DS) is a triple of PPT algorithmsDS = (Setup, Sign,Verify), defined
as follows:

• Setup(1𝜆): Takes as input a unary representation of the se-

curity parameter 𝜆 and outputs a verification key vk and a

signing key sk.

• Sign(sk,𝑚): Takes as input the signing key sk, a message

𝑚 ∈ M and outputs a signature 𝜎 .

• Verify(vk,𝑚, 𝜎): Takes as input the verification key vk, a

message𝑚 and a signature 𝜎 , and outputs 0 or 1.

A scheme DS is correct if (for all 𝜆 ∈ N), for all vk in the support of

Setup(1𝜆) and all𝑚 ∈ M, we have

Pr[Verify(vk,𝑚, Sign(sk,𝑚)) = 1] = 1.

Definition A.4 (Existential Unforgeability). LetDS = (Setup, Sign,
Verify) be a DS scheme. We define the experiment EUF-CMAsig

in Figure 10 with 𝑄 being the set containing the queries of A to

the signing oracle Sign(sk, ·). The advantage of an adversary A is

defined by

AdvEUF-CMA
DS,A (𝜆) = Pr[EUF-CMADS (1𝜆,A) = 1] .

A Digital Signature scheme DS is called existentially unforge-

able under adaptive chosen-message attacks (EUF-CMA secure) if for

any polynomial-time adversary A it holds that AdvEUF-CMA
DS,A

(𝜆) ≤

negl(𝜆) for a negligible function negl(·).

EUF-CMADS (1𝜆,A)

(vk, sk) ← Setup(1𝜆)

(𝑚,𝜎) ← ASign(sk, ·) (vk)

Output: Verify(vk,𝑚, 𝜎) = 1 ∧𝑚 ∉ 𝑄

Figure 10: Existentially Unforgeability for signatures.

A.5 Structure-Preserving Signatures on
Equivalence Classes.

Structure-Preserving Signatures (SPS) [1] are a special type of digi-

tal signatures defined over bilinear groups that fulfill certain extra

properties. More precisely, the verification key, message and signa-

ture are only source group elements and, to verify the validity of

a signature, only group membership checks and pairing product

240

equations are allowed. SPS have the same algorithm as digital sig-

natures as defined in Definition A.3 and guarantee unforgeability

as defined in Definition A.4.

SPS on Equivalence classes (SPS-EQ) proposed by Hanser

and Slamanig [48] are special type of SPS that enable joint re-

randomization of signatures and the signed messages. SPS-EQ pro-

vide a controlled form of malleability such that one can change

the representation of the message and the corresponding signature.

More precisely, for a given prime-order group G we can define

a projective vector (G∗)ℓ based on the following relation, where

ℓ > 1 and G∗ denotes the set of all group elements without the

identity element of the group.

R :=
{
(®𝑀, ®𝑀∗) ∈ (G∗)ℓ × (G∗)ℓ | ∃ 𝜇 ∈ Z∗𝑝 s.t. ®𝑀∗ = ®𝑀𝜇

}
.

(1)

This is an equivalence relation for prime order groups.

The equivalence class of a vector ®𝑀 ∈ (G∗)ℓ for some ℓ > 1 is

defined by:

[®𝑀]R := { ®𝑀∗ ∈ (G∗)ℓ | (®𝑀, ®𝑀∗) ∈ R} .

The Class-hiding property of equivalence classes guarantees

that it is computationally hard to distinguish elements of the same

equivalence class from randomly sampled group elements.

Definition A.5 (Class-Hiding [48]). A relation R is called class-

hiding if for all PPT adversaries, A, and ℓ > 1 we have:
������
Pr



®𝑀
$
← (G∗)ℓ , ®𝑀0

$
← (G∗)ℓ , ®𝑀1

$
← [®𝑀]R ,

𝑏
$
← {0, 1}, 𝑏 ′ ← A(®𝑀, ®𝑀𝑏) | 𝑏 = 𝑏 ′


−
1

2

������
≤ negl(𝜆)

Hanser and Slamanig [48] formally prove that, as long as DDH

is hard, the relation described in equation 1 is class-hiding. We

only consider this relation in this work. In our bilinear setting,

the message is based on the second group G2, but we present the

scheme in its general form:

Definition A.6 (Structure-Preserving Signatures on Equivalence

classes [48]). In an asymmetric bilinear group, a structure preserv-

ing signature over (message space) (G∗𝑖)
ℓ consists of the following

PPT algorithms:

• SetupR (1
𝜆): The setup algorithm is a probabilistic algorithm

that takes the security parameter 𝜆 in its unary representa-

tion as input. It outputs public parameters pp as well as an

asymmetric bilinear group.

• KeyGenR (pp, ℓ): The key generation algorithm is a proba-

bilistic algorithm that takes the public parameters pp and a

vector length ℓ > 1 as inputs. It outputs the key-pair (sk, vk).

• SignR (pp, sk, ®𝑀): The signing algorithm is a probabilistic

algorithm that takes public parameters pp, secret key sk

and a representative message ®𝑀 ∈ (G∗𝑖)
ℓ for class [®𝑀]R as

inputs. It outputs the signature 𝜎 on message ®𝑀 .

• VerifyR (pp, vk, ®𝑀,𝜎): The verification algorithm is a deter-

ministic algorithm that takes public parameters pp, a rep-

resentative message ®𝑀 ∈ (G∗𝑖)
ℓ , a signature 𝜎 and a ver-

ification key vk as inputs. It then outputs 1 if 𝜎 is a valid

signature on ®𝑀 and 0 otherwise.

• ChgRepR (pp, ®𝑀,𝜎, 𝜇, vk): The change representation algo-

rithm is a probabilistic algorithm and takes public parameters

pp, a representative message ®𝑀 ∈ (G∗𝑖)
ℓ , a signature 𝜎 , a

scalar 𝜇 ∈ Z∗𝑝 and the verification key vk as inputs. It outputs

a randomized signature 𝜎 ′ on a new representative message
®𝑀 ′ = ®𝑀𝜇 .

Since in our work all keys are honestly generated we omit the

specification of the function that checks whether a private key is

consistent with a given public key (since this holds for honestly

generated key pairs).

The primary security requirements for a SPS-EQ scheme are

correctness and existential unforgeability against chosen message

attack, which are defined as follows:

Definition A.7 (Correctness). A SPS-EQ scheme over (G∗𝑖)
ℓ is

called correct, if the following holds with overwhelming probability

for a valid setup pp, any message ®𝑀 ∈ (G∗𝑖)
ℓ , any (valid) key pair

(sk, pk) in the support of KeyGenR (pp, ℓ), and any scalar 𝜇 ∈ Z∗𝑝 :

Pr



VerifyR

(
pp, vk, ®𝑀, SignR (pp, sk, ®𝑀)

)
= 1∧

VerifyR (pp, vk, ®𝑀
𝜇 ,

ChgRepR (®𝑀, SignR (pp, sk, ®𝑀), 𝜇, vk)) = 1



.

Definition A.8 (Existential Unforgeability). A SPS-EQ over (G∗𝑖)
ℓ

is called adaptively EUF-CMA-secure if for all PPT adversaries A
with access to the signing oracle OSign we have:

Pr



pp← SetupR (1
𝜆), (sk, vk) ← KeyGenR (pp, ℓ),(

®𝑀∗, 𝜎∗
)
← AOSign (pp, vk) :

∀ ®𝑀 ∈ QSign : [®𝑀∗]R ≠ [®𝑀]R

∧ VerifyR

(
pp, vk, ®𝑀,𝜎∗

)
= 1



≤ negl(𝜆) ,

where the signing oracle OSign takes a message ®𝑀 ∈ (G∗𝑖)
ℓ as input,

outpus SignR (pp, sk, ®𝑀) and adds the message to the query set

QSign.

Finally, we require signature adaptation which shows that signa-

ture strings can be perfectly randomized (and thus made unlink-

able).

Definition A.9 (Signature Adaptation). An SPS-EQ scheme over

(G∗𝑖)
ℓ perfectly adapts signatures if for all tuples (sk, pk, ®𝑀,𝜎, 𝜇),

where (sk, pk) ← KeyGen(pp, ℓ), ®𝑀 ∈ (G∗𝑖)
ℓ and Verify(pp, vk, ®𝑀,

𝜎) = 1, the two distributions Sign(pp, sk, ®𝑀𝜇) andChgRepR (pp, ®𝑀,

𝜎, vk, 𝜇) are identical.

A.6 A Weak Positive Accumulator

We recall an accumulator construction proposed by Karantaidou

and Baldimtsi [50] and consider it in the asymmetric bilinear

group setting. The construction is derived from Boneh-Boyen sig-

natures [14] and is based on the q-SDH assumption. We only need

to consider the positive accumulator, and thus the accumulator

value remains constant. In fact, in our application, we only need to

guarantee soundness of the accumulator against a weak adversary.

As we show below, the soundness requirement of the accumulator

241

corresponds to what is defined as weakly-unforgeable in [14] for the

signature scheme. The witnesses are of constant size, independent

of the number of elements in the accumulator set and, additionally,

the membership witnesses, after adding new elements, do not need

to be updated. In fact, the public accumulator will be set to be the

łpublic keyž of the signature scheme and hence does not leak any

information about the added elements. The simple accumulator

we need can be defined by the following PPT algorithms for the

bilinear group setting, where G1 = ⟨G1⟩, G2 = ⟨G2⟩. The public
parameters are pp = (G1,G2,G𝑇 , 𝑝,G1,G2, 𝑒).

• ACC.Create(pp): Sample 𝛼
$
← Z∗𝑝 and define A← G𝛼

2 and

msk← 𝛼 and return (A,msk). The accumulator domain is

D = Z𝑝 \ {𝛼}.
• ACC.Add(pp,A,msk, 𝑥): To add a new element 𝑥 ∈ D to the

accumulator, parse msk = 𝛼 ∈ Z∗𝑝 and check that A = G𝛼
2 . If

the check succeeds compute and return the witness 𝑤𝑥 =

G
1/(𝑥+𝛼)
1 .

• ACC.MemVrf (pp,A, 𝑥,𝑤𝑥): If the equation 𝑒 (G1,G2) =

𝑒 (𝑤𝑥 ,AG
𝑥
2) holds, return 1 to approve the membership of

𝑥 in the accumulator with value A; otherwise output 0 to

reject it.

It is straightforward to see that the accumulator is correct. For

our purposes, the accumulator has to satisfy the weak soundness

notion w.r.t. public parameters pp as we define it in Figure 11. Note

that this is a definition tailored to our problem which simplifies the

proof of the overall scheme.

W-SND(pp,ACC,A)

(𝑥1, . . . , 𝑥𝑞, st) ← A(pp)

(A,msk) ← Setup(pp)

Compute for all 𝑖 ∈ [𝑞] : 𝜋𝑖 ← ACC.Add(pp,A,msk, 𝑥𝑖)

(𝑥∗, 𝜋∗) ← A(st,A, (𝜋1, . . . , 𝜋𝑞))

return
(
∀𝑖 : 𝑥∗ ≠ 𝑥𝑖

)
∧
(
𝑒 (G1,G2) = 𝑒 (𝜋∗,AG𝑥

2)
)

Figure 11: A weak soundness notion for the accumulator.

We state the following lemma relating the concrete security of

𝑞-SDH to the (concrete) winning probability of the above game.

Lemma A.10. Let pp = (𝑝,G1,G2, 𝑒) be the public parameters. For

any PPT adversary A, asking at most 𝑞 queries, that wins the game

W-SND(pp,ACC,A) with probability 𝜀, there is a PPT adversary

A ′ that on input the 𝑞-SDH instance (G1, 𝑦G1, . . . , 𝑦
𝑞′G1,G2, 𝑦G2),

where𝑦 ∈ Z∗𝑝 is sampled uniformly at random, returns a valid solution

(𝑐, (𝑦 + 𝑐)−1G1) for some 𝑐 ∈ Z𝑝 \ {−𝑦}, with probability 𝜀 as long

as 𝑞 ≤ 𝑞′ (where the probability is taken over the random choice of 𝑦

and the internal randomness of A ′).

Proof. The proof follows directly from the security proof of the

weakly-secure short signature scheme in [14] (version 2014) by

observing that ACC is just the weakly-secure signature scheme

in disguise, and that our soundness notion perfectly matches the

notion of weak unforgeability of [14]. □

Note that, since the statement holds for any concrete set of

parameters, it also holds over any distribution of parameters and

thus we obtain the asymptotic statement that the accumulator is

sound, except with negligible probability in 𝜆 under the 𝑞-SDH

assumption, relative to the bilinear group generation algorithm

BG(1𝜆) generating the parameters pp.

A.7 Public-Key Encryption

Now, we introduce public-key encryption, together with the notion

of IND-CPA security.

Definition A.11 (Public-Key Encryption). A public-key encryp-

tion (PKE) scheme is a tuple of three algorithms PKE =

(Setup, Enc,Dec):

• Setup(1𝜆): Takes as input a unary representation of the se-

curity parameter 𝜆 and outputs a public key pk and a secret

key sk.

• Enc(pk,𝑚): Takes as input the public key pk and a message

𝑚 ∈ M, and outputs a ciphertext ct.

• Dec(sk, ct): Takes as input the secret key sk and a ciphertext
ct and outputs a message𝑚′ or ⊥.

A public-key encryption scheme PKE is correct if for all 𝜆 ∈ N, and

for all key-pairs (pk, sk) in the support of Setup(1𝜆), we have

Pr[Dec(sk, Enc(pk,𝑚)) =𝑚] = 1.

In this work, we give the adversary access to an encryption chal-

lenge oracle that can be queried using multiple challenge message

pairs (𝑚0,𝑚1). This security definition follows from the standard se-

curity definition for a single challenge query using a simple hybrid

argument.

Definition A.12 (Indistinguishability-Based Chosen-Plaintext Se-

curity). Let PKE = (Setup, Enc,Dec) be a PKE scheme as defined

above. For 𝛽 ∈ {0, 1}, we define the experiment IND-CPAPKE
𝛽

in Fig-

ure 12, where the left-or-right oracle is defined as:

QEncLR𝛽 (·, ·): On input two messages 𝑚0 and 𝑚1, output ct ←
Enc(msk,𝑚𝛽).

The advantage of an adversary A is defined as:

AdvIND-CPAPKE,A (𝜆) = | Pr[IND-CPAPKE
0 (1𝜆,A) = 1]

− Pr[IND-CPAPKE
1 (1𝜆,A) = 1] |.

A predicate-only predicate encryption scheme PKE is called IND-

CPA secure if for any valid polynomial-time adversary A, there ex-

ists a negligible function negl such that AdvIND-CPA
PKE,A

(𝜆) ≤ negl(𝜆).

IND-CPAPKE
𝛽
(1𝜆,A)

(pk, sk) ← Setup(1𝜆)

𝛼 ← AQEncLR𝛽 (·, ·) (pk)

Output: 𝛼

Figure 12: IND-CPA security game of PKE.

242

A.8 Predicate Encryption

To allow for oblivious policy evaluations, we also recap the notion

of predicate-only predicate encryption as it has been introduced in

Katz et al. [51].

Definition A.13 (Predicate-Only Predicate Encryption). Let F =

{F𝜆}𝜆∈N be a family of sets F𝜆 of predicates 𝑓 : X𝜆 →
{0, 1}. A predicate-only predicate encryption (PE) scheme for

the functionality class F𝜆 is a tuple of four algorithms PE =

(Setup,KeyGen, Enc,Dec):

• Setup(1𝜆): Takes as input a unary representation of the se-

curity parameter 𝜆 and outputs the master public key mpk

and the master secret key msk.

• KeyGen(msk, 𝑓): Takes as input the master secret key msk

and a function 𝑓 ∈ F , and outputs a functional key sk𝑓 .

• Enc(mpk, 𝑥): Takes as input the master public key mpk and

an attribute 𝑥 ∈ X𝜆 , and outputs a ciphertext ct.

• Dec(sk𝑓 , ct): Takes as input a functional key sk𝑓 and a ci-

phertext ct and outputs 0 or 1.

A predicate-only predicate encryption scheme PE is correct if for all

𝜆 ∈ N, for all (mpk,msk) in the support of Setup(1𝜆), all functions
𝑓 ∈ F𝜆 , all secret keys sk𝑓 in the support of KeyGen(msk, 𝑓), and
for all attributes 𝑥 ∈ X𝜆 , we have

Pr
[
Dec(sk𝑓 , Enc(mpk, 𝑥)) = 𝑓 (𝑥)

]
= 1.

In the initial work of Katz et al. [51], the authors only introduce

the notion of selective security. The corresponding indistinguisha-

bility based adaptive security notion for predicate encryption has

been introduced in [57]. We present a modification of this definition

where the adversary has access to a challenge oracle to which it

can submit multiple challenges instead of being able to only submit

a single challenge. This security definition directly follows from

the standard security definition using a simple hybrid argument.

Definition A.14 (Indistinguishability-Based Attribute Hiding). Let

PE = (Setup,KeyGen, Enc,Dec) be a PE scheme for a function

family F = {F𝜆}𝜆∈N as defined above. For 𝛽 ∈ {0, 1}, we define
the experiment AHPE

𝛽
in Figure 13, where the left-or-right oracle is

defined as:

QEncLR𝛽 (·, ·): On input two attribute sets 𝑥0 and 𝑥1, output ct←
Enc(msk, 𝑥𝛽).

The advantage of an adversary A is defined as:

AdvAHPE,A (𝜆) = | Pr[AH
PE
0 (1

𝜆,A) = 1] − Pr[AHPE
1 (1

𝜆,A) = 1] |.

We call an adversary valid if for all queries (𝑥0, 𝑥1) to the oracle

QEncLR𝛽 (·, ·) and for any function 𝑓 queried to the key generation

oracle KeyGen(msk, ·), we have 𝑓 (𝑥0) = 𝑓 (𝑥1) (with probability 1

over the randomness of the adversary and the involved algorithms).

A predicate-only predicate encryption scheme PE is called at-

tribute hiding if for any valid polynomial-time adversary A, there

exists a negligible function negl such that AdvAH
PE,A
(𝜆) ≤ negl(𝜆).

AHPE
𝛽
(1𝜆,A)

(mpk,msk) ← Setup(1𝜆)

𝛼 ← AKeyGen(msk, ·),QEncLR𝛽 (·, ·) (mpk)

Output: 𝛼

Figure 13: Attribute-Hiding game of PE.

A.9 Non-interactive Zero-Knowledge Proofs

In this section, we introduce the notion of non-interactive zero

knowledge (NIZK) proofs [11, 38, 44].

Definition A.15 (Non-Interactive Zero-Knowledge Proofs). Let

𝑅 be an NP Relation and consider the language 𝐿 =

{𝑥 | ∃𝑤 with (𝑥,𝑤) ∈ 𝑅} (where 𝑥 is called a statement or instance).

A non-interactive zero-knowledge proof (NIZK) for the relation 𝑅

is a triple of PPT algorithms NIZK = (Setup, Prove,Verify):

• Setup(1𝜆): Takes as input the unary representation of the

security parameter 𝜆 and outputs a common reference string

CRS.

• Prove(CRS, 𝑥,𝑤): Takes as input the common reference

string CRS, a statement 𝑥 and a witness 𝑤 , and outputs

a proof 𝜋 .

• Verify(CRS, 𝑥, 𝜋): Takes as input the common reference

string CRS, a statement 𝑥 and a proof 𝜋 , and outputs 0 or 1.

A system NIZK is complete, if (for all 𝜆 ∈ N), for all CRS in the

support of Setup(1𝜆) and all statement-witness pairs in the relation

(𝑥,𝑤) ∈ 𝑅,

Pr[Verify(CRS, 𝑥, Prove(CRS, 𝑥,𝑤)) = 1] = 1.

Besides completeness, a NIZK system should also fulfill the no-

tions of soundness and zero-knowledge, which we introduce in the

following two definitions:

ZKNIZK0 (1𝜆,A,S)

CRS← Setup(1𝜆)

𝛼 ← AProve(CRS, ·, ·) (CRS)

Output: 𝛼

ZKNIZK1 (1𝜆,A,S)

(CRS, 𝜏) ← S1 (1
𝜆)

𝛼 ← AS
′ (CRS,𝜏, ·, ·) (CRS)

Output: 𝛼

Figure 14: Zero-knowledge property of NIZK.

Definition A.16 (Zero-Knowledge). Let NIZK = (Setup, Prove,
Verify) be a NIZK proof system for a relation 𝑅 and the corre-

sponding language 𝐿, S = (S1,S2) a pair of algorithms (the sim-

ulator), with S′(CRS, 𝜏, 𝑥,𝑤) = S2 (CRS, 𝜏, 𝑥) for (𝑥,𝑤) ∈ 𝑅, and

S′(CRS, 𝜏, 𝑥,𝑤) = failure for (𝑥,𝑤) ∉ 𝑅. For 𝛽 ∈ {0, 1}, we de-

fine the experiment ZKNIZK
𝛽
(1𝜆,A) in Figure 14. The associated

advantage of an adversary A is defined as

AdvZK
NIZK,A,S (𝜆) ≔ | Pr[ZK

NIZK
0 (1𝜆,A,S) = 1]

− Pr[ZKNIZK1 (1𝜆,A,S) = 1] | .

A NIZK proof system NIZK is called perfect zero-knowledge, with

respect to a simulator S = (S1,S2), if Adv
ZK
NIZK,A,S

(𝜆) = 0

243

CORRULPCS (1𝜆,A)

(𝐹, st) ← A1 (1
𝜆)

(msk,mpk) ← Setup(1𝜆, 𝐹)

𝑐 ← 0
(
(𝑖, 𝑗),
(𝑘,ℓ),𝑚

)
← A

OGen,
OReRand
2 (st,mpk)

(sk𝑆 , pk𝑆 , 𝑥𝑆) ← 𝑄𝑖 [𝑗]

(sk𝑅, pk𝑅, 𝑥𝑅) ← 𝑄𝑘 [ℓ]

𝜎 ← Sign(mpk, sk𝑆 , pk𝑅,𝑚)

𝑏 ← Verify(mpk, pk𝑆 , pk𝑅,𝑚, 𝜎)

Return 𝑏 ≠ 𝐹 (𝑥𝑆 , 𝑥𝑅)

OGen (𝑥):

𝑐 ← 𝑐 + 1

(sk, pk) ← KeyGen(msk, 𝑥)

𝑄𝑐 ← [(sk, pk, 𝑥)]

Return (sk, pk)

OReRand (𝑗):

If 𝑗 > 𝑐 return ⊥

(sk, pk, 𝑥) ← 𝑄 𝑗 [|𝑄 𝑗 |]

(sk′, pk′) ← RandKey(mpk, sk)

𝑄 𝑗 ← 𝑄 𝑗 | | (sk
′, pk′, 𝑥)

Return (sk′, pk′)

Figure 15: Correctness Experiment of a ul-PCS scheme.

for all algorithms A, and computationally zero-knowledge, if

AdvZK
NIZK,A,S

(𝜆) ≤ negl(𝜆) for all PPT algorithms A.

Besides zero-knowledge and soundness, we rely on the notion

of extractability [24].

Definition A.17 (Extractability). Let NIZK = (Setup, Prove,
Verify) be a NIZK proof system for a relation 𝑅 and the correspond-

ing language 𝐿, let Ext = (Ext1, Ext2) be a pair of algorithms (the

extractor). We define the extraction advantages of an adversary A
as

AdvCRSNIZK,A ≔ | Pr[CRS← Setup(1𝜆); 1← A(CRS)]

− Pr[(CRS, st) ← Ext1 (1
𝜆); 1← A(CRS)] |,

and

AdvExtractNIZK,A (𝜆) ≔ Pr



(CRSExt, stExt) ← Ext1 (1
𝜆)

(𝑥, 𝜋) ← A(CRSExt)

Verify(CRSExt, 𝑥, 𝜋) = 1∧

𝑅(𝑥, Ext2 (CRSExt, stExt, 𝑥, 𝜋)) = 0


A NIZK proof system NIZK is called extractable, with respect

to an extractor Ext = (Ext1, Ext2), if Adv
CRS
NIZK,A

≤ negl(𝜆) and

AdvExtract
NIZK,A

(𝜆) ≤ negl(𝜆). Additionally, we call an extractable non-

interactive zero-knowledge proof a non-interactive zero-knowledge

proof of knowledge (NIZKPoK).

B FORMAL DEFINITIONS FOR UL-PCS

B.1 Formal Correctness Definition

A ul-PCS scheme is called correct if for all efficient adversaries

A = (A1,A2) in experiment CORR, specified in Figure 15, the

probability Pr[CORRULPCS (1𝜆,A) = 1] is negligible in the security
parameter.

B.2 Formal Detectability Definition

LetDetect be an algorithm that takes as input the master public key

mpk, a candidate key pk∗, and a list consisting of sequences of key

DetULPCS (1𝜆,A)

(𝐹, st) ← A1 (1
𝜆)

(msk,mpk) ← Setup(1𝜆, 𝐹)

𝑐 ≔ 0

(𝑖, 𝑗) ← AOGen,OReRand2 (st,mpk)

(sk∗, pk∗) ← 𝑄𝑖 [𝑗]

𝑖∗ ← Detect(mpk,

pk∗, (𝑄1, . . . , 𝑄𝑐))

Return 𝑖∗ ≠ 𝑖

OGen (𝑥):

𝑐 ← 𝑐 + 1

(sk, pk) ← KeyGen(msk, 𝑥)

𝑄𝑐 ← [(sk, pk)]

Return (sk, pk)

OReRand (𝑗):

If 𝑗 > 𝑐, return ⊥

(sk, pk) ← 𝑄 𝑗 [|𝑄 𝑗 |]

(sk′, pk′) ← RandKey(mpk, sk)

𝑄 𝑗 ← 𝑄 𝑗 | | (sk
′, pk′)

Return (sk′, pk′)

Figure 16: Detectability Experiment of a ul-PCS scheme.

pairs (𝑄1, . . . , 𝑄𝑐), and outputs an index or ⊥. A ULPCS scheme

is said to have the detectability property if there is an efficiently

computable algorithm Detect such that for all efficient adversaries

A = (A1,A2) in experiment DTCT, specified in Figure 16, the

probability Pr[DTCTULPCS (1𝜆,A) = 1] is negligible in the security

parameter.

B.3 Formal Unforgeability Definition

Definition B.1 (Existential Unforgeability of a PCS Scheme). Let

ULPCS = (Setup,KeyGen, Sign,Verify) be a ul-PCS scheme that

satisfies the detectability property. We define the experiment

EUF-CMAULPCS in Figure 2, where all oracles are defined as in Sec-

tion 3.1. The advantage of an adversary A = (A1,A2) is defined
by

AdvEUF-CMA
ULPCS,A (𝜆) = Pr[EUF-CMAULPCS (1𝜆,A) = 1] .

Such a ul-PCS scheme ULPCS is called existential unforgeable under

adaptive chosen message attacks or existential unforgeable for short

if for any polynomial-time adversary A = (A1,A2), there exists a

negligible function negl such that: AdvEUF-CMA
ULPCS,A

(𝜆) ≤ negl(𝜆). We

further call a ul-PCS scheme 𝑇Rand-unforgeable if the number of

key rerandomization queries 𝑞 is less than 𝑇Rand, i.e. 𝑞 < 𝑇Rand.

B.4 Formal Attribute-hiding Definition

Definition B.2 (IND-Based Attribute Hiding). Let ULPCS =

(Setup,KeyGen, Sign,Verify) be a ul-PCS scheme that satisfies the

detectability property. For 𝛽 ∈ {0, 1}, we define the experiment

AHULPCS
𝛽

in Figure 3, where all oracles are defined as in Section 3.1.

The advantage of an adversary A = (A1,A2) is defined by

AdvAHULPCS,A (𝜆) = | Pr[AH
ULPCS
0 (1𝜆,A) = 1]−

Pr[AHULPCS
1 (1𝜆,A) = 1] |.

We call an adversary valid if all of the following hold with prob-

ability 1 over the randomness of the adversary and all involved

algorithms, where 𝑖max denotes an upper bound on the number of

queries to QKeyGenLR𝛽 :

244

• for every ((𝑖, 𝑗), pk
𝑗
𝑖 , sk

𝑗
𝑖 , 𝑥𝑖,0, 𝑥𝑖,1) ∈ QC and for all ((𝑘, ℓ),

pkℓ
𝑘
, skℓ

𝑘
, 𝑥𝑘,0, 𝑥𝑘,1) ∈ QK we have 𝑥𝑖,0 = 𝑥𝑖,1 ≕ 𝑥𝑖 and

𝐹 (𝑥𝑖 , 𝑥𝑘,0) = 𝐹 (𝑥𝑖 , 𝑥𝑘,1),

• and for all ((𝑖, 𝑗), pk
𝑗
𝑖 , pk,𝑚, 𝜎) ∈ QS, 𝑅 ← Detect(mpk, pk,

(QK1, . . . ,QK𝑖max)), and ((𝑖, 𝑗), pk𝑖 , sk𝑖 , 𝑥𝑖,0, 𝑥𝑖,1) ∈ QK ,
we either have 𝑅 = ⊥ or otherwise 𝐹 (𝑥𝑖,0, 𝑥𝑅,0) =

𝐹 (𝑥𝑖,1, 𝑥𝑅,1) holds.

Such a ul-PCS scheme ULPCS is called attribute hiding if for any

valid polynomial-time adversary A = (A1,A2), there exists a

negligible function negl such that: AdvAH
ULPCS,A

(𝜆) ≤ negl(𝜆). We

call a ul-PCS scheme 𝑇Rand-attribute-hiding if the number of key

rerandomization queries 𝑞 is less than 𝑇Rand, i.e. 𝑞 < 𝑇Rand. Finally,

we call a ul-PCS scheme outsider-attribute-hiding (outsider-AH) if

the adversary does not have access to the corruption oracle.

Note that outsider security models e.g. an outsider attacker who

is analyzing a transaction graph [23, 26].

B.5 Formal Unlinkability Definition

Definition B.3. Let ULPCS = (Setup,KeyGen, Sign,Verify) be a
ul-PCS scheme that satisfies the detectability property. For 𝛽 ∈

{0, 1}, we define the experiment LinkULPCS
𝛽

in Figure 4, where all

oracles are defined as in Section 3.1. The advantage of an adversary

A = (A1,A2) is defined by

AdvLinkULPCS,A (𝜆) = | Pr[Link
ULPCS
0 (1𝜆,A) = 1]

− Pr[LinkULPCS1 (1𝜆,A) = 1] |.

We call such an ul-PCS scheme ULPCS unlinkable if for any

polynomial-time adversary A = (A1,A2,A3), there exists a neg-

ligible function negl such that: AdvLink
ULPCS,A

(𝜆) ≤ negl(𝜆).

We call a ul-PCS scheme 𝑇Rand-unlinkable if the number of key

rerandomization queries 𝑞 is less than 𝑇Rand, i.e. 𝑞 < 𝑇Rand.

C NOTE ON MULTI-CHALLENGE
UNLINKABILITY

The definition of multi-challenge unlinkability is almost the same as

the definition of unlinkability with the only difference that, instead

of submitting a single challenge query 𝑥 , the adversary has access to

a key generation oracle QKeyGen that it can query using multiple

attributes to obtain multiple challenge public keys. Additionally, the

adversary can query the rerandomization oracle using an index 𝑖 to

obtain a rerandomized key for the public key associated with the

index 𝑖 . If the adversary wants to obtain the corresponding secret

key for a public key, it can query the corruption oracle QCor using

the corresponding index 𝑖 . The signing oracle in this case QSign

takes the same inputs as in the unforgeability and the attribute-

hiding game. More formally:

Definition C.1. Let ULPCS = (Setup,KeyGen, Sign,Verify) be
a ul-PCS scheme that satisfies the detectability property. For 𝛽 ∈

{0, 1}, we define the experimentMC-LinkULPCS
𝛽

in Figure 17, where

the rerandomization oracle is defined as:

QRandKey𝛽 (·): On input 𝑖 , do the following: if 𝛽 = 0 then set

(pk′, sk′) ← RandKey(mpk, sk), and if 𝛽 = 1 set (pk′, sk′)
← KeyGen(msk, 𝑥) where 𝑥 is the attribute recorded for

QK𝑖 , and sk is taken from the entry ((𝑖, 𝑗), pk, sk, 𝑥) entry
of QK with the highest 𝑗 for the give 𝑖 . Finally, add ((𝑖, 𝑗 +
1), pk′, sk′) to QK and return pk′.

oracles are defined as in Appendix C.

The advantage of an adversary A = (A1,A2) is defined by

AdvMC-Link
ULPCS,A (𝜆) = | Pr[MC-LinkULPCS0 (1𝜆,A) = 1]

− Pr[MC-LinkULPCS1 (1𝜆,A) = 1] |.

An adversary A = (A1,A2,A3) is called valid, if no index 𝑖 is

queried to both oracles QRandKey𝛽 (𝑖) and QCor(𝑖).

We call such a ul-PCS scheme ULPCS unlinkable if for any

polynomial-time adversary A = (A1,A2,A3), there exists a neg-

ligible function negl such that: AdvMC-Link
ULPCS,A

(𝜆) ≤ negl(𝜆).

MC-LinkULPCS
𝛽

(1𝜆,A)

(𝐹, st1) ← A1 (𝜆)

(mpk,msk) ← Setup(1𝜆, 𝐹)

𝛼 ← A
QKeyGen(·),QRandKey𝛽 (·),QCor(·),QSign(·, ·, ·)

2 (mpk, st1)

Output: 𝛼

Figure 17: Many-Challenges Unlinkability game of ULPCS.

It is straightforward to verify that the single-challenge implies

themulti-challenge extension. Formally, this extension is formalized

by introducing the oracles QKeyGenC and QSign𝛽 and defining

the multi-challenge version in Figure 17. In the game, we maintain

an additional set QCK (initially empty):

TheoremC.2 (Link impliesMC-Link). LetULPCS be Link secure,

then ULPCS is alsoMC-Link secure.

Proof (Sketch). This proof proceeds using a simple hybrid argument

using the following game:

Game 𝐺𝑘 : For the first 𝑘 keys that are being queried to the

rerandomization oracle QRandKey𝛽 , fresh keys are gener-

ated, whereas for the remaining keys all queries asked to

QRandKey𝛽 are answered using rerandomized keys.

Let 𝑄 be the number of overall key queries, then it holds that

MC-Link0 = 𝐺0 ≈ · · · ≈ 𝐺𝑄 = MC-Link1

To conclude the proof, it needs to be shown that 𝐺𝑘−1 ≈ 𝐺𝑘 for all

𝑘 ∈ [𝑄]. This can be done using a reduction to the Link security

game by forwarding the 𝑘’th challenge query to the underlying

challenger of the Link game and then reply using the obtained key.

The remaining keys are generated using key generation queries

to the underlying challenger. The obtained secret keys can then

be used to answer potential corruption queries of the adversary.

To answer signing queries, they are also directly forwarded to the

underlying challenger or generated using the known secret keys.

Therefore it follows that 𝐺𝑘−1 ≈ 𝐺𝑘 for all 𝑘 ∈ [𝑄], which
proves the theorem. □

245

D FORMAL DESCRIPTION OF THE UL-PCS
SCHEMES

D.1 Formal Description of the separable ul-PCS
scheme

In this section, we formally define the languages of the ul-PCS

scheme and describe it formally in Figure 18. The proof of this

schemes proceeds analogous to the proof of Theorem 4.1 since the

scheme is an optimized version of the generic scheme. We point

out the few minor differences at the end of Appendices E.2 to E.4.

Language L1: A statement 𝑥st ≔ (𝑇Rand, IDctr, vk
ctr
sig
, ctctr, vk

𝐴,𝑅
sig

,

pk𝐴
PKE
) is in the language L1 if it holds for a witness𝑤st ≔

(k, ctr, vksig, sksig,𝑚𝑥 , 𝜎
1
sig
, 𝜎ctr) that:

• ctr < 𝑇Rand
• ctctr = PKE.Enc(pk𝐴

PKE
,𝑚𝑥)

• IDctr = PRF.Eval(k, ctr)

• DS.Verify(vk𝐴,𝑅
sig

, (k, vksig,𝑚𝑥), 𝜎
1
sig
) = 1

• DS.Verify(vksig, (vk
ctr
sig
, IDctr), 𝜎ctr) = 1

Language L2: A statement 𝑥st ≔ (ID𝑆 , ct𝑅, vk
𝐴,𝑆
sig

, pk𝐴
PKE
) is

in the language L2 if it holds for a witness 𝑤st ≔

(k, ctr, sk𝐴
PKE

, 𝜎2
sig
) that:

• PKE.Dec(sk𝐴
PKE

, ct𝑅) = 1

• ID𝑆 = PRF.Eval(k, ctr)

• DS.Verify(vk𝐴,𝑆
sig

, (k, sk𝐴
PKE
), 𝜎2

sig
) = 1

Setup(1𝜆, 𝐹):

CRSRand ← NIZKL1
.Setup(1𝜆)

CRSSign ← NIZKL2
.Setup(1𝜆)

(vk𝐴,𝑆
sig

, sk𝐴,𝑆
sig
) ← DS.Setup(1𝜆)

(vk𝐴,𝑅
sig

, sk𝐴,𝑅
sig
) ← DS.Setup(1𝜆)

(pk𝐴
PKE

, sk𝐴
PKE
) ← PKE.Setup(1𝜆)

mpk ≔ (𝑇Rand, 𝐹 ,CRSRand,CRSSign, vk
𝐴,𝑆
sig

, vk𝐴,𝑅
sig

, pk𝐴
Enc
)

msk ≔ (𝐹, sk𝐴,𝑆
sig

, sk𝐴,𝑅
sig

, sk𝐴
PKE
)

Return (mpk,msk)

KeyGen(msk, 𝑥):

Parse msk as defined above

k← {0, 1}𝜆

(sksig, vksig) ← DS.Setup(1𝜆)

𝑚𝑥 ≔ 𝑅(𝑥)

𝜎1
sig
← DS.Sign(sk𝐴,𝑅

sig
, (k, vksig,𝑚𝑥))

If 𝑆 (𝑥) = 1 :

𝜎2
sig
← DS.Sign(sk𝐴,𝑆

sig
, (k, sk𝐴

PKE
))

usk ≔ (k, vksig, sksig, 𝜎
1
sig
, 𝜎2

sig
,𝑚𝑥 , sk

𝐴
PKE
)

Else (𝑆 (𝑥) = 0):

usk ≔ (k, vksig, sksig, 𝜎
1
sig
, 𝜎2

sig
≔ 𝜀,𝑚𝑥 , sk

𝐴
PKE
≔ 𝜀)

(pk0, sk0) ← RandKey(mpk, (usk,−1,⊥))

Return (pk0, sk0)

Figure 18a: The setup and key generation algorithm of our

unlinkable PCS scheme for separable policies.

D.2 Formal Description of the Role-based
ul-PCS scheme

In this section, we formally define the languages of the role-based

ul-PCS scheme and describe it formally in Figure 19. The proof of

this schemes proceeds analogous to the proof of Theorem 4.1 since

the scheme is an optimized version of the generic scheme. We point

out the few minor differences at the end of Appendices E.2 to E.4.

Language L1: A statement 𝑥st ≔ (𝑇Rand, IDctr, vk
ctr
sig
, ®𝑀 ′ ≔

(A′1,A
′
2,G
′
2), vk

𝐴
sig
) is in the language L1 if it holds for a

witness𝑤st ≔ (k, ctr, vksig, sksig,𝑤k, 𝜎
1
sig
, 𝜎ctr) that:

• ctr < 𝑇Rand
• ACC.MemVrf (A′1, k,𝑤k) = 1 where pp′ is defined as

(𝑝,G1,G
′
2, 𝑒) (that is, the same as pp but with the gen-

erator G′2 instead.)

• IDctr = PRF.Eval(k, ctr)
• DS.Verify(vk𝐴

sig
, (k, vksig), 𝜎

1
sig
) = 1

• DS.Verify(vksig, (vk
ctr
sig
, IDctr), 𝜎ctr) = 1

Language L2: A statement 𝑥st ≔ (ID𝑆 , ct𝑅, vk
𝐴
sig
, pp′,A′) is in the

language L2 if it holds for a witness𝑤st ≔ (k, ctr, 𝑥,𝑤, 𝜎2
sig
)

that:

246

RandKey(mpk, sk):

Parse mpk, usk as defined above and sk = (usk, ctr, ·)

ctr ≔ ctr + 1

If ctr ≥ 𝑇Rand: return ⊥

IDctr ≔ PRF.Eval(k, ctr)

(vkctr
sig
, skctr

sig
) ← DS.Setup(1𝜆)

𝜎ctr ← DS.Sign(sksig, (vk
ctr
sig
, IDctr))

ctctr ← PKE.Enc(pk𝐴
PKE

,𝑚𝑥)

𝜋ctr ← NIZKL1
.Prove(CRSRand,

(𝑇Rand, IDctr, vk
ctr
sig
, ctctr, vk

𝐴,𝑅
sig

, pk𝐴
PKE
), (usk, 𝜎ctr))

pkctr ≔ (IDctr, vk
ctr
sig
, ctctr, 𝜋ctr)

Return (pkctr, skctr ≔ (usk, ctr, sk
ctr
sig
))

Sign(mpk, sk, pk𝑅,𝑚):

Parse mpk, sk ≔ (usk, ctr, skctr) and usk as above

If ValidPK(mpk, pk𝑅) = 0 : return ⊥

ID𝑆 ≔ PRF.Eval(k, ctr)

If sk𝐴
PKE

= 𝜀: return ⊥

If PKE.Dec(sk𝐴
PKE

, ct𝑅) = 0: return ⊥

𝜋𝑠 ← NIZKL2
.Prove(CRSSign, (ID𝑆 , ct𝑅, vk

𝐴,𝑆
sig

, pk𝐴
PKE
), sk)

𝜎 ← DS.Sign(skctr, (𝑚, pk𝑅, 𝜋𝑠))

Return (𝜋𝑠 , 𝜎)

Verify(mpk, pk𝑆 , pk𝑅,𝑚, 𝜎):

Parse mpk as defined above and 𝜎 = (𝜋, 𝜎 ′)

If ValidPK(mpk, pk𝑆) = 0 or ValidPK(mpk, pk𝑅) = 0

Return ⊥

Return (NIZKL2
.Verify(CRSSign, (pk𝑆 , pk𝑅), 𝜋)

∧ DS.Verify(vk𝑆 , (𝑚, pk𝑅, 𝜋), 𝜎
′))

Figure 18b: The randomization, signing and verification algo-

rithms of our unlinkable PCS scheme for separable policies.

• ACC.MemVrf (A′, 𝑥,𝑤) = 1

• ID𝑆 = PRF.Eval(k, ctr)
• DS.Verify(vk𝐴

sig
, (k,𝑤), 𝜎2

sig
) = 1

The helper function for this scheme, ValidPK(mpk, pk), is de-
fined differently to the helper function of the previous schemes.

In more detail, it verifies the NIZKL1
proof as well as the SPS-EQ

signature and outputs 1 only if both verifications are successful.

Setup(1𝜆, 𝐹):

Let pp be a bilinear setup

CRSRand ← NIZKL1
.Setup(1𝜆)

CRSSign ← NIZKL2
.Setup(1𝜆)

(sk𝐴
sig
, vk𝐴

sig
) ← DS.Setup(1𝜆)

(vk𝐴
SEQ

, sk𝐴
SEQ
) ← SEQ .KeyGenR (pp)

Parse 𝐹 as an RBAC matrix with 𝑛𝑅 roles denoted by 1, . . . , 𝑛𝑅

For all 𝑦 ∈ [𝑛𝑅] :

(A𝑦, 𝛼𝑦) ← ACC.Create(pp)

𝑆𝑦 ← {𝑖 ∈ [𝑛𝑅] : 𝐹 (𝑖, 𝑦) = 1};𝑊𝑦 ← ()

For all 𝑖 ∈ 𝑆𝑦 :

𝑤𝑖 ← ACC.Add(pp,A𝑦, 𝛼𝑦, 𝑖)

𝑊𝑦 ←𝑊𝑦 | | (𝑖,𝑤𝑖)

CRS ≔ (CRSRand,CRSSign)

mpk ≔ (pp,𝑇Rand, 𝐹 ,CRS, vk
𝐴
sig
, vk𝐴

SEQ
)

msk ≔ (pp, 𝐹 , sk𝐴
SEQ

, (A𝑗 ,𝑊𝑗)
𝑛𝑅
𝑗=1)

Return (mpk,msk)

KeyGen(msk, 𝑥):

Parse msk as defined above

k← {0, 1}𝜆

(sksig, vksig) ← DS.Setup(1𝜆)

(Ak, 𝛼k) ← ACC.Create(pp)

𝑤k ← ACC.Add(Ak, 𝛼k, k)

®𝑀 ≔ (Ak,A𝑥 ,G2)

𝜎SEQ ← SEQ .SignR (sk
𝐴
SEQ

, ®𝑀)

𝜎sig ← DS.Sign(sk𝐴
sig
, (k, vksig))

𝑊 ≔ ()

For each 𝑦 ∈ [𝑛𝑅] : 𝐹 (𝑥,𝑦) = 1 do:

Retrieve (𝑥,𝑤) ∈𝑊𝑦

𝑊 ←𝑊 | | (𝑤,DS.Sign(sk𝐴
sig
, (k,𝑤)))

usk = (®𝑀,𝜎SEQ ,𝑊 ,𝑤k, k, vksig, sksig, 𝜎sig, 𝑥)

(pk0, sk0) ← RandKey(mpk, (usk,−1,⊥))

Return (pk0, sk0)

Figure 19a: The setup and key generation algorithm of our

unlinkable PCS scheme for RBAC policies.

247

RandKey(mpk, sk):

Parse mpk, usk as defined above and sk = (usk, ctr, ·)

ctr ≔ ctr + 1

If ctr ≥ 𝑇Rand: return ⊥

IDctr ≔ PRF.Eval(k, ctr)

(vkctr
sig
, skctr

sig
) ← DS.Setup(1𝜆)

𝜎ctr ← DS.Sign(sksig, (vk
ctr
sig
, IDctr))

𝜇ctr ← Z
∗
𝑝

(®𝑀 ′, 𝜎 ′
SEQ
) ← SEQ .ChgRepR (vk

𝐴
SEQ

, ®𝑀,𝜎SEQ , 𝜇ctr)

𝜋ctr ← NIZKL1
.Prove(CRSRand,

(𝑇Rand, IDctr, vk
ctr
sig
, ®𝑀 ′, vk𝐴

sig
,), (usk, 𝜎ctr))

pkctr ≔ (IDctr, vk
ctr
sig
, ®𝑀 ′, 𝜎 ′

SEQ
, 𝜋ctr)

Return (pkctr, skctr ≔ (usk, ctr, sk
ctr
sig
))

Sign(mpk, sk, pk𝑅,𝑚):

Parse mpk, sk ≔ (usk, ctr, skctr) and usk as above

If ValidPK(mpk, pk𝑅) = 0 : return ⊥

ID𝑆 ≔ PRF.Eval(k, ctr)

Parse pk𝑅 = (. . . , (A,A′,G′2), . . .)

Let pp′ ← (𝑝,G1,G
′
2, 𝑒)

If �𝑤∗ ∈𝑊 | ACC.MemVrf (pp′,A′, 𝑥,𝑤∗) : return ⊥

Find𝑤∗ ∈𝑊 | ACC.MemVrf (pp′,A′, 𝑥,𝑤∗) = 1

𝜋𝑠 ← NIZKL2
.Prove(CRSSign, (ID𝑆 , vk

𝐴
sig
, pp′,A′), sk)

𝜎 ← DS.Sign(skctr, (𝑚, pk𝑅, 𝜋𝑠))

Return (𝜋𝑠 , 𝜎)

Verify(mpk, pk𝑆 , pk𝑅,𝑚, 𝜎):

Parse mpk as defined above and 𝜎 = (𝜋, 𝜎 ′)

If ValidPK(mpk, pk𝑆) = 0 or ValidPK(mpk, pk𝑅) = 0

Return ⊥

Return (NIZKL2
.Verify(CRSSign, (pk𝑆 , pk𝑅), 𝜋)

∧ DS.Verify(vk𝑆 , (𝑚, pk𝑅, 𝜋), 𝜎
′))

Figure 19b: The rerandomization, signing and verification

algorithm of our unlinkable PCS scheme for RBAC policies.

E SECURITY ANALYSIS

Here, we present the formal proof of the ul-PCS scheme for generic

policies (Theorem 4.1). We prove three theorems in this supplement

where each theorem covers one aspect, i.e., unforgeability, attribute-

hiding, and unlinkability, respectively. Furthermore, we also argue

the detactability of the schemes. For the sake of notation, we denote

the unlinkable PCS scheme for generic policies 𝐹 (𝑥,𝑦) by ULPCS.

The concrete specification as pseudo-code can be found in the

submission.

The proofs of Theorems 4.2 and 4.3 for separable and role-based

policies, respectively, are given by describing which arguments

need to be adjusted to accommodate the replacement of the PE

scheme in these constructions. We describe these adjustments for

unforgeability, attribute-hiding, and unlinkability right after the

proofs of the generic scheme.

E.1 Detectability

The detect algorithm Detect behaves the same in all of the three

different schemes. It takes as an input the master public key mpk,

the challenge public key pk∗ as well as the lists (𝑄1, . . . , 𝑄𝑐). It then
behaves as follows: for all 𝑖 ∈ [𝑐], it generates the maximal amount

of rerandomizations. In more detail, for all 𝑖 ∈ [𝑐], it executes as
many rerandomizations of the keys contained in 𝑄𝑖 [] until 𝑄𝑖 []
contains𝑇Rand keys. Afterwards, it searches all the lists𝑄𝑖 [] and if it
finds an index pair (𝑖, 𝑖 ′) for which it holds that𝑄𝑖 [𝑖

′] = (pk∗, sk∗),
then it adds 𝑖 to its final list 𝑄 . After Det has iterated over all

lists (𝑄1, . . . , 𝑄𝑐), we distinguish between three cases: first, 𝑄 only

contains a single 𝑖 , second, 𝑄 contains multiple 𝑖’s and, third, 𝑄 is

empty. In the first case,Det simply outputs the single 𝑖 , in the second

case, Det outputs the lower of the two indices contained in 𝑄 and,

in the third case, Det outputs ⊥. To argue the correctness of Det,

we need to analyze the three different cases. We start by analyzing

the third case. The third case can never occur because the key pk∗ is

generated by checking𝑄𝑖 [𝑗] and therefore the detect algorithmDet

will also find this index pair. In the first case, Det behaves correct

since there is only a single index pair which explains the key pk∗

and this is output by Det. The second case, can only occur if a key

collision has happened as defined in the event KeyCollA below,

which is negligible due to the security of the PRF (see below for the

argument). Therefore, it follows that the algorithm Det is correct

with probability 1 − negl(𝜆), which concludes the detectability

argument.

E.2 Unforgeability

Theorem E.1. Let𝑇Rand = poly(𝜆). If DS = (Setup, Sign,Verify)
is an EUF-CMA-secure signature scheme, PRF a secure pseudoran-

dom function, NIZKL1
= (Setup, Prove,Verify) a knowledge sound

proof system for language L1 and NIZKL2
= (Setup, Prove,Verify)

is a knowledge sound proof system for language L2, then ULPCS

described in Figure 5 is 𝑇Rand EUF-CMA secure, i.e. it holds that

AdvEUF-CMA
ULPCS,A

= negl(𝜆).

Proof. Consider the random experiment EUF-CMAULPCS (1𝜆,A)
for which we define the following two events:

• Event KeyCollA : The adversary A terminates and it holds

that there are indices 𝑖, 𝑖 ′, 𝑗, 𝑗 ′ with 𝑖 ≠ 𝑗 or 𝑖 ′ ≠ 𝑗 ′ such

that ((𝑖, 𝑖 ′), pk𝑖 , ·, ·), ((𝑗, 𝑗
′), pk𝑗 , ·, ·) ∈ QK , where pk𝑖 =

(ID𝑖 , . . .), pk𝑗 = (ID𝑗 , . . .), for which ID𝑖 = ID𝑗 .

• Event KeyForgeA : The adversary A terminates with

output (pk𝑆 , pk𝑅,𝑚, 𝜎) and there exists an entry

(·, pk∗
𝑆
, pk∗

𝑅
,𝑚∗, 𝜎∗) ∈ QS ∪ {(pk𝑆 , pk𝑅,𝑚, 𝜎)} for

which the following condition holds: Verify(mpk, pk∗
𝑆
,

pk∗
𝑅
,𝑚∗, 𝜎∗) = 1 ∧ (𝑆 = ⊥ ∨ 𝑅 = ⊥) where

𝑆 ← Detect(mpk, pk∗
𝑆
, (QK1, . . . ,QK𝑖max)) and

𝑅 ← Detect(mpk, pk∗
𝑅
, (QK1, . . . ,QK𝑖max)).

We denote the winning condition of the experiment by the event

WINA and split it into two parts:

248

• EventWIN1A : The adversary generates the output (pk, pk
∗,

𝑚∗, 𝜎∗) for which it holds thatVerify(mpk, pk, pk∗,𝑚∗, 𝜎∗) =
1 ∧ ∃(𝑖, 𝑗), sk, 𝑥 ∀(𝑖 ′, 𝑗 ′), 𝜎 : ((𝑖, 𝑗), pk, sk, 𝑥) ∈ QK \ QC ∧
((𝑖 ′, 𝑗 ′), pk, pk∗,𝑚∗, 𝜎) ∉ QS.
• EventWIN2A : The adversary A generates the output (pk,
pk∗,𝑚∗, 𝜎∗) for which it holds that Verify(mpk, pk, pk∗,𝑚∗,

𝜎∗) = 1∧
[
(𝑆 ≠ ⊥) ∧ (𝑅 ≠ ⊥) ⇒ 𝐹 (𝑥𝑆 , 𝑥𝑅) = 0

]
where 𝑆 ←

Detect(mpk, pk, (QK1, . . . ,QK𝑖max)), 𝑅 ← Detect(mpk,

pk∗, (QK1, . . . ,QK𝑖max)) and 𝑥𝑆 and 𝑥𝑅 denote the respec-

tive attributes.

By Lemma E.2 and Lemma E.3, we obtain

Pr[KeyForgeA] = negl(𝜆) and Pr[KeyCollA] = negl(𝜆)

for adversaries B1 and B
′
2 which are constructed based on A and

have roughly the same efficiency as A.

Finally, we obtain by Lemma E.4 and by Lemma E.5 that

Pr[WIN1A] = negl(𝜆) and

Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA] = negl(𝜆) .

By definition of the events, we have

Pr[WINA] ≤ Pr[KeyCollA ∪ KeyForgeA]

+ Pr[WINA ∩ KeyCollA ∪ KeyForgeA]

≤ Pr[KeyCollA] + Pr[KeyForgeA]

+ Pr[WIN1A ∩ KeyCollA ∪ KeyForgeA]

+ Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA] .

This concludes the proof of the theorem. □

Lemma E.2. It holds that Pr[KeyCollA] = negl(𝜆).

Proof. To bound the probability for the occurrence of KeyCollA ,

we need to bound the probability that there exist two honestly

generated/rerandomized keys pk ≔ (ID, . . .) and pk′ ≔ (ID′, . . .)
with ID = ID′. The ID of an honestly generated key is generated

using a PRF evaluation as well as an attached zero-knowledge

proof that proves that the resulting string is indeed an honest PRF

evaluation. By relying on the soundness of the zero-knowledge

proof, it is ensured that the resulting ID is indeed a valid PRF

evaluation, which, by the𝑛-instance/parallel composable security of

the PRF, allows us to consider the ID’s in this analysis as randomly

sampled. Therefore, to conclude the proof of the lemma, it suffices

to bound the collision probability for randomly sampled identities.

In our setting, we have 𝑛 different keys that are being gener-

ated, where each of those keys can be randomized 𝑇 times. This

means that overall 𝑛 ·𝑇 different ID’s are being sampled. The prob-

ability that all of these ID’s are different is (1 − 1
2𝜆
) · (1 − 2

2𝜆
) ·

· · · · (1 − 𝑛 ·𝑇−1
2𝜆
)
∏𝑛𝑇−1

𝑘=1
(1 − 𝑘

2𝜆
). For this probability it holds that

∏𝑛𝑇−1
𝑘=1
(1 − 𝑘

2𝜆
) ≥ (1 − 𝑛𝑇−1

2𝜆
)𝑛𝑇−1, which, in turn, can be bounded

using Bernoulli’s inequality (1− 𝑛𝑇−1
2𝜆
)𝑛𝑇−1 ≥ 1− (𝑛𝑇 −1) · 𝑛𝑇−1

2𝜆
=

1−
(𝑛𝑇−1)2

2𝜆
. Considering now the complementary event that at least

one collision of ID’s occurs, then the resulting probability for this

event is equal to 1 − (1 −
(𝑛𝑇−1)2

2𝜆
) =

(𝑛𝑇−1)2

2𝜆
, which is negligible

in 𝜆. This concludes the proof of the lemma. □

Lemma E.3. Let DS = (Setup, Sign,Verify) be an EUF-CMA-

secure signature scheme and NIZKL1
= (Setup, Prove,Verify) is

a knowledge sound proof system for L1, then Pr[KeyForgeA] =

negl(𝜆).

Proof. On a high-level, the adversary needs to prove a wrong claim

which can either be done by attacking the NIZK directly, or if the

NIZK is extractable, then the attacker must attack the underlying

signature scheme in order to possess a valid witness.

We first make a first transition to a hy-

brid world EUF-CMAULPCS
Hyb

, which is identi-

cal to EUF-CMAULPCS except that we replace

NIZKL1
.Setup(1𝜆) by the CRS simulation algorithm Ext1

associated to the NIZK scheme which also outputs the state stRand
for the second extraction algorithm Ext2. All above defined events

are still defined in this hybrid experiment. It follows directly from

the knowledge soundness property of the NIZK, using a standard

reduction, that

Pr[KeyForgeA] ≤ PrHyb
[
KeyForgeA

]
+ negl(𝜆),

where PrHyb [.] makes explicit that this probability is taken w.r.t. ex-

periment EUF-CMAULPCS
Hyb

.

Now, to bound the probability of the occurrence of KeyForge,

we need to bound three different subcases:

(1) The adversary is not able to forge a signature 𝜎1
sig

or 𝜎2
sig

that would suffice as a proof for the relation 𝑅L1
.

(2) The adversary is not able to forge a signature𝜎𝑘+1 that would

suffice as a proof for the relation 𝑅L1
.

(3) The adversary is not able to break the soundness of the

underlying NIZKL1
to generate a valid proof without being

in possession of a witness.

To bound the first case above, we now build an adversary B that

simulates EUF-CMAULPCS
Hyb

towards A when interacting with the

underlying EUF-CMADS experiment. We show that if A outputs

(pk, pk∗,𝑚∗, 𝜎∗) as defined in event KeyForge, then it can be used

as a forgeability attack in the EUF-CMADS experiment unless a

certain failure event Failext occurs in the reduction, which we then

relate to the extraction advantage.

The adversary B behaves using the algorithms described in the

protocol with the only difference that it does not generate the key

pair (vk𝐴
sig
, sk𝐴

sig
) on its own but obtains it from an underlying

challenger. Also the corresponding signatures 𝜎1
sig
, 𝜎2

sig
and 𝜎3

sig
,

that are the outputs of key generation queries, are not generated by

B directly but through signing oracle queries of B to its underlying

challenger.

When A terminates with (pk∗
𝑆
≔ (ID∗

𝑆
, vk∗

𝑆
, ct∗

𝑆
, 𝜋∗

𝑆
), pk∗

𝑅
≔

(ID∗
𝑅
, vk∗

𝑅
, ct∗

𝑅
, 𝜋∗

𝑅
),𝑚∗, 𝜎∗ ≔ (𝜋∗, 𝜎 ′)), B1 first checks whether the

conditions of event KeyForgeA holds, using the detect procedure

which will output 𝑆 ′ and 𝑅′. If the conditions of KeyForgeA do

not hold, then abort. For the remainder of the proof we assume

that, WLOG the condition is fulfilled w.r.t. 𝑆 ′. The 𝑅′ case follows

accordingly.

If the conditions of event KeyForgeA are fulfilled, then B calls

(usk∗, 𝜎∗) ← Ext2 (CRSRand, stRand, (𝑇Rand, ID
∗
𝑆
, vk∗

𝑆
, ct∗

𝑆
, vk𝐴

sig
,

mpkPE), 𝜋
∗
𝑆
)) and checks whether (𝑥 ≔ (𝑇Rand, ID

∗
𝑆
, vk∗

𝑆
, ct∗

𝑆
, vk𝐴

sig
,

249

mpkPE),𝑤 ≔ (usk
∗, 𝜎∗)) ∈ 𝑅L1

(which is efficiently checkable). Af-

terwards, B parses usk∗ ≔ (k∗, vk∗
sig
, sk∗

sig
, 𝜎∗,1

sig
, 𝜎∗,2

sig
, 𝜎∗,3

sig
, 𝑥∗, sk∗

𝑓𝑥
)

it checks if DS.Verify(vk𝐴
sig
, (k∗, 𝑥∗), 𝜎∗,1

sig
) = 1 or DS.Verify(vk𝐴

sig
,

(k∗, vk∗
sig
), 𝜎∗,2

sig
) = 1 and submits the corresponding message-

signature-pair that verifies, i.e. either ((k∗, 𝑥∗), 𝜎∗,1
sig
) or ((k∗, vk∗

sig
),

𝜎∗,2
sig
), to its challenger if it has not been previously output by the

signing oracle. Otherwise, it aborts.

Before we analyze what happens in the case that (𝑥,𝑤) ∉ 𝑅L1
,

we need to bound the case where the adversaryA outputs a forgery

for the signature 𝜎𝑘+1. This part of the proof, i.e. the adversary

B in this case, almost behaves as before, with the only differ-

ence that the adversary B randomly samples a value 𝑖 ← [𝑞],
where 𝑞 is the number of key generation queries asked by the

adversary A, receives vksig from the underlying challenger and

uses vksig from the challenger to answer the 𝑖’th key genera-

tion query asked by A. To finish the key generation and for

further rerandomization queries that are asked for the 𝑖’th key,

the adversary B uses the signing oracle of its underlying chal-

lenger.WhenA terminates with (pk∗
𝑆
≔ (ID∗

𝑆
, vk∗

𝑆
, ct∗

𝑆
, 𝜋∗

𝑆
), pk∗

𝑅
≔

(ID∗
𝑅
, vk∗

𝑅
, ct∗

𝑅
, 𝜋∗

𝑅
),𝑚∗, 𝜎∗ ≔ (𝜋∗, 𝜎 ′)), B1 first checks whether the

conditions of event KeyForgeA holds, using the detect procedure

which will output 𝑆 ′ and 𝑅′. If the conditions of KeyForgeA do

not hold, then it aborts. Also, as described above, we assume that,

WLOG the condition is fulfilled w.r.t. 𝑆 ′. The 𝑅′ case follows accord-

ingly. If the conditions of eventKeyForgeA are fulfilled, thenB calls

(usk∗, 𝜎∗) ← Ext2 (CRSRand, stRand, (𝑇Rand, ID
∗
𝑆
, vk∗

𝑆
, ct∗

𝑆
, vk𝐴

sig
,

mpkPE), 𝜋
∗
𝑆
), checks whether (𝑥 ≔ (𝑇Rand, ID

∗
𝑆
, vk∗

𝑆
, ct∗

𝑆
, vk𝐴

sig
,

mpkPE),𝑤 ≔ (usk
∗, 𝜎∗)) ∈ 𝑅L1

(which is efficiently checkable)

and if 𝑆 ′ identified by Detect corresponds to the key that has been

generated as the answer to the 𝑖’th query. Afterwards, B checks if

DS.Verify(vksig, (pk
∗
𝑆
∥ID∗

𝑆
), 𝜎∗) = 1 and submits the signature 𝜎∗,

if it passes the test and has not been previously output by the sign-

ing oracle of the underlying challenger, as a forgery. Otherwise, it

aborts. To conclude the analysis we argue that the above described

case occurs with probability 1
𝑞 , which is exactly the probability

that the adversary B guesses the index for the rerandomized key

correctly.

If (𝑥,𝑤) ∉ 𝑅L1
then abort with failure event Failext. Therefore,

taking into account the two reductions described above, it holds that

the advantage can be reduced to the unforgeability of the underlying

signature scheme with probability PrHyb

[
KeyForgeA ∩ Failext

]
.

This, in turn, results in the fact that PrHyb
[
KeyForgeA

]
=

PrHyb

[
KeyForgeA ∩ Failext

]
+ PrHyb [Failext] + negl(𝜆).

Since a forgery for the underlying EUF-CMADS experi-

ment only occurs with negligible probability, it follows that

PrHyb

[
KeyForgeA ∩ Failext

]
= negl(𝜆) + 1

𝑞 negl(𝜆) = negl(𝜆) (af-

ter the two analysis above) and, to conclude the proof, it only

remains to show that PrHyb [Failext] = negl(𝜆). This can be done

by relying on the soundness property of the underlying NIZKL1
as

mentioned in the second of the two cases above.

To conclude the proof, it remains to show that Pr[FailExt] =
negl(𝜆). Also here, we assume that, WLOG the condition is ful-

filled w.r.t. 𝑆 ′. The 𝑅′ case follows accordingly. Our adversary

B′ for this case receives as an input the CRSRand and executes

the same instructions as B, with the exceptions that it generates

(vk𝐴
sig
, sk𝐴

sig
) by itself and uses it to generate the corresponding

signatures by itself. Additionally, when A terminates with output

(pk∗
𝑆
≔ (ID∗

𝑆
, vk∗

𝑆
, ct∗

𝑆
, 𝜋∗

𝑆
), pk∗

𝑅
≔ (ID∗

𝑅
, vk∗

𝑅
, ct∗

𝑅
, 𝜋∗

𝑅
),𝑚∗, 𝜎∗ ≔

(𝜋∗, 𝜎 ′)), B′ behaves as B without running the extractor. Instead,

it just outputs (𝑥 ≔ (𝑇Rand, ID
∗
𝑆
, vk∗

𝑆
, ct∗

𝑆
, vk𝐴

sig
,mpkPE), 𝜋

∗
𝑆
) in case

the conditions of KeyForgeA are satisfied (note that the extractor

is run as part of the knowledge soundness experiment). As above,

the emulation towardsA is perfect until the point where B′ would
abort. This results in the claimed advantage since the event of in-

terest is that the extractor Ext2 is called precisely on the accepting

proof string 𝜋∗
𝑆
output by A which produces a witness𝑤 but for

which (𝑥,𝑤) ∉ 𝑅L1
. This concludes the proof of the lemma. □

Lemma E.4. Let DS = (Setup, Sign,Verify) be an EUF-CMA-

secure signature scheme, then Pr[WIN1A] = negl(𝜆).

Proof. To prove this lemma, we construct an adversary B that

simulates EUF-CMAULPCS towards A. We show that if A outputs

(pk, pk∗,𝑚∗, 𝜎∗) as defined in event WIN1, then it can be used in a

forgeability attack in the EUF-CMADS experiment.

Let 𝑞 denote the number of queries toQRandKey. The adversary

B behaves exactly as described in the experiment, with the only

difference that it randomly samples values 𝑖 ← [𝑞], 𝑗 ← [ℓ], where
𝑞 denotes the number of queries to QKeyGen and ℓ denotes the

number of queries toQRandKey, and, to reply to the 𝑗 ’thQRandKey

query of the 𝑖’th key, it uses the key vk obtained from its underlying

challenger. If later a signature query is being asked for the 𝑗 ’th

rerandomization of the 𝑖’th key, then the adversary B relies on the

signing oracle of its underlying challenger to generate the final

signature. In case that the 𝑖’th key is being corrupted, the adversary

B aborts.

Finally, when A terminates with output (pk∗
𝑆
≔ (ID∗

𝑆
, vk∗

𝑆
, ct∗

𝑆
,

𝜋∗
𝑆
), pk∗

𝑅
≔ (ID∗

𝑅
, vk∗

𝑅
, ct∗

𝑅
, 𝜋∗

𝑅
),𝑚∗, 𝜎∗ ≔ (𝜋∗, 𝜎 ′)) check the con-

ditions of WIN1 and check furthermore that the forgery output

by A corresponds to the 𝑗 ’th rerandomization of the 𝑖’th key. If

this is not the case, B aborts. If both of the conditions are satisfied,

the adversary B outputs ((𝑚∗, pk∗
𝑅
, 𝜋∗), 𝜎 ′) as its forgery to the

underlying EUF-CMADS experiment.

To analyze the above reduction, we need to calculate the prob-

ability with which the adversary B succeeds with the advantage

of A. This happens with probability 1
𝑞ℓ , since the adversary B

needs to guess the correct key 𝑖 that is used by the adversary A
in the forgery, as well as the correct rerandomization 𝑗 . Since 𝑞ℓ is

polynomial in the security parameter, the lemma follows. □

Lemma E.5. Let DS = (Setup, Sign,Verify) be an EUF-CMA-

secure signature scheme and NIZKL2
= (Setup, Prove,Verify)

is a knowledge sound proof system for L2, then Pr[WIN2A ∩

KeyCollA ∪ KeyForgeA] = negl(𝜆).

Proof. On a high-level, in this setting, the adversary needs to prove

a wrong claim which can either be done by attacking the NIZK

250

directly, or if the NIZK is extractable, then the attacker must attack

the underlying signature scheme in order to possess a valid witness.

We first make a first transition to a hy-

brid world EUF-CMAULPCS
Hyb

, which is identi-

cal to EUF-CMAULPCS except that we replace

NIZKL2
.Setup(1𝜆) by the CRS simulation algorithm Ext1

associated to the NIZK scheme which also outputs the state stSign
for the second extraction algorithm Ext2. It follows directly from

the knowledge soundness property of the NIZK, using a standard

reduction, that

Pr[WIN2A ∩ KeyCollA ∪ KeyForgeA]

≤ PrHyb

[
WIN2A ∩ KeyCollA ∪ KeyForgeA

]
+ negl(𝜆),

where PrHyb [.] makes explicit that this probability is taken w.r.t.

the experiment EUF-CMAULPCS
Hyb

.

Now, to bound the probability of the occurrence of KeyForge,

we need to bound two different subcases:

(1) The adversary is not able to forge a signature 𝜎3
sig

that would

suffice as a proof for the relation 𝑅L2
.

(2) The adversary is not able to break the soundness of the

underlying NIZKL2
to generate a valid proof without being

in possession of a witness.

To bound the first case above, we build an adversary B that

simulates EUF-CMAULPCS
Hyb

towards A when interacting with the

underlying EUF-CMADS experiment. We show that if A outputs

(pk, pk∗,𝑚∗, 𝜎∗) as defined in eventWIN2, then it can be used as a

forgeability attack in the EUF-CMADS experiment unless a certain

failure event Failext occurs in the reduction, which we can then

relate to the extraction advantage.

The adversary B behaves using as described in the protocol

with the only difference that it does not generate the key pair

(vk𝐴
sig
, sk𝐴

sig
) on its own but obtains it from an underlying challenger.

Also the corresponding signatures 𝜎1
sig
, 𝜎2

sig
and 𝜎3

sig
, that are the

outputs of key generation queries, are not generated by B directly

but through signing oracle queries of B to its underlying challenger.

When A terminates with (pk∗
𝑆
≔ (ID∗

𝑆
, vk∗

𝑆
, ct∗

𝑆
, 𝜋∗

𝑆
), pk∗

𝑅
≔

(ID∗
𝑅
, vk∗

𝑅
, ct∗

𝑅
, 𝜋∗

𝑅
),𝑚∗, 𝜎∗ ≔ (𝜋∗, 𝜎 ′)), B1 first checks whether

the conditions of event WIN2 are fulfilled (and KeyForgeA and

KeyCollA did not occur), using the detect procedure which will

output 𝑆 ′ and 𝑅′. If the conditions ofWIN2 are not fulfilled, then

B aborts.

If the conditions of event WIN2, and not KeyForgeA and

KeyCollA , are fulfilled, then B calls sk∗ ← Ext2 (CRSSign, stSign,

(ID∗
𝑆
, vk𝐴

sig
, ct∗

𝑅
), 𝜋∗) and checks whether (𝑥 ≔ (ID∗

𝑆
, ct∗

𝑅
, vk𝐴

sig
),𝑤

≔ sk∗) ∈ 𝑅L2
(which is efficiently checkable). Afterwards,B parses

sk∗ ≔ (usk∗, ctr∗, sk∗,ctr
sig
) and usk∗ ≔ (k∗, vk∗

sig
, sk∗

sig
, 𝜎∗,1

sig
, 𝜎∗,2

sig
,

𝜎∗,3
sig

, 𝑥∗, sk∗
𝑓𝑥
), checks if DS.Verify(vk𝐴

sig
, (k∗, sk∗

𝑓𝑥
), 𝜎∗,2

sig
) = 1 and

submits the message-signature-pair ((k∗, sk∗
𝑓𝑥
), 𝜎∗,3

sig
) to its chal-

lenger if it has not been previously output by the signing oracle.

Otherwise, it aborts.

If (𝑥,𝑤) ∉ 𝑅L2
then abort with failure event Failext. There-

fore, since the described reduction is perfect, it holds that the ad-

vantage can be reduced to the unforgeability of the underlying

signature scheme with probability PrHyb

[
KeyForgeA ∩ Failext

]
.

This, in turn, results in the fact that PrHyb
[
KeyForgeA

]
=

PrHyb

[
KeyForgeA ∩ Failext

]
+ PrHyb [Failext] + negl(𝜆).

Since a forgery for the underlying EUF-CMADS experi-

ment only occurs with negligible probability, it follows that

PrHyb

[
KeyForgeA ∩ Failext

]
= negl(𝜆) and, to conclude the

proof, it only remains to show that PrHyb [Failext] = negl(𝜆). This
can be done by relying on the soundness property of the underlying

NIZKL2
as mentioned in the second of the two cases above.

Our adversary B′ in the case that FailExt occurs receives as an

input theCRSSign and executes the same instructions asB, with the

exceptions that it generates (vk𝐴
sig
, sk𝐴

sig
) by itself and can use it to

generate signatures by itself. In addition, when A terminates with

output (pk∗
𝑆
≔ (ID∗

𝑆
, vk∗

𝑆
, ct∗

𝑆
, 𝜋∗

𝑆
), pk∗

𝑅
≔ (ID∗

𝑅
, vk∗

𝑅
, ct∗

𝑅
, 𝜋∗

𝑅
),𝑚∗,

𝜎∗ ≔ (𝜋∗, 𝜎 ′)), B′ behaves as B but does not execute the fi-

nal steps running the extractor, but instead just outputs (𝑥 ≔

(ID∗
𝑆
, ct∗

𝑅
, vk𝐴

sig
), 𝜋∗) in case the conditions of WIN2, and not

KeyForgeA and KeyCollA , are satisfied (note that the extractor

is run as part of the knowledge soundness experiment). As above,

the emulation towardsA is perfect until the point where B′ would
abort. This results in the claimed advantage since the event of in-

terest is that the extractor Ext2 is called precisely on the accepting

proof string 𝜋∗ output by A which produces a witness 𝑤 such

that (𝑥,𝑤) ∉ 𝑅L2
. This concludes the proof of the lemma. □

E.2.1 Analysis in the case of Separable & RBAC Policies.

Separable Policies. The security proofs for the scheme covering

separable policies proceeds exactly in the same way as the proof

described above, i.e. in the proof of Lemmas E.3 and E.5, where the

occurence of exactly the same subevents are being bounded. The

reason is that we still have the same components, signatures and

encryptions, but thanks to the pre-computation of 𝑆 (𝑥) and 𝑅(𝑥)
we can mimic the PE part of the generic scheme accurately and

securely.

RBAC Policies. The proof for the scheme covering RBAC poli-

cies has a few differences when bounding the event KeyForgeA
(Lemma E.3). Instead of bounding the unforgeability of the signa-

tures 𝜎1
sig

and 𝜎2
sig

for the PE-based scheme, in the RBAC scheme it

is necessary to bound the unforgeability of 𝜎1
sig

and invoke the un-

forgeability of the SEQ scheme to make sure that none of the parties

can obtain a different role (akin to re-encryptions of attributes of

the generic scheme). This was previously captured within the NIZK,

and now, thanks to SEQ, can be verified outside the NIZK. To argue

unforgeability now, we first rely on the secure adaptation property

of SEQ to argue that the signature generated using ChgRepR is in-

distinguishable from a signature generated using Sign. Afterwards,

we can conclude the proof by relying on the unforgeability of the

SEQ scheme and the fact that with overwhelming probability, every

party is its own equivalence class, which stems from the fact that

for each party, the first component of the vector ®𝑀 is a randomly

251

sampled group element. For the proof of event WIN2 (Lemma E.5),

we also need to rely on the weak soundness property of the ac-

cumulator to argue that an adversary cannot forge a signature by

forging a valid accumulator. To rely on the accumulator soundness,

we observe that a party cannot claim to own different roles than

the ones it got issued (akin to the signature on the attribute 𝑥 in

the generic scheme).

E.3 Attribute Hiding

In this section, we prove the attribute hiding of our scheme.

Theorem E.6. Let 𝑇Rand = poly(𝜆). If PE = (PE.Setup,
PE.KeyGen, PE.Enc, PE.Dec) is a predicate encryption scheme,

NIZKL1
= (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a NIZK proof

system for language L1, NIZKL2
= (NIZK.Setup,NIZK.Prove,

NIZK.Verify) is a NIZK proof system for language L2 and DS =

(DS.Setup,DS.Sign,DS.Verify) an unforgeable signature scheme,

then the construction ULPCS = (Setup,KeyGen, Enc,Dec), defined
in Figures 12 and 13, is attribute hiding. Namely, for any valid PPT

adversary A, it holds that AdvAH
ULPCS,A

(𝜆) = negl(𝜆).

Proof. To prove this statement, we use a hybrid argument where

the games are defined as follows:

Game 𝐺0: This game is defined as AHULPCS
0 (1𝜆,A).

Game 𝐺1: In this game, we change the behavior of the sign oracle

QSign and define a modified sign oracle QSign′. The oracle

QSign′ is defined as QSign with the difference that it only

answers queries for receiver keys that have been honestly

generated (keys that have been output by the key genera-

tion oracle QKeyGenLR0 or are an honest rerandomization

of these keys, which can be determined using the Detect

procedure), for a query (𝑖, pk′,𝑚) with (𝑖, ·, ·, ·, ·) ∉ QK or

(𝑗, ·, ·, ·, ·) ∉ QK , where 𝑗 ← Detect(mpk, pk′,QK) the sign
oracleQSign′ outputs ⊥. The transition from𝐺0 to𝐺1 is jus-

tified by the bounds on the key forgery event as described

in the proof of Theorem E.1. We show this transition more

formally in Lemma E.7.

Game 𝐺2: In this game, we change from an honestly generated

CRSRand and honestly generated proofs to a simulated

CRSRand and simulated proofs. That is, for the randomiza-

tion of challenge keys that can never be corrupted, i.e. for

the challenge query (𝑥0, 𝑥1) it holds that 𝑥0 ≠ 𝑥1, the proof

in the randomization for 𝑅L1
is simulated and therefore does

not require the attributes used in the witness. Furthermore,

we also remove the signatures 𝜎1
sig

and 𝜎2
sig

from the scheme

in this transition. The transition from 𝐺1 to 𝐺2 is justified

by the zero-knowledge property of NIZKL1
. We show this

transition more formally in Lemma E.8.

Game 𝐺3: In this game, we change from an honestly gener-

ated CRSSign and honestly generated proofs to a simulated

CRSSign and simulated proofs. That is, upon a signing query

we check, from the transcript of the generated keys and

using the detect function, if the requested key pair in the

signing query fulfills the policy. If this is the case, the proof

𝜋𝑠 is simulated using CRSSign. Here, we furthermore also

remove the key sk𝑓𝑥 as well as the signature 𝜎3
sig

from the

key generation procedure. As in the previous transition, this

also only happens for explicitly honest keys, i.e. keys where

𝑥0 ≠ 𝑥1. The transition from𝐺2 to𝐺3 is justified by the zero-

knowledge property of NIZKL2
. We show this transition

more formally in Lemma E.9.

Game 𝐺4: In this game, we change the attributes used in the reran-

domization for the explicitly honest challenge keys from

𝑥0 to 𝑥1 for all 𝑖 by changing the encryption that is being

generated in the randomization procedure. The transition

from𝐺3 to𝐺4 is justified by the attribute-hiding property of

PE. We show this transition more formally in Lemma E.10.

Game 𝐺5: In this game, we change back from a simulated CRSSign
and simulated proofs to an honestly generated CRSSign and

honestly generated proofs. Here, we also reintroduce the

signature 𝜎3
sig

but this time w.r.t. the challenge messages 𝑥1.

Similar to the transition from 𝐺2 to 𝐺3, this transition is

justified by the zero-knowledge property of NIZKL2
.

Game 𝐺6: In this game, we change back from a simulated CRSSign
and simulated proofs to an honestly generated CRSSign and

honestly generated proofs. Here, we also reintroduce the

signatures 𝜎1
sig

and 𝜎2
sig

but this time w.r.t. the challenge

messages 𝑥1. Similar to the transition from 𝐺1 to 𝐺2, this

transition is justified by the zero-knowledge property of

NIZKL1
.

Game 𝐺7: This game is the AHULPCS
1 (1𝜆,A) game. In this game,

we change the behavior of the signing oracle back from

QSign′ to QSign. Similar to the transition from 𝐺0 to 𝐺1,

this transition is justified by the event KeyForgeA .

From the definition of the games it is clear that

AHULPCS
0 = 𝐺0 ≈ 𝐺1 ≈ · · · ≈ 𝐺7 = AHULPCS

1

and hence the theorem follows. □

Lemma E.7 (Transition from 𝐺0 to 𝐺1). The games 𝐺0 and 𝐺1

are computationally indistinguishable.

Proof (Sketch). As described above, the difference between the

games𝐺0 and𝐺1 is that in the game𝐺0 the adversaryA has access

to the sign oracle QSign and in the game 𝐺1 the adversary A has

access to the sign oracle QSign′, which we informally described

above and which is formally defined as:

QSign′(𝑖, pk′,𝑚): On input a (sender) index 𝑖 , a (receiver) public

key pk′, and a message𝑚, if QK contains an entry (𝑖, pk, sk,
𝑥0, 𝑥1) ∈ QK and an entry (𝑗, pk′, sk′, 𝑥 ′0, 𝑥

′
1) ∈ QK with

𝑗 ← Detect(mpk, pk′,QK), then return 𝜎 ← ULPCS.Sign(
mpk, sk, pk′,𝑚) and add (𝑖, pk, pk′,𝑚, 𝜎) to QS. Otherwise,
return ⊥.

Compared to the oracle QSign′, the signing oracle QSign does

not require the receiver key pk′ to have been previously output by

the challenger or being a rerandomization of a key output by the

challenger, i.e. (𝑗, ·, ·, ·, ·) ∉ QK with 𝑗 ← Detect(mpk, pk′,QK),
to obtain as a reply a valid signature 𝜎 ≠ ⊥. This is not pos-

sible for the oracle QSign′ where every query using a receiver

key pk′ that has not been generated by the challenger or rerean-

domized from a challenger key, i.e. (𝑗, ·, ·, ·, ·) ∉ QK with 𝑗 ←
Detect(mpk, pk′,QK), results in an invalid signature 𝜎 = ⊥.

252

Therefore, to show that the games 𝐺0 and 𝐺1 are indistin-

guishable, it suffices to show that the probability that the ad-

versary queries the signing oracle QSign using a receiver key

pk′ that has not been previously generated by the challenger or

rerandomized from a challenger key, i.e. (𝑗, ·, ·, ·, ·) ∉ QK with

𝑗 ← Detect(mpk, pk′,QK), and that leads to a valid signature

𝜎 ≠ ⊥ is negligible. We denote this as the event SignForgeA .

For the event SignForgeA to occur, the adversary A needs to

generate a receiver key that has a valid zero-knowledge proof 𝜋 ,

or where the underlying witness is forged, a valid signature sig1
sig

the signature scheme DS, i.e., it needs to generate a key pk′ ≔

(ID′, vk′, 𝑐 ′, 𝜋) such that NIZKL1
.Verify(CRSRand, (ID

′, vk′, 𝑐 ′,

vk𝐴
sig
), 𝜋) = 1 where 𝜋 is generated using usk′ ≔ (k, vksig, sksig,

skPE, 𝜎
1
sig
, 𝜎2

sig
, 𝜎3

sig
, 𝑥) and it must holds thatDS.Verify(vk𝐴

sig
, (k, 𝑥),

𝜎1
sig
) = 1 and DS.Verify(vk𝐴

sig
, (k, vksig), 𝜎

2
sig
) = 1. This means that

adversary A must either break the soundness of NIZK or gener-

ate a key forgery for DS as captured by the event KeyForgeA in

the proof of Theorem E.1, and which can be defined and analyzed

analogously here.

Therefore, the event SignForgeA is bounded by KeyForge, i.e.

Pr[SignForgeA] ≤ Pr[KeyForgeA], and the analysis of event

KeyForgeA follows the same reasoning as in Lemma E.3. This re-

sults in the fact that Pr[SignForgeA] = negl(𝜆), which proves the

lemma. □

Lemma E.8 (Transition from 𝐺1 to 𝐺2). The games 𝐺1 and 𝐺2

are computationally indistinguishable.

Proof. We build an adversary B that simulates 𝐺1+𝛽 towards A

when interacting with the underlying ZKNIZK
𝛽

experiment.

The adversary B behaves in the same way as described in 𝐺1

with the difference that it does not generate CRSRand by itself but

receives it from the underlying challenger. Additionally, whenever

the adversary A asks a rerandomization query to QRandKey for a

key that cannot be corrupted, i.e. where the key generation query

is for 𝑥0 ≠ 𝑥1, the adversary B behaves as described in the protocol

but uses the proof oracle of the challenger for the generation of

the proof 𝜋𝑘+1. Furthermore, the signature 𝜎1
sig

and 𝜎2
sig

are not

generated.

Finally, the adversary B outputs the same bit 𝛽 ′ returned by A.

To conclude the proof, we argue that our emulation is perfect.

The fact that the simulation is perfect follows since B generates all

components of the statement for which the proof oracle is queried

honestly.

In the case that the challenger outputs an honestly generated

CRSRand and honestly generated proofs, the adversary B is simu-

lating the game𝐺1 and in the case that the challenger simulates the

CRSRand and the proofs, the adversary B is simulating the game

𝐺2.

This concludes the simulation of the game 𝐺1+𝛽 and the lemma

follows. □

Lemma E.9 (Transition from 𝐺2 to 𝐺3). The games 𝐺2 and 𝐺3

are computationally indistinguishable.

Proof. We build an adversary B that simulates 𝐺2+𝛽 towards A

when interacting with the underlying ZKNIZK
𝛽

experiment.

The adversary B behaves in the same way as described in 𝐺2

with the difference that it does not generate CRSSign by itself but

receives it from the underlying challenger. Additionally, whenever

the adversary A asks a signing query (𝑖, pk′,𝑚) to QSign′, the

adversary B computes 𝑗 ← Detect(mpk, pk′,QK) and checks that
𝐹 (𝑥0, 𝑦0) = 1 where (𝑖, ·, ·, 𝑥0, 𝑥1) ∈ QK and (𝑗, ·, ·, 𝑦0, 𝑦1) ∈ QK .
If the check succeeds, then B queries its underlying proof oracle

to obtain 𝜋𝑠 and finishes the signature generation. Furthermore,

for all keys that cannot be corrupted, i.e. where the key generation

query is for 𝑥0 ≠ 𝑥1, the signature 𝜎
3
sig

is not generated and the

key sk𝑓𝑥 is not generated. This makes the secret key completely

independent of the attributes 𝑥0/𝑥1.
Finally, the adversary B outputs the same bit 𝛽 ′ returned by A.

To conclude the proof, we argue that our emulation is perfect.

The fact that the simulation is perfect follows since B only submits

proof queries to the underlying challenger for which the statement

fulfills the relation 𝑅L2
, which B checks as described above as

well as from the perfect correctness of the predicate encryption

scheme. In more detail, by the perfect correctness of the predicate

encryption scheme, we know that the challenger always replies,

i.e., we have that PE.Dec(sk𝑓𝑥 , ct𝑅) = 𝐹 (𝑥,𝑦). Therefore, whenever
a proof is simulated this matches the correct generation of a proof

𝜋𝑠 .

In the case that the challenger outputs an honestly generated

CRSSign and honestly generated proofs, the adversary B is simulat-

ing the game 𝐺2 and in the case that the challenger simulates the

CRSSign and the proofs, the adversary B is simulating the game

𝐺3.

This concludes the simulation of the game 𝐺2+𝛽 and the lemma

follows. □

Lemma E.10 (Transition from 𝐺3 to 𝐺4). The games 𝐺3 and

𝐺4 are computationally indistinguishable.

Proof. We build an adversary B that simulates 𝐺3+𝛽 towards A

when interacting with the underlying AHPE
𝛽

experiment.

The adversary B behaves in the same way as described in 𝐺3

with the difference that whenever the adversary A asks a key

generation query for a key that can be corrupted, i.e. 𝑥 ≔ 𝑥0 = 𝑥1,

the adversary B asks its underlying key generation oracle using 𝑥

to obtain sk𝑓𝑥 .

Additionally, when A asks a rerandomization query to

QRandKey for a key that cannot be corrupted, i.e. where the key

generation query is for 𝑥0 ≠ 𝑥1, the adversary B behaves as de-

scribed in the protocol but uses its underlying left-or-right oracle

for the generation of the ciphertext, i.e. for every rerandomiza-

tion query for a key 𝑖 , B retrieves (𝑖, ·, ·, 𝑥0, 𝑥1) ∈ QK and submits

(𝑥0, 𝑥1) to its underlying challenger to obtain ct which it uses for

the rerandomization.

Furthermore, for every sign query (𝑗, pk𝑅,𝑚) to QSign′ asked

by A, B computes 𝑗 ← Detect(mpk, pk′,QK) checks the list QK
to find (𝑖, ·, ·, 𝑥0, 𝑥1) and (𝑗, ·, ·, 𝑦0, 𝑦1). If no such entries exists, B
outputs ⊥. Otherwise, B checks that that the attributes associated

with the public keys pk𝑆 and pk𝑅 fulfill the policy, i.e. it checks that

𝐹 (𝑥0, 𝑦0) = 1 and 𝐹 (𝑥1, 𝑦1) = 1, and if this is the case simulates the

proof and generates the signature.

Finally, the adversary B outputs the same bit 𝛽 ′ returned by A.

253

In the next step, we need to argue that the adversary B is a valid

adversary with respect to the AHPE
𝛽

experiment if the adversary A

fulfills all the checks described above, i.e. is a valid adversary in the

𝐺3+𝛽 (AHULPCS
𝛽

) game. One of the validity requirements above (and

in the attribute hiding game) thatA needs to fulfill is that for every

𝑥 where 𝑥 ≔ 𝑥0 = 𝑥1 with (·, ·, ·, 𝑥0, 𝑥1) ∈ QS it needs to hold

that 𝐹 (𝑥, 𝑥0) = 𝐹 (𝑥, 𝑥1) for all the challenge queries (𝑥0, 𝑥1). This
results in the fact that 𝑓𝑥 (𝑥0) = 𝑓𝑥 (𝑥1) for all (·, ·, ·, 𝑥, 𝑥) ∈ QC and

for all challenge queries (𝑥0, 𝑥1). This matches exactly the validity

requirements asked for B2 in the AHPE
𝛽

experiment. Therefore, it

follows that the adversary B2 is a valid adversary with respect to

the AHPE
𝛽

experiment and does not abort if the adversary A is a

valid adversary in the game 𝐺2+𝛽 (AHULPCS
𝛽

).

To conclude the proof, we observe that the difference in the two

games is the generation of the challenge rerandomization keys,

which either consists of a ciphertext encrypting the attribute set 𝑥0
or the attribute set 𝑥1. The computation of the ciphertexts is done

by the underlying challenger of the attribute-hiding game. Together

with the analysis above, it follows that, for a valid adversaryA, the

game𝐺3+𝛽 is simulated towards A when the challenger encrypts

the attribute set 𝑥𝛽 for 𝛽 ∈ {0, 1}.
This concludes the simulation of the game 𝐺3+𝛽 and the lemma

follows. □

E.3.1 Analysis in the case of Separable & RBAC Policies.

Separable Policies. The security proof for the scheme covering

separable policies proceeds in almost the same way as the proof

for general policies. The only difference is the transition from𝐺3

to 𝐺4 (Lemma E.10), where in the proof for separable policies we

need to rely on the IND-CPA security of the underlying public-key

encryption scheme PKE instead of the attribute-hiding security of

a PKE scheme.

RBAC Policies. For the security proof of the scheme covering

RBAC policies, we also need to adjust the transition from game

𝐺3 to 𝐺4 (Lemma E.10). In this case, we need to rely on the class-

hiding property as well as the secure adaptation property. In more

detail, the class-hiding property guarantees that a switch from

attributes 𝑥0 to 𝑥1 (in the case of outsider attribute-hiding or in

the case of the equality policy) is possible and the secure adap-

tation property of SEQ ensures that the ChgRepR algorithm is

as good as re-generating ®𝑀 , which fulfills the same purpose as

the re-encryption for the schemes covering general and separable

policies.

E.4 Unlinkability

This section, covers the unlinkability proof of our schemes.

Theorem E.11. Let 𝑇Rand = poly(𝜆). If PRF is a pseudoran-

dom function, NIZKL1
= (NIZK.Setup,NIZK.Prove,NIZK.Verify)

a NIZK proof system for L1, NIZKL1
= (NIZK.Setup,NIZK.Prove,

NIZK.Verify) a NIZK proof system for L1 and DS = (DS.Setup,
DS.Sign,DS.Verify) an unforgeable signature scheme, then the con-

struction ULPCS = (Setup,KeyGen, Enc,Dec), defined in Figures 12

and 13, is unlinkable. Namely, for any valid PPT adversaryA, it holds

that AdvLink
ULPCS,A

(𝜆) = negl(𝜆).

Proof. To prove this statement, we use a hybrid argument where

the games are defined as follows:

Game 𝐺0: This game is the same as the experiment LinkULPCS0 (1𝜆,
A).

Game 𝐺1: In this game, we change the behavior of the key gen-

eration oracle QKeyGen and define a modified key gener-

ation oracle QKeyGen′. The oracle QKeyGen′ is defined

as QKeyGen with the difference that it does not output a

key collision, i.e. it does not output the same public key

twice, and therefore does also not output the same public

key as the challenge key. More formally, if for a query 𝑥 ′,

the output is pk′ ≔ (ID′, . . .) where QK already contains

(. . . , pk∗ ≔ (ID∗, . . .), . . .) with ID′ = ID∗ or ID′ = ID′

with pk ≔ (ID, . . .) being the challenge public key, then

the key-generation oracle QKeyGen′ outptus ⊥, otherwise
it returns pk′. The transition from 𝐺0 to 𝐺1 is justified by

the bounds on the key collision event as described in the

proof of Theorem E.1. We show this transition more formally

in Lemma E.12.

Game 𝐺2: In this game, we change the behavior of the sign oracle

QSign and define a modified sign oracle QSign′. As in the

proof of Theorem E.6, the oracle QSign′ is defined as QSign

with the difference that it only answers queries for receiver

keys that it can detect to have come out of the key-gen

oracle. For further details on QSign′, we refer to the proof

of Theorem E.6. The transition from 𝐺1 to 𝐺2 is justified by

the bounds on the key forgery event as described in the proof

of Theorem E.1 and because the detect property is fulfilled by

the scheme. This transition has been shown in Lemma E.7.

Game 𝐺3: In this game, we change from an honestly generated

CRSRand and honestly generated proofs w.r.t. rerandomiza-

tions of the challenge public key pk to a simulated CRSRand
and simulated proofs for the rerandomizations of pk. Due

to the fact that the proofs for the rerandomizations are now

simulated, the PRF key k is not needed as part of the witness

anymore. The transition from 𝐺2 to 𝐺3 is justified by the

zero-knowledge property of NIZKL1
. We show this transi-

tion more formally in Lemma E.13.

Game 𝐺4: In this game, we change from an honestly generated

CRSSign and honestly generated proofs for signing queries

w.r.t. the challenge public key pk acting as the sender to

a simulated CRSSign and simulated proofs. That is, upon a

signing query for pk, acting as the sender, we check, from

the transcript of the generated keys and using the detect

function, if the requested key pair in the signing query ful-

fills the policy. If this is the case, the proof 𝜋𝑠 is simulated

using CRSSign. Since the proof 𝜋𝑠 is now simulated, the PRF

key k is not needed as part of the witness anymore. The

transition from𝐺3 to 𝐺4 is justified by the zero-knowledge

property of NIZKL2
. We show this transition more formally

in Lemma E.14.

Game 𝐺5: In this game, we change from PRF evaluations for the

updated ID’s in the rerandomization of the challenge key pk

to randomly sampled ID’s. The transition from 𝐺4 to 𝐺5 is

justified by the security of the PRF. We show this transition

more formally in Lemma E.15.

254

Game 𝐺6 : In this game, we change from randomly sampled up-

dated ID’s in the rerandomization of the challenge key pk to

PRF evaluations w.r.t. different keys. In more detail, when-

ever a new rerandomization for the challenge key pk is gen-

erated a new PRF key k𝑖 is sampled and the ID is generated

by evaluation PRF using k𝑖 on 0. The transition from 𝐺5 to

𝐺6 is justified by relying on the security of the PRF 𝑞-times

where 𝑞 is the number of rereandomization queries. Since it

holds that 𝑞 < 𝑇Rand, we can upper bound it by relying on

the security of the PRF𝑇Rand times. We show this transition

more formally in Lemma E.16.

Game 𝐺7: In this game, we change back from a simulated CRSSign
and simulated proofs to an honestly generated CRSSign and

honestly generated proofs. Here, we also reintroduce the

usage of the PRF key k, which is different for every reran-

domization, into the generation of the proof. Similar to the

transition from 𝐺3 to 𝐺4, this transition is justified by the

zero-knowledge property of NIZKL2
.

Game 𝐺8: In this game, we change back from a simulated CRSSign
and simulated proofs to an honestly generated CRSSign and

honestly generated proofs. Here, we also reintroduce the

usage of the PRF key k, which is different for every ID, into

the generation of the proof. Similar to the transition from

𝐺2 to 𝐺3, this transition is justified by the zero-knowledge

property of NIZKL1
.

Game 𝐺9: In this game, we change the behavior of the signing ora-

cle back fromQSign′ toQSign. Similar to the transition from

𝐺1 to𝐺2, this transition is justified by the event KeyForgeA .

Game 𝐺10: This game is the LinkULPCS1 (1𝜆,A) game. In this game,

we change the behavior of the key generation oracle back

from QKeyGen′ to QKeyGen. Similar to the transition from

𝐺0 to 𝐺1, this transition is justified by the event KeyCollA .

From the definition of the games it is clear that

LinkULPCS0 = 𝐺0 ≈ 𝐺1 ≈ · · · ≈ 𝐺10 = LinkULPCS1

and hence the theorem follows. □

Lemma E.12 (Transition from 𝐺0 to 𝐺1). The games 𝐺0 and

𝐺1 are computationally indistinguishable.

Proof (Sketch). As described above, the difference between the

games 𝐺0 and 𝐺1 is that in the game 𝐺0 the adversar A has access

to the key generation oracle QKeyGen and in the game 𝐺1 the

adversary A has access to the key generation oracle QKeyGen′,

which we informally described above and which is formally defined

as:

QKeyGen′(𝑥 ′): On input an attribute set 𝑥 ′, generate pk′ ≔ (ID′,
. . .) and if QK already contains an entry (. . . , pk∗ ≔ (ID∗,
. . .), . . .) with ID′ = ID∗ or if ID′ = IDwhere pk ≔ (ID, . . .)
is the challenge public key, then output ⊥. Otherwise, re-
turn pk′.

Compared to the oracle QKeyGen′, the key generation oracle

QKeyGen does not require a generated public pk′ to be entirely

new, i.e. (. . . , pk∗ ≔ (ID∗, . . .), . . .) ∉ QK with ID ≠ ID∗ and

ID′ ≠ IDwhere pk ≔ (ID, . . .) is the challenge public key. To show
that the games 𝐺0 and 𝐺1 are indistinguishable, it suffices to show

that the probability that two honestly generated IDs do not collide

is negligible. This directly matches the description of the event

KeyCollA defined in the proof of Theorem E.1 and, since the it

holds that Pr[KeyCollA] = negl(𝜆), the lemma follows. □

Lemma E.13 (Transition from 𝐺2 to 𝐺3). The games 𝐺2 and

𝐺3 are computationally indistinguishable.

Proof. This proof is very similar to the proof of Lemma E.8.

We build an adversary B that simulates 𝐺2+𝛽 towards A when

interacting with the underlying ZKNIZK
𝛽

experiment.

The adversary B behaves in the same way as described in 𝐺2

with the difference that it does not generate CRSRand by itself but

receives it from the underlying challenger. Additionally, whenever

the adversaryA asks a rerandomization query toQRandKey for the

challenge public key pk, or a rerandomization of it, the adversary

B behaves as described in the protocol but uses the proof oracle of

the challenger for the generation of the proof 𝜋𝑘+1. Furthermore,

the PRF key k is not used as a witness for the proof generation

anymore.

Finally, the adversary B outputs the same bit 𝛽 ′ returned by A.

To conclude the proof, we argue that our emulation is perfect.

The fact that the simulation is perfect follows since B generates all

components of the statement for which the proof oracle is queried

honestly.

In the case that the challenger outputs an honestly generated

CRSRand and honestly generated proofs, the adversary B is simu-

lating the game𝐺2 and in the case that the challenger simulates the

CRSRand and the proofs, the adversary B is simulating the game

𝐺3.

This covers the simulation of the game 𝐺2+𝛽 and leads to the

advantage mentioned in the lemma. □

Lemma E.14 (Transition from 𝐺3 to 𝐺4). The games 𝐺3 and

𝐺4 are computationally indistinguishable.

Proof. This proof is very similar to the proof of Lemma E.9.

We build an adversary B that simulates 𝐺3+𝛽 towards A when

interacting with the underlying ZKNIZK
𝛽

experiment.

The adversary B behaves in the same way as described in 𝐺3

with the difference that it does not generate CRSSign by itself but

receives it from the underlying challenger. Additionally, whenever

the adversary A asks a signing query (pk′,𝑚) to QSign′, the ad-

versary B computes 𝑗 ← Detect(mpk, pk′,QK) and checks that

𝐹 (𝑥,𝑦) = 1 where 𝑥 is the challenge attribute and (𝑗, ·, ·, 𝑦) ∈ QK .
If the check succeeds, then B queries its underlying proof oracle to

obtain 𝜋𝑠 and finishes the signature generation. Furthermore, the

PRF key k is not needed for the generation of the proof 𝜋𝑠 .

Finally, the adversary B outputs the same bit 𝛽 ′ returned by A.

To conclude the proof, we argue that our emulation is perfect.

The fact that the simulation is perfect follows since B only submits

proof queries to the underlying challenger for which the statement

fulfills the relation 𝑅L2
, which B checks as described above as

well as from the perfect correctness of the predicate encryption

scheme. In more detail, by the perfect correctness of the predicate

encryption scheme, we know that the challenger always replies,

i.e., we have that PE.Dec(sk𝑓𝑥 , ct𝑅) = 𝐹 (𝑥,𝑦). Therefore, whenever
a proof is simulated this matches the correct generation of a proof

𝜋𝑠 .

255

In the case that the challenger outputs an honestly generated

CRSSign and honestly generated proofs, the adversary B is simulat-

ing the game 𝐺3 and in the case that the challenger simulates the

CRSSign and the proofs, the adversary B is simulating the game

𝐺4.

This covers the simulation of the game 𝐺3+𝛽 and leads to the

advantage mentioned in the lemma. □

Lemma E.15 (Transition from 𝐺4 to 𝐺5). The games 𝐺4 and

𝐺5 are computationally indistinguishable.

Proof. We build an adversary B that simulates 𝐺4+𝛽 towards A
when interacting with the underlying security experiment for PRF.

The adversaryB behaves in the sameway as described in𝐺4 with

the difference that whenever the adversary A asks the challenge

key generation query or a rereandomization query, the adversary

B submits the corresponding index, i.e. 𝑖 ≔ 0 for a key generation

query and 𝑖 ≔ 𝑖 + 1 for a rerandomizaton query, to the underlying

PRF challenger and receives as a reply the ID that it uses to answer

the queries.

Finally, the adversary B outputs the same bit 𝛽 ′ returned by A.

To conclude the proof, we observe that the difference in the two

games is the generation of the ID’s, which is either PRF evaluation,

in which case the simulation corresponds to game𝐺4, or a random

value, in which case the simulation corresponds to game 𝐺5.

This concludes the simulation of the game 𝐺4+𝛽 and the lemma

follows. □

Lemma E.16 (Transition from 𝐺5 to 𝐺6). The games 𝐺5 and

𝐺6 are computationally indistinguishable.

Proof. We build an adversary B that simulates 𝐺5+𝛽 towards A

when interacting with 𝑇 instances7 of the security experiment for

PRF.

The adversaryB behaves in the sameway as described in𝐺5 with

the difference that whenever the adversary A asks the challenge

key generation query or a rereandomization query, the adversary

B submits the 0 query to the 𝑖’th PRF instance. In more detail, for

the challenge key generation query, the adversary B queries the

first instance of the PRF experiment on 0 ot obtain the ID, for the

first rerandomization query, the adversary B queries the second

instance of the PRF experiment on 0 to obtain the ID and so on.

Finally, the adversary B outputs the same bit 𝛽 ′ returned by A.

To conclude the proof, we observe that the difference in the two

games is the generation of the ID’s, which is either a random value,

in which case the simulation corresponds to game 𝐺4, or a fresh

PRF evaluation on zero, in which case the simulation corresponds

to game 𝐺5.

This concludes the simulation of the game 𝐺4+𝛽 and the lemma

follows. □

E.4.1 Analysis in the case of Separable & RBAC Policies.

7where𝑇 instances means multiple PRF experiments that either all output random
values or all PRF evaluations on a fresh key

Separable Policies. The security proof for the scheme covering

separable policies proceeds in the same way as the proof for gen-

eral policies. In both of these cases, general policies and separable

policies, it is not necessary to rely on any of the properties of the

predicate encryption scheme or the public-key encryption scheme

since, in both cases, rerandomization and key generation, a fresh

ciphertext is being generated. Therefore no indistinguishability

needs to be argued.

RBAC Policies. In the RBAC case, there is a difference between the

rerandomization and the key generation w.r.t. the SEQ scheme. In

the case of a fresh key generation, a signature is generated on which

ChgRepR is applied once. In the case of an actual rerandomization,

the ChgRepR is applied multiple times on a single signature. To

argue that these two cases are indistinguishable, we need to rely on

the secure adaptation property of SEQ which can be understood as

an additional game transition between 𝐺5 and 𝐺6 (Lemma E.16).

F DETAILS ON THE INSTANTIATIONS

F.1 Cryptographic Algorithms

Given the formal definitions from Appendix A, this section provides

a detailed overview on the underlying cryptographic tools that we

implement to realize ul-PCS.

F.1.1 Dodis-Yampolskiy PRF. This PRF is defined over a cyclic

group G of prime order 𝑝 with generator G and can be described

as follows:

• PRF.Eval(k, 𝑥): It takes a key k ∈ Z𝑝 and input 𝑥 as inputs.

It then computes 𝑦 = G1/(k+𝑥) and returns 𝑦 as output.

In this scheme, pseudo-randomness is achieved through deci-

sional Diffie-Hellman inversion assumption, which only holds for

small domains, i.e. input 𝑥 should be super-logarithmic in the secu-

rity parameters.

F.1.2 BLS Signatures. For a given assymetric bilinear pairing group

(G1,G2,G𝑇 , 𝑒,G1,G2) and a hash-to-curve function 𝐻 : {0, 1}∗ →
G2, as denoted by public parameters pp, we recall the BLS signa-

tures [16] as follows:

• DS.Setup(1𝜆): Take pp as input. Sample 𝑥
$
← Z∗𝑝 . Return

(sk, vk) = (𝑥,G𝑥
1).

• DS.Sign(sk,𝑚): Take secret key sk and message𝑚 ∈ {0, 1}∗

as inputs. Return 𝜎 := 𝐻 (𝑚)sk as output.
• DS.Verify(vk, 𝜎,𝑚): Take the verification key vk, a signa-

ture 𝜎 and message𝑚 as inputs. If the equation 𝑒 (G1, 𝜎) =
𝑒 (vk, 𝐻 (𝑚)) holds, return 1 and 0 otherwise.

F.1.3 FHS SPS-EQ. We recall the SPS-EQ construction proposed

by Fuchsbauer et al. in [39] as follows:

• SEQ .SetupR (1
𝜆): Run BG← BG(1𝜆) and return pp := BG

as output.

• SEQ .KeyGenR (pp, ℓ): Take pp and vector size ℓ > 1 as in-

puts. Sample the secret key sk as a set of random integers

sk := {𝑥𝑖 }𝑖∈[1,ℓ]
$
← (Z∗𝑝)

ℓ . Compute vk := {𝑋𝑖 = G
𝑥𝑖
1 }𝑖∈[1,ℓ] .

Return (sk, vk) as output.

256

• SEQ .SignR (pp, sk, ®𝑀): Parse ®𝑀 := (𝑀𝑖)𝑖∈[1,ℓ] ∈ (G2)
ℓ and

sk : {𝑥𝑖 }𝑖∈[1,ℓ] . Sample 𝑎
$
← Z∗𝑝 and return 𝜎 := (𝑅, 𝑆,𝑇) :=

((∏
𝑖∈[1,ℓ] 𝑀

𝑥𝑖
𝑖

)𝑎
,G

1/𝑎
2 ,G

1/𝑎
1

)
∈ G22 × G1 as output.

• SEQ .VerifyR (pp, vk, ®𝑀,𝜎): Parse vk := {𝑋𝑖 }𝑖∈[1,ℓ] ,

®𝑀 := (𝑀𝑖)𝑖∈[1,ℓ] and 𝜎 := (𝑅, 𝑆,𝑇). If the equations
∏

𝑖∈[1,ℓ] 𝑒 (𝑋𝑖 , 𝑀𝑖) = 𝑒 (𝑇, 𝑅) and 𝑒 (G1, 𝑆) = 𝑒 (𝑇,G2) hold
and𝑀𝑖 ≠ 1G2

for 𝑖 ∈ [1, ℓ] return 1 and 0 otherwise.

• SEQ .ChgRepR (pp, ®𝑀,𝜎, 𝜇, vk): Parse 𝜎 := (𝑅, 𝑆,𝑇), ®𝑀 :=

(𝑀𝑖)𝑖∈[1,ℓ] ∈ (G2)
ℓ and vk := {𝑋𝑖 }𝑖∈[1,ℓ] along with an inte-

ger 𝜇 ∈ Z∗𝑝 as input. If the signature be valid it samples 𝜁
$
←

Z
∗
𝑝 and then returns 𝜎 ′ := (𝑅′, 𝑆 ′,𝑇 ′) ← (𝑅𝜁 𝜇 , 𝑆1/𝜁 ,𝑇 1/𝜁)

on a re-randomized message ®𝑀 ′ = ®𝑀𝜇 as output.

For simplicity we take a slightly modified variant of the de-

scribed SPS-EQ as a standard SPS. Consider pairing group of the

form (G1,G2,G𝑇 , 𝑝, 𝑒,G1,G2), this scheme can be summarized as

follows:

• SPS.KeyGen(pp, ℓ): Take pp and vector size ℓ > 1 as in-

puts. Sample the secret key sk as a set of random integers

sk := {𝑥𝑖 }𝑖∈[1,ℓ]
$
← (Z∗𝑝)

ℓ . Compute vk := {𝑋𝑖 = G
𝑥𝑖
2 }𝑖∈[1,ℓ] .

Return (sk, vk) as output.

• SPS.Sign(pp, sk, ®𝑀): Parse ®𝑀 := (𝑀𝑖)𝑖∈[1,ℓ] ∈ G
ℓ
1 and sk :=

{𝑥𝑖 }𝑖∈[1,ℓ] . Sample 𝑎
$
← Z

∗
𝑝 and output 𝜎 := (𝑅, 𝑆,𝑇) :=

((∏
𝑖∈[1,ℓ] 𝑀

𝑥𝑖
𝑖

)𝑎
,G

1/𝑎
1 ,G

1/𝑎
2

)
∈ G21 × G2.

• SPS.Verify(pp, vk, 𝜎, ®𝑀): Parse vk := {𝑋𝑖 }𝑖∈[1,ℓ] ∈ G
ℓ
2,
®𝑀 :=

(𝑀𝑖)𝑖∈[1,ℓ] ∈ (G1)
ℓ and 𝜎 := (𝑅, 𝑆,𝑇). If both equations

∏
𝑖∈[1,ℓ] 𝑒 (𝑀𝑖 , 𝑋𝑖) = 𝑒 (𝑅,𝑇) and 𝑒 (𝑆,G2) = 𝑒 (G1,𝑇) hold

and𝑀𝑖 ≠ 1G1
for 𝑖 ∈ [1, ℓ] return 1 and 0 otherwise.

F.1.4 ElGamal Encryption. Consider a group description (G,G, 𝑝),
the ElGamal encryption [32] can be formalized as follows:

• PKE.Setup(1𝜆): It takes security parameter 𝜆 as input and

then samples random integer sk← Z∗𝑝 and computes pk =

Gsk. It then returns the key-pair (sk, pk) as output.
• PKE.Enc(pp, pk,𝑚): It takes pp, public key pk and message

𝑚 ∈ G as inputs. It samples a random integer 𝑟
$
← Z∗𝑝 and

returns the ciphertext ct = (ct1, ct2) = (G𝑟 ,𝑚 · pk𝑟) as
output.

• PKE.Dec(pp, sk, ct): It takes pp, the secret key sk and cipher-

text ct as inputs. It then returns𝑚′ = ct2/(ct1)
sk as output.

The security of this construction relies on the hardness of DDH

assumption over group G. Over a bilinear group, if SXDH holds

(DDH is hard in G1 and G2), like Type-III bilinear groups, then

ElGamal encryption remains secure over source groups (G1,G1, 𝑝)
and (G2,G2, 𝑝).

F.1.5 Pedersen Commitment. Commitment schemes enable a com-

mitter to commit to a hidden value by ensuring two main security

properties: (perfectly) hiding and (computationally) binding. The

hiding of the commitment ensures that no information about the

hidden committed value is revealed and binding guarantees no com-

mitter can open the same commitment under two distinct messages.

The Pedersen commitment [58] can be described as follows:

• COM.Setup(1𝜆): Take security parameter, 𝜆, as input. Sam-

ple G
$
← G and H

$
← G. Return the public parameters

pp = (G, 𝑝,G,H) as output.
• COM.Com(pp,𝑚;𝜏): Take public parameters pp, a message

𝑚 ∈ Zp and random opening 𝜏 as inputs. Output cm =

G𝑚H𝜏 .

• COM.Verify(pp, cm,𝑚′, 𝜏 ′): Compute cm′ = G𝑚′H𝜏 ′ . Re-

turn 1, if cm = cm′; otherwise return 0.

F.1.6 Generalized Pedersen Commitments. The Pedersen commit-

ment can be extended to the Generalized Pedersen commitment

that enables to commit to more than one message. To be more

precise, the message space can be defined asM = Z
𝑛
𝑝 , where 𝑛 is

an upper bound for the number of committed messages.

• COM.Setup(1𝜆, 𝑛): Take security parameter, 𝜆 and an inte-

ger𝑛 as inputs. Sample𝑛+1 randomgeneratorsG,H1,H2, . . . ,

H𝑛
$
← G(𝑛+1) . Return the public parameters pp = (G, 𝑝,G,

H1, . . . ,H𝑛) as output.
• COM.Com(pp, ®𝑚,𝜏): Take the public parameters pp, a mes-

sage vector ®𝑚 := (𝑚1, . . . ,𝑚𝑛) and random opening 𝜏 ∈ Z𝑝
as inputs. Output cm = G𝜏 ∏

𝑗=1 H
𝑚𝑖

𝑖 .

• COM.Verify(pp, cm, ®𝑚′, 𝜏 ′): Compute cm′ = G𝜏′∏𝑛
𝑗=1 H

𝑚′𝑖
𝑖 .

Return 1 if cm = cm′ and 0 otherwise.

F.1.7 Inner-product predicate encryption by Okamoto-Takashima.

We give a brief overview of what we briefly refer to as OT12

scheme [57].While describing the full scheme is outside the scope of

this overview section, we briefly describe the basics behind public-

key generation, encryption and decryption. Assume we are in a

bilinear group setting pp := (G1,G2,G𝑇 , 𝑝, 𝑒,G1,G2) as before. We

describe there the predicate-only version already adapted to the

asymmetric pairing case that we use in our implementation.

Public key and master secret. We first sample an invertible matrix

𝑋 of dimension𝑁 = 4𝑛+2 (where𝑛 is the number of attributes) with

elements in F∗𝑝 and consider the matrix𝜓 · 𝑋−1 for a random, non-

zero field element𝜓 . For syntactical purposes only, the transpose is

actually considered, i.e., we define 𝑌 = 𝜓 · (𝑋−1)
𝑇
.

For notational purposes, we define basis vec-

tors ®𝑎𝑖 = (1G2
, . . . , 1G2︸ ︷︷ ︸
𝑖−1

,G2, 1G2
, . . . , 1G2︸ ︷︷ ︸
𝑁−𝑖

) and ®𝑎∗𝑖 =

(1G1
, . . . , 1G1︸ ︷︷ ︸
𝑖−1

,G1, 1G1
, . . . , 1G1︸ ︷︷ ︸
𝑁−𝑖

). For a an element 𝑐 ∈ F𝑝 the

notation 𝑐 ®𝑎𝑖 is shorthand for (1G2
, . . . , 1G2

,G𝑐
2, 1G2

, . . . , 1G2
). And

for two vectors ®𝑏 = (𝐵1, . . . , 𝐵𝑁) ∈ G𝑖 and ®𝑏
′
= (𝐵′1, . . . , 𝐵

′
𝑁
) ∈ G𝑖 ,

we write ®𝑏 ⊙ ®𝑏 ′ := (𝐵1𝐵
′
1, . . . , 𝐵𝑁 𝐵′

𝑁
). Finally, a pairing operation

continued for vectors is defined: let ®𝑐 = (𝐶1, . . . ,𝐶𝑁) ∈ G
𝑁
1 and

®𝑐 ′ = (𝐶 ′1, . . . ,𝐶
′
𝑁
) ∈ G𝑁2 , then 𝑒 (®𝑐, ®𝑐 ′) :=

∏𝑁
𝑖=1 𝑒 (𝐶𝑖 ,𝐶

′
𝑖).

Armed with these tools and in particular the matrices 𝑋 = (𝑥𝑖, 𝑗)
and 𝑌 = (𝑦𝑖, 𝑗), we now define the public key and the master secret

key: the public key B = (®𝑏1, . . . , ®𝑏𝑁) consists of 𝑁 vectors ®𝑏𝑖 :=

257

⊙𝑁
𝑗=1 𝑥𝑖, 𝑗 ®𝑎 𝑗 . The master secret key B∗ = (®𝑏∗1, . . . ,

®𝑏∗
𝑁
) consists of

𝑁 vectors ®𝑏∗𝑖 :=
⊙𝑁

𝑗=1 𝑦𝑖, 𝑗 ®𝑎
∗
𝑗 .

We observe that there is the following relationship between B

and B∗ that follows from the definition of matrices 𝑋 and 𝑌 :

𝑒 (®𝑏∗𝑖 ,
®𝑏 𝑗) = 𝑒 (G1,G2)

𝑥𝑖,1𝑦 𝑗,1+𝑥𝑖,2𝑦 𝑗,2+...+𝑥𝑖,𝑁 𝑦 𝑗,𝑁

=

{
𝑒 (G1,G2) =: G𝑇 , if 𝑖 = 𝑗,

1G𝑇 , if 𝑖 ≠ 𝑗 .

Key generation. For an attribute vector ®𝑣 ∈ F𝑛𝑝 \ {®0}, one first

samples 𝜎 ← F𝑝 and ®𝑛 ← F𝑛𝑝 at random. We then form the vector

®𝑧∗ = (1, 𝜎®𝑣, 0, . . . , 0
︸ ︷︷ ︸

2𝑛

, ®𝑛, 0). The key for attribute ®𝑣 is defined as ®𝑘∗ :=

⊙𝑁
𝑖=1 𝑧

∗
𝑖
®𝑏∗𝑖 .

Encryption. For encryption, which is done relative to attribute

vector ®𝑥 ∈ F𝑛𝑝 \ {®0}, one samples random values 𝜔,𝜙 ← F𝑝 and

defines the helper vector ®𝑧 := (1, 𝜔 ®𝑥, 0, . . . , 0
︸ ︷︷ ︸

3𝑛

, 𝜙). The ciphertext is

defined as ®𝑐 :=
⊙𝑁

𝑖=1 𝑧𝑖
®𝑏𝑖 .

Decryption. In the predicate-only case, a key ®𝑘∗ decrypts a ci-

phertext ®𝑐 iff 𝑒 (®𝑘∗, ®𝑐) = G𝑇 .

We observe, for correctness, that due to the above relation

between B∗ and B, the operation 𝑒 in fact computes the inner

product of the vectors ®𝑧∗ and ®𝑧 in the exponent of G𝑇 . That is,

𝑒 (®𝑘∗, ®𝑐) = 𝑒 (G1,G2)
1+𝜔𝜎 ⟨®𝑣,®𝑥 ⟩ , and therefore 𝑒 (®𝑘∗, ®𝑐) = G𝑇 when

the inner product ⟨®𝑣, ®𝑥⟩ is zero.
We refer to [57] for the proof that this scheme is attribute hiding

in the sense defined in Appendix A.8.

F.2 Proof Systems

In this section, we give some background on the proof systems we

use in our implementation with a selection of useful basic protocols.

We use the standard sigma protocols [60] as well as some re-

cent techniques described in [30, 53]. To make the schemes non-

interactive, we use the Fiat-Shamir paradigm [36] w.r.t. a hash

functions 𝐻 : {0, 1}∗ → Z𝑝 . In essence, whenever the prover has

the knowledge of scalar witnesses, we use sigma protocols to obtain

an efficient zero-knowledge proof.

Additionally, we use Groth-Sahai (GS) proof systems [47]

when the witness is a group element with hidden dis-

crete logarithms. Over an asymmetric bilinear group

(G1,G2,G𝑇 , 𝑝, 𝑒,G1,G2), this construction can prove the

satisfiability of any pairing-product equation (PPE) of the form∏𝑛
𝑖=1 𝑒 (𝐴𝑖 ,Y𝑖)

∏𝑚
𝑖=1 𝑒 (X𝑖 , 𝐵𝑖)

∏𝑚
𝑗=1

∏𝑛
𝑖=1 𝑒 (X𝑗 ,Y𝑖)

𝛾𝑖,𝑗 = 𝑇 , where

X1, . . . ,X𝑚 ∈ G1, Y1, . . . ,Y𝑛 ∈ G2 are the witnesses given as a

commitment and 𝑇 ∈ G𝑇 , 𝐴1, . . . , 𝐴𝑛 ∈ G1, 𝐵1, . . . , 𝐵𝑚 ∈ G2 and
{𝛾𝑖, 𝑗 }𝑖∈[1,𝑚], 𝑗 ∈[1,𝑛] ∈ Z𝑝 are constant values which are a part of

the instance or publicly known. Another advantage of using GS

proofs is the ability to use verification batching techniques, such as

the one described in this paper [49].

Finally, the range-proof [18] allows a user to prove that a hidden

value lies within a certain range. In the proposed constructions,

the number of re-randomizations is upper bounded by a maximum

number 𝑇Rand that is fixed in the setup. In order to prove that

this condition is fulfilled, our instantiation relies on range-proofs

proposed by Bünz et al. [19], known as Bulletproofs.

F.2.1 Sigma protocols. We first summarize the utilized sigma pro-

tocols (that is, the non-interactive versions via the Fiat-Shamir

heuristic) in our efficient instantiation and give an overview on the

techniques implied in their implementations. All the protocols are

assumed a bilinear group setting (G1,G2,G𝑇 , 𝑝, 𝑒,G1,G2) and the

Pedersen commitment.

Σ-Dlog{(𝑎) | 𝐴 = G𝑎}

•Prove(CRS, 𝑥,𝑤): Takes the instance 𝑥 = (𝐴) and the witness

𝑤 = (𝑎) as inputs. It then samples 𝑟
$
← Z∗𝑝 and computes 𝑅 = G𝑟

and challenge 𝑐 = 𝐻 (𝐴, 𝑅,G) and forms 𝑧 = 𝑟 −𝑐𝑎 mod 𝑝 . It then

returns the proof 𝜋 = (𝑐, 𝑧, 𝑅) as output.

•Verify(CRS, 𝑥, 𝜋): Takes the instance 𝑥 = (𝐴) and proof 𝜋 =

(𝑐, 𝑧, 𝑅) as inputs. It then computes 𝑐 ′ = 𝐻 (𝐴, 𝑅,G) and checks

the equality of 𝑐 ′ = 𝑐 and 𝑅 = 𝐴𝑐G𝑧 . It returns 1 if they hold and

0 otherwise.

Figure 20: Non-interactive proof of knowledge of Dlog.

Proving the Knowledge of Discrete Logarithm. Figure 20 describes

a non-interactive sigma protocol that enables a prover to prove the

knowledge of a scalar witness 𝑎 ∈ Z𝑝 under the public instance of

𝐴 = G𝑎 , where G is a generator of a group G of prime order 𝑝 . Note

that the hash function 𝐻 : {0, 1}∗ → Z𝑝 is modeled in the random

oracle model.

Σ-ElGamal{(𝑚, 𝑟, 𝑒) | ct1 = G𝑟
1 ∧ ct2 = G𝑚

1 pk𝑟 ∧ cm = G𝑚H𝑒 }

•Prove(CRS, 𝑥,𝑤): Takes the instance 𝑥 = (ct1, ct2, cm)

and the witness 𝑤 = (𝑚, 𝑟, 𝑒) as inputs. It then samples

𝑟1, 𝑟2, 𝑟3
$
← Z

∗
𝑝 and computes 𝑅1 = G

𝑟1
1 , 𝑅2 = G

𝑟2
1 pk

𝑟1 and

𝑅3 = COM.Com(pp, 𝑟2; 𝑟3) = G𝑟2H𝑟3 , the challenge 𝑐 =

𝐻 (ct1, ct2, cm, 𝑅1, 𝑅2, 𝑅3,G,H) and forms 𝑧1 = 𝑟1 − 𝑐𝑟 mod 𝑝 ,

𝑧2 = 𝑟2 − 𝑐𝑚 mod 𝑝 and 𝑧3 = 𝑟3 − 𝑐𝑒 mod 𝑝 . It then returns the

proof 𝜋 = (𝑐, 𝑧1, 𝑧2, 𝑧3, 𝑅1, 𝑅2, 𝑅3) as output.

•Verify(CRS, 𝑥, 𝜋): Takes the instance 𝑥 = (ct1, ct2, cm) and proof

𝜋 = (𝑐, 𝑧1, 𝑧2, 𝑧3, 𝑅1, 𝑅2, 𝑅3) as inputs. It then computes 𝑐 ′ =

𝐻 (ct1, ct2, cm, 𝑅1, 𝑅2, 𝑅3,G,H) and checks the equality of equa-

tions 𝑐 ′ = 𝑐 , 𝑅1 = ct𝑐1G
𝑧1
1 , 𝑅2 = G

𝑧2
1 pk𝑧1ct𝑐2 and 𝑅3 = G𝑧2H𝑧3cm𝑐 .

It returns 1 if all the equations hold; 0 otherwise.

Figure 21: Non-interactive proof of knowledge of ElGamal

encrypted value.

Proving the Knowledge of a Committed value and its ElGamal

encryption. Figure 21 describes a sigma protocol proving the knowl-

edge of a palintext𝑚 encrypted based on ElGamal encryption and

committed via Pedersen commitment. In other words, proving the

258

knowledge of scalar message𝑚 ∈ Z𝑝 such that cm = G𝑚H𝑒 and

simultanously we have, ct = (ct1, ct2) = (G
𝑟
1,G

𝑚
1 pk𝑟). The hash

function 𝐻 : {0, 1}∗ → Z𝑝 is modeled in the random oracle model.

Proving the Equality of Committed Values in different groups. We

extend the protocol proposed in [30] s.t. for a given cyclic groups

G1 and G2 of prime order 𝑝 , Figure 22 describes a sigma protocol

enabling a prover to prove that two commitments cm1 = G𝑚
1 H

𝑒1
1 K

𝑢1

1
and cm2 = G𝑚

2 H
𝑒2
2 K

𝑢2

2 are committing to the same message𝑚. Note

thatG1,H1,K1 ∈ G1 andG2,H2,K2 ∈ G2 s.t. the discrete logarithms

logG1
(H1), logG1

(K1) and logG2
(H2), logG2

(K2) are unknown to

the prover. The hash function 𝐻 ′ : {0, 1}∗ → Z2𝑘 , where 𝑘 is a

fixed integer and 2𝑘 < 𝑝 is modeled in the random oracle model.

Σ-Bridging{(𝑚, 𝑒1, 𝑒2, 𝑢1, 𝑢2) | cm1 = G𝑚
1 H

𝑒1
1 K

𝑢1

1

∧ cm2 = G𝑚
2 H

𝑒2
2 K

𝑢2

2 }

•Prove(CRS, 𝑥,𝑤): Takes the instance 𝑥 = (cm1, cm2)

and the witness 𝑤 = (𝑚, 𝑒1, 𝑒2, 𝑢1, 𝑢2) as inputs. It

then samples 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5
$
← Z

∗
𝑝 and computes

𝑅1 = G
𝑟1
1 H

𝑟2
1 K

𝑟3
1 , 𝑅2 = G

𝑟1
2 H

𝑟4
2 K

𝑟5
2 and the challenge

𝑐 = 𝐻 ′(cm1, cm2, 𝑅1, 𝑅2,G1,H1,K1,G2,H2,K2) and forms

𝑧1 = 𝑟1 −𝑐𝑚 mod 𝑝 , 𝑧2 = 𝑟2 −𝑐𝑒1 mod 𝑝 , 𝑧3 = 𝑟3 −𝑐𝑢1 mod 𝑝 ,

𝑧4 = 𝑟4 − 𝑐𝑒2 mod 𝑝 and 𝑧5 = 𝑟5 − 𝑐𝑢2 mod 𝑝 . It then returns

the proof 𝜋 = (𝑐, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑅1, 𝑅2) as output.

•Verify(CRS, 𝑥, 𝜋): Takes the instance 𝑥 = (cm1, cm2) and proof

𝜋 = (𝑐, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑅1, 𝑅2) as inputs. It then computes 𝑐 ′ =

𝐻 ′(cm1, cm2, 𝑅1, 𝑅2,G1,H1,K1,G2,H2,K2) and checks the equal-

ity of 𝑐 ′ = 𝑐 , 𝑅1 = cm𝑐
1G

𝑧1
1 H

𝑧2
1 K

𝑧3
1 and 𝑅2 = cm𝑐

2G
𝑧1
2 H

𝑧4
2 K

𝑧5
2 . It

returns 1 if the checks hold and 0 otherwise.

Figure 22: Non-Interactive proof of Equality of Two Commit-

ments.

Proving a Multiplicative Relation on Committed Values. Figure 23

describes a sigma protocol to prove the knowledge of committed val-

ues and also a multiplicative relation between them. More precisely,

this protocol enables to prove the knowledge of integers 𝑥1 and 𝑥2
s.t. 𝑥3 = 𝑥1𝑥2 mod 𝑝 by issuing the commitments cm𝑖 = G𝑥𝑖H𝑒𝑖

for 𝑖 = 1, 2, 3. Note that the hash function 𝐻 ′ : {0, 1}∗ → Z2𝑘 ,

where 𝑘 is a fixed integer and 2𝑘 < 𝑝 is modeled in the random

oracle model.

Σ-MultCom{{(𝑥 𝑗 , 𝑒 𝑗)}
3
𝑗=1 | cm𝑖 = G𝑥𝑖H𝑒𝑖 for 𝑖 = 1, 2, 3

∧ 𝑥3 = 𝑥1𝑥2 mod 𝑝

•Prove(CRS, 𝑥,𝑤): Takes the instance 𝑥 = (cm1, cm2, cm3)

and the witness 𝑤 = (𝑥1, 𝑥2, 𝑥3, 𝑒1, 𝑒2, 𝑒3) as inputs. It then

samples 𝑟1, 𝑟2, 𝑟3
$
← Z

∗
𝑝 and 𝑠, 𝑠1, 𝑠2, 𝑠3

$
← Z

∗
𝑝 and com-

putes 𝑅𝑖 = G𝑟𝑖H𝑠𝑖 and 𝑅 = cm
𝑟2
1 H

𝑠 , the challenge 𝑐 =

𝐻 ′(cm1, cm2, cm3, 𝑅, 𝑅1, 𝑅2, 𝑅3,G,H) and forms 𝑧𝑖 = 𝑟𝑖 − 𝑐𝑥𝑖

mod 𝑝 , 𝑡𝑖 = 𝑠𝑖 − 𝑐𝑒𝑖 mod 𝑝 for 𝑖 = 1, 2, 3 and 𝑡 = 𝑠 − 𝑐𝑒

mod 𝑝 , where 𝑒 = 𝑒3 − 𝑒1𝑥2 mod 𝑝 . It then returns the proof

𝜋 = (𝑐, 𝑧1, 𝑧1, 𝑧3, 𝑡1, 𝑡2, 𝑡3, 𝑡) as output.

•Verify(CRS, 𝑥, 𝜋): Takes the instance 𝑥 = (cm1, cm2, cm3) and

proof 𝜋 = (𝑐, 𝑧1, 𝑧1, 𝑧3, 𝑡1, 𝑡2, 𝑡3, 𝑡) as inputs. It then computes

𝑐 ′ = 𝐻 ′(cm1, cm2, cm3, 𝑅, 𝑅1, 𝑅2, 𝑅3,G,H) and checks the equal-

ity of equations 𝑐 ′ = 𝑐 , 𝑅𝑖 = G𝑧𝑖H𝑡𝑖 cm𝑐
𝑖 for 𝑖 = 1, 2, 3 and

𝑅 = cm𝑐
3cm

𝑧2
1 H𝑡 . It returns 1 if they hold and 0 otherwise.

Figure 23: Non-Interactive proof of multiplicative relation

on committed values.

Proving the Knowledge of a DY PRF key and its Well-Formedness.

Figure 24 recalls the DY PRF well-formedness protocol described

in [30]. As part of this protocol, a prover using DY PRF key k shows

that the PRF output is formed correctly under a given input ctr, i.e.

ID = PRF.Eval(k, ctr) = G
1/(k+ctr)
1 .

Σ-PRF{(k, ctr) | ID = G
1/(k+ctr)
1 }

•Prove(CRS, 𝑥,𝑤): Takes the instance 𝑥 = (ID) and the witness

𝑤 = (k, ctr) as inputs. Note that ID can be seen as a commit-

ment of the form COM.Com(pp, (1/k+ ctr); 0) = G
1/(k+ctr)
1 H0. It

samples 𝑒1, 𝑒2, 𝑒3
$
← Z∗𝑝 and computes the commitments cm1 =

COM.Com(pp, ctr; 𝑒1) = GctrH𝑒1 , cm2 = COM.Com(pp, k; 𝑒2) =

GkH𝑒2 , cm3 = COM.Com(pp, (k + ctr); 𝑒3) = G(k+ctr)H𝑒3 . It then

runs 𝜋 ← Σ-MultCom.Prove(CRS, 𝑥1,𝑤1) with input commit-

ments 𝑥1 = (cm1 · cm2, ID,G) and𝑤1 = (k + ctr, 1/(k + ctr), 1). It

returns the proof 𝜋 as output.

•Verify(CRS, 𝑥, 𝜋): Takes the instance 𝑥 = (cm1 · cm2, ID,G) and

proof 𝜋 as inputs. It then checks the validity of the proof by

running Σ-MultCom.Verify(CRS, 𝑥, 𝜋).

Figure 24: Non-interactive proof of knowledge of DY’s PRF

key and its well-formedness.

Proving the Knowledge of opening of Generalized Pedersen Com-

mitment. Figure 25 recalls the proving knowledge of opening in a

Generalized Pedersen commitment protocol described in [46]. As

part of this protocol, a prover using a vector of messages ®𝑚 shows

that the commitment cm is computated correctly and it has the

259

knowledge of opening 𝜏 under a given public parameter pp, i.e.

cm = COM.Com(pp, ®𝑚,𝜏) = G𝜏 ∏𝑛
𝑖=1 H

𝑚𝑖

𝑖 .

Σ-GPedCom{(𝑚1, . . . ,𝑚𝑛, 𝜏) | cm = G𝜏 ∏𝑛
𝑖=1 H

𝑚𝑖

𝑖 }

•Prove(CRS, 𝑥,𝑤): Takes the instance 𝑥 = (cm,G,H1, . . . ,H𝑛)

and the witness 𝑤 = (𝑚1, . . . ,𝑚𝑛, 𝜏) as inputs. It samples

®𝑥 = (𝑥1, . . . , 𝑥𝑛)
$
← Z

𝑛
𝑝 and 𝜏𝑥 ← Z𝑝 and computes

cm𝑥 = G𝜏𝑥
∏𝑛

𝑖=1 H
𝑥𝑖
𝑖 . It then computes the challenge 𝑐 =

𝐻 ′(cm, cm𝑥 ,G,H1, . . . ,H𝑛) and forms 𝑧𝑖 = 𝑥𝑖 + 𝑐 · 𝑚𝑖 mod 𝑝

for 𝑖 ∈ [1, 𝑛] and 𝑡 = 𝜏𝑥 + 𝑐 · 𝜏 mod 𝑝 . It returns the proof

𝜋 = (cm0, 𝑧1, . . . , 𝑧𝑛, 𝑡) as output.

•Verify(CRS, 𝑥, 𝜋): Takes the instance 𝑥 = (cm,G,H1, . . . ,H𝑛)

and proof 𝜋 = (cm0, 𝑧1, . . . , 𝑧𝑛, 𝑡) as inputs. It then computes 𝑐 ′ =

𝐻 ′(cm, cm𝑥 ,G,H1, . . . ,H𝑛) and checks the equality of equations

𝑐 ′ = 𝑐 , cm𝑥 · cm
𝑐
= COM.Com(®𝑧, 𝑡) = G𝑡 ∏𝑛

𝑖=1 H
𝑧𝑖
𝑖 . It returns 1

if they hold and 0 otherwise.

Figure 25: Non-Interactive proof of knowledge of opening of

Generalized Pedersen commitments.

F.2.2 Groth-Sahai proofs. GS proofs [47] are able to prove the sat-

isfiability of some quadratic equations in bilinear setting. However,

in this paper, we only use GS proofs to demonstrate pairing product

equations satisfiability of the following form,

𝑛∏

𝑖=1

𝑒 (𝐴𝑖 ,Y𝑖)
𝑚∏

𝑖=1

𝑒 (X𝑖 , 𝐵𝑖)
𝑚∏

𝑗=1

𝑛∏

𝑖=1

𝑒 (X𝑗 ,Y𝑖)
𝛾𝑖,𝑗 = 𝑇 ,

whereX1, . . . ,X𝑚 ∈ G1,Y1, . . . ,Y𝑛 ∈ G2 are thewitnesses given
as a commitment and 𝑇 ∈ G𝑇 , 𝐴1, . . . , 𝐴𝑛 ∈ G1, 𝐵1, . . . , 𝐵𝑚 ∈ G2
and Γ := {𝛾𝑖, 𝑗 }𝑖∈[1,𝑚], 𝑗 ∈[1,𝑛] ∈ Z

𝑚×𝑛
𝑝 .

GS proofs are essentially commit-and-prove systems, in which

the prover proves that a quadratic equation satisfies using the com-

mitted assignments. Therefore, there are two steps: first, the prover

commits to the values, and then it proves their validity through

some relation. This scheme can be instantiate in two possible set-

tings: non-interactive witness-indistinguishable (NIWI) and non-

interactive zero-knowledge (NIZK). If in the described PPE, the

constant value 𝑇 = 1G𝑇 this construction can guarantee Zero-

Knowledge property8. Thus in the rest of this section we take this

condition into account. In the following, we briefly summarize the

most efficient instantiation of GS proofs based on SXDH assump-

tion (i.e. DDH holds in both source groups G1 and G2), both in

terms of proof size and number of basic pairings required in the

verification phase.9

Extended bilinear maps, 𝐸 : G21 ×G
2
2 → G

4
𝑇
, are a generalization

for the standard bilinear pairings, defined in Definition A.1. For

8According to Escala and Groth [34], the proof system remains zero-knowledge if the
base element for the group and public constant are paired to each other.
9To implement the Groth-Sahai proofs, we modified the GS implementation provided
in this repository.

any given group elements 𝑎1, 𝑎2 ∈ G1 and 𝑏1, 𝑏2 ∈ G2, an extended

bilinear map (tensor product) is defined as follows:

𝐸

((
𝑎1
𝑎2

)
,

(
𝑏1 𝑏2

)
)
=

(
𝑒 (𝑎1, 𝑏1) 𝑒 (𝑎1, 𝑏2)
𝑒 (𝑎2, 𝑏1) 𝑒 (𝑎2, 𝑏2)

)
.

GS proofs additionally rely on a variation of the Pedersen com-

mitments, which are discussed in Appendix F.1, where the com-

mitments are generated based on two generators rather than a

single one. Loosely speacking, this special commitment scheme

enables proof simulation. The double generator Pedersen commit-

ment over a cyclic group G = ⟨G⟩ with a prime order 𝑝 consists of

the following PPT algorithms:

• pp ← COM.Setup(1𝜆): Take security parameter, 𝜆 in its

unary representation as input. Sample H1,H2
$
← G. Return

the public parameters pp = (G, 𝑝,G,H1,H2) as output.
• cm← COM.Com(pp, 𝑀 ;𝜏1, 𝜏2): Take public parameters pp,

a message 𝑀 ∈ G and random openings 𝜏1, 𝜏2 as inputs.

Output cm = 𝑀H
𝜏1
1 H

𝜏2
2 .

• 0/1 ← COM.Verify(pp, cm, 𝑀 ′, 𝜏 ′1, 𝜏
′
2): Compute cm′ =

𝑀 ′H
𝜏 ′1
1 H

𝜏 ′2
2 . Return 1, if cm = cm′; otherwise return 0.

Next we outline GS proofs for a simple case based on SXDH as-

sumption that the prover aims to prove the knowledge of group

elements X,Y ∈ G1 × G2 as witnesses s.t. 𝑒 (X,Y)
𝛾
= 𝑇 , where

𝑇 ∈ G𝑇 is a known constant value.

• CRS← GS.Setup(1𝜆): Take the security parameter 𝜆 as in-

put. Sample eight group elements CRS := H1,H2,K1,K2,U1,

U2,V1,V2)
$
← G41 × G

4
2. It then returns CRS as output.

• 𝜋 ← GS.Prove(CRS, 𝑥,𝑤). It takesCRS, witness𝑤 = (X,Y)
∈ G1 × G2 and instance 𝑥 = (𝑇) as inputs. It samples

the random integers 𝑟1, 𝑟2, 𝑠1, 𝑠2
$
← Z

∗
𝑝 and commits to

witness by computing (𝑎1, 𝑎2) =

(
H
𝑟1
1 H

𝑟2
2 ,XK

𝑟1
1 K

𝑟2
2

)
and

(𝑏1, 𝑏2) =

(
U
𝑠1
1 U

𝑠2
2 ,YV

𝑠1
1 V

𝑠2
2

)
. It samples the random in-

tegers 𝛼, 𝛽, 𝜁 , 𝛿
$
← Z𝑝 and then generates the proofs

𝜙1 = (𝑏
𝛾𝑟1
1 U𝛼

1 V
𝛽
1 𝑏

𝛾𝑟2
2 U𝛼

2 V
𝛽
2), 𝜙2 =

(𝑏
𝛾𝑠1
1 U

𝜁
1V

𝛿
1 𝑏

𝛾𝑠2
2 U

𝜁
2V

𝛿
2), 𝜃1 = (H−𝛼1 K

−𝜁
1 X𝑟2H−𝛼2 K

−𝜁
2) and

𝜃2 = (H
−𝛽
1 K−𝛿1 X𝛾𝑠2H

−𝛽
2 K−𝛿2), and return the proof

𝜋 = (𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝜙1, 𝜙2, 𝜃1, 𝜃2) as output.
• 0/1← GS.Verify(CRS, 𝑥, 𝜋): It takesCRS, the instance 𝑥 and

proof 𝜋 as inputs. It then checks the validity of the following

pairing product equation:

𝐸

((
𝑎1
𝑎2

)
,

(
𝑏1 𝑏2

)𝛾
)
=

𝐸

((
H1

H2

)
, 𝜙1

)
𝐸

((
K1
K2

)
, 𝜙2

)

𝐸
(
𝜃1,

(
U1 U2

))

𝐸
(
𝜃2,

(
V1 V2

))
(
𝑇 1G𝑇
1G𝑇 1G𝑇

)
.

If the equation holds it returns 1 and accepts the proof; 0

otherwise.

260

https://github.com/volhovm/groth-sahai-python

This simple example results in a single 𝛾 ∈ {−1, 0, 1} value
because𝑚 = 𝑛 = 1. In general, however, Γ is a matrix of dimension

𝑚 × 𝑛. Throughout the next section, we discuss how this matrix

can be defined for different PPEs.

Herold et al.’s batching technique. To check the validity of a GS

proof for any PPE consisting of𝑛 first-group elements and𝑚 second-

group elements, a verifier must compute 4(𝑛 + 𝑚 + 4) pairings.
However, Herold et al. described a batching technique in [49] that

reduces the number of pairings by a factor of 4. This means that a

verifier checking the same proof needs to compute only 𝑛 +𝑚 + 4
pairings, which is a significant improvement, especially in real-

world use cases. The authors replace an extended pairing product

equation to a basic pairing product equation using linear algebra.

As a simple example, for a given group vectors ®𝑎 ∈ G21 and
®𝑏 ∈ G22

the extended bilinear equation can be written as follows:

𝐸
(
®𝑎, ®𝑏

)
=

(
𝑒 (𝑎1, 𝑏1) 𝑒 (𝑎1, 𝑏2)
𝑒 (𝑎2, 𝑏1) 𝑒 (𝑎2, 𝑏2)

)
=

(
𝑡1 𝑡2
𝑡3 𝑡4

)
,

where 𝑡𝑖 ∈ G𝑇 for 𝑖 ∈ [1, 4]. A verifier computes 𝐴 = 𝑎
𝑟1
1 𝑎

𝑟2
2 and

𝐵 = 𝑏
𝑠2
1 𝑏

𝑠2
2 using the randomnesses 𝑟1, 𝑟2, 𝑠1, 𝑠2 ∈ Z

∗
𝑝 . In this case,

the above extended pairing product equation can be rewritten as

follows:

𝑒 (𝐴, 𝐵) = 𝑡
𝑟1𝑠1
1 𝑡

𝑟1𝑠2
2 𝑡

𝑟2𝑠1
3 𝑡

𝑟2𝑠2
4 ·

It is easy to see that the above technique is correct. However,

the soundness error is at most 2/𝑝 . More interestingly, it reduces

the number of pairings by 75% compared to the naive approach.

Specifically, it only requires a single pairing instead of 4 pairings.

F.2.3 Range-proofs. Range-proofs enable a prover to prove a com-

mitted value 𝑥 computed as cm = COM.Com(pp, 𝑥, 𝑟) is in the

range of [0, 2𝑛).10

G REALIZATION OF NIZK RELATIONS

Next, we give a detailed description of the languages in the proposed

ul-PCS constructions and the used techniques for their implementa-

tion. Note that for the ease of followingwe use the 𝑔𝑟𝑎𝑦 background

to highlight the hidden values that should be considered as wit-

nesses in each relation. Additionally, the described relations are

given solely on their own, while the prover is expected to make

a bridge between them. As the underlying proof systems rely on

the commit-and-prove principle, and a commitment to a witness is

issued by the prover, we can bridge the relations by applying the

sigma protocol described in Figure 22 whenever a hidden parameter

is used in more than one relation. In what follows, a bridging proof

is indicated by ♦ . As it is illustrated in Figure 6, the realtions are

proved with three main proof systems, including sigma protocols ,

range-proofs and Groth-Sahai (GS) proofs

G.1 Generic ul-PCS instantiated with
Inner-Product Predicate Encryption

G.1.1 LanguageL1. The first language in the generic ul-PCS takes

the instances 𝑥st = (𝑇Rand, IDctr, vk
ctr
sig
, ctctr, vk

𝐴
sig
,mpkPE) and the

10To implement the range-proof, we use the open-source bulletproof Python imple-
mentation available in this repository.

witness 𝑤st ≔ (k, ctr, vksig, sksig, 𝑥, 𝜎
1
sig
, 𝜎2

sig
, 𝜎ctr) as inputs and

the prover proves the satisfiability of the following relations:

L1.1. IDctr = PRF.Eval(k, ctr) : As discussed on Appendix F.1,
we use the DY PRF schemes. Thus we use the sigma proto-

col described in Figure 24 to prove its well-formedness, i.e.

Σ-PRF{ (k, ctr) | IDctr = G
1/(k+ctr)
1 }.

L1.2. ctr < 𝑇Rand : Additionally, the prover utilizes the range-

proof techniques to prove ctr ∈ [0,𝑇Rand).
♦ To show that the used ctr in the above proofs are the same,

the prover use the bridging sigma protocols described in Fig-

ure 22. More precisely, it runs Σ-Bridging{(ctr, 𝑒1, 𝑒2 , 0, 0) |
cm1 = Gctr

1 H
𝑒1
1 ∧ cm2 = Gctr

2 H
𝑒2
2 }, where cm1 is obtained

via Σ-PRF protocol while cm2 is computed by the range-

proof protocol. Note that the generators G1,H1,G2,H2 are

random elements of any cyclic group.

L1.3. DS.Verify(vk𝐴
sig
, (k, 𝑥), 𝜎1

sig
) = 1 : We instantiate this

signature with the recalled SPS scheme in Appendix F.1.

To prove the knowledge of a valid SPS signature 𝜎1
sig

on

hidden message ®𝑀 = (Gk
1,G

𝑥
1) that is signed by the CA can

be written as a PPE of the form, 𝑒
(
Gk
1 , 𝑋

𝐴
1

)
𝑒
(
G𝑥
1 , 𝑋

𝐴
2

)
=

𝑒
(
𝑅1
sig

, 𝑇 1
sig

)
∧ 𝑒 (𝑆1

sig
,G2) = 𝑒 (G1, 𝑇

1
sig
), where vk𝐴

sig
:=

(𝑋𝐴
1 , 𝑋

𝐴
2) and 𝜎1

sig
:= (𝑅1

sig
, 𝑆1

sig
,𝑇 1

sig
) . We use GS proof sys-

tems to show the satisfiability of this equation.

♦ To demonstrate that the used k in the first relation and

the obove relation are the same, the prover use the bridging

sigma protocols described in Figure 22. More precisely, it

runs Σ-Bridging{ (k, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 = Gk
1H

𝑒1
1 ∧ cm2 =

Gk
2H

𝑒2
2 K

𝑢2

2 }, where cm1 is obtained via Σ-PRF protocol while

cm2 is computed by the GS proof systems.

L1.4. ctctr = PE.Enc(mpkPE, 𝑥) : To prove the well-

formedness of the ciphertext ctctr obtained from

PE.Enc(mpkPE, 𝑥) algorithm in the key re-randomization

phase and demonstrate the fact that the attributes 𝑥 are

certified by the CA and folded with the PRF seed k , i.e.

SPS.Verify(vk𝐴
sig
, (Gk

1,G
𝑥
1) , 𝜎

1
sig
) = 1, we must make a few

observations. Recall that the statements together should

assure that the ciphertext is a correct encryption of some

attribute 𝑥 , and that this attribute is linked to the particular

party’s actual seed k (which it uses to provable derive its

public pseudo-random identifier). The trick to obtain an

implementation of this is fourfold:

(a) We employ OT12 as our POPE scheme described in Ap-

pendix F.1 and observe that the computation of the ci-

phertext ®𝑐 :=
⊙𝑁

𝑖=1 𝑧𝑖
®𝑏𝑖 , which means in a component-

wise notation that 𝑐𝑖 = ®𝑏1 [𝑖]
𝑧
1 ·
®𝑏2 [𝑖] · · · · · ®𝑏𝑁 [𝑖]

𝑧𝑁 , for

®𝑧 := (1, 𝑥1, . . . , 𝑥𝑛, 0, . . . , 0︸ ︷︷ ︸
3𝑛

, 𝜙) . This computation is very

close to a generalized Pedersen commitment w.r.t. the vec-

tor of generators (®𝑏1 [𝑖], . . . , ®𝑏𝑁 [𝑖]).
(b) Generalized Pedersen Commitments have a homomorphic

property, and thus it is easy to, for a commitment cm

261

https://github.com/wborgeaud/python-bulletproofs

to some vector ®𝑥 , a commitment to 𝜔 ®𝑥 by raising the

commitment to the power of 𝜔 .

(c) The next step is to connect it to SPS-EQ in order to

transfer the issuance of attributes by the authority to re-

randomizations following the idea used in the role-based

scheme (cf. Appendix D.2 and cf. also Appendix G.3). This

means that if the authority issues an initial OT12 cipher-

text, in the form of 𝑁 generalized Pedersen commitments

cm®𝑥,𝑖 that are blindings of the 𝑐𝑖 values above for the vec-

tor ®𝑧 := (1, 𝑥1, . . . , 𝑥𝑛, 0, . . . , 0︸ ︷︷ ︸
3𝑛

, 0) , together with an SPS-

EQ signature on that vector, then a party is able to gen-

erate, using the homomorphic property, a commitment

to a scaled vector on its attributes cm𝜔 ®𝑥,𝑖 (as required by

OT12), and by the signature adaptation and unforgeability

property of the SPS-EQ scheme it can indeed be verified

that this is done correctly. By using the same trick as in

the role-based scheme, we can further bind this vector

specifically to a party (see next point).

To randomize the ciphertext correctly according to

OT12, we further compute a commitment to a vector

®𝜙𝑖 = (1, 0, . . . , 0︸ ︷︷ ︸
𝑛

, 𝜙𝑖 , 0, . . . , 0︸ ︷︷ ︸
3𝑛−1

, 𝜙 ′) , where 𝜙𝑖 , 𝜙2
$
← Z∗𝑝 and

𝑛 = [𝑁−24], and prove knowledge of the opening (cf. Fig-

ure 25), in particular, this includes that we verify that the

zero-positions are indeed zero (or alternatively, that is

indeed a vector of length 3) [46]. The Generalized Ped-

ersen commitments of this vector under the same basis

denoted by ®cm𝜙 =

(
cm𝜙1

, . . . , cm𝜙𝑁

)
and can be homo-

morphically combined with the 𝑁 commitments cm𝜔 ®𝑥,𝑖

to yield 𝑁 commitments cm𝑂𝑇 12
𝑖 to the OT12 ciphertext

components ct𝑖 , where each component is now encoding

the vector

®𝑧𝑖 := (1, 𝑥1, . . . , 𝑥𝑛, 𝜙𝑖 , 0, . . . , 0︸ ︷︷ ︸
3𝑛−1

, 𝜙 ′) . We reveal ct𝑖 by re-

vealing the final randomness of the Pedersen commitment.

We further need to prove knowledge of the committed vec-

tor (using Figure 25 where the verifier can use the revealed

𝑟𝑖 directly) in order to be formally extractable.11 Note that

some care must be taken when revealing the 𝑟𝑖 , which is

why we enocde vectors ®𝑧𝑖 := (1, 𝑥1, . . . , 𝑥𝑛, 𝜙𝑖 , 0, . . . , 0︸ ︷︷ ︸
3𝑛−1

, 𝜙 ′)

and not just (1, 𝑥1, . . . , 𝑥𝑛, 0, . . . , 0︸ ︷︷ ︸
3𝑛

, 𝜙 ′) . The additional ran-

domness contribution, 𝜙𝑖 injected at a position that does

not affect the inner-product computation of OT12 ensures

that we can reveal 𝑟𝑖 (masking the 𝑖th component) without

leaking information about the intermediate computations

relevant for OT12 in the commitments cm𝜙𝑖
and cm𝜔 ®𝑥,𝑖 ,

in particular, this can be thought of as masking 𝜙 ′ .

11This step could be omitted in an implementation to improve efficiency while trading
provable for heuristic security. This appears acceptable in environments where a CRS
is established using a ceremony to ensure that no trapdoor does exist in the system.

Now, all ingredients are in place: a verifier is able to retrace

the computation (where we put all elements required to

do so in the proof string), and verify the SPS-EQ signature

to be sure the OT12 ciphertext is correctly formed and

connected to the attribute that was issued to the party.

(d) Finally, in order to link the party’s seed k to this vec-

tor, we apply the same trick as in the role-based scheme

(cf. Appendix D.2 and Appendix G.3) and create an accu-

mulator Ak to which we add k (cf. Appendix A.6). We

add the pair (Ak ,G2, . . .) to the above vector. As shown

in Appendix D.2 and Appendix G.3, re-randomizing both

elements (Ak ,G2) preserves the relationship to prove that
an element, in this case k , is in the accumulator. Thus, the

party cannot only present a randomized vector (which is

a commitment to the scaled attributes ®𝑥 as required by

OT12), but also that this vector has been issued in connec-

tion with the seed k (which it uses to develop the PRF as

described below) by proving that it has the correspond-

ing accumulator witness. This completes the high-level

realization of the two assertions above.

♦ To demonstrate that the used Ak in the vector (Ak , . . .)
is a valid accumulator value under the same PRF seed k

in the first relation we first run a GS proof to prove the

accumulator verification holds under k . Additionally we

use the bridging sigma protocols described in Figure 22 to

show this seed is the same as the one in the first relation

on the well-formedness of PRF. More precisely, it runs

Σ-Bridging{ (k, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 = Gk
1H

𝑒1
1 ∧ cm2 =

Gk
2H

𝑒2
2 K

𝑢2

2 }, where cm1 is obtained via Σ-PRF protocol

while cm2 is computed by the GS proof systems on the

validity of the accumulator verification.

L1.5. DS.Verify(vk𝐴
sig
, (k, vksig), 𝜎

2
sig
) = 1 : As we discuss

in Appendix F.1, this signature scheme is instantiated by

a SPS. The knowledge of a SPS signature 𝜎2
sig

on hidden

message ®𝑀 = (Gk
1, vksig) that is signed by the CA can be

written as a PPE of the form, 𝑒
(
Gk
1 , 𝑋

𝐴
1

)
𝑒
(
vksig , 𝑋

𝐴
2

)
=

𝑒
(
𝑅2
sig

, 𝑇 2
sig

)
∧ 𝑒 (𝑆2

sig
,G2) = 𝑒 (G1, 𝑇

2
sig
), where vk𝐴

sig
:=

(𝑋𝐴
1 , 𝑋

𝐴
2) and 𝜎2

sig
:= (𝑅2

sig
, 𝑆2

sig
,𝑇 2

sig
) . We use GS proof sys-

tems to show the satisfiability of this equation.

♦ The prover additionally runs

Σ-Bridging{ (k, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 = Gk
1H

𝑒1
1 ∧ cm2 =

Gk
2H

𝑒2
2 K

𝑢2

2 }, where cm1 is obtained via Σ-PRF protocol

while cm2 is computed by the GS proof systems on the

knowledge of SPS signature 𝜎2
sig

.

L1.6. DS.Verify(vksig, (vk
ctr
sig
, IDctr), 𝜎ctr) = 1 : This signa-

ture is instantiated by the BLS signature, discussed in Ap-

pendix F.1. The prover should prove the satisfiability of the

PPE relation described below in order to validate a newly

generated verification key, vkctr
sig

, and to bind it with the new

identifier IDctr, 𝑒
(
vksig , 𝐻 (vk

ctr
sig
| |IDctr)

)
= 𝑒 (G1, 𝜎ctr) that

represents the validity of BLS signature. We use GS proof

systems to instantiate this relation in zero-knowledge.

262

♦ To show that the vksig element in the relations discussed

in L1.5 and L1.6 are identical we need to make a bridge

between them. Due to the fact that both of these relations

are proven via GS proof systems, we can instead combine

them as follows [47]:

𝑒
(
Gk
1 , 𝑋

𝐴
1

)1
𝑒
(
vksig , 𝑋

𝐴
2

)1
𝑒
(
𝑅2
sig

, 𝑇 2
sig

)−1
= 1G𝑇 ∧

𝑒 (𝑆2
sig

,G2)
1𝑒 (G1, 𝑇

2
sig
)−1 = 1G𝑇 ∧

𝑒
(
vksig , 𝐻 (vk

ctr
sig | |IDctr)

)1
𝑒 (G1, 𝜎ctr)

−1
= 1G𝑇 ·

This PPE involves both relations in L1.5 and L1.6 and we

make sure to use the same commitment to the group element

vksig [47].

G.1.2 LanguageL2. In the second relation of the proposed generic

ul-PCS scheme, the prover takes the statement 𝑥st ≔ (ID𝑆 , ct𝑅,

vk𝐴
sig
) and the witness 𝑤st ≔ (k, ctr, sk𝑓𝑥 , 𝜎

2
sig
) as inputs and acts

as follows:

L2.1. ID𝑆 = PRF.Eval(k, ctr) : We use the sigma protocols to

demonstrate the well-formedness of DY PRF, by running

Σ-PRF{ (k, ctr) | ID𝑆 = G
1/(k+ctr)
1 }, as described in Fig-

ure 24.

L2.2. PE.Dec(sk𝑓𝑥 , ct𝑅) = 1 : To prove the knowledge of an

PE secret key sk𝑓𝑥 := (sk1, . . . , sk𝑁) and proving the fact

that it correctly decrypts the receiver’s PE ciphertext ct𝑅 :=

(ct1, . . . , ct𝑁) to the identity value 1G𝑇 , we utilize the GS

proof systems. As we already discussed in Appendix F.1 the

OT12’s decryption algorithm can be formalized with a PPE

equation of the form,
∏𝑁

𝑗=1 𝑒
(
sk𝑗 , ct𝑗

)
= 𝑒 (G1,G2).

L2.3. DS.Verify(vk𝐴
sig
, (k, sk𝑓𝑥), 𝜎

3
sig
) = 1 : This signature is

also instantiated by a SPS and similar to the previous lan-

guages, to prove the knowledge of a SPS signature 𝜎3
sig

on

hidden message ®𝑀 = (Gk
1, sk𝑓𝑥) that is signed by the CA

we can use the GS proof systems. Towards the arithmetiza-

tion of this relation we can write the verification equation

with a PPE of the form, 𝑒
(
Gk
1 , 𝑋

𝐴
0

) (∏𝑁
𝑗=1 𝑒

(
sk𝑗 , 𝑋

𝐴
𝑗

))
=

𝑒
(
𝑅3
sig

, 𝑇 3
sig

)
∧ 𝑒 (𝑆3

sig
,G2) = 𝑒 (G1, 𝑇

3
sig
), where

sk𝑓𝑥 := (sk1, . . . , sk𝑁) , vk𝐴
sig

:= (𝑋𝐴
0 , 𝑋

𝐴
1 , . . . , 𝑋

𝐴
𝑁
) and

𝜎3
sig

:= (𝑅3
sig
, 𝑆3

sig
,𝑇 3

sig
) .

♦ Additionally, the prover runs

Σ-Bridging{ (k, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 = Gk
1H

𝑒1
1 ∧ cm2 =

Gk
2H

𝑒2
2 K

𝑢2

2 }, where cm1 is obtained via Σ-PRF protocol

while the commitment cm2 is computed by the GS proof

systems on the knowledge of SPS signature 𝜎3
sig

.

♦ To demonstrate the fact that the used PE’s secret key sk𝑓𝑥
in the relations discussed in L2.2 and L2.3 are the same, the

prover makes a bridge between them. Due to the fact that

both of these relations are proven via GS proof systems, we

can instead combine them and prove the following PPE.

𝑒 (G1,G2)
−1

𝑁∏

𝑗=1

𝑒
(
sk𝑗 , ct𝑗

)1
= 1G𝑇 ∧

𝑒
(
Gk
1 , 𝑋

𝐴
0

)1 𝑁∏

𝑗=1

𝑒
(
sk𝑗 , 𝑋

𝐴
𝑗

)1
𝑒
(
𝑅3
sig

, 𝑇 3
sig

)−1
= 1G𝑇 ∧

𝑒 (𝑆3
sig

,G2)
1𝑒 (G1, 𝑇

3
sig
)−1 = 1G𝑇 ·

This PPE involves both relations in L2.2 and L2.3 using the

same commitment to group element sk𝑓𝑥 .

G.2 ul-PCS for Separable Policies

G.2.1 Language L1. The first language in the ul-PCS with separa-

ble policies takes the instance 𝑥st ≔ (𝑇Rand, IDctr, vk
ctr
sig
, ctctr, vk

𝐴,𝑅
sig

,

pk𝐴
PKE
) and witness 𝑤st ≔ (k, ctr, vksig, sksig,𝑚𝑥 , 𝜎

1
sig
, 𝜎ctr) as in-

puts and then the prover proves the satisfiability of the following

relations:

L1.1. IDctr = PRF.Eval(k, ctr) : To prove the well-

formedness of the DY PRF, we use the sigma pro-

tocol described in Figure 24 and the prover runs

Σ-PRF
{
(k, ctr) | IDctr = G

1/(k+ctr)
1

}
.

L1.2. ctr < 𝑇Rand : Additionally to prove ctr ∈ [0,𝑇Rand), the
prover uses the range-proofs.

♦ To demonstrate the fact that the used ctr in the above

proofs are identical, the prover utilizes the bridging sigma

protocol described in Figure 22. More precisely, it runs

Σ-Bridging{(ctr, 𝑒1, 𝑒2 , 0, 0) | cm1 = Gctr
1 H

𝑒1
1 ∧ cm2 =

Gctr
2 H

𝑒2
2 }, where cm1 is obtained via Σ-PRF protocol while

the commtiment cm2 is computed by the range-proof proto-

col.

L1.3. DS.Verify(vk𝐴,𝑅
sig

, (k, vksig,𝑚𝑥), 𝜎
1
sig
) = 1 : To prove the

knowledge of a valid SPS signature 𝜎1
sig

on message

®𝑀 = (Gk
1, vksig,G

𝑚𝑥

1) signed by the CA we can

prove the satisfiability of the PPE of the form,

𝑒
(
Gk
1 , 𝑋

𝐴,𝑅
1

)
𝑒
(
vksig , 𝑋

𝐴,𝑅
2

)
𝑒
(
G
𝑚𝑥

1 , 𝑋𝐴,𝑅
3

)
=

𝑒
(
𝑅1
sig

, 𝑇 1
sig

)
∧ 𝑒 (𝑆1

sig
,G2) = 𝑒 (G1, 𝑇

1
sig
),

where vk𝐴,𝑅
sig

:= (𝑋𝐴,𝑅
1 , 𝑋𝐴,𝑅

2 , 𝑋𝐴,𝑅
3) and

𝜎1
sig

:= (𝑅1
sig
, 𝑆1

sig
,𝑇 1

sig
) . Thus we use the GS proofs to

instantiate this relation in zero-knowledge.

♦ To prove that the used k in the first relation and the obove

relation are the same, the prover use the bridging sigma

protocols described in Figure 22. More precisely, it runs

Σ-Bridging{ (k, 𝑒1, 𝑒2) | cm1 = Gk
1H

𝑒1
1 ∧ cm2 = Gk

2H
𝑒2
2 },

where cm1 is obtained via Σ-PRF protocol while cm2 is com-

puted by the GS proof systems.

L1.4. ctctr = PKE.Enc(mpk𝐴
PKE

,𝑚𝑥) : To prove the knowl-

edge of a valid ciphertext encrypting the hidden message

𝑚𝑥 , we utilize the sigma protocol described in Figure 21 and

the prover runs Σ-ElGamal{ (𝑚𝑥 , 𝑟 , 𝑒) | ct1 = G𝑟
1 ∧ ct2 =

G
𝑚𝑥

1 (pk
𝐴
PKE
)𝑟 ∧ cm = G

𝑚𝑥

1 H𝑒
1}.

263

♦ To prove the message 𝑚𝑥 in the SPS relation

and the obove relation are the same, the prover runs

Σ-Bridging{ (𝑚𝑥 , 𝑒1, 𝑒2, 𝑢1, 0) | cm1 = Gk
1H

𝑒1
1 K

𝑢1

1 ∧ cm2 =

Gk
2H

𝑒2
2 }. In which the commitment cm1 is obtained via the

GS proof of SPS signature 𝜎1
sig

, while cm2 is computed by

the sigma protocol Σ-ElGamal.

L1.5. DS.Verify(vksig, (vk
ctr
sig
, IDctr), 𝜎ctr) = 1 : The knowl-

edge of a BLS signature on public message𝑚 = (vkctr
sig
| |IDctr)

signed under the hidden signing key sksig can be written as

a PPE of the form, 𝑒
(
vksig , 𝐻 (vk

ctr
sig
| |IDctr)

)
= 𝑒 (G1, 𝜎ctr),

where 𝐻 (·) is a hash-to-curve function as a part of public

parameters. We use the GS proofs to instantiate this relation

in zero-knowledge.

♦ To show the fact that the verification key, vksig , used

in the above GS proof is already certified by the CA and

is identical to the one in the GS of the SPS signature 𝜎1
sig

,

the prover makes a bridge between the relations discussed

in L1.3 and L1.5 via proving the following PPE instead with

shared commitments [47].

𝑒
(
Gk
1 , 𝑋

𝐴,𝑅
1

)1
𝑒
(
vksig , 𝑋

𝐴,𝑅
2

)1

𝑒
(
G
𝑚𝑥

1 , 𝑋𝐴,𝑅
3

)1
𝑒
(
𝑅1
sig

, 𝑇 1
sig

)−1
= 1G𝑇 ∧

𝑒 (𝑆1
sig

,G2)
1𝑒 (G1, 𝑇

1
sig
)−1 = 1G𝑇 ∧

𝑒
(
vksig , 𝐻 (vk

ctr
sig | |IDctr)

)1
𝑒 (G1, 𝜎ctr)

−1
= 1G𝑇 ·

This PPE involves both relations in L1.3 and L1.5 and we

use the same commitment to the group element vksig in all

relations.

G.2.2 Language L2. The second language in the ul-PCS with sep-

arable policies takes the instance 𝑥st =
(
ID𝑆 , ct𝑅, vk

𝐴,𝑆
sig

, pk𝐴
PKE

)
and

witness 𝑤st =

(
k, ctr, sk𝐴

PKE
, 𝜎2

sig

)
as inputs and then the prover

proves the satisfiability of the following relations:

L2.1. ID𝑆 = PRF.Eval(k, ctr) : The prover runs

Σ-PRF
{
(k, ctr) | ID𝑆 = G

1/(k+ctr)
1

}
, depicting the well-

formedness of ID𝑆 .

L2.2. DS.Verify(vk𝐴,𝑅
sig

, (k , sk𝐴
PKE
), 𝜎2

sig
) = 1 : The possession

of a SPS signature on message ®𝑀 = (Gk
1 , sk

𝐴
PKE
), signed by

the CA can be written as a PPE of the form, 𝑒
(
Gk
1 , 𝑋

𝐴,𝑆
1

)

𝑒

(
G
sk𝐴PKE
1 , 𝑋𝐴,𝑆

2

)
= 𝑒

(
𝑅2
sig

, 𝑇 2
sig

)
∧ 𝑒 (𝑆2

sig
,G2) =

𝑒 (G1, 𝑇
2
sig
), where vk𝐴,𝑆

sig
:= (𝑋𝐴,𝑆

1 , 𝑋𝐴,𝑆
2) and

𝜎2
sig

:= (𝑅2
sig
, 𝑆2

sig
,𝑇 2

sig
) . We use the GS proof systems

to represent the satisfiability of this PPE.

♦ To demonstrate the fact that the PRF key k used in Σ.PRF

and in the above GS proof is indeed the same, the prover

runs Σ-Bridging{ (k, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 = Gk
1H

𝑒1
1 ∧ cm2 =

Gk
2H

𝑒2
2 K

𝑢2

2 }. The commitment cm1 is obtained via the sigma

protocol described in Figure 24 while the commitment cm2

is computed by the GS proof of knowledge 𝜎2
sig

on the satis-

fiability of the SPS.

L2.3. PKE.Dec(sk𝐴
PKE

, ct𝑅) = 1 : The knowledge of a valid se-

cret key sk𝐴
PKE

such that it can decrypt the receiver’s cipher-

text ct𝑅 to𝑚 = 1. To prove this relation in zero-knowledge

we use the Dlog sigma protocol described in Figure 20 and the

prover runs, Σ-Dlog
{
(sk𝐴

PKE
) | ct𝑅,2/G1 = (ct𝑅,1)

sk𝐴PKE

}
.

♦ To show the used secret key sk𝐴
PKE

in the above sigma

protocol is the same as the one signed in 𝜎2
sig

, the prover

runs Σ-Bridging{ (sk𝐴
PKE

, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 = G
sk𝐴PKE
1 H

𝑒1
1 ∧

cm2 = G
sk𝐴PKE
2 H

𝑒2
2 K

𝑢2

2 }, where cm1 is obtained via Σ-Dlog

protocol while the commitment cm2 is computed by the GS

proof systems on the knowledge of SPS signature 𝜎2
sig

.

L2.4. sk𝐴
PKE
≈ vk𝐴

PKE
: The prover to show the knowl-

edge of the secret key sk𝐴
PKE

and the fact that it

corresponds to the public encryption key pk𝐴
PKE

, uses

the sigma protocol described in Figure 20 and runs

Σ-Dlog

{
(sk𝐴

PKE
) | pk𝐴

PKE
= G

sk𝐴PKE
1

}
.

♦ The prover runs the bridging sigma protocol

Σ-Bridging{(sk𝐴
PKE

, 𝑒1, 𝑒2 , 0, 0) | cm1 = G
sk𝐴PKE
1 H

𝑒1
1 ∧ cm2 =

G
sk𝐴PKE
2 H

𝑒2
2 } to prove the used secret key sk𝐴

PKE
in the above

relations are the same. The commitment cm1 is obtained

by the sigma protocol Σ-Dlog of the PKE’s decryption

correctness while the commitment cm2 is computed by

sigma protocol Σ-Dlog to show the relation of PKE’s public

and secret keys.

G.3 ul-PCS for RBAC Policies

G.3.1 Language L1. The first language in the RBAC ul-PCS takes

the instance 𝑥st =
(
𝑇Rand, IDctr, vk

ctr
sig
, ®𝑀 := (A′1,A

′
2,G
′
2), vk

𝐴
sig

)
and

witness 𝑤st =

(
k, ctr, vksig, sksig,𝑤k, 𝜎

1
sig
, 𝜎sig

)
as inputs and the

prover proves the satisfiability of the following relations:

L1.1. ACC.MemVrf (A′1, k,𝑤k) = 1 : To prove the possession

of a hidden membership witness 𝑤k that verifies the ac-

cumulator value A′1 the prover uses the GS proof systems.

The satisfiability of the verification of the given accumula-

tor scheme can be written as a PPE of the form, 𝑒
(
𝑤k ,A

′
1

)

𝑒
(
𝑤k , (G

′
2)

k
)
= 𝑒

(
G1,G

′
2

)
. We use the GS proofs to prove

the satisfiability of this equation in zero-knowledge.

L1.2. IDctr = PRF.Eval(k, ctr) : We use the sigma protocol de-

scribed in Figure 24 to prove the well-formedness of DY PRF,

i.e. Σ-PRF{ (k, ctr) | IDctr = G
1/(k+ctr)
1 } over cyclic group

G1.

♦ The prover to make a bridging between the above

relations and showing the fact that the used PRF key

k in the both of them is the same secret witnees runs

264

Σ-Bridging{ (ctr, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 = Gctr
1 H

𝑒1
1 ∧ cm2 =

Gctr
2 H

𝑒2
2 K

𝑢2

2 }. In which the commitment cm1 is obtained via

Σ-PRF protocol while the commtiment cm2 is computed in

the GS proof on the satisfiability of the accumulator verifica-

tion algorithm.

L1.3. ctr < 𝑇Rand : Additionally, the prover utilizes the range-

proof techniques to prove ctr ∈ [0,𝑇Rand).

♦ The prover runs Σ-Bridging{(ctr, 𝑒1, 𝑒2 , 0, 0) | cm1 =

Gctr
1 H

𝑒1
1 ∧ cm2 = Gctr

2 H
𝑒2
2 } to prove the used hidden counter

ctr in the above relations is the same. In which the commit-

ment cm1 is obtained via Σ-PRF protocol while the commti-

ment cm2 is computed in the range-proof protocol.

L1.4. DS.Verify(vk𝐴
sig
, (k, vksig), 𝜎

1
sig
) = 1 : To prove the ver-

ification phase of the SPS signature 𝜎1
sig

satisfies under

message ®𝑀 = (Gk
1, vksig) and the fact that it is signed

by the CA, we can show it via a PPE of the form,

𝑒
(
Gk
1 , 𝑋

𝐴
1

)
𝑒
(
vksig , 𝑋

𝐴
2

)
= 𝑒

(
𝑅1
sig

, 𝑇 1
sig

)
∧ 𝑒 (𝑆1

sig
,G2) =

𝑒 (G1, 𝑇
1
sig
), where vk𝐴

sig
:= (𝑋𝐴

1 , 𝑋
𝐴
2) and 𝜎1

sig
:=

(𝑅1
sig
, 𝑆1

sig
,𝑇 1

sig
) . We use GS proof systems to show the satis-

fiability of this equation.

♦ To demonstrate that the same k in the first relation and

the above relation is used, the prover makes a bridge be-

tween them by running Σ-Bridging{ (k, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 =

Gk
1H

𝑒1
1 ∧ cm2 = Gk

2H
𝑒2
2 K

𝑢2

2 }, where the commitment cm1

is obtained via Σ-PRF protocol while the commitment cm2

is computed by the GS proof system on the validity of 𝜎1
sig

.

L1.5. DS.Verify(vksig, (vk
ctr
sig
, IDctr), 𝜎ctr) = 1 : To validate a

newly generated verification key and to bind it with the new

identifier IDctr, the prover needs to prove the satisfiability

of a PPE relation described as, 𝑒
(
vksig , 𝐻 (vk

ctr
sig
| |IDctr)

)
=

𝑒 (G1, 𝜎ctr) that represents the validity of BLS signature. We

use GS proof systems to instantiate this relation in zero-

knowledge.

♦ To show the fact that the verification key, vksig , used

in the above GS proof is already certified by the CA and

is identical to the one in the GS of the SPS signature 𝜎1
sig

,

the prover makes a bridge between the relations discussed

in L1.4 and L1.5 via proving the following PPE instead.

𝑒
(
Gk
1 , 𝑋

𝐴
1

)1
𝑒
(
vksig , 𝑋

𝐴
2

)1
𝑒
(
𝑅1
sig

, 𝑇 1
sig

)−1
= 1G𝑇 ∧

𝑒 (𝑆1
sig

,G2)
1𝑒 (G1, 𝑇

1
sig
)−1 = 1G𝑇 ∧

𝑒
(
vksig , 𝐻 (vk

ctr
sig | |IDctr)

)1
𝑒 (G1, 𝜎ctr)

−1
= 1G𝑇 ·

This PPE involves both relations in L1.4 and L1.5 with a

single commitment to vksig .

G.3.2 Language L2. In the second relation, the prover takes

the instance 𝑥st = (ID𝑆 , ct𝑅, vk
𝐴
sig
, pp′,A′) and the witness

𝑤st = (k, ctr, 𝑥,𝑤, 𝜎2
sig
) as input and acts as follows:

L2.1. ID𝑆 = PRF.Eval(k, ctr) : To prove the well-formedness

of the PRF evaluation the prover runs the sigma protocol

Σ-PRF{ (k, ctr) | ID𝑆 = G
1/(k+ctr)
1 } over the cyclic group

G1.

L2.2. DS.Verify(vk𝐴
sig
, (k,𝑤), 𝜎2

sig
) = 1 : This relation can be

formulated by a PPE of the form, 𝑒
(
Gk
1 , 𝑋

𝐴
1

)
𝑒
(
𝑤 ,𝑋𝐴

2

)
=

𝑒
(
𝑅2
sig

, 𝑇 2
sig

)
∧ 𝑒 (𝑆2

sig
,G2) = 𝑒 (G1, 𝑇

2
sig
), where vk𝐴

sig
:=

(𝑋𝐴
1 , 𝑋

𝐴
2) and 𝜎2

sig
:= (𝑅2

sig
, 𝑆2

sig
,𝑇 2

sig
) and the prover can

prove the satisfiability of the relation by GS proof systems.

♦ The prover runs Σ-Bridging{ (k, 𝑒1, 𝑒2, 0, 𝑢2) | cm1 =

Gk
1H

𝑒1
1 ∧ cm2 = Gk

2H
𝑒2
2 K

𝑢2

2 } to prove the fact that the

PRF key k used in Σ.PRF and is already signed by the CA.

The commitment cm1 is obtained via the sigma protocol de-

scribed in Figure 24 while the commitment cm2 is computed

by the GS proof of knowledge 𝜎2
sig

.

L2.3. ACC.MemVrf (A′, 𝑥,𝑤) = 1 : Similar to the previous

languages, the prover can describe the membership veri-

fication of the accumulator scheme by the satisfiability of a

PPE of the form, 𝑒 (𝑤 ,A′) 𝑒
(
𝑤 , (G′2)

𝑥
)
= 𝑒

(
G1,G

′
2

)
. Thus

it runs the GS proof to show the possession of hidden pa-

rameters.

♦ The prover bridges the relations describe in L2.2 and

L2.3 to show the fact that the membership witness 𝑤 which

passes the accumulator verification is already certifies and is

signed in SPS signature 𝜎2
sig

. For this aim the prover proves

the following PPE instead:

𝑒
(
Gk
1 , 𝑋

𝐴
1

)1
𝑒
(
𝑤 ,𝑋𝐴

2

)1
𝑒
(
𝑅2
sig

, 𝑇 2
sig

)−1
= 1G𝑇 ∧

𝑒 (𝑆2
sig

,G2)
1𝑒 (G1, 𝑇

2
sig
)−1 = 1G𝑇 ∧

𝑒
(
𝑤 ,A′

)1
𝑒
(
𝑤 , (G′2)

𝑥
)1

𝑒
(
G1,G

′
2

)−1
= 1G𝑇 ·

H DISTRIBUTED SETUP AND KEYGEN
ALGORITHMS

In the following, we showcase that using standard techniques we

can achieve distributed implementations of the algorithms Setup

and KeyGen for our three constructions. We assume an honest-but-

curious model for the sake of the argument, however a lifting to

malicious security would again follow standard techniques.

H.1 The Generic ul-PCS Scheme

First, we look at how the generic ul-PCS, proposed in Figure 5,

and its concrete instantiation based on the OT12’s inner product

predicate encryption [57] can be distributed. Recall that the CA

holds the predicate encryption’s master secret key, mskPE, along

with a signature key sk𝐴
sig
. On the other hand, a user keeps will

obtain the PRF seed k and a predicate encryption secret key sk𝑓
along with its root signature key-pair (sksig, vksig). To generate

these secret elements in a distributed manner, we can follow the

following steps:

(1) CA-side setup:

265

(a) Given the description of the OT12 IP-PE scheme in Appen-

dix F, we can generate the keys in a distributed way, where

each server holds a share 𝐵∗𝑖 of the matrix 𝐵∗ =
∏

𝑖 𝐵
∗
𝑖

(component-wise product). This could be done with a stan-

dard MPC, and essentially, we need a sum-sharing of a

matrix 𝑋 and its inverse 𝑌 . In particular, this means each

entry 𝑌𝑖 𝑗 is shared among 𝑛 distinct certificate authorities.

While this is a heavier computation, implementations of

such an operation based on the methods by Blom et al. are

possible [13].

(b) Each CA possesses its own signature key-pair.

(2) Registration of a client for attributes 𝑥 :

(a) Each CA samples random seed k𝑖 and a public key share

vk𝑖 .

(b) The CAs create additional shared randomness in antici-

pation of the creation of the secret functional key. They

compute a sum-sharing of 𝑛 + 1 random elements 𝑟𝑘 .

(c) Then they run amultiplication protocol to obtain a sharing

of selected matrix elements: 𝑟1𝑌𝑖,2, . . . , 𝑟1𝑌𝑖,𝑛+1 (those are

the positions for generating a scaled vector of attributes)

and 𝑟 𝑗𝑌𝑖,3𝑛+𝑗 (1 < 𝑗 ≤ 𝑛+1) (those are the positions where
random exponents are needed).

(d) Recalling from Appendix F.1 that in OT12 the functional

key sk𝑓 is a vector whose 𝑖th component is
∏𝑁

𝑗=1 G
𝑌𝑖 𝑗𝑧 𝑗
1 ,

we observe that each CA can compute a meaningful share

sk𝑖
𝑓
by doing this computation based on the attribute 𝑥 and

the sharing of elements 𝑌𝑖 𝑗 resp. 𝑟𝑘𝑌𝑖 𝑗 (for those indices

where additional randomness is needed).

(e) The CA signs the pairs (k𝑖 , 𝑥), (k, sk
𝑖
𝑓
), and (k, vk𝑖).

(f) Aggregation step:

(i) Functional key shares are aggregated by component-

wise multiplication of the vectors sk𝑖
𝑓
Ð The addition in

the exponent leads to the expression in (𝑑) as everything
has been computed as a sum-sharing.

(ii) Seed shares are summed up k =
∑
𝑖 k𝑖 .

(iii) Root key pairs are summed up as well (e.g. assuming a

simple DL-based signature scheme).

(3) Finally, the aggregated pairs (k, sk𝑓), (k, 𝑥) and (k, vksig)
are certifiable, because in any of the languages L1 and L2,

instead of proving the knowledge of a signature from the CA,

one would have to prove the aggregation is done correctly

based on the signed shares by each CA. While conceptually

possible, by an additional round of interaction, one can even

shift more computational overhead to the registration phase

as outlined below:

3’. Alternatively to the above certification, one can add one

round of interaction, where the client commits to each ag-

gregated pair, proves the well-formedness using a NIZK and

obtains a threshold signature on the commitments. In this

case, each pair is certifiable in the first and second NIZK

languages by having one additional commitment plus a sig-

nature on it. In this case, for further efficiency, the utilized

SPS scheme can be replaced with the recent Threshold SPS-

scheme of Crites et al. [29]. In this case, each CA has its own

SPS signature key-pair and a sufficiently large number of

issuers is needed to obtain a valid signature (with respect to

the aggregated public key). This strategy pushes most of the

computational overhead into the registration phase.

Furthermore, simplifications can be made depending on the adver-

sarial model. We observe that the root key pair (sksig, vksig) for the
party is never revealed by the party in any operation, and thus we

can simply let one of the servers decide for that one if we are in an

honest-but-curious setting.

H.2 The ul-PCS with Separable Policies

Similarly, we can distribute the generation of the secret keys in

the ul-PCS scheme with separable policies. In this scheme, the PE

scheme is łrealizedž using ordinary PKE with keys (pkPKE, skPKE).
Furthermore, we have signature keys to authorize sender and re-

ceiver predicates. Compared to the generic scheme discussed above,

it is much simpler and we can run a distributed-key generation in

advance and each CA has its own signature key-pair. We briefly

discuss how the user’s registration works concretely.

(1) CA-side setup: Each CA samples random PRF seed k𝑖
$
← Z∗𝑝

and a public key share vk𝑖 .

(2) Registration of a client for attributes 𝑥 : Each CA issues a

signature on the value (k𝑖 , vk𝑖 ,𝑚), where𝑚 ∈ {0, 1} is a bit.
If𝑚 = 1, the client also gets a signature on (k𝑖 , sk𝑖).
The client performs standard aggregation to compute all

relevant values (sksig from all sk𝑖 ’s, k from all k𝑖 ’s).

(3) Certification is again possible via a NIZK, or via one more

round of interaction as above.

H.3 The Role-based ul-PCS Construction

The signing process in the role-based ul-PCS is as above, but the

relevant values that could break privacy are the accumulator wit-

nesses (because they would allow to test which attributes can send

to a target public key), and the seed values. Hence, here one has to

do the following:

(1) CA setup: As the accumulator witnesses in this case are just

signatures on roles that belong to an accumulator value, we

just set up a threshold signature scheme. Each CA then holds

a signature share on a role 𝑖 for accumulator 𝐴 (identified by

the signature public key).

(2) Registration of a client for attributes 𝑥 :

(a) Each CA samples random PRF seed k𝑖 and a public key

share vk𝑖 .

(b) The user can simply obtain the partial signature shares

and a combination of them and finally is in possession of

the full witness for its role 𝑥 .

(c) The remaining steps are as above: the client can recon-

struct the full seed k𝑖 , the full root signature keypair

(vksig, sksig), and has all witnesses.

(3) Certification can be done via a NIZK or via another round

of interaction as above.

I DETAILS OF SECTION 6

I.1 Preliminaries on One-Time Accounts (OTA)

An OTA scheme [33] is defined as a tuple of algorithms OTA =

(Setup,KeyGen,NoteGen, Enc,Receive,NulEval) with the follow-

ing syntax and intended semantics:

266

• Setup: Generates the public parameters that is given implic-

itly to any algorithm below as input.

• KeyGen: Generates an asymmetric key-pair (pk, sk).
• NoteGen(pk, ®𝑎; 𝑟): Takes a public key and a vector of type-

value pairs and generates the note, i.e. the account.

• Enc(pk, (®𝑎, 𝑟)): Encrypts the information toward the recip-

ient such that the recipient will be able to reconstruct the

note’s content and to spend it (see below) .

• Receive(note,𝐶, sk): If the note and ciphertext are created

for the public key belonging to sk, then the algorithm returns

the values (®𝑎, 𝑟), and otherwise returns ⊥.
• NulEval(sk, 𝑟): Returns the nullifier value that is tied to a

particular note (generated with randomness 𝑟). The nullifier

is needed to spend the tokens contained in a note.

OTA’s must be accompanied by some efficient NIZK languages,

including the ones we need in our construction in Section 6, which

are shown to be efficiently realizable [33] using for example Groth-

Sahai proof systems. The security requirements from an OTA

scheme include: (1) Nullifiers should appear pseudo-random and

be unique, such that they can be presented as evidence of spending

a coin, and double spends would directly visible by repeated nulli-

fiers, (2) the note is binding to the key and values, unique, as well as

private in that it hides its content. We discuss these requirements

in the security analysis of our extended scheme.

I.2 Details on Construction I

Construction I. The idea is to use the PCS scheme to sign the note

but hide the involved public keys and signatures inside the OTA

ciphertext. The owner of a note can then use the relevant values in

a zero-knowledge proof of knowledge when claiming, as described

above, a note as part of a transaction.

This generic composition is simple and obviously preserves all

underlying OTA guarantees (cf. Appendix I), but pushes a lot of

complexity into the NIZK. In order to show that the nullifier nul

spends a note note (which contains a vector of type-value pairs ®𝑎
and is generated with randomness 𝑟 that is contained in the ledger

state 𝑠𝑡 , at least the following language must be supported for the

construction:

𝐿 ={(mpk, 𝑠𝑡, nul) | ∃(note, skota, ®𝑎, 𝑟, pk
𝑆
pcs, pk

𝑅
pcs, sk

𝑅
pcs, 𝜎pcs) :

note ∈ 𝑠𝑡 ∧ note = NoteGen(𝑃 (skota), ®𝑎, 𝑟) ∧ nul = NulEval(

skota, 𝑟) ∧ Verify(mpk, pk𝑆pcs, 𝑝𝑘
𝑅
pcs, note, 𝜎pcs) ∧ pk

𝑅
pcs = 𝑃 (sk𝑅pcs)},

where 𝑃 (sk) is an assumed mapping that computes the public key

from the secret key (e.g., to prove knowledge of the secret key).

I.3 Security Analysis of Construction II

In this section, we elaborate on the provided guarantees of our

construction presented in Section 6. Unlike the strawman approach,

which is easily seen to be as secure as OTA, for our more efficient

construction, we trade some security for efficiency. We now elab-

orate on the security provided by that construction following the

OTA security goals.

I.3.1 Soundness and binding. An OTA ciphertext should decrypt

to values that would correctly reconstruct the note that was given

to it. On the other hand, binding ensures that a note is essentially a

binding commitment to the vector ®𝑎. Both of these properties are

satisfied by the above construction since we do not interfere with

the generation of the OTA note.

I.3.2 Note and Ciphertext Privacy. Privacy mandates note and ci-

phertext hiding as well as note and encryption anonymity. If the

underlying OTA scheme satisfies this, then the above construction

trivially achieves it too. This is due to the fact that we do not in-

terfere with note generation and that all the additional values are

hidden by encrypting them using the underlying OTA encryption

procedure.

I.3.3 Note Uniqueness. Note uniqueness captures that honestly

generated notes (aka addresses) do not collide, except with negligi-

ble probability. This is obviously fulfilled by our construction.

I.3.4 Nullifier Uniqueness and collision resistance. Nullifier unique-

ness demands that for the same note, no two nullifiers can be

constructed and that the probability of two nullifiers colliding is

negligible. As above, this is retained by the construction if the

underlying OTA scheme satisfies it.

I.3.5 Nullifier security. The most crucial change of our construc-

tion is the nullifier. We gain efficiency by including signatures and

(re-randomized) keys as part of the nullifier, but we trade the strong

pseudo-random property, which has some security implications

(compared to the strawman approach).

If the creator of a note is honest, the corresponding owner is able

to spend the note in a private and anonymous way. In particular,

if the PCS recipient key is re-randomized accordingly, no linking

within the transaction log is possible thanks to the hiding and

unlinkability property of PCS and the security of the underlying

OTA scheme. The transaction log only reveals that parties are

transacting which are allowed to transact by the policy. On the

other hand, if different notes are created for the same PCS receiver

key, then the only information that leaks from this, is the fact that

the same party must, again, be transactingÐbut no link exists to the

actual note or other transactions that use a re-randomized receiver

key of this party, thanks to the privacy of the commitment scheme,

the unlinkability of the sender PCS key (which by default gets

re-randomized), and the security of the underlying OTA scheme.

However, if the creator of a note is malicious, then this creator

(and only this creator) has enough information to determine that

the owner of the note has been spending the note in a transaction.

This is due to the presence of the additional PCS-related values

that are revealed (as part of the nullifier). It is however possible to

remedy this situation proactively, namely by spending the note to

itself using a freshly randomized PCS key as soon as the transaction

appears in the log. This is incidentally one of the recommended

measures by Zcash to achieve everlasting anonymity [12].

Finally, we observe that spending a note is only possible if a party

has access to the OTA private key and the PCS private key (which

follows from the security provided by the underlying OTA nullifier

and the unforgeability of the PCS signature on this nullifier).

267

	Abstract
	1 Introduction
	1.1 Contributions

	2 Technical Overview and Related Work
	2.1 Realizing ul-PCS for Various Policy Types
	2.2 DAPs, FATF, and ul-PCS
	2.3 Prototypes and Benchmarks
	2.4 Related Work

	3 Unlinkable PCS: Formal Definition
	3.1 Security Games
	3.2 Security of ul-PCS

	4 Constructions
	4.1 ul-PCS for Generic Policies
	4.2 ul-PCS for Specific Policy Types

	5 Instantiations and Performance
	5.1 Performance Analysis

	6 Applications
	6.1 Enhancing DAP Systems
	6.2 Distributed Setup and User Enrollment
	6.3 Compliant Mixing Services
	6.4 Application within Centralized Designs

	Acknowledgments
	References
	A Extended Preliminaries
	A.1 Notation
	A.2 Bilinear Group Setup
	A.3 Pseudorandom Functions
	A.4 Digital Signatures
	A.5 Structure-Preserving Signatures on Equivalence Classes.
	A.6 A Weak Positive Accumulator
	A.7 Public-Key Encryption
	A.8 Predicate Encryption
	A.9 Non-interactive Zero-Knowledge Proofs

	B Formal Definitions for ul-PCS
	B.1 Formal Correctness Definition
	B.2 Formal Detectability Definition
	B.3 Formal Unforgeability Definition
	B.4 Formal Attribute-hiding Definition
	B.5 Formal Unlinkability Definition

	C Note on Multi-Challenge Unlinkability
	D Formal Description of the ul-PCS schemes
	D.1 Formal Description of the separable ul-PCS scheme
	D.2 Formal Description of the Role-based ul-PCS scheme

	E Security Analysis
	E.1 Detectability
	E.2 Unforgeability
	E.3 Attribute Hiding
	E.4 Unlinkability

	F Details on the Instantiations
	F.1 Cryptographic Algorithms
	F.2 Proof Systems

	G Realization of NIZK relations
	G.1 Generic ul-PCS instantiated with Inner-Product Predicate Encryption
	G.2 ul-PCS for Separable Policies
	G.3 ul-PCS for RBAC Policies

	H Distributed Setup and KeyGen Algorithms
	H.1 The Generic ul-PCS Scheme
	H.2 The ul-PCS with Separable Policies
	H.3 The Role-based ul-PCS Construction

	I Details of Section 6
	I.1 Preliminaries on One-Time Accounts (OTA)
	I.2 Details on Construction I
	I.3 Security Analysis of Construction II

