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ABSTRACT
In the current artificial intelligence (AI) era, the scale and quality of
the dataset play a crucial role in training a high-quality AI model.
However, good data is not a free lunch and is always hard to access
due to privacy regulations like the General Data Protection Regula-
tion (GDPR). A potential solution is to release a synthetic dataset
with a similar distribution to that of the private dataset. Neverthe-
less, in some scenarios, it has been found that the attributes needed
to train an AI model belong to different parties, and they cannot
share the raw data for synthetic data publication due to privacy reg-
ulations. In PETS 2023, Xue et al. [29] proposed the first generative
adversary network-based model, VertiGAN, for vertically parti-
tioned data publication. However, after thoroughly investigating,
we found that VertiGAN is less effective in preserving the correla-
tion among the attributes of different parties. This article proposes a
Vertical Federated Learning-based Generative Adversarial Network,
VFLGAN, for vertically partitioned data publication to address the
above issues. Our experimental results show that compared with
VertiGAN, VFLGAN significantly improves the quality of synthetic
data. Taking the MNIST dataset as an example, the quality of the
synthetic dataset generated by VFLGAN is 3.2 times better than
that generated by VertiGAN w.r.t. the Fréchet Distance. We also
designed a more efficient and effective Gaussian mechanism for the
proposed VFLGAN to provide the synthetic dataset with a differ-
ential privacy guarantee. On the other hand, differential privacy
only gives the upper bound of the worst-case privacy guarantee.
This article also proposes a practical auditing scheme that applies
membership inference attacks to estimate privacy leakage through
the synthetic dataset.
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1 INTRODUCTION
In the realm of deep learning (DL), the efficacy of DL models is
intimately tied to the quality and scale of the data they are trained
on. For instance, the advancements in image perception models can
be largely attributed to comprehensive datasets like ImageNet [12].
Similarly, as demonstrated in [51], the state-of-the-art language
understanding methods thrive on expansive textual datasets like
[10]. Furthermore, the success of modern recommendation systems,
highlighted in [36], hinges on rich datasets like Netflix ratings [6].
When these datasets are effectively leveraged with deep learning,
the possibilities are boundless, enabling organizations and gov-
ernments to devise strategies with unprecedented precision and
foresight. However, a notable challenge in this realm is the nature
of data collection. Often, data is ‘vertically partitioned’, meaning
different pieces of customer information are scattered across multi-
ple entities. For example, while a bank may hold a client’s financial
history, their health records might be with a hospital or insurance
firm. As per studies like [29, 50], integrating such dispersed at-
tributes can provide a holistic view of customers, thus significantly
enhancing decision-making processes.

Despite the evident benefits of integrating dispersed data at-
tributes, practical implementation is often hampered due to pri-
vacy concerns. Moreover, stringent data protection regulations like
GDPR [53] further curb the sharing of customer data between en-
tities. One potential avenue to navigate these challenges is the
publication of synthetic data that mirror the distribution of private
data without disclosing any actual private information. However,
this solution is not without its vulnerabilities. Adversaries have
devised methods that leverage synthetic datasets to glean insights
into the corresponding private datasets. Cases in point are the Mem-
bership Inference (MI) attacks and attribute inference techniques
proposed in [47]. To counteract such vulnerabilities, Differential
Privacy (DP) [14] offers a promising strategy for privacy protection.
By infusing DP principles into synthetic data publication, one can
provide these synthetic datasets with a robust privacy assurance,
fortifying them against threats like MI attacks.

Building upon the foundational discussions on data privacy and
the challenges of vertically partitioned data publication, this pa-
per addresses the limitations of existing DP methods in managing
vertically partitioned data. Notably, conventional DP solutions like
DistDiffGen [41], and DPLT [50] are tailored for specific kinds of
datasets. Generative Adversarial Networks (GANs) [19], recognized
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for their ability to replicate original data distributions, provide a
novel approach for universal kinds of datasets. Besides, Federated
Learning (FL) can help to comply with GDPR’s data localization
requirements. Through the integration of GANs with Vertical Fed-
erated Learning (VFL) [33], our proposed VFLGANmodel surpasses
VertiGAN [29] in achieving enhanced attribute correlation. Further-
more, we extend this innovation with DP-VFLGAN, incorporat-
ing an optimized Gaussian mechanism tailored to the VFL context,
thereby diverging from the DPmechanisms applied in [7, 30, 57, 62],
and advancing the field of privacy-preserving data publication.

While DP can offer worst-case privacy assurances [39], most
real-world datasets do not contain the worst-case data record.
Importantly, the prime concern for data owners and regulatory
bodies is gauging the actual information leakage, as determined
by real-world privacy attack simulations. Several privacy metrics
[18, 35, 58] and attack strategies [8, 22, 24, 52] aimed at synthetic
datasets currently exist. Nevertheless, these metrics don’t align with
DP principles, and many of the attack strategies make assumptions
about reference or auxiliary data. In light of these issues, this paper
introduces an innovative auditing scheme. The proposed scheme
aligns with DP principles and draws inspiration from privacy games
[60] and shadow models [46], allowing for a robust assessment of
information leakage for any given data record. Moreover, we exper-
imentally show that the proposed auditing scheme is more robust
than current attacks [8, 22, 24, 52] that target synthetic datasets.
Readers can refer to Appendix A.1 for a detailed literature review.

In summary, current literature offers several methodologies to
address vertically partitioned data publication, but they come with
notable shortcomings. In this paper, we propose VFLGAN as an
effective solution to mitigate those shortcomings. Additionally, rec-
ognizing the privacy risks inherent in synthetic datasets, we incor-
porate a differentially private mechanism to ensure that VFLGAN
satisfies a DP guarantee. While several mechanisms exist to provide
centralized GANs with DP guarantees, as discussed in Appendix
A.1.2, these mechanisms are unsuitable for VFLGAN due to the
shared discriminator. To address this, we design a variant of the
Gaussian mechanism tailored for DP-VFLGAN. Last, it is important
to note that DP provides a privacy guarantee for the worst case,
which rarely (if not never) exists in real-world datasets. Therefore, a
practical auditing scheme is required to accurately estimate the pri-
vacy risk of training data. Existing privacy leakage measurements
and attacks, which do not adhere to DP principles or rest on unreal-
istic assumptions, are inadequate for this purpose. In this paper, we
design a novel and practical auditing scheme to effectively estimate
the privacy risk of any given record.

1.1 Contributions
This paper outlines the following contributions to address the afore-
mentioned research gaps.

• Through comprehensive investigation, we identified a criti-
cal limitation in a recently proposed GAN-based method for
vertically partitioned data publication (presented at PETS
2023 [29]). Specifically, this model fails to effectively learn
the correlation among attributes across different parties.
• We introduce the first Vertical Federated Learning (VFL)-
based Generative Adversarial Network, named VFLGAN.

This novel model is adept at learning correlations among
attributes between different parties (as demonstrated in Fig.
1) and is equipped to handle both continuous and categorical
attributes efficiently.
• A new Gaussian mechanism has been developed, equipping
DP-VFLGAN with a (𝜖, 𝛿)-Differential Privacy (DP) guaran-
tee. This enhancement ensures heightened privacy protec-
tion in data publication.
• We propose a pragmatic auditing scheme - a privacy leakage
measurement - that operates without reliance on unrealistic
assumptions. This scheme quantitatively assesses the privacy
risk of synthetic datasets.
• Extensive experiments were conducted to evaluate the qual-
ity of synthetic datasets generated by VFLGAN rigorously.
We applied multiple metrics for a thorough assessment. Fur-
thermore, the effectiveness of the proposed Gaussian mech-
anism was also evaluated using our innovative auditing
method, demonstrating its efficacy in practical scenarios.
• The code1 will be released at publication.

Readers can refer to Appendix A.8 for a summary of notation.

Figure 1: This figure shows synthetic samples generated by
GANs trained on vertically partitionedMNIST data (the digits
are split evenly into upper and lower halves). The left figure
displays samples generated by VertiGAN [29], highlighting
unrecognizable and discontinuous digits. The right figure
shows samples generated by the proposed VFLGAN.

2 PRELIMINERIES
This section provides preliminaries of DP and GANs to facilitate a
comprehensive understanding of the proposed VFLGAN. Besides,
the training process of VertiGAN is introduced briefly.

2.1 Differential Privacy
Differential privacy [14] provides a rigorous privacy guarantee that
can be quantitatively analyzed. The pure 𝜖-DP is defined as follows.

Definition 1. (𝜖-DP). A randomized mechanism 𝑓 : 𝐷 → 𝑅

satisfies 𝜖-differential privacy (𝜖-DP) if for any adjacent 𝐷, 𝐷 ′ ∈ D
and 𝑆 ⊂ 𝑅

𝑃𝑟 [𝑓 (𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [𝑓 (𝐷 ′) ∈ 𝑆].

In the literature, the most commonly used DP is a relaxed version
of the pure DP, which allows the mechanism to satisfy 𝜖-DP most
of the time but not satisfy 𝜖-DP with a small probability, 𝛿 . The
relaxed version, (𝜖, 𝛿)-DP [15], is defined as follows.

1https://github.com/YuanXun2024/VFLGAN
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Definition 2. ((𝜖, 𝛿)-DP). A randomized mechanism 𝑓 : 𝐷 →
𝑅 provides (𝜖, 𝛿)-differential privacy ((𝜖, 𝛿)-DP) if for any adjacent
𝐷, 𝐷 ′ ∈ D and 𝑆 ⊂ 𝑅

𝑃𝑟 [𝑓 (𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [𝑓 (𝐷 ′) ∈ 𝑆] + 𝛿 .

In [40], the 𝛼-Rényi divergences between 𝑓 (𝐷) and 𝑓 (𝐷 ′) are
applied to define Rényi Differential Privacy (RDP) which is a gener-
alization of differential privacy. (𝛼, 𝜖 (𝛼))-RDP is defined as follows.

Definition 3. ((𝛼, 𝜖 (𝛼))-RDP). A randomized mechanism 𝑓 :
𝐷 → 𝑅 is said to have 𝜖 (𝛼)-Rényi differential privacy of order 𝛼 , or
(𝛼, 𝜖 (𝛼))-RDP for short if for any adjacent 𝐷,𝐷 ′ ∈ D it holds that

𝐷𝛼 (𝑓 (𝐷)∥ 𝑓 (𝐷 ′)) = 1
𝛼−1 logE𝑥∼𝑓 (𝐷)

[(
Pr[𝑓 (𝐷)=𝑥 ]
Pr[𝑓 (𝐷′)=𝑥 ]

)𝛼−1]
≤ 𝜖 .

[40] proves that the Gaussian mechanism can guarantee an RDP.

Proposition 1. (Gaussian Mechanism) Let 𝑓 : 𝐷 → 𝑅 be an
arbitrary function with sensitivity being

Δ2 𝑓 = max𝐷,𝐷′ ∥ 𝑓 (𝐷) − 𝑓 (𝐷 ′)∥2
for any adjacent 𝐷, 𝐷 ′ ∈ D. The Gaussian Mechanism𝑀𝜎 ,

M𝜎 (𝒙) = 𝑓 (𝒙) + N
(
0, 𝜎2𝐼

)
provides

(
𝛼, 𝛼Δ2 𝑓 2/2𝜎2

)
-RDP.

The (R)DP budget should be accumulated if we apply multi-
ple mechanisms to process the data sequentially as we train deep
learning (DL) models for multiple iterations. We can calculate the
accumulated RDP budget by the following proposition [40].

Proposition 2. (Composition of RDP) Let 𝑓 : 𝐷 → 𝑅1 be (𝛼, 𝜖1)-
RDP and𝑔 : 𝑅1×𝐷 → 𝑅2 be (𝛼, 𝜖2)-RDP, then the mechanism defined
as (𝑋,𝑌 ), where 𝑋 ∼ 𝑓 (𝐷) and 𝑌 ∼ 𝑔(𝑋, 𝐷), satisfies (𝛼, 𝜖1 + 𝜖2)-
RDP.

According to the following proposition, RDP can be converted
to (𝜖, 𝛿)-DP and the proof can be found in [40].

Proposition 3. (From RDP to (𝜖, 𝛿)-DP) If 𝑓 is an (𝛼, 𝜖 (𝛼))-RDP
mechanism, it also satisfies (𝜖 (𝛼) + 𝑙𝑜𝑔1/𝛿𝛼−1 , 𝛿)-DP for any 0 < 𝛿 < 1.

According to Proposition 3, given a 𝛿 we can get a tight (𝜖 ′, 𝛿)-DP
bound by

𝜖 ′ = min
𝛼
(𝜖 (𝛼) + 𝑙𝑜𝑔1/𝛿

𝛼 − 1 ) . (1)

[54] provides a tight upper bound on RDP by considering the com-
bination of the subsampling procedure and random mechanism.
This is important for differentially private DL since DL models are
mostly updated according to a subsampled mini-batch of data. The
enhanced RDP bound can be calculated according to the following
proposition, and the proof can be found in [54].

Proposition 4. (RDP for SubsampledMechanisms). Given a dataset
of 𝑛 points drawn from a domain X and a (randomized) mechanism
M that takes an input from X𝑚 for𝑚 ≤ 𝑛, let the randomized algo-
rithmM◦ subsample be defined as (1) subsample: subsample without
replacement𝑚 datapoints of the dataset (sampling rate 𝛾 =𝑚/𝑛), and
(2) applyM: a randomized algorithm taking the subsampled dataset
as the input. For all integers 𝛼 ≥ 2, ifM obeys (𝛼, 𝜖 (𝛼))-RDP, then
this new randomized algorithmM◦ subsample obeys (𝛼, 𝜖 ′(𝛼))-RDP
where,

𝜖 ′(𝛼) ≤ 1
𝛼 − 1 log

(
1 + 𝛾2

(
𝛼

2

)
min{

4
(
𝑒𝜖 (2) − 1

)
, 𝑒𝜖 (2) min

{
2,
(
𝑒𝜖 (∞) − 1

)2}}
+

𝛼∑︁
𝑗=3

𝛾 𝑗
(
𝛼

𝑗

)
𝑒 ( 𝑗−1)𝜖 ( 𝑗) min

{
2,
(
𝑒𝜖 (∞) − 1

) 𝑗 }ª®¬
Last, the following post-processing theorem [16] is convenient,

with which we can say a framework satisfies DP or RDP if any
intermediate function of the framework satisfies DP or RDP.

Proposition 5. (Post-processing). If 𝑓 (·) satisfies (𝜖, 𝛿)-DP,𝑔(𝑓 (·))
will satisfy (𝜖, 𝛿)-DP for any function 𝑔(·). Similarly, if 𝑓 (·) satisfies
(𝛼, 𝜖)-RDP, 𝑔(𝑓 (·)) will satisfy (𝛼, 𝜖)-RDP for any function 𝑔(·).

2.2 Generative Adversarial Models
Given a dataset 𝑋 where the data record 𝑥 ∈ 𝑋 follows the distri-
bution 𝑃 , the generator of GAN, 𝐺 , aims to generate synthetic data
𝑥 , 𝑥 = 𝐺 (𝑧), that follows the distribution 𝑃𝐺 (𝑧) similar to 𝑃 . The
input 𝑧 is sampled from a simple distribution, such as the uniform
distribution or a Gaussian distribution. The above object can be
achieved with the help of a discriminator, 𝐷 . The generator and
discriminator are trained through a competing game, where the
discriminator is trained to distinguish 𝑥 and 𝑥 , and the generator
is trained to generate high-quality 𝑥 to fool the discriminator. The
game between the generator and the discriminator can be formally
expressed as the following min-max objective [19],

min
𝐺

max
𝐷
E

𝒙∼𝑃
[log(𝐷 (𝒙))] + E

�̃�∼𝑃𝐺 (𝒛)
[log(1 − 𝐷 (�̃�))] . (2)

As proved in [19], this objective leads to minimizing the Jensen-
Shannon divergence between 𝑃 and 𝑃𝐺 (𝒛) . However, the training
process of optimizing the objective (2) is unstable due to discrimina-
tor saturating, which results in vanishing gradients. [2] pointed out
that the Jensen–Shannon divergence is not continuous and does
not provide usable gradients and proposed a new objective, i.e., min-
imizing the Wasserstein-1 distance between 𝑃 and 𝑃𝐺 (𝒛) , which
is continuous everywhere and differentiable almost everywhere
under mild assumptions. Based on the new objective, Wasserstein
GAN (WGAN) is proposed in [2]. Following this idea, subsequent
works [21, 55, 56] propose variants ofWGAN to improve the quality
of generated data. Same as the previous works [7, 29], we adopt
the optimization objectives of WGAN_GP [21] for the proposed
VFLGAN as,

min
𝐷
−E[𝐷 (𝒙)] + E[𝐷 (�̃�)] + 𝜆E

[
(∥∇𝐷 (�̂�)∥2 − 1)2

]
,

max
𝐺
E[𝐷 (�̃�)],

(3)

where �̂� = 𝛽𝒙 + (1 − 𝛽)�̃� and 𝛽 ∼ U(0, 1).

2.3 VertiGAN
Figure 2 shows the training framework of VertiGAN for the two-
party scenario. Each party shares the same generator backbone
(𝐺𝑏 ). Party 𝑖 maintains a private generator head (𝐺ℎ𝑖 ) and a pri-
vate discriminator (𝐷𝑖 ). The local update in each party is the same
process as WGAN_GP [21], except for the update of the generator
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backbone (𝐺𝑏 ). Thus, same as [21], the optimization objective of
party 𝑖 ∈ {1, 2} can be expressed as,

min
𝐷𝑖

−E[𝐷𝑖 (𝒙 𝒊)] + E[𝐷𝑖 (�̃�𝑖 )] + 𝜆E
[
(∥∇𝐷𝑖 (�̂�𝑖 )∥2 − 1)2

]
,

max
𝐺𝑖

E[𝐷𝑖 (�̃�𝑖 )],
(4)

where �̂�𝑖 = 𝛽𝒙𝑖 + (1 − 𝛽)�̃�𝑖 and 𝛽 ∼ U(0, 1). For the update of the
generator backbone (𝐺𝑏 ), each party sends the local gradients of𝐺𝑏 ,
i.e., G𝑖

𝐺𝑏
, to the server. The server summarizes the local gradients

as,
G𝐺𝑏

= G1𝐺𝑏
+ G2𝐺𝑏

, (5)
and sends G𝐺𝑏

to the local parties. Then, the local party updates
the local 𝐺𝑏 with G𝐺𝑏

. Equation (5) is the main idea of horizontal
federated learning (HFL).

Figure 2: This figure shows the framework of VertiGAN.

3 PROPOSED VERTICAL FEDERATED
LEARNING-BASED GAN

This section first introduces our system model. According to the
system model, we formulate the vertically partitioned data pub-
lication problem as a min-max optimization problem to train the
proposed VFLGAN. Subsequently, we specify the architecture of
the proposed VFLGAN for the two-party case. Following the ar-
chitectural overview, the training process of VFLGAN is described
in detail. Then, we introduce the differentially private version of
VFLGAN, i.e., DP-VFLGAN. The section concludes by delineating
the differences between VertiGAN and VFLGAN.

3.1 System Model and Problem Formulation
Our system model considers a similar scenario as discussed in [29],
where there are𝑀 non-colluding parties. Each party 𝑃𝑖 maintains a
private dataset 𝑋𝑖 ∈ R𝑁×|𝐴𝑖 | with 𝑁 records where 𝐴𝑖 denotes the
attribute set of 𝑋𝑖 . Now, we consider the following assumptions for
our proposed system model.

Assumption 1 Records in different datasets 𝑋𝑖 with the same
index belong to the same object, which can be achieved by applying
private set intersection protocols [9, 26] in practice. To facilitate the
alignment of training inputs across parties without direct data shar-
ing, a pseudorandom number generator can be employed during
the training process.

Assumption 2 There is no common attribute among the parties.

Assumption 3The local parties and the central server are honest
but curious, i.e., correctly follow the protocols but try to infer
sensitive information from other parties.

With the above assumptions, 𝑀 private datasets can be com-
bined to construct a new dataset 𝑋 , i.e., 𝑋 = [𝑋1, 𝑋2, · · · , 𝑋𝑀 ] ∈
R𝑁×

∑𝑀
𝑖=1 |𝐴𝑖 | , where [· · · ] denotes a concatenation function. The

parties aim to generate a synthetic dataset �̃� in which each record
�̃� ∈ �̃� follows a similar distribution to that of 𝒙 ∈ 𝑋 ,

𝑃�̃� ≈ 𝑃𝒙 , (6)

while keeping the local data secret from other parties.
Here, we useGAN-based generators to generate synthetic records

that satisfy (6). Figure 3 illustrates our systemmodel in detail. There
is a private dataset𝑋𝑖 , a local generator𝐺𝑖 , and a local discriminator
𝐷𝑖 in each party 𝑃𝑖 . The server maintains a shared discriminator
𝐷𝑠 and is responsible for combining the synthetic data from all the
parties. Solid lines between the server and parties represent the
communication during the generalisation of the synthetic dataset
(inference period), and the dashed lines represent the communica-
tion during the training process. In our system model, the private
dataset 𝑋𝑖 can only be accessed by the corresponding discriminator
𝐷𝑖 . The shared discriminator 𝐷𝑠 aims to guide the local generators
to learn the correlation among attributes of different parties. During
the training process, each 𝐷𝑖 sends its intermediate feature to 𝐷𝑠
and 𝐷𝑠 return gradients to update 𝐷𝑖 and 𝐺𝑖 . During the inference
process, the local generator𝐺𝑖 generates partial synthetic records,
�̃�𝑖 = 𝐺𝑖 (𝒛), where 𝒛 is the same for all parties achieved by a pseu-
dorandom number generator at each local party. Then, the partial
synthetic records are concatenated in the server to get a complete
synthetic record, 𝑥 = [�̃�1, �̃�2, · · · , �̃�𝑀 ]. According to our system
model, the objective (6) can be expressed as the following,

𝑃�̃� ≈ 𝑃𝒙 , �̃� = [𝐺1 (𝒛),𝐺2 (𝒛), · · · ,𝐺𝑀 (𝒛)] . (7)

Thus, the problem targeted by this paper is to train𝑀 generators
that satisfy (7). As mentioned in Section 2.2, this problem can be
transformed into a min-max optimization problem to obtain such
generators. According to the optimization objectives of WGAN_GP
(4), the vertically partitioned data publication problem of our system
model can be formulated as,

min
𝐷1, · · · ,𝐷𝑀 ,𝐷𝑠

𝑀∑︁
𝑖=1
L(𝐷𝑖 , �̃�𝑖 , 𝒙𝑖 ) + 𝜆1L(𝐷𝑠 , �̃� ,𝒇 ), (8)

max
𝐺1, · · · ,𝐺𝑀

𝑀∑︁
𝑖=1
E[𝐷𝑖 (�̃�𝑖 )] + 𝜆2E[𝐷𝑠 (�̃� )], (9)

where L(𝐷, �̃�, 𝒙) ≜ −E[𝐷 (𝒙)] +E[𝐷 (�̃�)] +𝜆E
[
(∥∇𝐷 (�̂�)∥2 − 1)2

]
,

�̃� and 𝒇 are the concatenations of the intermediate features of 𝐷1 to
𝐷𝑀 when the inputs are synthetic data and real data respectively,
and 𝜆1 and 𝜆2 are balancing coefficients.

3.2 Overview of VFLGAN for Two-party Case
Figure 4 illustrates the proposed VFLGAN for the two-party sce-
nario. There are two private generators, 𝐺1 and 𝐺2, two private
discriminators, 𝐷1 and 𝐷2, and one shared discriminator, 𝐷𝑠 , in the
framework. The generators produce synthetic data with a vector
of Gaussian noise 𝒛, i.e., �̃�𝑖 = 𝐺𝑖 (𝒛). The discriminators, 𝐷𝑖 where
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Figure 3: System Model.

𝑖 ∈ {1, 2}, are trained to distinguish synthetic data �̃�𝑖 and real
data 𝒙𝑖 . Thus, the gradients of 𝐷𝑖 on �̃�𝑖 can guide 𝐺𝑖 to generate
synthetic data with a similar distribution to the real data 𝒙𝑖 , i.e.,

𝑃𝐺𝑖 (𝒛) ≈ 𝑃𝒙𝑖 . (10)

Figure 11 in the Appendix shows the detailed structure of the
VFLGAN discriminators. In 𝐷𝑖 𝑖 ∈ {1, 2}, the layers before the
intermediate feature construct the first part of 𝐷𝑖 in Fig. 4, and the
layers after the intermediate feature construct the second part of
𝐷𝑖 . The intermediate feature (𝒇 𝑖 ) is the output of the first part of
𝐷𝑖 , i.e.,

𝒇 𝑖 = 𝐷1
𝑖 (𝒙𝑖 ) 𝑖 ∈ {1, 2}, (11)

where 𝐷1
𝑖
denotes the first part of 𝐷𝑖 and 𝒙𝑖 denotes the input

of 𝐷𝑖 . The intermediate features are transmitted to the server
where the concatenation of the intermediate features is input to
𝐷𝑠 . 𝐷𝑠 is trained to distinguish [�̃�1, �̃�2] and [𝒙1, 𝒙2] by optimizing
L(𝐷𝑠 , �̃� ,𝒇 ) in (8). As a result, by optimizing (9), 𝐷𝑠 can guide 𝐺1
and 𝐺2 to learn the correlation between 𝒙1 and 𝒙2 and generate
better synthetic data, i.e.,

𝑃 [𝐺1 (𝒛),𝐺2 (𝒛) ] ≈ 𝑃 [𝒙1,𝒙2 ] . (12)

Figure 4: Framework of the proposed VFLGAN.

Concerns may arise regarding the potential for privacy leakage
through intermediate features within a neural network. However,
reconstructing the input from the neural network’s output, with-
out access to the model’s parameters, presents a difficult ill-posed
problem [13]. For instance, the authors in [59] attempt to invert
neural networks used for classification, where the adversary is as-
sumed to possess an auxiliary dataset and the ability to interact
with the model by submitting requests and receiving responses.

Nevertheless, in our scenario, such access to the model or the abil-
ity to submit requests is precluded. Another study [3] endeavours
to reconstruct training data from the outputs of a trained neural
network, with the adversary having access to all but one record
in the training dataset and white-box access to the model. Despite
the strong assumptions made in [3, 59], the reconstructed images
are notably blurred, rendering them less precise than the original
images. While a blurred image might still reveal some private in-
formation, a blurred tabular record is likely to disclose minimal
privacy details. Furthermore, to address these concerns, we have
developed an auditing scheme, detailed in Section 4.2, designed to
assess the extent of privacy leakage through intermediate features.

3.3 Training Process of VFLGAN
Following the training procedure of previous works [19, 21], we
optimize the discriminators and generators in sequence, i.e., we first
optimize the discriminators for 𝑇𝑑 iterations and then optimize the
generators for one iteration. According to our optimization objec-
tive (8), the loss function of 𝐷𝑠 is L(𝐷𝑠 , �̃� ,𝒇 ) and the loss function
for 𝐷1 and 𝐷2 is L(𝐷𝑖 , �̃�𝑖 , 𝒙𝑖 ). In the remaining paper, we use L𝐷𝑠

and L𝐷𝑖
to denote the above loss functions for abbreviation. The

gradients of 𝐷𝑠 parameters can be calculated according to its loss
function by,

G𝐷𝑠
= ∇𝜽𝐷𝑠

L𝐷𝑠
. (13)

Note that L𝐷𝑠
also contributes to the gradients of the first part of

𝐷1 and 𝐷2 parameters. Thus, the gradients of 𝐷1 and 𝐷2 parameter
can be calculated by,

G𝐷1 = ∇𝜽𝐷1
L𝐷1 + ∇𝜽𝐷1

L𝐷𝑠
, (14)

G𝐷2 = ∇𝜽𝐷2
L𝐷2 + ∇𝜽𝐷2

L𝐷𝑠
. (15)

Finally, the parameters of the discriminators can be updated by,

𝜽𝐷𝑖
= 𝜽𝐷𝑖

− 𝜂𝐷𝑖
G𝐷𝑖

𝑖 ∈ {1, 2, 𝑆}, (16)

where 𝜂𝐷𝑖
denotes the learning rate of 𝐷𝑖 .

Notably, when we optimize the generators according to the ob-
jective function (9), the output of the discriminators is maximised.
However, the optimizers in the DL field, like Adam [31], usually
minimize the loss function. Thus, the loss function for the genera-
tors is derived as,

L𝐺 = −
2∑︁
𝑖=1
E[𝐷𝑖 (𝐺𝑖 (𝒛)] − E[𝐷𝑠 ( [𝒇 1,𝒇 2])], (17)

where 𝒇 𝑖 denotes the intermediate feature of 𝐷𝑖 as shown in Fig. 4.
Then, the gradients and parameter update of𝐺𝑖 can be calculated
as follows,

G𝐺𝑖
= ∇𝜽𝐺𝑖

L𝐺 , (18)
𝜽𝐺𝑖

= 𝜽𝐺𝑖
− 𝜂𝐺𝑖

G𝐺𝑖
𝑖 ∈ {1, 2}. (19)

Note 𝐷𝑠 also contributes to the loss function of𝐺1 and𝐺2, through
which 𝐺1 and 𝐺2 learn to generate synthetic data satisfying (12).

The training process of the VFLGAN is summarized in Algorithm
1. First, we train the discriminators for 𝑇𝑑 iterations. During each
iteration, we subsample a mini-batch of real data, [𝒙𝐵1 , 𝒙

𝐵
2 ], where

𝐵 denotes the batch size, from the training dataset and generate
a mini-batch of synthetic data [�̃�𝐵1 , �̃�

𝐵
2 ] with 𝐺1 and 𝐺2. And the

discriminators are trained to distinguish real data and synthetic
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data. Second, we train the generators to generate more realistic
synthetic data for one iteration. The first and second steps repeat
for 𝑇𝑚𝑎𝑥 epochs, and the algorithm outputs trained 𝐺1 and 𝐺2.

Algorithm 1: Training Process of (DP-)VFLGAN
Input: 𝐺1 and𝐺2 : generators; 𝐷1 and 𝐷2 : discriminators; 𝒇 𝑖 : the intermediate

feature of 𝐷𝑖 ; 𝑛𝐷1 and 𝑛𝐷2 : number of layers of 𝐷1 and 𝐷2 ; 𝐷𝑠 : shared
discriminator; 𝑋 : dataset 𝐵: batch size;𝑇𝑚𝑎𝑥 : maximum training epochs;𝑇𝑑 :
discriminators’ update steps; 𝜂: learning rate; 𝑙 : latent dimension; 𝜃 : parameters
of VFLGAN; G1

𝐷𝑖
: gradients of parameters of the first layer of 𝐷𝑖 .

Output: Trained𝐺1 and𝐺2 .

Initialize the generators and discriminators;
for 𝑒𝑝𝑜𝑐ℎ in {1, 2, · · · ,𝑇𝑚𝑎𝑥 } do
// update discriminators (line 1 to 19);

1 for 𝑖𝑡𝑒𝑟 in {1, 2, · · · ,𝑇𝑑 } do
2 𝒙𝐵 = [𝒙𝐵

1 , 𝒙
𝐵
2 ] ⊂ 𝑋 // Subsample a mini-batch of data;

3 Generate 𝒛𝐵 with 𝑧 ∼ N(0, 1)𝑙
4 �̃�𝐵 = [�̃�𝐵

1 , �̃�
𝐵
2 ] = [𝐺1 (𝒛𝐵 ),𝐺2 (𝒛𝐵 ) ] // Generate synthetic data;

// Compute losses of 𝐷1 , 𝐷2 , and 𝐷𝑠 (line 5 to 7);

5

L𝐷1 = −E[𝐷1 (𝒙𝐵
1 ) ] + E[𝐷1 (�̃�𝐵

1 ) ]

+ 𝜆E
[(
∥∇𝐷1 (𝛼𝐵𝒙𝐵

1 + (1 − 𝛼𝐵 )�̃�𝐵
1 ) ∥2 − 1

)2]
6

L𝐷2 = −E[𝐷2 (𝒙𝐵
2 ) ] + E[𝐷2 (�̃�𝐵

2 ) ]

+ 𝜆E
[(
∥∇𝐷2 (𝛼𝐵𝒙𝐵

2 + (1 − 𝛼𝐵 )�̃�𝐵
2 ) ∥2 − 1

)2]
7

L𝐷𝑠 = −E[𝐷𝑠 ( [𝒇 1, 𝒇 2 ]) ] + E[𝐷𝑠 ( [𝒇 1, 𝒇 2 ]) ]

+ 𝜆E
[(
∥∇𝐷𝑠 (𝛼𝐵 [𝒇 1, 𝒇 2 ] + (1 − 𝛼𝐵 ) [𝒇 1, 𝒇 2 ]) ∥2 − 1

)2]
8 G𝐷1 = ∇𝜽𝐷1

L𝐷1 + ∇𝜽𝐷1
L𝐷𝑠 // Compute gradients of 𝐷1 ;

9 G𝐷2 = ∇𝜽𝐷2
L𝐷2 + ∇𝜽𝐷2

L𝐷𝑠 // Compute gradients of 𝐷2 ;
10 G𝐷𝑠 = ∇𝜽𝐷𝑠

L𝐷𝑠 // Compute gradients of 𝐷𝑠 ;
11 𝜽𝐷𝑠 = 𝜽𝐷𝑠 − 𝜂𝐷𝑠 G𝐷𝑠 // Update parameters of 𝐷𝑠 ;

// Update parameters of the second to the last layers of 𝐷1 ;

12 𝜽
2:𝑛𝐷1
𝐷1

= 𝜽
2:𝑛𝐷1
𝐷1

− 𝜂𝐷1 G
2:𝑛𝐷1
𝐷1

// Update parameters of the second to the last layers of 𝐷2 ;

13 𝜽
2:𝑛𝐷2
𝐷2

= 𝜽
2:𝑛𝐷2
𝐷2

− 𝜂𝐷2 G
2:𝑛𝐷2
𝐷2

// Update parameters of the first layer of 𝐷1 and 𝐷2 (line 14 to 19);
14 if Training a differentially private version then
15 𝜽 1

𝐷1
= 𝜽 1

𝐷1
− 𝜂𝐷1 (𝑐𝑙𝑖𝑝 (G

1
𝐷1
,𝐶) + N

(
0, 𝜎2 (2𝐶)2𝐼

)
)

16 𝜽 1
𝐷2

= 𝜽 1
𝐷2
− 𝜂𝐷2 (𝑐𝑙𝑖𝑝 (G

1
𝐷2
,𝐶) + N

(
0, 𝜎2 (2𝐶)2𝐼

)
)

17 else
18 𝜽 1

𝐷1
= 𝜽 1

𝐷1
− 𝜂𝐷1 G

1
𝐷1

19 𝜽 1
𝐷2

= 𝜽 1
𝐷2
− 𝜂𝐷2 G

1
𝐷2

// update generators (line 20 to 25);
20 �̃�𝐵 = [𝐺1 (𝒛𝐵 ),𝐺2 (𝒛𝐵 ) ] // Generate a mini-batch of fake data �̃�𝐵 ;
21 L𝐺1 = −E[𝐷1 (�̃�1) ] − E[𝐷𝑠 ( [𝒇 1, 𝒇 2 ]) ] // Compute losses of𝐺1 ;
22 L𝐺2 = −E[𝐷2 (�̃�2) ] − E[𝐷𝑠 ( [𝒇 1, 𝒇 2 ]) ] // Compute losses of𝐺2 ;
23 where 𝒇 𝑖 is the intermediate feature when the input of 𝐷𝑖 is �̃�𝑖

// Compute gradients of𝐺1 and𝐺2 ;
24 G𝐺1 = ∇𝜽𝐺1

L𝐺1 , G𝐺2 = ∇𝜽𝐺2
L𝐺2

// Update parameters of𝐺1 and𝐺2 ;
25 𝜽𝐺1 = 𝜽𝐺1 − 𝜂𝐺1 G𝐺1 , 𝜽𝐺2 = 𝜽𝐺2 − 𝜂𝐺2 G𝐺2

Return𝐺1 and𝐺2 .

3.4 Differentially Private VFLGAN
The training process of DP-VFLGAN is also summarized in Algo-
rithm 1 since the training processes of VFLGAN and DP-VFLGAN
are the same for most steps. There are mainly two differences

between the two training processes. (i) We apply the proposed
Gaussian mechanism (21) in DP-VFLGAN. When updating the pa-
rameters of the first linear layers of 𝐷1 and 𝐷2, we clip and add
Gaussian noise to the gradients as follows,

𝑐𝑙𝑖𝑝 (G1𝐷𝑖
,𝐶) = G1𝐷𝑖

/max
(
1,



G1𝐷𝑖





2
/𝐶

)
𝑖 ∈ {1, 2}, (20)

G1𝐷𝑖
= 𝑐𝑙𝑖𝑝 (G1𝐷𝑖

,𝐶) + N
(
0, 𝜎2 (2𝐶)2𝐼

)
, (21)

where G1
𝐷𝑖

denotes the gradients of the first layer parameters of 𝐷𝑖
and 𝐶 denotes the clipping bound. Previous Gaussian mechanisms
for GANs [29, 57, 62] clip and addGaussian noise to all discriminator
parameters. However, we proved in Theorem 1 that clipping and
adding Gaussian noise to the gradients of the first-layer parameters
of𝐷1 and𝐷2 can provide a DP guarantee for𝐺1 and𝐺2. (ii) We need
to set a privacy budget before training DP-VFLGAN to ensure 𝐺1
and𝐺2 satisfy (𝜖, 𝛿)-DP. Here, we apply the official implementation
of [54] to select the proper𝑇𝑚𝑎𝑥 and𝜎 to achieve the privacy budget,
i.e., (𝜖, 𝛿)-DP, and the details are described in Section 3.5.

3.5 RDP Guarantee and Proof
Theorem 1. (RDP Guarantee) All the local discriminators and

generators satisfy (𝛼 , 𝛼/(2𝜎2))-RDP in one training iteration of DP-
VFLGAN.

Proof. The proof of Theorem 1 is presented in Appendix A.2.
□

Now, we introduce how to select proper 𝜎 and𝑇𝑚𝑎𝑥 to meet our
DP budget using Theorem 1. First, the RDP guarantee in Theorem
1 can be enhanced by Proposition 4 for external attackers and the
server since we subsample mini-batch records from the whole train-
ing dataset. Then, RDP budget is accumulated by 𝑇𝑚𝑎𝑥 iterations,
which can be calculated according to Proposition 2. Last, the RDP
guarantee is converted to DP guarantee using (1). We can adjust
the 𝜎 and 𝑇𝑚𝑎𝑥 to make the calculated DP guarantee meet our DP
budget. Notably, similar to the DP guarantee in [29], the above
DP guarantee specifically addresses external threats. This is due to
the deterministic nature of mini-batch selection in each training
iteration for internal parties (excluding the server), as opposed to
a subsampling process. For internal adversaries, privacy can be
enhanced by sacrificing efficiency. For example, the mini-batch size
can be changed to �̂� > 𝐵. When updating the parameters, each
party can randomly select the gradients of 𝐵 samples and mask the
gradients of other (�̂� − 𝐵) samples. In this way, all parties do not
know precisely which samples are used by others to update the
parameters.

3.6 Differences between VFLGAN and VertiGAN
As discussed in Section 2.3, in VertiGAN, the objective functions
(4) of the local discriminator and generator in each party are the
same as WGAN_GP’s objective functions (2). According to [21],
this can ensure that the synthetic data (�̃�𝑖 ) generated by part 𝑖
follows a similar distribution of the real data (𝒙𝑖 ) of party 𝑖 , i.e.,
𝑃�̃�𝑖 ≃ 𝑃𝒙𝑖 . After calculating the gradients of each local generator
backbone, VertiGAN applies HFL (5) to maintain the same generator
backbone across all parties and assumes that the same generator
backbones can learn the correlations among attributes across those
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parties, i.e., 𝑃 [�̃�1, · · · ,�̃�𝑁 ] ≃ 𝑃 [�̃�1, · · · ,�̃�𝑁 ] , which is experimentally
proved less effective in this paper. On the other hand, VFLGAN
incorporates the objective functions of WGAN_GP into the VFL
framework with a shared discriminator. Accordingly, we propose
novel objective functions, (8) and (9), for VFLGAN. From (8) and
(9), we can see that the objective functions of VFLGAN involve
all parties through the shared discriminator while the objective
functions of each party are independent in VertiGAN. In (8) and (9),
according to [21], the fractions involving local discriminatory 𝐷𝑖
can ensure that 𝑃�̃�𝑖 ≃ 𝑃𝒙𝑖 and the fractions involving the shared
discriminator 𝐷𝑠 can ensure that 𝑃 [�̃�1, · · · ,�̃�𝑁 ] ≃ 𝑃 [�̃�1, · · · ,�̃�𝑁 ] .

Another difference is that the differentially private VertiGAN
applies the same Gaussian mechanism as [57, 62], which clips and
adds noise to all gradients. However, as proved in Thereom 1, clip-
ping and adding noise to the gradients of the first linear layer of
the local discriminator is enough to provide a DP guarantee to all
local discriminators and local generators in DP-VFLGAN. Based on
this discovery, DP-VFLGAN applies a new variant of the Gaussian
mechanism as discussed in Section 3.4.

4 PRIVACY LEAKAGE MEASUREMENT
In this section, we introduce two distinct auditing schemes, i.e., the
Auditing Scheme for Synthetic Datasets (ASSD) and the Auditing
Scheme for Intermediate Features (ASIF). These schemes are de-
signed to conduct MI attacks within a leave-one-out setting [60],
a scenario in which the adversary is presumed to be aware of the
entire dataset except for the target record (𝑥𝑡 ). While stringent for
an external adversary, this assumption provides an empirical upper
limit on the success rates of MI attacks. Additionally, this setting
is deemed realistic for data publishers who can readily manipulate
the inclusion of the target record in the training process. The dif-
ferentiation between our MI attack strategy and that described in
[60] hinges on two primary aspects: (i) The focus of our MI attack
is on synthetic datasets, as opposed to the machine learning mod-
els targeted in [60]; (ii) Our auditing schemes adopt the shadow
model attack method [25, 46, 47] as the adversary model, contrast-
ing with the binary hypothesis test approach utilized in [60], which
is specifically crafted for classification models.

4.1 Auditing Scheme for Synthetic Datasets
The following privacy game can define the MI attack applied in
ASSD. (i) First, the challenger selects a fixed target record 𝒙𝑡 from a
given training dataset𝑋 . (ii) Then, the challenger trains a generator
𝐺0

𝑠0←− T (𝑋 \ 𝒙𝑡 ) on 𝑋 \ 𝒙𝑡 (dataset 𝑋 excluding 𝒙𝑡 ) by using a
fresh random seed 𝑠0 in the training algorithm T . In this paper, T
refers to Algorithm 1. (iii) The challenger trains another generator
𝐺1

𝑠1←− T (𝑋 ) on 𝑋 by using a fresh random seed 𝑠1. (iv) The
challenger applies the two generators,𝐺0 and 𝐺1, to produce two
synthetic datasets, �̃�1 and �̃�2. (v) The challenger flips a random
unbiased coin 𝑏 ∈ {0, 1} and sends the synthetic dataset and target
record {�̃�𝑏 , 𝒙𝑡 } to the adversary. (vi)The adversary tries to figure out
the true 𝑏 based on the observation of {�̃�𝑏 , 𝒙𝑡 }, i.e., 𝑏 ← A(�̃�𝑏 , 𝒙𝑡 ).
(vii) If 𝑏 = 𝑏, the adversary wins. Otherwise, the challenger wins.
This MI attack is summarized in Algorithm 2.

We apply the shadow modelling approach [46] to train the ad-
versary model A in Algorithm 2 through the following process.

(i) Train𝑀 generators, 𝐺01:𝑀 , on dataset 𝑋 \ 𝒙𝑡 by using different
random seeds 𝑠01:𝑀 in the training algorithm T . (ii) Apply𝐺01:𝑀 to
generate𝑀 synthetic datasets �̃�01:𝑀 . (iii) Train𝑀 generators,𝐺11:𝑀 ,
on dataset𝑋 by using different random seeds 𝑠11:𝑀 . (vi)Apply𝐺11:𝑀
to generate𝑀 synthetic datasets �̃�11:𝑀 . (v) Extract features of the
synthetic datasets �̃�01:𝑀 and �̃�11:𝑀 . (vi) Train the adversary model
A to distinguish whether the features are from �̃�01:𝑀 or �̃�11:𝑀 . The
training process is summarized in Algorithm 3.

In summary, the adversary is trained to detect whether the target
exists in the training data through the features of the synthetic
dataset. Then, we evaluate the capability of the adversary through
the MI attack. The success rate of the MI attack can reflect the
potential privacy leakage that external attackers can take advantage
of through the synthetic dataset and MI attack.

Algorithm 2:Membership Inference Attack
Input: Training algorithm T; dataset 𝑋 ; target record 𝒙𝑡 ; unbiased coin 𝑏; fresh

random seeds 𝑠0 and 𝑠1 ; generators of VFLGAN𝐺𝑖 ; synthetic dataset �̃� ;
Gaussian noise 𝒛.

Output: Success or failure.

1: 𝐺0
𝑠0←− T(𝑋 \ 𝒙𝑡 )

2: 𝐺1
𝑠1←− T(𝑋 )

3: �̃�0 ←− 𝐺0 (𝒛) & �̃�1 ←− 𝐺1 (𝒛)
4: 𝑏 ∼ {0, 1}
5: 𝑏 ←− A(�̃�𝑏 , 𝒙𝑡 )
6: if 𝑏 == 𝑏 then
7: Output success
8: else
9: Output failure
10: end if

Algorithm 3: Training the Adversary of MI Attack
Input: Training algorithms T and TA ; dataset 𝑋 ; target record 𝒙𝑡 ; random seeds
𝑠01:𝑀 and 𝑠11:𝑀 ; synthetic dataset �̃� ; feature extraction function 𝐸𝑥𝑡𝑟 ( ·) .

Output: Trained A.

1: 𝐺01:𝑀

𝑠01:𝑀←− T(𝑋 \ 𝒙𝑡 )
2: �̃�01:𝑀 ←− 𝐺01:𝑀

3: 𝐺11:𝑀

𝑠11:𝑀←− T(𝑋 )
4: �̃�11:𝑀 ←− 𝐺11:𝑀
5: 𝐹𝑒𝑎𝑡01:𝑀 ←− 𝐸𝑥𝑡𝑟 (�̃�01:𝑀 ) & 𝐹𝑒𝑎𝑡11:𝑀 ←− 𝐸𝑥𝑡𝑟 (�̃�11:𝑀 )
6: A ←− TA (𝐹𝑒𝑎𝑡01:𝑀 , 𝐹𝑒𝑎𝑡11:𝑀 )

4.2 Auditing Scheme for Intermediate Features
The MI attack and training process of the adversary applied in ASIF
are very similar to those (Algorithm 2 and Algorithm 3) of ASSD. So
we briefly introduce ASIF here and details can be found in Appendix
A.3. In ASIF, the challenger also trains two VFLGANs (𝜃0 and 𝜃1) on
datasets 𝑋 and 𝑋 \ 𝒙𝑡 , respectively, and uses their first part of local
discriminators to generate intermediate features. The adversary
tries to figure out whether the given intermediate feature is from
𝜃0 or 𝜃1. Similar to ASSD, ASIF applies shadow model attack as
the adversary model. The difference is that the adversary model of
ASSD is to figure out whether the target record 𝒙𝑡 appears in the
training data through a given synthetic dataset, while the adversary
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model of ASIF is to do the same job through given intermediate
features.

5 EXPERIMENTAL DETAILS AND RESULTS
In this section, we commence by detailing our experimental setup,
including the datasets, baseline methods, and evaluation metrics.
Following this, we rigorously assess the effectiveness of VFLGAN
and its privacy-enhanced counterpart, DP-VFLGAN. The section
concludes with an in-depth analysis of the privacy leakage associ-
ated with VFLGAN and DP-VFLGAN, employing our newly devel-
oped privacy auditing schemes, ASSD and ASIF.

5.1 Experiment Setup
5.1.1 Datasets. Weemploy three datasets for evaluation: theMNIST
dataset, Adult dataset [5], Wine Quality datasets [11], Credit dataset
[1], and HCV dataset [42]. All datasets utilized in this study are
derived from real-world sources. To simulate the scenario where
two distinct parties possess different attributes of the same group
of data samples, we divided each dataset into two sub-datasets
through a vertical split.

MNIST is a widely recognized dataset comprised of handwriting
digit images. In our experiment, each image is transformed into a
one-dimensional vector with 784 attributes. These attributes are
split between two clients in a vertically partitioned manner: the first
392 attributes to Client 1, and the remaining 392 attributes to Client
2. Each attribute is an integer ranging from 0 to 255. Although
image data is not typically partitioned vertically, we utilize this
to demonstrate the shortcomings of VertiGAN [29], which our
proposed VFLGAN addresses effectively.

Adult [5] is a prominent machine-learning dataset used for
classification tasks. It consists of fifteen attributes: fourteen features
describing various aspects of an individual, and a label indicating
whether the person’s income exceeds 50,000 dollars. The dataset
comprises six integer attributes and nine categorical attributes.

Wine quality [11] is used for classification tasks and includes
two subsets: Red-Wine-Quality and White-Wine-Quality. Each sub-
set contains twelve attributes, with eleven continuous attributes
serving as features of a wine sample and one categorical attribute
denoting the wine’s quality.

Credit [1] is a financial dataset used for classification tasks. It
consists of 21 attributes: 20 features describing various aspects of
an individual and a label indicating the person’s credit. The dataset
comprises 3 integer attributes and 18 categorical attributes.

HCV [42] is a medical dataset used for classification tasks. It con-
sists of 29 attributes: 28 features describing personal information
and medicine check results and a label indicating the HCV stag-
ing. The dataset comprises 13 integer attributes and 16 categorical
attributes.

Preprocessing. Same as [21], the MNIST images undergo nor-
malization, with all attributes scaled to the range of [−1, 1]. We
adopt a different strategy for the tabular datasets from that used in
[29]. Instead of transforming all attributes to binary form that can
cause information loss and potential privacy breach [47], we con-
vert categorical attributes into one-hot vectors while integer and
continuous attributes are standardized using the following formula:

𝑎 = (𝑎 − 𝜇𝑎)/𝜎𝑎, (22)

where 𝜇𝑎 and 𝜎𝑎 represent the mean and variance of the attribute
𝑎, respectively. The main architectures of generators for different
datasets are similar but the last activation layers vary according to
the different preprocessing. For generators trained on the MNIST
dataset, we utilize the tanh(·) function as the final activation layer.
This choice aligns with the fact that all standardized attributes
range from -1 to 1. In contrast, for generators trained on tabular
datasets, the approach differs. Here, the identity function is applied
as the final activation layer for normalized integer and continuous
attributes, acknowledging that these do not have a fixed range. For
one-hot attributes, we implement the Gumbel softmax function, as
detailed in [28].

5.1.2 Baseline models. First of all, we employ WGAN_GP [21] as
a baseline model, which is trained in a centralized manner, to estab-
lish a performance upper bound for models trained in a vertically
partitioned manner. Next, we select VertiGAN and DPLT as compar-
ative models to underscore the superiority of VFLGAN in vertically
partitioned scenarios. Another baseline is a modified version of
VFLGAN, named VFLGAN-base, which omits the second part of 𝐷1
and 𝐷2, allowing us to assess the impact of these modules. Readers
can refer to Appendix A.5 for details of VFLGAN-base.

We apply WGAN_GP to evaluate the proposed Gaussian mech-
anism and choose GS-WGAN [7] and DPSGD GANs [57, 62] as
baselines. This is due to their inability to provide a DP guarantee
for our proposed VFLGAN. Notably, we maintain consistent gener-
ator and discriminator architectures across various differentially
private mechanisms for a fair comparison. For comprehensive in-
formation on the architectures of the proposed VFLGAN and the
baselines, please see Appendix A.4. Furthermore, we apply Propo-
sition 4 to calculate the privacy budget for DPSGD GAN, ensuring a
fair comparison by providing a tighter DP bound. This proposition
is employed by both GS-WGAN and our mechanism for calculat-
ing the DP budget. We exclude PATE-GAN [30] in our baselines,
as its conceptual framework is akin to GS-WGAN but presents
challenges in training. Specifically, the authors of GS-WGAN [7]
reported difficulties in training PATE-GAN on the MNIST dataset.

5.1.3 Utility Metrics. According to [29], there are two primary
metrics for evaluating the utility of synthetic datasets: statistical
similarity and AI training performance. For statistical similarity, we
initially consider the Average Variant Distance (AVD) method, the
same as [29, 50], which measures discrepancies between real and
synthetic datasets. However, AVD is primarily applicable to discrete
attributes, making it less suitable for our study. Instead, we utilize
the Fréchet Distance (FD) [17], inspired by the Fréchet Inception
Distance (FID) [23]. A lower FD indicates a closer resemblance
between the real and synthetic datasets. We directly compute the
FD using raw data for tabular datasets. However, individual image
pixels lack meaningful semantic content, so for the MNIST dataset,
we employ an Autoencoder to derive more semantically rich latent
features, which are then used to calculate FD. The FD is calculated
as,

𝐹𝐷 (𝑋, �̃� ) = ∥𝝁 − �̃�∥22 + Tr
(
𝑽 + �̃� − 2

(
𝑽 �̃�

)1/2)
, (23)

where Tr(·) calculates the trace of the input matrix, 𝝁 and 𝑽 denote
themean and variance of the real dataset𝑋 , and �̃� and �̃� are those of
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the synthetic dataset �̃� . We evaluate AI training performance using
accuracy and F1 scores in four different settings: training and testing
on real data (TRTR), on synthetic data (TSTS), training on real data
and testing on synthetic data (TRTS), and vice versa (TSTR). The
TRTR setting serves as a baseline for AI model performance. The
similarity of metrics in TSTS, TRTS, and TSTR settings to TRTR
indicates how closely the synthetic data distribution resembles
real data distribution. Notably, higher accuracy and F1 scores in
TSTS, TRTS, and TSTR settings do not necessarily imply higher
synthetic data quality. For the unlabeled synthetic MNIST data, we
use the Inception Score (IS) [4], which assesses how convincing the
synthetic images are in belonging to real labels. IS is calculated as:

IS(𝐺) = exp (E�̃�𝐷𝐾𝐿 (𝑝 (𝑦 | �̃�)∥𝑝 (𝑦))) , (24)

where 𝑝 (𝑦 | �̃�) ) is the conditional class distribution from the In-
ception model [49], and 𝑝 (𝑦) =

∫
�̃� 𝑝 (𝑦 | �̃�)𝑝𝑔 (�̃�) is the marginal

class distribution. The IS measures the distribution distance be-
tween 𝑝 (𝑦) and 𝑝 (𝑦 | �̃�). A higher IS indicates a more realistic
generation of synthetic data. Since the Inception model is not op-
timized for MNIST, we replace it with an MLP model trained for
digit classification on the MNIST dataset.

5.2 Utility Results of VFLGAN
In this section, we evaluate the performance of VFLGAN using
the above-mentioned six datasets, chosen for their relevance and
representativeness in diverse scenarios. We delve into a detailed
comparison of VFLGAN against established benchmarks, showcas-
ing its enhanced ability to capture intricate correlations among at-
tributes distributed across different parties. Additionally, we employ
a suite of robust evaluation metrics, carefully selected to provide a
multi-faceted view of VFLGAN’s performance. These metrics are
designed to assess the distribution similarity between synthetic
datasets and real datasets and the applicability of synthetic datasets
in downstream tasks, thereby offering a holistic understanding of
the model’s capabilities and superiority in the realm of synthetic
data generation.

5.2.1 MNIST Dataset. All models were trained for 300 epochs on
the MNIST dataset, and the FD curves, as shown in the left part of
Fig. 5, reveal insightful trends. WGAN_GP emerges as the top per-
former in terms of FD, with VFLGAN closely following. VFLGAN-
base also surpasses VertiGAN, indicating a more effective genera-
tion of vertically partitioned data through VFL compared to HFL.
For a practical demonstration, we selected models with the low-
est FD across training epochs to generate synthetic images. The
outcomes, as illustrated in Fig. 6, reveal a marked difference in the
quality of the generated images. Specifically, the synthetic dataset
generated by VFLGAN has an FD score approximately twice as high
as the synthetic dataset produced by WGAN_GP, while VertiGAN’s
synthetic dataset has an FD score nearly seven times higher. This
gap underscores the substantial advantage of VFLGAN over Ver-
tiGAN. Moreover, about half of VertiGAN’s synthetic samples are
either unrecognizable or lack continuity. On the other hand, while
the VFLGAN-base produces more discernible images, some noise
is evident, likely a result of information loss inherent to the VFL
framework. To address this, we integrated an additional component
into𝐷1 and𝐷2, i.e., the second part of𝐷1 and𝐷2 and corresponding

loss functions, to enhance the similarity of the generated �̃�1 and �̃�2
to the real samples 𝒙1 and 𝒙2, as per Equations (14) and (15). This
modification is evident in the improved clarity and recognizability
of the synthetic data generated by VFLGAN. The right side of Fig. 5
illustrates the IS curves during training. The IS for real images sets
a benchmark for synthetic ones. Consistent with the FD results,
WGAN_GP leads in terms of generative model performance, with
VFLGAN coming in third but maintaining a significant lead over
VertiGAN. The IS performance of VFLGAN-base also exceeds that
of VertiGAN. Ultimately, the alignment of performance rankings
between IS and FD further affirms the superiority of VFLGAN in
generating high-quality synthetic data.

Figure 5: FD curves (lower is better) and IS curves (higher is
better) on the MNIST dataset.

Figure 6: Synthetic digit samples.

5.2.2 Tabular Datasets. Now, we evaluate the proposed methods
on five tabular datasets, i.e., Adult [5], Red-Wine-Quality andWhite-
Wine-Quality [11], Credit [1], and HCV [42]. The upper five figures
in Fig. 7 show the FD curves of various methods during train-
ing on the five datasets, and the lowest FD scores during training
are highlighted in the figures. From Fig. 7, we can see that VFL-
GAN and VFLGAN-base show similar performance to WGAN_GP
(trained in a centric manner) on all five datasets. Besides, VFLGAN
and VFLGAN-base show superior performance than VertiGAN on
all five datasets w.r.t. the lowest FD score, which means the per-
formance of VFLGAN and VFLGAN-base almost reach the upper
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Figure 7: FD curves of different methods during training on the five datasets. The upper five figures show the FD curves of
non-DP models. The lower five figures show the FD curves of DP models satisfying (10,𝛿)-DP. Minimum values on each curve
are shown by legends. The discontinuity in the FD curves on HCV datasets is caused by nan value when calculating FD.

bound. Notably, the performance of VertiGAN w.r.t. FD score is
far worse than other methods on Adult, Red-Wine-Quality, and
White-Wine-Quality datasets while the performance of VertiGAN
is close to other methods on Credit and HCV datasets. One possible
reason is that some attributes have a large value range in Adult,
Red-Wine-Quality, andWhite-Wine-Quality datasets and VertiGAN
is not effective in learning the distribution of those attributes. On
the contrary, the attributes’ value ranges are limited in Credit and
HCV datasets and VertiGAN achieves better performance w.r.t. FD.

We choose the models with the lowest FD among all training
epochs to generate synthetic datasets with the same size as the
real dataset. Then, we train random forest (RF) models to classify
the data samples by the classification target attributes in the five
datasets, using all other attributes under TRTR, TSTS, TRTS, and
TSTR settings as introduced in Section 5.1.3. We apply the accuracy
and F1 score to evaluate the performance of RF models. Note that
under TRTR and TSTS settings, we apply cross-validation with 10
evenly split sub-sets and report themean accuracy and F1 score. The
experiment results of non-DP methods are shown in the upper five
sub-tables in Table 1. TRTR setting provides the baseline accuracy
and F1 score. The accuracy and F1 scores of other settings should
be similar to those under the TRTR setting if the synthetic dataset is
similar to the real dataset. Thus, we calculate the absolute difference
of the accuracy and F1 scores between the TRTR and other settings
as the evaluation metric. From the upper five sub-tables in Table
1, we can see that VFLGAN and VFLGAN-base generate better
synthetic data than VertiGAN by a significant margin except for
the HCV dataset. Moreover, the metrics of VFLGAN, VFLGAN-base,
and WGAN_GP are very close, which means the performance of
VFLGAN and VFLGAN-base almost reaches the upper bound. For
the HCV dataset, the performance of the RF model is poor even for
the TRTR setting, which means that this dataset is not suited for
classification. In this case, we can refer to the FD for evaluation.
As we mentioned before, VFLGAN, VFLGAN-base, and WGAN_GP
outperform VertiGAN according to FD (Fig. 7).

Takeaway: The shared discriminator 𝐷𝑠 plays a pivotal role in
guiding the generators towards accurately learning the correlations
among attributes distributed across different parties. Additionally,
the second part of the discriminators𝐷1 and𝐷2 contributes to align-
ing the distribution of the synthetic data �̃�1 and �̃�2 more closely
with that of real data 𝒙1 and 𝒙2, respectively. The performance
gap between VFLGAN and VFLGAN-base is noticeable when the
attribute number is large and correlations are closely related, e.g.,
MNIST, but the performance gap between VFLGAN and VFLGAN-
base is ignorable when the number of attributes is small. Further-
more, our evaluation highlights the limitations of relying solely
on TSTR metrics for assessing statistical utility, as evidenced by
VertiGAN’s comparable performance under TSTR on the Adult
dataset. In some cases like HCV, some datasets are not suitable
for classification, and we need to refer to FD for evaluation. This
finding underlines the critical importance of utilizing a diverse set
of evaluation methods, including TSTS, TRTS, and FD, to ensure a
comprehensive analysis of synthetic datasets. Moreover, we observe
that while 𝑘-way AVD applied in [29, 50] can measure the similarity
of discrete attributes, it becomes computationally intensive as 𝑘
increases and cannot support continuous data. Conversely, FD pro-
vides an efficient means to quantify the overall attribute similarity
with minor computational demand, facilitating the selection of the
optimal model with the lowest FD across training epochs. These
insights advocate for the adoption of these metrics as standards in
future research.

5.3 Utility Results of DP-VFLGAN
In this section, we first evaluate the effectiveness of the proposed
Gaussian mechanism. Then, we evaluate the utility of the proposed
DP-VFLGAN.

5.3.1 Effectiveness of the Proposed Gaussian Mechanism. We use
the MNIST dataset to evaluate the effectiveness of different mecha-
nisms. The DP budget is set as (10, 1 × 10−5), i.e., the generators
trained by all mechanisms satisfy (10, 1 × 10−5)-DP. As mentioned
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Table 1: Classification Accuracy and F1 score of Random Forest Models to Evaluate the AI Training Utility of the Synthetic
Data on the Wine-Quality Datasets and Adult Dataset. Absolute different metric values compared with the TRTR setting are
shown in the bracket and the main evaluation metric is ‘Total Difference’, the lower the better.

TRTR TSTS TRTS TSTR
Methods Acc F1 Acc F1 Acc F1 Acc F1 Total Difference

Red-Wine-Quality
WGAN_GP[21] 0.59 0.26 0.57 (0.02) 0.28 (0.02) 0.55 (0.03) 0.25 (0.01) 0.58 (0.01) 0.26 (0.00) 0.09
VertiGAN[29] 0.59 0.26 0.53 (0.06) 0.21 (0.05) 0.51 (0.08) 0.19 (0.07) 0.39 (0.20) 0.14 (0.12) 0.58

VFLGAN-base (ours) 0.59 0.26 0.55 (0.04) 0.27 (0.01) 0.51 (0.08) 0.21 (0.05) 0.55 (0.04) 0.27 (0.01) 0.23
VFLGAN (ours) 0.59 0.26 0.56 (0.03) 0.26 (0.00) 0.54 (0.05) 0.24 (0.02) 0.58 (0.01) 0.26 (0.00) 0.11

White-Wine-Quality
WGAN_GP[21] 0.53 0.21 0.53 (0.00) 0.24 (0.03) 0.53 (0.00) 0.21 (0,00) 0.53 (0.00) 0.20 (0.01) 0.04
VertiGAN[29] 0.53 0.21 0.53 (0.00) 0.16 (0.05) 0.48 (0.05) 0.16 (0.05) 0.47 (0.06) 0.14 (0.07) 0.28

VFLGAN-base (ours) 0.53 0.21 0.53 (0.00) 0.21 (0.00) 0.52 (0.01) 0.20 (0.01) 0.52 (0.01) 0.20 (0.01) 0.04
VFLGAN (ours) 0.53 0.21 0.51 (0.02) 0.20 (0.01) 0.50 (0.03) 0.19 (0.02) 0.51 (0.02) 0.19 (0.02) 0.12

Adult Dataset
WGAN_GP[21] 0.82 0.72 0.82 (0.00) 0.74 (0.02) 0.81 (0.01) 0.71 (0.01) 0.72 (0.10) 0.69 (0.03) 0.17
VertiGAN[29] 0.82 0.72 0.59 (0.23) 0.37 (0.35) 0.53 (0.29) 0.48 (0.24) 0.75 (0.07) 0.43 (0.29) 1.47

VFLGAN-base (ours) 0.82 0.72 0.81 (0.01) 0.66 (0.06) 0.80 (0.02) 0.68 (0.04) 0.76 (0.06) 0.72 (0.00) 0.19
VFLGAN (ours) 0.82 0.72 0.82 (0.00) 0.65 (0.07) 0.79 (0.03) 0.65 (0.07) 0.79 (0.03) 0.54 (0.18) 0.38

Credit Dataset
WGAN_GP[21] 0.75 0.67 0.68 (0.07) 0.55 (0.12) 0.67 (0.08) 0.56 (0.11) 0.67 (0.08) 0.53 (0.14) 0.60
VertiGAN[29] 0.75 0.67 0.67 (0.08) 0.47 (0.20) 0.64 (0.11) 0.46 (0.21) 0.68 (0.07) 0.42 (0.25) 0.92

VFLGAN-base (ours) 0.75 0.67 0.72 (0.03) 0.67 (0.00) 0.64 (0.11) 0.51 (0.16) 0.63 (0.12) 0.58 (0.09) 0.51
VFLGAN (ours) 0.75 0.67 0.77 (0.02) 0.45 (0.22) 0.69 (0.06) 0.48 (0.19) 0.70 (0.05) 0.42 (0.25) 0.79

HCVEGY Dataset
WGAN_GP[21] 0.23 0.20 0.29 (0.06) 0.17 (0.03) 0.23 (0.00) 0.21 (0.01) 0.24 (0.01) 0.16 (0.04) 0.15
VertiGAN[29] 0.23 0.20 0.30 (0.07) 0.21 (0.01) 0.25 (0.02) 0.22 (0.02) 0.24 (0.01) 0.14 (0.06) 0.19

VFLGAN-base (ours) 0.23 0.20 0.31 (0.08) 0.26 (0.06) 0.24 (0.01) 0.20 (0.00) 0.27 (0.04) 0.17 (0.03) 0.22
VFLGAN (ours) 0.23 0.20 0.29 (0.06) 0.22 (0.02) 0.28 (0.05) 0.24 (0.04) 0.25 (0.02) 0.17 (0.03) 0.22

Red-Wine-Quality (10, 5 × 1010−4)-DP
WGAN_GP[21] 0.59 0.26 0.56 (0.03) 0.27 (0.01) 0.56 (0.03) 0.25 (0.01) 0.56 (0.03) 0.24 (0.02) 0.13
VertiGAN[29] 0.59 0.26 0.62 (0.03) 0.13 (0.13) 0.46 (0.13) 0.16 (0.10) 0.40 (0.19) 0.10 (0.16) 0.74

DPLT 0.59 0.26 0.37 (0.22) 0.26 (0.00) 0.36 (0.23) 0.22 (0.04) 0.31 (0.28) 0.16 (0.10) 0.87
VFLGAN-base (ours) 0.59 0.26 0.59 (0.00) 0.23 (0.03) 0.59 (0.00) 0.23 (0.03) 0.57 (0.02) 0.21 (0.05) 0.13

VFLGAN (ours) 0.59 0.26 0.61 (0.02) 0.22 (0.04) 0.60 (0.01) 0.24 (0.02) 0.55 (0.04) 0.20 (0.06) 0.19
White-Wine-Quality (10, 2 × 1010−4)-DP

WGAN_GP[21] 0.53 0.21 0.55 (0.02) 0.24 (0.03) 0.53 (0.00) 0.20 (0.01) 0.52 (0.01) 0.20 (0.01) 0.08
VertiGAN[29] 0.53 0.21 0.70 (0.17) 0.22 (0.01) 0.48 (0.05) 0.17 (0.04) 0.38 (0.15) 0.12 (0.09) 0.51

DPLT 0.53 0.21 0.43 (0.10) 0.15 (0.06) 0.42 (0.11) 0.17 (0.04) 0.49 (0.04) 0.14 (0.07) 0.42
VFLGAN-base (ours) 0.53 0.21 0.54 (0.01) 0.19 (0.02) 0.53 (0.00) 0.19 (0.02) 0.52 (0.01) 0.17 (0.04) 0.10

VFLGAN (ours) 0.53 0.21 0.52 (0.01) 0.16 (0.05) 0.51 (0.02) 0.19 (0.02) 0.51 (0.02) 0.17 (0.04) 0.16
Adult Dataset (10, 1 × 1010−5)-DP

WGAN_GP[21] 0.82 0.72 0.84 (0.02) 0.78 (0.06) 0.82 (0.00) 0.72 (0.00) 0.75 (0.07) 0.71 (0.01) 0.16
VertiGAN[29] 0.82 0.72 0.66 (0.16) 0.40 (0.32) 0.56 (0.26) 0.50 (0.22) 0.75 (0.07) 0.43 (0.29) 1.32

DPLT 0.82 0.72 0.60 (0.22) 0.55 (0.17) 0.48 (0.34) 0.44 (0.28) 0.31 (0.51) 0.30 (0.42) 1.94
VFLGAN-base (ours) 0.82 0.72 0.82 (0.00) 0.72 (0.00) 0.80 (0.02) 0.69 (0.03) 0.82 (0.00) 0.72 (0.00) 0.05

VFLGAN (ours) 0.82 0.72 0.83 (0.01) 0.78 (0.06) 0.82 (0.00) 0.73 (0.01) 0.75 (0.07) 0.71 (0.01) 0.16
Credit Dataset (10, 1 × 1010−3)-DP

WGAN_GP[21] 0.75 0.67 0.78 (0.03) 0.70 (0.03) 0.74 (0.01) 0.63 (0.04) 0.71 (0.04) 0.63 (0.04) 0.19
VertiGAN[29] 0.75 0.67 0.70 (0.05) 0.44 (0.23) 0.64 (0.11) 0.48 (0.19) 0.69 (0.06) 0.42 (0.25) 0.89

DPLT 0.75 0.67 0.54 (0.21) 0.45 (0.22) 0.53 (0.22) 0.48 (0.19) 0.65 (0.10) 0.53 (0.14) 1.08
VFLGAN-base (ours) 0.75 0.67 0.66 (0.09) 0.43 (0.24) 0.63 (0.14) 0.49 (0.18) 0.69 (0.06) 0.45 (0.22) 0.93

VFLGAN (ours) 0.75 0.67 0.72 (0.03) 0.65 (0.02) 0.67 (0.08) 0.54 (0.13) 0.67 (0.08) 0.56 (0.11) 0.45
HCVEGY Dataset (10, 8 × 1010−4)-DP

WGAN_GP[21] 0.23 0.20 0.28 (0.05) 0.22 (0.02) 0.26 (0.03) 0.23 (0.03) 0.24 (0.01) 0.12 (0.08) 0.22
VertiGAN[29] 0.23 0.20 0.29 (0.06) 0.19 (0.01) 0.25 (0.02) 0.22 (0.02) 0.26 (0.03) 0.12 (0.08) 0.22

DPLT 0.23 0.20 0.41 (0.18) 0.17 (0.03) 0.30 (0.07) 0.25 (0.05) 0.25 (0.02) 0.11 (0.09) 0.44
VFLGAN-base (ours) 0.23 0.20 0.31 (0.08) 0.25 (0.05) 0.24 (0.01) 0.21 (0.01) 0.24 (0.01) 0.10 (0.10) 0.26

VFLGAN (ours) 0.23 0.20 0.31 (0.08) 0.20 (0.00) 0.23 (0.00) 0.21 (0.01) 0.25 (0.02) 0.17 (0.03) 0.14

TRTR: Train on real test on real; TSTS: train on synthetic test on synthetic; TRTS: train on real test on synthetic; TSTR: train on synthetic test on real; Ac: accuracy; F1: F1-score.

before, we apply the same network architecture as the official im-
plementation of WGAN_GP when evaluating various differential
privacy methods. The detailed architecture of WGAN_GP is pre-
sented in Appendix A.4. After training, we choose the generators
with the lowest FD among training epochs to generate synthetic
samples and the results are shown in Fig. 8. From the figure, we can
see that our proposed Gaussian mechanism provides significantly
better digits compared with that of DPSGD-GAN and GS_WGAN
when satisfying the same DP guarantee. There are only two dif-
ferences between our implementation of GS_GAN and that of the

original paper. First, the model architectures are different for fair
comparison. Second, we use unconditional GAN and conditional
GAN is applied in the original paper. Considering the excellent
results shown in [7], We think GS_WGAN relies on the advanced
network architecture applied in the official implementation.

Takeaway: Compared with DPSGD, our proposed Gaussian
mechanism introduces significantly less noise to the parameter gra-
dients, thus preserving more useful information. Unlike GS_WGAN,
ourmechanism does not necessitate partitioning the training dataset
into multiple subsets. It is widely recognized that smaller datasets
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can adversely affect the performance of GANs. Consequently, when
operating under the same privacy budget, the GAN trained with our
Gaussian mechanism consistently outperforms its counterparts.

Figure 8: Synthetic digit samples satisfying (10, 1 × 10−5)-DP.

5.3.2 Utility Results of DP-VFLGAN. We apply the proposed Gauss-
ian mechanism to WGAN_GP to provide it with a DP guarantee.
We also apply the proposed Gaussian mechanism to VertiGAN for
fair comparison instead of using the DPSGD, which is applied in
the original paper, since we have shown that our mechanism can
provide a much tighter DP guarantee than DPSGD. We set 𝜖 = 10
for all methods. For Adult and MNIST datasets, we set 𝛿 = 1 × 10−5
like [7]. We set 𝛿 = 5× 10−4 and 𝛿 = 2× 10−4 for Red-Wine-Quality
and White-Wine-Quality, respectively, since they are small datasets
with only 1599 and 4898 records, respectively. We set 𝛿 = 8 × 10−4
and 𝛿 = 1 × 10−3 for HCV and Credit, respectively, since they are
small datasets with only 1385 and 1000 records, respectively. We use
the same 𝑇𝑚𝑎𝑥 and 𝜎 for all the DL methods, which are computed
according to Section 3.5 to meet the DP budget.

The performance of the proposed DP-VFLGAN on the MNIST
dataset is shown in Fig. 8.We can see the FD of DP-VFLGAN is lower
than the FDs of non-DP VFLGAN-base and non-DP VertiGAN in Fig
6, which shows the effectiveness of both VFLGAN and the proposed
Gaussian mechanism. The FD curves during training are shown in
the bottom five figures of Fig. 7. Similar to the non-DP methods,
the DP-WGAN_GP, DP-VFLGAN, and DP-VFLGAN-base achieve
lower FD than DP-VertiGAN. We do not show the FD performance
of DPLT in Fig. 7 since it is too high compared with those of GAN-
based methods. The AI training utility of different DP methods is
shown in Table 1. We can see that compared with the non-DP ver-
sions of WGAN_GP, VFLGAN, and VFLGAN-base, the performance
drop of the corresponding DP versions is limited, which shows
the effectiveness of the proposed Gaussian mechanism. Moreover,
the AI training utility of DP-VFLGAN and DP-VFLGAN-base is
close to that of DP-WGAN_GP, which shows the effectiveness of
the proposed VFLGAN framework. The performance increase of

DP-VFLGAN-base and DP-VFLGAN on the Adult dataset may be
caused by randomness during training. In addition, all GAN-based
methods show better performance than DPLT w.r.t. the AI training
utility.

5.4 Empirical Privacy Analysis
In this section, we first audit the privacy risk of the synthetic
datasets generated by VFLGAN and DP-VFLGAN with ASSD. Then,
we show that the proposed ASSD is robust compared to current MI
attacks for synthetic datasets. Last, we estimate the privacy risk of
intermediate features of ASIF.

Table 2: Mean and Standard Deviation of the MI attack Accu-
racy through Synthetic Datasets Generated by VFLGAN and
DP-VFLGAN.

Naive Corr Naive Corr
Record 1 (Adult) Record 2 (Adult)

Non-DP 0.65(0.09) 0.59(0.05) 0.58(0.10) 0.55(0.11)
(10, 10−5)-DP 0.46(0.06) 0.47(0.13) 0.51(0.12) 0.44(0.10)
(5, 10−5)-DP 0.50(0.09) 0.49(0.10) 0.50(0.08) 0.48(0.11)

Record 1 (R wine) Record 2 (R wine)
Non-DP 0.59(0.11) 0.48(0.07) 0.51(0.05) 0.51(0.11)

(10, 5 × 1010−4)-DP 0.53(0.12) 0.47(0.13) 0.52(0.18) 0.48(0.12)
(5, 5 × 1010−4)-DP 0.48(0.11) 0.50(0.07) 0.43(0.09) 0.51(0.12)

Record 1 (W wine) Record 2 (W wine)
Non-DP 0.55(0.12) 0.57(0.12) 0.60(0.06) 0.50(0.09)

(10, 2 × 1010−4)-DP 0.54(0.11) 0.39(0.15) 0.52(0.05) 0.51(0.06)
(5, 2 × 1010−4)-DP 0.44(0.03) 0.51(0.14) 0.53(0.09) 0.51(0.13)

Naive: The Adversary using naive feature; Corr: The Adversary using correlation
feature; Non-DP: VFLGAN; (𝜖, 𝛿)-DP: DP-VFLGAN providing (𝜖, 𝛿)-DP guarantee.

5.4.1 Auditing Synthetic Dataset with ASSD. In implementing the
MI Attack, our approach involved two distinct phases of genera-
tor training. First, we trained 100 generators on the entire private
dataset, each with a unique random seed. Concurrently, we trained
another set of 100 generators on the same dataset but excluding a
specific target record, ensuring each generator had a different ran-
dom seed. This setup enabled us to generate 200 synthetic datasets
tailored to assess the presence of the target record. For the training
of our model, we randomly selected 140 synthetic datasets—70 gen-
erated from the complete dataset and 70 excluding the target record.
The remaining 60 datasets were used for testing purposes. The core
of our analysis involved training a Random Forest model to identify
whether the target record was part of the training data, based on
the characteristics of these synthetic datasets. After testing the Ran-
dom Forest model, we repeated the selection, training, and testing
process five times to ensure robustness in our results. This repeti-
tion allowed us to calculate the mean and standard deviation of the
attack’s AUC score, providing a quantitative measure of privacy
leakage. A higher AUC score indicated a more significant privacy
risk, while an AUC score at or below 0.5 suggested minimal privacy
exposure. Consistent with methodologies in previous studies [47],
we employed naive and correlation features for the MI attacks. We
decided not to include results from histogram features in our anal-
ysis, as they showed little potential for privacy compromise in our
experiments.

We apply the methods of [47] and [38], to select the most vul-
nerable records in the training data with the proposed MI attack.
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Table 3: AUC Performance of Different Attacking Methods on Synthetic Datasets.

Dataset
Methods LOGAN 0 [22] LOGAN D1 [22] MC [24] GAN-leaks 0 [8] GAN-leaks CAL [8] DOMIAS [52] ASSD(ours)

R-Wine (100/1000) 0.47 0.48 0.60 0.61 0.58 0.63 0.98
R-Wine (200/1000) 0.52 0.50 0.52 0.55 0.55 0.54 0.95
W-Wine (100/2000) 0.48 0.46 0.53 0.54 0.57 0.60 0.87
W-Wine (200/2000) 0.50 0.50 0.55 0.56 0.59 0.58 0.92
Housing (100/10000) 0.51 0.52 0.54 0.57 0.55 0.60 0.81
Housing (200/10000) 0.54 0.54 0.50 0.51 0.50 0.50 0.89

Dataset (#𝑁1/#𝑁2): the size of training dataset and test dataset is 𝑁1 and the size of reference dataset is 𝑁2 . Note the proposed auditing method (ours) does not need test and
reference datasets.

Detailed methodologies for selecting these vulnerable records are
described in Appendix A.7. We chose the two most vulnerable
records from each dataset for this analysis to measure the potential
privacy leakage. The results of this assessment are presented in Ta-
ble 2. We observe that the attack AUC scores on datasets generated
by VFLGAN consistently exceed 50%, indicating a certain risk of
privacy leakage. In contrast, datasets generated by DP-VFLGAN
show attack AUC scores close to or below 50%. This suggests a
substantial reduction in privacy risk, highlighting the effectiveness
of the DP-VFLGAN in protecting against MI attacks.

5.4.2 Evaluating the Effectiveness of ASSD. Now, we compare the
proposedASSDwith several currentMI attacks for synthetic datasets
proposed in [8, 22, 24, 52] on three datasets, i.e., Red-Wine-Quality,
White-Wine-Quality, and Housing [43]. Housing is applied in the
benchmark proposed in [52]. Since those MI attacks cannot support
categorical attributes, we add two new datasets to the benchmark
with minimum categorical attributes, i.e., Red-Wine-Quality and
White-Wine-Quality. We also apply We set the size of training
datasets to 100 and 200. All the attacks in [8, 22, 24, 52] require a
test dataset with the same size as the training dataset. Moreover,
Domias, Logan D1, and Gan-leak cal require a reference dataset,
which presents the same distribution as the training dataset. On
the contrary, the proposed ASSD does not require a test or refer-
ence dataset. The attack AUC scores are shown in Table 3. ASSD
present a superior performance than other attacks, which shows
the effectiveness of the proposed auditing scheme. We can infer
that current attacks in [8, 22, 24, 52] won’t succeed when the AUC
score of ASSD is small (e.g., less than ∼0.6).

Takeaway: ASSD is more effective than other attacks because
ASSD targets the vulnerable record in the training dataset selected
by the method of [47] while other attacks target every record in the
training dataset. Besides, ASSD applies the leave-one-out setting,
which is stronger than auxiliary datasets but more realistic and
practical for data holders. The notable disparity in AUC scores of
ASSD between Table 3 and Table 2 can be attributed to variations
in the sizes of the respective training datasets. In Table 3, the size of
training datasets is 100 and 200 while in Table 2, the whole datasets
are used to train the models. It’s well known that a smaller size can
cause more privacy leakage [52].

5.4.3 Auditing Intermediate Features with ASIF. The implementa-
tion of ASIF is similar to that of ASSD in Section 5.4.1. We also train
200 pairs (𝐷1 and 𝐷2) of local discriminators, in which 100 pairs
are trained on the complete dataset and 100 pairs are trained on the
same dataset but excluding a specific target record (𝑥𝑡 ), which is se-
lected by the methods in [47]. We input the complete dataset to the

local discriminators to generate 200 sets of intermediate features,
of which 140 sets are used for training, and 60 sets are used for the
test. Then, we train a random forest model to detect whether 𝑥𝑡 is
in the training dataset given a set of intermediate features. From
Table 4, we can see that the privacy risk of intermediate features is
minor, even for non-DP models.

Table 4: Mean and Standard Deviation of the MI attack Accu-
racy through Intermediate Features Generated by VFLGAN
and DP-VFLGAN.

Naive Corr Naive Corr
Record 1 (Adult) Record 2 (Adult)

Non-DP 0.49(0.12) 0.58(0.09) 0.53(0.09) 0.55(0.12)
(10, 10−5)-DP 0.49(0.14) 0.50(0.08) 0.54(0.11) 0.48(0.12)
(5, 10−5)-DP 0.49(0.03) 0.50(0.12) 0.54(0.09) 0.51(0.10)

Record 1 (R wine) Record 2 (R wine)
Non-DP 0.54(0.09) 0.55(0.14) 0.52(0.17) 0.54(0.12)

(10, 5 × 1010−4)-DP 0.53(0.04) 0.50(0.07) 0.54(0.09) 0.50(0.09)
(5, 5 × 1010−4)-DP 0.51(0.09) 0.45(0.03) 0.54(0.02) 0.53(0.07)

Record 1 (W wine) Record 2 (W wine)
Non-DP 0.52(0.10) 0.50(0.08) 0.51(0.09) 0.49(0.13)

(10, 2 × 1010−4)-DP 0.52(0.10) 0.52(0.12) 0.48(0.10) 0.51(0.12)
(5, 2 × 1010−4)-DP 0.49(0.14) 0.56(0.07) 0.52(0.07) 0.53(0.08)

Naive: The Adversary using naive feature; Corr: The Adversary using correlation
feature; Non-DP: VFLGAN; (𝜖, 𝛿)-DP: DP-VFLGAN providing (𝜖, 𝛿)-DP guarantee.

6 CONCLUSION AND FUTUREWORK
In this paper, we found that VertiGAN published in PETS 2023 [29]
can not effectively learn the correlation among attributes between
different parties, which leads to the distribution of synthetic data
being different from that of the real data. To resolve this issue, we
proposed the first VFL-based GAN, VFLGAN, for vertically parti-
tioned data publication. Experiment results show that VFLGAN
significantly improves the quality of synthetic data compared with
the state-of-the-art methods. We also proposed a Gaussian mech-
anism for VFLGAN to make the generators satisfy a rigorous DP
guarantee. Experimental results show that the proposed Gaussian
mechanism can produce better synthetic data compared with cur-
rent differentially private mechanisms under the same DP budget.
Besides, the utility drop of DP-VFLGAN is limited compared to
its non-DP version. Additionally, we propose a practical privacy
leakage measurement with realistic assumptions since the DP is
too conservative. Our experimental results show that DP-VFLGAN
can effectively mitigate privacy breaches. However, the proposed
privacy leakage measurement can only estimate the privacy breach
from the view of external attackers. Our future work will be on
estimating the privacy breach from the view of internal attackers.
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A APPENDIX
A.1 Literature Review
This section presents a detailed literature review. In this regard,
we first introduce the recent works about vertically partitioned
data publication methods that provide DP guarantees. Next, we
review multiple differentially private mechanisms for GANs and
explain why they are unsuitable for the proposed VFLGAN. Last,
we describe some privacy measurements and attacks on synthetic
datasets inspired bywhichwe propose our practical auditing schemes
to measure privacy leakage.

A.1.1 Vertically Partitioned Data Publication. In [41], the authors
proposed a secure two-party algorithm, DistDiffGen, that applies
the exponential mechanism for vertically partitioned data publica-
tion and satisfies 𝜖-DP. However, their protocol only works under
the two-party scenario and the data utility deteriorates fast when
the number of attributes increases [41]. Besides, DistDiffGen is
tailored to classification tasks and cannot guarantee meaningful
utility for many common data analysis tasks [50]. In [50], the au-
thors proposed DPLT for vertically partitioned data publication,
which satisfies 𝜖-DP. However, DPLT is limited to discrete datasets.
Besides, DPLT evenly splits the privacy budget over all the attribute

pairs, which is unreasonable since the information leakage levels
of different attributes are usually different. As pointed out in [29],
the noise scale may increase exponentially with the increased data
dimensionality, which can cause a significant utility loss. The first
GAN-based vertically partitioned data publication method, Verti-
GAN, was proposed in [29] to solve the above issues. VertiGAN
satisfies (𝜖, 𝛿)-DP, where the DP guarantee is achieved by adding
noise when updating discriminators’ parameters so the privacy
budget can be distributed more intelligently among attributes and
the curse of dimensionality can be mitigated. However, the discrim-
inator is updated according to FedAvg [37], a Horizontal Federated
Learning (HFL)-based method. However, VeriGAN is less effective
in learning the correlation among the attributes of different par-
ties. This paper applies a VFL framework to learn the correlation
mentioned above.

A.1.2 Differentially Private Generative Adversary Networks. For
general deep learning models, there are mainly two kinds of train-
ing methods to make the trained models satisfy differential privacy,
i.e., Differentially Private Stochastic Gradient Descent (DPSGD)
[45, 61] and Private Aggregation of Teacher Ensembles (PATE) [44].
In [57, 62], the authors proposed variants of DPSGD to train the
discriminator and apply non-private SGD to train the generator.
The rationale is that only the discriminator can access the training
data, and the generator learns from the discriminator to generate
better synthetic data. According to the post-processing theorem,
Proposition 5, the generator satisfies the same level of DP as the
discriminator [57, 62]. However, this method is unsuitable for our
VFLGAN, shown in Fig. 4, since each party cannot control the pa-
rameter update of the shared discriminator. PATE-GAN [30] adopts
the PATE framework to provide differential privacy. First, multiple
non-private discriminators are trained on non-overlapping sub-
sets. Then, the non-private discriminators are applied to train a
student discriminator that satisfies (𝜖, 𝛿)-DP. Last, the student dis-
criminator is used to train the generator. However, this method is
inapplicable to our VFL-based scheme since the non-private teacher
discriminators can cause information leakage through the shared
discriminator. GS-WGAN [7] provides another solution. The dis-
criminators are trained in a non-private way while the backward
gradients between the discriminators and the generator are sani-
tized with a Gaussian mechanism to make the generator satisfy a
(𝜖, 𝛿)-DP. Besides, the privacy guarantee is enhanced by the sub-
sampling procedure [54], i.e., dividing the training dataset into
multiple non-overlapping subsets as [30] and training multiple dis-
criminators on each subset. However, this framework cannot be
adapted to VFLGAN since the information can be leaked through
the shared discriminator when training non-private discriminators.

A.1.3 PrivacyMeasurements and Attacks on Synthetic Dataset. Some
papers [18, 35, 58] utilize the distribution similarity between the
synthetic dataset and the training dataset to measure the potential
privacy leakage. In [58], the privacy loss is measured by nearest
neighbour adversarial accuracy, and both training and test datasets
are required to calculate the privacy loss. In [35], the authors first
sort the original and synthetic data records according to a prede-
fined metric, then compare the number of matches according to
the rank of ordered records where more matches indicate a higher
risk of re-identification. In [18], the authors proposed singling out
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attack, linkability attack, and inference attack against synthetic
datasets, which assume there is a control dataset following the
same distribution as the training dataset and measured the privacy
leakage by the attack accuracy. However, the above works do not
follow the DP principle when measuring privacy leakage. Instead,
they mainly measure the overfitting level of the GAN to the training
data as privacy leakage.

The principle of DP was first adopted in [47] to design privacy
attacks against synthetic datasets. The authors of [47] apply shadow
models [46] to launch an MI attack that tries to distinguish whether
the training dataset contains a specific record given the generated
synthetic dataset. Shadow models MI attack is also applied in [25],
which is further enhanced by an advanced feature map. However,
these shadow model attacks require a large amount of reference
data which follows the same distribution as the training dataset.
For example, the size of the reference dataset is ten times larger
than the training dataset in [47]. The feasibility of this assumption
in the context of privacy auditing is questionable, as expecting the
data publisher to employ an excessively large dataset for auditing
purposes is impractical. Moreover, as pointed out in [60], improper
reference datasets can overestimate or underestimate the privacy
loss. In [20], the authors proposed an MI attack requiring only the
targeted synthetic dataset. However, the double-counting phenome-
non has not been resolved. In this paper, we adopt the leave-one-out
setting proposed in [60] and shadow models to measure the privacy
leakage of any specific record, which satisfies the principle of DP
and does not require a reference dataset.

There is another research line about MI attacks on synthetic
datasets [8, 22, 24, 52]. These attacks have the same black-box as-
sumption as our auditing method, i.e., the GAN models are not
accessible to attackers. However, the attacks in [8, 22, 24, 52] re-
quire auxiliary datasets and targets every record in the training
dataset. On the contrary, our auditing method does not require any
auxiliary dataset so that data holders can use all of their data to train
the generative model. Besides, our auditing method targets one vul-
nerable data record and thus achieves superior performance than
the attacks in [8, 22, 24, 52]. On the other hand, [27, 32, 34, 48] aim to
estimate the lower bounds on 𝜖 for 𝜖-DP. There are three major dif-
ferences between our auditing method and those in [27, 32, 34, 48].
First of all, methods in [27, 32, 34, 48] estimate the worst privacy
risk of ALL possible inputs while our auditing method estimates
the privacy risk of the record in training datasets (which is also
the focus of data holders). Second, methods in [27, 32, 34, 48] are
designed for classification models and apply the classification losses
to conduct attacks. However, there is no such classification loss in
our VFLGAN. Third, in the vertically partitioned data publication
scenario, models are assumed to be not accessible to attackers, as in
[8, 22, 24, 52]. However, methods in [27, 32, 34, 48] require submit-
ting requests to the classification models and receiving the results
that are used to launch the attacks.

A.2 Proof of Theorem 1
Proof. Let 𝒙𝐵

𝑖
and 𝒙𝐵

′
𝑖
∈ 𝑋𝑖 denote two adjacent mini-batches

of training data of party 𝑖 . The gradients of the parameters of the
first layer of 𝐷𝑖 are clipped using (20). Then the L2 norm of those

gradients has the following upper bound,



𝑐𝑙𝑖𝑝 (G1𝐷𝑖 (𝒙𝐵
𝑗
) ,𝐶)






2
≤ 𝐶, 𝑖, 𝑗 ∈ {1, 2}. (25)

Note that although the input of 𝐷𝑖 is 𝒙𝐵𝑖 , the gradients of 𝐷𝑖 are
affected by both 𝒙𝐵1 and 𝒙𝐵2 according to (14). According to the
triangle inequality, the L2 sensitivity of the parameters can be
derived as

Δ2 𝑓 = max
𝒙𝐵
𝑗
,𝒙𝐵′

𝑗
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1
𝐷𝑖 (𝒙𝐵′

𝑗
) ,𝐶)






2
≤ 2𝐶, (26)

where 𝑖, 𝑗 ∈ {1, 2}. According to Proposition 1, G1
𝐷𝑖

computed
by (21) satisfies (𝛼, 𝛼/(2𝜎2))-RDP w.r.t. 𝒙𝐵1 and 𝒙𝐵2 since original
gradients are calculated regarding 𝒙𝐵1 and 𝒙𝐵2 . Let 𝒙

𝐵 = [𝒙𝐵1 , 𝒙
𝐵
2 ]

and 𝒙𝐵
′
= [𝒙𝐵′1 , 𝒙𝐵

′
2 ] be two adjacent mini-batches collected from

the complete dataset, i.e., 𝑋 = [𝑋1, 𝑋2]. Equations (25) and (26)
still hold if we delete the subscript of 𝒙𝐵

𝑗
and 𝒙𝐵

′
𝑗
. Thus, similar

to the above proving process, G1
𝐷𝑖

computed by (21) also satisfies
(𝛼, 𝛼/(2𝜎2))-RDP w.r.t. 𝒙𝐵 .

According to Proposition 5 (Post-processing theorem), the pa-
rameters of the first layer of 𝐷1 and 𝐷2 updated by

𝜽 1𝐷𝑖
= 𝜽 1𝐷𝑖

− 𝜂𝐷𝑖
G1𝐷𝑖

(27)

satisfy the same RDP as G1
𝐷𝑖
.

The outputs of the first part of 𝐷1, 𝐷2, i.e., the intermediate
features 𝒇 1 and 𝒇 2, can be expressed as,

𝒇 𝑖 = 𝑓 𝑢𝑛𝑐𝐷𝑖
(𝜽 1𝐷𝑖

𝒙𝑖 ), 𝑖 ∈ {1, 2}, (28)

where 𝒙𝑖 denotes the input of 𝐷𝑖 , 𝑓 𝑢𝑛𝑐𝐷𝑖
denotes the calculation

after the first layer (𝜽 1
𝐷𝑖
𝒙𝑖 ). Thus, according to Proposition 5, since

𝜽 1
𝐷𝑖

satisfies (𝛼, 𝛼/(2𝜎2))-RDP, the mechanism 𝑓 𝑢𝑛𝑐𝐷𝑖
(𝜽 1
𝐷𝑖
𝒙𝑖 ) in

(28) satisfy (𝛼, 𝛼/(2𝜎2))-RDP, i.e., the first part of 𝐷1 and 𝐷2 satisfy
(𝛼, 𝛼/(2𝜎2))-RDP.

On the other hand, according to (17), the generators 𝐺1 and
𝐺2 can only learn the information about the input data from the
gradients of the first layer of 𝐷1 and 𝐷2, respectively. During the
back-propagation process, let 𝜹𝐺

𝐷𝑖
and 𝜹1

𝐷𝑖
denote the backward

gradients before and after the first layer of𝐷𝑖 , which is illustrated in
Fig. 9. Note that the parameters of the first layer of 𝐷𝑖 are updated
according to 𝜹1

𝐷𝑖
and the parameters of 𝐺𝑖 are updated according

to 𝜹𝐺
𝐷𝑖
. The relationship between 𝜹𝐺

𝐷𝑖
and 𝜹1

𝐷𝑖
can be expressed as

𝜹𝐺𝐷𝑖
= 𝜹1𝐷𝑖

𝜽 1𝐷𝑖
. (29)

According to Proposition 5, 𝜹𝐺
𝐷𝑖

satisfies the same RDP as 𝜽 1
𝐷𝑖
.

Since the parameters of𝐺𝑖 is updated according to 𝜹𝐺𝐷𝑖
,𝐺𝑖 satisfies

(𝛼, 𝛼/(2𝜎2))-RDP w.r.t. 𝑥𝐵1 , 𝑥
𝐵
2 , and 𝑥

𝐵 . □

A.3 Auditing Scheme for Intermediate Features
The following privacy game can define the MI attack applied in
ASIF. (i) First, the challenger selects a fixed target record 𝒙𝑡 from a
given training dataset 𝑋 . (ii) Then, the challenger trains a VFLGAN
𝜽 0

𝑠0←− T (𝑋 \ 𝒙𝑡 ) on 𝑋 \ 𝒙𝑡 (dataset 𝑋 excluding 𝒙𝑡 ) by using a
fresh random seed 𝑠0 in the training algorithm T . In this paper, T
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Table 5: Classification Accuracy and F1 score of Random Forest Models to Evaluate the AI Training Utility of the Synthetic
Data on the Wine-Quality Datasets. Absolute different metric values compared with the TRTR setting are shown in the bracket,
and the main evaluation metric is ‘Total Difference’; lower is better.

Normalized Integer Representation for the Quality attribute (red wine)
TRTR TSTS TRTS TSTR Total Difference

Models Acc F1 Acc F1 Acc F1 Acc F1
WGAN_GP[21] 0.59 0.26 0.62 (0.03) 0.45 (0.19) 0.53 (0.06) 0.20 (0.06) 0.54 (0.05) 0.29 (0.03) 0.42
VertiGAN[29] 0.59 0.26 0.92 (0.33) 0.67 (0.41) 0.80 (0.21) 0.41 (0.15) 0.55 (0.04) 0.26 (0.00) 1.14

VFLGAN-base (ours) 0.59 0.26 0.74 (0.15) 0.28 (0.02) 0.66 (0.07) 0.25 (0.01) 0.56 (0.03) 0.26 (0.00) 0.28
VFLGAN (ours) 0.59 0.26 0.74 (0.15) 0.44 (0.18) 0.59 (0.00) 0.29 (0.03) 0.51 (0.08) 0.26 (0.00) 0.44

Normalized Integer Representation for the Quality attribute (white wine)
WGAN_GP[21] 0.53 0.21 0.49 (0.04) 0.17 (0.04) 0.48 (0.05) 0.14 (0.07) 0.53 (0.00) 0.19 (0.02) 0.22
VertiGAN[29] 0.53 0.21 0.77 (0.24) 0.48 (0.27) 0.46 (0.07) 0.15 (0.06) 0.38 (0.15) 0.14 (0.07) 0.86

VFLGAN-base (ours) 0.53 0.21 0.52 (0.01) 0.28 (0.07) 0.46 (0.07) 0.20 (0.01) 0.47 (0.06) 0.19 (0.02) 0.24
VFLGAN (ours) 0.53 0.21 0.50 (0.03) 0.24 (0.03) 0.47 (0.06) 0.18 (0.03) 0.50 (0.03) 0.21 (0.00) 0.18

TRTR: Train on real test on real; TSTS: train on synthetic test on synthetic; TRTS: train on real test on synthetic; TSTR: train on synthetic test on real; Ac: accuracy; F1: F1-score.

Figure 9: Backward loss before and after the first layer of the
discriminators.

refers to Algorithm 1. (iii) The challenger trains another VFLGAN
𝜽 1

𝑠1←− T (𝑋 ) on 𝑋 by using a fresh random seed 𝑠1 in algorithm T .
(iv) The challenger inputs the whole dataset 𝑋 into 𝜽 0 (·) and 𝜽 1 (·)
to generate two sets of intermediate features𝒇 0 and𝒇 1, respectively.
(v) The challenger flips a random unbiased coin𝑏 ∈ {0, 1} and sends
the set of intermediate features and target record, 𝒇𝑏 and 𝒙𝑡 , to the
adversary. (vi) The adversary tries to figure out the true 𝑏 based on
the observation of {𝒇𝑏 , 𝒙𝑡 }, i.e., 𝑏 ← A(𝒇𝑏 , 𝒙𝑡 ). (vii) Last, if 𝑏 = 𝑏,
the adversary wins. Otherwise, the challenger wins. This MI attack
is summarized in Algorithm 4.

Now we describe how to train the adversary model A in Algo-
rithm 4. We apply the shadow modelling approach [46] to train the
adversary modelA through the following process. (i) First, train𝑀
VFLGANs, 𝜽 01:𝑀 , on dataset 𝑋 \𝒙𝑡 by using different random seeds
𝑠01:𝑀 in the training algorithm T . (ii) Apply 𝜽 01:𝑀 to generate𝑀 in-
termediate features 𝒇 01:𝑀 . (iii) Train𝑀 VFLGANs, 𝜽 11:𝑀 , on dataset
𝑋 by using different random seeds 𝑠11:𝑀 in the training algorithm
T . (vi) Apply 𝜽 11:𝑀 to generate 𝑀 sets of intermediate features
𝒇 11:𝑀 . (v) Extract features of the intermediate features. (vi) Train
the adversary modelA to distinguish whether the features are from
𝒇 01:𝑀 or 𝒇 11:𝑀 . The training process is summarized in Algorithm 5.

Algorithm 4:Membership Inference Attack
Input: Training algorithm T; dataset 𝑋 ; target record 𝑥𝑡 ; unbiased coin 𝑏; fresh

random seeds 𝑠0 and 𝑠1 ; VFLGAN 𝜃𝑖 ; intermediate feature 𝑓 .
Output: Success or failure.

1: 𝜽 0
𝑠0←− T(𝑋 \ 𝒙𝑡 )

2: 𝜽 1
𝑠1←− T(𝑋 )

3: 𝒇 0 ←− 𝜽 0 (𝑋 ) & 𝒇 1 ←− 𝜽 1 (𝑋 )
4: 𝑏 ∼ {0, 1}
5: 𝑏 ←− A(𝒇𝑏 , 𝒙𝑡 )
6: if 𝑏 == 𝑏 then
7: Output success
8: else
9: Output failure
10: end if

Algorithm 5: Training the Adversary of MI Attack
Input: Training algorithms T and TA ; dataset 𝑋 ; target record 𝒙𝑡 ; random seeds
𝑠01:𝑀 and 𝑠11:𝑀 ; feature extraction function 𝐸𝑥𝑡𝑟 ( ·) ; intermediate feature 𝒇 .

Output: Trained A.

1: 𝜃01:𝑀
𝑠01:𝑀←− T(𝑋 \ 𝒙𝑡 )

2: 𝒇 01:𝑀 ←− 𝜽 01:𝑀 (𝑋 )

3: 𝜽 11:𝑀

𝑠11:𝑀←− T(𝑋 )
4: 𝒇 11:𝑀 ←− 𝜽 11:𝑀 (𝑋 )
5: 𝐹𝑒𝑎𝑡01:𝑀 ←− 𝐸𝑥𝑡𝑟 (𝒇 01:𝑀 ) & 𝐹𝑒𝑎𝑡11:𝑀 ←− 𝐸𝑥𝑡𝑟 (𝒇 11:𝑀 )
6: A ←− TA (𝐹𝑒𝑎𝑡01:𝑀 , 𝐹𝑒𝑎𝑡11:𝑀 )

A.4 Model Architectures
Figure 10 shows the architecture of WGAN_GP, which is applied
when we evaluate the effectiveness of various differentially private
mechanisms in Section 5.3.1. Our implementation of VertiGAN (no
public official code) also applies the same architecture as shown in
Fig. 10. In the proposed VFLGAN, the architecture of the generator
is the same as that of the generator in Fig. 10 while the architecture
of discriminators is shown in Fig. 11.

A.5 Details of VFLGAN-base
Figure 12 shows the frameworks of VFLGAN-base. To construct
VFLGAN-base, we delete the second part (shown with a deeper
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Figure 10: Architectures of WGAN_GP.

Figure 11: Architectures of the discriminators of VFLGAN.

colour) of 𝐷1 and 𝐷2 of VFLGAN (shown in Fig. 4) and their loss
functions (𝐿𝐷1 and 𝐿𝐷2 ). 𝐿𝐷𝑖

, 𝑖 ∈ {1, 2}, can push the distribution
of �̃�𝑖 to be similar to that of 𝒙𝑖 . 𝐿𝐷𝑠

can push the distribution of
[�̃�1, �̃�2] to be similar to that of [𝒙1, 𝒙2]. VFLGAN-base serves as an
ablation model to evaluate the effectiveness of the second part and
loss function of 𝐷1 and 𝐷2 in VFLGAN. As shown by our experi-
mental results, the performance of VFLGAN and VFLGAN-base are
similar for low-dimensional data. However, for high-dimensional
data like images in MNIST datasets, some information will be lost
during the concatenation of intermediate features from different
parties and the second part of 𝐷1 and 𝐷2 and their loss functions
can help to improve synthetic data quality. VFLGAN-base is the
typical structure of VFL, where one active party (𝐷𝑠 ) calculates
the loss function to update local models in passive parties. In our
adjustment of VFLGAN, passive parties (party 1 and party 2) also
contribute to their own local model updates.

Figure 12: Framework of VFLGAN-base.

A.6 Supplemental Experiment Results:
Normalization for Integer Categorical
Attribute

In this section, we apply normalization (22) to preprocess the ‘qual-
ity’ attribute of red-wine-quality and white-wine-quality datasets.
The FD curves during training are shown in Fig. 13. We can see
that the FD curves of the proposed VFLGAN and VFLGAN-base
get very close to the WGAN while the FD curve of VertiGAN is
above that of WGAN with a significant gap. The AI training utility
is shown in Table 5 and the proposed methods have significantly
superior performance compared to VertiGAN. Besides, we can see
that the AI utilities in Table 5 are lower than those of corresponding
methods in Table 1, which means one-hot representation is more
suitable for integer categorical attributes.

Figure 13: FD curves on the Red-wine-quality dataset (the
lower the better).

A.7 Vulnerable Record Identification
In [47], the authors select records with the most outlier attributes
as the most vulnerable records. There may be multiple records that
have the most outlier attributes. Specifically, in our implementation,
we select outliers with the following process. First, we select the
value of the first quartile and the third quartile of an attribute
denoted as𝑄1 and𝑄4, respectively. Then, we calculate the threshold
by 𝑇 = 𝑄3 −𝑄1. Last, we determine the attribute 𝑎 of a record as
an outlier if it satisfies one of the following conditions,

condition 1: 𝑄1 − 𝑎 > 𝑇, (30)
condition 2: 𝑎 −𝑄3 > 𝑇 . (31)
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In [38], the authors calculate the distance between a record and
its nearest neighbour record and select the record with the max-
imum distance as the most vulnerable record. There is usually
only one record that has the maximum nearest neighbour distance.
Specifically, the distance is calculated by,

𝑑
(
𝑥𝑖 , 𝑥 𝑗

)
:=1 − |Fcat |

𝐹

ℎ (𝑥𝑖 ) · ℎ
(
𝑥 𝑗
)

∥ℎ (𝑥𝑖 )∥2 ∗


ℎ (

𝑥 𝑗
)


2

− |Fcont |
𝐹

𝑐 (𝑥𝑖 ) · 𝑐
(
𝑥 𝑗
)

∥𝑐 (𝑥𝑖 )∥2 ∗


𝑐 (𝑥 𝑗 )

2 ,

(32)

where 𝐹 is the number of attributes, |Fcat | and |Fcont | denote
the number of categorical attributes and the number of continu-
ous attributes, respectively, ℎ(𝑥) denotes the one-hot encoding of
categorical attributes, and 𝑐 (𝑥) denotes the vector of continuous
attributes.

In Table 2, we select the most vulnerable record with the method
of [38] as Record 1 and select the most vulnerable record with the
method of [47] as Record 2. Interestingly, Record 1 of the Adult
dataset has both the maximum nearest neighbour distance and the
most outlier attributes.

A.8 Summary of Notation
All the symbols and notations used in the proposed scheme are
defined in Table 6.

Table 6: Symbols and Notations

Notation Description
DP differential privacy
RDP Rényi differential privacy
VFL vertical federated learning
HFL horizontal federated learning
GAN generative adversarial network
ASSD Auditing Scheme for Synthetic Datasets
ASIF Auditing Scheme for Intermediate Features
𝑃𝑣 distribution of variable 𝑣
𝑥/𝑋 real data / real dataset
𝑥𝑖/𝑋𝑖 real data / real dataset of party 𝑖
𝑥/�̃� synthetic data / synthetic dataset
𝑥𝑖/�̃�𝑖 synthetic data / synthetic dataset of party 𝑖
𝜆 balancing coefficient
𝜂 learning rate
𝐵 size of the mini-batch during training
𝑥𝐵 a mini-batch of real samples
𝑥𝐵 a mini-batch of synthetic samples
𝐷𝑖 discriminator 𝑖 (discriminator of party 𝑖)
𝐷1
𝑖

the first part of discriminator 𝑖
𝐷𝑠 shared discriminator
𝐺𝑖 generator 𝑖
L𝑀 loss function of model𝑀
𝜃𝑀 model𝑀’s parameters
𝜃1
𝑀

parameters of model𝑀’s first layer
𝜃2:𝑛
𝑀

parameters between𝑀’s 2𝑛𝑑 layer to 𝑛𝑡ℎ layer
G𝑀 gradients of model𝑀’s parameters
G1
𝑀

gradients of 𝜃1
𝑀

G2:𝑛
𝑀

gradients of 𝜃2:𝑛
𝑀
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