
Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard

Alexandra Boldyreva
Georgia Institute of Technology

USA
sasha@gatech.edu

Virendra Kumar
Qualcomm

USA
virendra@qti.qualcomm.com

Jiahao Sun
USA

ABSTRACT
The paper provides the first provable security analysis of the But-
terfly Key Mechanism (BKM) protocol from IEEE 1609.2.1 standard.
The BKM protocol specifies a novel approach for efficiently re-
questing multiple certificates for use in vehicle-to-everything (V2X)
communication. We define the main security goals of BKM, such
as vehicle privacy and communication authenticity. We prove that
the BKM protocol, with small modifications, meets those security
goals. We also propose a way to significantly improve the protocol’s
efficiency without sacrificing security.

KEYWORDS
V2X communication, butterfly key mechanism, digital certificates,
vehicle privacy, unforgeability, provable security

1 INTRODUCTION
1.1 Motivation
V2X. Vehicle-to-vehicle (V2V) communication, where vehicles ex-
change messages with other vehicles (e.g., vehicle’s speed, head-
ing, braking status, etc.), along with other types of vehicle com-
munications, such as vehicle-to-infrastructure (V2I) and vehicle-
to-pedestrian (V2P), collectively known as vehicle-to-everything
(V2X), have the potential to significantly improve safety and effi-
ciency of our transportation system. The U.S. Department of Trans-
portation (DOT) – National Highway Traffic Safety Administration
(NHTSA) estimated that when fully deployed, V2V communications
can help prevent up to 592,000 crashes and save up to 1,083 lives
per year [22]. In 2017, the DOT proposed a rule [1] to mandate
the inclusion of V2V technology in light vehicles in the US. Even
though the proposed rule didn’t materialize into a mandate, in their
recent draft V2X deployment plan [5], the DOT has set short term
(2024 – 2026), medium term (2027 – 2029) and long term (2030 –
2034) goals that include a fully deployed national highway system,
6 vehicle manufacturers and 20 vehicle models to be V2X capable.

V2X communication has its own unique challenges and require-
ments:

• Privacy: Vehicles need protection from being tracked as they
are continuously sending sensitive information.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 565–582
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0130

• Trust: Vehicles need assurance that incoming messages are
from genuine senders that have been allowed to participate
in V2X.
• Resource constraints: Vehicles have limited resources in
terms of connectivity, compute, storage, etc.

IEEE Standards. To address the above, the IEEE Std 1609.2 [2]
specifies digital certificate formats and the IEEE Std 1609.2.1 [4]
specifies certificate management protocols. Both these standards
are the de facto specifications for securing V2X communications in
the US [3], and form the bases for specifications elsewhere including
Europe and China.

Vehicles are issued digital certificates that they use to digitally
sign messages so that the receiver of those messages can verify the
signatures and be sure that the messages are coming from a genuine
sender. Those certificates are designed to be pseudonym, i.e., the
certificates do not contain any identifying information, and instead
contain permissions to send certain types of messages. Vehicles are
also provisioned with not one but several concurrently valid and
seemingly unrelated certificates, so that they don’t need to use any
particular certificate for a prolonged period.

ButterflyKeyMechanism. The IEEE Std 1609.2.1 specifies a novel
approach for requesting multiple certificates efficiently through a
cryptographic protocol called the Butterfly Key Mechanism (BKM).

We briefly and informally describe the protocol, also see Figure 1
for the pictorial description. The protocol involves three parties: an
end entity (EE), e.g., a vehicle, a registration authority (RA), and an
authorization certificate authority (ACA). The EE has two caterpillar
secret-public key pairs and two keys for pseudorandom functions,
where one is used for signing and the other for encryption. Using
the caterpillar secret keys and the pseudorandom function keys, the
EE creates two sets of cocoon secret keys, one set for signing and
the other for encryption. The RA, who gets the caterpillar public
keys and the pseudorandom function keys from the EE over a secure
channel, can create the corresponding sets of cocoon public keys
for signing and encryption.

Next, the RA permutes the cocoon public key sets from a large
number of EEs, and sends the permuted cocoon public keys to the
ACA. The ACA picks a random offset for each caterpillar signing
key, creates the corresponding butterfly public key and a digital
certificate for it, encrypts all of these under the cocoon public key
for encryption, signs the ciphertexts, and sends those back to the
RA. The RA “un-permutes” the responses and forwards them to the
EE. The EE verifies the signatures, decrypts the ciphertexts using
its cocoon secret key for encryption, and obtains the offsets. Using
these, the EE computes the butterfly secret and public keys and
verifies the certificates for the latter. We provide the protocol details
in Section 3.3.

565

https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0130

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

The butterfly key mechanism (cf. clause 9.3 in [4], and [14, 27])
has the following unique privacy and efficiency features:

• The certificate requester needs to make just one request to
obtain essentially unlimited number of seemingly unrelated
pseudonym certificates.
• The certificate provider that includes two distinct entities,
registration authority and certificate authority, can’t tell if
any two pseudonym certificates belong to the same EE or
not, as long as the registration and certificate authorities do
not collude with each other or with other entities.

Despite its importance and being on the verge of a massive
deployment, the Butterfly Key Mechanism (BKM) protocol, stan-
dardized in IEEE Std 1609.2.1 has not been formally analyzed. The
works [14, 27] describe the protocol along with the intended secu-
rity and privacy properties, but do not provide a formal analysis.
Simplicio et al. [25] suggests an efficiency improvement so that
EEs could avoid sending the encryption keys to the RAs as those
keys could be derived by the parties using the same key expansion
mechanism. Their security analysis is very informal.

1.2 Our Contributions
We provide the first provable security analysis of the Butterfly Key
Mechanism protocol.

Protocol Syntax and Description. We start with defining the
Butterfly Key Mechanism (BKM) protocol’s functionality (syntax)
in Section 3.2. Our syntax follows the flow of the BKM as specified
in IEEE Std 1609.2.1, hereafter referred as IEEE BKM, but is general
enough to capture the modifications we suggest and some new
protocols.

We then describe (in Section 3.3) the IEEE BKM following our
syntax.

Security Definitions. Next, we provide the security definitions
for BKM protocols. Our security definitions capture two security
goals BKM protocols aim to achieve for end entities – privacy
(anonymity/unlinkability) and unforgeability (authenticity). For
both of these goals we consider different threat models depending
on which parties are corrupted. We assume that EEs are honest
(though we do discuss what happens if some of their keys get
compromised). We consider the cases when either the RA or the
ACA are corrupted. We also consider the strongest case when both
RA and ACA are corrupted and colluding. In all these cases, we
make the following assumptions, which follow the setup in prac-
tice. The communication between EEs and the RA is private and
authenticated, and the communication between the RA and the
ACA is authenticated. EEs have what are called enrollment certifi-
cates, which they use to sign the requests to the RA. This helps
prevent impersonation attacks on EEs. The caterpillar keys of EEs
are always honestly generated and thus have the right distribution
and are independent from each other. Each EE is communicating
with a single RA, and each RA may talk to several ACAs. For each
corruption case, we consider attackers who learn all the public
information and everything the corrupted party knows. We assume
the attacker is active and can deviate from the protocol.

The goal of the attacker in the privacy experiment is to distin-
guish whether two butterfly public keys belong to the same EE

or two different EEs. The goal of the attacker in the unforgeabilty
experiment is to forge a signature under any butterfly public key.
Security Analysis. Our main contribution is the security analysis
of IEEE BKM.
Privacy.We start with the goal of privacy. If both ACA and RA are
corrupted, then no privacy can be achieved by a BKM protocol1.
This is because the attacker (by corrupting the ACA) will know the
butterfly public keys and the corresponding certificates of the EE,
and (by corrupting the RA) to which EE the certificates are returned.
In particular, the attacker can link public keys and certificates to
EEs (whether they belong to the same EE or not, and moreover,
which public key is whose). Hence no EE privacy can be achieved.
And of course, the certificates cannot be trusted as they may have
been produced by the attacker on behalf of the ACA.

If only the RA is corrupted, then EE’s privacy depends on how
the corrupted RA deals with ACAs. If there are multiple ACAs and
EEs the RAworks with, then privacy in the strong sense cannot hold
as a malicious RA can do the following attack. Say, the corrupted
RA gets requests from EE1 and EE2, and each is expanded into
several cocoon keys using the expansion function. Then the RA can
send ACA1 all requests from EE1 and ACA2 all requests from EE2.
Later, the attacker will not be able to tell the EEs’ keys apart, but it
will be able to tell their certificates apart, as they will be signed by
different ACAs.

If there is a single ACA for all the EEs that the RA services,
then privacy can hold. If there are multiple ACAs, and if RA sends
fractions of requests from each EE to several ACAs, then privacy
can hold within each EE-ACA batch. In practice, however, it is
extremely unlikely that an RA will use more than one ACA to
generate certificates. The most likely scenario is where a vehicle
manufacturer contracts a Security Credential Management System
(SCMS) provider, so there will be a one-to-one mapping between
the RA and the ACA. Our definition captures both cases.

To prove that privacy holds, we would like to use the fact that
the underlying public-key encryption scheme, ECIES is secure. But
the standard security (indistinguishability under chosen-plaintext
attack or IND-CPA) is not immediately sufficient for us. Since the
attacker breaking the protocol will see ciphertexts created under
different but related cocoon keys (they are related because they
correspond to the same caterpillar key and the attacker knows that
key and the cocoon extensions), we need to rely on the security
of the base encryption scheme under a weak version of the notion
of related-key attack (RKA) [11, 12], where the related keys are
created by adding random offsets to a single key.

It turns out that proving security requires an additional non-
standard notion of security for the base encryption scheme, the
property that captures inability to create ciphertexts which are valid
wrt different keys. Such a property is called robustness. Robustness
of asymmetric encryption was studied by Abdalla et al. and Farshim
et al. [6, 17]. However, as we discuss in Section 5.2, their security
definitions are not immediately suitable for us. We provide the
definition of robustness capturing our setting, that we call target
robustness.

1It may be possible to construct a protocol with a slightly different functionality but
serving the same general security goals using group signatures [16] or fair blind
signatures [26], but efficiency is likely going to be an issue.

566

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

Theorem 5.1 provides the formal bound stating that the generic
IEEE BKM (based on arbitrary underlying schemes) achieves pri-
vacy against the corrupted RA in the ideal cipher and random
oracle model, assuming that the base encryption scheme is IND-
CPA secure against additive RKA and is also target-robust, and the
signature scheme used by the ACA is UF-CMA secure.

Unfortunately, ECIES, the base encryption scheme used by IEEE
BKM is not known to be target-robust or secure in this sense of
additive RKA. The good news is that we can prove ECIES is secure
in these senses. In Theorem 6.1 we show that ECIES is IND-CPA
under additive RKA assuming hardness of the Hash Diffie-Hellman
problem and the IND-CPA security of the underlying symmetric
encryption scheme. We also prove that ECIES, with small modifi-
cations, satisfies target-robustness in the random oracle model (cf.
Theorem 6.2).

In case of corrupted ACAs, EEs’ privacy does hold assuming that
the honest RA sends each ACA the permuted requests containing
equal portion of each EE’s cocoon keys or there is only one ACA
for each EE. Theorem 5.2 states the result.

Unforgeability. We now turn to the goal of unforgeabil-
ity/authenticity. Consider the strongest model when both the RA
and ACA are corrupt. The adversary cannot compute the butterfly
secret keys as it does not know the caterpillar secret keys. But to for-
mally prove unforgeability we face the same issue we faced to prove
privacy, in that the standard (unforgeability under chosen-message
attack or UF-CMA) security of the base signature is not enough for
the proof to go through. What one would need is stronger security
for the base signature scheme such as unforgeability under related-
key attack (UF-RKA [11]). Such a notion requires unforgeability
to hold even if the attacker can observe signatures under related
keys. The relation we are concerned with is a specific one, where
random offsets are added to the secret key.

In order to obtain BKM unforgeability under such additive RKA
attacks we need a very simple modification to the protocol. The
change is as follows. In the current design, the ACA picks the
offset 𝑟 , and sends it (encrypted) to EE via RA. We propose to use
𝐻 (𝑟, 𝑐𝑝𝑘) instead of 𝑟 in butterfly key generation, where 𝐻 is a
hash function and 𝑐𝑝𝑘 is the cocoon public key of EE. The intuition
for this modification is to prevent a corrupted ACA to gain any
advantage by picking 𝑟 maliciously. Applying the hash makes the
result look random despite the choice of 𝑟 , as long as hash inputs do
not repeat. The use of the cocoon public key is to prevent repeated
inputs. Even if the malicious ACA chooses the same 𝑟 , the cocoon
keys will be distinct as the outputs of expansion functions will be
distinct (with overwhelming probability). Theorem 5.3 states that
the unforgeability of the generic (based on an arbitrary signature
scheme) IEEE BKM, with slight modification, reduces to the additive
RKA security of the underlying signature scheme, in the ideal cipher
and random oracle models.

But is ECDSA signature scheme the protocol uses secure under
(additive) RKA? ECDSA has not been proven to be (additive) RKA
secure until the very recent work by Groth and Shoup [21], and
their results fortunately can be used to complete arguing security
of IEEE BKM.

Since we could prove unforgeability in the strongest corruption
model, we do not focus on the weaker models. We observe, however,

that in the case of honest ACA (and corrupted RA), unforgeability
holds without the protocol’s modification.

We note that the modifications we suggest are only needed for
the proofs to go through, and we do not know of attacks on the
protocol without the modifications.

Efficiency Improvement. We propose a simple change to the
protocol that yields a significant efficiency improvement. More
specifically, we propose that the ACA can re-use randomness when
encrypting certificate responses using ECIES under different cocoon
encryption keys. Observe that the first part of an ECIES ciphertext
is 𝑣𝐺 , where 𝑣 ∈ Z𝑞 has to be picked at random for each encryption.
We show that the ACA can re-use the same 𝑣 across all ciphertexts.
This will result in reducing the computation in half (as the ACA
will have to perform only 𝑁 + 1 scalar elliptic curve multiplications
as opposed to 2𝑁 , where 𝑁 is the number of encryptions the ACA
performs) and significantly reducing the communication (since 𝑣𝐺
can be sent only once to each EE).

Kurosawa, Bellare et al. and Barbosa and Farshim [8, 10, 24]
studied the problem of secure randomness re-use. Bellare et al. [10]
defined the security notion for asymmetric multi-recipient encryp-
tion schemes (MRES) and proved that randomness can be safely
re-used across multiple DHIES encryptions under different public
keys. Their result applies to ECIES as well, however, we cannot use
their result as is. The reason is the public keys in our application
are related, and the results of [8, 10] do not cover this case. We
show that the MRES with ECIES and randomness re-use is secure in
the setting with the related keys, assuming hardness of the Oracle
Diffie-Hellman problem and IND-CPA security of the underlying
symmetric encryption scheme (cf. Theorem 7.2). Finally, we show
that this is what we need for unlinkability of the modified IEEE
BKM.

2 NOTATION AND PRELIMINARIES
2.1 Notation
For 𝑙 ∈ N we denote by 1𝑙 the string of 𝑙 “1" bits. 𝑎1∥...∥𝑎𝑛 de-
notes the string encoding of 𝑎1, ..., 𝑎𝑛 from which 𝑎1, ..., 𝑎𝑛 are
uniquely recoverable, e.g., concatenation. We use the bold font
x to denote the list (𝑥1, . . . , 𝑥𝑛) for any 𝑥 . We assume that the
number of elements in the list is clear from the context. And
then 𝑥 [𝑖] = 𝑥𝑖 is the 𝑖th element in x. If S is a set then 𝑥

$← 𝑆

denotes that 𝑥 is selected uniformly at random from S. If A is
a randomized algorithm then 𝑦

$← A(𝑥1, 𝑥2, ...) denote the op-
eration of running A on inputs 𝑥1, 𝑥2, ... and assigning output
to 𝑦. For the syntax of any interactive protocol (algorithm) I
executed between party 𝐴 and party 𝐵, we use the convention:
(output𝐴, output𝐵) ← [I𝐴 (input𝐴),I𝐵 (input𝐵)]. If A is an algo-
rithm, thenA ⇒ 𝑥 means thatA outputs string 𝑥 at the end of its
execution. By efficient we mean algorithms that run in (expected)
polynomial-time in the length of their inputs, and make polynomial
number of queries of polynomial length.

2.2 Preliminaries
We recall the cryptographic primitives the BKM protocol uses and
their security definitions.

567

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

Digital Signatures. A digital signature scheme DS, associ-
ated with the message space MsgSp, consists of four algorithms
(G,K,S,V). The global info generation algorithm G takes as input
the security parameter 1𝜆 and outputs the global info 𝐼 . (For Diffie-
Hellman-based schemes the global info may include the group
description and the generator of the group.) The key generation al-
gorithmK takes as input the global information 𝐼 that contains the
security parameter and possibly some other information and returns
a pair of public-secret key (𝑝𝑘, 𝑠𝑘). The signing algorithm takes a
secret key 𝑠𝑘 and message𝑚 then returns a signature 𝜎 . The verifi-
cation algorithm takes a public key 𝑝𝑘 , a message𝑚, and a signature
𝜎 , then returns a bit 𝑏 indicating whether the signature is valid.
Correctness of the scheme requires that for any 𝐼 output by G(1𝜆),
(𝑝𝑘, 𝑠𝑘) $← K(𝐼), and any𝑚 ∈ MsgSp,V(𝑝𝑘,𝑚,S(𝑠𝑘,𝑚)) = 1.

For security, recall the following security experiment
Expuf-cma

DS (A) associated with DS and adversary A . First, keys

are generated: 𝐼 $← G(1𝜆), (𝑝𝑘, 𝑠𝑘) $← K(𝐼). Then A is given
𝑝𝑘 and access to the oracle S𝑠𝑘 (·) = S(𝑠𝑘, ·). In the end, A
outputs a message-signature pair (𝑚,𝜎). Expuf-cma

DS (A) returns
1 iff V(𝑝𝑘,𝑚, 𝜎) = 1 and 𝑚 is in MsgSp and was not queried
to the S𝑠𝑘 (·) oracle. The advantage Advuf-cma

DS (A) is defined as

Pr
[
Expuf-cma

DS (A) ⇒ 1
]
.

Asymmetric Encryption. An asymmetric encryption schemeAE,
associated with the message spaceMsgSp, is defined by four algo-
rithms (G,K, E,D). The global info generation algorithm G takes
as input the security parameter 1𝜆 and outputs the global info 𝐼 . The
key generation algorithm K takes as input the global information
𝐼 and returns a pair of public-secret key (𝑝𝑘, 𝑠𝑘). The encryption
algorithm E takes a public key 𝑝𝑘 and message𝑚 to return a ci-
phertext 𝑐 . The decryption algorithm takes a secret key 𝑠𝑘 and a
ciphertext 𝑐 to return a plaintext 𝑚. Correctness of the scheme
requires that for any any 𝐼 output by G(1𝜆), (𝑝𝑘, 𝑠𝑘) $← K(𝐼), and
any𝑚 ∈ MsgSp, D(𝑠𝑘, E(𝑝𝑘,𝑚)) =𝑚. We will define the security
notions we need later in the paper.

Symmetric Encryption.A symmetric encryption schemeSE, asso-
ciated with the message space MsgSp, consists of three algorithms
(K, E,D). The key generation algorithm K returns a secret key 𝑘 .
The encryption algorithm E takes key 𝑘 and message𝑚 to return a
ciphertext 𝑐 . The decryption algorithm takes key 𝑘 and a ciphertext
𝑐 to return a plaintext𝑚. Correctness of the scheme requires that
for any 𝑘 $← K and any𝑚 ∈ MsgSp, D(𝑘, E(𝑘,𝑚)) =𝑚.

For security, we recall the ind-cpa definition. Let LR(·, ·, 𝑏) denote
the function that on inputs𝑚0,𝑚1 returns𝑚𝑏 . For an adversaryA,
consider the experiments Expind-cpa-𝑏SE (A). First, the key is gener-

ated as 𝑘 $← K . ThenA is given access to the oracle E(𝑘, LR(·, ·, 𝑏)).
We require that each query (𝑚0,𝑚1) that A makes to its oracle
satisfies |𝑚0 | = |𝑚1 |. Finally,A outputs a bit 𝑑 , and the experiment
returns 1 iff 𝑏 = 𝑑 . The ind-cpa advantageAdvind-cpaSE (A) is defined
as Pr

[
Expind-cpa-0SE (A) ⇒ 0

]
− Pr

[
Expind-cpa-1SE (A) ⇒ 1

]
.

3 THE BUTTERFLY KEY MECHANISM
PROTOCOL

In this section we first informally describe the IEEE BKM protocol.
Next, we formally define the syntax (functionality) of a BKM pro-
tocol. This is necessary for the formal security analysis. Next, we
formally specify the cryptographic core of the IEEE BKM, following
the syntax.

3.1 Overview of IEEE BKM
The IEEE BKM protocol involves three parties: an end entity (EE),
a registration authority (RA), and an authorization certificate au-
thority (ACA). Figure 1 informally presents the main steps of the
protocol.

3.2 Protocol Syntax
The Butterfly Key Mechanism protocol (BKM) is an interac-
tive protocol involving three parties: an end entity (EE), a reg-
istration authority (RA), and an authorization certificate author-
ity (ACA). It is associated with two digital signature schemes
DS1 = (G1,K1,S1,V1), DS2 = (G2,K2,S2,V2) with message
spacesMsgSp1,MsgSp2. (DS1 andDS2 can be the same schemes.)
The protocol consists of the following algorithms and interactive
subprotocols:

Caterpillar key generation (CKG). The algorithm is executed
by the EE. It takes the security parameter and outputs a caterpillar
key pair and an expansion key : (𝑝𝑘cp, 𝑠𝑘cp, 𝑘EXP)

$← CKG(1𝜆).
ACA signing key generation (ACAKG). The algorithm is run
by the ACA. It takes the security parameter and outputs a pair of
signing keys : (𝑝𝑘aca, 𝑠𝑘aca)

$← ACAKG(1𝜆).
Cocoon key expansion (CKE). This is an interactive subpro-
tocol between the EE and the RA. The EE takes as inputs the
expansion key and the caterpillar secret key, and at the end
of the interaction outputs a list of cocoon secret keys. The RA
inputs the expansion key and the caterpillar public key, and
outputs a list of cocoon public keys: [(𝒑𝒌cc, 𝒔𝒌cc),𝒑𝒌cc]

$←
[CKEEE (𝑠𝑘cp, 𝑘EXP), CKERA (𝑝𝑘cp, 𝑘EXP)]. In practice the ex-
pansion key is sent by the EE via a secure channel.
Butterfly key generation (BKG). This is an interactive subproto-
col between the RA and the ACA. The RA takes input the ACA’s
public signing verification key and the cocoon public keys and out-
puts the certificate response. The ACA takes its signing key and has
no output: [𝒓𝒔𝒑,⊥] $← [BKGRA (𝑝𝑘aca,𝒑𝒌cc),BKGACA (𝑠𝑘aca)]
Butterfly key reconstruction (BKR). This is an interactive
subprotocol between the EE and the RA. The EE takes inputs
the cocoon secret keys and the ACA’s signing verification key
and outputs lists of butterfly public and secret keys, as well
as a list of certificates. The RA takes input the response from
ACA in BKG and outputs nothing: [(𝒑𝒌bf , 𝒔𝒌bf , 𝒄𝒆𝒓 𝒕),⊥]

$←
[BKREE (𝒔𝒌cc, 𝑝𝑘aca),BKRRA (𝒓𝒔𝒑)].

Correctness. Informally, correctness requires that at the end
of the protocol the EE obtains valid key pairs for the signature
scheme and valid certificates for the public keys. More precisely,
we require that for any 𝜆, (𝑝𝑘cp, 𝑠𝑘cp, 𝑘EXP) output by CKG(1𝜆),

568

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

1. EE generates:
1.1. Caterpillar secret-public key pair for
signing
1.2. Caterpillar secret-public key pair for
encryption
1.3. Secret expansion function

3. EE expands caterpillar keys into a series of
cocoon secret-public key pairs for signing and
encryption using the expansion function

2. EE sends to RA:
2.1. Caterpillar public key for signing
2.2. Caterpillar public key for encryption
2.3. Secret expansion function

2. RA receives from EE:
2.1. Caterpillar public key for signing
2.2. Caterpillar public key for encryption
2.3. Secret expansion function

3. RA expands caterpillar keys into a series of
cocoon public keys for signing and encryption
using the expansion function

4. RA sends to ACA permuted cocoon public
keys for signing and encryption

4. ACA receives from RA permuted cocoon
public keys signing and encryption

5. For each cocoon public key for signing:
5.1. ACA randomizes the key to a butterfly public
key and generates a certificate for the butterfly
public key
5.2. ACA encrypts to the corresponding cocoon
public key for encryption: certificate and
randomization information
5.3. ACA signs the encrypted packet

6. ACA sends all the encrypted and signed packets
to RA

6. RA receives all the encrypted and signed packets
from ACA

7. EE receives the packets from RA, verifies
ACA’s signatures, and decrypts them using
cocoon secret keys for encryption to obtain
certificates and randomization information

8. EE randomizes cocoon secret keys for
signing to butterfly secret keys and stores
them along with the corresponding
certificates on butterfly public keys

7. RA forwards received packets to corresponding
EEs

EE

2.

4. 6.

7.

…

…

…

…

…

…

…

1.1. 1.2. 1.3.

2.1. 2.2. 2.3.

5.1. 5.2. 5.3.

…

…

RA

ACA

Figure 1: Eight main steps of IEEE BKM protocol, ran between EE, RA and ACA.

(𝑝𝑘aca, 𝑠𝑘aca) output by ACAKG(1𝜆), and for the sequential ex-
ecutions of interactive protocols CKE,BKG and BKR, where
(𝒑𝒌bf , 𝒔𝒌bf) denote the butterfly keys produced by the EE at
the end of BKR, we have that for any message 𝑚 ∈ MsgSp1,
DS1 .V1 (𝒑𝒌bf [𝑖],𝑚,DS1 .S1 (𝒔𝒌bf [𝑖],𝑚)) = 1. Also, we require
that 𝒑𝒌bf [𝑖] ∈ MsgSp2 and DS2 .V2 (𝑝𝑘aca,𝒑𝒌bf [𝑖], 𝒄𝒆𝒓 𝒕 [𝑖]) = 1
for any 1 ≤ 𝑖 ≤ 𝑛. Here for simplicity we ignore the auxiliary
information that the certificates usually contain, and focus only on
the public butterfly keys certification.

3.3 IEEE-BKM Description

General Description. We now specify the IEEE Butterfly Key
Certificate protocol using our syntax. We first present the protocol
for general (but elliptic-curve Diffie-Hellman based) schemes, and
later discuss the particular instantiations the protocol uses.

Let DS1 = (G1,K1,S1,V1), DS2 = (G2,K2,S2,V2) be signa-
ture schemes and let AE = (G,K, E,D) be an asymmetric en-
cryption scheme. DS1 and AE are elliptic-curve Diffie-Hellman
based schemes, meaning that their key generation algorithms are
as follows. The global info generation algorithm outputs the global
information 𝐼 = (G,𝐺, 𝑞), where G is the group of points on the
elliptic curve of prime order 𝑞, generated by𝐺 ∈ G. The key genera-
tion algorithm outputs a pair of keys (𝑝𝑘, 𝑠𝑘), where 𝑠𝑘 is a random
element of Z𝑞 and 𝑝𝑘 = 𝑥 · 𝐺 . Let EXP : {0, 1}𝑘 × {0, 1}𝑙 → Z𝑞
be a function family that we refer to as the expansion function. Let
H : {0, 1}∗ → Z𝑞 be a hash function. For simplicity of notation we

assume that public keys contain the global information and that
the parties are stateful.
◦ CKG:
𝐼𝑠

$← DS1 .G1 (1𝜆); 𝐼𝑒
$← AE .G(1𝜆);

(𝑝𝑘cp, 𝑠𝑘cp)
$← DS1 .Kg1 (𝐼𝑠); 𝑘EXP

$← {0, 1}𝑘

(𝑒𝑝𝑘cp, 𝑒𝑠𝑘cp)
$← AE .Kg(𝐼𝑒); 𝑒𝑘EXP

$← {0, 1}𝑘
Return (𝑝𝑘cp∥𝑒𝑝𝑘cp, 𝑠𝑘cp∥𝑒𝑠𝑘cp, 𝑘EXP ∥𝑒𝑘EXP)

The CKG (caterpillar key generation) algorithm specifies how the
(caterpillar and expansion) keys initially possessed by an EE are
generated.

◦ ACAKG:
𝐼

$← DS2 .G2 (1𝜆); (𝑝𝑘aca, 𝑠𝑘aca)
$← DS2 .Kg2 (𝐼)

Return (𝑝𝑘aca, 𝑠𝑘aca)

The ACAKG (ACA key generation) algorithm specifies how the
keys initially possessed by the ACA are generated. The ACA’s
public key is assumed to be publicly known.

◦ CKE: The protocol is presented in Figure 2.

The CKE (cocoon key expansion) protocol is executed between
the EE and RA. The EE sends the public caterpillar and expansion
keys to the RA via a secure channel. Both parties use the expansion
keys to expand the public caterpillar keys into multiple cocoon
public keys. The EE can also expand the secret caterpillar keys into

569

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

EE(𝑠𝑘cp∥𝑒𝑠𝑘cp, 𝑘EXP ∥𝑒𝑘EXP) RA(𝑝𝑘cp∥𝑒𝑝𝑘cp, 𝑘EXP ∥𝑒𝑘EXP)

For 𝑖 = 1, ..., 𝑛: For 𝑖 = 1, ..., 𝑛:
𝒔𝒌cc [𝑖] ← 𝑠𝑘cp + EXP(𝑘EXP , ⟨𝑖⟩𝑙) 𝒑𝒌cc [𝑖] ← 𝑝𝑘cp + EXP(𝑘EXP , ⟨𝑖⟩𝑙) ·𝐺
𝒑𝒌cc [𝑖] ← 𝑝𝑘cp + EXP(𝑘EXP , ⟨𝑖⟩𝑙) ·𝐺 𝒆𝒑𝒌cc [𝑖] ← 𝑒𝑝𝑘cp + EXP(𝑒𝑘EXP , ⟨𝑖⟩𝑙) ·𝐺
𝒆𝒔𝒌cc [𝑖] ← 𝑒𝑠𝑘cp + EXP(𝑒𝑘EXP , ⟨𝑖⟩𝑙)
𝒆𝒑𝒌cc [𝑖] ← 𝑒𝑝𝑘cp + EXP(𝑒𝑘EXP , ⟨𝑖⟩𝑙) ·𝐺

Return (𝒑𝒌cc∥𝒆𝒑𝒌cc, 𝒔𝒌cc∥𝒆𝒔𝒌cc) Return 𝒑𝒌cc∥𝒆𝒑𝒌cc

Figure 2: CKE algorithm. Here ⟨𝑖⟩𝑖 means number 𝑖 represented as 𝑙 bits.

multiple cocoon secret keys. We assume that 𝑛 ≤ 2𝑙 .

◦ BKG: The protocol is presented in Figure 3. There 𝑃𝑛 is a set of
all permutations on 𝑛 elements.

The BKG (butterfly key generation) protocol is executed between
the RA and ACA. The RA randomly permutes the EE’s cocoon
public keys for signing and encryption and sends them to the
ACA. The ACA expands the signing cocoon keys with random
offsets into butterfly keys and certifies them. It then encrypts each
butterfly key, the certificate and the random offset under the EE’s
public cocoon encryption key. The ACA also signs each ciphertext,
and sends them all to the RA. The RA “un-permutes” the ciphertexts.

◦ BKR: The protocol is presented in Figure 4.

The BKR (butterfly key reconstruction) protocol is between the
EE and the RA. The RA sends the EE the ciphertexts. The EE verifies
the ACA’s signatures and decrypts the ciphertexts using the secret
cocoon keys for decryption. It then uses the offsets to expand the
secret signing cocoon keys into the butterfly secret keys. It also
verifies the validity of the certificates and that the secret keys match
the public keys. The correctness follows from correctness of the
base schemes. Even though the butterfly and cocoon keys are not
computed using the respected key generation algorithms, they still
could be output by those algorithms, and hence the correctness
follows.
IEEE-BKM Instantiations. IEEE BKMuses AES as EXP2, ECDSA
asDS1,DS2, and ECIES asAE with the CCM mode as the under-
lying symmetric encryption. The IEEE 1609.2.1 standard specifies
several mechanisms for secure channels including TLS1.2, TLS1.3
and ISO/TS21177.

4 BKM SECURITY DEFINITIONS
In this Section we formally define the security notions for
the two main security goals of the BKM protocol: privacy
(anonymity/unlinkability) and authenticity (unforgeability). We
treat each goal separately. For each goal, we consider different sce-
narios of corrupted parties. The EE is always honest3. The strongest
model will assume that both RA andACA are corrupted. Theweaker
models treat the cases when either RA or ACA are corrupted.

2The standard also makes use of some XOR operations, but those are not relevant to
our analyses.
3In Section 7 we consider a modification to the protocol where EEs share some infor-
mation, and hence it makes sense to consider the case of compromised EEs there.

Let BKM = (CKG,ACAKG, CKE,BKG,BKR) be a BKM
protocol associated with two digital signature schemes DS1 =

(G1,K1,S1,V1), DS2 = (G2,K2,S2,V2) with message spaces
MsgSp1,MsgSp2.

In the security following security definitions we assume that the
adversary is stateful, i.e., it can preserve state between invocations.
We do not specify states explicitly. If the attacker was previously
given some inputs, it can use those inputs in further stages.

4.1 Privacy
We formalize security in terms of end entity (EE) privacy. In other
words, we define anonymity (unlinkability) of EEs. The adversary
should not be able to tell to which EE a (butterfly) public key belongs
to. Note that this goal is not applicable in the standard PKI setting,
where digital certificates bind public keys and public identities
together. In our setting, the certificates intentionally do not contain
information about the key owner.

I. Honest EE, corrupted RA and ACA. In this strongest model, no
EE privacy is possible. Since the attacker communicates to EEs on
behalf of corrupted RA and ACA, it can later link public keys and
certificates to EEs (whether they belong to the same EE or not, and
moreover, whose public key is whose). More precisely, the attacker
will know the butterfly public keys of EE and the certificates, and
to which EE the certificates are returned. Hence no EE privacy can
be achieved.

II. Honest EE and ACA, corrupted RA. If the RA is corrupted,
EE’s privacy depends on how the corrupted RA deals with the
ACAs. If there are more than one ACA and EE the RAs works with,
then no privacy holds in the strong sense as a malicious RA can
do the following attack. Say, the corrupted RA gets requests from
EE1 and EE2, and each is expanded into several cocoon keys using
the expansion function. Then the CKE can send ACA1 all requests
from EE1 and ACA2 all requests from EE2. Later, the attacker will
not be able to tell the EEs’ keys apart, but it will be able to tell their
certificates apart, as they will be signed by different ACAs with
different public keys.

If all requests from each EE are sent to a single ACA, then privacy
can hold. If an RA sends fractions of requests from each EE to several
ACAs, then privacy can hold within each batch. In practice, it is
extremely unlikely that an RA will use more than one ACA to
generate a single batch of certificates. The most likely scenario
is where a vehicle manufacturer contracts a Security Credential
Management System (SCMS) provider, so there will be a one-to-one

570

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

RA(𝑝𝑘aca,𝒑𝒌cc∥𝒆𝒑𝒌cc) ACA(𝑠𝑘aca)

𝜋
$← 𝑃𝑛

𝒑𝒌cc ← 𝜋 (𝒑𝒌cc), 𝒆𝒑𝒌cc ← 𝜋 (𝒆𝒑𝒌cc)
𝒑𝒌cc, 𝒆𝒑𝒌cc−−−−−−−−−−−−−−−−−−−−−−−−→

For 𝑖 = 1, ..., 𝑛:
𝑟𝑖

$← Z𝑞
△ ℎ𝑖 ←H(𝑟𝑖 ∥𝒑𝒌cc [𝑖])
𝒑𝒌bf [𝑖] ← 𝒑𝒌cc [𝑖] + ℎ𝑖𝐺
𝒄𝒆𝒓 𝒕 [𝑖] ← DS2 .S2 (𝑠𝑘aca,𝒑𝒌bf [𝑖])
𝑐𝑖 ← Enc.E(𝒆𝒑𝒌cc [𝑖],𝒑𝒌bf [𝑖] ∥𝒄𝒆𝒓 𝒕 [𝑖] ∥𝑟𝑖)
𝜎𝑖 ← DS2 .S2 (𝑠𝑘aca, 𝑐𝑖)
𝒓𝒔𝒑 [𝑖] ← 𝑐𝑖 ∥𝜎𝑖

𝒓𝒔𝒑
←−−−−−−−−−−−−−−−−−−−−−−−−

𝒓𝒔𝒑 ← 𝜋−1 (𝒓𝒔𝒑)
Return 𝒓𝒔𝒑

Figure 3: BKG algorithm. The red font (also marked with △ symbol) indicates the change we suggest. In the current protocol,
ℎ𝑖 = 𝑟𝑖 .

EE(𝒔𝒌cc∥𝒆𝒔𝒌cc, 𝑝𝑘aca) RA(𝒓𝒔𝒑)

𝒓𝒔𝒑
←−−−−−−−−−−−−−−−−−−−−−−−

For 𝑖 = 1, ..., 𝑛:
𝑐𝑖 ∥𝜎𝑖 ← 𝒓𝒔𝒑 [𝑖]
If 𝑑𝑖 ← DS2 .V2 (𝑝𝑘aca, 𝑐𝑖 , 𝜎𝑖) ≠ 1 then Return ⊥
𝑚 ← Enc.D(𝒆𝒔𝒌cc [𝑖], 𝑐𝑖)
If𝑚 = ⊥ then Return ⊥ Else parse𝑚 as 𝒑𝒌bf [𝑖] ∥𝒄𝒆𝒓 𝒕 [𝑖] ∥𝑟𝑖
If DS2 .V2 (𝑝𝑘aca,𝒑𝒌bf [𝑖], 𝒄𝒆𝒓 𝒕 [𝑖]) ≠ 1 then Return ⊥
If 𝒑𝒌bf [𝑖] ≠ 𝒑𝒌cc [𝑖] + ℎ𝑖 ·𝐺 then Return ⊥
△ ℎ𝑖 ←H(𝑟𝑖 ∥𝒑𝒌cc [𝑖])
𝒔𝒌bf [𝑖] ← 𝒔𝒌cc [𝑖] + ℎ𝑖

Return (𝒑𝒌bf , 𝒔𝒌bf , 𝒄𝒆𝒓 𝒕)

Figure 4: BKR algorithm. The red font (also marked with △ symbol) indicates the change we suggest. In the current protocol,
ℎ𝑖 = 𝑟𝑖 .

mapping between the RA and the ACA. Our definition (implicitly)
covers both cases.

The experiment Exppriv-craBKM is defined in Figure 7. The definition
models a malicious RA, whose goal is to link the butterfly keys
of the same EE together. The adversary interacts with two honest
EEs on behalf of the RA and learns everything that the RA knows.
It also interacts with the honest ACA. We also let the adversary
know both caterpillar public keys. We then give the attacker a pair
of public butterfly keys, and the certificates, which either belong
to the same EE or two different EEs. The goal of the adversary is
figure out which case it is.

The privacy advantage is defined as

Advpriv-craBKM (A) = 2 · Pr
[
Exppriv-craBKM (A) ⇒ 1

]
− 1 .

Note that the definition does not consider multiple ACAs for
simplicity. (One could do so, but that would not make the definition

stronger). If multiple ACAs are used in practice, then the definition
ensures that the EEs’ keys certified by each ACA are unlinkable.

III. Honest EE and RA, corrupted ACA. The definition models a
malicious ACA whose goal is to link two butterfly keys of the same
EE together. The experiment Exppriv-cacaBKM associated with attacker
A is defined in Figure 5. There are two EEs that interact with the
honest RA. The adversary learns everything that the ACA knows,
namely, the permuted cocoon public keys, and the ACA’s secret
signing key. We also let the adversary know both caterpillar public
keys. Note that the adversary does not get to intervene into the
EE-RA communication because they talk over a secure channel.
We then give the attacker a pair of public cocoon keys, which
either belong to the same EE or two different EEs. The goal of the
adversary is figure out which case it is. Note that the ACA can
always link a butterfly public signing key to the corresponding

571

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

cocoon key, so it is enough for us only focus on the cocoon key
unlinkability.

The privacy advantage is defined as

Advpriv-cacaBKM (A) = 2 · Pr
[
Exppriv-cacaBKM (A) ⇒ 1

]
− 1 .

Recall that 𝑃2𝑛 denotes the set of all permutations on 2𝑛 elements.
We note that in this definition the adversary does not have to

participate in any interactive protocol or have any oracle access, as
it has already got all the information it can get.

Exppriv-cacaBKM (A)

𝜋
$← 𝑃2𝑛 ;𝑏 $← {0, 1}

(𝑝𝑘𝐴cp, 𝑠𝑘𝐴cp, 𝑘𝐴EXP)
$← CKG(1𝜆)

(𝑝𝑘𝐵cp, 𝑠𝑘𝐵cp, 𝑘𝐵EXP)
$← CKG(1𝜆)

(𝑝𝑘aca, 𝑠𝑘aca)
$← ACAKG(1𝜆)

[(𝒔𝒌cc𝐴, 𝒑𝒌cc𝐴), 𝒑𝒌cc𝐴]
$← [CKEEE (𝑠𝑘𝐴cp, 𝑘𝐴EXP), CKERA (𝑝𝑘

𝐴
cp, 𝑘

𝐴
EXP)]

[(𝒔𝒌cc𝐵 , 𝒑𝒌cc𝐵), 𝒑𝒌cc𝐵]
$← [CKEEE (𝑠𝑘𝐵cp, 𝑘𝐵EXP), CKERA (𝑝𝑘

𝐵
cp, 𝑘

𝐵
EXP)]

𝒑𝒌cc ← 𝜋 (𝒑𝒌cc𝐴, 𝒑𝒌cc𝐵)
𝑝𝑘1

$← {𝑝𝑘𝐴cc1, ..., 𝑝𝑘𝐴cc𝑛 }
If 𝑏 = 0:

𝑝𝑘2
$← {𝑝𝑘𝐴cc1, ..., 𝑝𝑘𝐴cc𝑛 } \ {𝑝𝑘1 }

Else:

𝑝𝑘2
$← {𝑝𝑘𝐵cc1, ..., 𝑝𝑘𝐵cc𝑛 }

𝑑
$← A(𝑝𝑘𝐴cp, 𝑝𝑘𝐵cp, 𝑠𝑘aca, 𝒑𝒌cc, 𝑝𝑘1, 𝑝𝑘2)

Return 1 iff (𝑏 = 𝑑)

Figure 5: The experiment Exppriv-cacaBKM (A) for defining privacy
with corrupted ACA.

4.2 Unforgeability
ABKMprotocol lets EEs obtain public-secret key pairs to be used for
signing. Accordingly, the protocol must guarantee that attackers
cannot forge DS1 signatures on behalf of EEs. In addition, the
public key certificates issued by the ACA must also be unforgeable.
But the latter goal is straightforward and follows from the standard
security of DS2 signature scheme. Hence, we focus on studying
the former goal.

We first consider the strongest definition where only the EE is
honest.
I. Honest EE, corrupted RA and ACA. The adversary learns all
information known to the RA and ACA and gets to interact with the
honest EE on their behalf. The adversary wins if it produces a new
valid forgery for one of the EE’s butterfly signing keys. Figure 6
defines the security experiment Expuf-cma

BKM (A) in detail, and the
unforgeability advantage of the attacker A is defined as

Advuf-cma
BKM (A) = Pr

[
Expuf-cma

BKM (A) ⇒ 1
]
.

Remark. We note that the corrupted ACA in possession of the
ACA’s secret key can issue the certificates for any public key. We
still consider the corrupted ACA and study its inability to forge
signatures on behalf of honest EEs. This is similar to the situation
with the standard PKI: a corrupted CA can create certificates on
any key and frame any user, but it still should not be able to forge
signatures under the legitimate keys users certified.

II. Honest EE and ACA, corrupted RA. The security definition in
this case is strictly weaker than the above for the case of corrupted
ACA and RA. Since the BKM protocol can achieve the stronger
latter definition, we do not consider the former in detail. But the
security guarantees are much stronger in this setting because the
ACA is honest and all certificates are hence trusted.
III. Honest EE and RA, corrupted ACA. It is important to remem-
ber that the corrupted ACA can always certify keys of its choice.
Yet the definition can still ensure unforgeability under the butter-
fly keys accepted by EEs. Again, the security definition is strictly
weaker than that in the case of corrupted ACA and RA. Since the
BKM protocol can achieve the stronger one, we do not treat the
weaker definition separately.

5 SECURITY ANALYSIS OF THE GENERIC
IEEE BKM PROTOCOL

In this section we study whether IEEE BKM satisfies the defini-
tions of privacy and unforgeability defined above, and under which
conditions.

As the butterfly signing keys are derived from the same caterpil-
lar signing key and the cocoon encryption keys are derived from
the same caterpillar encryption key, rather than independently gen-
erated, we cannot prove security of the protocol assuming the stan-
dard security definitions for the encryption and signature schemes.
Accordingly, we start with recalling the security definitions for
encryption and signatures in the presence of related keys. For us, a
weak version of the related-key attack security, where one considers
a particular additive relation function, is sufficient. Please see the
Introduction for the prior work references regarding related-key
attacks.

5.1 Security for Signatures and Encryption in
Presence of Related Keys

Signatures in the presence of related keys. A signature key
derivation function specifies how the related keys are generated.
Signature Key Derivation Function. LetDS = (G,K,S,V) be
a digital signature scheme. Let (sPKExp, sSKExp) denote a pair of
key expansion algorithms associated withDS and the randomness
space Coins. sSKExp takes a secret key 𝑠𝑘 and randomness 𝑟 ∈
Coins, then outputs the derived secret key 𝑠𝑘 ′; sPKExp takes a
public key 𝑝𝑘 and randomness 𝑟 ∈ Coins, then outputs the derived
public key 𝑝𝑘 ′. For correctness, we require that for all 𝐼 output
by G(1𝜆), all (𝑝𝑘, 𝑠𝑘) output by DS.K(𝐼), for all randomness 𝑟 ∈
Coins, and for all𝑚 ∈ MsgSp, let 𝑠𝑘 ′ ← sSKExp(𝑠𝑘 ; 𝑟), and 𝑝𝑘 ′ ←
sPKExp(𝑝𝑘 ; 𝑟), we have

Pr
[
DS.V

(
𝑝𝑘 ′,DS.S(𝑠𝑘 ′,𝑚)

)
⇒ 1

]
= 1.

Unforgeability under weakly related key attacks. Let
DS = (G,K,S,V) be a digital signature scheme and let
(sSKExp, sPKExp) be a pair of key expansion functions with ran-
domness space Coins. Consider the experiment defined in Figure
8. We note that the adversary is not given the expanded public
keys explicitly because it can compute them itself. The adversary’s
advantage Advuf-wrkaDS,(sPKExp,sSKExp) (A) is Pr

[
Expuf-wrkaDS (A) ⇒ 1

]
.

572

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

Expuf-cma
BKM (A)

(𝑝𝑘cp, 𝑠𝑘cp, 𝑘EXP)
$← CKG(1𝜆) ; (𝑝𝑘aca, 𝑠𝑘aca)

$← ACAKG(1𝜆)
A ← (𝑝𝑘cp, 𝑘EXP , 𝑠𝑘aca, 𝑝𝑘aca)
For 𝑖 = 1, ..., 𝑛:𝑀 [𝑖] ← ∅
[EEout,Aout] $← [CKEEE (𝑠𝑘cp, 𝑘EXP),A]
Parse EEout as (𝒔𝒌cc, 𝒑𝒌cc)
If does not parse, return ⊥
[EEout,Aout] $← [BKREE (𝒔𝒌cc, 𝑝𝑘aca),A]
Parse EEout as (𝒔𝒌bf , 𝒑𝒌bf , 𝒄𝒆𝒓𝒕)
If does not parse, return ⊥
(𝑚,𝜎, 𝑗) $← ASign(·,·) (𝒑𝒌bf , 𝒄𝒆𝒓𝒕)
Return 1 iff𝑚 ∉ 𝑀 [𝑗] and DS.V(𝒑𝒌bf [𝑗],𝑚, 𝜎) = 1

SignDS (𝑚, 𝑗)

𝜎
$← DS.S(𝒔𝒌bf [𝑗],𝑚)

𝑀 [𝑖] ← 𝑀 [𝑖] ∪ {𝑚}
Return 𝜎

Figure 6: The experiment Expuf-cma
BKM (A) for defining unforgeablility with corrupted RA and ACA.

Exppriv-craBKM (A)

𝑏
$← {0, 1}
(𝑝𝑘𝐴cp, 𝑠𝑘𝐴cp, 𝑘𝐴EXP)

$← CKG(1𝜆)

(𝑝𝑘𝐵cp, 𝑠𝑘𝐵cp, 𝑘𝐵EXP)
$← CKG(1𝜆)

(𝑝𝑘aca, 𝑠𝑘aca)
$← ACAKG(1𝜆)

[EEout,Aout] $← [CKEEE (𝑠𝑘𝐴cp, 𝑘𝐴EXP), A(𝑝𝑘
𝐴
cp, 𝑘

𝐴
EXP , 𝑝𝑘aca)]

Parse EEout as (𝒔𝒌cc𝐴, 𝒑𝒌cc𝐴)
If does not parse, return ⊥
[EEout,Aout] $← [CKEEE (𝑠𝑘𝐵cp, 𝑘𝐵EXP), A(𝑝𝑘

𝐵
cp, 𝑘

𝐵
EXP)]

Parse EEout as (𝒔𝒌cc𝐵 , 𝒑𝒌cc𝐵)
If does not parse, return ⊥
[Aout,⊥] $← [A, BKGACA (𝑠𝑘aca, 𝒑𝒌cc𝐴, 𝒑𝒌cc𝐵)]
[EEout,Aout] $← [BKREE (𝑠𝑘𝐴cc1, ..., 𝑠𝑘𝐴cc𝑛 , 𝑝𝑘aca),A]
Parse EEout as (𝑠𝑘𝐴bf 1, ..., 𝑠𝑘

𝐴
bf𝑛

, 𝑝𝑘𝐴bf 1, ..., 𝑝𝑘
𝐴
bf𝑛

, 𝑐𝑒𝑟𝑡𝐴1 , ..., 𝑐𝑒𝑟𝑡
𝐴
𝑛)

If does not parse, return ⊥
[EEout,Aout] $← [BKREE (𝑠𝑘𝐵cc1, ..., 𝑠𝑘𝐵cc𝑛 , 𝑝𝑘aca),A]
Parse EEout as (𝑠𝑘𝐵bf 1, ..., 𝑠𝑘

𝐵
bf𝑛

, 𝑝𝑘𝐵bf 1, ..., 𝑝𝑘
𝐵
bf𝑛

, 𝑐𝑒𝑟𝑡𝐵1 , ..., 𝑐𝑒𝑟𝑡
𝐵
𝑛)

If does not parse, return ⊥
(𝑝𝑘1, 𝑐𝑒𝑟𝑡1)

$← {(𝑝𝑘𝐴bf 1, 𝑐𝑒𝑟𝑡
𝐴
1), ..., (𝑝𝑘

𝐴
bf𝑛

, 𝑐𝑒𝑟𝑡𝐴𝑛) }
If 𝑏 = 0:
(𝑝𝑘2, 𝑐𝑒𝑟𝑡2)

$← {(𝑝𝑘𝐴bf 1, 𝑐𝑒𝑟𝑡
𝐴
1), ..., (𝑝𝑘

𝐴
bf𝑛

, 𝑐𝑒𝑟𝑡𝐴𝑛) } \ {(𝑝𝑘1, 𝑐𝑒𝑟𝑡1) }
Else:

(𝑝𝑘2, 𝑐𝑒𝑟𝑡2)
$← {(𝑝𝑘𝐵bf 1, 𝑐𝑒𝑟𝑡

𝐵
1), ..., (𝑝𝑘

𝐵
bf𝑛

, 𝑐𝑒𝑟𝑡𝐵𝑛) }

𝑑
$← A(𝑝𝑘𝐴cp, 𝑝𝑘𝐵cp, 𝑝𝑘1, 𝑝𝑘2, 𝑐𝑒𝑟𝑡1, 𝑐𝑒𝑟𝑡2)

Return 1 iff 𝑏 = 𝑑

Figure 7: The experiment Exppriv-craBKM (A) for defining privacy
with corrupted RA.

Encryption in the presence of related keys.
Encryption Key Derivation Function. Let AE = (G,K, E,D)
be an public-key encryption scheme. Let (eSKExp, ePKExp) be a
pair of key expansion algorithms associated with AE and the ran-
domness space Coins. eSKExp takes a secret key 𝑠𝑘 and randomness
𝑟 , then returns the expanded secret key 𝑠𝑘 ′; similarly, ePKExp takes
a public key 𝑝𝑘 and randomness 𝑟 , then outputs the expanded pub-
lic key 𝑝𝑘 ′. Correctness requires that for all 𝐼 output by G(1𝜆), all
(𝑝𝑘, 𝑠𝑘) output byAE .K(𝐼), for all randomness 𝑟 ∈ Coins, and for
all𝑚 ∈ MsgSp, let 𝑠𝑘 ′ ← eSKExp(𝑠𝑘 ; 𝑟), and 𝑝𝑘 ′ ← ePKExp(𝑝𝑘 ; 𝑟)
we have that

Pr
[
AE .D

(
𝑠𝑘 ′,AE .E(𝑝𝑘 ′,𝑚)

)
⇒𝑚

]
= 1.

IND-CPA under related key attack. Let AE = (G,K, E,D)
be a public key encryption scheme, (ePKExp, eSKExp) be a pair
of key expansion functions. The security experiment is pre-
sented in Figure 9. Again, the public keys are not explicitly
given to A as they can be computed. Note that the coins
are generated honestly, as for our proofs we do not require
security agagist maliciously-generated coins. For a stateful at-
tacker A, we define its advantage Advind-cpa-wrkaAE,(ePKExp,eSKExp) (A) as

2 Pr
[
Expind-cpa-wrkaAE,(ePKExp,eSKExp) (A) ⇒ 1

]
− 1.

5.2 Target Robustness
It turns out that security of the IEEE BKM protocol requires an
additional non-standard notion of security for the base encryption
scheme, called robustness [6, 17]. Robustness captures the inability
to create ciphertexts which are valid wrt different keys. Abdalla et
al. [6] defined robustness and proved that DHIES (and hence ECIES),
with small modification, is robust. However, taking a closer look
we can see that the robustness definition in [6] is for properly gen-
erated keys, in that 𝑝𝑘 ′

𝑖
has to be valid. But in our experiment there

is no restriction on the validity of the public keys the malicious
RA sends to the ACA. Farshim et al. [17] revisited the definitions
of robustness and provided stronger robustness definitions which
take into account public keys which can be invalid. However, the
adversary in their definition is required to output the corresponding
secret keys. This is a problem for us since the malicious RA in our
experiment will not provide the secret key in any way. Luckily, we
are only concerned about the ciphertext being valid under one of the
two keys. Strictly speaking, the other key in our experiment is not
generated according to the base encryption scheme key generation
algorithm. But we can deal with this discrepancy easily in the ideal
cipher model. Below we provide the definition of robustness captur-
ing this setting, that we call target robustness (trob). Later, we prove
that ECIES, with small modifications, satisfies target robustness.

Target Robustness Definition. Let AE = (G,K, E,D) be a
public key encryption scheme. Figure 10 defines the experiment
ExptrobAE (A) associated with an adversary A. The adversary’s ad-

vantage, AdvtrobDS (A) is defined as Pr
[
ExptrobAE (A) ⇒ 1

]
.

573

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

Expuf-wrkaDS (A)

𝐼
$← DS.G(1𝜆)

(𝑝𝑘, 𝑠𝑘) $← DS.K(𝐼)
𝑄𝑙 ← ∅

(𝑎1, ..., 𝑎𝑛)
$← A(𝑝𝑘)

For 𝑖 = 1, ..., 𝑛:
𝑠𝑘𝑖 ← sSKExp(𝑠𝑘 ;𝑎𝑖)
𝑝𝑘𝑖 ← sPKExp(𝑝𝑘 ;𝑎𝑖)

(𝑚,𝜎, 𝑖) $← ASign(·,·)

Return 1 iff (𝑖,𝑚) ∉ 𝑄𝑙 and
DS.V(𝑝𝑘𝑖 ,𝑚, 𝜎) = 1

SignDS (𝑚, 𝑖)

𝜎
$← DS.S(𝑠𝑘𝑖 ,𝑚)

𝑄𝑙 ← 𝑄𝑙 ∪ {(𝑖,𝑚) }
Return 𝜎

Figure 8: The experiment Expuf-wrkaDS,(sPKExp,sSKExp) (A).

Expind-cpa-wrkaAE,(ePKExp,eSKExp) (A)

𝑏
$← {0, 1} ; 𝐼 $← G(1𝜆)

(𝑝𝑘, 𝑠𝑘) $← AE .K(𝐼)

(𝑎1, . . . , 𝑎𝑛)
$← Coins

For 𝑖 = 1, . . . 𝑛:
𝑠𝑘𝑖 ← eSKExp(𝑠𝑘 ;𝑎𝑖)
𝑝𝑘𝑖 ← ePKExp(𝑝𝑘 ;𝑎𝑖)

𝑑
$← AEnc(·,·,·) (𝑝𝑘, 𝑎1, ..., 𝑎𝑛)

Return 1 iff (𝑏 = 𝑑)

procedure Enc(𝑚0,𝑚1, 𝑖)
If |𝑚0 | = |𝑚1 |:

𝑐
$← AE .E(𝑝𝑘𝑖 ,𝑚𝑏)

Else:
𝑐 ← ⊥

Return 𝑐

Figure 9: The experiment Expind-cpa-wrkaAE,(ePKExp,eSKExp) (A).

ExptrobAE (A)

𝐼
$← G(1𝜆)
(𝑝𝑘, 𝑠𝑘) $← K(𝐼)
(𝑝𝑘 ′,𝑚) ← A(𝑝𝑘)
𝑐 ← E(𝑝𝑘 ′,𝑚)
Return 1 iff 𝑝𝑘 ≠ 𝑝𝑘 ′ and D(𝑠𝑘, 𝑐) ≠ ⊥

Figure 10: Experiment ExptrobAE (A) for defining target robust-
ness (TROB).

5.3 Generic IEEE BKM Security
We start with analyzing the generic IEEE BKM (based on generic
signature and encryption schemes). In the next section we analyze
the specific instantiations of the base schemes.

Theorem 5.1 (Privacy, Corrupted RA). Let BKM be the IEEE
Butterfly Key Certificate protocol as defined in Section 3.3, associated
with signatures schemes DS1, DS2, asymmetric encryption AE,
the expansion function EXP and the hash functionH . Let AE be
an elliptic-curve Diffie-Hellman based scheme (cf. the explanation in
Section 3.3). Let (ePKExp+, eSKExp+) be the additive keys expansion

eSKExp+ (𝑠𝑘 ;𝑎)
𝑠𝑘′ ← 𝑠𝑘 + 𝑎
Return 𝑠𝑘′

ePKExp+ (𝑝𝑘 ;𝑎)
𝑝𝑘′ ← 𝑝𝑘 + 𝑎
Return 𝑝𝑘′

Figure 11: Additive key expansion functions for AE.

sSKExp+ (𝑠𝑘 ;𝑎)
𝑠𝑘′ ← 𝑠𝑘 +𝐻 ′ (𝑎)
Return 𝑠𝑘′

sPKExp+ (𝑝𝑘 ;𝑎)
𝑝𝑘′ ← 𝑝𝑘 +𝐻 ′ (𝑎)𝐺
Return 𝑝𝑘′

Figure 12: Additive key expansion functions for DS1.

functions for encryption described in Figure 11 associated with AE
and Coins = {0, 1}∗. If EXP is modeled as an ideal cipher and 𝐻 is
modeled as random oracles, then for every efficient adversaryA there
exist efficient B, C, D such that

Advpriv-craBKM (A) ≤ 2Advind-cpa-wrkaAE,(ePKExp+,eSKExp+)
(B)

+ 2Advuf-cma
DS2 (C) + 4𝑛 · Adv

trob
AE (D) + 𝑛𝑒𝑔𝑙 (𝜆) .

The proof is in Appendix B.1. Recall that the above result captures
privacy of EEs’ certificates from the same ACA.

574

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

Theorem 5.2 (Privacy, Corrupted ACA). Let BKM be the
IEEE Butterfly Key Certificate protocol be as defined in Section 3.3,
associated with signatures schemes DS1, DS2, asymmetric encryp-
tion AE, the expansion function EXP and the hash functionH . If
EXP is modeled as an ideal cipher, then for every efficient adversary
A,

Advpriv-cacaBKM (A) ≤ 𝑛𝑒𝑔𝑙 (𝜆) .

The proof is in Appendix B.2.

Theorem 5.3 (Unforgeability, Corrupted ACA and RA). Let
BKM be the IEEE Butterfly Key Certificate protocol be as defined in
Section 3.3, associated with signatures schemesDS1,DS2, asymmet-
ric encryption AE, the expansion function EXP and the hash func-
tionH . Let DS1 be an elliptic-curve Diffie-Hellman based scheme
(cf. the explanation in Section 3.3). Let (sPKExp+, sSKExp+) be the
additive keys expansion functions for signatures described in Fig-
ure 12 associated with DS1, Coins = {0, 1}∗ and the hash function
H ′ : {0, 1} → 𝑍𝑞 . If EXP is modeled as an ideal cipher and 𝐻,𝐻 ′

are modeled as random oracles, then for every efficient adversary A
there exist an efficient adversary B, such that

Advuf-cma
BKM (A) ≤ Advuf-wrkaDS1,(sPKExp+,sSKExp+)

(B) .

The proof is in Appendix B.3.
Remark. In the case of honest EE and RA, and corrupted ACA, we
can drop the ideal blockcipher assumption on cocoon key expansion
functions in Theorem 5.3 as the adversary no longer participates
in the cocoon key expansion stage. In the case of honest EE and
ACA, and corrupted RA, Theorem 5.3 holds without the protocol’s
modification, since all random offsets are honestly generated by
the honest ACA.

6 SECURITY ANALYSIS OF THE IEEE-BKM
INSTANTIATION

In this section we conclude the security analysis of IEEE-BKCP
protocol. Recall that IEEE-BKCP uses AES as EXP, ECDSA as
DS1,DS2, and ECIES as AE with the underlying symmetric en-
cryption AES-CCM. It is common in the security analyses to assume
that AES is an ideal cipher and the hash is a random oracle. ECDSA
has been proven to be uf-cma secure under various idealized as-
sumptions on the underlying primitives [15, 18, 19]. The CCMmode
has been analyzed in [20, 23]. But it remains to study ind-cpa-wrka
and trob security of ECIES and uf-wrka security of ECDSA.

6.1 ECIES
The asymmetric encryption scheme ECIES is an elliptic-curve
variant of DHIES [7]. It is associated with a symmetric encryption
scheme SE4. LetHK : G→ {0, 1}ℎ𝑙 be a hash function. The Kg
algorithm of the asymmetric encryption scheme ECIES returns
the elliptic curve parameters 𝐼 = (G,𝐺, 𝑞). Figure 13 recalls the rest
of the scheme’s algorithms. Let the length the key for SE be ℎ𝑙 .
The message space of ECIES is that of SE.

4DHIES was designed to also use a message authentication code (MAC). The use of
MACs is not essential to us as we do not consider IND-CCA security. Moreover, IEEE
BKM’s implementation uses ECIES with the associated symmetric scheme in CCM
mode, which is an authenticated encryption scheme.

To prove ind-cpa-wrka security of ECIES we will need to rely
on Hash Diffie-Hellman (HDH) assumption [7]. We recall the HDH
problem.
HDH Problem. Let G be the global info generation and let H
be a hash function. The experiment ExphdhG (A) is defined in
Figure 14. The advantage of the adversary A, AdvhdhG (A) =

2 · Pr
[
ExphdhG (A) ⇒ 1

]
− 1.

Theorem 6.1 (ind-cpa-wrka security of ECIES). Let
ECIES be the encryption scheme recalled in Figure 13, with global
info generation G. The scheme is associated with a symmetric
encryption scheme SE, and hash HK : G → {0, 1}ℎ𝑙 . Let
(ePKExp+, eSKExp+) be the additive encryption key expansion
functions described in Figure 11. Then for any efficient adversary A
there exist efficient adversaries B and D such that

Advind-cpa-wrkaECIES,(ePKExp+,eSKExp+)
(A) ≤ 𝑛 · Advind-cpaSE (B)

+2AdvhdhHK,G (D) .

The proof is in Appendix B.4.
IEEE BKM uses AES-CCM mode as SE. The CCM mode has

been proven secure in [20, 23] assuming AES is a PRF.
We now prove that ECIES with minor modifications (ECIES∗ in

Figure 13) is TROB-secure.

Theorem 6.2 (trob security of ECIES). Let ECIES∗ be the
modified ECIES recalled in Figure 13. The scheme is associated with
SE being the CCM mode and hashHK . Then for any efficient ad-
versaryA, if the blockcipher used in CCM modeled as an ideal cipher,
we have

AdvtrobECIES∗ (A) ≤ negl(𝜆) .

Proof. There are two possibilities for a ciphertext 𝑣𝐺 ∥𝑒 created
under one public key 𝑋1 to be valid under a different public key 𝑋2.
Let 𝑘1SE ←HK(𝑣𝑋1), 𝑘2SE ←HK(𝑣𝑋2).

(1) HK(𝑣𝑋1) = HK(𝑣𝑋2)
(2) SE .D(𝑘2SE , 𝑒) ≠ ⊥

The first condition has only a negligible probability of occurring if
HK is a random oracle and 𝑣𝑋1 ≠ 𝑣𝑋2. And the latter is true since
𝑋1 ≠ 𝑋2, and 𝑉 ≠ 1, 𝑋1 ≠ 1 and 𝑋2 ≠ 1, where 𝑉 = 𝑣𝐺 .

The second condition has only a negligible probability of oc-
curring since in the ideal cipher model, the blockcipher under a
different key is an independent random permutation, and the MAC,
which is part of the CCM’s mode construction would have only a
negligible probability of being valid. □

6.2 ECDSA
Despite its wide use, the ECDSA signature scheme has not
been proven secure against related key attacks until recently.
Groth and Shoup [21] showed that ECDSA is secure when keys
are computed via additive key derivation function, in the ellip-
tic curve generic group model. We use their result to bound
Advuf-wrkaECDSA,(sPKExp+,sSKExp+)

(A), in the random oracle model.

Theorem 6.3 (uf-wrka security of ECDSA, from [[21]).
Let ECDSA be the ECDSA signature scheme (recalled in the
Appendix A), whose G algorithm returns 𝐼 = (G,𝐺, 𝑞). Let

575

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

ECIES.K((G,𝐺,𝑞))

𝑢
$← Z𝑞

𝑝𝑘 ← 𝑢𝐺

△ If 𝑝𝑘 = 1 then return ⊥
𝑠𝑘 ← 𝑢

Return (𝑝𝑘, 𝑠𝑘)

ECIES.E(𝑝𝑘,𝑚)

𝑣
$← Z𝑞

𝑉 ← 𝑣𝐺

𝑥 ← 𝑣 · 𝑝𝑘
𝑘SE ← HK(𝑥)
𝑒

$← SE .E(𝑘SE ,𝑚)
Return𝑉 ∥𝑒

ECIES.D(𝑠𝑘, 𝑐)
𝑉 ∥𝑒 ← 𝑐

△ If𝑉 = 1 then return ⊥
𝑥 ← 𝑠𝑘 ·𝑉
𝑘SE ← HK(𝑥)
If ⊥ = SE .D(𝑘SE , 𝑒)

Return ⊥
𝑚 ← SE .D(𝑘SE , 𝑒)
Return𝑚

Figure 13: ECIES encryption scheme does not include lines in red. The modified ECIES∗ scheme includes lines in red (also
marked with △ symbol.)

ExphdhG (A)

𝑏
$← {0, 1}

(G, 𝑔, 𝑞) $← G(1𝜆)
𝐼 ← (G, 𝑔, 𝑞)
𝑢

$← Z𝑞 ;𝑈 ← 𝑢𝐺

𝑣
$← Z𝑞 ;𝑉 ← 𝑣𝐺

If 𝑏 = 0 then 𝑍
$← {0, 1}ℎ𝑙

Else 𝑍 ← H(𝑢𝑣𝐺)
𝑑 ← AH (𝐼 ,𝑈 ,𝑉 ,𝑍)
Return 1 iff 𝑏 = 𝑑

Figure 14: Experiment ExphdhG (A) for hdh problem.

(sPKExp+, sSKExp+) be the additive expansion functions described
in Figure 12 where H is the random oracle with the range Z𝑞 . For
simplicity we assume that ECDSA uses the same 𝐻 . Then in the
elliptic curve generic group model (EC-GGM), and in the random
oracle model, for any efficient adversary A,

Advuf-wrkaECDSA,(sPKExp+,sSKExp+)
(A) ≤ (8+𝑜 (1))𝑞𝑠 ·𝑞2𝐻 /𝑞+𝑂 (𝑞

2
𝑠 /𝑞) ,

where 𝑞𝑠 is the number of signing or group queries and 𝑞𝐻 is the
number of random oracle queries the adversary makes.

Theorems 5.1, 5.2, 5.3, 6.1, 6.2, 6.3 together complete the security
results for the IEEE BKM protocol.

7 EFFICIENCY IMPROVEMENT FOR IEEE BKM
Proposed modification. We propose a simple change to the BKM
protocol that yields a significant efficiency improvement. More
specifically, we propose that the ACA can re-use randomness when
encrypting certificate responses using ECIES under different cocoon
encryption keys. Recall that the first part of an ECIES ciphertext is
𝑣𝐺 , where 𝑣 ∈ Z𝑞 has to be picked at random for each encryption.
We show that the ACA can re-use the same 𝑣 across all ciphertexts.
This will result in reducing the computation in half (as the ACA
will have to perform only 𝑁 + 1 scalar elliptic curve multiplications
as opposed to 2𝑁 , where 𝑁 is the number of encryptions the ACA
performs) and significantly reducing the communication (since 𝑣𝐺
can be sent only once to each EE).

Kurosawa, Bellare et al. and Barbosa and Farshim [8, 10, 24]
studied the problem of secure randomness re-use. Bellare et al. [10]

defined the security notion for asymmetric multi-recipient encryp-
tion schemes (MRES) that, unlike the notion in [24], lets the at-
tacker to corrupt some users and learn their secret keys. They
also proved that randomness can be safely re-used across multiple
DHIES encryptions under different public keys. Their result applies
to ECIES as well, however, we cannot use their result as is. The
reason is the public keys in our application are related, and the
results of [8, 10] do not cover this case. Their results apply only
to the case of independently-created keys, and in general, security
does not extend to the case of related keys. We show that the MRES
with ECIES and randomness re-use is secure in the setting with the
related keys, assuming hardness of the Oracle Diffie-Hellman prob-
lem and IND-CPA security of the underlying symmetric encryption
scheme (cf. Theorem 7.2). Finally, we show that this is what we
need for unlinkability of the modified IEEE BKM.
Multi-Recipient Encryption Scheme with Related Keys (RK-
MRES). Let AE = (G,K, E,D) be an asymmetric encryption
scheme with the message spaceMsgSp. Let (ePKExp, eSKExp) be
the key expansion functions. The associated RK-MRES is defined by
the following algorithms. RKMRES.K on input 1𝜆 returns the
global info 𝐼 . RKMRES.K takes input global info 𝐼 and does
the following. (𝑝𝑘, 𝑠𝑘) $← AE .K(𝐼), (𝑎1, ..., 𝑎𝑛)

$← Coins, For
𝑖 = 1, ..., 𝑛: 𝒔𝒌 [𝑖] ← eSKExp(𝑠𝑘 ;𝑎𝑖), 𝒑𝒌 [𝑖] ← ePKExp(𝑝𝑘 ;𝑎𝑖), and
returns (𝒑𝒌, 𝒔𝒌). RKMRES.E takes inputs 𝒑𝒌 and𝒎 and returns
c. RKMRES.D is the same as AE .D.

Correctness of the scheme requires that the following exper-
iment always returns 1. 𝐼 $← RKMRES.K(1𝜆), (𝒑𝒌, 𝒔𝒌) $←
RKMRES.K(𝐼), 𝒎 $← MsgSp, c $← RKMRES.E(𝒎), 𝑖 $←
{1, . . . , 𝑛}, 𝒎[𝑖] ← RKMRES.D(c[𝑖]).
Randomness re-using ECIES RK-MRES.We are interested in a spe-
cific WK-MRES scheme,MR-ECIES, obtained from ECIES (cf.
Figure 13). by using the same coins to encrypt different messages
in the message vector, and associated with the additive key expan-
sion functions (eSKExp+, ePKExp+). We present the construction
explicitly for clarity. Let ECIES.Coins denote the randomness
set for ECIES. MR-ECIES.G(1𝜆) runs ECIES.G(1𝜆). The
rest of the algorithms are in Figure 15. The scheme is correct by
correctness of ECIES and of the expansion functions.
Security analysis. To assess security of this scheme, we need to
introduce a new security definition that takes into account both
randomness re-use and related keys. We adapt the security defini-
tion from [10] to accommodate related keys. The adversary knows
(or can compute) all public keys and how the keys are related. It

576

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

MR-ECIES.K(𝐼)

(𝑝𝑘, 𝑠𝑘) $← ECIES.K(𝐼)
For 𝑖 = 1, ..., 𝑛

𝑎𝑖
$← Z𝑞

𝒑𝒌 [𝑖] ← ePKExp+ (𝑝𝑘 ;𝑎𝑖)
𝒔𝒌 [𝑖] ← eSKExp+ (𝑠𝑘 ;𝑎𝑖)

Return (𝒑𝒌, 𝒔𝒌)

MR-ECIES.E(𝒑𝒌,𝒎)

𝑟
$← ECIES.Coins

For 𝑖 = 1, ..., 𝑛
c[𝑖] ← ECIES.E(𝒑𝒌 [𝑖],𝒎 [𝑖]; 𝑟)

Return c

MR-ECIES.D(𝑠𝑘, 𝑐)
𝑚 ← ECIES.D(𝑠𝑘, 𝑐)
Return𝑚

Figure 15: Randomness re-using multi-recipient encryption scheme with related keys, based on public key encryption scheme
ECIES and key expansion functions (ePKExp+, eSKExp+).

is allowed to learn some secret keys, and is trying to get some
information about the messages encrypted under the other public
keys.

Definition 7.1. Let MRPKE = (G,K, E,D) be a multi-
recipient asymmetric encryption scheme based on public
key encryption scheme AE and key expansion functions
(ePKExp, eSKExp). We define the experiment Expmr-cpa-wrka

MRPKE (A)
in Figure 16. The attacker’s advantage, Advmr-cpa-wrka

MRPKE (A) is
2 Pr

[
Expmr-cpa-wrka

MRPKE (A) ⇒ 1
]
− 1.

Expmr-cpa-wrka
MRPKE (A)

𝑏
$← {0, 1}

(𝑝𝑘, 𝑠𝑘) $← AE .K(𝐼)
(𝑝𝑘 ′, 𝑠𝑘 ′) $← AE .K(𝐼)
a

$← Coins
a′

$← Coins
For 𝑖 = 1, ..., 𝑛

𝒔𝒌 [𝑖] ← eSKExp(𝑠𝑘 ; a[𝑖])
𝒑𝒌 [𝑖] ← ePKExp(𝑝𝑘 ; a[𝑖])
𝒔𝒌 ′[𝑖] ← eSKExp(𝑠𝑘 ′; a′[𝑖])
𝒑𝒌 ′[𝑖] ← ePKExp(𝑝𝑘 ′; a′[𝑖])

(m0,m1,m)
$← A(𝑝𝑘, 𝑝𝑘 ′, a, a′, 𝑠𝑘 ′)

If |m0 | ≠ |m1 | then return ⊥
If |m0 | = |m1 | = |m′ | is not 𝑛 then return ⊥
c

$← MRPKE.E(𝒑𝒌,m𝑏)
c′

$← MRPKE.E(𝒑𝒌 ′,m)
𝑑

$← A(c, c′)
Return 1 iff (𝑏 = 𝑑)

Figure 16: Experiment formr-cpa-wrka security of RK-MRES.
We now analyze the randomness re-using ECIES-based RK-

MRES. Security relies on the Oracle Diffie-Hellman (ODH) prob-
lem [7], so we recall it here. It was proven in [7] that in the random
oracle model Strong Diffie-Hellman (SDH) implies ODH.
ODH Problem. Let G be the global info generation and let H
be a hash function. The experiment ExpodhG (A) is defined in Fig-
ure 17. The advantage of the adversary A, AdvodhG (A) = 2 ·

Pr
[
ExpodhG (A) ⇒ 1

]
− 1.

ExpodhG (A)

𝑏
$← {0, 1}

(G, 𝑔, 𝑞) $← G(1𝜆)
𝐼 ← (G, 𝑔, 𝑞)
𝑢

$← Z𝑞 ;𝑈 ← 𝑢𝐺

𝑣
$← Z𝑞 ;𝑉 ← 𝑣𝐺

If 𝑏 = 0 then 𝑍
$← {0, 1}ℎ𝑙

Else 𝑍 ← H(𝑢𝑣𝐺)
𝑑 ← DH,𝑂𝑣 (·) (𝐼 ,𝑈 ,𝑉 ,𝑍)
Return 1 iff 𝑏 = 𝑑

𝑂𝑣 (𝑋) :
If 𝑋 = 𝑢𝐺 then return ⊥
Return 𝐻 (𝑣𝑋)

Figure 17: Experiment ExpodhG,H (A) for odh problem.

Theorem 7.2 (MR-ECIES Security). LetMR-ECIES be
the randomness re-using ECIES-based RK-MRES scheme defined
in Figure 16 and associated with the additive key expansion functions
(eSKExp+, ePKExp+) described in Figure 11. Let G be the global info
generation algorithm of the underlying ECIES scheme (ECIES is
recalled in Figure 13). LetSE be the symmetric encryption scheme and
letHK be the hash underlying ECIES. Then, in the random oracle
model, for any efficient adversary A , there exist efficient adversaries
B and C such that

Advmr-cpa-wrka
MR-ECIES (A) ≤ 𝑛 · AdvodhG,HK (B) + 𝑛 · Adv

ind-cpa
SE (C) .

The proof is in Appendix B.5.
Finally, we observe that the use of MR-ECIES instead of

ECIES only affects unlinkability in case of the corrupted RA. How-
ever, the statement of Theorem 5.1 still holds forMR-ECIES and
its security wrt to the mr-cpa-wrka notion.

8 CONCLUSIONS
We analyzed the Butterfly Key Mechanism protocol from IEEE
1609.2.1 standard, using the provable security approach. We for-
malized the goals of end entity privacy and their signing keys
unforgeability. We considered different corruption scenarios and
proved that the IEEE-BKM protocol, with small modifications sat-
isfies our definitions under the appropriate assumptions on the
building blocks. We also proposed a way to significantly improve
the protocol’s efficiency without sacrificing security. An interest-
ing direction for future work will be studying ways to achieve
post-quantum security of the protocol, following [13].

577

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

REFERENCES
[1] 2017. Federal Motor Vehicle Safety Standards; V2V Communications, National

Highway Traffic Safety Administration (NHTSA), U.S. Department of Transporta-
tion (DOT). Federal Regester.

[2] 2020. IEEE Standard for Wireless Access in Vehicular Environments–Security
Services for Application and Management Messages. IEEE 1609.2-2022, Active
Standard. https://standards.ieee.org/ieee/1609.2/10258/.

[3] 2020. Security Credential Management System (SCMS) Proof–of–Concept Imple-
mentation End-Entity (EE) Requirements and Specifications Supporting SCMS
Software Release 1.2.1. Department of Transportation. https://www.its.dot.gov/
research_areas/cybersecurity/scms/index.html.

[4] 2021. IEEE Standard for Wireless Access in Vehicular Environments (WAVE) -
Certificate Management Interfaces for End Entities. IEEE 1609.2.1-2022, Active
Standard. https://standards.ieee.org/ieee/1609.2.1/10728/.

[5] 2023. Saving Lives with Connectivity: A Plan to Accelerate V2X Deployment. The
U.S. Department of Transportation. https://its.dot.gov/research_areas/emerging_
tech/pdf/Accelerate_V2X_Deployment.pdf.

[6] Michel Abdalla, Mihir Bellare, and Gregory Neven. 2010. Robust Encryption. In
Theory of Cryptography, Daniele Micciancio (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 480–497.

[7] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. 2001. The Oracle Diffie-
Hellman Assumptions and an Analysis of DHIES. In Topics in Cryptology — CT-
RSA 2001, David Naccache (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
143–158.

[8] Manuel Barbosa and Pooya Farshim. 2007. Randomness Reuse: Extensions and
Improvements. In Cryptography and Coding, Steven D. Galbraith (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 257–276.

[9] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. 2000. Public-Key Encryp-
tion in a Multi-user Setting: Security Proofs and Improvements. In Advances
in Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Pro-
ceeding (Lecture Notes in Computer Science, Vol. 1807), Bart Preneel (Ed.). Springer,
259–274. https://doi.org/10.1007/3-540-45539-6_18

[10] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. 2003. Randomness Re-
use in Multi-recipient Encryption Schemeas. In PKC (Lecture Notes in Computer
Science, Vol. 2567). Springer, 85–99. https://doi.org/10.1007/3-540-36288-6_7

[11] Mihir Bellare, David Cash, and Rachel Miller. 2011. Cryptography Secure against
Related-Key Attacks and Tampering. In Advances in Cryptology – ASIACRYPT
2011, Dong Hoon Lee and Xiaoyun Wang (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 486–503.

[12] Mihir Bellare and Tadayoshi Kohno. 2003. A Theoretical Treatment of Related-
KeyAttacks: RKA-PRPs, RKA-PRFs, andApplications. InAdvances in Cryptology—
EUROCRYPT 2003, Eli Biham (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
491–506.

[13] Nina Bindel, Sarah McCarthy, Geoff Twardokus, and Hanif Rahbari. 2022. Drive
(Quantum) Safe! â€" Towards Post-Quantum Security for V2V Communications.
IACR Cryptol. ePrint Arch. (2022), 483. https://eprint.iacr.org/2022/483

[14] Benedikt Brecht, Dean Therriault, AndréWeimerskirch,WilliamWhyte, Virendra
Kumar, Thorsten Hehn, and Roy Goudy. 2018. A Security Credential Management
System for V2X Communications. IEEE Transactions on Intelligent Transportation
Systems 19, 12 (2018), 3850–3871. https://doi.org/10.1109/TITS.2018.2797529

[15] Daniel R. L. Brown. 2005. Generic Groups, Collision Resistance, and ECDSA. Des.
Codes Cryptogr. 35, 1 (2005), 119–152. https://doi.org/10.1007/S10623-003-6154-Z

[16] David Chaum and Eugène van Heyst. 1991. Group Signatures. In Advances in
Cryptology — EUROCRYPT ’91, Donald W. Davies (Ed.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 257–265.

[17] Pooya Farshim, Benoît Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia.
2013. Robust Encryption, Revisited. In Public-Key Cryptography – PKC 2013,
Kaoru Kurosawa and Goichiro Hanaoka (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 352–368.

[18] Manuel Fersch, Eike Kiltz, and Bertram Poettering. 2016. On the Provable Security
of (EC)DSA Signatures. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi (Eds.). ACM, 1651–1662. https://doi.org/10.1145/2976749.2978413

[19] Manuel Fersch, Eike Kiltz, and Bertram Poettering. 2017. On the One-Per-Message
Unforgeability of (EC)DSA and Its Variants. In Theory of Cryptography - 15th
International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10678), Yael Kalai
and Leonid Reyzin (Eds.). Springer, 519–534. https://doi.org/10.1007/978-3-319-
70503-3_17

[20] Pierre-Alain Fouque, Gwenaëlle Martinet, Frédéric Valette, and Sébastien Zimmer.
2008. On the Security of the CCM Encryption Mode and of a Slight Variant. In
Applied Cryptography and Network Security, 6th International Conference, ACNS
2008, New York, NY, USA, June 3-6, 2008. Proceedings (Lecture Notes in Computer
Science, Vol. 5037), Steven M. Bellovin, Rosario Gennaro, Angelos D. Keromytis,
and Moti Yung (Eds.). 411–428. https://doi.org/10.1007/978-3-540-68914-0_25

[21] Jens Groth and Victor Shoup. 2022. On the Security of ECDSA with Additive Key
Derivation and Presignatures. In Advances in Cryptology - EUROCRYPT 2022 - 41st
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 13275), Orr Dunkelman and Stefan Dziembowski
(Eds.). Springer, 365–396. https://doi.org/10.1007/978-3-031-06944-4_13

[22] John Harding, Gregory H. Powell, Rebecca Yoon, Joshua Fikentscher, Charlene T
Doyle, Dana Sade, Mike Lukuc, Jim Simons, and Jing Wang. 2014. Vehicle-to-
Vehicle Communications: Readiness of V2V Technology for Application. https:
//api.semanticscholar.org/CorpusID:107533679

[23] Jakob Jonsson. 2002. On the Security of CTR + CBC-MAC. In Selected Areas
in Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s, New-
foundland, Canada, August 15-16, 2002. Revised Papers (Lecture Notes in Computer
Science, Vol. 2595), Kaisa Nyberg and Howard M. Heys (Eds.). Springer, 76–93.
https://doi.org/10.1007/3-540-36492-7_7

[24] Kaoru Kurosawa. 2002. Multi-recipient Public-Key Encryption with Shortened
Ciphertext. In Public Key Cryptography, David Naccache and Pascal Paillier (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 48–63.

[25] Marcos A. Simplicio, Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, and Marcos Vinicius M. Silva. 2018. The Unified Butterfly Effect:
Efficient Security Credential Management System for Vehicular Communications.
In 2018 IEEE Vehicular Networking Conference (VNC). 1–8. https://doi.org/10.
1109/VNC.2018.8628369

[26] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch. 1995. Fair Blind Sig-
natures. In Advances in Cryptology — EUROCRYPT ’95, Louis C. Guillou and
Jean-Jacques Quisquater (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
209–219.

[27] WilliamWhyte, André Weimerskirch, Virendra Kumar, and Thorsten Hehn. 2013.
A security credential management system for V2V communications. In 2013 IEEE
Vehicular Networking Conference, Boston, MA, USA, December 16-18, 2013. IEEE,
1–8. https://doi.org/10.1109/VNC.2013.6737583

ACKNOWLEDGMENTS
We thank the anonymous reviewers for very useful comments,
WilliamWhyte for the discussions, and Jens Groth and Victor Shoup
for clarifications on [21]. Alexandra Boldyreva was sponsored in
part by Qualcomm and by the National Science Foundation under
Award No.1946919. Jiahao Sun was supported by the National Sci-
ence Foundation under Award No.1946919 while at Georgia Tech.
Zichen Giu was supported by Zurich Information Security and
Privacy Center (ZISC).

A ECDSA
Figure 18 recalls the ECDSA signature scheme.

B PROOFS
B.1 Proof of Theorem 5.1
We consider a series of “hybrid” games 𝐺0, . . . 𝐺5 associated with
adversary A. Let Pr𝑗 denote the probability of game 𝐺 𝑗 returning
1, for 0 ≤ 𝑗 ≤ 5.

𝐺0 is identical to Exppriv-craBKM (A).
By definition, we have

Pr0 =
1
2
Advpriv-craBKM (A) +

1
2
.

𝐺1 is identical to 𝐺0 except in 𝐺1 the encryption cocoon keys
(which are computed by honest EE as part of EEout and 𝒔𝒌cc

𝐴 ,
𝒔𝒌cc

𝐵 in Figure 7) are computed via random expansions 𝑎𝑖 :
𝒆𝒔𝒌cc [𝑖] ← 𝑒𝑠𝑘cp + 𝑎𝑖 ,
𝒆𝒑𝒌cc [𝑖] ← 𝑒𝑝𝑘cp + 𝑎𝑖 ·𝐺 .

In the ideal cipher model, EXP(𝑒𝑘EXP , ·) is modeled as a ran-
dom permutation. The only difference between games is that in
one game all expansion tweaks are chosen uniformly at random
and in the other game they are outputs of a random permutation

578

https://standards.ieee.org/ieee/1609.2/10258/
https://www.its.dot.gov/research_areas/cybersecurity/scms/index.html
https://www.its.dot.gov/research_areas/cybersecurity/scms/index.html
https://standards.ieee.org/ieee/1609.2.1/10728/
https://its.dot.gov/research_areas/emerging_tech/pdf/Accelerate_V2X_Deployment.pdf
https://its.dot.gov/research_areas/emerging_tech/pdf/Accelerate_V2X_Deployment.pdf
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-36288-6_7
https://eprint.iacr.org/2022/483
https://doi.org/10.1109/TITS.2018.2797529
https://doi.org/10.1007/S10623-003-6154-Z
https://doi.org/10.1145/2976749.2978413
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-540-68914-0_25
https://doi.org/10.1007/978-3-031-06944-4_13
https://api.semanticscholar.org/CorpusID:107533679
https://api.semanticscholar.org/CorpusID:107533679
https://doi.org/10.1007/3-540-36492-7_7
https://doi.org/10.1109/VNC.2018.8628369
https://doi.org/10.1109/VNC.2018.8628369
https://doi.org/10.1109/VNC.2013.6737583

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

ECDSA.K((G,𝐺,𝑞))

𝑢
$← Z𝑞

𝑝𝑘 ← 𝑢𝐺

𝑠𝑘 ← 𝑢

Return (𝑝𝑘, 𝑠𝑘)

ECDSA.S(𝑠𝑘,𝑚)

𝑧
$← H(𝑚)

𝑡
$← Z𝑞
(𝑒𝑥 , 𝑒𝑦) ← 𝑡𝐺

𝑟 ← 𝑒𝑥 mod 𝑞

If 𝑟 = 0 mod 𝑞

Go to step 2
𝑠 ← 𝑡−1 (𝑧 + 𝑟 · 𝑠𝑘)
If 𝑠 = 0 mod 𝑞

Go to step 2
Return (𝑟, 𝑠)

ECDSA.V(𝑝𝑘, 𝜎)
(𝑟, 𝑠) ← 𝜎

If 𝑟, 𝑠 ∉ Z𝑞
Return 0

𝑤 ← 𝑠−1 mod 𝑞

𝑧
$← H(𝑚)

𝑢1 ← 𝑧𝑤 mod 𝑞

𝑢2 ← 𝑟𝑤 mod 𝑞

(𝑒𝑥 , 𝑒𝑦) ← 𝑢1 ·𝐺 +𝑢2 · 𝑝𝑘
If (𝑒𝑥 , 𝑒𝑦) = (0, 0)

Return 0
Return 𝑟 = 𝑒𝑥 mod 𝑞

Figure 18: ECDSA signature scheme.

on non-repeating inputs. Therefore, the only way the attacker can
distinguish the games if there is a collision between random tweaks.
But this only happens with negligible probability. Hence we have

Pr1 − Pr0 ≤ negl(𝜆) .

𝐺2 is identical to 𝐺1 except in 𝐺2, if A modifies at least one
ciphertext in the responses it got from the ACA as part of BKG
stage, i.e., there is at least one ciphertext sent to the EE that the
ACA did not send, and the EE does not reject, then the game aborts.

Note that each ciphertext is signed by the ACA, hence if the
attacker sends a new ciphertext to the EE, and the EE does not
reject, it means that the adversary succeeded in creating a forged
signature. It is straightforward to construct an efficient attacker
breaking the UF-CMA security of the signature scheme used by the
ACA. And hence

Pr2 − Pr1 ≤ Advuf-cma
DS2 (C) .

𝐺3 is identical to𝐺2 except in𝐺3, ifA sends at least one cocoon
public key to ACA that is computed not according to the protocol
(distinct from what EE computes), and EE later does not reject, then
the game aborts.

Here we consider an event when the adversary, who is given a
set of cocoon public keys 𝑝𝑘1, . . . , 𝑝𝑘𝑛 can modify a public key 𝑝𝑘𝑖
into 𝑝𝑘 ′

𝑖
for some 1 ≤ 𝑖 ≤ 𝑛 so that a ciphertext of some message

under 𝑝𝑘 ′
𝑖
will be deemed as valid wrt 𝑝𝑘𝑖 .

We constructD breaking target robustness as follows.D is given
𝑝𝑘 and runs 𝐴. D picks bit 𝑑 at random and also picks 2𝑛 random
tweaks 𝑎1, . . . , 𝑎2𝑛 from Z𝑞 , and picks 𝑗 at random from {1, . . . , 2𝑛}.
If 𝑑 = 0, then it sets 𝑝𝑘𝐴cp ← 𝑝𝑘 −𝑎 𝑗𝐺 , and generates 𝑝𝑘𝐵cp honestly.
It sets 𝑠𝑘𝐴cc𝑖 ← 𝑝𝑘 + 𝑎𝑖𝐺 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑠𝑘𝐵cc𝑖 ← 𝑝𝑘𝐵cp + 𝑎𝑖𝐺
for 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛. If 𝑑 = 1, then tt sets 𝑝𝑘𝐵cp ← 𝑝𝑘 − 𝑎 𝑗𝐺 , and
generates 𝑝𝑘𝐴cp honestly. It sets 𝑠𝑘𝐵cc𝑖 ← 𝑝𝑘 + 𝑎𝑖𝐺 for 1 ≤ 𝑖 ≤ 𝑛 and
𝑠𝑘𝐴cc𝑖 ← 𝑝𝑘𝐴cp + 𝑎𝑖𝐺 for 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛. D simulates the rest of the
experiment properly.

Note that all the keys have the right distribution.With probability
1/2𝑛, 𝐴 will modify the caterpillar key with index 𝑗 that is equal
to 𝑝𝑘 − 𝑎 𝑗𝐺 + 𝑎 𝑗𝐺 = 𝑝𝑘 into some 𝑝𝑘 ′. D will output 𝑝𝑘 ′ and the
ciphertext 𝐶 it created under 𝑝𝑘 . If the game aborts, then D wins
its own game. We have

Pr3 − Pr2 ≤ 2𝑛 · AdvtrobAE (D) .

𝐺4 is identical to 𝐺3 except in 𝐺4 the ACA encrypts random
plaintexts. Here we claim that there is an efficient adversary B so
that

Pr4 − Pr3 ≤ Advind-cpa-wrkaAE,(ePKExp+,eSKExp+)
(B) .

To justify the above, we construct an adversary B that attacks
uf-wrka security of the encryption scheme, usingA as a subroutine.
Adversary B is given the global information 𝐼 = (G,𝐺, 𝑞). It is also
given the public key 𝑝𝑘 = 𝑥 ·𝐺 and random offsets (tweaks) 𝑡1, . . . , 𝑡ℓ .
The attacker also has access to oracle Enc(·, ·, ·).
B runs (𝑝𝑘aca, 𝑠𝑘aca)

$← ACAKG(𝐼), (𝑝𝑘𝐴cp, 𝑠𝑘𝐴cp)
$← ECKG(𝐼),

(𝑝𝑘𝐵cp, 𝑠𝑘𝐵cp)
$← ECKG(𝐼); 𝑘𝐴EXP

$← {0, 1}𝑘 , 𝑘𝐵EXP
$← {0, 1}𝑘 ,

𝑒𝑝𝑘𝐴cp ← 𝑝𝑘 , 𝑦 $← Z𝑞 , 𝑒𝑝𝑘𝐵cp ← 𝑝𝑘 + 𝑦𝐺 , and gives (𝐼 , 𝑝𝑘𝐴cp,
𝑝𝑘𝐵cp, 𝑒𝑝𝑘

𝐴
cp, 𝑒𝑝𝑘

𝐵
cp, 𝑘

𝐴
EXP , 𝑘

𝐵
EXP , 𝑝𝑘aca) to A. The attacker is not

given 𝑒𝑘𝐴EXP or 𝑒𝑘𝐵EXP because in this game the cocoon keys are
“expanded” with random values. B computes 𝑒𝑝𝑘cc𝐴𝑖 ← 𝑝𝑘cp + 𝑡𝑖𝐺
and 𝑒𝑝𝑘cc𝐵𝑖 ← 𝑒𝑝𝑘𝐵cp + (𝑡𝑖+𝑛 − 𝑦)𝐺 for 1 ≤ 𝑖 ≤ 𝑛.

Next B simulates the ACA in the BKG interaction. B com-
putes the responses for both parties 𝐴 and 𝐵 according to the al-
gorithm with the only difference in how the ciphertexts are com-
puted. Instead of computing 𝑐𝑖 ← Enc.E(𝑒𝑝𝑘𝐴cc𝑖 , 𝑝𝑘bf𝑖 ∥𝑐𝑒𝑟𝑡𝑖 ∥𝑟𝑖),
B makes a query to its oracle Enc(𝑝𝑘bf𝑖 ∥𝑐𝑒𝑟𝑡𝑖 ∥𝑟𝑖 , 𝑀, 𝑖) for a ran-
dom 𝑀 with the same length as 𝑝𝑘bf𝑖 ∥𝑐𝑒𝑟𝑡𝑖 ∥𝑟𝑖 . And instead of
𝑐𝑖 ← Enc.E(𝑒𝑝𝑘cc𝑏𝑖 , 𝑝𝑘bf𝑖 ∥𝑐𝑒𝑟𝑡𝑖 ∥𝑟𝑖), B makes a query to its oracle
Enc(𝑝𝑘bf𝑖 ∥𝑐𝑒𝑟𝑡𝑖 ∥𝑟𝑖 , 𝑀, 𝑖 +𝑛) for a random𝑀 with the same length
as 𝑝𝑘bf𝑖 ∥𝑐𝑒𝑟𝑡𝑖 ∥𝑟𝑖 .

Finally, B flips bit 𝑏 $← {0, 1}, and computes the challenge but-
terfly key pairs according to 𝐺4. When A outputs its guess 𝑑 , A
outputs 1 iff 𝑑 = 𝑏.

We now claim that the simulation is perfect for A in that its
view is like in the respectful games: when the challenge bit of B
is 1, then the view of A is as in 𝐺4, and the challenge bit of B is 0,
then the view of A is as in 𝐺3. Everything is simulated properly
in the obvious way except perhaps for the caterpillar and cocoon
encryption public keys ciphertexts. Recall that 𝑒𝑝𝑘𝐴cp = 𝑝𝑘 and
𝑒𝑝𝑘𝐵cp is computed as 𝑝𝑘 +𝑦𝐺 . The latter also has the right uniform
distribution since 𝑦 is picked at random. Finally, the ciphertexts are
all computed under the proper cocoon public keys. The ciphertext

579

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

for 𝑖’s cocoon public key for EE A is computed via calling the
encryption oracle with the third input index 𝑖 , i.e., the ciphertext
is encrypted under 𝑝𝑘 + 𝑡𝑖𝐺 = 𝑒𝑝𝑘𝐴cp + 𝑡𝑖𝐺 = 𝑒𝑝𝑘cc

𝐴
𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

And the ciphertext for 𝑖’s cocoon public key for EE B is computed
via calling the encryption oracle with the third input index 𝑖 + 𝑛,
i.e., the ciphertext is encrypted under 𝑝𝑘 + 𝑡𝑖𝐺 = for 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛
. which is right since 𝑒𝑝𝑘cc𝐵𝑖 = 𝑒𝑝𝑘cp

𝐵 + (𝑡𝑖+𝑛 − 𝑦)𝐺 = 𝑝𝑘 + 𝑦𝐺 +
(𝑡𝑖+𝑛−𝑦)𝐺 = 𝑝𝑘 +𝑡𝑖+𝑛𝐺 for 1 ≤ 𝑖 ≤ 𝑛, which is the same as 𝑝𝑘 +𝑡𝑖𝐺
for 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛.

𝐺5 is identical to 𝐺4 except in 𝐺5, if A makes a random oracle
query on any 𝑟𝑖 ∥𝑝𝑘cc𝑖 , then the experiment aborts.

Note that since the view of the attacker in 𝐺5 is independent
from any 𝑟𝑖 , unless the adversary makes a random oracle query
containing it. This accounts to finding at least one pre-image of
a hash in the random oracle model and the probability of that is
negligible.

Pr5 − Pr4 ≤ negl(𝜆) .
Since the view of the attacker is independent from the challenge

bit, we claim that

Pr5 =
1
2
.

Finally, we observe that

Pr0 =
1
2
Advpriv-craBKM (A) +

1
2
=

4∑︁
𝑗=0
(Pr𝑗 − Pr𝑗+1) + Pr5 ,

and the statement of the theorem follows from the above bounds.

B.2 Proof of Theorem 5.2.
The adversary sees two caterpillar public keys and two cocoon
public keys, which come either from the same EE or from two
different EEs. The cocoon keys are created bymodifying (additevely)
the caterpillar keys using the expansion function EXP and the
expansion key, different for each EE. Since in the ideal cipher model,
each expansion function is modeled as a random permutation, then
the only way the adversary could distinguish twoworlds (determine
the challenge bit 𝑏) is when two cocoon public keys coming from
different EE happen to be same, since the keys of the same EE cannot
be the same. But the probability if the former event is related to the
birthday bound and is negligible. □

B.3 Proof of Theorem 5.3
We construct an adversary B that attacks uf-wrka security of the
signature scheme DS, using A as a subroutine. Let 𝑞ℎ be the
number of random oracle queries A makes. Adversary B is given
the global information 𝐼 = (G,𝐺, 𝑞), where G is the group of points
on the elliptic curve of prime order 𝑞, generated by𝐺 ∈ G. It is also
given the public key 𝑝𝑘 = 𝑥 ·𝐺 . B outputs random offsets (tweaks)
𝑎1, . . . , 𝑎𝑛 and computes 𝑧𝑖 ← 𝐻 (𝑎𝑖) for 1 ≤ 𝑖 ≤ 𝑛. The attacker
has access to oracle Sign(·, ·).
B runs (𝑝𝑘aca, 𝑠𝑘aca)

$← ACAKG(𝐼), and gives (𝐼 , 𝑝𝑘, 𝑠𝑘aca,
𝑝𝑘aca) toA.A is not given 𝑘EXP or 𝑒𝑘EXP because the permuta-
tion underlying the expansion keys is modeled as the ideal cipher.
This means that for each key, the resulting function is modeled as a
random permutation the adversary is given access to. Accordingly,

B simulates computations EXP(𝑘EXP , ·) and EXP(𝑒𝑘EXP , ·) for
the interaction with the honest EE in CKE via oracles 𝑂1, 𝑂2 as
follows. B picks two random permutations 𝜋1, 𝜋2 and random off-
sets 𝑢𝑖 , 𝑣𝑖 , where 𝑢𝑖 ≠ 𝑢 𝑗 and 𝑣𝑖 ≠ 𝑣 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. It then then
computes 𝑝𝑘cc𝑖 ← 𝑝𝑘cp +𝑢𝑖𝐺 and 𝑒𝑝𝑘cc𝑖 ← 𝑒𝑝𝑘cp + 𝑣𝑖𝐺 and when
A queries oracle 𝑂1 with 𝑖 , B returns 𝑢𝑖 ; when A queries oracle
𝑂2 with 𝑖 , B returns 𝑣𝑖 .

Next adversary B simulates EE in BKG interaction forA. Here
for simplicity we assume that A makes only one random oracle
query containing each 𝑝𝑘cc𝑖 . (There is no reason for the adversary
to query more for each butterfly key computation. But if it does,
then B would have to “program” a random one with 𝑎𝑖 , and the
resulting bound would have a factor of the maximum number of
random oracle queries per key.) To answer A’s random oracle
queries, B does the following. If the random oracle query by A
does not contain any 𝑝𝑘cc𝑖 , then B uses its own random oracle to
provide the answer. If A makes a random oracle query 𝑟 ∥𝑝𝑘cc𝑖 , B
returns ℎ𝑖 ← 𝑧𝑖 − 𝑢𝑖 .

Next adversary B simulates EE in BKR. WhenA queries oracle
Sign, B fowards the query to its own oracle SignDS , and forwards
the oracle’s response back to A. When A provides the responses
at the end of BKG stage, B verifies them using 𝑝𝑘aca. In the end,
adversary B obtains the output of A and uses that forgery as its
own output.

We now claim that B wins whenever A wins. First, we observe
that the simulation is perfect for A in that its view is like in the
actual experiment. The EE’s key it is given has the right distribution
of a random key (because the same key given to B has the same
distribution). The expansion values 𝑢𝑖 , 𝑣𝑖 are computed correctly
under the ideal cipher model. Under the random oracle model, the
BKE’s offsets 𝑧’s also have the right (uniform) distribution.

Since 𝑢𝑖 is selected at random by adversary B, and 𝑧𝑖 are the
outputs of the random oracle, the simulated outputs of H , ℎ𝑖 =

𝑧𝑖 −𝑢𝑖 also appear random to adversaryA, with the same uniform
distribution as from a true random oracle.

At the end of the simulation, if adversary A successfully forged
a signature 𝜎 for message𝑚 under secret key 𝑠𝑘bf𝑖 = 𝑠𝑘cc𝑖 + ℎ𝑖 =
(𝑠𝑘 +𝑢𝑖) + (𝑧𝑖 −𝑢𝑖) = 𝑠𝑘 +𝑧𝑖 , then (𝜎,𝑚) can also be used as a valid
forgery for adversary B in the uf-wrka game.

And clearly, if A is efficient, then B is efficient.
□

B.4 Proof of Theorem 6.1
Consider the following sequence of 𝑛 + 1 “hybrid” games associated
with an adversary A. Let Pr𝑗 denote the probability of game 𝐺 𝑗

returning 1, for 0 ≤ 𝑗 ≤ 𝑛.
Note that by definition 𝐺0 is ind-cpa-wrka game for ECIES

and (ePKExp+, eSKExp+). And then we have that

Pr0 = Pr
[
ind-cpa-wrkaA ⇒ 1

]
=

Advind-cpa-wrkaECIES,(ePKExp+,eSKExp+)
(A)

2
+ 1
2
.

Now note that

Pr0 =
𝑛−1∑︁
𝑗=0
(Pr𝑗 − Pr𝑗+1) + Pr𝑛 .

580

Provable Security Analysis of Butterfly Key Mechanism Protocol
in IEEE 1609.2.1 Standard Proceedings on Privacy Enhancing Technologies 2024(4)

Game𝐺 𝑗

(𝑢𝐺,𝑢) $← ECIES.K((G,𝐺,𝑞))

(𝑎1, ..., 𝑎𝑛)
$← A(𝑢𝐺)

For 𝑖 = 1, ..., 𝑛:
𝑠𝑘𝑖 ← 𝑢 + 𝑎𝑖
𝑝𝑘𝑖 ← (𝑢 + 𝑎𝑖)𝐺

𝑏
$← {0, 1}

𝑏′
$← AEnc(·,·,·) (𝑎1, ..., 𝑎𝑛)

Return (𝑏′ = 𝑏)

Enc(𝑚0,𝑚1, 𝑖)
If |𝑚0 | ≠ |𝑚1 | then Return ⊥:
If 𝑖 ≤ 𝑗 :

𝑣
$← Z𝑞

𝑉 ← 𝑣𝐺

(𝑘SE , 𝑘MAC)
$← {0, 1}ℎ𝑙𝑒𝑛

𝑒
$← SE .E(𝑘SE ,𝑚𝑏)

𝑡 ← MAC(𝑘MAC, 𝑒)
Return𝑉 ∥𝑒 ∥𝑡

Else:
𝑐 ← ECIES.E(𝑝𝑘𝑖 ,𝑚𝑏)

Return 𝑐

Figure 19: “Hybrid” games 𝐺 𝑗 for 0 ≤ 𝑗 ≤ 𝑛 for the proof of Theorem 6.1.

The statement of the theorem follows from the above equations
and the following claims.

Lemma B.1. For any 0 ≤ 𝑗 ≤ 𝑛 − 1 and any efficient adversary A
there exists an efficient adversary D such that

(Pr𝑗 − Pr𝑗+1) ≤ AdvhdhHK,G (D) .

Proof. Recall that the hdh attacker D is given the public group
info (G,𝐺, 𝑞) and also 𝑈 = 𝑢𝐺,𝑉 = 𝑣𝐺, 𝑍 , where 𝑢, 𝑣 are random
elements in Z𝑞 and 𝑍 is either 𝐻 (𝑢𝑣𝐺) or a random bitstring. To
figure out which case it is B uses A.
D picks a random bit 𝑏, offsets 𝑎1, . . . , 𝑎𝑛 from Z𝑞 at random

and runs A on 𝑝𝑘 = 𝑈−𝑎 𝑗𝐺 and 𝑎1, . . . , 𝑎𝑛 . D computes 𝑝𝑘𝑖 ←
(𝑎𝑖 − 𝑎 𝑗)𝐺 +𝑈 for all 0 ≤ 𝑖 ≤ 𝑛.

To answer A’s oracle query Enc(𝑚0,𝑚1, 𝑖), D follows the algo-
rithm outlined on the right side in Figure 19 for all 𝑖 ≠ 𝑗 . When
𝑖 = 𝑗 , then D uses 𝑍 in place of the output of 𝐻 , and the rest is
unchanged.

Finally, D outputs 0 if A guesses 𝑏 correctly.
To analyze D, note that the public keys of A are (𝑎1 − 𝑎 𝑗)𝐺 +

𝑈 , . . . ,𝑈 , . . . , (𝑎𝑛 − 𝑎 𝑗)𝐺 + 𝑈 have the right distribution. If D’s
challenge bit 𝑏 is 0, i.e., 𝑍 is random, then the view of A in the
simulated experiment is exactly as in 𝐺 𝑗 . And if 𝑏 = 1, i.e., 𝑍 =

𝐻 (𝑢𝑣𝐺) = 𝐻 (𝑣 (𝑢+𝑎 𝑗 −𝑎 𝑗))𝐺), then the view ofA in the simulated
experiment is exactly as in 𝐺 𝑗+1.

Now,

AdvhdhHK,G (D) = Pr
[
Exp hdh0 ⇒ 0

]
− Pr

[
Exp hdh1 ⇒ 0

]
= Pr𝑗 − Pr𝑗+1 .

Clearly, if A is efficient, then D is efficient. □

Lemma B.2. For any any efficient adversary A there exists an
efficient adversary B such that

Pr𝑛 ≤
𝑛 · Advind-cpaSE (B)

2
+ 1
2
.

Proof. In 𝐺𝑛 , messages are encrypted using the symmetric en-
cryption scheme under the keys, which are random and indepen-
dent from other information the adversary sees. Hence we can
construct an adversary that breaks security of the symmetric en-
cryption scheme. Since several random keys are involved, for sim-
plicity we use the ind-cpa security definition in the multi-user

setting, 𝑛-ind-cpa, [9], and their result about the relation to the
security in the standard (single-user) setting.

The 𝑛-ind-cpa attacker B𝑛 is given 𝑛 left-right encryption ora-
cles associated with 𝑛 randomly generated keys, that it can query
on pairs of messages𝑚0,𝑚1 of equal length and they return encryp-
tions, under the corresponding key, of𝑚𝑏 , where 𝑏 is the challenge
bit flipped at random at the beginning of the experiment. B𝑛 has
to guess 𝑏.
B𝑛 simulates 𝐺𝑛 for A, by following the code of 𝐺𝑛 with the

only difference in answering the oracle query of A on (𝑚0,𝑚1, 𝑖) ,
𝑘SE is not used, and instead of computing 𝑒 $← SE .E(𝑘SE ,𝑚𝑏),
B𝑛 queries its own 𝑖th left-right encryption oracle and the result is
assigned to 𝑒 .

When A returns a bit, B𝑛 returns the same bit.
We claim that B𝑛 wins wheneverA wins, because B𝑛 simulates

𝐺𝑛 forA perfectly. In𝐺𝑛 encryptions are computed using randomly
picked keys in the experiment, while 𝐵𝑛 uses its own left-right
encryption oracles, which are also under the randomly generated
keys. And the rest is the same. Clearly, if A is efficient, then 𝐵𝑛 is
efficient.

To obtain the statement in the claim it remains to recall the result
from [9] stating that security in the standard single-user setting
implies security in the multi-user setting, with the multiplicative
factor 𝑛 in the security loss in the concrete relation between the
adversaries. □

□

B.5 Proof of Theorem 7.2.
Consider a series of games 𝐺0, ...,𝐺𝑛 associated with adversary A.
Let Pr𝑗 denote the probability of game𝐺 𝑗 returning 1, for 0 ≤ 𝑗 ≤ 𝑛.

We first observe that when 𝑗 = 0, then all ciphertexts are com-
puted properly, according to the theMR-ECIES scheme, match-
ingmr-cpa-wrka experiment. When 𝑗 = 𝑛, then 𝑛 challenge cipher-
texts are computed using the random keys for symmetric encryp-
tion. Hence,

1
2
Advmr-cpa-wrka

MR-ECIES (A) +
1
2
= Pr0 =

𝑛−1∑︁
𝑗=0
(Pr𝑗 − Pr𝑗+1) + Pr𝑛 .

The statement of the theorem will follow from the following two
claims.

581

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Virendra Kumar, and Jiahao Sun

Game 𝐺 𝑗

𝑏
$← {0, 1}

(𝑝𝑘, 𝑠𝑘) $← AE .K(𝐼)
(𝑎1, ..., 𝑎𝑛)

$← Coins
For 𝑖 = 1, ..., 𝑛
𝑠𝑘𝑖 ← eSKExp(𝑠𝑘 ;𝑎𝑖)
𝑝𝑘𝑖 ← ePKExp(𝑝𝑘 ;𝑎𝑖)
(𝑝𝑘 ′, 𝑠𝑘 ′) $← AE .K(𝐼)
(𝑏1, ..., 𝑏𝑛)

$← Coins
For 𝑖 = 1, ..., 𝑛
𝑠𝑘 ′

𝑖
← eSKExp(𝑠𝑘 ;𝑏𝑖)

𝑝𝑘 ′
𝑖
← ePKExp(𝑝𝑘 ;𝑏𝑖)

(m0,m1,m)
$← A(𝑝𝑘, 𝑝𝑘 ′, 𝑎1, ..., 𝑎𝑛, 𝑏1, ..., 𝑏𝑛, 𝑠𝑘 ′)

If |m0 | ≠ |m1 | then return ⊥
If 𝑛 ≠ |m0 | then return ⊥
If 𝑛 ≠ |m| then return ⊥

𝑣
$← Z𝑞

𝑉 ← 𝑣𝐺

For 𝑖 = 1, ..., 𝑛
If 𝑖 ≤ 𝑗 :

(𝑘SE , 𝑘MAC)
$← {0, 1}ℎ𝑙𝑒𝑛

Else:
(𝑘SE , 𝑘MAC) ← 𝐻 (𝑠𝑘𝑖 ·𝑉)
𝑒

$← SE .E(𝑘SE ,m𝑏 [𝑖])
𝑡 ←MAC(𝑘MAC, 𝑒)
c[𝑖] ← (𝑉 ∥𝑒 ∥𝑡)
(𝑘SE , 𝑘MAC) ← 𝐻 (𝑠𝑘 ′

𝑖
·𝑉)

𝑒
$← SE .E(𝑘SE ,m[𝑖])

𝑡 ←MAC(𝑘MAC, 𝑒)
c[𝑖 + 𝑛] ← (𝑉 ∥𝑒 ∥𝑡)

𝑏 ′
$← A(c)

Return (𝑏 ′ = 𝑏)

Figure 20: “Hybrid” games for the proof of Theorem 7.2.

Lemma B.3. For any efficient A and 0 ≤ 𝑗 ≤ 𝑛 − 1 there is an
efficient B such that

(Pr𝑗 − Pr𝑗+1) ≤ AdvodhG,HK (B) .

Proof. We present adversary B in Figure 21. The “neighboring”
hybrid games𝐺 𝑗 and𝐺 𝑗+1 differ only inwhether the keys are picked
at random and computed using the hash, and this the reduction
to ODH here insures that these games are indistinguishable to the
adversary. □

Lemma B.4. For any efficient A there is an efficient C such that

Pr𝑛 ≤ 𝑛 · 1
2
Advind-cpaSE (C) + 1

2
.

Proof. Since all challenge messages are encrypted using the
symmetric encryption scheme with randomly chosen keys, then
it is straightforward to show a reduction to IND-CPA security of

the scheme. The factor of 𝑛 is from the reduction from the ind-cpa
security in the multi-user setting to the single-user setting, similarly
to the proof in [9]. □

Adversary B𝑂𝑣 (·) (𝐼 ,𝑉 ,𝑈 , 𝑍)

𝑏
$← {0, 1}

(𝑎1, ..., 𝑎𝑛)
$← Coins

(𝑏1, ..., 𝑏𝑛)
$← Coins

𝑝𝑘 ← 𝑈 − 𝑎 𝑗
(𝑝𝑘 ′, 𝑠𝑘 ′) $← AE .K(𝐼)
For 𝑖 = 1, ..., 𝑛
𝑝𝑘𝑖 ← ePKExp(𝑝𝑘 ;𝑎𝑖)
𝑠𝑘 ′

𝑖
← eSKExp(𝑠𝑘 ′;𝑏𝑖)

𝑝𝑘 ′
𝑖
← ePKExp(𝑝𝑘 ′;𝑏𝑖)

(m0,m1,m)
$← A(𝑝𝑘, 𝑝𝑘 ′, 𝑎1, ..., 𝑎𝑛, 𝑏1, ..., 𝑏𝑛, 𝑠𝑘 ′)

If |m0 | ≠ |m1 | then return ⊥
If |m0 | = |m1 | = |m′ | is not 𝑛 then return ⊥
For 𝑖 = 1 . . . , 𝑛

If 𝑖 = 𝑗 then (𝑘SE , 𝑘MAC) ← 𝑍

If 𝑖 < 𝑗 then (𝑘SE , 𝑘MAC) ← 𝑂𝑣 (𝑝𝑘 + 𝑎𝑖𝐺)
If 𝑖 > 𝑗 then (𝑘SE , 𝑘MAC)

$← {0, 1}ℎ𝑙𝑒𝑛

𝑒𝑖
$← SE .E(𝑘SE ,m𝑏 [𝑖])

𝑡𝑖 ←MAC(𝑘MAC, 𝑒𝑖)
c[𝑖] ← 𝑉 ∥𝑒 ∥𝑡

For 𝑖 = 1 . . . , 𝑛
(𝑘SE , 𝑘MAC) ← 𝐻 ((𝑠𝑘 ′ + 𝑏𝑖)𝑉)
𝑒 ′
𝑖

$← SE .E(𝑘SE ,m[𝑖])
𝑡 ′
𝑖
←MAC(𝑘MAC, 𝑒𝑖)

c′[𝑖] ← 𝑉 ∥𝑒 ∥𝑡
𝑏 ′

$← A(c, c′)
Return (𝑏 ′ = 𝑏)

Figure 21: Adversary B for the proof of Theorem 7.2.

582

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Notation and Preliminaries
	2.1 Notation
	2.2 Preliminaries

	3 The Butterfly Key Mechanism Protocol
	3.1 Overview of IEEE BKM
	3.2 Protocol Syntax
	3.3 IEEE-BKM Description

	4 BKM Security Definitions
	4.1 Privacy
	4.2 Unforgeability

	5 Security Analysis of the Generic IEEE BKM Protocol
	5.1 Security for Signatures and Encryption in Presence of Related Keys
	5.2 Target Robustness
	5.3 Generic IEEE BKM Security

	6 Security Analysis of the IEEE-BKM Instantiation
	6.1 ECIES
	6.2 ECDSA

	7 Efficiency Improvement for IEEE BKM
	8 Conclusions
	References
	Acknowledgments
	A ECDSA
	B Proofs
	B.1 Proof of Theorem 5.1
	B.2 Proof of Theorem 5.2.
	B.3 Proof of Theorem 5.3
	B.4 Proof of Theorem 6.1
	B.5 Proof of Theorem 7.2.

