PrivacyLens: On-Device PIl Removal from RGB Images using
Thermally-Enhanced Sensing

Yasha Iravantchi, Thomas Krolikowski, William Wang, Kang G. Shin, Alanson Sample
University of Michigan
Ann Arbor, Michigan, USA
{yiravan,tkrolikowski, willruiz,kgshin,apsample}@umich.edu

Pl
REMOVAL

=D

Figure 1: PrivacyLens can be used in sensitive areas (A) by leveraging thermal imaging and an onboard GPU (B) to perform
on-device PII removal (C) for privacy-preserved images (D) that support existing CV/ML algorithms, such as fall detection (E).

ABSTRACT

Internet-connected cameras support many useful home monitoring
and health applications. However, these same cameras indiscrim-
inately capture sensitive and Personally Identifiable Information
(PII), limiting their acceptance in certain settings, such as the home.
Prior works removed Region of Interest (ROI) to secure images and
improve privacy. However, the methods that rely solely on RGB
information to find persons are susceptible to environmental and
lighting conditions, causing them to fail and leak PII. From our
deployment study, nearly half of the images containing persons
had a PII leakage when using RGB-only methods. Furthermore, ROI
removal is often performed off-device, requiring the server per-
forming these operations to be trustworthy. This work presents the
PrivacyLens system, where with the addition of thermal sensing,
our system has a significantly enhanced ability to find persons in
RGB images and video and efficiently remove them on the device
before any data is stored or transmitted, all while staying under typ-
ical IoT power constraints. From our aforementioned deployment
study in an office-building atrium, family home, and outdoor park
environment, the PrivacyLens prototype effectively removes PII
with a sanitization rate of 99.1%. Additionally, PrivacyLens can use
its embedded GPU to generate on-device features for downstream
CV/ML tasks, as shown in three illustrative applications, further
reducing the collection and storage of PIL
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1 INTRODUCTION

Cameras are one of the most information-rich and ubiquitous sen-
sors in everyday “smart” devices such as phones, doorbells, displays,
and thermostats. They power useful applications including public
road and infrastructure monitoring [23, 32], in-home health and
vital sign tracking [4, 70], fall detection [15, 59, 77], and activity
monitoring [74]. As cameras have proliferated in our lives, they
have raised privacy concerns regarding the data they collect, store,
and send to the cloud. Unfortunately, users often have little insight
into what is being done with their data, who can access it, and
for what purposes once the data leaves the device. For example,
users who purchase consumer devices (e.g., smart doorbells, IoT
cameras) often believe their “encrypted” camera feeds are for their
eyes only [35]. However, it has been shown that these feeds can
be accessed by others, such as employees of the device manufac-
turer [18, 24, 50], data brokers and third parties [41], hackers [66],
and law enforcement agencies without warrants [17]. Furthermore,
these cameras indiscriminately capture Personally Identifiable In-
formation (PII), which may be irrelevant to a specific task, such
as a robot vacuum mapping a home [31]. These incidents create
mistrust, hampering the adoption of these devices in the home and
in applications where they are needed most, such as fall detection
in the bathroom—the main cause of death for those over 65 [10].

While prior approaches have looked towards Region of Interest
(ROI) removal to sanitize sensitive information in images [48, 67, 69],
the aforementioned privacy incidents highlight the importance of
where and when the sanitization happens. Transmitting raw im-
ages to a server for processing still holds potential for abuse. One
additional challenge is that, in real-world environments, RGB-only
approaches for detecting persons have been shown to be suscepti-
ble to environmental and lighting effects [6, 38], which can cause
sanitization failure and leakage of PII. These issues are particularly
well-known in the Advanced Driving and Assistance (ADAS) com-
munity, which has looked towards thermal sensing approaches to
robustly find persons in images in the ADAS domain [37]. These
factors highlight the importance of both on-device and environ-
mentally robust removal of PII from images.
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Thus, we propose PrivacyLens, a battery-powered RGB and
thermal imaging system with an embedded GPU capable of robustly
and efficiently removing five forms of PII (face, skin color, hair color,
gender, and body shape) before any data (i.e., images or ML fea-
tures) is stored or transmitted off-device. As depicted in Figure 1,
this privacy-preserving camera can be deployed in sensitive home
areas where traditional cameras would be deemed unacceptable.
The core idea behind PrivacyLens is that the onboard RGB and
thermal cameras can be used together to robustly detect persons
and their thermal silhouettes, which are used to “subtract” them
from images. This process can be accelerated by a Jetson Nano’s
power-efficient embedded GPU, which makes PrivacyLens capa-
ble of 8 FPS sanitization (FPS limits due to International Traffic
in Arms Regulations (ITAR) restrictions on thermal cameras [40])
under typical IoT power limits. PrivacyLens’s real-world evaluation
shows comprehensive PII removal in 99.1% of images, compared
to RGB-only methods that achieve < 57.6% even when given the
advantage of best-in-class CV algorithms running on desktop GPUs.
These results show that the combination of a thermal camera and
embedded GPU is the key to enabling robust, efficient, and real-time
PII removal on the edge for IoT camera devices.

Furthermore, the sanitized images and on-device generated fea-
tures can be used with downstream, cloud-based machine learn-
ing models to enable critical applications, such as fall detection,
while protecting users’ privacy. PrivacyLens supports six opera-
tional modes that sanitize varying amounts of PII in images, from
swapping faces with a generic face (for maximum downstream
compatibility) to removing persons entirely (for maximum privacy).
The utility of these modes is demonstrated through three appli-
cations: exercise tracking, in-home activity tracking with objects,
and posture and fall detection. Evaluated with ten participants,
these applications demonstrate PrivacyLens is not only useful but
also maintains the compatibility and performance of downstream
CV/ML applications while reducing the amount of PII collected.
This paper makes the following contributions:

(1) athreat model analysis detailing three classes of camera-based
IoT privacy issues addressed by this work;

(2) the PrivacyLens system that uses an RGB and thermal camera
pair with an embedded GPU to efficiently accelerate robust
real-time on-device image and video PII removal;

(3) an extensive evaluation of the system across multiple environ-
ments showing that thermal imaging can significantly improve
PII removal rates (99.1% vs. < 57.6% for RGB-only approaches)
and how PrivacyLens addresses the threat model;

(4) applications demonstrating PrivacyLens’s utility and its com-
patibility with downstream CV & ML approaches.

Ultimately, low-power, privacy-preserving cameras that can san-
itize images before they are transmitted off the device have the
potential to benefit end users wishing to have greater device pri-
vacy through reduced PII collection, corporate entities that wish to
limit their exposure to liability to consumer privacy laws, and re-
searchers that seek a robust approach to removing PII from images.

2 THREAT MODEL AND RELATED WORK

This section details the threat model PrivacyLens aims to address
and a summary of prior works related to PrivacyLens.
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2.1 Threat Model

Camera-enabled IoT systems’ unbounded data collection and the of-
ten ambiguous nature of who can access personal cloud storage (e.g.,
support staff, IT personnel, etc) mean an adversary has many ways
to capture private user information. We identify three main types
of threats: unauthorized access, authorized access with unauthorized
sharing, and data over-collection. Per our threat model, we assume
physical security, as we cannot ensure effective operation if the
device is physically tampered with (e.g., the sensors are altered). We
additionally assume software security, where reasonable safeguards
such as good passwords, patched vulnerabilities, and restricted root
access are implemented to prevent an attacker from gaining access
to the system and altering its behavior. These safeguards should not
incur additional computing demands or affect the performance of
the system. We also highlight that PII sanitization is contradictory
to surveillance and public safety tasks, where personal identity is
necessary and defeats the purpose of the camera. As such, we do
not consider these situations part of our threat model.

In unauthorized access, an attacker gains access to images con-
taining sensitive information through a tool or attack. This is a well-
understood threat, given the frequency of data breaches through
compromising image streams directly or the server that stores
the image data. For example, attackers can gain access directly
from compromised in-home cameras [35]. Historically, investing
in greater data security (e.g., firewalls, securing servers, encrypting
data) has been the approach to counter this threat.

In authorized access with unauthorized sharing, an attacker may
have legitimate access to the images (e.g., was given the user’s login
credentials by the user, is an employee with proper access), but
uses that access inappropriately to transfer the data elsewhere. For
example, the Massachusetts Bay Transportation Authority (MBTA)
has CCTV cameras near subway entrances for maintenance and
public safety purposes. However, someone at the MBTA shared an
embarrassing video of a woman falling down an escalator, which
included identifying features such as hair color, skin color, and
face [65]. While the video was removed from YouTube, a search
returns many copies. A particular challenge with this threat is that
once shared inappropriately, the ease of sharing again makes it
nearly impossible to know who can access it and what they will
do with it. As noted earlier, removing PII is contradictory to public
safety. However, for an employee tasked with doing public mainte-
nance, such as identifying leaks or escalator status, sanitizing these
public recordings of PII would not hinder them from performing
their duties but would actively prevent them from inappropriately
sharing embarrassing content containing PIL

In data over-collection, an attacker may have access to informa-
tion that the user is unaware is being collected, irrespective of the
means by which the attacker gained access to this information. In
this case, an attacker takes advantage of a user agreeing to share
some information but gains access to information outside of what
the user agreed to. For example, Roomba users understood their
vacuum has an obstacle-avoidance camera, but did not expect it to
collect sensitive images of them, such as while using the toilet [31].

PrivacyLens addresses these threats by removing unwanted PII
before generating the image. In the case of unauthorized access, if
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an attacker were to gain access to a repository of PrivacyLens im-
ages, the exposure would be significantly reduced since the images
would be heavily sanitized and no “raw” versions exist. Autho-
rized access with unauthorized sharing is similarly addressed, as
images shared without authorization would not have PII. Privacy-
Lens design choices, however, are most tailored to address the data
over-collection threat. Since PrivacyLens is selective of the content
in the image (either by removing PII, only generating features, or
only including relevant parts of an image), by design, it limits the
total amount of recorded information. For the robot vacuum, people
would be removed from images, but obstacles would remain in a
way that could be safely used to train obstacle avoidance models.
Ultimately, PrivacyLens presents a proactive intervention to im-
prove the privacy of people in camera view, including those who
own the device, bystanders, and the public.

2.2 Related Work

Notions of Privacy & PIl. Merriam-Webster defines the right to
privacy as “the right of a person to be free from intrusion into
or publicity concerning matters of a personal nature” [53]. How-
ever, defining the contours of this right is a perpetual challenge:
Karachalios [45] describes privacy as a “wicked problem” with many
valid definitions that can co-exist but no one-size-fits-all solution.
Thus, we require quantifiable definitions that can be addressed to
improve privacy surrounding cameras. Relevant to privacy is the
handling of Personally Identifiable Information (PII). The National
Institute of Standards and Technology (NIST) defines PII as “any
representation of information that permits the identity of an indi-
vidual to whom the information applies to be reasonably inferred
by either direct or indirect means” [57]. However, NIST’s overly
broad definition is hard to apply as a privacy standard. Recently,
the California Privacy Rights Act [39] defined what constitutes
specific identifiers, including face, skin and hair color, gender, and
body shape. PrivacyLens removes these personal identifiers as a
quantifiable way to improve user privacy.

Cameras and Privacy in Smart Homes. In-home applications,
such as health monitoring, have been a significant factor that
drove the adoption of ubiquitous sensing technologies in the home,
especially among senior citizens [9]. However, this population
prefers simpler single-purpose sensors (e.g., heart rate monitor)
over more privacy-invasive general-purpose sensors, such as micro-
phones [42] or cameras [25]. How people appear in images matters,
as both Caine et al. [9] and Jacelon et al. [43] found that in smart
environments, users are amenable to some representations, such
as dots representing a silhouette of a person. However, they do
not accept raw images or having their face or sensitive body parts
recorded. Griffiths et al. [29] avoided RGB cameras and explored
using only thermal imaging to track the in-home movement of
individuals. However, this approach limits identifiable activities
and discards rich non-PII-containing RGB pixels that could contain
valuable information, such as what objects are in the environment.
As shown later in one of PrivacyLens’s applications, these non-PII-
containing RGB pixels help identify what objects a person interacts
with, even if no PII-containing RGB pixels are stored.

The kind of activities captured by cameras influences acceptance,
as Choe et al. [14] found that reading a book or watching TV did
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not evoke privacy concerns but sexual or hygienic activities did.
Similarly, Hoyle et al. [36], in the context of wearable first-person
“lifelogging” cameras, identified numerous contexts where people
expressed privacy concerns, such as situations where private or
sensitive content could be captured. Additionally, they found par-
ticipants disliked the burden of reviewing and deleting private
information from the lifelog and would rather disable the camera
entirely. Viewing these works through the lens of Nissenbaum’s
theory of privacy as contextual integrity [56], cameras are not in-
compatible with continuous in-home operation but must meet user
privacy needs within the context in which they are deployed.
While the previous works have focused on addressing the pri-
vacy concerns of the user benefiting from the camera’s services,
others have looked at the privacy concerns created for bystanders.
As Marky et al. [49] found, a collateral effect of data over-collection
is that, even if the host of an IoT-equipped household consented
to data collection, their guests are forced into the perilous and
sometimes awkward task of finding ways to protect their own pri-
vacy from unconsented IoT data collection. Dimiccoli et al. [21]
addressed this issue in images taken by wearable cameras by utiliz-
ing deep learning to detect bystanders and selectively degrading
those portions of the image. Alharbi et al. [2] built upon this work
by proposing an approach that masks all but the pixels required to
capture a wearer’s hand-related activities. PrivacyLens provides a
level of privacy to bystanders by removing all PII in an image, as
it does not discriminate whether the PII belongs to the camera’s
owner or a bystander. Given device constraints, however, we opted
for a less computationally intensive thermal subtraction approach
to achieve on-device sanitization. Future implementations could
incorporate these more advanced approaches on-device.
Hybrid Computer Vision using Thermal Imaging. The most
prominent use of long wave IR (LWIR) thermal cameras is in Ad-
vanced Driver Assistance Systems (ADAS) that have sought to
improve collision avoidance with pedestrians [12]. RGB-only meth-
ods are insufficiently robust for pedestrian avoidance, especially
in conditions where traditional optical methods fail, such as night-
time [6, 38]. As a result, radar, LIDAR, and thermal camera-based
methods have emerged as a more consistent approach in detecting
pedestrians, finding 90% pedestrian detection accuracy [13]. Non-
vehicle person detection uses of thermal cameras include automated
temperature measurement for COVID-19 [3, 55] and uncrewed
aerial search and rescue [33], demonstrating effective person de-
tection in both near- and far-range applications. Most similar to
PrivacyLens is work by Zhang et al. [75] that utilized an IR camera
paired with a cold mirror to identify and mask faces in images.
However, this approach is limited to removing only facial PII, and
the use of a mirror makes the system physically large and increases
cost and complexity, unsuitable for typical IoT deployment. Privacy-
Lens builds upon these prior works to leverage thermal sensing as a
robust, environment- and condition-invariant approach to find the
entire bounds of a person and remove them entirely from images.
Embedded GPU Use in Privacy-Sensitive Applications. While
Single Board Computers (SBCs), such as Raspberry Pis, have made
it easier for researchers to build novel applications, they have only
recently become capable of performing significant computational
tasks. The introduction of embedded GPUs (e.g., Jetson Nano) and
embedded Tensor Processing Units (TPUs) (e.g., Google Coral) have
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replaced the need for remote computing resources in several ap-
plications, such as portable sign language detection [76] and emo-
tion recognition [5]. More relevant to PrivacyLens are applications
where embedded GPUs must locally process sensitive data. In these
situations, only sanitized results can be transmitted, such as patient
health data for heart attack recognition [54], baby facial expression
monitoring for autism detection [62], and anomaly detection in
EEG signals to identify substance abuse [20]. PrivacyLens similarly
utilizes its embedded GPU as a prototype Privacy Accelerator to
process sensitive data and remove PII on the device.

Image Masking, Blurring, and Anonymization Approaches.
As discussed above, selectively masking and blurring portions of
images are powerful approaches to improve camera privacy. One
robust approach is to remove the entire person from the image. This
can be achieved by using RGB-based object and person detection
models like YOLO [44] or Detectron2 [71]. YOLO is a single-stage
detector (SSD) where only a single shot determines whether or
not an object (such as a person or their face) exists. This results
in fast detection speeds and lower computational requirements,
which are particularly useful for low-resource embedded systems.
Dectectron? is a region-based convolutional neural net (R-CNN)
detector, where an initial stage finds candidate objects, and a second
stage determines their class, removes false positives, and refines
bounding boxes. While R-CNNs yield greater mean average preci-
sion over SSD-based approaches, they come at a significant cost to
computational and memory requirements, making them incompat-
ible with embedded devices. We use these two state-of-the-art RGB
approaches to perform RGB-only whole-person PII removal, which
we describe in greater detail in Section 3 and Appendix A.
Another set of approaches, including blurring faces [48], adding
noise [69], and inpainting [67] have been a consistent practice in re-
moving facial PII, but in some situations they can be reversible [52].
Lopez et al. [61] provided a comprehensive review of various visual
privacy protection methods. However, many object detectors, such
as the abovementioned YOLO and Detectron2, utilize the face as a
positional anchor [28]; without the face in the image, the remaining
pose may not be accurately detected. Swapping the face retains
the anchor points, whereas removing the face can entirely break
the downstream system. Deep fake approaches, where the face is
replaced with an anonymous and generated face, are effective in
concealing the face of the original person while maintaining com-
patibility with face recognition systems [16]. However, deep fake
and other De-ID approaches [73] are computationally intensive
and currently cannot be done in real time on SBCs. Our Face Swap
approach similarly replaces faces in images using a more computa-
tionally lightweight approach (described in Section 3) to achieve a
similar goal and maintain downstream compatibility with CV/ML
approaches. Future implementations could employ deep fake ap-
proaches that would make it more difficult to identify that the face
has been swapped. Lastly, there are situations where access to pri-
vate information should be restricted, but the remaining content
can be accessed. For example, CamShield [68] encrypts sensitive
ROIs, such as those corresponding to faces, but leaves the rest of the
image intact. Similarly, PrivacyLens can replace sensitive ROIs with
features (such as with a stick figure representation), encrypt them,
or remove them entirely, but does all these operations on-device.
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RGB Image

Figure 2: The Lepton 3.5 thermal camera measures black body
radiation (long wavelength IR) to provide an absolute mea-
sure of surface temperature. This permits robust operation
across various skin tones, body shapes, and genders.

3 HARDWARE IMPLEMENTATION

This section details the hardware implementation, design consid-
erations, and technical benchmarks of the PrivacyLens prototype.
Before developing the hardware prototype, we conducted a pilot
study (Appendix A) highlighting thermal information’s utility in
removing persons from images over RGB-only methods. Thus, to
perform on-device PII removal, PrivacyLens consists of four major
components: a Single Board Computer (SBC) with an embedded
GPU (Section 3.1), an RGB camera and thermal camera (Section 3.2),
and a software pipeline that captures raw sensor data from the two
cameras and efficiently processes them on the GPU (Section 3.4).

3.1 Embedded Devices Evaluation

We evaluated our thermal subtraction approach (see Algorithm 1 in
Appendix A.1) on low-power embedded devices to create a privacy-
preserving camera that removes PII on-device. We narrowed our
search criteria to SBCs that are under USD $100, run under typical
IoT power constraints (e.g., USB, Power over Ethernet), and have
low-level capability sensor interfaces (e.g., Serial Peripheral Inter-
face (SPI), Camera Serial Interface (CSI)). Our search yielded the
Raspberry Pi 3 (USD $35) [1] and the Jetson Nano (USD $100) [58];
during development, the Raspberry Pi 4 had SPI library incompati-
bilities [64]. We designed two benchmarks, a thermal subtraction
benchmark and a lightweight face detector benchmark, to evalu-
ate the total performance (frames per second, FPS) and efficiency
(FPS per watt) of two PII removal-related tasks on these embed-
ded devices. For each platform, the benchmarks are optimized for
their architecture. The Jetson Nano has two power modes (Max
and 5W) evaluated as separate entries. An Intel CPU and Titan
RTX GPU are provided as desktop references. The power consump-
tion of each platform is measured with a Kill-A-Watt meter [60].
An increase over idle consumption is reported, providing a direct
measure of the task’s power consumption and not the effects of
attached peripherals (e.g., idle hard drives).

The thermal subtraction benchmark is implemented in C++ and
OpenCV 4.5.2. On CUDA platforms, the OpenCV CUDA functions
are used, allowing the subtraction to run entirely on the GPU. To
avoid differences in I/O performance, ten image pairs (thermal and
RGB) were selected randomly from the KAIST ADAS dataset [38]
and are preloaded into RAM. Then, 10,000 thermal subtraction
operations are applied on each pair, resulting in 100,000 subtrac-
tions. The RGB-based facial landmark evaluation utilized platform-
optimized versions of MediaPipe, loaded a test image (SciKit-Image



Proceedings on Privacy Enhancing Technologies 2024(4)

Thermal Only Image Pair Stick Figure

Capture & Align
[6ms]

FLIR

Lepton 3.5
t160x 120]

RaspiCam
(1920 x 1080]
@ 601ps

A

o
4spiarc

Thermal

Injection |Thermal

Subtraction

Ghostul
lFace&Swap

MP FaceSwap
{10me]
CUDA Thermal | cNo>
Subtraction [Success ?]
90 me) <Yes> o
WarpFace Segments
2ms]

MP Pose
ImEncode 120 me)

L > me]
> e 1

> TCP Send <
(5 ma)

Breakout Board

csi_o
SPI__I2C

[Data and 5
Power]

GND 10 uF
-

5V
SPI

Nvidia
Jetson
Nano

Thermal V
Injection
(30 ms)

Interposer Board

Input: [5V / 2A]

Figure 3: (A) the hardware block diagram of the PrivacyLens
prototype showing connections between the RGB camera,
thermal camera, Jetson Nano, and a custom interposer board;
(B) the software block diagram data flow for different PII
sanitization operations and their execution time.

astronaut.jpg) into RAM, and performed a facial landmark detec-
tion (458 key points) task 100,000 times. The average FPS, power
consumption, and efficiency are reported for both benchmarks.

Overall, we find these two benchmarks perform significantly
better on a GPU, not only in total performance but also in efficiency.
In particular, the Jetson Nano’s GPU was 13x faster while being
16x more efficient than the Raspberry Pi. While the Jetson Nano
did not have the highest total performance, bested by the desktop-
class Titan RTX, it did have the highest power efficiency across all
devices. We note that when the benchmarks use the GPU, the CPU
utilization is relatively low, freeing the CPU to perform other tasks.
The complete results are in Table 5 in Appendix A.1.

3.2 RGB and Thermal Cameras

While USB webcams offer an easy interface to capture RGB images,
they largely hide access to low-level adjustment (e.g., exposure,
aperture) and are often incompatible with interchangeable lenses.
The Raspberry Pi HQ, an RGB camera for SBCs, connects via CSI for
low-level control and accommodates a 6 mm lens to closely match
the thermal camera’s 57° field of view (FoV). A custom driver inter-
faces the raw camera output to Jetson’s GPU-accelerated GStreamer
pipeline at 1080p / 60 FPS with all “auto” settings disabled.

Ideally, a thermal camera could operate at the exact resolution
and frame rate as the RGB camera so that each frame can be easily
aligned and time-synchronized. However, high-resolution thermal
cameras with > 9 FPS are subject to strict ITAR export restrictions
and are not easily purchasable [40]. Thus, we selected the FLIR
Lepton 3.5, which is reasonably available and takes 160x120 pixel
thermal images up to 8 FPS. The Lepton 3.5 is a radiometric sensor,
meaning that each pixel value corresponds to a calibrated absolute
temperature and is not relative to the thermal content of the environ-
ment. Importantly, these thermal cameras measure the black-body
radiation emitted by a person and are not affected by illumination
conditions or the temperature of the environment. Studies have
shown no significant differences in emissivity between people of
different skin types, meaning that computer vision (CV) algorithms
based on thermal cameras are unlikely to inherit negative racial
biases based on skin color [11, 51]. For example, Figure 2 shows con-
sistent thermal imaging across skin tones and genders. We mount
both cameras on the same Y and Z plane and as close as possible
side-to-side, improving the ability to make a close alignment and
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Checkerboard Alignment

Figure 4: Raw image from the 1980x1080 pixel RGB camera
(A), raw image from the 160x120 pixel thermal camera (B), a
split view of the calibrated, flattened and aligned RGB and
thermal images (C). The copper/black checkerboard colors
are inverted in the thermal image since the copper dissipates
heat and is cooler than the black squares.

avoiding the necessity of a cold mirror, which introduces additional
costs and increases the prototype’s overall size and complexity. We
route the signals through a custom-designed interposer printed
circuit board (PCB) and ribbon cable to improve the stability of the
Lepton’s 20 MHz-clock Video over SPI transmission. The hardware
connections of the PrivacyLens prototype can be found in Figure 3.

3.3 Camera Image Alignment

To align the images, we fabricated a copper and paper checkerboard,
which creates a matching checkerboard pattern in the thermal im-
age when heated with a heat gun. We use this checkerboard to
find corresponding points and perform a perspective transform to
align the thermal image to RGB. Figure 4 demonstrates the align-
ment. Since the 8 FPS limit of the Lepton is not an even multiple
of the 60 FPS RGB camera, the latest RGB frame available from
the GStreamer pipeline is used before requesting a frame from the
thermal camera, which produces a worst-case synchronization off-
set of 16.67 ms. This means that fast-moving persons will have an
offset between the RGB and thermal images, potentially causing PII
leakage. To address this issue, when using the thermal silhouette
of a person to subtract corresponding pixels in the RGB image,
the subtraction mask is dilated as a buffer for these situations. All
results in our work include this dilation with the system operating
in real-time. Future implementations with time-synchronized RGB
and thermal cameras would also address this limitation.

3.4 Operational Modes & Prototype Evaluation

PrivacyLens uses both RGB and thermal information for PII removal
in its hybrid Thermal Subtraction mode by using YOLO [44]—an ob-
ject detection approach suitable for embedded devices—to identify
bounding boxes corresponding to persons in the RGB image and by
using the thermal image to create a segmentation mask, where the
thermal silhouette of a person is identified by identifying pixels that
are within a specified temperature range corresponding to human
skin temperature, as described in Algorithm 1. The union of these
two regions defines the pixels to be sanitized from the RGB image.
This approach complements YOLO, which can mask portions of
images where thermal alone may have missed (e.g., cold extrem-
ities), and thermal can remove PII from images where RGB-only
methods struggle to find persons accurately, such as individuals
with awkward postures or facing away from the camera.

In addition to the Thermal Subtraction, representing a more
comprehensive PII removal method, we envisioned five additional
PrivacyLens modes that include varying amounts of information in
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Figure 5: Raw RGB image and six modes of removing PII

an image. These modes offer flexibility for different priorities while
reducing the PII encoded in an image, as shown in Figure 5.

In Face Swap, PrivacyLens replaces faces in images but keeps the
remainder of the image intact, ensuring compatibility with down-
stream CV/ML approaches. Face Swap identifies facial landmarks
for each face in an incoming RGB image and performs a perspective
transform to place a template face onto the face(s) in the image.
This approach removes facial PII while addressing a weakness of re-
versible face-blur interventions [52]. The face-swapped images are
confirmed to be compatible with MediaPipe’s Pose and Facemesh,
OpenPose, MoveNet, and iOS’s built-in face detector. If Face Swap is
unsuccessful for a given frame, PrivacyLens can default to Thermal
Subtraction mode or drop the frame entirely.

In Thermal Replacement, a person in the RGB image is replaced
by a low-resolution thermal silhouette of that person’s temperature.
In Thermal Only, only the thermal image is generated. These two
represent situations where a person’s temperature, not their PII,
is valuable for a task. For example, these representations could be
useful in a public health task to gauge the prevalence of fever with
reduced PII collection. The low-resolution nature of the thermal
camera precludes it from being used for facial recognition.

The remaining two, Stick Figure and Ghost UI, inspired by Caine’s
point-light and activity blob representations [9], use the RGB im-
age to find pose landmarks and annotate an optional background
image with a stick figure representation. The Ghost UI mode adds a
person’s body shape as a silhouette. Compared to Thermal Subtrac-
tion, these modes are useful for situations where skeletal keypoint
information is needed but specific PII-containing pixels are not,
such as detecting when a person is interacting with objects in the
environment. These modes can be overlaid on top of the previous
modes; adding Stick Figure to Thermal Subtraction can selectively
include additional information and increase the utility of the gen-
erated image without reintroducing a large amount of PII. These
additional modes and interventions build upon the baseline Thermal
Subtraction PII removal approach, which is evaluated in Section 4,
and inherit its PIIl removal performance (e.g., Stick Figure), unless
they are explicitly permissive of a subset of PII (e.g., Face Swap).

Figure 3 presents PrivacyLens’s software block diagram with
the average completion time for each operation at 1080p resolution.
At 8 FPS, all modes’ operations consumed < 5 W, permitting easy
integration with various power sources. Finally, PrivacyLens re-
quires ~13.5 Mbps bandwidth for 8 FPS image transfer at 90% JPEG
quality, enabling wireless deployments. The system is designed
to run in real time but is limited by the thermal camera (8 FPS),
thus resulting in a latency of 125 ms plus network latency. These
sequential images are streamed off the device as 8 FPS sanitized
video. PrivacyLens’s mobile housing shown in Figure 6 includes a
7.4V 5,200 mAH battery, a fan, and a 5V step-down regulator. A
single charge sustained 5 hours of continuous operation.
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Figure 6: Image of the PrivacyLens prototype in a tripod-
mounted 3D-printed enclosure (A), images from the deploy-
ment study showing the office atrium (B), home living room
(C), and public park square (C). The thermal camera’s images
have been contrast-enhanced for ease of viewing.

4 DEPLOYMENT EVALUATION

While the results from our pilot study (see Appendix A) show
promise that thermal information can aid in removing persons, and
thus PII, from images, we acknowledge that the pilot study’s dataset
reflects different environments than where we expect PrivacyLens
to be deployed and most useful. Thus, we now corroborate this
promise in real-world environments. This section details how the
PrivacyLens prototype was deployed to collect and sanitize images
in three environments (office, home, and public park) and how the
images were evaluated for PII content in two studies: Study 1 tasked
annotators to find PII with the assistance of the unsanitized image
as a ground truth reference and Study 2 tasked annotators to find
PII without a ground truth reference.

4.1 Deployment Environments

In human-centric environments, such as the workplace and home,
people can be very close to the camera and are more likely to create
challenging conditions for removing PII. These situations include
having a person partially in the frame, frequently coming in and out
of frame, persons in postures that are more challenging for detection
and removal (such as sitting cross-legged), or have objects partially
obscure them (such as sitting at a table). Indoor air conditioning
can also have a different effect on skin temperatures compared to
outdoor environments. This variety, which makes PII removal more
challenging, is not often captured in prior image sanitization works
or existing public ADAS datasets, where persons are often fully
in the frame, upright, and standing. Thus, to determine Privacy-
Lens’s ability to remove PII in real-world environments under real
hardware constraints, it was evaluated in a workplace and home in
addition to a public park, as shown in Figure 6.

In the first environment, the system was deployed in a 40X60
foot multi-story office atrium (Figure 6 — panel ‘B’) at two locations:
on the ground floor and the second floor looking into the atrium
mimicking an overhead fixed IoT camera. During deployment, peo-
ple walked individually or in groups across the atrium, worked at
tables, and lounged on couches. In the second environment, the
system was deployed in a home living room (Figure 6 — panel ‘C’).
At this location, people are particularly close to the camera and it
was common for people to come in and out of the frame, face away
from the camera, and relax on furniture with odd postures. This
family consisted of two adults, three children, and a cat. During
deployment, the parents tended to the children, and the children
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ate, played, and lounged. In the third environment, the system was
deployed in a public square, shown in Figure 6 — panel ‘D’, with
people at a wide range of distances. There is no control over fac-
tors such as lighting and weather. The environment was generally
well-lit, and the ambient temperature outside was ~90°F. During
deployment, people walked across the park square, lounged on
steps and benches, and sat on the ground. This environment also
included several people riding bicycles, skateboards, and scooters.

Ethical Considerations in Deployment. Beyond gaining Institu-
tional Review Board (IRB) approval for all data collection activities
and discussions with relevant authorities, we took into account
additional ethical considerations. Regarding bystander privacy, in
the office building, we posted signs with our contact information
denoting that images were being captured (no audio) and discussed
and received consent from the building management. For the public
park, we had a similar sign on our device and stood next to it during
deployment so that anyone could come by if they had questions
or concerns (nobody came). Regarding the children in the living
room setting, before deployment, we discussed the study and re-
ceived parental consent to record and use the images, and parents
reviewed the images. Furthermore, the parents were in the living
room during the deployment. In all three areas, the prototype was
placed in an obviously visible location (e.g., near the center of the
park square), well within a bystander’s view. Lastly, we selected
camera views that would minimize intrusion yet would yield a
representative dataset. For example, in the atrium, the camera was
pointed away from individual offices, and in the living room, the
camera was pointed away from the bedrooms.

4.2 Deployment Procedure

In each environment, PrivacyLens was placed on a tripod and bat-
tery powered as shown in Figure 6 — panel ‘A’. The Pll-removed
(Thermal Subtraction) frames were sent over Ethernet to a laptop
for storage. Additionally, the raw RGB and thermal images were
recorded for ground truth and a baseline RGB-only sanitization
evaluation. In an actual deployment, only the sanitized image would
leave the device. The frame rate was set to 1 FPS to maximize ex-
periment runtime and restrict dataset size, though the system can
perform 8 FPS sanitization per ITAR restrictions on thermal FPS.
Each image trio is *9 MB when stored to disk, ~0.5 GB/hr at 1 FPS.
The deployment aimed to capture roughly one hour of data per
location where people were in the environment. However, there
were often long stretches in the building and park where no person
was in the environment. Thus, these deployments were extended to
effectively capture one hour of “people” time. In total, 22,780 image
trios (3,261 containing persons) were collected at these locations:
Building Atrium: From the first floor, 6,432 image trios (98 con-
taining persons) in two sessions (morning and afternoon) spanning
3.5 hours. From the second floor, looking down towards the first
floor, 6,441 image trios (590 containing persons) in two sessions
(morning and afternoon) spanning 3.5 hours. Images from these
two spots are evaluated and reported together.
Home Living Room: 3,694 image trios (2,144 containing persons)
in one continuous session spanning one hour.
Public Park Square: 6,213 image trios (429 containing persons) in
one continuous session spanning 1.7 hours.
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Figure 7: An example unsanitized image (A) collected from
the home environment and sanitized images using Privacy-
Lens’s hybrid Thermal Subtraction (B), RGB-only YOLO (C)
and RGB-only Detectron2 (D). PrivacyLens robustly removed
both persons in the image, but also removed a portion of the
sofa warmed by sunlight. YOLO failed entirely to remove the
person sitting on the sofa and leaked the skin color of the
person at the bottom of the frame. Detectron2 completely
removed the person sitting on the sofa, but similar to YOLO,
leaked skin color at the bottom of the frame.

Annotator Recruitment. To quantify PrivacyLens’s ability to re-
move PII alongside two RGB-only approaches for comparison, a
total of 48 annotators (undergraduate and graduate students) were
recruited to perform various image-related tasks in a multi-step
process. For Study 1, 32 annotators were recruited. Two identified
ranges of frames containing people, 16 annotated PrivacyLens-
sanitized images, and 14 annotated images sanitized by RGB-only
approaches. For Study 2, 10 additional annotators were recruited,
where 4 annotated PrivacyLens-sanitized images and 6 annotated
RGB-only sanitized images. Finally, for the evaluation in Section
4.8, an additional 6 annotators were recruited to annotate more
aggressive RGB-only sanitization approaches. They were compen-
sated with food for their participation. The following subsections
provide greater detail of the annotation tasks in each study.

4.3 Study 1 (PII Removal with Ground Truth)

Given the large number of captured images and significant time
periods without people in view, it was necessary to pare down the
dataset to images likely to contain people. Two annotators used a
photo gallery view user interface to scroll through the RGB images
sequentially and identified ranges of frames containing people. This
resulted in 6,274 image sets (sanitized and raw RGB) that would be
used for all further annotation tasks. These two annotators did not
take part in the later annotation tasks to identify PII in the images.

In this study, annotators were given the raw RGB and sanitized
output images for comparison and have the most context when
searching for leaked PII in the sanitized image, offering a lower
bound on system performance. As a baseline for comparison, the
images were sanitized using two RGB-only approaches: YOLO [44]
presents an RGB-only baseline for what current embedded devices
can do in real-time, and Detectron2 [71] provides an RGB-only base-
line for the state-of-the-art, which requires a desktop GPU for real-
time sanitization. While many other sanitization approaches exist,
as mentioned in Section 2, we utilize these RGB person-detection
approaches because they have shown effectiveness in finding and
removing the entire bounds of a person, rather than just blurring
or masking only the face (see Appendix A for more details). A code-
book was not used in annotation, but annotators were shown at
least ten example images that contained each of the five forms of
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Table 1: Study 1 PrivacyLens PII removal success rates on the
3,261 collected images.

PrivacyLens (Hybrid, Embedded) || Atrium | Home | Park | All Env.
Face 99.9% 100% 100% 99.9%
Skin Color 97.4% 98.5% | 98.8% 98.3%
Hair Color 99.1% 99.1% | 100% 99.2%
Gender 99.9% 99.9% 100% 99.9%
Body Shape 99.4% 99.9% | 99.5% 99.8%
All PII Removal w/ Ground Truth 97.4% | 97.8% | 98.4% | 97.8%

PII leakage (or a combination thereof) and were instructed to be as
critical as possible and lean on the side of flagging an image if they
were unsure about whether the image contained PII, such that the
results provided a conservative estimate of scores. Each image was
annotated once per study: once by an annotator in the first study
with ground truth and once again in a second study by another
without ground truth, detailed in Study 2 below.

For the first study, using this subset of images that likely con-
tained persons, annotators were presented with both the raw RGB
image and the PII-removed image through a Web UI, which could
only be accessed through a private network. The annotators were
assigned images from a randomly shuffled list and could not receive
an image they had seen before as it would be removed from the list
after annotation. The annotators were also prevented from being
assigned sequential images, which could be similar to an image
they had seen before. The annotators were instructed to determine
if the PII in the ground truth raw RGB image was also present in
the PIl-removed image. If PII was present, annotators were asked
to identify it as one of the following classes: Face, Skin Color, Hair
Color, Gender, and Body Shape. Here, Body Shape refers to fea-
tures such as height or weight that could be used to identify an
individual. If no PII was visible in the PII-removed image, they
were instructed to select “No PII”. The annotators were asked to
be especially thorough, with no time limit set for each image pair,
and to lean on the side of flagging an image if they were on the
fence about the PII content. The annotators were also permitted
to report issues with the image, such as if there were no persons
in the raw RGB image or technical issues (e.g., image quality is-
sues, image not loading). This process was conducted for all three
conditions: PrivacyLens’s proposed approach and the two baseline
approaches, YOLO (embedded) and Detectron2 (desktop). A group
of 16 annotators annotated the PrivacyLens-sanitized images and a
separate set of 14 annotators annotated the images sanitized by the
baseline RGB-only approaches. Overall, annotators annotated 9,783
sanitized images (3,261 collected images, sanitized in three ways).

4.4 Study 1 Results

PrivacyLens’s Hybrid Approach. In total, 73 images out of 3,261
collected images containing persons were flagged as containing
some form of PII, resulting in an across-environment complete PII
sanitization rate of 97.8%. For individual environments, PII saniti-
zation rates are: office atrium = 97.4%, home = 97.8%, and public
park = 98.4%. Examining the types of PII leakage, the majority of
PII issues came from skin color and hair color exposed, often at the
extremities (e.g., top of the head, fingertips), which affected 86.3%
of the 73 images containing PII leakages. Only one image in the
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Table 2: Study 1 YOLO and Detectron2 PII removal success
rates on the 3,261 collected images (each). Note: Detectron2
required a desktop GPU.

YOLO (RGB Only, Embedded) Atrium | Home | Park | All Env.
Face 87.9% 83.5% 70.6% 82.5%
Skin Color 62.9% 43.0% | 33.4% 45.3%
Hair Color 66.9% 57.0% | 49.2% 57.7%
Gender 83.9% 77.4% 61.8% 76.4%
Body Shape 82.8% | 78.5% | 62.8% | 77.2%
All PII Removal w/ Ground Truth 52.4% 33.7% | 28.6% 36.4%
Detectron2 (RGB Only, Desktop) Atrium | Home | Park | All Env.
Face 97.7% 95.8% 94.7% 96.0%
Skin Color 60.1% 54.7% 62.7% 56.8%
Hair Color 67.9% 56.9% | 60.4% 59.4%
Gender 94.5% 93.0% 92.3% 93.2%
Body Shape 89.9% 92.5% | 89.9% 91.7%
All PII Removal w/ Ground Truth 44.0% 37.4% | 40.8% 39.1%
Office Home Public Park
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Figure 8: Examples of edge conditions of PII leaks highlighted
in pink. (A) Hair is revealed from a person sitting in a chair.
(B) Skin color is revealed indoors from the foot. (C) Skin color
is revealed outdoors from the hand.

entire dataset was flagged as containing a face after sanitization.
No images had “total failures,” which we define as when all five
types of PII were exposed. Table 1 provides summary statistics of
the PII sanitization rates. The individual PII removal rates (e.g., face,
gender) are generally higher than the “All PII Removal” (APR) rates.
This is due to 15.1% of images with PII leakage having more than
one PII issue, meaning it is more difficult to remove all 5 types of
PII than any one particular type of PIL

Additional PII leakage occurred at the edges of the masking
operation. For example, the image in Figure 8 (A) shows a person
sitting in the office atrium, which was flagged as containing hair
color, with the PII highlighted in pink for clarity of presentation.
Likewise, Figure 8 (B) shows PII leakage in the home setting, where
the foot of the child is visible and thus represents a skin color PII
leakage, which is highlighted in pink. Finally, Figure 8 (C) shows
PII leakage in the park, where a person’s hand is visible. Although
the root causes of these PII leakages are less clear, we believe that a
lack of pixel-to-pixel correspondence between the RGB and thermal
cameras, along with poor time synchronization, has led to these
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Table 3: Study 2 PrivacyLens PII removal success rates.

PrivacyLens (Hybrid, Embedded) Atrium | Home | Park | All Env.
Face 100% 100% 100% 100%
Skin Color 99.4% 99.5% 98.8% 99.4%
Hair Color 99.9% 99.6% | 100% 99.8%
Gender 100% 100% 100% 100%
Body Shape 100% 100% | 100% 100%
All PII Removal w/o Ground Truth 99.3% 99.1% | 98.8% | 99.1%

edge failures. Section 6 details how future versions of PrivacyLens
could address these edge cases.

RGB-only Baseline Conditions. The baseline RGB-only con-
ditions exhibited significantly more pronounced PII leakages. A
substantial contributor to the low APR rates are “total failures”
where the RGB-only approaches missed a person entirely and thus
exposed all five types of PII. Common causes of these failures were
due to a person facing away from the camera or having an odd
posture while sitting or lying down. Annotators flagged 14.6% of
YOLO-sanitized images as containing all five types of PIL. Detec-
tron2, compared to YOLO, reduced the “total failure” rate to 3.1%,
primarily due to its significantly improved face and body detection
models, resulting in more people being redacted from images. How-
ever, Detectron2’s APR rate of 39.1% is only marginally better than
YOLO'’s of 36.4%, since both have poor performance in drawing ac-
curate bounding boxes, resulting in many skin color and hair color
PII leakage events. For reference, PrivacyLens’s hybrid approach
had zero “total failures” and achieved a 97.8% APR rate. Summary
statistics for both baseline conditions can be found in Table 2.

4.5 Study 2 (PII Removal w/o Ground Truth)

While the previous study used the raw RGB images as a reference
to help annotators complete the most stringent evaluation of PII
leakage possible, it does not represent the privacy threat model
of real-world deployment since PrivacyLens would not store or
transmit the raw RGB image for comparison with the PII-sanitized
output image. Thus, without the context of the raw RGB image
to help “fill in the blanks”, it may be challenging to identify the
few strands of hair exposed, the child’s foot, or the person’s hand
in identified Figure 8. Therefore, we conducted a second study to
evaluate what types of PII leakage are detectable using only the
sanitized images. In this second study, a separate set of 10 total
annotators was recruited.

In the case of the PrivacyLens-sanitized images, a new dataset
containing all 73 images flagged as containing PII and 73 randomly
selected images containing no PII (creating a 50-50 balance to
not bias the results) was prepared for annotation. Then, 4 new
annotators were asked to review and label a total of 146 PrivacyLens-
sanitized images for PII. For the baseline comparisons using RGB-
only techniques, more than 50% of the 3,261 sanitized images were
flagged as containing at least one type of PII. Thus, to reannotate
every image that was flagged as having PII, we could not maintain
a 50-50 balance (i.e., there was an insufficient number of non-PII
images to balance), and the entire dataset was reannotated (3,261
images) for both YOLO and Detectron2, and 6 new annotators
annotated without ground truth.
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Table 4: Study 2 YOLO and Detectron2 PII removal success
rates. Note: Detectron2 required a desktop GPU.

YOLO (RGB Only, Embedded) Atrium | Home | Park | All Env.
Face 96.9% 90.1% | 79.5% 89.9%
Skin Color 85.0% 55.8% | 49.9% 60.2%
Hair Color 84.4% 67.9% | 55.1% 69.1%
Gender 94.2% 85.5% | 69.5% 84.9%
Body Shape 93.1% 85.7% | 69.9% 84.9%
All PII Removal w/o Ground Truth 79.0% 49.7% | 45.6% 54.4%
Detectron2 (RGB Only, Desktop) Atrium | Home | Park | All Env.
Face 95.9% 97.3% | 93.5% 96.5%
Skin Color 72.6% 73.8% | 74.0% 73.6%
Hair Color 74.4% 69.1% | 63.9% 69.4%
Gender 95.0% 95.1% | 90.5% 94.4%
Body Shape 92.7% 94.0% | 88.8% 93.0%
All PII Removal w/o Ground Truth 58.4% | 57.8% | 55.6% | 57.6%

4.6 Study 2 Results

PrivacyLens’s Hybrid Approach. Of the 73 images previously
flagged as having PII, only 30 were confirmed to have PII in this
second study, and none of the randomly selected “clean” images
were identified as having PII. Of the 30 images marked as having
leaked PII, only skin color and hair color were exposed. No other
PII exposure types were identified. It should be noted that the one
image previously marked as exposing a face in Study 1 was re-
labeled by new annotators as skin color since only part of the side
of the face was visible. This resulted in a “Sanitized Images Only”
rate of 99.1% for all PII across all environments. Per environment
results are shown in Table 3.

RGB-only Baseline Conditions. Even without ground truth, an-
notators still identified a significant number of “total failures”: 8.2%
for YOLO (14.6% with ground truth) and 2.9% for Detectron2 (3.1%
with ground truth). Furthermore, they flagged nearly half of all im-
ages as containing PII for both YOLO and Detectron2 (see Table 4).
Skin color and hair color remained a significant weakness, and their
sanitization rates marginally improved compared to the ground
truth reference condition, suggesting very obvious exposures in
many images. For reference, PrivacyLens had zero “total failures”
and an APR rate of 99.1% without ground truth.

Overall, these studies demonstrate that PrivacyLens robustly
removes PII on the device in real-time and across multiple environ-
ments. Additionally, Detectron2 did not improve PII sanitization
rates over YOLO, despite being significantly more advanced and
consuming 180 W on a desktop GPU. This suggests that even if more
advanced RGB-only algorithms were used on embedded devices, an
alternative sensing approach is required for robust PII sanitization.
Ultimately, these studies show the critical importance of thermal
information in performing PII-removal tasks where PrivacyLens
presents a strong first-line defense for on-device PII removal.

4.7 Effectiveness Against Threats

Here, we relate PrivacyLens’s performance to the threat model
described in Section 2.1. Since 0.9% of images retained a form of PII
after sanitization, all three threat scenarios potentially benefit from
this leakage. However, the context of the threat determines whether
that PII is useful for an attack. In the unauthorized access case, an
attacker harvesting PII will at most find PII in 0.9% of images, but
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none would contain face, gender, or body shape. Similarly, for au-
thorized access with unauthorized sharing, an attacker who shares
images will only share PII in 0.9% of images. In one particular form
of the authorized access with unauthorized sharing case, where the
attacker’s goal is to share embarrassing content, they may have
more difficulty since 100% of body shapes, genders, and faces were
obscured, making it hard to identify who was in the shared image.
For data over-collection, since PrivacyLens can robustly remove PII,
the ability of the attacker to leverage unintended PII leakage is
reduced to 0.9%. Furthermore, PrivacyLens’s various modes can
selectively construct images from individual semantic elements to
only explicitly what the user wishes to capture, effectively reduc-
ing data over-collection. For example, PrivacyLens can generate a
composite image where a person’s skeletal keypoints are overlaid
on a background. While this may reduce accuracy, it removes all
five PII forms in every image as failure yields just the background.

4.8 More Aggressive RGB-only PII Removal

Our results above highlight that RGB-only methods struggled to
consistently remove all five forms of PII content from images, par-
ticularly skin and hair color. These leakages often came as a result
of the predicted bounding box being too small to remove all PII
completely. To investigate how sensitive CV-only PII removal ap-
proaches are to bounding box alignment, we can increase the ag-
gressiveness of PII removal for these RGB-only methods by dilating
the size of their predicted bounding boxes. Similarly to our thermal
model, which dilates the thermal mask size by 14% (in terms of
pixels) on average, we increased the predicted bounding box for
YOLO and Detectron2 by 14% (in terms of pixels). With these “more
aggressive” RGB-only approaches, we re-sanitized the images and
recruited six additional annotators to annotate 6,522 images (3,261
sanitized two ways) with ground truth similar to in Study 1.

Overall, both RGB-only approaches benefited from dilating the
bounding box size. Aggressive versions of YOLO and Detectron2
significantly improved skin color and hair color removal rates,
which improved to a total sanitization rate of 65.8% and 87.4% APR
rates, respectively. These numbers even improved on the Study 2
results, where annotators did not have ground truth, suggesting that
the dilation removed many of the more obvious PII leakages that
did not require ground truth to identify. However, even with this
aggressive dilation, these results show that a significant number of
images—34.2% and 12.6% for YOLO and Detectron2, respectively—
retained a form of PII leakage. All the images with a “total failure”
where persons are missed completely, were flagged again as total
failures, matching the results from Study 1. The full results for this
study can be found in Table 6 in Appendix B.3.

Thus, even if these images were sanitized again with an even
greater dilation factor, this would not address these images where
the RGB-only methods failed to remove a person from the image
and may ultimately create issues for downstream applications by

further removing a greater number of pixels that do not contain PII.

These results again highlight the value of thermal information as
a secondary information channel for finding persons in situations
that are challenging for RGB-only approaches.
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Figure 9: Result timeline of three sessions of PrivacyLens
of the squat counting and detection application using squat
pose trace with the face swap privacy preserving setting.

5 PII-REDUCED APPLICATIONS

This section demonstrates the effectiveness of PrivacyLens in sup-
porting privacy-preserved versions of three useful proof-of-concept
applications: exercise counting, hand-to-object detection, and fall
detection. We selected these scenarios because they showcase valu-
able in-home CV applications but invoke privacy concerns and
would benefit from on-device PII removal or feature generation. We
evaluated these PII-reduced applications through a 10-participant
user study, which highlights that the sanitized images produced by
PrivacyLens remain useful and achieve comparable performance to
their PIl-invasive counterparts, showing that reducing PII collection
is not inherently incompatible with supporting downstream CV/ML
applications. The applications presented in this section were in-
fluenced by a user study we conducted to identify acceptable PII
interventions relative to the context they are deployed in (see Ap-
pendix C). For example, Face Swap would not be an acceptable mode
for fall detection in the bathroom.

With IRB approval, all three applications were evaluated through
user studies with 10 participants, mainly undergraduate and gradu-
ate students (2 female, 8 male, mean age = 23.7, SD = 2.9). Partici-
pants were screened for whether they could comfortably perform
the following tasks: squat exercises, interact with objects and place
them in various locations, and routines involving standing, sitting,
lying down, walking, and controlled falls to the ground. The partic-
ipants were not compensated for the study, which took at most an
hour in total to complete all three tasks. All the applications operate
in real time at 8 FPS video, but the raw data was saved strictly for
evaluation against the baseline PII-invasive counterparts. A lab
server was used for various computational tasks, as detailed below.

5.1 Exercise Counting

Several CV-based systems identify exercises, count repetitions, and
provide feedback to the user on their technique [4, 26, 27]. In this
application, we prototype a squat counter in two ways to highlight
the utility of different PrivacyLens modes in comparison to an off-
the-shelf counter. The first way directly inputs Face Swap images
into an existing off-the-shelf Posenet-based squat counter [8] run-
ning on the lab server. This demonstrates compatibility without
modifying an existing application. The second way composites
“Stick Figure” and “Thermal Subtraction” to create a Pll-sanitized
yet informative image that sends keypoints to the lab server for
classification. This highlights PrivacyLens’s ability to generate qual-
ity features on-device that can achieve comparable performance to
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the off-the-shelf application while removing PII, namely from the
face, skin and hair color, gender, and body shape.

Procedure. Participants were asked to perform ten squat repeti-
tions, forming a session. They were then asked to repeat the session
twice more, resulting in 30 squats per participant. Figure 9 shows
an example of the squat counting application using PrivacyLens fea-
tures (right) and depicts both the raw RGB and the Face Swap image
(left). To evaluate this task, the number of counted squats for each
method (i.e., Face Swap-Posenet-based and PrivacyLens-generated)
is reported as a percentage of expected squats.

Results. The existing Posenet-based squat counter, which was
provided with both raw and Face Swap images as input, correctly
identified all squat repetitions at 100% accuracy across all partic-
ipants for both sets of images. Our PrivacyLens-based approach,
which generates its own keypoints to count squats, also had 100%
accuracy across all participants. These results show that Face Swap
remains compatible with existing downstream CV applications with
matching performance using entirely on-device generated features.

5.2 Hand-to-Object Detection

Enabling computers to identify people’s activities in their living
spaces has been an active area of research in the health sensing do-
main, such as recognizing cooking and hygienic activities [74]. We
developed a proof-of-concept hand-to-object detection application
to track users in the kitchen. As shown in Figure 10, PrivacyLens
first identifies the objects in the background using YOLO [44], ap-
plies Thermal Subtraction to remove the person, and then the object
bounding boxes and person’s keypoints are overlaid on the sanitized
image. This allows the image to encode interaction with objects in
the environment without including PII. On the lab server, an object
interaction algorithm measures the intersection of hand keypoints
and objects and records them as events.

Procedure. The 10 participants performed a routine with five
objects in the environment: open the refrigerator, grab the cup from
the refrigerator, place the cup in the microwave, grab the bowl from
the counter, place the bowl in the sink. We asked each participant
to perform this routine thrice. To evaluate this task, hand keypoint
interactions with the object bounding boxes were detected as events.
If interactions with all five objects were correctly identified, the
session would be scored a 5 out of 5. The total number of detected
events out of expected events was reported. An example object
detection timeline can be seen in Figure 10.

882

Yasha Iravantchi, Thomas Krolikowski, William Wang, Kang G. Shin, Alanson Sample

Fall Detection

Fall Detection

walking —
@ 2 standing il
9 8 stand up | —
« T sitting — ] =
H § sitdown| ]
e & lying down
fall down 1 — —
©
& walking ——
£ g standing I
5 & stand up _— ]
g © sitting | | -
8 £ sitdown| u
z0 < lying down |
H fall down I —
@ ] a 6 10 12 14 16

Figure 11: PrivacyLens-generated features (above) and
AlphaPose-generated features (below) both using ST-GAN
fall detection to track a person’s activity timeline.

Results. Across all participants, PrivacyLens correctly identified
143 of 150 hand-to-object events (95.3%). The seven missed interac-
tions were caused by occlusion issues, such as when a participant’s
hand completely blocks the camera’s view of the object prevent-
ing its proper detection. This performance is identical to the the
version of this application that does not perform PII removal, as
the object detection and keypoint detection are performed prior
to PII sanitization and, thus, have equivalent sets of keypoints and
identified bounding boxes. Though preliminary, these results show
a promising first step towards privacy-preserved in-home activ-
ity recognition with cameras that do not collect PII but can still
robustly encode useful information.

5.3 Fall Detection

The CDC report that one-third of adults over 65 have a fall resulting
in injury each year [10]. While CV-based approaches are capable of
detecting falls [15, 59] without requiring the user to continuously
wear a monitoring device [15, 77], many elderly citizens and family
members are reluctant to install cameras in their homes without
privacy protections [14, 25, 59]. These CV approaches often have a
similar pipeline: 1) identify the person in the image, 2) identify their
keypoints, 3) track them across frames, and 4) predict the event.

In this application, we utilize an existing fall detector [30] that
is pre-trained using the InVia Fall Dataset [77]. As implemented,
the application first uses AlphaPose [47] to generate keypoints
for each frame and, based on those keypoints, uses a trained ST-
GCN model [72] to predict an event. This pipeline has significant
computational requirements; AlphaPose, which needs access to the
camera to generate keypoints at 10 FPS, requires an Nvidia 2080Ti
GPU [46]. It is not economically feasible to deploy an expensive
GPU to run the entire pipeline locally in each home. However, this
application can be split such that PrivacyLens handles the privacy-
sensitive data and generates keypoints for the resource-intensive
ST-GCN model to predict events from the cloud.

During initial testing, we discovered that MediaPipe keypoints
diverged considerably from AlphaPose keypoints during fast move-
ments, such as falls. Using these keypoints resulted in poor detec-
tion performance. MoveNet [26], which omits certain keypoints,
such as hands and face, in return for greater accuracy during fast
movements, closely matched the AlphaPose ones used by the ST-
GCN model. Thus, we use MoveNet to generate keypoints on device,
overlay them on a Thermal Subtraction image, and send them to
the lab server that runs the pretrained ST-GCN model. On the
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Jetson Nano, MoveNet achieved 16 FPS but could not benchmark
AlphaPose due to resource constraints.

Procedure. The 10 participants performed the following routine:
stand, sit down on a chair, stand, sit on a couch, lie down on a
couch, walk forward, and fall to the ground. They repeated this
routine three times. Raw RGB frames were provided directly to
the unmodified AlphaPose-ST-GCN fall detector pipeline, which
outputs an activity label per frame as a “reference”. PrivacyLens
generates MoveNet keypoints per frame and is input to the same ST-
GCN model for synchronized per-frame activity labels. To evaluate
this task, for every activity event from the AlphaPose-ST-GCN
pipeline, if the PrivacyLens-ST-GCN pipeline had an overlapping
event at any point in time with the same label, it was considered a
matching event. An example detected event, as well as the timeline
of the routine from both approaches, can be found in Figure 11.

Results. Of the 198 reference events across all participants pre-
dicted by the full AlphaPose-ST-GCN pipeline, the PrivacyLens-ST-
GCN version had 178 matching events (89.9%). The reference events
that missed a matching PrivacyLens-ST-GCN event were caused by
a significant divergence between the two sets of keypoints, such
as when participants laid down facing away. These results show
that, without any modification to a pre-trained ST-GCN model,
on-device generated features can offer a compelling substitute and
show promise for privacy-preserving CV-based fall detection.

5.4 PII Sanitization Results

Similar to Study 1 in the previous section, we evaluated the PII
removal performance of the three applications. However, since
the framerate was set to 8 FPS to support interactive applications—
which generates ~28k frames per hour—even if the video were
cropped to only when the participant was actively performing the
task, the resulting 14k frames (42k frames when sanitized three
ways) would be a significantly burdensome annotation task. Thus,
we randomly selected 20 frames from each participant for each ap-
plication, resulting in 200 images per application and sanitized with
PrivacyLens’s hybrid Thermal Subtraction, YOLO, and Detectron2
methods, resulting in 600 images per application and 1800 images in
total. The Exercise Counting application, where Face Swap was also
utilized, added an additional 200 images to be annotated, resulting
in a final set of 2,000 images annotated with ground truth by a total
of 10 new annotators using the same procedure from Study 1. The
full results can be found in Table 7 in Appendix B.4

Exercise Counting. In the 200 randomly selected frames, Face
Swap removed 100% of facial PII in the frame but retained all other
forms of PII. Thermal Subtraction only leaked skin color or hair
color across a total of 7 frames, resulting in an APR rate of 96.5% (vs.
97.8% in Study 1). Apart from one “total failure”, in which YOLO
missed the person completely, resulting in all five forms of PII
leaking, YOLO leaked skin color and hair color across a total of
115 frames, resulting in an APR rate of 42.5% (vs. 36.4% in Study 1).
Detectron2 only leaked skin color or hair color across a total of 125
frames, resulting in an APR rate of 37.5%, similar to that in Study 1
(39.1%). For both RGB-only approaches, leakages were often due to
the bounding box insufficiently covering the person, such as from
hair, elbows, and legs poking out beyond the bounding box.
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Hand-to-Object Detection. Compared to exercise counting, hand-
to-object detection presented a more challenging PII removal sce-
nario, where objects in the environment (such as a refrigerator
door) could occlude the view of the person, potentially resulting in
PII leakage. PrivacyLens only leaked skin and hair color, resulting
in an APR of 92.0%. YOLO had a significant number of total failures
due to occlusions, which caused no bounding box to be drawn and
leak all five forms of PII, but otherwise achieved an APR of 42.0%.
Detectron2 had no total failures, but still leaked skin color and hair
color due to occlusions, which caused the bounding box to only
cover a portion of the person, resulting in an APR of 38.0%.

Fall Detection. Fall detection introduced additional challenges,
where participants could also appear in the image sideways (e.g.,
while lying down or falling to the ground). Like the previous appli-
cations, PrivacyLens leaked only skin and hair color, resulting in an
APR of 95.5%. YOLO, which had a significant number of total fail-
ures due to participants appearing sideways, leaked all five forms
of PII with an APR of 48.5%. Detectron2 had just 2 total failures,
which leaked all five forms of PII, but otherwise only leaked skin
and hair color, and performed particularly robustly, as there were
no objects to create occlusions in this application, and was able to
detect sideways persons, resulting in an APR of 63.5%.

These results show that while CV-only approaches are effec-
tive at supporting downstream activity monitoring applications,
their relatively low sanitization rates and their propensity for total
failures do not make them viable for privacy-sensitive applications.

5.5 Envisioned Future Use Cases & Feasibility

Privacy and economic factors prevent applications from operat-
ing entirely on the edge or in the cloud. For example, the afore-
mentioned Nvidia 2080Ti required to support the full AlphaPose-
ST-GCN pipeline originally retailed for USD $999 [63]—this cost
does not include the remaining components to build a computer
(e.g., CPU, RAM, disks) or the nontrivial electricity costs (Nvidia
recommends a 650-watt power supply). Cloud resources leverage
economies of scale to reduce per-device computational costs as they
get deployed at a large scale (vs. the costs of implementing personal
infrastructure that increases linearly per GPU). However, sending
unsanitized image content to the cloud to perform all computational
tasks can introduce privacy concerns.

PrivacyLens shows that useful yet privacy-sensitive applications
can be distributed by generating PII-free features for applications
with a significant computational component that must run on
servers. Furthermore, all three applications demonstrate that even
though PII has been removed, PrivacyLens’s output remains use-
ful: All three applications match the performance of their privacy-
invasive counterparts. These results show that privacy does not
have to be an all-or-nothing proposition; it is possible to leverage
pre-built applications with enhanced privacy and develop com-
pelling applications with high-quality features without capturing
PIL In this manner, our approach reduces costs by enabling the
opportunity to leverage cloud computing resources while still offer-
ing a baseline level of privacy. We hope these examples motivate
further exploration of privacy-preserved CV/ML applications using
on-device PII removal and features.
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Figure 12: Common failure situations. (A) Thermal masking
is prevented by glass blocking the transmission of infrared
waves. (B) Imperfect camera alignment reveals fingers that
are directly touching the RGB camera. (C) Pixel resolution
masking limitations resulting in PII leakage.

6 DISCUSSION

This section discusses the limitations of the PrivacyLens prototype,
alternative sanitization approaches, and future design concepts.
Limitations. Our real-world deployment study revealed limita-
tions of the current implementation of the PrivacyLens prototype
within certain situations. Illustrative examples are shown in Fig-
ure 12. One situation is when a person is partially in the frame,
such as just their legs, but behind a glass structure. Since the glass
blocks the person’s blackbody wavelengths, the thermal camera
cannot detect the person, and YOLO cannot detect just their legs,
resulting in a PII leakage. More advanced RGB models that can
detect partial persons should address this issue. Another set of
“edge condition” issues is caused by the limited resolution and FPS
used by the thermal camera in the prototype. Export restrictions
by the International Traffic in Arms Regulations (ITAR) govern-
ing body make it relatively challenging to source high-resolution
(> 640 x 512) and high-FPS (> 9) thermal cameras, which is why
PrivacyLens uses the readily available FLIR Lepton 3.5. Specifically,
the 160x120 resolution is insufficient for a perfect 1-to-1 mapping
to the RGB image (which caused fingers to be revealed in Figure 12)
or to accurately resolve persons at long distances; at 50 m distance,
a person is roughly one thermal pixel wide, which caused a runner’s
legs to be revealed in Figure 12. The slower FPS prevents frame-by-
frame synchronization with the RGB camera. PrivacyLens partially
addresses these sensor limitations by increasing the dilation factor
of the thermal mask and ensuring a worst-case synchronization
error of 16.67 ms. Despite these limitations, PrivacyLens achieved
> 99% sanitization. Future work with higher-resolution thermal
cameras and synchronized RGB and thermal cameras could improve
the PII removal efficiency and reduce the need to dilate the thermal
image. While the sensitivities of most radiometric thermal cameras
are similar, however, their prices increase with resolution.
Another possible scenario that reduces the utility of a produced
image but not its PII sanitization performance is when other heat
elements are in the scene at the same temperature as the human
body, such as an animal or hot surface. In this case, the pixels
corresponding to these objects would also be removed from the
image (e.g., a cat is removed from an image alongside the persons in
the image). This would not affect the PII sanitization rate, but rather
the non-PII content of the remaining image: Introducing additional
heat elements would not “trick” the camera into unmasking the
pixels that correspond to persons. Furthermore, since the thermal
camera is radiometric and self-calibrating, the value of an individual
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pixel is absolute and not influenced by the temperature of the
scene or environmental conditions (i.e., no min/max scaling), so an
attacker can only cause a greater number of pixels to be removed
from the image rather than inducing a PII leakage.

Finally, while the participants in the application study skew
towards male participants, this resulted from who was available
and willing to participate after recruiting through departmental
email lists and direct individual recruitment. While performance
was robust across genders, future work should explore systematic
biases in PII sanitization approaches with a more diverse sample.

Alternative Sanitization Approaches. In the related work sec-
tion, we highlighted alternative image sanitization approaches to
protect bystander privacy that included deep learning (DL) mod-
els to blur and mask bystanders. For this, facial PII, blur, blocking,
and inpainting approaches have been explored, but more recently,
Deepfake approaches have maintained compatibility with systems
that rely on facial detection for other tasks, such as pose detection,
while removing facial PII. While these approaches demonstrate com-
pelling results, they optimize for maximum performance and were
not originally designed with the constraints of embedded hardware
in mind. While future SBCs may be capable of employing those
approaches for real-time image sanitization, the current capabilities
of SBCs under USD $100 are insufficient to support them. However,
there may be ways to support these approaches in the near future.
For example, quantized DL models may approximate the sanitiza-
tion performance while reducing the computational overhead to run
on an SBC. Given the effectiveness of these alternative approaches
using RGB alone, we expect the addition of thermal information to
further enhance their capabilities. Additionally, similar to our fall
detection application in the previous section, PrivacyLens could
generate features (e.g., from Hasan et al. [34]: identifying persons,
generating body-pose and facial expression features) and pass them
to cloud resources for bystander classification. If those persons are
classified as bystanders, the cloud computer can signal to Privacy-
Lens which persons should be removed while keeping the camera’s
owner intact. This ensures that raw images never leave the device
while leveraging additional computing resources. As SBCs become
more capable, we hope to see greater adoption of these approaches.

7 CONCLUSION

Without assurances of privacy, users are unlikely to accept cam-
eras in their private spaces, such as bedrooms and bathrooms. To
address this need for greater privacy, we explored the creation
of a hybrid RGB and thermal camera to robustly detect and re-
move PII from images. To evaluate its effectiveness, PrivacyLens
was deployed to capture images in three environments and results
showed robust removal of PII with a 99.1% sanitization rate (with
100% sanitization of face, body shape, and gender), compared to
54.4% and 57.6% using RGB-only approaches. To showcase that
PrivacyLens’s Pll-sanitized outputs remain useful, we evaluated
three applications with 10 participants, finding the PII-sanitized
application performance closely matched their privacy-invasive
counterparts. Ultimately, PrivacyLens provides strong assurances
that PII never leaves the device while maintaining compatibility
with downstream applications, enabling a path for greater adoption
of camera-based ubiquitous sensing applications.
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APPENDIX
A PILOT STUDY

As referenced in Section 3, we conducted a pilot study to inform
the design of the PrivacyLens prototype, which was formally eval-
uated in real-world settings in Section 4. This section details those
pilot studies performed on the existing Korea Advanced Institute of
Science and Technology (KAIST) Advanced Driver Assistance Sys-
tems (ADAS) RGB and thermal dataset [38] to develop approaches
that can robustly remove persons from images. We additionally
evaluated those approaches to determine their efficiency on various
embedded devices, as described in Section 3 and further detailed in
Appendix B.1.

A.1 Approach

The addition of thermal imaging to RGB cameras has shown sig-
nificant improvement in ADAS person-detection tasks over RGB-
only methods [37]; as an additional sensing approach, it may also
enhance the robustness of finding and removing entire persons
from images and, thereby, PIL. To present RGB-only baselines, we
utilized two RGB-only approaches: YOLOvV5 [44], a lightweight
model that can run in real time on an embedded device, and Detec-
tron2 [71], a state-of-the-art Region-based Convolutional Neural
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Network (R-CNN) approach using desktop-class GPUs. We then
evaluated a thermal-only and an RGB and thermal hybrid approach
to determine how effectively thermal information can aid in person-
removal tasks. Our approach, described in Algorithm 1, uses the
thermal image to create a segmentation mask that can “subtract”
the pixels from the RGB image, which can be performed efficiently
on a GPU. For a direct comparison to the RGB-only approaches, a
bounding box was calculated from the span of the thermal mask,
and the entirety of that bounding box was removed. The hybrid
approach pairs YOLO with thermal subtraction by finding the union
of the two bounding boxes.

Algorithm 1 PrivacyLens’s thermal subtraction algorithm, where
a subtraction mask is made from pixels that are within a range for
typical human skin temperature and is used to perform a bitwise
operation on the RGB image to remove those specified pixels.

1: Inputs:
aligned_thermal_im, aligned_rgb_im
: Create binary mask (lower_mask) from thermal image lower temperature threshold
: Create binary mask (upper_mask) from thermal image upper temperature threshold
: Invert (Bitwise_NOT) upper_mask
Create binary mask (final_mask) by Bitwise_AND(lower_mask, upper_mask)
Invert (Bitwise_NOT) final_mask
Erode final_mask
Dilate final_mask
: Convert final_mask to 8-bit RGB image
: Bitwise_AND(final_mask, aligned_rgb_im) and return thermal_sub_im
: Outputs:
thermal_sub_im

SO VXN U W

—_ =

A.2 Procedure

To evaluate these four approaches, we used the KAIST Multi-spectral
Advanced Driver Assistance Systems (ADAS) dataset [38], as there
are very few publicly available RGB and thermal datasets that con-
tain a wide variety of persons with curated human-labeled anno-
tations outside of the ADAS community. While the environment
in the ADAS dataset differs from typical human-centric environ-
ments, it is a very large dataset of 95k RGB-thermal image pairs
that contains individual bounding boxes for persons in a variety of
different poses (e.g., sitting, standing, walking), orientations (e.g.,
facing directly, sideways, and away from the camera), and clothing
styles that cover exposed skin (e.g., hats, long sleeves, pants). This
variety is similar to the poses, orientations, and clothing encoun-
tered in human-centric environments, which we formally validate
in Section 4. Thus, using the ADAS dataset should be sufficiently
representative for a pilot study to determine the relative value of
thermal information for person removal in images. To prepare the
dataset for our evaluation, we used the training half of the dataset,
which has 50,200 total images, of which 41,500 contain persons.
There may be more than one person in each image, resulting in
67,991 annotated bounding boxes corresponding to a person.
ADAS traditionally uses the Intersection over Union (IoU) met-
ric, as shown in Figure 14, to evaluate pedestrian detection success
rates, where > 50% IoU is tallied as a correct detection [22]. How-
ever, IoU is not an ideal metric for privacy; since IoU optimizes for
box alignment rather than coverage, it does not assess whether an
entire person was removed from an image and thus sanitized of PII.
For example, in Figure 14, there are three bounding boxes: Box A is
a predicted bounding box larger than the ground truth Box C; Box
B is a predicted bounding box smaller than the ground truth Box
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Figure 13: A sample image pair from the KAIST ADAS dataset
with the RGB image (left) and the thermal image (right).

c 1 50
c 2 -
c_5_ 50
c 1 -

Figure 14: An illustration where two predicted bounding
boxes, A and B, can have the same IoU score relative to the
ground truth annotated bounding box, C. If bounding box A
is removed from the image, the person is entirely removed.
However, if bounding box B is removed, identifiers such as
skin and hair color remain in the image.

C. Box A, which has twice the area of ground truth but completely
covers it has an equivalent IoU to Box B, which is half the area of
ground truth but only partially covers the person. In this situation,
Box A correctly removes the person entirely, but Box B exposes PII,
demonstrating that IoU is not an adequate metric to determine the
entire person’s removal. Thus, we define a metric that quantifies the
success rate based on how much of the ground truth bounding box
is removed. First, the percentage of pixels removed is calculated for
each annotated bounding box. Using a pixel-percentage threshold,
that removal is counted as either a “success” or a “failure”. The total
proportion of successes is reported as a success rate relative to a
set pixel-percentage threshold. For example, if the pixel-percentage
threshold is set to 95%, and 99/100 bounding boxes had >95% of
pixels removed, the success rate for that threshold would be 0.99.
A privacy-success curve is generated as the threshold is increased
from 1% to 100% (increments of 1%) for each person-removal ap-
proach, representing the relative robustness of an approach to an
increasing privacy standard.

A.3 Results

For each approach, the privacy-success curve was computed by in-
creasing the threshold starting from 1% to 100%, with a step size of
1%, and can be found in Figure 15. There is no value computed for a
0% threshold. While both RGB-only approaches provide robust per-
son detection, they struggle to correctly identify the entire bounds
of a person, especially when a person has their limbs extended or is



Proceedings on Privacy Enhancing Technologies 2024(4)

100
~ 80
X
g 60
Py = Detectron2 (RGB-Only)
§ 40{ == YOLO (RGB-Only)
S = Thermal Only
v 20{ == Hybrid (Thermal+YOLO)
* 95% Privacy-95% Success
0

1 20 40

60 80
Pixels Removed Threshold (%)

100

Figure 15: The privacy-success curves for the four approaches.
The top right corner represents the ideal case; 100% of im-
ages have 100% of pixels removed. The bottom left corner
represents the worst case, where 0% of images had at least 1%
of pixels removed (as the threshold starts at 1%, there is no
0% pixel removal threshold). Based on these results, hybrid
models are needed to surpass >95% success with a >95% pixel
removal threshold.

not facing the camera. YOLO often had more generously predicted
bounding boxes, thus slightly outperforming Detectron2 in this
task. Overall, both RGB-only approaches are insufficient, as less
than 50% of bounding boxes were successfully sanitized with a 95%
pixel-level privacy threshold.

The thermal-only approach significantly improves over RGB-
only but only achieves 91.7% performance at a 95% pixel-level pri-
vacy threshold. We observed that thermal-only has difficulties when
extremities are lower than the threshold (e.g., cold hands) or are
covered (e.g., with a hat). We found the hybrid approach addresses
the weaknesses of each standalone approach: YOLO can extend
the bounding box to cold extremities, and the thermal component
can capture situations where persons have awkward postures or
face away from the camera, a challenge for RGB-only methods. The
hybrid approach achieves a 98.9% success rate at the 95% pixel-level
privacy threshold, demonstrating the possibility of robust detection
and removal of people from images.

B ADDITIONAL EVALUATION DETAILS

In this section, we include greater details for the efficiency bench-
marks referenced in Section 3, annotator statistics for the deploy-
ment evaluation in Section 4, further details regarding the more
aggressive RGB-only evaluation in Section 4, and the full PII saniti-
zation results of the applications presented in Section 5.

B.1 Efficiency Benchmarks

Per the efficiency evaluation detailed in Section 3, Table 5 shows
the full results for the thermal subtraction and facial landmark
benchmarks. Overall, these tasks were especially challenging for
the embedded devices’ CPUs. Neither could exceed 13 FPS in both
tasks, making them insufficient for real-time sanitization of images
while leaving little headroom for other CPU-bound tasks. However,
the Jetson Nano’s GPU achieved up to 260 FPS on the thermal
subtraction benchmark and up to 50 FPS on the facial landmark
benchmark with significantly higher per-watt efficiency than the
CPU alone. Offloading these tasks to the GPU frees CPU resources
to perform additional operations. Additionally, the embedded GPU
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supports certain lightweight ML-based tasks, which are helpful for
other PII removal tasks or generating features as part of a more
extensive ML-driven application, as was shown in Section 5.

Table 5: The results of our thermal subtraction (top) and facial
landmark (bottom) benchmarks, with the best performance
in bold. The Jetson Nano GPU has the highest FPS/W for both
tasks, making it ideal for mobile applications.

Thermal Subtraction Benchmark Watts FPS FPS/W
Raspberry Pi 3 25 16.9 6.8
Jetson CPU (Max) 1.6 78.1 43.8
Jetson CPU (5W) 0.9 45.3 50.3
Jetson GPU (Max) 2.5 259.7 103.8
Jetson GPU (5W) 2.0 2213 | 1107
Intel 9900K 38.0 434.0 11.4
Titan RTX 205.0 18883.5 92.1
Facial Landmark Benchmark Watts FPS FPS/W
Raspberry Pi 3 4.6 4.8 1.0
Jetson CPU (Max) 2.7 12.4 4.6
Jetson CPU (5W) 0.6 3.1 5.2
Jetson GPU (Max) 2.9 50.0 17.2
Jetson GPU (5W) 0.9 17.5 19.4
Intel 9900K 95.8 226.3 2.4
Titan RTX 59.0 229.3 3.9

B.2 Across-Study Annotator Statistics

Cohen’s kappa is a traditional statistic to model annotator reliabil-
ity [19]. We computed kappa to compare the reliability between
annotators from Study 1 to Study 2 in Section 4 for all images
sanitized by the same PII sanitization methods. For PrivacyLens,
YOLO, and Detectron2, we found a score of 0.577, 0.648, and 0.641,
respectively. While this suggests only moderate agreement among
annotators from Study 1 to Study 2, Cohen’s kappa considers class
imbalance (e.g., the proportion of images annotators agree con-
tain PII versus images annotators agree contain no PII) and thus
can lower the score even if there is significant agreement among
annotators [19]. In the PrivacyLens case, the ratio of images that
annotators agreed contained PII to images that annotators agreed
contained no PII was 0.0094, effectively further reducing the kappa
score despite annotators agreeing on whether the image contained
PII in 98.7% of images. However, in the YOLO and Detectron2 cases
with higher kappa values, the ratios of images were much closer to
1 (1.253 and 1.084) despite having a significantly higher prevalence
in differing PII content ratings (18.0% and 18.5%) across images.
Thus, we directly analyzed annotator disagreements by manu-
ally identifying individual images where the annotator in Study
1 flagged an image as having PII and another in Study 2 flagged
it as not having PII (or vice versa, if that case occurred). The au-
thors discussed potential reasons and identified that disagreement
between the annotator from Study 1 and Study 2 on whether the
image contained PII was highly dependent on how the sanitiza-
tion system leaked PII, suggesting that Cohen’s kappa presents an
unideal statistic to determine the reliability of annotators across
the two studies. For the PrivacyLens approach, 58.9% of the images
flagged as containing at least one form of PII by an annotator in
the first study had a disagreement, whereas the annotator in the
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second study flagged it as containing no PII at all. For YOLO and
Detectron2, the disagreement percentage was 28.3% and 30.3%, re-
spectively. We attribute the difference in disagreement percentages
to how the approaches leak PII. The RGB approaches have more ob-
vious PII leakage behavior; their high rate of “total failure” flagged
images often corresponded to whole persons being missed. With
PrivacyLens, the leakage was often more subtle, such as unmasked
pixels located on the edge of where the thermal subtraction mask
fell short. Thus, a high proportion of the images flagged as having
PII were the “on the fence” type, which is why many were not
flagged as having PII by a different annotator, leading to a higher
disagreement percentage. For images flagged as containing no PII,
the disagreement among all approaches (PrivacyLens, YOLO, De-
tectron2) was 0%, as they were all confirmed to have no PII. This
suggests our annotators were very careful when actively flagging
an image as having no PIL.

B.3 More Aggressive RGB-only PII Removal

In Section 4, we conducted an additional evaluation where the RGB-
only methods were made to remove PII from images more aggres-
sively compared to their default settings. The predicted bounding
boxes for both YOLO and Detectron2 were increased in area by 14%,
thus removing a greater portion of the image for each predicted
bounding box. Overall, sanitization rates for all environments and
all forms of PII improved, most notably hair and skin color, which
were often leaked when hair or exposed extremities (e.g., fingers,
feet) extended past the predicted bounding boxes. However, increas-
ing the predicted bounding box size still did not remedy situations
where no bounding box was predicted, leaving that portion of an
image completely unsanitized. Thus, these results further demon-
strated that information provided by the thermal camera is critical
for robust PII removal across a multitude of situations.

Table 6: The aggressive RGB-only PII removal success rates.

Aggressive YOLO Atrium | Home | Park | All Env.
(RGB Only, Embedded)

Face 82.8% 79.9% | 67.2% 78.7%
Skin Color 74.8% 67.0% | 56.0% 66.9%
Hair Color 76.8% 72.4% | 62.0% 71.8%
Gender 79.9% 75.8% | 62.9% 74.8%
Body Shape 79.5% 75.4% | 63.2% 74.4%
All PII Removal w/ Ground Truth 73.4% | 65.8% | 55.5% | 65.8%
Aggressive Detectron2 Atrium | Home | Park | All Env.
(RGB Only, Desktop)

Face 97.2% 95.5% | 92.9% 95.5%
Skin Color 86.6% 89.5% | 86.4% 88.6%
Hair Color 88.9% 93.4% | 89.3% 92.0%
Gender 95.4% 93.9% | 91.1% 93.8%
Body Shape 94.0% 94.6% | 91.1% 94.0%
All PII Removal w/ Ground Truth 85.7% 88.5% | 84.0% | 87.4%

B.4 PII Removal in Applications

In Section 5, we evaluated the PII removal rates for the exercise
counting, hand-to-object activity recognition, and fall detection
applications. Overall, PrivacyLens’s hybrid approach outperformed
the two RGB-only approaches, similar to the results presented in
our deployment evaluation in Section 4. However, one particular
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advantage PrivacyLens had in these applications was when the
participants were in awkward poses (e.g., while laying on the couch
or falling down) or when an object came between the participant
and the camera (e.g., refrigerator and microwave doors). In these
situations, the RGB-only approaches had difficulty drawing bound-
ing boxes appropriately. In the case of Detectron2, the bounding
boxes may have exposed additional skin and hair, but rarely the
face. Additionally, since Detectron2 could draw bounding boxes
when a person appeared sideways in an image (such as when lying
down), it missed drawing a bounding box in only two images. For
YOLO, in addition to exposing skin and hair in a similar manner to
Detectronz, it struggled to identify persons in images when they
were sideways or had an object occlusion, which resulted in many
unsanitized images exposing all five forms of PIIL PrivacyLens’s
thermal subtraction remained robust to persons appearing sideways
or occluded, which resulted in no total failures. Table 7 presents
the full results per application and PII removal type.

Table 7: The PII removal success rates for each application
per each PII removal approach.

PrivacyLens (Hybrid, Embedded) || Exercise | Object | Fall | All Apps
Face 100% 100% 100% 100%
Skin Color 98.0% 96.0% 99.0% 97.7%
Hair Color 98.0% 95.0% 95.5% 96.2%
Gender 100% 100% 100% 100%
Body Shape 100% 100% 100% 100%
All PII Removal w/ Ground Truth 96.5% 92.0% | 95.5% 94.7%
YOLO (RGB Only, Embedded) Exercise | Object | Fall | All Apps
Face 99.5% 94.5% 93.0% 95.7%
Skin Color 57.5% 68.5% 79.0% 68.3%
Hair Color 64.0% 60.0% 56.0% 60.0%
Gender 99.5% 94.0% 92.5% 95.3%
Body Shape 99.5% 92.5% | 92.5% 94.8%
All PII Removal w/ Ground Truth 42.5% 42.0% | 48.5% 44.3%
Detectron2 (RGB Only, Desktop) Exercise | Object | Fall | All Apps
Face 100% 100% 99.0% 99.7%
Skin Color 63.0% 68.5% 92.0% 74.5%
Hair Color 59.0% 61.0% | 67.5% 62.5%
Gender 100% 100% 99.0% 99.6%
Body Shape 100% 100% | 99.0% 99.6%
All PII Removal w/ Ground Truth 37.5% 38.0% | 63.5% 46.3%

C PRIVACYLENS SANITIZATION MODES AND
INTERVIEWS

We evaluated PrivacyLens’s ability to remove PII robustly in Sec-
tions 4 and 5. While some end-user applications do not require any
information about people (such as monitoring the level of trash in
a public garbage bin), other applications are human-centric (such
as the ones presented in Section 5 like activity monitoring and fall
detection) and do require a level of information on detected hu-
mans, leading to a tradeoff between user privacy and the utility of
the end application. In a user study, we explore several sanitization
modes with varying degrees of PII removal for different end-user
applications. To evaluate the user perception and acceptance of
PrivacyLens’s sanitization modes, a user study was conducted by
interviewing 15 participants from 20 to 74 years of age.

From our literature search and various legal definitions of PII, we
defined six PrivacyLens sanitization modes, as seen in Figure 5. Each
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of these sanitization modes presented a tradeoff between privacy
and recorded information; having multiple options empowers users
to define the amount of PII they wish to permit to be captured and
stored. Additionally, for some human-centric applications, an image
that contains PII is needed to power downstream ML and AI tasks.
In this case, a limited number of privacy-preserving features can be
generated on the device (such as the user’s body pose) and can be
used to augment the PIl-sanitized images or sent as as additional
metadata. This section informed the design of the PrivacyLens
applications in Section 5 that demonstrates that these sanitization
modes are compatible with existing, off-the-shelf applications.

Table 8: Demographic information and statistics for the
smart device questions of the 15 interview participants.

Demographic Information Mean | SD | Min | Max
Age 38.3 21.9 20 74
How familiar and how often do you use your smart devices? 6.3 1.1 4 7
(1=Not at all, infrequent use 7 = Very familiar, daily use)

How much do you trust your smart devices to protect your privacy? 3.7 1.7 1 6
(1=Not at all 7= Completely trusting)

C.1 Study Procedure

We recruited 15 participants (5 female, 9 male, 1 non-binary) through
snowball sampling between the ages of 20 and 74 with IRB approval
for this study. Four participants had an undergraduate-level educa-
tion; the remaining 11 had graduate-level education. We addition-
ally asked two questions to guage how familiar our participants
were with smart devices and how trusting they were of these devices
to protect their privacy. Table 8 provides demographic statistics
about the participants. To start, each participant was shown a pre-
recorded video clip from the raw RGB stream of the PrivacyLens
prototype that demonstrated a person walking in a park, walking
in their home, and exiting the shower (clothed). Then, for each
sanitization mode (as seen in Figure 5), the participant was shown
a pre-recorded video clip of that sanitization mode in operation. No
questions were presented through videos. After watching the video,
a researcher verbally presented each of the following scenarios
surrounding three proposed environments sequentially as part of a
semi-structured interview:

(1) Imagine a city employee needs a way to monitor and maintain
public spaces (e.g., trash on the ground, public recycle bins full,
sidewalk repairs), which would allow the city to more quickly
address issues.

Imagine a tele-health application that can keep track of your daily
self-care routines (e.g., doing dishes, exercise, etc.) in general home
spaces, such as the kitchen or living room. These routines would
be used for the early detection of chronic health conditions, such
as emerging heart failure, Alzheimer’s, and Multiple Sclerosis.
Imagine a home safety application that can detect slip and fall
events, the leading cause of death in those over 64, in private
home spaces, such as the bathroom, and alert emergency medical
services.

Per Bell [7], to guard against carryover effects given the number

of interviewees, the scenarios were presented in the order shown

above starting with the least sensitive context (public) and ending
with the most sensitive context (sensitive home). After each sce-
nario was presented and discussed, for each of the six proposed
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sanitization modes they were asked to answer “How much would
using this sanitization mode improve your sense of privacy com-
pared to using a regular camera?” on a 7-point Likert scale (where 1
denotes “Significantly Worse”, 4 denotes “Same as a regular camera”,
7 denotes “Significantly Better”). The participants were allowed to
ask any clarifying questions and asked only to consider the privacy
aspects of the sanitization mode and to assume the sanitization
mode has no effects on the performance of the application in the
scenario with general comments recorded for each sanitization
mode.

After each sanitization mode had been rated on a 7-point Likert
scale, we asked our participants questions regarding which modes
they would be willing to accept. For each scenario, we asked the par-
ticipants to state which modes they would feel comfortable with,
which acceptable mode they felt most comfortable with, which
acceptable mode they felt least comfortable with, and which unac-
ceptable mode they felt least comfortable with. We also recorded
general thoughts and preferences from participants, comparing the
modes across the three scenarios. Demographic information (age,
gender, education level) about the participant was collected at the
end of the interview and can be found in Table 8. Interviews took
roughly 30 minutes on average.

C.2 Study Results

Overall, all of the sanitization modes averaged above 5.3 across all
environments. Only Face Swap and Thermal Only had participants
provide a score of 4 (the same as a regular RGB camera); all other
sanitization modes had a minimum score of 5 or better. Thermal
Subtraction and Stick Figure performed particularly well, averag-
ing above 6.53 for all environments. Table 9 provides summary
statistics for each mode across each environment. The scores for
the modes cluster into three “tiers” that correlate to their semantic
representation. Tier 1 sanitization modes have a visual represen-
tation of the body (Face Swap, Thermal Only), Tier 2 sanitization
modes include the body’s silhouette (Thermal Replacement, Ghost
Ul), and Tier 3 sanitization modes entirely remove the body’s shape
(Thermal Subtraction, Stick Figure). Those in Tier 1 have a decline
in scores from public to home environments, those in Tier 2 have
a decline in scores from general home to sensitive home environ-
ments, and those in Tier 3 score consistently high across all three
environments.

Though these scores show each sanitization mode improves the
perception of privacy over raw RGB cameras, whether users are
willing to accept them presents a more challenging task. Overall, all
participants reported at least one sanitization mode they were com-
fortable with across all environments. For public spaces, nearly half
accepted all modes and all participants reported at least three accept-
able modes. For general home spaces, all participants reported at
least two acceptable modes. In private home spaces, all participants
reported at least one acceptable mode, with two-thirds reporting
at least two acceptable modes. The environment influenced the ac-
ceptability of the three “tiers” observed earlier. Tier 1 was generally
accepted in public spaces, Tier 2 was generally accepted in public
and general home spaces, and Tier 3 was generally accepted in all
spaces. Thermal Subtraction or Stick Figure were consistently the
preferred sanitization mode across all environments.
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Table 9: The average scores for each sanitization mode and each environment (public, general home, and sensitive home). All
situations scored above 5.3, meaning all sanitization modes were perceived to improve privacy over a regular RGB camera.

Sanitization Mode in Public || Mean | SD | Min | Max Sanitization Mode in General Home || Mean | SD | Min | Max | | Sanitization Mode in Sensitive Home || Mean | SD | Min | Max
Face Swap 5.7 0.9 4 7 Face Swap 5.3 1.2 4 7 Face Swap 5.3 1.0 4 7
Thermal Only 5.5 0.9 4 7 Thermal Only 5.4 1.0 4 7 Thermal Only 5.3 1.0 4 7
Thermal Replacement 6.5 0.6 5 7 Thermal Replacement 6.3 0.7 5 7 Thermal Replacement 6.3 0.6 5 7
Ghost Ul 6.5 0.6 5 7 Ghost Ul 6.3 0.7 5 7 Ghost Ul 6.1 0.8 5 7
Stick Figure 68 |04 5 7 Stick Figure 6.7 | 0.6 5 7 Stick Figure 6.5 0.6 5 7
Thermal Subtraction 69 |04 6 7 Thermal Subtraction 6.7 | 0.6 5 7 Thermal Subtraction 6.7 0.6 5 7

C.3 Qualitative Results

We observed some overlap in the commentary provided by par-
ticipants. In public spaces, many participants reported having a
diminished expectation of privacy, making them more willing to ac-
cept the less aggressive PIl-removal modes. However, in the home,
multiple participants had significant concerns regarding modes that
could capture whether the person was wearing clothes. Regarding
Face Swap, one participant reported: ‘I think this will make me com-
fortable in public spaces, but probably not enough in private spaces
(although it’s better than no intervention). It will also annoy me be-
cause I'll probably feel that I have to wear clothes any time at home.”
However, if the sanitization mode could mask the person’s body,
such as with Ghost UI, the mode becomes much more acceptable:
“I may be nude in the bathroom and as long as I don’t expose more
information than body shape it will be fine.” Sanitization modes that
prevent capturing nude bodies are critical for in-home cameras.

We also observed that personal preferences might lead them to
trust one accepted sanitization mode more than others. One par-
ticipant who favored Thermal Subtraction stated: ‘It removes the
body shape, and this does not cause privacy concerns. If the whole
body is removed, there is no privacy concern for me.” Another par-
ticipant who preferred Stick Figure stated: “The stick figure makes
the images seem way less humanoid than the other interventions.
I like that.” While the PII removed from the image is similar in
both cases, the participants strongly preferred one over the other.
Presenting users with multiple options will allow them to choose a
more comfortable sanitization mode and increase their likelihood
of long-term adoption in their homes.

Finally, while modes such as Face Swap and Thermal Only did
not receive widespread acceptance when used in sensitive areas,
the consensus among all participants was that any sanitization
mode provided an improvement over a regular camera. One par-
ticipant reported: ‘T would prefer Face Swap over a regular camera
in all instances.” While no single sanitization mode is perfect, they
collectively raise the minimum privacy standard as an alternative
to raw RGB camera images.
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