
Deniability in Automated Contact Tracing: Impossibilities and
Possibilities

Christoph U. Günther
Institute of Science and Technology Austria

cguenthe@ista.ac.at

Krzysztof Pietrzak
Institute of Science and Technology Austria

pietrzak@ista.ac.at

ABSTRACT
Automated contact tracing (ACT) emerged as a promising measure
to curb the spread of Covid-19. Users enable ACT on their smart-
phones to automatically record contacts with other users. If a user
tests positive for the disease, they report their diagnosis to alert
their contacts.

Designing effective ACT protocols is challenging since they need
to be efficient and secure while also ensuring users’ privacy. As
ACT protocols necessarily leak some information by design, defin-
ing privacy is difficult. For example, a user cannot deny having
met another user. Ideally, however, the user can plausibly deny
everything else, in particular, when they met. We call this privacy
property contact-time deniability.

While some early works discussed contact-time deniability in-
formally, it has received little attention since then. We investigate
deniability from a rigorous, theoretical point of view and arrive at
the following impossibility result:

A decentralized protocol with unidirectional communication can-
not be contact-time deniable and replay-secure. This holds even if
malicious users treat smartphones as black-boxes.

Unidirectional protocols are usually very efficient and many pro-
posals are unidirectional, e.g., the widely-deployed Google-Apple
Exposure Notifications. So the impossibility result considerably
constrains the design space of efficient, secure, and private ACT
protocols. However, it can also be used as a guide; we discuss several
possibilities to achieve contact-time deniability in practice.

KEYWORDS
automated contact tracing, deniability, replay security, impossibility
result

1 INTRODUCTION
Automated contact tracing (ACT) emerged as one measure to fight
the Covid-19 pandemic. ACT automatically identifies contacts of
an infected person, enabling preventative measures to stop the dis-
ease’s spread. While there are many conceivable ways to automate
contact tracing (e.g., correlation of credit card transactions [22]),
most approaches utilize smartphones interacting via Bluetooth Low
Energy (BLE).

People install an ACT app to participate; the app continuously
sends and receives messages over BLE to automatically record
contacts with other app users. When a user is diagnosed, they

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 636–648
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0134

report their diagnosis to the app and their past contacts promptly
receive a digital alert.

The efficacy of ACT solutions crucially relies on high adoption.
The fraction of detected contacts grows roughly quadratically with
the fraction of app users amongst the population [14]. Therefore,
prospective user must be confident in the app and, importantly, the
underlying ACT protocol.

In this work, we examine the design space of ACT protocols
from a theoretical point of view. We formalize security and privacy
properties to show that a wide class of protocols cannot be secure
(i.e., accurately alert users even under adversarial influence) and
offer a strong form of privacy, contact-time deniability, at the same
time. In other words, there is a tension between security and privacy
properties, so the ideal ACT protocol does not exist. This explains
some of the trade-offs that prior ACT protocol proposals had to
strike.

1.1 ACT Protocols
Prior work proposes numerous protocol designs, e.g., [5, 6, 8, 11, 12,
16, 17, 21, 24, 25, 28–30, 32]. The most widely used ACT implemen-
tation is the Google-Apple Exposure Notification API (GAEN) [4]
based on the Decentralized Privacy-Preserving Proximity Tracing
(DP3T) [31] protocol. GAEN is a cross-platform API that imple-
ments the bulk of an ACT protocol allowing public authorities to
easily publish an ACT app.

DP3T’s design is simple and efficient. The phone broadcasts
changing pseudorandom messages every couple of minutes; at the
same time it listens for broadcast from other phones and stores them.
When a user is diagnosed, they upload the keys used to generate
the pseudorandom messages to a server. Phones regularly fetch
newly added keys from the database, recompute the pseudorandom
messages, and check whether any stored message matches. Since
this check happens locally, the protocol is decentralized, hopefully
increasing the privacy of users.

DP3T and also other protocol proposals received a lot of scrutiny.
Multiple works analyzed ACT protocols in terms of efficiency, se-
curity1, and/or privacy (for surveys, see e.g., [2, 3, 14, 27]). While
efficiency (e.g., in terms of energy or mobile data usage) can be esti-
mated from the protocol description and benchmarks, security and
privacy require careful examination. Unlike most modern, provable
cryptography, the majority of the aforementioned works informally
define properties and evaluate protocols based on their resistance
against specific attacks.

Defining privacy for ACT protocols is tricky because ACT nec-
essarily leaks some information to correctly fulfill its purpose.2
In general, the two most salient issues are preserving the privacy
1Sometimes called “integrity”.
2For example, a comic strip [10] depicts is how privacy might be violated during a
job interview. The interviewer switches on a different phone for every candidate. A

636

https://orcid.org/0009-0001-5790-695X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0134

Deniability in Automated Contact Tracing Proceedings on Privacy Enhancing Technologies 2024(4)

of users’ movements and their social interactions. However, even
these are not set in stone and the public might prefer trading off
privacy for, e.g., higher-fidelity epidemiological data.

Early on, this lead to a debate on whether decentralized protocols
(contact check performed on the device, e.g., DP3T) or centralized
protocols (contact check performed on the server) are more pri-
vate [33]. The former might leak the movement patterns of reported
users to the public but ensures privacy for non-reported users. The
latter protects the privacy of all users against the public but places
trust in the authority administrating the server.

1.2 Deniability
Deniability is a privacy property complementary to the ones men-
tioned so far. As before, the mere correctness of ACT protocols
implies that the smartphones of users hold evidence of their recent
encounters. For example, after users𝐴 and 𝐵 have met, they cannot
plausibly deny having been in close proximity to each other. Indeed,
given access to both of their smartphones, a judge3 uses 𝐴’s phone
to report 𝐴 as sick and checks whether 𝐵’s phone reports a contact.

Ideally, however, the data stored on users’ smartphones should
not reveal anything apart from whether they met or not. In particu-
lar, if there was a contact, it should be impossible to pin down when
this contact happened. We call this form of deniability contact-time
deniability.

It turns out that many protocols are not contact-time deniable.
Essentially, a malicious user who deviates from the protocol can
construct digital evidence that they encountered someone [6, 24,
33]. So it is an “edge of the social graph [coming] together with a
proof” [33]. To illustrate how this might be problematic, consider
the following hypothetical scenario.

Example 1. Consider a country that is composed of federal states,
and that, say, a medical procedure 𝑃 is a felony in state 𝑋 but legal
in another state 𝑌 . Furthermore, state 𝑋 not only criminalizes this
procedure within its own borders, but also prosecutes its citizens
when they have this procedure performed in other states. Now,
for a thought experiment, assume that an ACT protocol is used
country-wide across all states and that the protocol does not offer
contact-time deniability.

Someonemight claim to have seen a user𝐴, a citizen of state𝑋 , at
the medical facility in state𝑌 . Furthermore, they accuse𝐴 of having
procedure 𝑃 performed there at a certain time and substantiate their
claim with, say, recorded ACT protocol BLE messages from user
𝐴’s phone. So a judge confiscates 𝐴’s phone and forces the phone
to report 𝐴 as sick (possibly by getting a fake test result from a
regional testing facility). We emphasize that the judge does not
have any privileged access to the ACT protocol and the servers
running it. They only uses their powers regionally in state 𝑋 . If
the protocol were deniable, the accused user 𝐴 could claim being
framed and that they were simply in the area, say, on a weekend
when the medical facility was closed.

couple of days later, they check if any phone registered a contact and deduce that the
corresponding candidate tested positive.

3An entity to be convinced of whether a contact happened based on the given evidence.

1.3 Our Contributions
Surprisingly, we could only identify three papers [6, 24, 33] infor-
mally discussing deniability. Apart from that, no attention has been
paid to deniability, especially not in a more formal manner. This
includes informal analyses and surveys [2, 3, 6, 14, 18, 19, 27, 32, 33]
as well as the works rigorously modeling security and privacy prop-
erties [8, 12, 15, 17, 20]. Our contribution is to remedy this state of
affairs.

First, we give a rigorous and fine-grained deniability definition:
Δ-contact-time deniability.

Definition (Informal). An ACT protocol is not Δ-contact-time
deniable if a malicious user𝑀 that meets an honest user 𝐴 at time
𝑡 can provide digital evidence to a judge that they have been in 𝐴’s
proximity at some point during the timespan 𝑡 − Δ to 𝑡 + Δ.

Second, our main result shows a tension between Δ-contact-time
deniability and Δ′-replay security, a fundamental security property.
Ideally, a protocol fulfills both properties with Δ large (say, two
weeks) and Δ′ small (say, 2 seconds). Unfortunately, this is often
not possible as the following impossibility theorem shows.4

Main Theorem (Informal; cf. Theorem 1). A correct, decentralized
ACT protocol with unidirectional communication (like DP3T/GAEN)
cannot be Δ-contact-time deniable and Δ′-replay-secure with Δ ≥ Δ′

when devices are treated as black-boxes.

While the theorem only holds for decentralized, unidirectional
protocols, this covers a large class of efficient protocols and thus
also proposals (e.g., [12, 17, 24, 25, 28, 29, 31]). Nevertheless, we
modify the theorem to hold for any decentralized protocol if the
judge gets slightly more capabilities. Furthermore, we argue that
these impossibility results apply to centralized designs in practice.
We just cannot capture centralized protocols entirely because their
design space is too large in theory.

1.4 Technical Overview
Let us briefly state a high-level proof of the main theorem. In ad-
dition to Δ-contact-time deniability, we will need the following
definitions.
Correctness ensures that an honest user gets alerted if they were

in contact with another honest user that reported as infected
later on.

Decentralized protocols perform all computation on the users’
phones; the server only acts as a database.

Unidirectional communication means that messages from one
user to another are sufficient to record a contact (e.g., DP3T).
This property usually implies that a protocol is efficient since
it precludes interactive protocols requiring session state.

Δ-replay-security ensures that a malicious user𝑀 cannot record
an interaction with an honest user 𝐴, wait for Δ time, and
then resend the interaction (or information derived from it)
to an honest user 𝐵 such that a contact between 𝐴 and 𝐵 is
recorded.

Black-box access to devices means that malicious users and the
judge may only use the normal functionalities exposed by

4Notions yet to be defined, e.g., correctness or black-box model, are somewhat self-
explanatory; otherwise, Section 1.4 will cover them momentarily.

637

Proceedings on Privacy Enhancing Technologies 2024(4) Christoph U. Günther and Krzysztof Pietrzak

A M

t

BC

mA mA

τ

J

A B

t
mA

Contact?

τ verifies?

LB

UB

t
im

e

and

∆

mA, τ

Figure 1: Intuitive proof sketch of the impossibility result.

devices, e.g., reporting as sick or setting the device’s time.
In particular, the cannot, e.g., inspect or modify devices’
memory directly.

Timestamping services allow someone to submit a message and
receive a certificate publicly proving that they submitted
(and therefore knew) the message at the time of submission.
This may be realized by, e.g., posting the hash of the message
to a popular blockchain.

Without loss of generality, we ignore the distinction between Δ
and Δ′ in the theorem and prove the following: A decentralized,
unidirectional, and correct protocol cannot be Δ-replay-secure and
Δ-contact-time deniable for any Δ.

Proof (Sketch). The proof sketch is illustrated in Figure 1 and
explained below.

Consider a decentralized, unidirectional ACT protocol that is
correct and Δ-replay-secure. Let𝑀 be a malicious user that wants
to give evidence to a judge 𝐽 that they were in contact with an
honest user 𝐴 at a certain time 𝑡 .

When𝑀 receives message𝑚𝐴 from 𝐴, they immediately times-
tamp it by posting the hash of𝑚𝐴 to the blockchain BC resulting
in timestamp 𝜏 . At a later point in time, 𝑀 goes to the judge 𝐽

with this timestamped message (𝑚𝐴, 𝜏). Following that, judge 𝐽

confiscates 𝐴’s phone. Using 𝐴’s phone,𝑚𝐴 and 𝜏 , 𝐽 performs two
tests (depicted in the thought bubble).

• 𝐽 uses a dummy phone to register a dummy user 𝐵 and
replays the message𝑚𝐴 at time 𝑡 to it. Note that 𝐽 can turn
the time back by just modifying the clock in the dummy
phone’s settings. Then, 𝐽 forces 𝐴 to report as infected and
checks whether 𝐵 got a notification (depicted as “Contact?”).

• 𝐽 verifies that 𝜏 is a timestamp for𝑚𝐴 at time 𝑡 (depicted as
“𝜏 verifies?”).

If 𝐵 got a notification, 𝐽 knows that 𝐴 and 𝑀 were in contact at
some point. Since the timestamp verifies, 𝐽 knows that they were
in contact by time 𝑡 at the latest (i.e., an upper bound UB on the
contact time).

Now, for the crucial part of this impossibility result: Since the
protocol is Δ-replay-secure, 𝐽 also has a lower bound LB of 𝑡 − Δ
on the contact time—otherwise replaying𝑚𝐴 to the dummy user
𝐵 would not have lead to a contact. Thus, 𝐽 is certain that𝑀 was
in contact with 𝐴 in the timespan 𝑡 − Δ, . . . , 𝑡 , so the protocol is at
most (Δ − 1)-contact-time deniable. □

2 ACT PROTOCOLS
The design space for ACT protocols is quite large. As mentioned
before, we restrict our attention to proximity-based ACT where
devices exchange messages using, e.g., Bluetooth Low Energy (BLE).
While this still allows for a multitude of designs, all protocols adhere
to the following high-level blueprint [14, 33]:

Setup to participate in the protocol (possibly in concert with, e.g.,
health care authorities).

Interaction with other devices by sending and receiving BLE mes-
sages.

Reporting a positive test result (possibly controlled by, e.g., testing
facilities).

Checking whether this device has been in contact with the device
of a user who reported a positive test result.

In all these steps, the user’s device may interact with servers over
the internet. Usually, these are servers hosted by public authorities
or are decentralized (e.g., a blockchain).

The role of the servers varies considerably between protocol,
yielding three broad classes [2, 14, 33]

Centralized protocols require users to sign-up (e.g., solving a
CAPTCHA or providing their ID) before participating and
handles most things server-side. That is, devices only send
server-prescribed messages and upload all receivedmessages
to the server, enabling server-side checking for contacts.

Decentralized protocols, in contrast, only use the server as a data-
base or bulletin board. Users do not have to sign up, generate
all messages on device, and report their diagnosis by upload-
ing data to the database. Other users regularly download
new data and use it to check for contacts with diagnosed
users locally on-device.

Hybrid protocols capture everything that falls in between the
preceding ones. So requiring user sign-ups is possible, but
not strictly necessary. Similar to decentralized protocols,
messages might also be generated on device. Checking for
contacts may be performed server-side or using an interac-
tive protocol between devices and the server (e.g., private
set intersection).

Note that some specific implementations might diverge slightly
from these classes, but we will disregard that in our theoretical
analysis. For example, in real-world deployments, decentralized
protocol only allow users to report a diagnosis if they have a valid

638

Deniability in Automated Contact Tracing Proceedings on Privacy Enhancing Technologies 2024(4)

test. Otherwise, malicious users could cause notifications that are
not related to an actual case of infection.

2.1 Existing Constructions
Throughout the paper we will refer to a selection of protocols that
are instructive for our impossibility result. A simplified description
of these protocols follows.

Note that some designs may seem needlessly complex at a first
glance. These complexities are either the result of reducing the
messages sizes or storing as little information in plain text on a
device. The latter strives to improve privacy of users against white-
box attacks where the adversary has direct access to the device’s
memory. For example, not storing the time and/or location of a
contact in plaintext makes reconstructing the user’s movements
more difficult.

DP3T. DP3T [31] is a decentralized protocol and the basis for
the most widely deployed ACT solution, Google/Apple exposure
notifications (GAEN) [4]. While GAEN and DP3T differ in imple-
mentation details, their basic principle is the same.

Every day 𝑑 , the device samples5 a new key SK𝑑 locally. Then,
SK𝑑 is expanded and divided into so-called ephemeral IDs using

PRG(PRF(SK𝑑 , “broadcast key”)) = EphID0 | |EphID1 | | · · · . (1)

The ephemeral IDs are broadcast in a random order via BLE through-
out the day in fixed intervals. At the same time, the device stores
received ephemeral IDs together with the current day.

To report a positive test, the device publishes the keys of the
preceding, say, week (or whatever period is deemed epidemiologi-
cally relevant). To this end, the device uploads SK𝑑−7, . . . , SK𝑑 to
the database.

Other users periodically download newly published keys from
the database. To check for contacts with diagnosed users, the device
uses the keys to recompute the ephemeral IDs for every day. Then,
the recomputed ephemeral IDs are compared to the stored ones
for that day. If there is a match, the device notifies the user of the
potentially dangerous contact.

Challenge-Response. Vaudenay [32] noted that DP3T is vulnera-
ble to replay attacks within the same day. They construct a replay-
secure but interactive protocol.

It uses Ephemeral ID generated like in DP3T (cf. Equation (1)).
In addition, ephemeral secret keys are generated similarly, i.e.,

PRG(PRF(SK𝑑 , “secret key”)) = EphSK0 | |EphSK1 | | · · · . (2)

The interaction between devices works as follows. The sender
advertises EphID𝑖 , the receiver responds with a random challenge
𝑐 , and the sender returns MAC(EphSK𝑖 , 𝑐) = tag where MAC is
a message authentication code. Consequently, the receiver stores
(EphID𝑖 , 𝑐, tag).

Like in DP3T, a user reports their diagnosis by uploading the
keys SK𝑗 . Given the keys, other users can recompute ephemeral
IDs as before and also verify the MAC tag 𝜏 .

Note that the stored triple (EphID𝑖 , 𝑐, tag) does not contain or
depend on the time 𝑡 . This is beneficial for user privacy because it is
resistant against white-box analysis as described at the beginning
of this section.
5Often, it derives it from a longer-term key.

Delayed Authentication. Pietrzak [24] proposed a non-interactive
replay secure protocol which requires the devices to have reason-
ably synchronized clocks.

Ephemeral IDs and keys are generated as in Equations (1) and (2).
At time 𝑡 , the sender transmits the message

(EphID𝑖 , 𝜌, tag, 𝑡)

where 𝜌 is a random string and

tag = MAC(EphSK𝑖 ,Hash(𝑡 | |𝜌)) (3)

with | | denoting concatenation. Upon receipt, the receiver checks
whether their own time 𝑡 ′ is close enough to 𝑡 (say ± one second).
If it’s not, they ignore the message as it could be a replay attack
attempt. Otherwise they compute 𝜎𝑖 = Hash(𝑡 | |𝜌) and then store
(EphID𝑖 , tag, 𝜎𝑖). Again, when tested positive, a user publishes their
keys and others check for contacts by recomputing ephemeral IDs
and verifying tag.

If coarse location data, like GPS coordinates, is available to the
protocol, it can be augmented to also protect against relay attacks.
Relay attacks are the location analogue of replay attacks, they
prevent an attacker from replaying messages at different location
(even if this happens in almost real time, and thus replay security
would not prevent this).

Note that like in Challenge-Response the users don’t store the
contact time 𝑡 (or location data); while 𝜎𝑖 was computed using 𝑡 , by
using a sufficiently large 𝜌 , the 𝜎𝑖 will be statistically independent
of 𝑡 . In cryptographic terms, the receiver stores a statistically hiding
commitment of the contact time and amessage authentication tag of
this commitment. The tag can be verified (and a contact is detected)
if the sender reports sick and the receiver learns their MAC key.
This ensures that a user’s movement patterns stay secret even if
their phone is forensically analyzed at a later point in time. Let us
stress that this is an orthogonal issue to contact-time deniability,
which considers users actively deviating from the protocol with
the goal to create digital evidence of contact time.

CleverParrot. Canetti et al. [12] propose CleverParrot, a decen-
tralized protocol that follows a different design philosophy. In the
protocols described so far, a diagnosed user uploads their keys, a
concise description of all their sent messages. CleverParrot, instead,
requires diagnosed users to upload all received messages of the past,
say, week. Senders download these messages and check whether
they have sent them.

In more detail, at time 𝑡 , user 𝐴 broadcasts 𝑚 = Hash(𝑡)SK𝐴

and the receiver stores (𝑚, 𝑡). Here, Hash now maps to a group of
prime-order 𝑝 and SK𝐴 ∈ Z𝑝 is the sender’s secret key. For security,
the discrete logarithm problem must be hard in the chosen group.

If a user is tested positive, for every stored broadcast (𝑚, 𝑡), they
compute (𝑚𝜌 ,Hash(𝑡)𝜌) with random 𝜌 ∈ Z𝑝 , shuffle the resulting
list, and upload it. Then, any other user 𝐴 learns of a contact if the
uploaded list contains an element (𝑢, 𝑣) such that𝑢 = 𝑣SK𝐴 , i.e., one
of 𝐴’s broadcasts re-randomized.

The re-randomization ensures that other users can only recog-
nize their own messages. This is boon to privacy since, e.g., other
users cannot find out whether they and the diagnosed users had
mutual contacts. In terms of security, the protocol hinders replay
attacks by hashing the time.

639

Proceedings on Privacy Enhancing Technologies 2024(4) Christoph U. Günther and Krzysztof Pietrzak

Decentralized Diffie-Hellman. Performing a Diffie-Hellman (DH)
key-exchange is a natural way to implement a decentralized ACT
protocol (e.g., [6, 21]). User 𝐴 has the secret key 𝛼 and broadcasts
𝑔𝛼 where 𝑔 is the generator of a group where the DH problem is
assumed to be hard. Upon receiving 𝑔𝛽 from user 𝐵 with key 𝛽 , 𝐴
stores the shared secret (𝑔𝛽)𝛼 = 𝑔𝛼𝛽 which is identical to what 𝐵
stores. To report a positive test, 𝐴 uploads 𝑔𝛼𝛽 and 𝐵 can easily
check whether they were in contact.

While this protocol is non-interactive (unlike Challenge-Re-
sponse), it still requires bidirectional communication in contrast to
DP3T, Delayed Authentication, and CleverParrot. Interestingly, this
slight relaxation from uni- to bidirectionality allows for a protocol
that is replay secure and deniable at the same time.

NTK. NTK [23] is a centralized protocol implementing the PePP-
PT6 design. It is similar to ROBERT [13], also following PePP-PT,
but slightly simpler to describe.

User 𝑖 registers with the server and receives a unique identifier
ID𝑖 . The server can use ID𝑖 to send a notification to the user’s
device.

For every, say, hour ℎ, the central server has a secret key SKℎ .
The user’s device regularly queries the server for new ephemeral
IDs. In response, the server computes

ENC(SKℎ, ID𝑖) = EphID0
ENC(SKℎ+1, ID𝑖) = EphID1

.

.

.

and returns the list (EphID0, EphID1, . . .) to the user. This list cov-
ers, e.g., a days worth of ephemeral IDs. Like in DP3T, the user’s
device broadcasts the ephemeral IDs throughout the day; when it re-
ceives an EphID from another device, it stores the tuple (EphID, ℎ)
where ℎ is the current hour.

When a user is diagnosed, they upload all received tuples to
the server. For every tuple (EphID, ℎ), the server fetches the cor-
responding key SKℎ and decrypts the ephemeral IDs to get the
sender’s identity. This allows the server to notify the sender of the
contact with a diagnosed user.

Hybrid Diffie-Hellman. Apart from being a popular decentralized
protocol, DH key-exchange can also be used for hybrid designs.
DESIRE [11] is one such implementation that derives some of its
privacy guarantees from the use of trusted hardware (e.g., Intel
SGX). As we will see, however, trusted hardware is not necessary
in theory.

Hybrid DH is very similar to Decentralized DH. Users sample
their own private keys, perform a non-interactive key exchange
with users in their proximity, and also upload the shared secrets
upon diagnosis. The difference lies in how other users check for
contacts. In DESIRE, other users periodically upload their stored
shared secrets to the central server and the server performs the
matching. Importantly, all server-side computation is performed in
trusted Intel SGX enclaves to ensure privacy.

Instead of relying on trusted hardware such as Intel SGX, it is pos-
sible to perform this step using a private set intersection cardinality
protocol [30] or, ideally, a private set intersection test [33]. This

6https://www.pepp-pt.org/

is essentially a protocol that returns a boolean indicating whether
two sets (one held by the server, one by the user’s device) intersect.
In theory, this is an elegant solution, but presumably too inefficient
for practice.

3 PROPERTIES OF ACT PROTOCOLS
So far, we have seen multiple constructions of ACT protocols. Using
these existing protocols as a guide, we will first formalize some
basic terminology and then discuss three properties that protocols
should fulfill.

3.1 Basic Terminology
Devices. All ACT protocols have in common that users interact

with others automatically using their devices (e.g., smartphone or
a small BLE-capable device). For user 𝐴, we denote their device by
dev𝐴 which communicates with other devices over BLE. Since BLE
communication is not fully reliable, message delivery is not always
guaranteed in practice.

Decentralized Protocols. As stated before, decentralized protocols
use the server as a database or bulletin board. We denote this server
by db and assume that it is solely used in a database manner. That
is, devices can push data to db and query it for new data. We
emphasize that db cannot generate key material or run any other
general-purpose computation.

Adversarial Models. We assume that the BLE communication
between honest devices cannot be blocked as the adversary could
trivially violate correctness otherwise. The adversary can passively
listen and also inject additional messages.

Additionally, we need to specify how the adversary can access
its own devices and the devices of users it is given explicit access
to. We distinguish between three different models.
Black-box access assumes that the adversary has the same access

to devices as normal users. So they can interact with the
protocol following its specification (i.e., whatever the phone
and ACT app allow) and change the user-facing settings of
the device. In particular, the adversary can set the local time
of the device.7

White-box access give the adversary full access to the device. In
particular, they can read and modify the entire memory. This
allows accessing information or participating in the protocol
in a way that honest users are not able to.

Gray-box access lies in-between black and white-box access. In
this paper, we define it like black-box access with the only
addition being that the adversary can fix the randomness
used by the device and the ACT app. We will motivate this
unconventional model towards the end of the paper in Sec-
tion 5.2.

Contacts. The definition of contacts is central to ACT. It needs
to be broad enough to capture all possible protocols. Cicala et
al. [14] informally analyze how various protocols report positive
test results. They define three types of protocols where the uploaded
data depends on sent messages, received messages, or on sent and

7Iovino et al. [19] consider “time-travel” attacks where they even manage to set the
time of victims remotely without interaction.

640

https://www.pepp-pt.org/

Deniability in Automated Contact Tracing Proceedings on Privacy Enhancing Technologies 2024(4)

received messages. This roughly equals our following, slightly more
formal definition.

Definition 1 (Contact). Consider a protocol interaction between
two devices dev𝐴 and dev𝐵 where dev𝐴 sends the initial message.
This interaction results in a contact if the joint state of the devices
after the interaction is such that at least one of the following holds:

(1) If 𝐴 reports sick, then 𝐵 will be alerted (𝐴𝐵-contact); or
(2) If 𝐵 reports sick, then 𝐴 will be alerted (𝐵𝐴-contact).

Note that DP3T, Challenge-Response, and Delayed Authenti-
cation have 𝐴𝐵-contacts while NTK and CleverParrot have 𝐵𝐴-
contacts. DH-based protocols have 𝐴𝐵 and 𝐵𝐴-contacts because it
does not matter who uploads the shared key.

Message Flow. A special class of protocols are unidirectional pro-
tocols such as DP3T, Delayed Authentication, CleverParrot, and
NTK. This is because every interaction leading to a contact has a
distinct sender and receiver where only the sender sends messages
(usually only a single message). In contrast, Challenge-Response
is clearly bidirectional and DH-based protocols as well, albeit for a
subtler reason. Essentially, DH-based protocols require both devices
to send a message whereas the receiver in a unidirectional protocol
does not need to send any message. This leads us to the following
definitions.

Definition 2 (Unidirectional Protocol). If a contact (Definition 1)
between dev𝐴 and dev𝐵 is established while dev𝐵 does not send
any message, a protocol is unidirectional

Definition 3 (Bidirectional Protocol). A protocol is bidirectional if
and only if it is not unidirectional (Definition 2).

At a glance, classifying protocols by message flow does not
seem meaningful. First, however, it is a rough estimate for the
energy efficiency of the protocol. Unidirectional protocols are non-
interactive and thus usually amount to devices broadcasting a single
message. This is energy-efficient in contrast to interactive protocols
which aremore complex. For example, Challenge-Response requires
three messages and constantly keeping track of session state.

Second, unidirectional protocols are more robust than bidirec-
tional ones. In a unidirectional protcol, a contact is established as
soon as dev𝐵 receives dev𝐴’s broadcast. In contrast, bidirectional
protocols (e.g., DH-based protocols) require that both devices re-
ceive broadcasts from the other one. So bidirectional protocols
are not as robust as unidirectional ones against, e.g., BLE message
transmission failures.

3.2 Correctness
Naturally, a protocol should be correct, i.e., whenever two users
meet and one user reports as sick later on, the other user is informed.

Definition 4 (Correctness). A protocol is correct if at least one of
the following holds:

(1) Whenever two devices interact, an 𝐴𝐵-contact is recorded;
or

(2) Whenever two devices interact, a 𝐵𝐴-contact is recorded.

Different Ways to Define Correctness. In principle, one might
come up with a Frankensteinian protocol that alternates between

executing a protocol fulfilling either Item 1 or Item 2 exclusively.
For example, a protocol could flip a coin and execute DP3T or Clev-
erParrot depending on the outcome. Such a protocol is not correct
by Definition 4, but one might reasonably argue that it should be. A
suitable alternative definition capturing Frankensteinian protocols
would be the following:

A protocol is correct if, whenever two devices inter-
act, at least one of the following holds: Either an 𝐴𝐵-
contact or a 𝐵𝐴-contact is recorded.

We chose Definition 4 for two reasons. First, we do not know of
any ACT protocol that is only correct according to the alternative
definition but not according to Definition 4. Second, in any case,
our results could be adapted to work with the alternative definition
at the cost of making our arguments harder to follow and verify.

3.3 Replay Security
Security of ACT protocols is concerned with integrity of contacts.
It ensures that a user is notified of a contact with a diagnosed user
only if they actually met the user. In other words, interacting with
a malicious user cannot cause honest users to register additional,
spurious contacts with other honest users.

There are multiple security properties one could consider (see
e.g., [32, §4], [6, §4], [14, §4.3], and [12, §6.2]). We will focus on a
well-known, baseline security property—replay security. Note that
the following definition is parameterized with respect to time.
Definition 5 (Δ-Replay Security). A protocol is Δ-replay secure if
every malicious user𝑀 wins the Δ-replay security game (Figure 2)
with at most negligible probability.

A M B

∆

Contact?

t
im

e

Figure 2: Replay security game.

In the replay security game (Figure 2), a malicious user𝑀 first
interacts with an honest user 𝐴. Then, after Δ time has passed,𝑀
interacts with another honest user 𝐵. Here,𝑀 might, for example,
re-send messages it previously received from 𝐴. A replay-attack is
successful if𝑀 makes 𝐴 and 𝐵 establish a contact even though the
never interacted with each other.

Interpreting Δ. The Δ parameter offers a parameterized analysis
of replay security. This is important because time in ACT protocols
is usually quite granular in practice. For example, the time 𝑡 in De-
layed Authentication (cf. Equation (3)) might only have a resolution
of 1 second. Strictly speaking, this is not replay-secure because an
adversary might perform a replay attack within, say, 10 seconds.
However, according to Definition 5 it is (1 second)-replay secure.
Ideally, a protocol is Δ-replay secure for some small Δ.

641

Proceedings on Privacy Enhancing Technologies 2024(4) Christoph U. Günther and Krzysztof Pietrzak

Replay Security of Existing Constructions. Challenge-response
and DH-style protocols are interactive, so it is not hard to see that
they are 0-replay-secure. Delayed Authentication and CleverPar-
rot are Δ-replay-secure where Δ depends on assumptions on the
synchrony of devices’ clocks and the latency of BLE broadcasts.
Replay-security of DP3T and NTK additionally depends on how
the key schedule is implemented, i.e., how often fresh keys are
sampled. With the (realistic) parameters stated in Section 2.1, DP3T
is (1 day)-replay secure and NTK (1 hour)-replay secure.

3.4 Deniability
Deniability of the contact time is a privacy property. Privacy prop-
erties ensure that honest users’ behavior cannot be tracked. Besides
deniability, there exist a many desirable privacy properties (see
e.g.,[32, §5],[6, §3],[14, §4.1], and [12, §6.2]) covering the privacy of
certain information (e.g., contact time or social interaction graphs)
in different adversarial models (e.g., privacy for users who report
sick or privacy from a malicious authority).

Intuitive Definition. Consider a malicious user𝑀 that claims to
have interacted with honest user 𝐴 at time 𝑡 . If the protocol is Δ-
contact-time deniable, then𝐴 can plausibly deny meeting𝑀 at time
𝑡 . Instead, 𝐴 can claim to have actually met𝑀 at a different time 𝑡 ′
that is more than Δ time steps away from 𝑡 , i.e, |𝑡 − 𝑡 ′ | > Δ. This
holds even when 𝐴 is forced to hand over their device (denoted by
dev𝐴).

Formal Definition. The intuitive definition as stated is hard to
capture formally. As is common in cryptographic literature, we
define deniability using simulation.

Definition 6 (Δ-Contact-Time Deniability). A protocol is Δ-con-
tact-time deniable if, for every malicious user𝑀 and every judge 𝐽 ,
there exists a simulator 𝑆 such that 𝐽 has negligible advantage in
distinguishing (dev𝐴, view𝑀) from (dev𝐴, view𝑆) as in Figure 3.

A M

t

(devA, viewM)

t
im

e

(a) Claimed contact.

A S

∆

∆

t

(devA, viewS)

t
im

e

(b) Simulated contact.

Figure 3: Deniability games.

In the real execution (Figure 3a),𝑀 only interacts with 𝐴 at time
𝑡 and produces some view view𝑀 . The judge 𝐽 then gets this view
together with the claimed time of contact 𝑡 and black-box access to
dev𝐴 .

Table 1: Properties of the existing constructions. ∼ indicates
a trade-off between replay security and contact-time denia-
bility based on implementation parameter choices.

Protocol Unidirectional Replay-secure Deniable
DP3T ✓ ∼ ∼
Challenge-Resp. × ✓ ✓
Delayed Auth. ✓ ✓ ×
CleverParrot ✓ ✓ ×
NTK ✓ ∼ ∼
DH-based × ✓ ✓

In the simulated execution (Figure 3b), 𝑆 is allowed to interact
with 𝐴 at any time except close to time 𝑡 . That is, 𝑆 does not com-
municate with 𝐴 in the interval (𝑡 − Δ, 𝑡 + Δ) and then outputs a
view view𝑆 . Similarly to before, 𝐽 gets (dev𝐴, view𝑆).

Interpreting Δ. Intuitively, Δ describes how much plausible de-
niability a user has. For example, consider a user who is a suspect
in a break-in [33] and BLE messages have been recorded at the
time of the break-in. If Δ equals a week, then the user can plausibly
convince a judge that their encounter has nothing to do with the
break-in. However, if Δ is 5 minutes, then a similar argument would
fall flat. So protocols should strive to be Δ-contact-time deniable
for large Δ.

Note that Δ larger than one to two weeks is not achievable in
practice. This is because the concrete implementation of an ACT
protocol usually only considers contacts that occurred within an
epidemiologically relevant timespan (e.g., for Covid-19 this was
oughly two weeks). So any evidence of contact reveals that the
contact happened within that timespan.

Deniability of Existing Constructions. Bidirectional protocols like
Challenge-Response and DH-based protocols are contact-time de-
niable. DP3T and NTK are Δ-deniable with Δ < 1 day and 1 hour,
respectively. The timespan is complementary to replay security
(which depends on how the key schedule is implemented). Essen-
tially, the protocols are only deniable in the timespan where replay
attacks are possible.

Intuitively, whatever these protocols transmit is independent of
the time (or at least the precise time like in DP3T or NTK). It follows,
that the interaction could have happened at any time (or only within
the imprecise window). Conversely, the replay-secure protocols
Delayed Authentication and CleverParrot are not deniable.

3.5 Summary of Existing Constructions
We have described which properties the existing constructions from
Section 2.1 fulfill. Table 1 summarizes this and we note that the
table reflects the impossibility result.

4 DECENTRALIZED UNIDIRECTIONAL
PROTOCOLS

Recall that our aim is to prove an impossibility result for decen-
tralized unidirectional protocols. Compared to ACT protocols in
general, this class of protocols has a simple structure. This allows us

642

Deniability in Automated Contact Tracing Proceedings on Privacy Enhancing Technologies 2024(4)

to give precise game-based definitions of the properties described
in the previous section.

4.1 Model and Syntax
We consider decentralized unidirectional protocols (DU protocols)
where all users and adversaries are probabilistic polynomial-time
(PPT) algorithms. We restrict ourselves to modeling time and ignore
other measurements such as location. So a user can either be active
or inactive at a certain time.

Time. Time proceeds in discrete steps starting at 0, i.e., time ∈ N,
and we assume that all honest devices have synchronized clocks
(e.g., using NTP). In the following, 𝑇 ∈ N is some appropriately
large upper bound on the time span that we consider (think of it as,
say, 2 weeks in the case of Covid-19).

In practice, blockchains exist and, amongst other things, offer a
timestamping functionality. We use the following simple syntax to
capture this.

Definition 7 (Timestamping Oracle). A timestamping oracle pro-
vides two functions:

• TS(𝑥, 𝑡) → 𝜏 : On input 𝑥 at time 𝑡 produces a timestamp 𝜏 .
• VerifyTS(𝜏, 𝑥, 𝑡) → 𝑏: Returns a boolean 𝑏 ∈ {⊤,⊥} stating
whether 𝜏 is a timestamp for 𝑥 at time 𝑡 .

The timestamping oracle fulfills correctness and unforgeability
which are defined in the natural manner.

We assume that all (malicious) users have implicit access to
VerifyTS. Looking ahead, queries to TS will be mediated by the
security- and privacy games.

Protocol Syntax. A decentralized unidirectional protocol offers
the following functions to a user 𝐴. Here, we assume that the
protocol consists of a single unidirectional message without loss of
generality.

• Register() → dev𝐴: Registers𝐴 and returns an initial device
state dev𝐴 .

• Broadcast(dev𝐴, 𝑡) →𝑚: Broadcasts 𝐴’s message𝑚 at time
𝑡 .

• Receive(dev𝐴, 𝑡,𝒎): Receives all messages𝒎 sent at time 𝑡 .8
• Reportdb (dev𝐴): Reports 𝐴 a positive test by uploading data
to db.

• Checkdb (dev𝐴) → 𝑛: Queries db for new data and returns
the number of contacts 𝑛 ∈ N.

Note that some functions expose the time 𝑡 as a parameter. As
mentioned, honest users have synchronized clocks and always set
𝑡 correctly. However, 𝑡 can easily be set incorrectly by modifying
the phones settings. Therefore, we consider this black-box access,
so malicious users may set 𝑡 arbitrarily.

4.2 Correctness
We formalize Definition 4 using a game in which the adversary𝑀

schedules two honest users 𝐴 and 𝐵.

Definition 8 (DU Correctness). A DU protocol is correct if at least
one of the following holds:

8Vectors are denoted by boldface, e.g.,𝒎.

(1) For every PPT algorithm 𝑀 , Pr[Correct(𝐴, 𝐵) → ⊤] = 1
(𝐴𝐵-correct); or

(2) For every PPT algorithm 𝑀 , Pr[Correct(𝐵,𝐴) → ⊤] = 1
(𝐵𝐴-correct).

Here, Correct(𝐴, 𝐵) is as in Figure 4 and the probability is taken
over the randomness of𝑀 , 𝐴, and 𝐵. Correct(𝐵,𝐴) is defined anal-
ogously, with dev𝐴 and dev𝐵 swapped in Lines 7 to 8.

Correct(𝐴, 𝐵):

01 Register() → dev𝐴 and Register() → dev𝐵
02 𝑀 → 𝒂, 𝒃 ∈ {⊤,⊥}𝑇
03 For 𝑖 = 0, . . . ,𝑇 :
04 If 𝑎𝑖 = ⊤ and 𝑏𝑖 = ⊤:
05 Broadcast(dev𝐴, 𝑖) →𝑚𝐴

06 Receive(dev𝐵, 𝑖, (𝑚𝐴))
07 Reportdb (dev𝐴)
08 Output⊤ if and only if Checkdb (dev𝐵) = |{𝑖 : 𝑎𝑖 = 𝑏𝑖 = ⊤}|

Figure 4: DU protocol correctness game.

In Figure 4,𝑀 schedules two honest users 𝐴 and 𝐵 (Line 2), but
cannot interact with them in any other way. Then, in the timespan
0 to 𝑇 , 𝐴 only broadcasts and 𝐵 only receives (Lines 3 to 6), so the
number of registered contacts is known. Last, depending on Items 1
to 2, 𝐵 (resp. 𝐴) reports sick (Line 7), and the game checks whether
𝐴 (resp. 𝐵) is notified of the actual number of interactions (Line 8).

4.3 Replay Security
We translate Figure 2 to a game. Similar to the correctness definition
(cf. Definition 4), the game is parameterized to account for 𝐴𝐵 and
𝐵𝐴-correct protocols.

Definition 9 (DU Δ-Replay Security). Let Δ ∈ N. A DU protocol is
replay-secure if, for every PPT algorithm𝑀 , the Δ-replay security
game (Figure 5) outputs ⊤ (i.e., replay-secure) except for negligible
probability.9 That is,

Pr
[
ReplayΔ (𝐴, 𝐵) → ⊤

]
≥ 1 − negl

and
Pr

[
ReplayΔ (𝐵,𝐴) → ⊤

]
≥ 1 − negl

whereReplay(𝐴, 𝐵) is as in Figure 5 and the probability is taken over
the randomness of𝑀 ,𝐴, and 𝐵. Replay(𝐵,𝐴) is defined analogously
with dev𝐴 and dev𝐵 swapped in Lines 15 to 17.

In Figure 5, 𝑀 picks a time 𝑡 to perform a replay attack at and
schedules the two honest users (Lines 2 to 3). Then, 𝑀 interacts
with 𝐴 in the timespan 0 to 𝑡 − Δ − 1 (Lines 5 to 9). Afterward, it
waits for Δ steps of time before interacting with 𝐵 (Lines 10 to 14).
At the end of the game,𝑀 wins (so the output is ⊥) if and only if it
created spurious contacts (Lines 15 to 17).

We will later use the following claim that directly follows from
the definition.

Claim 1. For any Δ,Δ′ ∈ N with Δ′ > Δ, if a DU protocol is
Δ-replay-secure, then it is also Δ′-replay-secure.
9In the interest of readability, we omit the security parameter and just write negl.

643

Proceedings on Privacy Enhancing Technologies 2024(4) Christoph U. Günther and Krzysztof Pietrzak

ReplayΔ (𝐴, 𝐵):

01 Register() → dev𝐴 and Register() → dev𝐵
02 𝑀 → 𝑡 ∈ N with Δ < 𝑡 ≤ 𝑇

03 𝑀 → 𝒂, 𝒃 ∈ {⊤,⊥}𝑇
04 For 𝑖 B 0, . . . ,𝑇 :
05 If 𝑖 < 𝑡 − Δ and 𝑎𝑖 = ⊤:
06 Broadcast(dev𝐴, 𝑖) →𝑚𝐴

07 𝑚𝐴 → 𝑀

08 𝑀 → 𝒎𝑀

09 Receive(dev𝐴, 𝑖,𝒎𝑀)
10 If 𝑖 ≥ 𝑡 and 𝑏𝑖 = ⊤:
11 Broadcast(dev𝐵, 𝑖) →𝑚𝐵

12 𝑚𝐵 → 𝑀

13 𝑀 → 𝒎𝑀

14 Receive(dev𝐵, 𝑖,𝒎𝑀)
15 Checkdb (dev𝐴) → 𝑛

16 Reportdb (dev𝐵)
17 Output ⊤ if and only if Checkdb (dev𝐴) ≤ 𝑛

Figure 5: DU protocol Δ-replay security game.

4.4 Deniability
We cast the claimed and simulated interaction depicted in Figure 3 as
games. Note that we explicitly model the access to the timestamping
oracle TS, and that this access is mediated by the game.

Definition 10 (Δ-Contact-Time Deniability). Let Δ ∈ N. A DU
protocol is Δ-contact-time deniable if, for every PPT algorithm𝑀

and every PPT algorithm 𝐽 , there exists a PPT algorithm 𝑆 such
that ���Pr[𝐽 (DenyRealΔ

)]
− Pr

[
𝐽

(
DenySimΔ

)] ��� ≤ negl

whereDenyReal andDenySim are as in Figure 6 and the probabilities
are taken over the randomness of𝑀 , 𝑆 , and 𝐴.

Initially,𝑀 (Figure 6a) and 𝑆 (Figure 6b) output 𝑡 and schedule 𝐴
(Lines 2 to 3). Then, both𝑀 and 𝑆 interact with 𝐴 but at different
times.𝑀 interacts with 𝐴 exactly at time 𝑡 and 𝑆 in the time spans
0 to 𝑡 − Δ − 1 and 𝑡 + Δ + 1 to 𝑇 (Lines 5 to 9). At every step in
time, both𝑀 and 𝑆 may perform some computation and query TS
(Line 10), no matter whether they interacted with 𝐴 or not. In the
end, both output a view (Line 11). The judge 𝐽 receives the output
of the game, i.e., the view together with 𝐴’s device (Line 12). We
emphasize that 𝐽 only has black-box access to dev𝐴 .

5 IMPOSSIBILITY RESULTS
Equipped with the DU protocol definitions, we can now state the
impossibility results.Wewill first state the impossibility result in the
black-box model which only applies to decentralized, unidirectional
protocols. Then, we generalize to all decentralized protocols by
working in the gray-box model.

DenyRealΔ :

01 Register() → dev𝐴
02 𝑀 → 𝑡 ∈ N with Δ < 𝑡 ≤ 𝑇

03 𝑀 → 𝒂 ∈ {⊤,⊥}𝑇
04 For 𝑖 B 0, . . . ,𝑇 :
05 If 𝑖 = 𝑡 and 𝑎𝑖 = ⊤:
06 Broadcast(dev𝐴, 𝑖) →𝑚𝐴

07 𝑚𝐴 → 𝑀

08 𝑀 → 𝒎𝑀

09 Receive(dev𝐴, 𝑖,𝒎𝑀)
10 𝑀TS(·,𝑖)

11 𝑀 → view𝑀

12 Output (view𝑀 , dev𝐴)

(a) Claimed contact.

DenySimΔ :

01 Register() → dev𝐴
02 𝑆 → 𝑡 ∈ N
03 𝑆 → 𝒂 ∈ {⊤,⊥}𝑇
04 For 𝑖 B 0, . . . ,𝑇 :
05 If 𝑖 < 𝑡 − Δ or 𝑡 + Δ < 𝑖 and if 𝑎𝑖 = ⊤:
06 Broadcast(dev𝐴, 𝑖) →𝑚𝐴

07 𝑚𝐴 → 𝑆

08 𝑆 → 𝒎𝑆

09 Receive(dev𝐴, 𝑖,𝒎𝑆)
10 𝑆TS(·,𝑖)

11 𝑆 → view𝑆

12 Output (view𝑆 , dev𝐴)

(b) Simulated contact.

Figure 6: DU protocol Δ-contact-time deniability games.

5.1 Black-box Model
Theorem 1. If a timestamping oracle exists, a decentralized uni-
directional automated contact-tracing protocol cannot be correct, Δ-
contact-time deniable, and Δ′-replay-secure for any Δ,Δ′ ∈ N with
Δ ≥ Δ′ in the black-box model.

Proof. Assume that the DU protocol is Δ-contact-time deniable
and correct. Since it is correct, it must either be an𝐴𝐵-correct or 𝐵𝐴-
correct protocol. In the following, we will only consider𝐴𝐵-correct
protocols as the proof for the other case is symmetrical.

Wewill construct an adversary𝑀 ′winning theΔ-replay-security
game with non-negligible probability. To this end, consider the Δ-
contact-time deniability game with𝑀𝑡 and 𝐽𝑡 (𝑡 to be set later) as
defined in Figure 7.

𝑀𝑡 schedules 𝐴 to be online at time 𝑡 , waits for 𝐴’s message𝑚𝐴 ,
timestamps it, and outputs𝑚𝐴 together with the timestamp 𝜏 as
its view. The judge 𝐽𝑡 verifies𝑚𝐴’s timestamp, registers an honest
user 𝐵, and simulates 𝐵 receiving𝑚𝐴 . Then, because we assume an
𝐴𝐵-correct protocol, 𝐽𝑡 checks that𝑚𝐴 caused an additional contact

644

Deniability in Automated Contact Tracing Proceedings on Privacy Enhancing Technologies 2024(4)

𝑀𝑡 :

02 Output 𝑡
03 Output 𝒂 B (⊥,⊥, . . .)𝑇 except for 𝑎𝑡 B ⊤

// Wait until iteration 𝑖 = 𝑡 in Figure 6a
// . . .
// Iteration 𝑖 = 𝑡 :

07 Store𝑚𝐴

08 Output𝑚𝑀 B ()
10 Query𝑚𝐴 to TS receiving 𝜏 B TS(𝑚𝐴, 𝑡)
11 Output view𝑀 B (𝑚𝐴, 𝑡, 𝜏)

(a)𝑀𝑡 . Note that the line numbers correspond to Figure 6a.

𝐽𝑡 ((𝑚𝐴, 𝑡
′, 𝜏), dev𝐴):

01 If 𝑡 ≠ 𝑡 ′, output ⊥
02 If VerifyTS(𝑚𝐴, 𝑡, 𝜏) = ⊥, output ⊥
03 Register() → dev𝐵
04 Receive(dev𝐵, 𝑡,𝑚𝐴)
05 Checkdb (dev𝐵) → 𝑛

06 Reportdb (dev𝐴)
07 If Checkdb (dev𝐵) > 𝑛, output ⊤ (real) and ⊥ (simulated)

otherwise

(b) Judge 𝐽𝑡 .

Figure 7:𝑀𝑡 and 𝐽𝑡 in the proof of Theorem 1.

by forcing 𝐴 to report sick and checking whether 𝐵 registered an
additional contact10.

Since the protocol is assumed to be deniable, for every𝑀𝑡 with
Δ < 𝑡 ≤ 𝑇 , there exists a simulator 𝑆𝑡 outputting a view𝑆𝑡 such that
𝐽𝑡 cannot distinguish between (view𝑀 , dev𝐴) and (view𝑆𝑡 , dev𝐴)
except with negligible probability. We now use 𝑆𝑡 to construct𝑀 ′

breaking Δ-replay-security.
(1) 𝑀 ′ picks 𝑡 such that Δ < 𝑡 ≤ 𝑇 .
(2) 𝑀 ′ starts 𝑆𝑡 and waits until 𝑆𝑡 outputs 𝑡 ′ and 𝒂. If 𝑡 ′ ≠ 𝑡 ,𝑀 ′

aborts.
(3) 𝑀 ′ modifies 𝒂 so that 𝑎𝑡 B ⊤, and then starts the Δ-replay-

security game by outputting 𝑡 and 𝒂.
(4) For the time steps 0 ≤ 𝑖 < 𝑡 − Δ, 𝑀 ′ proxies messages and

TS(·, 𝑖) queries back-and-forth between the replay-security
game and 𝑆𝑡 .

(5) For 𝑡 − Δ ≤ 𝑖 < 𝑡 ,𝑀 ′ only proxies TS(·, 𝑖) queries.
(6) When 𝑖 = 𝑡 ,𝑀 ′ waits for the query TS(𝑚𝐴, 𝑡).
(7) Finally, while 𝑖 = 𝑡 still, 𝑀 ′ interacts with 𝐵 in the replay-

security game by outputting the message 𝒎𝑀 = (𝑚𝐴).
𝑀 ′ breaks Δ-replay-security with non-negligible probability as it
only fails when 𝐽𝑡 distinguishes the output of 𝑆𝑡 from the output of
𝑀𝑡 or when 𝑆𝑡 forges a timestamp.

Assuming that 𝐽𝑡 cannot distinguish, by the checks performed
by 𝐽𝑡 (Lines 1 to 2, Figure 7b), 𝑆𝑡 must output 𝑡 ′ = 𝑡 and view𝑆

must be a valid timestamp. Additionally assuming that 𝑆𝑡 does not
forge this timestamp, it must query TS(𝑚𝐴, 𝑡). As a consequence,
10For a 𝐵𝐴-correct protocol, 𝐽𝑡 would report 𝐵 as sick and check whether𝐴 registered
an additional contact.

𝑀 ′ does not abort in Item 2, simulates the interaction with 𝐴 and
TS correctly during Items 4 to 6, and extracts𝑚𝐴 from the query
TS(𝑚𝐴, 𝑡) in Item 6. Since the final checks performed by 𝐽𝑡 (Lines 5
to 7, Figure 7b) are equal to the ones at the end of the replay-security
game Replay(𝐴, 𝐵) (Lines 15 to 17, Figure 5) and the protocol is
correct by assumption,𝑀 ′ wins the Δ-replay-security game. So the
protocol is not Δ-replay-secure and, by applying the contrapositive
of Claim 1, also notΔ′-replay-secure for anyΔ′ < Δ. This completes
the proof. □

We note that the proof assumes that 𝐴 did not report as sick.
In practice, if 𝐴 had already reported as sick, a slightly modified
version of 𝐽𝑡 can simply skip forcing𝐴 to report and check whether
any contacts are reported.

5.2 Gray-box Model
Theorem 1 only applies to unidirectional protocols. To extend the
impossibility result to other forms of decentralized protocols (i.e.,
bidirectional or even interactive), we need to use a stronger model.
One idea would be to use the white-box model which assumes a
strong adversary with a lot of capabilities. Ideally, however, we use
a model that makes the adversary just strong enough to yield an
impossibility result. This makes the statement of the result stronger
and helps us better understand why the impossibility occurs. These
considerations lead us to the gray-box model that is situated be-
tween the black and white-box model.

Recall that the gray-box model allows the adversary to set the
randomness when using their devices. Essentially, this means that
the functions defined in Section 4.1 additionally take the random-
ness as a parameter. For example, Broadcast(dev𝐴, 𝑡 ; 𝜌) where 𝜌
is the randomness to be used. Honest users set 𝜌 to the output of
the device’s random number generator, but a malicious user might
input anything (e.g., all 0s).

In the following proof, the malicious user 𝑀 will set the ran-
domness to the one produced by a randomness beacon [26]. A
randomness beacon produces randomness for some time 𝑡 such
that it is publicly verifiable that this randomness could not have
been known before time 𝑡 . In practice, a blockchain is not only a
timestamping oracle but also acts as randomness beacon [9].

Theorem 2. If a timestamping oracle and a randomness beacon
exist, a decentralized automated contact-tracing protocol (even an
interactive one) cannot be correct, Δ-contact-time deniable, and Δ′-
replay-secure for any Δ,Δ′ ∈ N with Δ ≥ Δ′ in the gray-box model.

Proof (Sketch). The proof is similar to the one of Theorem 1.
At time 𝑡 , 𝑀 registers a device 𝐵 using Register and interacts

with𝐴; for this, it uses the randomness 𝜌 output by the randomness
beacon at time 𝑡 . Then, as before, it timestamps any message it
receives from 𝐴 before passing it on to 𝐵. view𝑀 contains times-
tamped messages as well as the randomness used by 𝐵.

Again, as before, the judge 𝐽 verifies the timestamps which gives
a sharp upper bound on the time of the interaction. Then, it verifies
that the randomness 𝜌 was produced by the beacon at time 𝑡 which
gives a matching lower bound. By setting the time and random-
ness in the gray-box model, 𝐽 can faithfully replay the interaction
between 𝐴 and 𝐵. Finally, 𝐽 checks whether reporting 𝐴 causes a
notification for 𝐵.

645

Proceedings on Privacy Enhancing Technologies 2024(4) Christoph U. Günther and Krzysztof Pietrzak

Correctness and replay security of the protocol imply that Δ is
the time between receiving 𝜌 and the timestamp of𝑚𝐴 . □

6 DISCUSSION
The two impossibility results show that contact-time deniability
cannot be achieved for a large class of protocols. The important
question, however, is the impact on practical deployments of ACT
protocols. Below we discuss some possibilities to overcome our
no-go results.

6.1 Centralized and Hybrid Protocols
Both impossibility results only hold for decentralized protocols.
Clearly, one might consider whether centralized and hybrid alter-
natives would be better. To this end, let us see why the proof only
covers decentralized protocols.

In short, the design space of centralized/hybrid protocol is too
large and intractable since the server can perform arbitrary compu-
tation and communication. For example, the ACT protocol could
force the app to use a time mandated by the central server instead of
the phone’s settings. This violates the assumption in the proof that
the judge can set the time arbitrarily. In practice, this specific coun-
termeasure is probably too brittle (what happens if the phone, e.g.,
loses data connectivity?) and would negatively impact correctness.

In general, we believe that most natural centralized/hybrid proto-
col designs are still somewhat captured by our impossibility results.
Furthermore, centralized systems only ensure sufficient privacy if
one trusts the institutions running the servers [33]. If this is the
case, we assume that deniability is less of an issue overall. Though
this depends on the context and the precise nature of trust (e.g.,
device manufactures, federal government, etc.).

6.2 Diffie-Hellman-based Protocols
The DH-based protocols are not captured by Theorem 1 because
they are bidirectional. In contrast to other bidirectional proto-
cols (e.g., Challenge-Response), DH-based approach are still non-
interactive. This makes them an attractive solution, however, they
are not deniable in the gray-box model by Theorem 2. So, does the
gray-box model capture realistic attacks?

Practicability of the Gray-box Model. The gray-box model re-
quires control over the randomness used by the protocol. Compared
to setting the time on a phone, setting the randomness is harder.
On Apple’s iOS, this seems particularly hard due to the locked-
down nature of the platform. On Android, it might be possible but
would require non-trivial modifications to the operating system.
In practice, the easiest solution is probably re-implementing the
protocol on open platforms such that time and randomness can be
controlled.

One way to make the gray-box attacks impossible is utilizing the
trusted platform modules and attestation techniques available on
modern day smartphones. Then the ACT app can be reasonably sure
that it is using properly generated randomness as re-implementing
the protocol would be very challenging. This mitigation has already
been suggested by Vaudenay [32] with respect to other attacks
against privacy properties.

To summarize, gray-box attacks require more technical sophisti-
cation and premeditation than black-box attacks. So the black-box
model is more relevant in practice.

Efficiency of Diffie-Hellman-based Protocols. Assuming that we
are happy with black-box deniability, let us consider how efficient
DH-based protocols are.

An important metric for users is battery life. Early on, BLE broad-
casts were limited to 128 bits—too short for meaningful security for
DH-based protocols. Nevertheless, Pronto-C2 [6] came up with a
clever solution to the problem using a bulletin board. Luckily, this
is not a problem anymore since newer smartphones support larger
BLE broadcasts [34] that can easily fit group elements. Furthermore,
sampling new public keys and computing the shared keys can be
delayed until the phone is charging [21]. In summary, the DH-based
protocols can be reasonably energy efficient.

Another metric is data usage which is important since many
people have limited data plans. Protocols like DP3T use very little
data because they only up/download keys. The keys constitute very
concise descriptions of all messages sent by diagnosed users. In
contrast, DH-based protocols up/download what essentially con-
stitutes shared identifiers in the form of shared DH-keys, one for
each contact. Since these depend on the randomness of two users,
there is no hope of compressing them.

Decentralized DH-based protocols quickly become too expensive
as they require users to download all newly reported shared keys.
For example, if we conservatively assume 5 000 daily reports cover-
ing 14 days with 15 shared keys per report on average (prior work
assumes 20 [21], 100 [11], or 200 [16]), then a user has to download
roughly 1 million shared keys per day. The keys may be hashed
to 128 bits to save space, but this still amounts to 16 MB daily and
0.5 GB monthly. Note that all these values are quite conservative
estimates and the amount of data could be considerably larger in
practice. So if this traffic is not zero-rated (i.e., free for users), users
might be reluctant to install the ACT app.

In contrast, centralized DH-based protocols are more predictable
because every user only needs to upload their own shared keys
every day, using the numbers from above that would be just 15.
In principle, DoS attacks are possible by artificially causing the
victim’s device to register a lot of contacts, i.e., shared keys. To
summarize, data usage is an issue for DH-based protocols because
it is not predictable.

6.3 Relaxing Correctness Requirements
The impossibility results assume perfect correctness. There have
been proposals (e.g., DP3T Unlinkable [31]) that use a probabilistic
reporting/checking process which will cause incorrect notifications
(including false positives) to improve privacy. Adding noise reduces
correctness, but increases privacy. In particular, it gives some deni-
ability (which was not an explicit design goal of those proposals)
as nothing definite can be deduced from observed behaviour.

We believe that adding noise is problematic. Intuitively, if the
noise is large enough tomatter in terms of privacy, then the protocol
is too unreliable. Studies found that reliability of ACT protocols is
important to prospective users [7], so this is not a good solution.

646

Deniability in Automated Contact Tracing Proceedings on Privacy Enhancing Technologies 2024(4)

6.4 Fine-grained User Control
Instead of aiming for full contact-time deniability, it is also possible
to offer users a choice in how much deniability they want. We
discuss three solutions.

Partial Redactions. Hashomer [25] allows users to partially redact
stored contacts. This is useful in cases such as Example 1 and might
give users enough deniability in practice. Hashomer also allows
users to exclude time-spans when reporting as sick, this is a nice
privacy feature, but does not give any additional deniability.

For example, when considering DP3T as in Section 2, deleting a
daily key SK𝑑 redacts day 𝑑 .11 To achieve a finer granularity while
still being reasonably efficient, a tree-style key-derivation may be
used [25].

Mixed Protocols. The ACT app could run two protocols in par-
allel, e.g., a replay-insecure implementation of DP3T and Delayed
Authentication. Users select whether they value replay-security (De-
layed Authentication) or contact-time deniability (replay-insecure
DP3T) more. Devices then only send one type of message (i.e., ei-
ther Delayed Authentication or DP3T) while still receiving and
processing both message types.

To increase security, the implementation could ensure that both
types of messages are indistinguishable, i.e., making the message
payloads of DP3T and Delayed Authentication look identical. So
only when the sender reports as sick can receivers notice whether
the sender used DP3T or Delayed Authentication.

By using Delayed Authentication as default setting, and only
having a small subset of users who require strong privacy opting
for DP3T, the protocol would remain mostly replay secure.

Passive Users. A recent work by Abtahi et al. [1] offers another
protocol that gives users more control over their privacy. In short,
their ACT protocol allows users to be either active or passive. Active
users send and receive messages while passive users only receive
messages. This ensures a high degree of privacy for passive users.

7 CONCLUSION AND FUTUREWORK
Our work shows that it is impossible for a decentralized ACT pro-
tocol to be correct, replay-secure and offer deniability with respect
to contact time. The impossibility result holds for unidirectional
protocols in the black-box model but can be extended to all decen-
tralized protocols in a slightly stronger model. While these results
are of theoretical nature, they also have practical implications.

First, the impossibility results explain some of the trade-offs
taken by early ACT protocols designed at the height of the Covid-
19 pandemic. Remarkably, existing proposals cover all sensible
combinations (cf. Table 1)

Second, understanding why something is impossible in a theo-
retical, idealized model aids in finding practical circumventions. We
have discussed several possibilities in Section 6 (e.g., allowing users
to redact stored contacts) and hope to see more creative solutions
that increase the privacy of users.

Lastly, ourwork is the first step in gaining a theoretically-founded
understanding of the ACT protocol design space (but we are still far

11Instead of deleting the key, overwriting it with a random string makes the redaction
undetectable—even against white-box adversaries.

from fully understanding it). In the future, combining this with user
studies (e.g., [7]) hopefully allows protocol designers to pinpoint
which combination of properties (efficiency, security, and privacy)
is most desired by users and practically realizable. Ideally, this leads
to a protocol implementation with high rates of adoption.

ACKNOWLEDGMENTS
We thank Raluca-Georgia Diugan for her initial contributions and
support afterward.

This research was funded in whole or in part by the Austrian
Science Fund (FWF) 10.55776/F85.

REFERENCES
[1] Azra Abtahi, Mathias Payer, and Amir Aminifar. 2024. DP-ACT: Decentralized

Privacy-Preserving Asymmetric Digital Contact Tracing. , 330–342 pages. https:
//doi.org/10.56553/popets-2024-0019

[2] Nadeem Ahmed, Regio A. Michelin, Wanli Xue, Sushmita Ruj, Robert Malaney,
Salil S. Kanhere, Aruna Seneviratne, Wen Hu, Helge Janicke, and Sanjay K. Jha.
2020. A Survey of COVID-19 Contact Tracing Apps. IEEE Access 8 (2020),
134577–134601. https://doi.org/10.1109/ACCESS.2020.3010226

[3] Fraunhofer AISEC. 2020. Pandemic Contact Tracing Apps: DP-3T, PEPP-PT NTK,
and ROBERT from a Privacy Perspective. Cryptology ePrint Archive, Paper
2020/489. https://eprint.iacr.org/2020/489

[4] Apple and Google. 2020. Exposure Notification. https://www.google.com/
covid19/exposurenotifications/

[5] Benedikt Auerbach, Suvradip Chakraborty, Karen Klein, Guillermo Pascual-Perez,
Krzysztof Pietrzak, Michael Walter, and Michelle Yeo. 2021. Inverse-Sybil Attacks
in Automated Contact Tracing. In CT-RSA 2021 (LNCS, Vol. 12704), Kenneth G.
Paterson (Ed.). Springer, Heidelberg, 399–421. https://doi.org/10.1007/978-3-030-
75539-3_17

[6] Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti. 2021.
Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully
Decentralized Automatic Contact Tracing System. https://doi.org/10.14722/
coronadef.2021.23013

[7] Oshrat Ayalon, Dana Turjeman, and Elissa M. Redmiles. 2023. Exploring privacy
and incentives considerations in adoption of COVID-19 contact tracing apps. In
Proceedings of the 32nd USENIX Conference on Security Symposium (Anaheim, CA,
USA) (SEC ’23). USENIX Association, USA, Article 30, 18 pages.

[8] Wasilij Beskorovajnov, Felix Dörre, Gunnar Hartung, Alexander Koch, Jörn
Müller-Quade, and Thorsten Strufe. 2021. ConTra Corona: Contact Tracing
against the Coronavirus by Bridging the Centralized-Decentralized Divide for
Stronger Privacy. In ASIACRYPT 2021, Part II (LNCS, Vol. 13091), Mehdi Tibouchi
and Huaxiong Wang (Eds.). Springer, Heidelberg, 665–695. https://doi.org/10.
1007/978-3-030-92075-3_23

[9] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a
public randomness source. Cryptology ePrint Archive, Report 2015/1015. https:
//eprint.iacr.org/2015/1015.

[10] Xavier Bonnetain, Anne Canteaut, Véronique Cortier, Pierrick Gaudry, Lucca
Hirschi, Steve Kremer, Stéphanie Lacour, Matthieu Lequesne, Gaëtan Leurent,
Léo Perrin, et al. 2021. Le traçage anonyme, dangereux oxymore. Le droit face au
coronavirus (2021), 468–480. English translation: https://risques-tracage.fr/docs/
tracing-risks.pdf.

[11] Antoine Boutet, Claude Castelluccia, Mathieu Cunche, Cédric Lauradou, Vincent
Roca, Adrien Baud, and Pierre-Guillaume Raverdy. 2022. Desire: Leveraging the
Best of Centralized and Decentralized Contact Tracing Systems. Digital Threats
3, 3, Article 28 (March 2022), 20 pages. https://doi.org/10.1145/3480467

[12] Ran Canetti, Yael Tauman Kalai, Anna Lysyanskaya, Ronald L. Rivest, Adi Shamir,
Emily Shen, Ari Trachtenberg, Mayank Varia, and Daniel J. Weitzner. 2020.
Privacy-Preserving Automated Exposure Notification. Cryptology ePrint Archive,
Report 2020/863. https://eprint.iacr.org/2020/863.

[13] Claude Castelluccia, Nataliia Bielova, Antoine Boutet, Mathieu Cunche, Cédric
Lauradoux, Daniel Le Métayer, and Vincent Roca. 2020. ROBERT: ROBust and
privacy-presERving proximity Tracing. (May 2020). https://inria.hal.science/hal-
02611265

[14] Fabrizio Cicala, Weicheng Wang, Tianhao Wang, Ninghui Li, Elisa Bertino, Fam-
ing Liang, and Yang Yang. 2021. PURE: A Framework for Analyzing Proximity-
based Contact Tracing Protocols. ACM Comput. Surv. 55, 1, Article 3 (Nov. 2021),
36 pages. https://doi.org/10.1145/3485131

[15] Noel Danz, Oliver Derwisch, Anja Lehmann, Wenzel Puenter, Marvin Stolle,
and Joshua Ziemann. 2020. Provable Security Analysis of Decentralized Crypto-
graphic Contact Tracing. Cryptology ePrint Archive, Paper 2020/1309. https:
//eprint.iacr.org/2020/1309

647

https://doi.org/10.56553/popets-2024-0019
https://doi.org/10.56553/popets-2024-0019
https://doi.org/10.1109/ACCESS.2020.3010226
https://eprint.iacr.org/2020/489
https://www.google.com/covid19/exposurenotifications/
https://www.google.com/covid19/exposurenotifications/
https://doi.org/10.1007/978-3-030-75539-3_17
https://doi.org/10.1007/978-3-030-75539-3_17
https://doi.org/10.14722/coronadef.2021.23013
https://doi.org/10.14722/coronadef.2021.23013
https://doi.org/10.1007/978-3-030-92075-3_23
https://doi.org/10.1007/978-3-030-92075-3_23
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://risques-tracage.fr/docs/tracing-risks.pdf
https://risques-tracage.fr/docs/tracing-risks.pdf
https://doi.org/10.1145/3480467
https://eprint.iacr.org/2020/863
https://inria.hal.science/hal-02611265
https://inria.hal.science/hal-02611265
https://doi.org/10.1145/3485131
https://eprint.iacr.org/2020/1309
https://eprint.iacr.org/2020/1309

Proceedings on Privacy Enhancing Technologies 2024(4) Christoph U. Günther and Krzysztof Pietrzak

[16] Giuseppe Garofalo, Tim Van hamme, Davy Preuveneers, Wouter Joosen, Aysajan
Abidin, and Mustafa A. Mustafa. 2022. PIVOT: Private and Effective Contact
Tracing. IEEE Internet of Things Journal 9, 22 (2022), 22466–22489. https:
//doi.org/10.1109/JIOT.2021.3138694

[17] Scott Griffy and Anna Lysyanskaya. 2023. PACIFIC: Privacy-preserving auto-
mated contact tracing scheme featuring integrity against cloning. Cryptology
ePrint Archive, Report 2023/371. https://eprint.iacr.org/2023/371.

[18] Yaron Gvili. 2020. Security Analysis of the COVID-19 Contact Tracing Specifica-
tions by Apple Inc. and Google Inc. Cryptology ePrint Archive, Paper 2020/428.
https://eprint.iacr.org/2020/428

[19] Vincenzo Iovino, Serge Vaudenay, and Martin Vuagnoux. 2021. On the Effective-
ness of Time Travel to Inject COVID-19 Alerts. In Topics in Cryptology – CT-RSA
2021, Kenneth G. Paterson (Ed.). Springer International Publishing, Cham, 422–
443.

[20] Kevin Morio, Ilkan Esiyok, Dennis Jackson, and Robert Künnemann. 2023. Auto-
mated Security Analysis of Exposure Notification Systems. In 32nd USENIX Secu-
rity Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 6593–
6610. https://www.usenix.org/conference/usenixsecurity23/presentation/morio

[21] Thien Duc Nguyen, Markus Miettinen, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Ivan Visconti. 2022. Digital Contact Tracing Solutions: Promises,
Pitfalls and Challenges. IEEE Transactions on Emerging Topics in Computing
(2022), 1–12. https://doi.org/10.1109/TETC.2022.3216473

[22] Sangchul Park, Gina J. Choi, and Haksoo Ko. 2021. Privacy in the Time of COVID-
19: Divergent Paths for Contact Tracing and Route-Disclosure Mechanisms in
South Korea. IEEE Security & Privacy 19, 3 (2021), 51–56. https://doi.org/10.1109/
MSEC.2021.3066024

[23] PePP-PT. 2020. Data Protection and Information Security Architecture.
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-
protection/PEPP-PT-data-protection-information-security-architecture-
Germany.pdf

[24] Krzysztof Pietrzak. 2020. Delayed Authentication: Preventing Replay and Relay
Attacks in Private Contact Tracing. In INDOCRYPT 2020 (LNCS, Vol. 12578),
Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran (Eds.).
Springer, Heidelberg, 3–15. https://doi.org/10.1007/978-3-030-65277-7_1

[25] Benny Pinkas and Eyal Ronen. 2021. Hashomer – Privacy-Preserving Bluetooth
Based Contact Tracing Scheme for Hamagen. In CoronaDef Workshop 2021. https:
//doi.org/10.14722/coronadef.2021.23011

[26] Michael O. Rabin. 1983. Transaction protection by beacons. J. Comput. System
Sci. 27, 2 (1983), 256–267. https://doi.org/10.1016/0022-0000(83)90042-9

[27] Leonie Reichert, Samuel Brack, and BjÖRN Scheuermann. 2021. A Survey of
Automatic Contact Tracing Approaches Using Bluetooth Low Energy. ACM
Trans. Comput. Healthcare 2, 2, Article 18 (March 2021), 33 pages. https://doi.
org/10.1145/3444847

[28] Ronald Rivest, M. Curran Schiefelbein, Marc A. Zissman, Jason Bay, Edouard
Bugnion, Jill Finnerty, Ilaria Liccardi, Brad Nelson, Adam S. Norige, Emily H.
Shen, Jenny Wanger, Raphael Yahalom, Jesslyn D. Alekseyev, Chad Brubaker,
Luca Ferretti, Charlie Ishikawa, Mariana Raykova, Brendan Schlaman, Robert X.
Schwartz, Emma Sudduth, and Stefano Tessaro. 2023. Automated Exposure
Notification for COVID-19. https://dspace.mit.edu/handle/1721.1/148149

[29] Pietro Tedeschi, Spiridon Bakiras, and Roberto Di Pietro. 2023. SpreadMeNot:
A Provably Secure and Privacy-Preserving Contact Tracing Protocol. IEEE
Transactions on Dependable and Secure Computing 20, 3 (2023), 2500–2515.
https://doi.org/10.1109/TDSC.2022.3186153

[30] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. 2020.
Epione: Lightweight Contact Tracing with Strong Privacy. IEEE Data Eng. Bull.
43, 2 (2020), 95–107. http://sites.computer.org/debull/A20june/p95.pdf

[31] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel Salathé, James
Larus, Edouard Bugnion, Wouter Lueks, Theresa Stadler, Apostolos Pyrgelis,
Daniele Antonioli, Ludovic Barman, Sylvain Chatel, Kenneth Paterson, Srdjan
Čapkun, David Basin, Jan Beutel, Dennis Jackson, Marc Roeschlin, Patrick Leu,
Bart Preneel, Nigel Smart, Aysajan Abidin, Seda Gürses, Michael Veale, Cas
Cremers, Michael Backes, Nils Ole Tippenhauer, Reuben Binns, Ciro Cattuto,
Alain Barrat, Dario Fiore, Manuel Barbosa, Rui Oliveira, and José Pereira. 2020.
Decentralized Privacy-Preserving Proximity Tracing. arXiv:2005.12273 [cs.CR]

[32] Serge Vaudenay. 2020. Analysis of DP3T. Cryptology ePrint Archive, Report
2020/399. https://eprint.iacr.org/2020/399.

[33] Serge Vaudenay. 2020. Centralized or Decentralized? The Contact Tracing
Dilemma. Cryptology ePrint Archive, Report 2020/531. https://eprint.iacr.
org/2020/531.

[34] Torbjørn Øvrebekk. 2022. Bluetooth 5 Advertising Extensions. https://blog.
nordicsemi.com/getconnected/bluetooth-5-advertising-extensions

648

https://doi.org/10.1109/JIOT.2021.3138694
https://doi.org/10.1109/JIOT.2021.3138694
https://eprint.iacr.org/2023/371
https://eprint.iacr.org/2020/428
https://www.usenix.org/conference/usenixsecurity23/presentation/morio
https://doi.org/10.1109/TETC.2022.3216473
https://doi.org/10.1109/MSEC.2021.3066024
https://doi.org/10.1109/MSEC.2021.3066024
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/10-data-protection/PEPP-PT-data-protection-information-security-architecture-Germany.pdf
https://doi.org/10.1007/978-3-030-65277-7_1
https://doi.org/10.14722/coronadef.2021.23011
https://doi.org/10.14722/coronadef.2021.23011
https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1145/3444847
https://doi.org/10.1145/3444847
https://dspace.mit.edu/handle/1721.1/148149
https://doi.org/10.1109/TDSC.2022.3186153
http://sites.computer.org/debull/A20june/p95.pdf
https://arxiv.org/abs/2005.12273
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/531
https://blog.nordicsemi.com/getconnected/bluetooth-5-advertising-extensions
https://blog.nordicsemi.com/getconnected/bluetooth-5-advertising-extensions

	Abstract
	1 Introduction
	1.1 ACT Protocols
	1.2 Deniability
	1.3 Our Contributions
	1.4 Technical Overview

	2 ACT Protocols
	2.1 Existing Constructions

	3 Properties of ACT Protocols
	3.1 Basic Terminology
	3.2 Correctness
	3.3 Replay Security
	3.4 Deniability
	3.5 Summary of Existing Constructions

	4 Decentralized Unidirectional Protocols
	4.1 Model and Syntax
	4.2 Correctness
	4.3 Replay Security
	4.4 Deniability

	5 Impossibility Results
	5.1 Black-box Model
	5.2 Gray-box Model

	6 Discussion
	6.1 Centralized and Hybrid Protocols
	6.2 Diffie-Hellman-based Protocols
	6.3 Relaxing Correctness Requirements
	6.4 Fine-grained User Control

	7 Conclusion and Future Work
	Acknowledgments
	References

