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ABSTRACT
This paper studies a multi-party private set union (mPSU), a fun-
damental cryptographic problem that allows multiple parties to

compute the union of their respective datasets without revealing

any additional information. We propose an efficientmPSU protocol

which is secure in the presence of any number of colluding semi-

honest participants. Our protocol avoids computationally expensive

homomorphic operations or generic multi-party computation, thus

providing an efficient solution for mPSU.
The crux of our protocol lies in the utilization of new crypto-

graphic tool, namely, Membership Oblivious Transfer (mOT). We

believe that the mOT may be of independent interest. We imple-

ment ourmPSU protocol and evaluate its performance. Our protocol

shows an improvement of up to 80.84× in terms of running time and

405.73× bandwidth cost compared to the existing state-of-the-art

protocols.
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1 INTRODUCTION
Secure multi-party computation (MPC) enables multiple parties

to compute an arbitrary function on their private input without

revealing additional information. A special case of MPC is the pri-

vate set operation, which provides a secure means for joining data

distributed across disparate databases. Private set intersection (PSI)

and private set union (PSU) are two common set operations in this

category. PSI finds applications in a variety of privacy-sensitive

scenarios such as measuring the effectiveness of online advertis-

ing [26], contract tracing [4, 48], and contact discovery [23], and

cache sharing in IoT [37]. Similarly, PSU has numerous practical

use cases. For example, PSU can be used to implement Private-

ID functionality [9], cyber risk assessment and management via

joint IP blacklists and joint vulnerability data [25], private data-

base supporting full join [31], association rule learning [29], joint

graph computation [8], and aggregation of multi-domain network

events [11].

Over the last decade, a substantial body of research [10, 42, 44]

has focused on PSI, whereas PSU has received relatively little at-

tention. The majority of present practical PSU protocols [5, 18, 28,

31, 53] have only been optimized for the two-party setting. In this

study, we investigate multi-party PSU (mPSU) in the semi-honest
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model, which allows more than two parties to compute the union

of their private data sets without revealing additional information.

1.1 Multi-Party PSU vs 2-Party PSU
Multi-party PSU is a natural extension of the two-party PSU and

enables much richer data sharing than a two-party PSU. Collection

of data from more participants will surely improve the performance

of the data-driven applications that we mentioned above. However,

designing a multi-party protocol in secure computation is challeng-

ing as it usually requires a dishonest majority (e.g. provides security

in the presence of a number of dishonest, colluding participants).

Existing mPSU protocols in generic MPC [6, 49], or homomorphic

encryption [16, 22, 30, 46], are considerably more complex and

expensive in the multiparty case than in the two-party case.

A possible solution for computing mPSU is leveraging efficient

multi-party PSI protocols. Given their recent PSI improvements [12,

36] with practical implementations, one might think that mPSU
can be computed directly from multi-party PSI using DeMorgan’s

Law as

⋃𝑛
𝑖=1

𝑋𝑖 = 𝑈 \
( ⋂𝑛

𝑖=1
(𝑈 \ 𝑋𝑖 )

)
, where 𝑈 is a universe of

input items. While this approach correctly and securely computes

the set union, it is inefficient when 𝑈 is significantly larger than⋃𝑛
𝑖=1

𝑋𝑖 . Thus, this solution is still far from practical.

Another potential approach is to extend the aforementioned

practical two-party PSU protocols [10, 42, 44] to the multi-party

case. However, it remains unclear how to achieve a secure mPSU
protocol through this extension since the intermediate result would

leak information like the intersection or intersection cardinality

or union of a subset of parties’ inputs which not only violates the

mPSU functionality but also harms the privacy of the data owner.

In the application of Cyber risk assessment [25] previously men-

tioned and elaborated in [28, 31, 53], organizations want to compute

the union of the IP blacklist while requires minimal leakage from

the union. Consider data-driven applications as Private-ID [9] and

association rule learning [29], where companies aim to build a joint

dataset, better performance can be achieved by having richer data

from more participants [24]. However, leakage of the input dataset

of any company leads to disastrous consequences. If we implement

mPSU using pairwise 2-party PSU, in some cases, privacy may

not be guaranteed at all! For example, in a 3-party cases where

𝑃1 is the receiver, if 𝑋3

⋂(𝑋1

⋃
𝑋2) = 𝜙 , 𝑃1 learns the 𝑃3’s data

set completely. This issue arises not only when applying 2-party

PSU protocol in a multi-party setting but also when 𝑃1 colludes

𝑃2, as even the leakage of the count of elements can lead to the

same problem. This risk is exacerbated when dealing with sensitive

information such as healthcare data or financial records. To address

these privacy concerns, an mPSU protocol that prevents any addi-

tional information leakage and is resilient to arbitrary collusion is

highly needed for the multi-party scenario.
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To grasp the challenges of extending from two-party to multiple-

party PSU, we begin by reviewing the state-of-the-art 2-party PSU

protocols [5, 18, 28, 53], which follow the framework of [31] based

on oblivious transfer (OT), which consists of two main stages:

(1) Reverse PrivateMembership Test (RPMT): The receiver learns

the bit representing the membership of each element in the

sender’s set. (e.g. for an element 𝑥 in sender’s set, the receiver

with set 𝑌 learns a bit 𝑏 = 1 if 𝑥 ∈ 𝑌 and 𝑏 = 0 otherwise.).

Note that the bit 𝑏 reveals no additional information about

the sender’s set 𝑋 , apart from the intersection cardinality

|𝑋 ∩ 𝑌 |, which is already revealed by the final PSU output.

(2) Oblivious Transfer (OT): The sender obliviously sends each

item 𝑥 in its set 𝑋 to the receiver using OT. Concretely,

the sender and the receiver invoke an OT functionality in

which the sender possesses messages {⊥, 𝑥} while the re-
ceiver holds the choice bit𝑏, where⊥ represents a predefined

special character. The bit 𝑏 is the membership indicator bit

which is derived from the preceding stage. The result of the

OT provides the receiver with either⊥ or the sender’s item 𝑥

which is not the intersection item. By merging this outcome

with its set 𝑌 , the receiver can produce the set union. This

OT step prevents the receiver from deducing the intersection

set, thereby fulfilling the functionality of a two-party PSU.

To summarize, in the two-party protocol, the parties initially

establish the sender’s element membership, followed by the receiver

obliviously obtaining only the set difference from the sender. While

this framework functions effectively and securely for the 2-party

PSU, it cannot be directly extended to multi-party settings due to

various sources of information leakage. To be more precise, assume

there are𝑛 parties, each with a set𝑋𝑖 , and 𝑃1 is the one who receives

the final output. Considering a single element 𝑥 ∈ ⋃𝑛
𝑖=2

𝑋𝑖 \ 𝑋1

which will be learned by 𝑃1 from a PSU protocol, there are two

types of information leakage considered in the multi-party setting:

• Which party sends this element 𝑥? The initial potential
leakage arises from the origin of 𝑥 . If 𝑃1 and 𝑃𝑖∈[2:𝑛] invoke
OT in the same manner as 2-party protocols, 𝑃1 will know

the contribution for the received element which is indeed

an information leakage in the multi-party setting.

• How many 𝑥 are there? Another potential leakage is the
number of element 𝑥 . In a 2-party setting, this count is consis-

tently one, as the sender is the sole provider of new elements

to the receiver (assuming that the 𝑋2 is not a multi-set). In

a multi-party setting, for element 𝑥 ∈ ⋃𝑛
𝑖=2

𝑋𝑖 \ 𝑋1, any

𝑃𝑖∈[2:𝑛] can have it in the input set. So the number of dupli-

cation’s can range from 1 to 𝑛 − 1.

In general, any information that can not be derived from the

final output is not allowed. In the case of mPSU, the potential

information leakage can be the union or intersection of the input

from a subset of participants which can be addressed by avoiding

the two leakages mentioned above. Thus, in the multi-party setting,

the definition and execution of RPMT and OT must differ from

those in the 2-party setting. Furthermore, another main challenge

in designing mPSU is to prevent leakages in the event of collusion

among a subset of parties.

1.2 Related Work
In this section, we focus on the state-of-the-art of multi-party PSU

protocols. The earliest construction of such a protocol was pro-

posed by Kissner and Song [30], which relied heavily on homo-

morphic encryption (the Paillier encryption) and the idea of poly-

nomial representation. Input sets are represented as polynomials

where each party 𝑃𝑖∈[𝑛] represents an input set𝑋𝑖 = {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚}
as a polynomial whose roots are its elements, which we denote

𝑓𝑖 (𝑥) =
∏𝑚

𝑗=1
(𝑥−𝑥𝑖, 𝑗 ). All parties together compute the encryption

of polynomial 𝑝 =
∏𝑛

𝑖=1
𝑓𝑖 which presents the polynomial of the

union

⋃𝑛
𝑖=1

𝑋𝑖 . Using polynomial evaluation on the encrypted 𝑝 ,

all parties are able to extract the union items without disclosing

additional information. The protocol proposed in [30] has𝑂 (𝑛3𝑚2)
computation complexity. Relying on the polynomial presentation

technique, Frikken [16] proposed an efficient mPSU protocol that

requires the 𝑂 (𝑛2𝑚 log(𝑚)) number of multiplications. [46] pre-

sented input sets using rational polynomial functions and reversed

Laurent series. As a result, it showed a more efficient protocol

than previous works [16, 30], but the protocol is secure up to 𝑛/2
corrupted parties.

Blanton and Aguiar [6] presented a new direction to compute

mPSU that avoids expensive homomorphic encryption but heavily

relies on MPC. Their idea is to combine the input sets of all par-

ties under a secret-shared form, perform an oblivious sort on the

resulting set, and then remove the duplications by comparing the

adjacent elements. In the context of MPC, a more practical sort-

ing algorithm is Batcher’s network which requires 𝑂 (𝑚𝑛 log(𝑚𝑛))
comparisons to sort the union sets. Due to the underlying MPC

techniques, the protocol of [6] is inefficient when the𝑚 and 𝑛 are

large.

[22, 47] compute the mPSU using Bloom filter (BF). Specifically,

each party 𝑃𝑖∈[1,𝑛] inserts its input items into a local BF and trans-

mits the encrypted version of the resulting BF to a designated leader

party 𝑃1. Subsequently, the 𝑃1 aggregates the encrypted local BFs

from all parties to generate a global BF, denoted by 𝐺 , from which

the union items are computed. While the protocol presented in [47]

makes use of an outsourcing server to compute 𝐺 , [22] is built on

homomorphic encryption (HE), which requires a homomorphic

computation per each entry of 𝐺 , and might need expensive multi-

key HE. Moreover, the BF-based approach is associated with a high

false positive rate.

In another work, Vos at. el.[49] proposed private OR protocols

and build mPSU protocols upon it. They consider a relatively small

universe (e.g. up to 32-bit long element). At the high-level idea, their

approach presents the input set in a bit vector of length |U|. The
bit is set to 1 if its corresponding element belongs to the given input

set and 0 otherwise. By invoking the proposed private OR protocol,

the leader learns the bit vector of the union. While optimization is

given by applying divide-and-conquer so that the long vector can

be divided into small ones, it is still inefficient, especially for the

standard input of 128-bit elements. Concurrently with our work,

Liu and Gao [34] presented an efficientmPSU protocol but requires

a weak security assumption wherein the leader is not in collusion
with any other participating parties.

For a comprehensive analysis of representative multi-party PSU

protocols that are resilient to the presence of any number of colluding
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semi-honest participants, we provide a summary of their theoretical

complexity in Table 1. Additionally, in Section 5.2, we present a

numerical performance comparison of our proposed protocols with

prior works [6, 16, 22].

Very recently, Dong et al. [14] points out a security flaw in our

original protocol. Our updated protocol (Figure 8) is an easy fix by

removing the redundant step for computing PRF. Refer to our full

version [17] for details. [14] proposed a new batched SS-PMT con-

struction which outperforms the multi-query SS-PMT proposed in

[34] in the usage of mPSU. Following our mPSU framework where

𝑃1 collects encryptions of the union items from other participants

with the multi-key cryptosystem (Section 2.5) and Shuffle&Decrypt
(Section 3.2), they presented a new efficientmPSU protocol from the

batched SS-PMT and random OT. Their protocol is secure against

arbitrary collusion and achieves linear computation and communi-

cation cost in terms of number of elements which outperform our

work.

1.3 Technical Overview of Our Protocols
We present an efficient protocol for mPSU that guarantees security

in the semi-honest setting. We demonstrate the practicality of our

mPSU protocol with an implementation. It is shown to be efficient

even for large sets with 2
20

items distributed among 8 parties. The

main reason for our protocol’s high performance is its reliance

on fast symmetric-key primitives and ElGamal encryption. This is

in contrast with prior protocols, which require expensive Paillier

encryption on the polynomial set representation [16, 30] or each

entry of the Bloom filter [22]. Additionally, our approach eliminates

the need for the inefficient oblivious sort/OR operations and generic

MPC of [6, 49].

Technical Overview. In our protocol, we assume the existence

of a leader party denoted as 𝑃1. This party learns the final result

by growing the union starting with 𝑋1. To be specific, 𝑃1 learns

𝑋𝑡 \
⋃𝑡−1

𝑖=1
𝑋𝑖 from 𝑃𝑡 . This is achieved by interacting sequentially

with each party 𝑃2, . . . , 𝑃𝑛 . All the parties agree on a multi-key

cryptosystem for encryption, and sets are encrypted to prevent

the leader from learning the partial union. Moreover, we propose

new primitives Membership Oblivious Transfer(mOT) to ensure

the correctness of the final result as well as prevent the information

leakage introduced earlier in the Section 1.1.

Briefly, the mOT is a two-party protocol, in which a leader 𝑃1

(also referred to as the receiver) holding a set 𝑋1 interacts with

the sender 𝑃𝑡 who possesses an input item 𝑥𝑡, 𝑗 , 𝑗 ∈ [𝑚], and two

associated values {𝑣0, 𝑣1}. Similar to the traditional OT [43], the

result is that the sender 𝑃𝑡 learns nothing whereas the receiver 𝑃1

obtains one of the two sender’s associated values depending on

whether 𝑥𝑡, 𝑗 ∈ 𝑋1.

In our mPSU protocol, sender 𝑃𝑡 prepares 𝑣0 = Enc(pk, 0) and
𝑣1 = Enc(pk, 𝑥𝑡, 𝑗 )}), where pk is the public key for the multi-key

cryptosystem. If 𝑥𝑡, 𝑗 ∈ 𝑋1, 𝑃1 learns Enc(pk, 0); otherwise it learns
Enc(pk, 𝑥𝑡, 𝑗 ). By executing the mOT multiple times with 𝑃𝑡 ∈[2,𝑛]
for each item 𝑥𝑡, 𝑗 ∈ 𝑋𝑡 , the leader 𝑃1 obtains a set 𝐸 of encryptions

Enc(pk, 𝑥𝑖, 𝑗 ) for 𝑥𝑖, 𝑗 ∈
⋃𝑛

𝑖=1
𝑋𝑖 \ 𝑋1 and the number of encryptions

of zero. At this point, the set 𝐸 still contains the encryption of the

𝑋𝑖 ∪ 𝑋𝑡 for 𝑖, 𝑡 > 1. To remove these encryptions, before execut-

ing with 𝑃1, we require 𝑃𝑡 executes an mOT with each 𝑃𝑖∈[2,𝑡−1] .

Parameters: 𝑛 parties 𝑃1, ..., 𝑃𝑛 , and the set size𝑚.

Functionality:

• Wait for input set 𝑋𝑖 of size𝑚 from 𝑃𝑖 .

• Give 𝑃1 the union

⋃𝑛
𝑖=1

𝑋𝑖 .

Figure 1: Multi-party Private Set Union Ideal Functionality

As the result, 𝑃𝑡 holds Enc(pk, 𝑥𝑡, 𝑗 ) if the item 𝑥𝑡, 𝑗 is not in any

set 𝑋2, . . . , 𝑋𝑡−1, and Enc(pk, 0) otherwise. Now, the union can be

obtained by decrypting 𝐸 and removing the zeros.

For the dishonest majority setting in which the protocol is secure

against an arbitrary number of colluding parties, the decryption

should be executed by all the parties. Thus, we employ the multi-

key cryptosystem based on the ElGamal encryption scheme (ref.

Section 2.5). The decryption process involves a partial decryption

that requires the individual party’s secret key. In our protocol, each

party is required to perform its own private permutation on the

partial decryption result before sending it to another party. This

step aims to prevent a coalition of corrupt parties (including the

leader 𝑃1) from learning which parties hold which elements. We

implement the permutation and decryption using our simple build-

ing block “Oblivious Shuffle and Decryption” (Shuffle&Decrypt),
which is described in Section 3.2.

In brief, our contributions can be summarized as follows:

• We present an efficient mPSU construction, which elimi-

nates the need for computationally expensive homomorphic

operations or generic multi-party computation and is secure

in the presence of any number of colluding semi-honest

participants.

• We introduce new building blocks, namely Membership

Oblivious Transfer (mOT) and Oblivious Shuffle and De-

cryption (Shuffle&Decrypt), which may be of independent

interest and can be used in other related protocols.

• We show that our protocol is significantly faster than pre-

vious work [6, 16, 22]. For example, for four parties with a

dataset of 2
16

item each, our mPSU protocol shows an im-

provement up to 80.84× in terms of running time and up to

405.73× less bandwidth requirement when compared to the

state-of-the-art protocols. Our implementation is publicly

available at https://github.com/asu-crypto/mpsu.

2 PRELIMINARIES
In this work, the computational and statistical security parameters

are denoted by 𝜅, 𝜆, respectively. We use [𝑚] to refer to the set

{1, . . . ,𝑚}, and [𝑖, 𝑗] to denote the set {𝑖, . . . , 𝑗}. We denote the

concatenation of two strings 𝑥 and 𝑦 by 𝑥 | |𝑦. We use 𝑓 ◦𝑔 to denote
the composition of the functions 𝑓 and 𝑔.

2.1 Multi-party Private Set Union
The ideal functionality of multi-party PSU (mPSU) is given in Figure
1. It allows 𝑛 parties, each holding a set 𝑋𝑖 of the input items, to

learn the union

⋃𝑛
𝑖=1

𝑋𝑖 and nothing else. For simplicity, we assume

that all parties have the same set size𝑚, which is publicly known.
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Protocol

Overall

Communication

Computation

Round

Overall

# HE

Leader 𝑃1 Party 𝑃𝑖∈[2,𝑛]
[30] 𝑂 (𝑛2𝑚) 𝑂 (𝑛3𝑚2) 𝑂 (𝑛𝑚2) 𝑂 (𝑛𝑚2) 𝑂 (𝑛)
[16] 𝑂 (𝑛2𝑚) 𝑂 (𝑛2𝑚 log(𝑚)) 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚 log(𝑚)) 𝑂 (𝑛)
[6] 𝑂 (𝑛2𝑚 log

2 (𝑚𝑛)) 𝑂 (𝑛2𝑚 log
2 (𝑚𝑛)) 0 0 𝑂 (log(𝑛𝑚))

[22] 𝑂 (𝑛2𝑚𝜆) 𝑂 (𝑛2𝑚𝜆) 𝑂 (𝑛𝑚𝜆) 𝑂 (𝑛𝑚𝜆) 𝑂 (1)
[49] 𝑂 (𝑛2𝑚 log |U|) 𝑂 (𝑛2𝑚 log |U|) 𝑂 ( |U|) 𝑂 ( |U|) 𝑂 (1)
Ours 𝑂 (𝑛2𝑚 log𝑚/log log𝑚) 𝑂 (𝑛2𝑚 log𝑚/log log𝑚) 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚) 𝑂 (𝑛)

Table 1: Communication (overall), computation (overall and number of homomorphic operation), and round complexities of
𝑛-party PSU protocols which are secure in the presence of any number of colluding semi-honest participants. #HE represents
the number of additive homomorphic operations. 𝑛 is number of parties, each with set size 𝑚; 𝜆 is the statistical security
parameter;U is the universal domain of the input; 𝜎 is the bit length of input element;𝑡 is the number of AND gates in the SKE
decryption circuit. Notably, the complexity of [22] consists of 𝜆 due to the usage of the Bloom filter. All [16, 22, 30] use Paillier
encryption to compute addition on the encryptions (#HE) while our protocol uses ElGamal encryption scheme to re-randomize
the ciphertexts. Note that we can eliminate the term log𝑚/log log𝑚 in the complexity of our protocol by applying the recent
batch Secret-shared Private Membership Test of [34].

Threat Model and Security Goal. From the ideal functional-

ity of mPSU, we can see that the mPSU protocol is secure if the

mPSU protocol is considered secure as long as it does not disclose

any additional information beyond the union and𝑚 to the parties,

encompassing partial set union/intersection.

Note that our protocol can be easily extended to accommodate

varying set sizes, while also protecting the set size of each party.

This can be accomplished if all parties agree on an upper bound

set size𝑚 and utilize it as the input set size. Before initiating the

protocol, each party can pad their set with a particular item, such as

zero, to reach the size of𝑚. It is customary in private set operation

literature to assume that all parties have the same set size.

In this paper, we focus on the semi-honest setting, where it is

assumed that parties adhere to the protocol description but attempt

to glean additional information from the protocol’s transcript.

2.2 Oblivious Transfer
Oblivious Transfer (OT) is a fundamental primitive of secure com-

putation and was introduced by Rabin [43]. It refers to the problem

where a sender with two input strings (𝑥0, 𝑥1) interacts with a re-

ceiver who has an input choice bit 𝑏. The OT gives the receiver 𝑥𝑏
and nothing to the sender. Figure 2 presents the OT functionality.

Parameters: Two parties: Sender and Receiver

Functionality:

• Wait for input strings (𝑥0, 𝑥1) ⊂ ({0, 1}★)2 from the

sender.

• Wait for input choice bit 𝑏 ∈ {0, 1} from the receiver.

• Give 𝑥𝑏 to the receiver.

Figure 2: Oblivious Transfer (OT) Ideal Functionality.

2.3 Secret-shared Private Membership Test
Secret-shared Private Membership Test (SS-PMT) is the main build-

ing block in different applications [12, 33, 34, 40, 41, 53]. It refers

to the two-party setting where a 𝑃0 with input a set of items

𝑋 = {𝑥1, . . . , 𝑥𝑛} interacts with a 𝑃1 who has an input single item

𝑦. SS-PMT gives both parties a secret share of a membership bit,

i.e. the two parties obtain XOR shares of 1 if 𝑦 ∈ 𝑋 and 0 otherwise.

Figure 3 presents the SS-PMT functionality.

Parameters: Two parties: 𝑃0 and 𝑃1, and the set size 𝑛.

Functionality:

• Wait for input a set of items 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂
({0, 1}★)𝑛 from the 𝑃0.

• Wait for input item 𝑦 ∈ {0, 1}★ from the 𝑃1.

• Give 𝑏𝑖 to the 𝑃𝑖∈{0,1} where 𝑏0 ⊕ 𝑏1 = 1 if 𝑦 ∈ 𝑋 and 0

otherwise.

Figure 3: Secret-shared Private Membership Test (SS-PMT)
Ideal Functionality.

2.4 Bin-and-ball Scheme
Our protocols employ hashing schemes such as the Cuckoo and Sim-

ple hashing schemes [39, 42] to allocate items into bins. We review

the basics of the Cuckoo hashing and Simple hashing schemes [39,

42] as follows.

Cuckoo hashing. In basic Cuckoo hashing, there are 𝜇 bins de-

noted 𝐵 [1 . . . 𝜇], a stash, and ℎ random hash functions 𝐻1, . . . , 𝐻ℎ :

{0, 1}★→ [𝜇]. One can use a variant of Cuckoo hashing such that

each item 𝑥 ∈ 𝑋 is placed in exactly one of 𝜇 bins. Using the Cuckoo

analysis [13, 39] based on the set size |𝑋 |, the parameters 𝜇, ℎ are

chosen so that with high probability (1 − 2
−𝜆) every bin contains

at most one item, and no item has to be placed in the stash during

the Cuckoo eviction (i.e. no stash is required).

Simple hashing. One can map its input set𝑌 into 𝜇 bins using the

same set of ℎ Cuckoo hash functions (i.e, each item 𝑦 ∈ 𝑌 appears

ℎ times in the hash table). Using a standard ball-and-bin analysis
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based on ℎ, 𝜇, and |𝑋 |, one can deduce an upper bound 𝜂 such that

no bin contains more than 𝛽 items with high probability (1 − 2
−𝜆).

2.5 Multi-key Cryptosystem
We revise the multi-key cryptosystem that is needed for our mPSU
protocol. We first give an overview of each component of the cryp-

tosystem. We then present a construction based on the ElGamal

scheme. Amulti-key cryptosystem is defined as a tuple of PPT

algorithm (KeyGen, Enc, ParDec, FulDec,ReRand) with properties

as follows:

• Key Generation: KeyGen(1𝜅 , 𝑛). In a setting with 𝑛 parties,

a key generation algorithm takes security parameter 𝜅 as in-

put and gives each party 𝑃𝑖 a secret key 𝑠𝑘𝑖 and a joint public

key pk = Combine(sk1, sk2, . . . , sk𝑛), where Combine is an
algorithm to generate the public key from the input secret

keys depending on the construction.

• Encryption: ct← Enc(pk;m). Given a joint public key 𝑝𝑘

and a message m ← M from the plaintext space M, an

encryption algorithm outputs a ciphertext ct.
• Decryption: There are two types of decryption:

– Partial decryption ct′ ← ParDec(sk𝑖 , ct,A). A partially

decryption algorithm takes a secret key sk𝑖 and a cipher-

text ct← C encrypted under the partial pubic key pk𝐴 =

Combine({sk𝑗 | 𝑗 ∈ 𝐴}) and outputs a ciphertext ct′ ← C
which is encrypted under the partial pubic key pk𝐴\{𝑖 } =
Combine({sk𝑗 | 𝑗 ∈ 𝐴, 𝑗 ≠ 𝑖}). Note that in the context

of the multi-key encryption system, we utilize set 𝐴 to

represent the collection of public keys belonging to the

parties within 𝐴.

– Full decryption: m ← FulDec(sk1, sk2, ..., sk𝑛 ; ct). A full

decryption algorithm takes a ciphertext ct← C encrypted

under pk and all the secret keys and outputs a message

m←M.

• Re-randomization: ct′ ← ReRand(ct, pk). This algorithm
takes a ciphertext ct ← C encrypted under pk and gives

a re-randomized ciphertext ct′ ← C encrypted under the

same pk such that they are both encryptions of the same

message m←M.

The multi-key cryptosystem should satisfy correctness and se-

curity as defined in [1, 7, 20]. Informally, the multi-key cryptosys-

tem satisfies correctness if m = FulDec(sk1, ..., sk𝑛, ct) or m =

FulDec(sk1, . . . , sk𝑖−1, sk𝑖+1, . . . , sk𝑛, ct′) for ct = Enc(pk,𝑚) and
ct′ = ParDec(sk𝑖 , ct{1,...,𝑖−1,𝑖+1,...,𝑛}). For security, the ciphertext
ct or ct′ is random and reveals nothing about the plaintext. When

𝑛 = 1, we have a single-key encryption scheme which is indeed the

traditional ElGamal system[15].

A Construction. While there are many multi-key cryptosystems,

we choose ElGamal system[15] as it is easy to implement and ef-

ficient (we do not perform any arithmetic computation on the

encryption). In the following, we present the ElGamal scheme in

the multi-key setting with 𝑛 parties 𝑃1, . . . , 𝑃𝑛 .

• Key Generation: Given a security parameter 𝜅 and number

of parties 𝑛. A cyclic group G of order 𝑝 is chosen, and all the

parties agree on a common generator 𝑔. Each party 𝑃𝑖∈[𝑛]
chooses a random secret key sk𝑖 ← {0, 1}𝜅 and publishes

the value of ℎ𝑖 = 𝑔sk𝑖 . We can define the public key pk =

Combine(sk1, sk2, ..., sk𝑛) = 𝑔Σ
𝑛
𝑖=1

sk𝑖 =
∏𝑛

𝑖=1
ℎ𝑖 .

• Encryption: To encrypt a message m, one can compute

ct = (ct1, ct2) = (𝑔𝑟 ,𝑚 · pk𝑟 ) where 𝑟 is a randomly chosen

value from {0, 1}𝜅 .
• Decryption: The two decryption algorithms are as follows:

– Partial decryption: To partially decrypt a ciphertext ct =
(ct1, ct2) encrypted under the partial pubic key pk𝐴 =∏

𝑗 ∈𝐴 ℎ 𝑗 , one output ct′ = ParDec(sk𝑖 , ct, 𝐴) = (ct′
1
, ct′

2
),

where ct′
1
= ct1 ·𝑔𝑟

′
, ct′

2
= ct2 ·ct−sk𝑖

1
· (pk𝐴\{𝑖 })𝑟

′
, the 𝑟 ′ ←

{0, 1}𝜅 is a random value, and pk𝐴\{𝑖 } =
∏

𝑗 ∈𝐴\{𝑖 } ℎ 𝑗 .
Note that the use of the random 𝑟 ′ aims to re-randomize

the ct1.
– Full decryption: To fully decrypt a ciphertext ct = (ct1, ct2)
encrypted under pk =

∏
𝑖∈[𝑛] ℎ𝑖 , one can compute m =

FulDec(sk1, sk2, ..., sk𝑛 ; ct) = ct2 · ct
−Σ𝑛

𝑖=1
sk𝑖

1
.

• Re-randomization: To re-randomize a ciphertext ct en-
crypted under the pk, one can choose a random value 𝑟 ′ ←
{0, 1}𝜅 , and compute (ct′1, ct

′
2) = ReRand((ct1, ct2), pk), in

which ct′
1
= ct1 · 𝑔𝑟

′
and ct′

2
= ct2 · pk𝑟

′
.

3 OUR MPSU BUILDING BLOCKS
We introduce two simple cryptographic gadgets that will serve as

the fundamental building blocks in our mPSU protocol.

• The first gadget is called “Membership Oblivious Transfer”

(mOT) which enables a receiver to obtain one of two associ-

ated values from the sender based on the set membership.

The mOT allows a leader party in our mPSU protocol to

obliviously retrieve the items of other parties that are not in

the intersection while maintaining privacy.

• In our mPSU protocol, the union result is stored under the

multi-key encryption until the final step, which requires

all parties to decrypt the ciphertexts together. The encryp-

tion protects against corrupted parties from learning partial

union. We revise a multi-key cryptosystem in Section 2.5,

and introduce a simple tool called “Shuffle and Decryption”

(Shuffle&Decrypt) to implement the last step of our mPSU
construction.

In the following, we present the definition and ideal functionality

of each building block, which specify the input and output. Par-

ties should not gain any additional knowledge beyond the desired

output, ensuring the security of each introduced primitive.

3.1 Membership Oblivious Transfer (mOT)
Definition 1. Membership Oblivious Transfer (mOT) is a two-

party protocol, in which a sender S with a keyword 𝑦 ∈ {0, 1}★ and
two associated values {𝑣0, 𝑣1} ∈ ({0, 1}ℓ )2 interacts with a receiver
R who has a set of keywords 𝑋 = {𝑥1, ..., 𝑥𝑚} ∈ ({0, 1}★)𝑚 . Except
randomnesses, the mOT functionality gives the receiver the value 𝑣𝑏
where 𝑏 = 0 if 𝑦 ∈ 𝑋 and 𝑏 = 1 otherwise, and nothing to the sender.

Similar to the traditional OT, the associated values 𝑣0, 𝑣1 are

indistinguishable with respect to their domain {0, 1}ℓ , so that the
membership of 𝑦 in terms of 𝑋 is also not revealed to the receiver.
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Parameters: Sender S and Receiver R, the receiver set size𝑚,

the length ℓ .

Functionality:

• Wait for input keyword 𝑦 and a pair (𝑣0, 𝑣1) ∈ {0, 1}ℓ ×
{0, 1}ℓ from S.
• Wait for input set 𝑋 = {𝑥1, ..., 𝑥𝑚} from R.
• Give R the value 𝑣 where 𝑣 equals to 𝑣0 if 𝑦 ∈ 𝑋 , and 𝑣1

otherwise.

Figure 4: Membership Oblivious Transfer (mOT) Ideal Func-
tionality

We name our gadget “Membership Oblivious Transfer” as the re-

ceiver’s obtained value depends on whether 𝑦 ∈ 𝑋 . We formally

describe the mOT ideal functionality in Figure 4.

FromDefinition 1, we see that if a construction formOT is secure,
it should satisfy two following properties:

• Similar to the traditional one-out-of-two oblivious trans-

fer [43], the receiver R only learns one of the two associated

values of the sender S. In addition, the receiver R has no

information about whether 𝑦 ∈ 𝑋 is from the protocol’s

output. In fact, the latter is satisfied if the associated values

(𝑣0, 𝑣1) are sampled according to the same distribution.

• The sender S learns nothing about the receiver’s input and

output.

To sum up, our security objective formOT is to enable the sender
to anonymously transmit one of its associated values to the receiver

based on the membership condition.

Our mOT Protocol. Our mOT construction consists of two main

phases. The first phase follows the popular steps in the circuit-PSI

protocols [40, 41], which enables the sender and the receiver to

compute a secret share of a membership bit, i.e. the two parties

obtain XOR shares of 1 or 0 if the sender’s keyword 𝑦 is or is not in

the receiver’s set 𝑋 .

The second phase allows the receiver to obtain the correspond-

ing associated value from the sender, depending on whether the

output of the first phase was shares of 0 or 1. Typically, this step can

be done using generic two-party secure computation (e.g., garbled

circuit) in the literature. However, it is relatively inefficient. Instead,

we propose a simple solution that relies on OT. More precisely,

the sender randomly chooses a value 𝑟 ← {0, 1}ℓ and masks its

associated values by computing (𝑟 ⊕ 𝑣0, 𝑟 ⊕ 𝑣1). Denote a secret
share bit of S and R to be 𝑏S and 𝑏R received from the first phase,

respectively. Using the choice bit 𝑏R , the receiver obliviously ob-

tains 𝑤 = 𝑟 ⊕ 𝑣𝑏R when interacting with the sender with input

(𝑟 ⊕ 𝑣0, 𝑟 ⊕ 𝑣1) via OT. Next, the sender sends 𝑢 = 𝑟 ⊕ 𝑏S · (𝑣1 ⊕ 𝑣0)
to the receiver R. The value 𝑢 helps to remove the mask 𝑟 from

the𝑤 by computing 𝑣 = 𝑢 ⊕𝑤 , which is the receiver’s output. We

formally present the construction of our mOT in Figure 5.

For the correctness of the mOT construction, one can rewrite

𝑤 = 𝑟 ⊕𝑏R · 𝑣1 ⊕ (1 ⊕𝑏R ) · 𝑣0. Hence, 𝑣 = 𝑢 ⊕𝑤 = (𝑏R ⊕𝑏S) · 𝑣1 ⊕
(1 ⊕ 𝑏R ⊕ 𝑏S) · 𝑣0 which equals to 𝑣𝑏R ⊕𝑏S as desired (recall that

𝑏R ⊕ 𝑏S = 1 if 𝑦 ∈ 𝑋 and 0 otherwise). We present the security

statement of our mOT protocol below.

Parameters:

• Sender S and Receiver R, the receiver set size 𝑚, the

length ℓ .

• The OT and SS-PMT functionalities described in Sec-

tion 2.

Input:

• Receiver R: 𝑋 = {𝑥1, . . . , 𝑥𝑚} ⊂ ({0, 1}★)𝑚
• Sender S: 𝑦 ∈ {0, 1}★ and two associated values

(𝑣0, 𝑣1) ⊂ ({0, 1}ℓ )2

Protocol:

(1) The sender S and the receiver R invoke a SS-PMT func-

tionality where:

• R has an input set 𝑋 , and S has an input 𝑦.

• S and R obtain the bit 𝑏S and 𝑏R , respectively. Here,
𝑏S ⊕ 𝑏R = 1 if 𝑦 ∈ 𝑋 and 0 otherwise.

(2) S and R invoke an OT instance where:

• S acts as an OT sender with input two strings {𝑟 ⊕
𝑣0, 𝑟 ⊕𝑣1}, where 𝑟 ← {0, 1}ℓ is a random chosen value.

• R acts as an OT receiver with input a choice bit 𝑏R .
• R obtains𝑤 = 𝑟 ⊕ 𝑣𝑏R .

(3) S sends𝑢 = 𝑟 ⊕𝑏S · (𝑣1 ⊕ 𝑣0) to R who outputs 𝑣 = 𝑢 ⊕𝑤 .

Figure 5: Membership Oblivious Transfer (mOT) Construc-
tion

Theorem 2. The mOT protocol described in Figure 5 securely im-
plements themOT functionality defined in Figure 4 in the semi-honest
setting, given the OT and SS-PMT functionalities described in Sec-
tion 2.

Proof. We construct simulators SimS and SimR to simulate the

view of corrupted sender S and corrupted receiver R, respectively.
We argue the indistinguishability of the simulator and the real

execution.

Simulating S: The simulator SimS has input (𝑦, 𝑣0, 𝑣1) and
receives output from the SS-PMT ideal functionality, consisting

of a secret-shared membership bit 𝑏S . For the OT execution, the

simulator SimS obtains nothing, except the random OT transcript

which is random. Since the output of SS-PMT is secret-shared

amongst the corrupt sender and honest receiver, one can replace

the bit 𝑏S with a random. It is straightforward to check that the

simulation is perfect.

Simulating R: SimR with input𝑋 receives nothing from the SS-
PMT ideal functionality, expect a secret-shared membership bit 𝑏R .
SimR obtains𝑤 from the OT and 𝑢 from the sender in the last step.

We show that the output of the simulator SimR is indistinguishable

from the real execution. For this, we formally show the simulation

by proceeding with the sequence of hybrid transcripts 𝑇0,𝑇1,𝑇2

where 𝑇0 is real view of the receiver, and 𝑇2 is the output of SimR .

• Let𝑇1 be the same as𝑇0, except the SS-PMT output which can
be replaced with random as the honest sender holds a secret-

shared of the output. Thus, 𝑇0 and 𝑇1 are indistinguishable.

• Let 𝑇2 be the same as 𝑇1, except the OT execution and ob-

taining 𝑢. Due to the underlying security property of OT, the
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Parameters:𝑛 parties, parameter𝑚, and amulti-key encryption

scheme defined in Section 2.5

Functionality:

• Wait for input secret key 𝑠𝑘𝑖 and a permutation func-

tion 𝜋𝑖 : [𝑚] → [𝑚] from each party 𝑃𝑖∈[𝑛] . Here,
(pk, {sk𝑖 }𝑖∈[𝑛] ) ← KeyGen(1𝜅 , 𝑛).
• Wait for a combined input a set of ciphertexts

{ct1, . . . , ct𝑚} where ct𝑖 = Enc(pk, 𝑥𝑖 ) from all parties

{𝑃1, . . . , 𝑃𝑛}.
• Give {𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑚) } to 𝑃1 where 𝜋 = 𝜋𝑛 ◦𝜋𝑛−1 ◦ . . .◦
𝜋1.

Figure 6: Oblivious Shuffle and Decryption
(Shuffle&Decrypt) Ideal Functionality

receiver only learns one of the two strings related to 𝑣0 or 𝑣1.

In addition, the sender’s associated values were masked with

a random value 𝑟 before the OT execution. Thus,𝑤 reveals

nothing about 𝑣𝑖∈{0,1} . When having 𝑢 = 𝑟 ⊕ 𝑏S · (𝑣1 ⊕ 𝑣0),
the corrupt receiver might try to unmask 𝑟 by computing

𝑢 ⊕𝑤 . However, the resulting value is indeed the protocol’s

output which can be simulated. Therefore, we can replace

both 𝑤 and 𝑢 with random (the receiver sees a system of

two equations that contains three unknown variables). In

summary, 𝑇2 and 𝑇1 are indistinguishable.

□

3.2 Oblivious Shuffle and Decryption
(Shuffle&Decrypt)

Definition 3. Oblivious Shuffle and Decryption (refers as Shuf-
fle&Decrypt) is a 𝑛-party protocol, in which each party 𝑃𝑖∈[𝑛] holds
a permutation 𝜋𝑖 : [𝑚] → [𝑚] and a secret key sk𝑖 of the multi-key
cryptosystem as (pk, {sk𝑖 }𝑖∈[𝑛] ) ← KeyGen(1𝜅 , 𝑛). Given a set of
ciphertexts {ct1, . . . , ct𝑚} where ct𝑖 = Enc(pk, 𝑥𝑖 ), except random-
nesses, the Shuffle&Decrypt functionality gives {𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑚) }
to the party 𝑃1 where 𝜋 = 𝜋𝑛 ◦ 𝜋𝑛−1 ◦ . . . ◦ 𝜋1, and nothing to other
parties.

The private permutation aims to remove the linkage between

the ciphertext ct𝑖 and the plaintext 𝑥𝑖 . We formally describe the

Shuffle&Decrypt ideal functionality in Figure 6.

Our Shuffle&Decrypt Protocol. The Shuffle&Decrypt construc-
tion is simple and directly built from calling algorithms provided

in the multi-key cryptosystem. First, the 𝑃1 re-randomizes the ci-

phertexts and then permutes the result. 𝑃1 then sends the permuted

set 𝐶1 to 𝑃2. The re-randomization aims to hide the permutation

function from 𝑃2. The 𝑃2 now performs partial decryption using

its secret key sk2. This decryption removes the role of sk2 from

the original ciphertext. 𝑃2 then applies the permutation 𝜋2 on the

resulting ciphertexts𝐶2 and forwards them to 𝑃3. Note that 𝑃2 does

not need to rerandomize 𝐶2 as the 𝐶2 is in the random distribution

and thus it hides the permutation of 𝑃2. The process repeats sequen-

tially through 𝑃4, . . . , 𝑃𝑛 . After the partial decryption was executed

by 𝑃𝑛 , the ciphertexts require only the secret key sk1 for the final

decryption. 𝑃𝑛 now sends these ciphertexts in the permuted order

Parameters:

• 𝑛 parties, the set size𝑚

• A multi-key cryptosystem

(KeyGen, Enc, ParDec, FulDec,ReRand) defined in

Section 2.5

Input:

• Each party 𝑃𝑖∈[𝑛] : The secret key 𝑠𝑘𝑖 and a permuta-

tion function 𝜋𝑖 : [𝑚] → [𝑚]. Here, (pk, {sk𝑖 }𝑖∈[𝑛] ) ←
KeyGen(1𝜅 , 𝑛)
• All parties: {ct1, . . . , ct𝑚} where ct𝑖 = Enc(pk, 𝑥𝑖 )

Protocol:

(1) 𝑃1 re-randomizes ct𝑗 = ReRand(ct𝑗 , pk),∀𝑗 ∈ [𝑚], and
sends𝐶1 = {ct1

1
, . . . , ct1𝑚} to 𝑃2 where ct1

𝑗
= ct𝜋1 ( 𝑗) ,∀𝑗 ∈

[𝑚].
(2) For 𝑖 = 2 to 𝑛:

• 𝑃𝑖 computes a partial decryption c̄t𝑖𝑗 =

ParDec(sk𝑖 , ct𝑖−1

𝑗
, 𝐴𝑖 ),∀𝑗 ∈ [𝑚], where

𝐴𝑖 = {1, 𝑖, 𝑖 + 1, . . . , 𝑛}.
• 𝑃𝑖 permutes the set {c̄t𝑖

1
, . . . , c̄t𝑖𝑚} as ct𝑖𝑗 = c̄t𝜋𝑖 ( 𝑗) ,∀𝑗 ∈

[𝑚].
• 𝑃𝑖 sends 𝐶𝑖 = {ct𝑖

1
, . . . , ct𝑖𝑚} to 𝑃 (𝑖+1)%𝑛 .

(3) 𝑃1 outputs ParDec(sk1, ct𝑛𝑗 , {1}),∀𝑗 ∈ [𝑚].

Figure 7: Oblivious Shuffle and Decryption
(Shuffle&Decrypt) Construction

to 𝑃1 which performs the partial decryption and outputs the final

result. Figure 7 presents the Shuffle&Decrypt construction. From
the high-level description, it is clear that the protocol is correct

given the correctness of the underlying multi-key cryptosystem.

We present the security statement of the Shuffle&Decrypt protocol
below.

Theorem 4. Given the multi-key cryptosystem defined in Sec-
tion 2.5, the Shuffle&Decrypt protocol described in Figure 7 securely
implements the Shuffle&Decrypt functionality defined in Figure 6
in the semi-honest model, against any number of corrupt, colluding,
semi-honest parties.

Proof. Let 𝐴 be a coalition of corrupt parties. The view of 𝐴

is a set of ciphertexts {𝐶𝑖 | 𝑃𝑖 ∈ 𝐴}, and the output of the Shuf-
fle&Decrypt which is {𝑥𝜋 (1) , . . . , 𝑥𝜋 (𝑚) } if the leader 𝑃1 ∈ 𝐴.

Thanks to the property of the multi-key cryptosystem, 𝐶𝑖∈[𝑛]
reveals nothing about the underlying plaintexts. If 𝑃1 is honest,

the randomization hides the party’s permutation function. More-

over, when assuming {𝑃𝑖 , 𝑃 𝑗 } ∈ 𝐴 but {𝑃𝑖+1, . . . , 𝑃 𝑗−1} ∉ 𝐴, one

might think that 𝐴 might learn the permutation functions of hon-

est parties {𝑃𝑖+1, . . . , 𝑃 𝑗−1}. However, the output of the partial de-
cryption gives ciphertexts in the random distribution. Thus, the

resulting view is random to 𝐴 (i.e., the corrupt coalition’s view is

simulated). □

4 OUR MPSU CONSTRUCTION
Figure 8 presents our main mPSU protocol, which guarantees secu-

rity against any number of corrupt, colluding, semi-honest parties.
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The protocol makes use of our new mOT and Shuffle&Decrypt
gadgets.

4.1 Our Protocol
The design of a secure mPSU protocol presents significant chal-

lenges, specifically with regard to (1) ensuring that the output does

not contain duplicate items, (2) preventing the disclosure of partial

union results, and (3) hiding which items from which parties. To

illustrate the high-level idea of our protocol, we consider a simple

4-party case where the leader party 𝑃1 has a set 𝑋1 of items while

each of the remaining party 𝑃𝑖 for 𝑖 ∈ [2, 4] possesses a single item
𝑋𝑖 = {𝑥𝑖 }. We assume that the item 𝑥2 of 𝑃2 and 𝑥3 of 𝑃3 are not in

the 𝑋1 but 𝑥4 of 𝑃4 is (i.e. 𝑥2 = 𝑥3 ∉ 𝑋1 and 𝑥4 ∈ 𝑋1).

Regarding (1), a potential approach is to enable the leader 𝑃1

to engage with the other parties and obtain an encryption of 𝑥𝑖
if 𝑥𝑖 ∉ 𝑋1 and an encryption of the zero otherwise. An encryp-

tion of zero indicates the presence of common items between

𝑃1 and 𝑃𝑖 , which can be removed after decryption. To this end,

the 𝑃1 and 𝑃𝑖 invoke the mOT instance in which 𝑃𝑖 acts as the

sender with input

(
𝑥𝑖 , Enc(pk, 0), Enc(pk, 𝑥𝑖 )

)
and 𝑃1 acts the re-

ceiver with input 𝑋1, thereby obtaining the desired encryption.

After executing the mOT instances, the leader party 𝑃1 acquires

𝐸 = {Enc(pk, 𝑥2), Enc(pk, 𝑥3), Enc(pk, 0)} from the party 𝑃2, 𝑃3 and

𝑃4, respectively. The set 𝐸 allows the leader 𝑃1 to obtain the set

union after decryption.

The above protocol description does not entirely address the

issue of removing duplicate items since 𝑥2 could be identical to 𝑥3.

This causes the challenge (2) as mentioned above. To overcome the

limitation, we leverage the mOT in the following manner.

Similar as before, the protocol starts with the leader party 𝑃1

which has an input 𝑋1 and learns Enc(pk, 𝑥2) after executing an

mOT with 𝑃2. Next, the 𝑃2 performs an mOT with each of the

parties 𝑃𝑖∈{3,4} . Specifically, 𝑃𝑖>2 acts as the sender with inputs(
𝑥𝑖 , Enc(pk, 0), Enc(pk, 𝑥𝑖 )

)
, while 𝑃2 acts as the receiver with input

𝑋2. As the result, the 𝑃2 learns 𝑒𝑖
2
, where 𝑒𝑖

2
is the encryption of

zero if 𝑥𝑖 ∈ 𝑋2 and the encryption of 𝑥𝑖 otherwise. The obtained

encryption 𝑒𝑖
2
is then randomized by 𝑃2 before being sent back to

𝑃𝑖 , which is used as the input to the next mOT between 𝑃1 and 𝑃𝑖 .

Using the above mOT, we can remove the intersection items

between 𝑋2 and 𝑋𝑖>2. Therefore, when 𝑃1 with input 𝑋1 and 𝑃3

with input

(
𝑥3, Enc(pk, 0), 𝑒3

2

)
execute anmOT, the receiver 𝑃1 does

not obtains the encryption of the items 𝑥3 that is in the intersection

𝑋2 ∩ 𝑋3. Concretely, 𝑒
3

2
= Enc(pk, 0) as 𝑥3 ∈ 𝑋2.

At this point, if the 𝑃4 repeats the previous step performed by 𝑃3

using the encryption 𝑒4

2
as the input to mOT with the receiver 𝑃1,

there is a risk that the 𝑃1 might obtain the encryption of the same

item twice if 𝑥3 = 𝑥4. Therefore, it is necessary for 𝑃4 executes an

mOT with 𝑃3 to remove the intersection between 𝑋3 and 𝑋4.

In summary, our protocol can be viewed as a sequence of mOT
instances between 𝑃1 and 𝑃𝑖 , where 𝑃1 has input 𝑋1 while 𝑃𝑖 inputs

is

(
𝑥𝑖 , Enc(pk, 0), 𝑒𝑖𝑖−1

)
,∀𝑖 ∈ 𝑋𝑖 . Here 𝑒𝑖

𝑖−1
is the result obtained

from a sequence of mOT executions between between 𝑃𝑖 and each

𝑃𝑡 ∈[2:𝑖−1] . This process helps to eliminate duplications between 𝑋𝑖
and 𝑋𝑡 .

Upon the completion of (𝑛 − 1) instances of the mOT protocol

between the leader party 𝑃1 and other parties 𝑃𝑖 , the leader 𝑃1 has

acquired an encryption set 𝐸, containing encryptions Enc(pk, 𝑥)
for 𝑥 ∈ ⋃𝑛

𝑖=2
𝑋𝑖 and 𝜏 encryptions of zero, where 𝜏 =

∑𝑛
𝑖=1
|𝑋𝑖 | −

|⋃𝑛
𝑖=1

𝑋𝑖 | indicates the number of duplicate items. In order to sat-

isfy requirement (3) of the mPSU protocol, we employ the Shuf-
fle&Decrypt functionality, which permits each party to apply its

own permutation function on the encryption set 𝐸.

We demonstrate ourmPSU protocol execution in Table 2 pertain-

ing to the 4-party scenario described above. Our protocol maintains

security even if some parties collude. For example, the adversary

cannot determine the numbers of zero encryption before Shuf-
fle&Decrypt execution due to the IND-CPA security provided by

the multi-key encryption.

At this stage, we are currently focusing on a simple scenario

where each 𝑃𝑖∈[2,𝑛] possesses only one item. In order to generalize

our method to a set 𝑋𝑖 , we apply a popular technique known as the

bin-and-ball technique. At the high level, the party 𝑃𝑖∈[2,𝑛] places
its input values into 𝛽 bins through the use of Cuckoo hashing,

where each bin is allowed to contain at most one item. The leader

𝑃1 utilizes the same set of Cuckoo hash functions to map the input

values in 𝑆 into 𝛽 bins using Simple hashing. The mapping allows

the parties to execute the simple case above bin-by-bin efficiently.

As a result, for each bin, the 𝑃1 obtains encryptions of the partial

union set which are subsequently combined into a big encryption

set 𝐸 before being subjected to decryption.

4.2 Correctness and Security
Correctness. We consider three following cases depending on

whether a specific item 𝑥𝑖,𝑘 ∈ 𝑋𝑖 of the smallest-index party 𝑃𝑖
is in 𝑃1 or other parties 𝑃𝑡 for 𝑛 ≥ 𝑡 > 𝑖 > 1. Since 𝑃𝑖 is the

smallest index that has 𝑥𝑖,𝑘 , no previous parties have 𝑥𝑖,𝑘 . Thus, 𝑃𝑖

obtains 𝑒𝑖
𝑏,𝑖−1

= Enc(pk, 𝑥𝑖,𝑘 ) after interacting with 𝑃𝑡 ∈[2,𝑖−1] via a
sequence of the mOT instances.

• Case 1 (𝑥𝑖,𝑘 ∈ 𝑋1) – the 𝑃1 has 𝑥𝑖,𝑘 : As 𝑥𝑖,𝑘 ∈ 𝑋1, the

mOT with 𝑃𝑖 in Step (3,a) gives 𝑃1 the encryption of zero

Enc(pk, 0). As a result, 𝑥𝑖,𝑘 does not appear in the final result

from the Shuffle&Decrypt execution.
• Case 2 (𝑥𝑖,𝑘 ∉ 𝑋1 and 𝑥𝑖,𝑘 ∈ 𝑋𝑡 ) – the 𝑃1 does not have

𝑥𝑖,𝑘 , but another party 𝑃𝑡 has 𝑥𝑡, 𝑗 = 𝑥𝑖,𝑘 for 𝑡 > 𝑖: The

mOT execution between 𝑃𝑖 and 𝑃𝑡 in Step (3,b), on input

including 𝑒𝑡
𝑏,𝑖−1
), provides 𝑃𝑖 with the encryption of zero.

This encryption is then rerandomized before being sent back

to 𝑃𝑡 . In other words,𝑃𝑡 obtains 𝑒
𝑡
𝑏,𝑖
) = Enc(pk, 0) after Step

(3,b). Thus, when executing with 𝑃1 in the following round,

𝑃1 obtains Enc(pk, 0), ensuring that the 𝑥𝑖,𝑘 will appear in

the final union output.

• Case 3 (𝑥𝑖,𝑘 ∉
⋃𝑛

𝑗=1, 𝑗≠𝑖 𝑋 𝑗 ) – no party has 𝑥𝑖,𝑘 : The mOT
executions between 𝑃𝑖 and 𝑃𝑡 in Step (3) maintain the encryp-

tion of Enc(pk, 𝑥𝑖,𝑘 ). Thus, 𝑃1 then obtains an Enc(pk, 𝑥𝑖,𝑘 )
from 𝑃𝑡 in Step (3,a). Consequently, 𝑥𝑖,𝑘 appears in the final

result from the Shuffle&Decrypt functionality.

Security. The security of ourmPSU protocol is given as below. At

a high level, the multi-key encryption system is secure because all

the information viewed by amalicious adversary remains encrypted

when the mOT is secure.
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𝑃1 : 𝑋1 𝑃2 : {𝑥2} 𝑃3 : {𝑥3} 𝑃4 : {𝑥4}
Round 1 ⇐ mOT ⇒ ⇐ mOT ⇒

⇐ mOT ⇒
𝐸 {Enc(𝑥2)}
Round 2 ⇐ mOT ⇒ ⇐ mOT ⇒
𝐸 {Enc(𝑥2), Enc(0)}
Round 3 ⇐ mOT ⇒
𝐸 {Enc(𝑥2), Enc(0), Enc(𝑥4)}
Shuffle {Enc(0), Enc(𝑥4), Enc(𝑥2)}
Decrypt {0, 𝑥4, 𝑥2}
Output 𝑋1 ∪ {𝑥4, 𝑥2}

Table 2: Illustration of our mPSU protocol for 4 parties. 𝑃1 has an input set of 𝑋1 while 𝑃𝑖 have input set of only one item 𝑥𝑖 for
𝑖 ∈ [2, 4]. In addition, we assume that 𝑥2 = 𝑥3 ∉ 𝑋1 and 𝑥4 ∈ 𝑋1.⇐ P⇒ denotes the execution of protocol P between two parties.
Colors indicating the corresponding output for each invocation of protocol. For example, in round 1, 𝑃1 and 𝑃2 invoke the mOT
(Step (3,a) in Figure 8). 𝑃1 updates its set 𝐸 by the received the message Enc(𝑥2)) from 𝑃2. 𝑃3 and 𝑃4 invokemOT protocol with 𝑃2

concurrently to update their encryption (Step (3,b) in Figure 8). 𝑃3 receives an encryption of zero Enc(0) since 𝑥3 = 𝑥2 and 𝑃4

receives the same encryption of 𝑥4 as Enc(𝑥4). The following rounds are similar.

Theorem 5. Given the multi-key cryptosystem, mOT and Shuf-
fle&Decrypt functionalities described in Section 2.5, Figure 4, and
Figure 6, respectively, the mPSU protocol described in Figure 8 se-
curely implements the mPSU functionality defined in Figure 1 in
the semi-honest model, against any number of corrupt, colluding,
semi-honest parties.

Proof. Let𝐶 and 𝐻 be a coalition of corrupt and honest parties,

respectively. We must show how to simulate 𝐶’s view in the ideal

model. We consider three following cases based on whether 𝐶 has

an item 𝑥 :

(1) 𝐶 does not have 𝑥 , but 𝐻 has 𝑥 : We consider two cases.

First, if 𝐻 contains only one honest party 𝑃𝑖 , then 𝑃𝑖 has

𝑥 . Consider the case where 𝑃𝑖 is 𝑃1. During the protocol

execution, 𝑃1 only acts as the receiver via mOT in Step (3,a)

and participates in the shuffle and decryption in Step (4).

Assuming that these two building blocks are secure, 𝑃1 does

not reveal anything to 𝐶 . If 𝑖 ≠ 1, the corrupted parties 𝐶

should contain the leader 𝑃1, thus, they can deduce that the

honest party 𝑃𝑖 has 𝑥 from the output of the set union. Hence,

there is nothing to hide about whether 𝑃𝑖 has 𝑥 in this case.

Second, if 𝐻 has more than one honest party (say 𝑃𝑖 and

𝑃 𝑗>𝑖 ). We consider two following subcases:

• Only 𝑃𝑖 has 𝑥 : we must show that the protocol must hide

the identity of 𝑃𝑖 . If 𝑃1 ∈ 𝐻 , only the honest party 𝑃1

learns the union

⋃𝑛
𝑖=1

𝑋𝑖 in Step 5. In addition, the mOT
between 𝑃𝑖 and previous corrupt parties 𝑃𝑡 ∈ 𝐶 reveals

nothing to𝐶 as the obtained output is under the multi-key

encryption and rerandomized before the next execution.

Thus, the simulation is simple.

If 𝑃1 ∈ 𝐶 , the corrupt 𝑃1 obtains Enc(pk, 𝑥) from 𝑃𝑖 . Since

the encryption is protected under the Shuffle&Decrypt
functionality until the 𝑃1 learns the union sets which was

permuted by the honest party 𝑃𝑖 , the encryption reveals

nothing to 𝐶 .

• Both 𝑃𝑖 and 𝑃 𝑗 have 𝑥 : If 𝑖 = 1, then the honest leader 𝑃1

receives encryptions of zeros Enc(pk, 0) when executing

mOT with 𝑃 𝑗 . If another party 𝑃𝑡> 𝑗 possesses 𝑥 , the mOT
execution between 𝑃 𝑗 and 𝑃𝑡 results in 𝑃𝑡 receiving the

Enc(pk, 0), while 𝑃𝑡 learns nothing. Thus, when doing the

permutation in Step 5, the 𝐶 learns nothing about which

parties in 𝐻 have 𝑥 . If 𝑃1 ∈ 𝐶 , the corrupt 𝑃1 receives

the encryption Enc(pk, 𝑥) from 𝑃𝑖 and Enc(pk, 0) from 𝑃 𝑗 .

Similarly, thanks to the CCA property of the encryption

scheme and the permutation in Shuffle&Decrypt,𝐶 cannot

distinguish the two encryptions. Thus, the protocol hides

the identity of which honest party has 𝑥 .

(2) 𝐶 have 𝑥 , but 𝐻 does not have 𝑥 : We must show that the

protocol must hide the information that 𝐻 does not have 𝑥 .

Consider the mOT execution where a party in 𝐻 acts as the

sender and a party in 𝐶 acts as the receiver, the corrupt set

𝐶 receives Enc(pk, 𝑥) which is rerandomized by 𝐻 . Thus, 𝐶

learns nothing. In the final step, the encryption set 𝐸 contains

Enc(pk, 𝑥), which was permuted by the honest parties 𝐻 .

Hence, all honest parties have an indistinguishable effect on

the Shuffle&Decrypt step.
(3) Both 𝐶 and 𝐻 have 𝑥 . When 𝐶 acts as the receiver and in-

vokes the mOT with an honest sender, if the sender’s key-

word 𝑥 is not in the receiver’s set, the receiver obtains the

encryption of the keyword 𝑥 . Otherwise, the receiver obtains

the encryption of zero. The 𝐶 cannot differentiate between

the two cases. When 𝐶 acts as the sender in mOT, 𝐶 obtains

nothing but might receive the rerandomization of the output

from the receiver in Step (3,b). Since the message was reran-

domized by 𝐻 , 𝐶 cannot infer the underlying encryption.

Moreover, Enc(pk, 𝑥) appears only once in the encryption

set 𝐸, so the 𝐶 learns nothing about whether the 𝐻 has 𝑥 .

□
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Parameters:

• 𝑛 parties 𝑃𝑖∈[𝑛] for 𝑛 > 1.

• The mOT and Shuffle&Decrypt functionalities described in Figure 4 and Figure 6, respectively.

• A multi-key cryptosystem (KeyGen, Enc, ParDec, FulDec,ReRand) defined in Section 2.5.

• Hashing parameters: a number of bins 𝜇, maximum bin sizes 𝛽 : Z → Z for simple-hashing bins, the ℎ hash functions

𝐻 𝑗 ∈[ℎ] : {0, 1}★→ [𝜇].

Input:

• Party 𝑃𝑖∈[𝑛] has 𝑋𝑖 = {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚}.
Protocol:

(1) All 𝑛 parties call the key generation algorithm KeyGen(1𝜆, 1𝜅 ). Each 𝑃𝑖 receives a private key sk𝑖 and a joint public key pk.
(2) Local Execution:

(a) 𝑃𝑖∈[2,𝑛] hashes items 𝑋𝑖 into 𝜇 bins using the Cuckoo hashing. Let 𝐶𝑖
𝑏
denote the items in the 𝑃𝑖 ’s 𝑏th bin. 𝑃𝑖 computes the

encryption 𝑒𝑖
𝑏,1

= Enc(𝑝𝑘,𝐶𝑖
𝑏
), for 𝑏 ∈ [𝜇].

(b) 𝑃𝑖∈[𝑛] hashes 𝑋𝑖 into 𝜇 bins under 𝑘 hash functions. Let 𝑆𝑖
𝑏
denote the set of items in the 𝑃𝑖 ’s 𝑏th bin. 𝑃𝑖 pads 𝑆

𝑖
𝑏
with dummy

values to the maximum bin size 𝛽 .

(c) For bin 𝑏 ∈ [𝜇], the 𝑃1 initials an empty set 𝐸𝑏 .

(3) 𝑃1 sequentially interacts with 𝑃𝑖 for 𝑖 ∈ [2, 𝑛] as follow.
(a) For each bin 𝑏 ∈ [𝜇], 𝑃1 and 𝑃𝑖 invoke a mOT instance where:

• 𝑃1 acts as the receiver with input 𝑆1

𝑏
.

• 𝑃𝑖 acts as the sender with input (𝐶𝑖
𝑏
, Enc(pk, 0), 𝑒𝑏 ). Here, 𝑒𝑏 = Enc(pk, 0) if 𝐶𝑖

𝑏
= ∅, otherwise, 𝑒𝑏 = 𝑒𝑖

𝑏,𝑖−1
.

• 𝑃1 obtains 𝑒𝑏 .

𝑃1 appends 𝑒𝑏 to 𝐸𝑏 .

(b) For each bin 𝑏 ∈ [𝜇], the 𝑃𝑖 and 𝑃𝑡 ∈[𝑖+1,𝑛] invoke a mOT instance where:

• 𝑃𝑖 acts as the receiver with input 𝑆𝑖
𝑏

• 𝑃𝑡 acts as the sender with input (𝐶𝑡
𝑏
, Enc(pk, 0), 𝑒𝑡

𝑏,𝑖−1
).

• 𝑃𝑖 obtains 𝑐 and sends 𝑐 ′ = ReRand(𝑐, pk) to 𝑃𝑡
𝑃𝑡 computes 𝑒𝑡

𝑏,𝑖
= ReRand(𝑐 ′, pk)

(4) All the parties invoke the Shuffle&Decrypt functionality where:

• 𝑃1 inputs 𝐸 =
⋃𝜇

𝑏=2
𝐸𝑏 , the sk1 and a random permutation 𝜋1 : [𝑚] → [𝑚].

• 𝑃𝑖 inputs the private key sk𝑖 and a random permutation 𝜋𝑖 : [𝑚] → [𝑚].
• 𝑃1 obtains a set𝑈 .

(5) 𝑃1 removes all zero from𝑈 , and outputs𝑈 ∪ 𝑋1.

Figure 8: Our mPSU Protocol

4.3 Complexity
We presented the communication, computation, and round com-

plexities of our mPSU protocol in Figure 1 and elaborate on them

here. It is clear that our protocol has 𝑛 rounds for both Step (3)

and Step (4). Leveraging the bin-and-ball technique introduced in

[39, 42], parties hash elements into Cuckoo and Simple hashing

tables consisting of𝑂 (𝑚) bins. Each bin of the Simple hashing table

accommodates up to 𝑂 (log𝑚/log log𝑚) elements. In round 𝑖 − 1,

party 𝑃𝑖 engages in mOT with 𝑃1 and 𝑃𝑡>𝑖 , each incurring a cost of

𝑂 (log𝑚/log log𝑚) in terms of communication and computation

per bin. This yields a total cost of 𝑂 (𝑛2𝑚 log𝑚/log log𝑚).

Remark. In our protocol, the non-linearity with respect to𝑚 comes

from themOT, specifically the SS-PMT.We discuss the construction

in Appendix A. [14, 34] proposed SS-PMT protocol with linear

complexity. By incorporating these new constructions into our

mOT, ourmPSU framework can achieve linear complexity in terms

of the number of parties and set size.

5 IMPLEMENTATION AND PERFORMANCE
We implement our protocol and evaluate it with various number

of parties, set sizes, and number of threads. All evaluations were

performed with an item input length of 128 bits, a statistical security

parameter 𝜆 = 40, and a computational security parameter 𝜅 = 128.

We do a number of experiments on a single server that has AMD

EPYC 74F3 processors and 256GB of RAM. We run all parties in

the same network, but simulate a network connection using the

Linux tc command: a LAN setting with 0.02ms round-trip latency,

10 Gbps network bandwidth; two WAN settings: WAN1 with 10ms

and WAN2 with 80ms round-trip latency, and both have 400 Mbps

network bandwidth.

Our mPSU protocol is built on ElGamal encryption scheme

(multi-key cryptosystem), SS-PMT, and OT (mOT). We implement

the multi-key ElGamal encryption scheme using the elliptic curve

code (Curve25519) from Relic [45]. For the SS-PMT implementation

which requires garbled circuit for two strings comparison, we use

the EMP-toolkit library [50]. Finally, we use the OT-extension [27]
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Our Protocol

𝑚 = 2
8 𝑚 = 2

12 𝑚 = 2
16 𝑚 = 2

20

𝑡 = 1 𝑡 = 4 𝑡 = 16 𝑡 = 1 𝑡 = 4 𝑡 = 16 𝑡 = 1 𝑡 = 4 𝑡 = 16 𝑡 = 1 𝑡 = 4 𝑡 = 16

LAN (s)

𝑛 = 3 1.10 0.35 0.23 16.49 4.33 1.56 284.47 73.57 20.77 4546.74 1179.99 337.02

𝑛 = 4 1.88 0.58 0.34 27.96 7.36 2.25 490.53 127.14 35.38 7841.32 2038.63 573.13

𝑛 = 6 3.94 1.18 0.60 59.65 15.52 4.58 1061.45 271.60 74.80 16971.22 4352.98 1208.59

𝑛 = 8 6.72 1.94 0.92 103.86 26.62 7.65 1838.59 470.44 127.95 29400.65 7537.26 2063.72

WAN1 (s)

𝑛 = 3 5.03 4.45 4.37 24.58 12.66 10.02 309.70 98.93 46.18 4854.77 1488.01 645.04

𝑛 = 4 8.38 7.16 6.94 39.76 19.37 14.40 528.25 165.07 73.39 8302.03 2499.34 1033.85

𝑛 = 6 15.54 12.80 12.22 79.51 35.75 24.99 1124.23 334.73 138.05 17737.32 5119.07 1974.68

𝑛 = 8 23.11 18.38 17.40 129.62 54.58 36.07 1926.38 558.72 216.41 30472.12 8608.74 3135.19

WAN2 (s)

𝑛 = 3 9.49 8.91 8.83 31.61 19.69 17.05 336.84 126.08 73.33 5099.44 1732.69 889.71

𝑛 = 4 15.07 13.85 13.63 50.30 29.91 24.94 568.27 205.09 113.41 8666.94 2864.25 1398.75

𝑛 = 6 26.69 23.95 23.37 97.07 53.31 42.55 1189.99 400.50 203.82 18342.69 5724.45 2580.06

𝑛 = 8 38.72 33.99 33.01 154.20 79.17 60.65 2017.89 650.23 307.92 31304.27 9440.89 3967.34

Comm. Cost (MB)

𝑛 = 3 1.46 20.25 321.40 5142.39

𝑛 = 4 2.20 30.48 483.69 7739.04

𝑛 = 6 3.68 50.96 808.79 12940.64

𝑛 = 8 5.16 71.47 1134.21 18147.41

Table 3: The running time and communication cost of our mPSU protocol: the number of parties 𝑛 ∈ {3, 4, 6, 8}, set size
𝑚 ∈ {28, 212, 216, 220}, and numbers of thread 𝑡 = {1, 4, 16}. The reported running time represents the time taken for the entire
protocol to complete. Communication cost is computed as the average cost across all parties.

𝑃1 𝑃2 𝑃3 𝑃4

Comm.Cost

Running Time

Comm.Cost

Running Time

Comm.Cost

Running Time

Comm.Cost

Running Time

LAN WAN2 LAN WAN2 LAN WAN2 LAN WAN2

𝑚 = 2
8

Total 2.18 1.88 15.07 2.21 1.88 15.07 2.21 1.88 15.07 2.21 1.88 15.07

mOT 2.11 0.86 13.07 2.13 0.86 13.07 2.13 0.86 13.07 2.13 0.86 13.07

Shuffle&Decrypt 0.08 1.02 2.00 0.08 1.02 2.00 0.08 1.02 2.00 0.08 1.02 2.00

𝑚 = 2
12

Total 30.18 27.96 50.30 30.58 27.96 50.30 30.58 27.96 50.30 30.58 27.96 50.30

mOT 28.99 11.91 30.98 29.39 11.91 30.98 29.39 11.91 30.98 29.39 11.91 30.98

Shuffle&Decrypt 1.19 16.05 19.32 1.19 16.05 19.32 1.19 16.05 19.32 1.19 16.05 19.32

𝑚 = 2
16

Total 478.92 490.53 568.27 485.28 490.53 568.27 485.28 490.53 568.27 485.28 490.53 568.27

mOT 459.88 187.23 258.45 466.24 187.23 258.45 466.24 187.23 258.45 466.24 187.23 258.45

Shuffle&Decrypt 19.04 303.31 309.82 19.04 303.31 309.82 19.04 303.31 309.82 19.04 303.31 309.82

Table 4: The breakdown running time and communication cost for each party in ourmPSU protocol (𝑛 = 4).

provided in [38] to implement mOT. Our complete implementation

is available on GitHub.

Our protocol scales well using multi-threading between the par-

ties. In each round, the party 𝑃𝑖∈[2,𝑛−1] can use 𝑛 − 𝑖 + 1 threads

so that each party operates mOT building block with other par-

ties 𝑃1 and 𝑃 𝑗 ∈[𝑖+1,𝑛] at the same time. In addition, each pair of

parties can use multiple threads to execute these building blocks

bin-by-bin in parallel. We evaluate it on the number of threads

𝑡 ∈ {1, 4, 16} to show the performance of our protocols running

with multi-threading.

5.1 Performance of OurmPSU Protocol
Table 3 presents the overall runtime and communication overhead

of our mPSU protocol. From the empirical numbers, we can see

that the performance difference betweenWAN1, WAN2, and LAN is

primarily due to the latency for the smaller input. The gap increases

with the number of parties which is also observed in other protocols

with an 𝑂 (𝑛) or higher round complexity.

Additionally, we present the breakdown cost of our protocol for

each party in 4-party scenarios with varying set sizes in Table 4.

Specifically, we present the performance metrics of themOT in Step
(3) and the Shuffle&Decrypt in Step (4) in our protocol in terms of

running time and communication cost. All reported running time

values in Table 3 and Table 4 represent end-to-end time.

5.2 Comparison with Previous Work
To demonstrate the performance of ourmPSU protocols with a com-

parison, we have implemented the semi-honest protocols proposed

in [6, 16] and estimate the performance for protocol proposed in

[22]. Table 5 and Figure 9 present the running time and communica-

tion cost of various mPSU protocols [6, 16, 22] which are secure in

the dishonest majority
1
and semi-honest setting. We do not incor-

porate the results from [49] into our comparison, as their protocol

only works for a small universe. Even in their largest setting, with

a universe size of 2
32
, it is considerably smaller than the general

1
The recent mPSU protocol [34] provides a weak security guarantee wherein the

leader does not collude with any parties.
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scenario involving 128-bit elements. According to [49, Figure 7], in

a scenario involving 5 parties, each with only 32 elements of 32-bit

length, their protocol takes around 10 seconds. Interestingly, this

is comparable to the runtime of our protocol involving 6 parties,

each with 256 elements in a 128-bit universe.

In [6], each input set𝑋𝑖 is initially shared among𝑛 parties using a

secret-sharing scheme. Subsequently, these parties employ a generic

secure computation technique to compute the union on the shares.

Our implementation of the [6]’s method, however, is limited to the

two-party scenario where each 𝑋𝑖 is secret-shared between only

two parties (which is in favor of [6]). Consequently, the secure

computation takes place exclusively between these two parties. We

implement [6] using EMP-toolkit library [50] which provides most

of the state-of-the-art techniques for two-party secure computation

in the semi-honest setting. As shown in Table 5, for 𝑛 = 4, our

protocol is 1.44 − 3.22 times faster in the LAN setting and 8.50 −
80.84× faster than [6] in the WAN2. Additionally, the cost for [6]

is significantly (168.33 − 405.73×) higher than our protocol for set

size𝑚 ∈ {28, 212, 216, 220}.
We report the partial running time and communication cost of

themPSU protocol proposed by [22]. The first step of their protocol

is for each party to locally compute an encryption of a local Bloom

filter. To achieve a false positive rate of 2
−40

, the table size should

be at least 60𝑛𝑚. We estimate the time and communication cost

for this single step of each party based on the performance shown

in [35] (as well as our [16]’s implementation), where each Paillier

encryption takes about 2.5 ms with a key length of 2048 bits, and

report the numbers in Table 5.

Our mPSU protocol outperforms previous works in the LAN

setting. Despite the low communication cost due to the usage of ho-

momorphic encryption, the running time of [16, 22] is not practical

even for small set sizes. Thus, we skip the evaluation of the [16, 22]

in the WAN setting. We also show the concrete number for each

protocol in Table 5. [22] has a constant round of 7 and [6] has a

round complexity of 𝑂 (log(𝑛𝑚)) sensitive to𝑚. Both [16] and our

protocol gives 𝑂 (𝑛) rounds independent of input size. We believe

that our protocol provides the best trade-off between the running

time, bandwidth cost, and round complexity.

6 CONCLUSION
In this work, we propose an efficient mPSU protocol in the semi-

honest setting against an adversary that colludes an arbitrary num-

ber of participants. Our protocol is built onmOTwhich we believed

of independent interests. Our protocol significantly outperforms

prior mPSU works in the same security setting in terms of running

time and communication cost. OurmPSU framework is the general-

ization of the well-studied 2-party PSU protocols to the multi-party

setting. We highlight some directions for future work:

• Improving scalability: Unlike the 2-party PSU and some other

efficient private set intersection protocols, our protocol still

heavily relies on public key techniques which is the bottle-

neck of the performance. It is possible to use symmetric-

key techniques such as secret-sharing to replace the encryp-

tion scheme and implement Shuffle&Decrypt. We leave the

mPSU protocol constructed mainly on the symmetric key

techniques as the future work.

𝑚 Ours [22] [6] [16]

Running Time

LAN (second)

2
8 1.88 155.63 2.70 6009.00

2
12 27.96 2490.04 57.73 -

2
16 490.53 39840.65 1158.53 -

2
20 7841.32 637450.40 25279.39 -

Running Time

WAN2 (second)

2
8 15.07 - 128.05 -

2
12 50.30 - 2387.70 -

2
16 568.27 - 45939.46 -

Comm. Cost

(MB)

2
8

8.80 15.72 1481.34 4.25
2

12
121.92 251.65 30116.50 68.00

2
16

1934.76 4026.53 617047.00 1088.00
2

20
30956.16 64424.48 12559743.00 17408.00

Number of Rounds

2
8

17 7
10

112
12

14

2
16

18

Table 5: Performance comparison of differentmPSU proto-
cols with 𝑛 = 4 parties, each having𝑚 ∈ {28, 212, 216, 220}. The
communication cost is computed as the overall cost across all
parties. Concrete number of round is given here. The num-
bers for [6] are lower-bounds based on complexity𝑂 (log(𝑛𝑚))
in Table 1.
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Figure 9: Multi-party PSU protocols with set size of 2
20 among

4 parties on the network 10Gbps with 0.02ms latency.

• This study concentrates on semi-honest mPSU, which we

consider a preliminary stage in advancing towards efficient

malicious MPSU. To the best of our knowledge, there is no

existing tailored protocols for malicious PSU in both two-

party and multi-party settings. To achieve malicious PSU,

one can employ cryptographic commitment techniques at

each step of the protocol, albeit with added costs.
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A SECRET-SHARED PRIVATE MEMBERSHIP
TEST

In this section, we present the secret-shared private membership

test (SS-PMT) construction [19, 40] used in our mPSU implemen-

tation. The functionality of SS-PMT is given in Figure 3. SS-PMT

is a two-party where 𝑃0 have a set 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊂ {0, 1}∗ and
𝑃1 have an item 𝑦 ∈ {0, 1}∗. As the result, each 𝑃𝑖∈{0,1} learns a
bit 𝑏𝑖 so that 𝑏0 ⊕ 𝑏1 = 1 if 𝑦 ∈ 𝑋 and 𝑏0 ⊕ 𝑏1 = 0 otherwise. The

security requirement of SS-PMT is that the participants only learn

the desired output and nothing else.

The SS-PMT protocol can be built from the usage of oblivious

key-value pair (OKVS) [19] with the help of generic equality test

techniques such as garble circuit and secret sharing. A Key Value

Store (KVS) consists of two algorithms: i) Encode takes as input a set
of (𝑘𝑖 , 𝑣𝑖 ) key-value pairs from the key-value domain, K ×V , and

outputs an object 𝑆 (or, with negligible probability, an error indicator

⊥); ii) Decode takes as input an object 𝑆 , a key 𝑥 and outputs a

value 𝑦. A KVS is correct if, for all 𝐴 ⊆ K ×V with distinct keys: i)

𝑃𝑟 [Encode(𝐴) = ⊥] is negligible, and ii) if Encode(𝐴) = 𝑆 ≠ ⊥ and

(𝑘, 𝑣) ∈ 𝐴 then Decode(𝑆, 𝑘) = 𝑣 . We say that a KVS is oblivious, if

the values 𝑣𝑖 are chosen uniformly then the output of Encode hides
the choice of the keys 𝑘𝑖 . We refer to the [19] for more details about

the security and other properties of OKVS.

The SS-PMT protocol is given in Figure 11. For each instance of

SS-PMT execution, 𝑃0 randomly chooses a secret value 𝑠 and en-

codes an OKVS structure with key-value pairs {(𝑥1, 𝑠), . . . , (𝑥𝑛, 𝑠)}.

𝑃0 send this OKVS structure to 𝑃1 and 𝑃1 learns a decoded value

𝑠 ′ with input 𝑥1. Then 𝑃0 and 𝑃1 invoke a two-party computation

protocol for equality check, which functionality is described in Fig-

ure 10. The protocol of equality check can be constructed by garbled

circuit (GC) [21, 51] with several optimizations such as point-and-

permute [3], Free-XOR [32], the half-gate [52], and fixed-key AES

garbling optimizations [2].

To enable multi-point query which is desirable in our mPSU
protocol. Naively, for 𝑃0 with set 𝑋 = {𝑥1, . . . , 𝑥𝑚} and 𝑃1 with

set 𝑌 = {𝑦1, . . . , 𝑦𝑚}, we would like to learn the share of a se-

quence of bits 𝑏1,0, . . . , 𝑏𝑚,0 and 𝑏1,1, . . . , 𝑏𝑚,1 for 𝑃0 and 𝑃1 such

that 𝑏𝑖,0⊕𝑏𝑖,1 = 1 if 𝑥𝑖 ∈ 𝑌 and 0 otherwise. We execute the SS-PMT

protocol following the methods in [18, 40]. Instead of invoking𝑚

times SS-PMT protocol between 𝑃0 with 𝑥𝑖 ∈ 𝑋 for 𝑖 ∈ [1,𝑚]
and 𝑃1 with 𝑌 , we pre-process the set of with cuckoo and simple

hashing scheme described in Section 2.4. Then the SS-PMT proto-

col is performed for each bin of the hash table. Very recently, [34]

proposed a multi-query SS-PMT protocol. The performance of our

mPSU protocol can be improved by using their SS-PMT protocol.

For easy of implementation, we opt for the SS-PMT construction

described above.

Parameters: The Boolean circuit 𝐶 computing the equality for

two strings from {0, 1}★, with 𝐼1, 𝐼2 inputs and 𝑂1,𝑂2 outputs

associated with 𝑃1 and 𝑃2 resp.

Functionality:

• Wait for input 𝑥0 ∈ {0, 1}★ from 𝑃0 and 𝑥1 ∈ {0, 1}★ from

𝑃1.

• Give 𝑏0 and 𝑏1 to 𝑃0 and 𝑃1 respectively such that 𝑏0 ⊕
𝑏1 = 1 if 𝑥0 = 𝑥1 and 0 otherwise.

Figure 10: Secure Two-Party Computation for Equality Check

Parameters:

• 𝑃0 and 𝑃1, the receiver set size 𝑛, the PRF 𝐹

Input:

• 𝑃0: 𝑋 = {𝑥1, . . . , 𝑥𝑚 } ⊂ ( {0, 1}★)𝑛 and the PRF key 𝑘

• 𝑃1: 𝑦 ∈ {0, 1}★

Protocol:

(1) 𝑃0 chooses a random value 𝑠 ← {0, 1}★ and constructs an OKVS

𝑆 ← Encode( {(𝑥1, 𝑠), . . . , (𝑥𝑛, 𝑠) }) and sends 𝑆 to 𝑃1.

(2) The sender decode compute the value 𝑠′ = 𝐷𝑒𝑐𝑜𝑑𝑒 (𝑆, 𝑥) .
(3) 𝑃0 and 𝑃1 invoke the protocol of secure two-party equality check

protocol (Functionality 10) with input 𝑠 and 𝑠′ and learns the bit
𝑏0 and 𝑏1.

Figure 11: Secret-shared Private Membership Test Protocol [19, 40]
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