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ABSTRACT
While third-party cookies have been a key component of the digital

marketing ecosystem for years, the way they allow users to be

tracked across web sites raises serious privacy concerns. Google

has proposed the Privacy Sandbox initiative to enable ad targeting

without third-party cookies. While there have been several stud-

ies focused on other parts of this initiative, there has been little

analysis to date as to how well the system achieves the intended

goal of preventing request linking. This work focuses on analyz-

ing linkage privacy risks for the reporting mechanisms proposed

in the Protected Audience (PrAu) proposal (previously known as

FLEDGE), which is intended to enable online remarketing without

using third-party cookies. In this work, we summarize the overall

workflow of PrAu and highlight potential privacy risks associated

with its proposed design. We focus on scenarios in which adver-

saries attempt to link two requests to different sites to the same

user and show that a realistic adversary would be still able to use

the privacy-protected reporting mechanisms to link user requests

and conduct mass surveillance, even with correct implementations

of all the currently proposed privacy mechanisms.

1 INTRODUCTION
As designed, the HTTP protocol is stateless—each HTTP request

from web browsers is treated independently [18]. To maintain

state, web cookies were introduced. These allow a server to re-

trieve previously provided information, such as the contents of

a user’s shopping cart [29]. Cookies can be categorized as either

first-party cookies, placed by the website owner, or third-party cook-
ies, placed by a site other than the domain hosting the page the

user visited. Third-party cookies can be used to track user activity

across multiple sites. This enables ad targeting which increases

revenue for publishers [30, 38], but raises serious privacy concerns.

To address the use of third-party cookies by companies, the Euro-

pean Union has adopted privacy regulations with strict penalties

for non-compliance [31] and the US Federal Trade Commission

(FTC) has raised concerns [17] and taken action [16].

Several popular web browsers have taken steps to safeguard user

privacy by combating tracking. In 2018, Firefox revealed its plans to

block third-party cookies based on tracking domains [35]. In 2020,

Safari became the first widely-used browser to block third-party

cookies by default [54]. Google also acknowledged the importance

of protecting user privacy in a 2019 blog post [42], where they im-

proved cookie control in their Chrome browser. However, instead of
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immediately blocking all third-party cookies, they announced their

intention to phase them out gradually through a plan they called

the “Privacy Sandbox”. This initiative aimed to find alternative ways

to deliver personalized ads without compromising user privacy by

phasing out the usage of third-party cookies, fingerprinting, and

other advertising techniques that enable tracking web users across

multiple sites [32]. While the original plan was to deprecate third-

party cookies by early 2022, Google delayed this process to late

2023, partly due to regulatory pressure from the UK’s Competition

and Markets Authority (CMA) [20]. Later, Google postponed the

date again to the second half of 2024 [6], as they have received

constant feedback that more time is needed to evaluate and test the

new Privacy Sandbox technologies before deprecating third-party

cookies in Chrome. As of May 2024, Chrome still does not block

third-party cookies by default.

Google’s Privacy Sandbox initiative comprises several compo-

nents including the Private State Token API for fighting fraud and

spam on the web, the Attribution Reporting API for enabling digital

ads measurement, and the Fenced Frames API to strengthen cross-

site privacy boundaries [47]. Among all the proposals in Google’s

Privacy Sandbox, most of the work in the privacy research com-

munity has focused on the Federated Learning of Cohorts (FLoC)

proposal [11], which analyzes users’ online activity within the

browser and group a given user with other users who access sim-

ilar content. After getting feedback from the FLoC’s Origin Trial,

Google replaced the FLoC proposal with the Topics proposal [21]

in January 2022, where the browser observes and records topics

that appear to be of interest to the user based on their browsing

activity. Ad platforms can then access a user’s interests through an

API without obtaining their detailed browsing history.

In this paper, we focus on the Protected Audience (PrAu) compo-

nent (originally called FLEDGE, an acronym of First Locally-Executed
Decision over Groups Experiment, and renamed as Protected Audience
in April 2023 [46]). Since March 2022, Chrome has been running

the First Origin Trial (FOT ) on PrAu, which enabled this feature

for a subset of Chrome users. Sites can also request trial tokens to

participate in the FOT and thus experiment with the API [43].

The PrAu proposal [12] redesigns the advertising ecosystem

by letting the browser client, rather than the centralized market

operator, maintain the information about the user’s interests for ad

targeting. It moves ad auctions from external servers to the client

browser, thus avoids the need to send information that can be used

to track a user to a centralized ad auction server. PrAu is intended

to enable advertisers to target ads based on user interests, but

without revealing information about the user—in particular, PrAu is

designed to prevent user tracking by ensuring that advertisers and

publishers cannot link requests to an individual, while enabling

some degree of interest-based behavior targeting.
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Although PrAu shares the goal of grouping users by interests

with the Topics API, its approach and implications for privacy are

markedly different. The Topics API facilitates a better understand-

ing of the content that users are interested in without sharing

specific user data, but recent studies have shown that it is it possi-

ble for adversaries, through statistical modeling and collaboration

with third parties, to re-identify users across different websites

[3, 25]. In contrast, PrAu is designed to enable advertisers to target

specific user groups without disclosing individual user data but its

privacy mechanisms and potential vulnerabilities have not been

as thoroughly explored. Since there are several parties involved in

the PrAu protocol, any part of the lifecycle may be compromised

and result in weaker privacy protection than intended. Thus, it

is worth examining the whole workflow of PrAu to evaluate how

well it satisfies its key privacy goal of preventing request linking.

We focus on the ad reporting mechanism in PrAu as this is the

only explicit communication channel that sends user data back to

centralized servers.

Although Google’s most recent announcement set the date for

removing third-party cookies in 2024 [6], the currently available

implementation of PrAu is only partial. Many components are not

yet implemented including the Trusted Key/Value Service, the in-

tegration of k-anonymity, and Trusted Aggregation Service, and

much of the documentation is still incomplete. Our analysis and

evaluation are based on the official PrAu API developer guide [12]

and experiments on the available FOT implementation of the PrAu
API. In this sense, our security analysis is premature—we analyze a

system that does not yet fully exist and for some aspects we must

speculate on what the eventual design will be. Nevertheless, there

is an urgent need for the privacy research community to indepen-

dently and objectively evaluate privacy risks of the proposed PrAu
design before it is deployed at a wide scale, and hope the results of

such an evaluation will influence the eventual deployment of PrAu.

Contributions.We summarize the PrAu protocol, describing the

interactions through the PrAu APIs among its components (Sec-

tion 2). To analyze how well the PrAu design meets its privacy

goals, we introduce a threat model (Section 3.1) and evaluate three

scenarios in which advertisers may use PrAu auctions to track users

between sessions (Section 4). We find that the aggregate reporting

mechanisms provided by PrAu can be used to link requests with

high accuracy, scaling up to a level where mass surveillance is possi-

ble (Section 4.3) even when the proposed 𝑘-anonymity mechanisms

are implemented (Section 5). Although there is no simple fix that

provides both the desired reporting and unlinkability, we discuss

several potential mitigations in Section 6.

2 THE PROTECTED AUDIENCE PROTOCOL
The PrAu protocol enables on-device auctions that run in the user’s

browser instead of running on a remote server to support ad target-

ing (including remarketing, which lets advertisers customise their

display ads campaign for users who have previously visited the

website [34]) without third-party cookies. Potential ad buyers can

perform on-device bidding based on interest group metadata and

data loaded from a trusted server at the time of the on-device auc-

tion, and the sellers who own ad display space on the visited page

can perform on-device ad selection based on bids and metadata

entered into the auction by the buyers. By storing interest groups

in the browser and moving the auction process to isolated browser

worklets, one running code provided by the prospective ad buyer

and one running code provided by the seller, PrAu aims to enable ad

targeting without the privacy compromises associated with third-

party cookies. The individual’s interests are stored in their own

browser and can be used for ad targeting without even needing

to be revealed to the ad seller or a centralized auction server; the

buyer can buy an ad to be displayed to the individual on the seller’s

site without learning about the site visited. After the auction ends,

the winning ad will be rendered in a fenced frame. Unlike iframes,

fenced frames allow access to cross-site data without sharing it

with the embedding context [45]. Code running in a fenced frame

cannot communicate with the embedding context and vice-versa,

though it may leak information through side channels [44].

2.1 Protocol Overview
Figure 1 shows the design of PrAu. Our understanding of the proto-
col is based on publicly-available information, including Google’s

official documentation [12, 13], examining the code provided in

associated github repositories [53], observing network traffic from

the FOT , answers to our questions from the Google team, and our

own inferences regarding the planned design based on our best

interpretation of the available material. Figure 5 (in the Appen-

dix) shows what is currently implemented in the FOT , which does

not incorporate the Trusted Aggregation Server and other essen-

tial aspects of the planned design. Since Chrome is still supporting

third-party cookies, the lack of privacy mechanisms in the currently

deployed PrAu is reasonable since the tracking they are designed to

thwart is fully enabled by the supported third-party cookies. How-

ever, once Chrome phases out third-party cookies, the adoption of

PrAu’s full suite of privacy mechanisms is intended to inhibit the

type of request linking that third-party cookies currently enable.

PrAu allows websites to store information about a user’s interests

in the form of interest groups that are stored in the browser and tied

to the user profile for up to 30 days. Note that interest groups are tied

to a browser profile instead of a Google account, so are not shared

across different browsers and devices even when they are connected

to the same Google account. While the content of the group can

be updated by the owner of the group by providing the name of

the interest group, it cannot be read directly—interest groups are

stored in an internal data structure and no API is provided to obtain

a user’s interest groups. When a user visits a site that sells ad space,

buyers who are the owners of interest groups stored in the user’s

browser can participate in an auction. The in-browser auction will

obtain some information from the buyer’s code such as bid value

and ad information, a score from the seller’s code for each potential

ad, and select the ad with the highest score to display.

The PrAu design relies on several Trusted Servers operated on

the behalf of buyers and sellers. These services are trusted based

on code reviews conducted by a trusted auditor and the servers

that receive and respond to requests are required to run within a

Trusted Execution Environment (TEE). A TEE is an isolated execu-

tion context that provides hardware memory protection and storage

protection through cryptography, ensuring that its contents are
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 K/V Server

5a. send bidding
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5b. send bidding
signal values

6b. send encrypted report
after some time
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and bucket key list

Aggregation
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(auctionConfig)
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signal keys

Seller's Trusted
Aggregation Server

7g. issue decryption key and
validate requests

7f. send metadata
 in report(s)

7h. send
aggregated report

7e. send
encrypted report(s)
and bucket key list

6a. send encrypted report
after some time

K-anonymity
Server

Join(b, t, s)

Update k-anon bit

Query(t, s)

update interest group content

Bidding
Worklet

Auction
Worklet

5. Connect controlled
inputs and outputs across

worklets to run auction.

6. Connect controlled
inputs and outputs across

worklets to report
outcome.

Figure 1: Protected Audience Protocol. For simplicity, we show a single seller and buyer (who is also the winner of the auction), although

there would typically be many buyers and sellers. Dashed lines indicate requests that do not necessarily happen at a particular step in the

protocol, and may be interleaved with other request in different ways. The black dashed line for “fetch bidding code” is discussed at the

end of Section 2. The black dashed line for “update interest group content” is requested daily, detailed in Section 2.2. The requests to the

K-anonymity server are done periodically, details in Section 2.6. The controlled inputs and outputs across worklets are specified in Figure 4.

shielded from observation and tampering by unauthorized parties,

including the root user [40].

The interactions among buyers, sellers, and browsers in PrAu
can be divided into the following main steps, depicted in Figure 1:

Step 1. The user visits a buyer site.

Step 2. The buyer’s script running in the browser calls joinAdInter-
estGroup(·), which attaches an interest group to the user.

Step 3. The user visits the seller’s site.

Step 4. The seller’s script running in the browser calls runAdAuc-
tion(·) to initiate an auction (Section 2.3).

Step 5. The browser runs auctions with each potential buyer’s

code in a separate bidding worklet and the seller’s code

running in the auction worklet (Section 2.4). Code in

worklets can send requests to Trusted K/V Servers to

exchange real-time information [24].

Step 6. After a random delay of up to one hour, encrypted event-

level reports on the auction results are sent to servers

owned by the buyer and seller.
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Step 7. Buyers and sellers submit encrypted event-level reports

with queries to their respective Aggregation Server, which

interacts with the Aggregation Coordinator to enable de-

crypting the event-level reports to produce and return a

privacy-noised aggregated report (Section 2.5).

Note that none of these privacy protections are implemented in

the FOT , which just immediately sends a cleartext report directly

to the buyer and seller. In our experiments with the current imple-

mentation, we also observed additional messages with associated

privacy risks depending on the server and browser implementation.

For example, when we set a "No-Store" cache policy for the buyer

server, the browser sends a request to retrieve the buyer’s bidding

code via the url specified in biddingLogicURL between Step 4 and

Step 5 (shown as the dashed line in Figure 1). This is a privacy

concern as the buyer server can log information of this cross-site

request, such as timestamp, IP address, and user-agent headers.

Although ensuring the deployed protocol matches some specified

protocol that has been analyzed to satisfy desired properties is

essential, PrAu is not yet at the stage where the actual protocol

is clearly specified. Since our goal is to understand fundamental

issues with the intended PrAu protocol, we conduct our analysis

based on our best interpretation of the plans for PrAu, assuming

that proposed privacy mechanisms (like the 𝑘-anonymity server)

will be implemented and that this and other implementation issues

will be fixed in the eventual PrAu implementation. Our focus is on

identifying issues in the intended PrAu protocol as designed instead

of the current implementation in the FOT .

2.2 Attaching an Interest Group
To attach an interest group to the user’s browser (Figure 1, Step 2),

the buyer’s script in the browser calls the joinAdInterestGroup(·)
API with two parameters: interestGroup and time. The time param-

eter to the joinAdInterestGroup(·) API is a number specifying the

duration of the membership in seconds. The maximum value PrAu
allows for time is 30 days (2,592,000 seconds). The interestGroup
is a JSON object that includes: (1) the interest name, an arbitrary

string selected by the buyer site; (2) the owner of the interest group

which is typically the buyer site’s origin; (3) a bidding URL; (4) an

update URL, which the browser requests once daily to replaces

fields (except the interest group name and owner) in the original

interest group object; and (5) an ad field that can contain arbitrary

ad metadata. The bidding URL provides the buyer’s code will be run

in a browser worklet to generate bids and report auction results. To

avoid side channel leaks, this code should be requested periodically

and cached in the browser (the current FOT implementation does

not always do this, as discussed in Section 2.1).

2.3 Initiating an Auction
To start an auction (Figure 1, Step 4), the seller’s script in the browser

calls runAdAuction(·), passing in auctionConfig, a JSON object

that contains information including the seller domain URL and a

decision URL. Similar to the bidding URL, it points to seller’s code

that is later used in the browser to score different bids and report

auction results. The auctionConfig contains other fields such as

auctionSignals, which will be passed to all participating buyers

during the auction.

2.4 Running the Auction in the Browser
After the seller’s script initiates the auction by calling runAdAuc-
tion(·) (Figure 1, Step 4), the browser creates worklets running code
provided by the buyers and sellers. Functions running inside the

worklets provide controlled communication channels through their

inputs and outputs, and the browser connects those inputs and

outputs across the worklets. To prepare the execution environment

of the auction, the browser first iterates through all the interest

groups associated with the user and creates one bidding worklet for

each interest group the seller allows to participate in the auction

(specified in the auctionConfig object). It also creates an auction

worklet for the seller. Then, the browser obtains the code for each

buyer involved in the auction (which should already be cached

in the browser) from the biddingLogicURL field in each interest

group and gets the seller’s code from the decisionLogicURL field in

seller’s auctionConfig object. The code for each buyer will run in

a corresponding bidding worklet to provide bids for each interest

group and the seller’s code will run in the auction worklet to score

these bids. The ad with the highest score is selected as the auction

winner to be displayed in the browser.

2.5 Aggregate Reporting Service
In the FOT , event-level reporting happens right after an auction

ends, as the winning buyer and the seller can send arbitrary in-

formation as arguments to reportWin(·) and reportResult(·) in the

form of a URL parameter. This poses obvious and severe privacy

risks. For example, it allows both parties to determine when a user

visited the seller’s site. The buyer could also include a tracking

ID in the interestGroup object and send it to the seller via the ad

metadata in the generateBid(·) function. Similarly, the seller could

include a tracking ID in the auctionConfig object when initiating

the auction and transmit it to the buyer through the sellerSignals
in the reportResult(·) function. Through this method, the buyer

and seller can track a user by exchanging tracking IDs through the

reporting URL.

The proposed PrAu design avoids the most obvious privacy viola-

tions by encrypting event-level reports and waiting a random time

delay before they are sent. The Trusted Aggregation Service aims

to allow participants of PrAu auctions to create summary reports

that can be used to understand ad placements without compro-

mising individual users (Step 7 in Figure 1). To maintain privacy,

the aggregation service code must be audited and approved before

deployment and operate in a TEE in a public cloud platform.

As depicted in Figure 1, only the winning bidder learns about the

auction. Buyers can also implement a reportLoss(·) function that

provides information to the buyer when they participate but lose an

auction. The details of what information is passed to this have not

yet been determined. The current plan is to support unencrypted

event-level reporting in the reportWin(·) function until at least 2026,
while using the the privateAggregation(·) API for losing buyers,

but the details of this plan have not yet been disclosed [52]. For

our analysis, we assume the proposed design (post-2026) in which

only encrypted reports are sent back to the buyer or seller and

all semantic information about auction results has to be obtained

through the aggregation server.
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After an auction ends, the buyer’s code can generate event-

level reports in the form of key-value pairs (𝑘, 𝑣) by calling the

privateAggregation(·) API within the worklet. The bucket key 𝑘 is

a BigInt with maximum length of 128 bit and the value key 𝑣 is a

32-bit integer. The browser then generates an encrypted event-level

report by encrypting the (𝑘, 𝑣) pair. Finally, the browser sends this
encrypted event-level report to the buyer and seller’s server after

some random delay time up to an hour.

In order to prevent adversaries from using the reports to leak

too much information, PrAu implements restrictions on the API

calls in the reporting function. When the buyer or seller calls the

privateAggregation(·) API in the worklet function, the browser

limits the total value that can be contributed to bucket keys. The

sum of all contributions across all buckets, i.e., the total value of

all the contributions, may not exceed 2
16
. If this limit is exceeded,

future contributions will be dropped without notification, meaning

no further encrypted event-level reports can be sent to the API

caller’s server once the budget is depleted. The contribution limit

will be reset over a rolling 10-minute window for each buyer or

seller site with a daily cap of 2
20
.

Later, when buyers and sellers query the aggregation servers,

they send a collection of encrypted reports along with a list of

bucket keys to be included in the aggregated report. The aggre-

gation service sums the value for each bucket across all provided

encrypted reports, add noise to provide a differential privacy bound,

and returns an aggregated report as a histogram with a noised sum

for each bucket. All bucket keys in the query will appear in the

summary report; if a key does not appear in any of the encrypted

reports, it will still be included as zero plus noise value in the

aggregated report.

The coordinator in Trusted Aggregation Service limits the num-

ber of queries each report, and PrAu plans to enforce a non-duplicate
rule, only allowing one query per event-level report. This means

each encrypted report can only appear once within a batch and

cannot contribute to more than one aggregated report.

2.6 Checking for k-anonymity
The PrAu design includes 𝑘-anonymity checks with the aim of pre-

venting buyers from using interest groups to track users [22]. The

𝑘-anonymity [41] privacy notion aims to safeguard the identities

of individuals within a dataset by grouping them into clusters of

at least 𝑘 individuals with similar attributes. PrAu plans to enforce

𝑘-anonymity with 𝑘 = 50 over a 30-day period with hourly updates.

The 𝑘-anonymity tracking is done using the 𝑘-anonymity server,

with Join(·)API calls used to record group membership andQuery(·)
calls used to check if there are at least 𝑘 members in the group

associated with an object. These calls are shown in Figure 1, but the

actual calls aremade outside of the critical path of an ad auction. The

browser periodically reports new objects, which are created when a

buyer calls the joinAdInterestGroup(·), via Join(·) calls. Similarly, the

browser periodically sendsQuery(·) requests to the 𝑘-anonymity

server for relevant objects, caching the results for use during in-

browser auctions.

The Join(·) call has three parameters: a browser identifier b, a type
t, and an object represented by a hash s. The browser identifier b is

a 𝑗-bit identifier, where 8 ≤ 𝑗 ≤ 16. The space of browser identifiers

is large enough to provide a sufficiently tight lower bound on the

number of different browsers in a group, but these identifiers are

not unique. Many browsers will share the same identifier, which

mitigates the privacy risks associated with the identifier. Since the𝑘-

anonymity check is performed on both interest group name and ad

creative URLs, t specifies the type of the object. At the 𝑘-anonymity

server receiving the Join(·), the browser’s identifier b is inserted

into the set of browser identifiers associated with the object s. The
size of this set is what determines if a 𝑘-anonymity check is passed.

The Query(·) call has two parameters: a type t and an object

represented by a hash s. When the browser makes aQuery(·) call,
it checks the number of browser identifiers associated with the

object s and responds with a Boolean value indicating whether the

𝑘-anonymity check has passed (that is, the group associated with s
has at least 𝑘 members).

The 𝑘-anonymity check is applied in two places: 1) during the

auction phase—where an ad must pass the 𝑘-anonymity check to

participate in the auction; and 2) at the reporting time, to determine

if the interest group name is included during report generation.

The difference between these two checks is whether or not the

interest group name is included in the checking object. For the first

check, the interest group name is not included, and the object is

a tuple consisting of the interest group owner’s URL, the bidding

script’s URL, the creative’s URL, and the ad’s size. The reason the

interest group name is not included in the first object to check

is to allow advertisers implement various bidding strategies (e.g.

multiple small-size interest groups can share some ads). For the

second check, the interest group name is also included, meaning

that there are interest groups that pass the first check to be eligible

for the auction, but not the second one. This is intended to prevent

advertisers from using information in the interest group name to

generate report if the interest group has less than 𝑘 users.

Although the 𝑘-anonymity check is designed to prevent tracking

individuals, in Section 5 we show how the 𝑘-anonymity checks are

insufficient for preventing high confidence large-scale surveillance.

3 ATTACK OVERVIEW
In the current online advertising ecosystem, third-party cookies al-

low websites to track users across sites and build user profiles. This

information is then used by buyers and sellers to tailor personalized

ads to users. The goal of PrAu is to support targeted advertising

without third-party cookies or a centralized data collector. There-

fore, it is worth investigating how well PrAu achieves this goal of

preventing user tracking.

To limit our scope, we only consider the goal of protecting user

privacy from buyers and sellers operating in the ad ecosystem and

focus on the ability of an adversary to link two requests. There are

numerous other security and privacy aspects of PrAu, including
preventing buyers and sellers from manipulating the ad auctions

to their benefit, protecting the confidentiality of buyers from other

buyers and sellers, and other ways information about user interests

can be leaked to buyers and sellers. These are important issues that

merit consideration, but are outside the scope of this analysis which

only considers user tracking through linking requests.
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3.1 Threat Model
To assess the effectiveness of PrAu in preventing tracking, we con-

sider a threat model where adversaries who can control buyer do-

mains and seller web servers attempt to gather information about

users. The adversary’s goal is to link requests made to two different

sites to the same user by using information provided through PrAu
reports.

We assume that other currently available ways to link user re-

quests will not be available, so the adversary cannot identify a user

through a stable IP address or digital fingerprinting. Without mask-

ing the IP address or protections against fingerprinting, most users

today can be uniquely identified by their visit directly [27, 33], so

there would be no additional linking risk from PrAu in situations

where the two requests can already be linked. In a future where

fingerprinting protections are deployed and third-party cookies are

eliminated, it becomes difficult to track users and link requests di-

rectly. Hence, the focus of our analysis is to understand how much

these risks increase over when PrAu is deployed over the (hopeful

future) baseline where user tracking would otherwise be infeasible.

We focus our study on the design of PrAu and the information

channels provided through auction reports, so further assume the

browser can be trusted and that everything works as intended. This

requires that:

• Dedicated worklets created by the browser are isolated with-

out access to outside network or storage, and there is no way

for code running in other worklets to exploit side-channel

attacks to infer information from these communication chan-

nels.

• The TEEs used to execute the K/V servers and Aggregation

servers (Section 2.5) operate securely as trusted execution

environmentswithout leaking and information, and the attes-

tation and management of the attestation keys is all correct

and invulnerable.

• The process used to audit the code for the K/V and Aggrega-

tion servers is sound and ensures that any code that passes

this process cannot violate the required properties.

All of these are strong assumptions and difficult to achieve in

practice. Even in cooperative settings, implementing differential

privacy mechanisms correctly (as is required for the aggregate

reports) is challenging [9, 26, 28, 48] and analyzing software for

security vulnerabilities is challenging and can rarely be done com-

pletely [23, 36, 51]; in adversarial settings where the code author

may be deliberately making their code hard to analyze and to hide

a prohibited behavior in it, relying on perfect audits requires a leap

of faith [1]. There are many subtle ways a program can be designed

to intentionally leak data [39], and no known method, even with

source code available, to ensure all leaks are detected.

3.2 Attack Steps
To execute the attack, the adversary needs to control at least one

primary site where visitors reveal their identities, and a sensitive

secondary site where users expect to be anonymous. The adver-

sary’s goal is to link requests to the sensitive site to requests to the

primary site, and thereby learn the identity of an anonymous user

on the sensitive site. In addition, the adversary may control some

other domains, which are enrolled as 𝑛 buyers.

The general attack process unfolds over the following four steps:

Step 1. Users visit the primary site where the adversary asso-

ciates the user’s browser with 𝑛 interest groups, each

representing a different buyer controlled by the adver-

sary.

Step 2. Before the interest groups expire, a user navigates to the

secondary site, which is a sensitive site where the user

expected to be anonymous. The adversary controls an

ad auction on the secondary site, and lets each of the 𝑛

colluding buyers win one of 𝑛 separate auctions.

Step 3. After winning the auction, each colluding buyer gener-

ates encrypted reports using identical bucket-value pairs,

which are then sent to the adversary.

Step 4. The adversary submits all the encrypted reports with

selected bucket keys to the Aggregation Service and re-

ceived the aggregated output. By analyzing the aggre-

gated output, the adversary links user visits across the

primary and sensitive sites to identify users on the sensi-

tive site.

Section 4 explains how an adversary can execute the attack in

three different scenarios: linking a single targeted user, linking one

out of many users, and conducting large-scale surveillance.

3.3 Attack Feasibility
As outlined in the attack steps, the attack which enables linking

is only possible in settings where a user makes requests to both

a primary site and a sensitive secondary site, both of which are

controlled by the adversary who wants to link the requests. In PrAu,
the duration that an interest group can remain active in a user’s

browser is capped at 30 days. Consequently, the feasibility of a

linking attack is contingent upon the user visiting both sites within

this 30-day window.

Effectiveness of the attack also depends on an adversary’s abil-

ity to control multiple buyer domains, and Google controls access

to the APIs needed to participate in ad auctions. As various APIs

from Google’s Privacy Sandbox begin to reach general availability,

Google has outlined plans to implement a verification process for

entities accessing these APIs. Google initiated the enforcement of

enrollment starting inmid-October 2023, with the release of Chrome

118 Stable. To ensure auditable transparency, the enrollment infor-

mation related to each company will be publicly accessible. This

verification procedure is designed to mitigate API misuse such as

preventing one developer from impersonating another and restrict-

ing their access to the APIs. However, the underlying business

model of selling ads to many buyers around the world is incom-

patible with a restrictive or costly verification procedure. Enrolling

as a buyer or seller to access these APIs only requires basic busi-

ness contact information, a D-U-N-S number for the organization

(which can be obtained for free by providing some information in

a web form) [10], and the necessary input for API or server config-

urations [19]. Consequently, it does not seem unreasonable for a

motivated adversary to be able to enroll many buyers. Our analysis

in Section 4.3 shows that 200 buyers is sufficient for large-scale

897



Proceedings on Privacy Enhancing Technologies Evaluating Google’s Protected Audience Protocol

surveillance with high confidence based on just a single visit to the

secondary site.

4 DATA LEAKAGE ANALYSIS
A primary motivation of the push to eliminate third-party cookies

is to make linking user behaviors across websites infeasible, or at

least expensive enough for an adversary in order to disrupt the

most extensive user tracking. Hence, we focus our analysis on how

well the PrAu design maintains the unlinkability goals that under-

lie the push to eliminate third-party cookies. We consider three

different scenarios based on the number of candidate individuals

to link: Section 4.1 is the simplest case where the adversary has a

single target individual in mind who visits a first server and wants

to determine if they are linked with a request to a second server;

Section 4.2 considers an adversary who wants to link any one of

many candidates across requests; and Section 4.3 analyzes an ad-

versary who want to perform mass surveillance by linking requests

from a large pool of candidates across two sites.

The aggregate reporting service (Section 2.5) and the𝑘-anonymity

check (Section 2.6) are two main features in the PrAu design in-

tended to prevent request linking. For clarity of presentation, we

do not include the 𝑘-anonymity check in this section, but show in

Section 5 how the 𝑘-anonymity checks can be circumvented.

4.1 Scenario 1: Linking a Single Targeted User
Consider a simple scenario where an adversary controls two sites—

one buyer site and one seller site. We assume that the targeted user

visits a primary site, and some time later, visits the secondary site.

The adversary’s goal is to link these two requests. This models the

scenario where, for example, the primary site is a non-sensitive

site such as a shopping or news site that the user visits without

concealing their identity and the secondary site is a politically

sensitive site which a user visits expecting anonymity. In the PrAu
protocol, the primary site acts as an ad buyer, and the secondary

site as an ad seller.

When the targeted user visits the primary site, the site can asso-

ciate a user-specific interest group with the user.
1
Later, when the

user visits the secondary site, that site sets up an auction that will

be won by the primary site as the buyer. This causes the buyer’s

worklet running in the browser to generate an encrypted report

in the reportWin(·) function (Step 7, Figure 4), which is sent to

the buyer’s site. Therefore, once the primary site receives this en-

crypted report, without needing to decrypt it, the adversary can

already determine (with certainty) that the targeted user visited the

secondary site. The protocol imposes a random delay of up to an

hour before the report is transmitted, so the buyer will not learn

the exact time of the visit, but will know that the specific targeted

user visited the secondary site sometime within a hour of the time

when they receive the report.

This attack illustrates the danger of covert channels in a set-

ting where adversaries have the ability to run their own code in

an environment with access to sensitive information, and have a

communication channel back to receive results from this code. It

violates the unlinkability goals of PrAu, but only in a very limited

1
The 𝑘-anonymity checks should prevent this interest group from participating in the

auction, but as we discuss in Section 5, they can be circumvented.

way. Nevertheless, such a simple attack may already be a serious

privacy risk in some scenarios such as when an oppressive govern-

ment has a desire to gather evidence against a suspected dissident,

but its scale is limited in that within a given time period only a

single, predetermined victim identity can be linked. In the next

scenario, we consider a more scalable linking attack.

4.2 Scenario 2: Linking One of Many Users
We consider a simple but realistic scenario where in addition to

controlling the primary and secondary websites, the adversary also

controls some additional ad buyer sites. Instead of just linking a

single known user as in the previous scenario, now the adversary

has a list of 𝑘 candidate users (which could be everyone who visits

the primary site). We assume that some of the candidate users

visit the primary site and subsequently visit the secondary site.

The adversary’s goal is to link these two requests to identify with

confidence which of the candidate users have visited the secondary

(sensitive) site.

When a user visits the primary site, it can call the joinAdInterest-
Group(·)API on behalf of all𝑛 colluding ad buyer sites (one of which
is the primary site), assigning a user identifier (UID) included in the

interest group name. This allows each buyer site to associate a user-

specific interest group with the user. Later, when the user visits the

secondary site, it offers 𝑛 ad spaces, each with an associated auction

that is designed to be won by a different one of the 𝑛 buyers.
2

As outlined in Section 2.5, upon winning an auction, buyer

worklets running in the browser can generate encrypted reports

in the form of key–value pairs that are sent to the buyer’s server.

In this case, in the reportWin(·) function, all buyers use the same

user identifier (UID) recorded in the interest group name as the

key and the full buyer-sensitivity budget as the reporting value.

Consequently, within an hour of the auction concluding, each of

the 𝑛 winning buyers receives an encrypted report with value ℓ1
recorded in the same UID bucket.

Since these encrypted reports will be sent out of order within one

hour after the auction ends, when any one of the colluding buyer

sites receives the first encrypted report it can notify the secondary

site which can update the auctionConfig to prevent this set of

colluding buyers from participating in any further auctions until

all 𝑛 reports have been received. In this way, when the adversary

collects the batch of encrypted reports from the 𝑛 buyers within

an hour, it is certain that only one user out of 𝑘 target users visited

the tracked site. This simplification makes the analysis easier and

enables high confidence for in the one target user identified. In

Section 4.3 we describe a more efficient scheme for tracking large

numbers of users.

Once all 𝑛 reports have been received, the adversary queries the

aggregation service using the set of UIDs corresponding to the list

of target users.

Query Semantics. Let’s denote 𝑄 as a query function executed by

the buyer to the aggregation service, 𝑅 as a set of encrypted reports

chosen for a specific query, and 𝐵 as a list of bucket keys chosen for

a specific query. Then we can represent a query and its response

as 𝑆 ← 𝑄 (𝑅, 𝐵), where 𝑆𝑖 = Σ𝑟 ∈𝑅𝐵𝑟𝑖 + Laplace(0,
𝑙1
𝜖 ), where 𝜖 is

2
There is no apparent limit to the number of ad spaces that can be sold on a single

webpage visit. We have tested thePrAu protocol with up to 200 buyers.
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Figure 2: Expected accuracy for predicting the targeted user’s
presence on the secondary site (𝜖 = 1).

the privacy loss budget. When the browser enforces a maximum

of 𝑙1 impact for each user visit on any site over 10 minutes, the

sensitivity of a single report is 𝑙1, so this provides 𝜖-Differential

Privacy according to the Laplace Mechanism [15].

The aggregation service outputs a vector of length |𝐵 |, where
each value is a noised value. For the user who visited the tracked

site, the aggregated output value of that UID will be 𝑛 · ℓ1+noise; for
all of the other UIDs the value will be 0 + noise, where each noise

value is sampled independently from the Laplace distribution to

satisfy the 𝜖-DP guarantee (assuming sensitivity ℓ1, which is now

effectively violated by the collusion). A simple attack just accuses

the user with the UID associated with the highest value in the

aggregate histogram.

Effectiveness. To evaluate the effectiveness of this attack, we

present a theorem to quantify the expected accuracy of adversary’s

prediction algorithm with respect to the number of target users,

the number of colluding buyers, and the privacy loss parameter.

Theorem 4.1. The number of target users is 𝑢, 𝑛 is the number

of colluding buyers controlled by the secondary site, and 𝜖 is the

privacy loss parameter. Each 𝑌𝑧 is independently sampled from

a Laplace distribution, Laplace(0, 1𝜖 ). Given an aggregated report

consisting of noisy outputs 𝒙 = [𝑥1, 𝑥2, . . . , 𝑥𝑢 ], and where for one

specific 𝑗 ∈ 𝑢, 𝑥 𝑗 = 𝑛 + 𝑌𝑗 and for all other 𝑖 ∈ 𝑢, 𝑖 ≠ 𝑗 , 𝑥𝑖 = 𝑌𝑖 ,

there exists an algorithm that given 𝒙 can predict 𝑗 with expected

accuracy:

Accuracy =

∫ ∞

−∞
𝑓Laplace (𝑌𝑗 ) · 𝐹Laplace (𝑛 + 𝑌𝑗 )𝑢−1𝑑𝑌𝑗

Here, 𝑓Laplace (𝑥) and 𝐹Laplace (𝑥)represent the probability density
function and the cumulative distribution function of Laplace(0, 1𝜖 ).
See Appendix B for a proof of the theorem and an explanation of

numerical method we use to approximate the value of the integral.

Figure 2 shows the relationship between the number of colluding

buyers and the accuracy of the adversary’s prediction algorithm.

We show the results for when the privacy loss parameter 𝜖 is set to

1. With the PrAu default setting of 𝜖 = 10, the expected accuracy

exceeds 99% with only two colluding buyers with 1 million targeted

users, so we analyze with a lower privacy loss parameter of 𝜖 = 1.

As the aggregation service does not pose a limit on the length of

bucket list in the query and the bucket key has a maximum of 128

bits, the number of candidate users 𝑢 can be large. For reference,

it takes around 35 seconds for the Aggregation Service in local set

up to process a bucket key list with length of 1 million entries [37].

Thus, identifying one user out of millions of potential candidates

appears to be realistic.

As the number of reports (which is the number of colluding

buyer sites controlled by the adversary) aggregated increases, the

adversary quickly reaches a high expected accuracy on identify-

ing which user on the target list visited the tracked site. With 13

colluders (the primary site and 12 additional buyers), the expected

accuracy in prediction of this simple attack exceeds 99 percent

when the target user list has 1,000 users. Even when there are one

million target users, an adversary with at least 15 colluding buyer

sites can identify a user who visits the secondary site with high

confidence. This is alarming—obtaining buyer identities is unlikely

to be difficult and the economics of the system require that it be

relatively easy to set up new entities as ad buyers.

Enhancements. The contribution limit for a single report is set

at 2
16

which is used as the sensitivity in the differential privacy

mechanism. However, this limit is reset within a rolling 10-minute

window for each buyer or tracked site, with a daily cap of 2
20
. This

means that if the target user visits the secondary site multiple times

throughout the day, the adversary could potentially generate up

to 16 · 𝑛 reports per day for that single target user. This increased

volume of reports can significantly improve the expected accuracy

in prediction in settings where only a few colluding buyers are

available. Furthermore, instead of using full contribution budget

when a target user visits the tracked site, the adversary can allocate

the budget in other ways to track more than one user at a time,

which we discuss next.

4.3 Scenario 3: Mass Surveillance
The attack in the previous scenario can identify a single user from

a large candidate pool, but does not demonstrate the risks of mass

surveillance that are the primary motivation for eliminating third-

party cookies. In this scenario, we analyze the potential for mass

surveillance after third-party cookies are eliminated and PrAu is

deployed. Here, we consider the same scenario as in Section 4.2,

but instead of linking one user with 𝑛 reports per query to the

Aggregation Service, the adversary collects 𝑛 · 𝑢 reports from 𝑛

colluding buyers corresponding to 𝑢 candidate user visits, queries

the aggregation service with a fixed set of bucket keys, and infers

the presence of many users (approaching the number of visitors, 𝑢)

out of the large candidate pool based on the output.

Themain idea behind the attack is instead of using each bucket to

represent one user, we use the buckets as a Bloom filter to enhance

tracking capabilities. The process of reporting and querying is a

straightforward application of the Bloom filter [4], modified to

account for noise in the aggregate reports. In a standard Bloom

filter, set membership is recorded using a vector 𝐵 of size𝑚. There

are 𝑎 independent hash functions, ℎ1, . . . , ℎ𝑎 , and when an element
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𝑧 is added to the set the values of each corresponding bitℎ𝑖 (𝑧)%𝑚 is

set to 1. An element 𝑧 is predicted to be in the set if Σ𝑖∈1...𝑎𝐵 [ℎ𝑖 (𝑧)%
𝑚] = 𝑖 . This provides a guarantee of no false negatives, and with

appropriate parameters can achieve a very low false positive rate.

To adapt this approach to the PrAu setting the we need to account
for the noise added to the aggregate reports. The protocol design

is similar to the one from Scenario 2, except now each colluding

buyer computes the hash the UID with 𝑎 distinct hash functions

ℎ1 . . . ℎ𝑎 , and increments each 𝐵 [ℎ𝑖 (𝑧) %𝑚] by ℓ1/𝑎, dividing the

sensitivity budget evenly across the buckets. Thus, each buyer will

call the privateAggregation(·) API 𝑎 times to send key–value pairs

as (𝐵 [ℎ𝑖 (𝑧) %𝑚], ℓ1
𝑎 ) where 𝑖 ∈ 𝑎. When there are collisions, the

same bucket value is incremented multiple times.

To infer around 𝑢 visitors, when the adversary has received 𝑛 ·𝑢
reports, they notify the secondary site to suspend letting colluding

buyers win any further auctions for the next hour, and then wait for

up to an hour to receive all reports to account for the random delays

in sending reports. Modulo race conditions, this minimizes the risk

that the collected reports will include mismatches (different visits

reported across the 𝑛 colluding buyers). In practice, mismatched

reports would just mean that for some visits fewer than 𝑛 colluding

buyer reports have been received when the aggregation is done, so

an adversary may prefer to just collect reports continuously and

perform aggregation periodically instead of suspending collection

for an hour between every aggregation period. For our analysis, we

keep things simple and assume a complete set of reports.

The adversary sends all the reports received to the Aggregation

Service with a query for bucket keys 0, . . . ,𝑚 − 1. This results in
an𝑚-bit array, 𝐵report, with the noisy histogram output. The ad-

versary’s goal is to determine which of the candidate users visited

the secondary site during the tracking period. For each target user

in the candidate pool, the adversary performs the same hashing

process on each 𝑈 𝐼𝐷target, which results in another 𝑚-bit array

𝐵target. For each index with a non-zero value in 𝐵target, the adver-

sary estimates the probability that the noisy value in 𝐵report at that

index corresponds to a non-zero true value. Then, they take the

product of all these probabilities to calculate the likelihood that all

of these bit indices in 𝐵target are non-zero, as would be the case if

𝑈 𝐼𝐷target visited the tracked site. Lastly, the adversary sorts these

likelihood scores and accuses some users with highest scores.

Analysis. To evaluate the effectiveness of this attack, we measure

the number of visitors linked and the positive predictive value (PPV)

through simulations and explain how we select parameters, such

as the fixed domain of bucket keys𝑚 to maximize detection with

high PPV. The false positive rate for a standard Bloom filter with

large 𝑚 and small 𝑎 is extremely close to the theoretical bound

(1 − (1 − 1

𝑚 )
𝑎𝑢 )𝑎 [5], where𝑚 is the length of Bloom filter, 𝑎 is

the number of hash functions, and 𝑢 is the number of elements

stored in the filter. PrAu limits the number of contributions in a

single report in the reportWin(·) function to 20 [49], so the number

of hash functions can be up to 𝑎 = 20 which is the value we use.

We analyze the case where 𝑢 = 10, 000, which means the adversary

aims to track 10,000 users who visit the tracked site at least once

during each surveillance period. To minimize the (non-noised) false

positive rate to 0.01% with 𝑎 = 20 and 𝑢 = 10, 000, the adversary

uses a Bloom filter with𝑚 = 201, 000 bits.

After receiving the noisy outputs from the Aggregation Service,

the adversary’s task is to predict which users visited the tracked sec-

ondary website. The adversary does this by examining the returned

vector of𝑚 noisy values and checks the 𝑘 indices corresponding to

each user. For each user, these 𝑘 noisy values in 𝐵report are at the

non-zero positions of 𝐵target. We denote this as 𝒙 = [𝑥1, · · · , 𝑥𝑎],
where each 𝑥𝑖 is the output after adding noise at that position,

𝑥𝑖 = 𝑌𝑖 + 𝑐𝑖 . Here, 𝑌𝑖 represents a random variable drawn from a

Laplace distribution with parameters (0, ℓ1𝜖 ), and 𝑐𝑖 represents the
original value contained in the encrypted report.

In cases where there are 𝑛 colluding buyers and the user has

indeed visited the secondary site, it holds that 𝑐 ≥ 𝑛 · ℓ1/𝑎. In the

case where this user visited once and there are no hash collisions,

it would be exactly the minimum value 𝑐 = 𝑛 · ℓ1/𝑎. Collisions only
increase the probability of detection, so we ignore than in the rest

of this analysis.

In this binary context, the adversary wants to compute the prob-

ability that 𝑐𝑖 is non-zero (𝑐𝑖 = 𝑛 · ℓ1/𝑎) for each observed 𝑥𝑖 :

𝑃 (𝑐𝑖 = 𝑛 · ℓ1
𝑎
| 𝑥𝑖 ) =

𝑓Laplace (𝑥𝑖 − 𝑐𝑖 )
𝑓Laplace (𝑥𝑖 ) + 𝑓Laplace (𝑥𝑖 − 𝑐𝑖 )

(1)

Here, 𝑓Laplace (𝑥) represents the probability density function of the

Laplace distribution (0, ℓ1/𝜖), reflecting the probability that the bit

at index 𝑥𝑖 has been set in the Bloom filter (so the denominator

considers the only two cases in this binary setting—either 𝑐𝑖 = 0 or

𝑐𝑖 = 𝑛 · ℓ1/𝑎.
The adversary’s goal is to distinguish between two hypotheses:

the null hypothesis, 𝐻0, is that the user did not visit the tracked

site; the alternative hypothesis 𝐻1 posits that the user visited the

tracked site at least once. Given the vector 𝒙 , the adversary can

calculate the likelihood that the original values at all these indices

are 𝑐 = 𝑛 · ℓ1/𝑘 , denoted as 𝐿(𝐻1 | 𝒙):

𝐿(𝐻1 | 𝒙) =
𝑖=𝑎∏
𝑖=1

𝑃 (𝑐 = 𝑛 · ℓ1
𝑎
| 𝑥𝑖 ) (2)

Finally, the adversary sorts all the users by their likelihood score,

and accuses the users with highest scores. The adversary has a good

estimate of the actual number of visitors to the secondary site, 𝑢,

based on the number of reports received, which is equal to 𝑢 · 𝑛.
The number of accusations can be varied to trade-off between false

positives (invalid accusations) and false negatives (not accusing a

user who did visit the secondary site).

Results. Table 1 shows the smallest number of colluding buyers the

adversary needs to control to achieve a PPV over 0.99with respect to

different privacy loss budget 𝜖 and the number of accusations. In the

simulations, we randomly select 10,000 users to visit the secondary

website from a candidate pool of one million users who visited the

primary site. We compute the average PPV of the attack across five

simulations with respect to different numbers of accusations with

varying numbers of colluding buyers.

While the value of 𝜖 has not yet been determined in PrAu, the
currently available Aggregation Service for the Private Aggregation

API lets developers select an 𝜖 up to 64, with a default value 𝜖 = 10

[37]. The number of colluding buyers needed for high confidence

accusations scales up as the value of 𝜖 decreases or the number of

accusation increases.
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Number of Accusations: 1000 5000 10,000

𝜖 = 1 40.8 ± 0.2 76.0 ± 1.6 194.6 ± 4.6
𝜖 = 3 13.6 ± 0.6 25.2 ± 0.9 67.8 ± 4.6
𝜖 = 5 8.8 ± 0.2 15.4 ± 0.6 39.2 ± 1.4
𝜖 = 7 6.4 ± 0.2 11.6 ± 0.6 30.4 ± 4.2
𝜖 = 10 5.0 ± 0.4 8.4 ± 0.2 20.6 ± 3.0

Table 1: Number of colluding buyers needed to achieve above
0.99 PPV. For each privacy loss budget 𝜖 (up to the default value

of 𝜖 = 10) and the number of accusations, the result in each cell

is the number of colluding buyer sites needed to exceed 0.99 PPV,

averaged across five simulations. For all cases, there are 10,000 users

who visit the secondary site out of 1M candidates.
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Figure 3: False positive rate as number of accusations varies.
Results for setting where adversary controls 20 buyers to predict

10,000 users’ presence on the tracked site out of different candidate

pools with the default and a reduced privacy loss budget. Results

shown are the average over 5 simulation runs. The variance is

shown through the shading around the averaged line, where it

ranges from 0 to 0.0001.

With the default privacy budget of 𝜖 = 10, privacy quickly erodes.

With a candidate pool of 1 million users, the adversary only needs

5 ± 0.4 colluding buyers to confidently accuse 1,000 users out of

10,000 users who visited the tracked site (all results are averages and

variances over 5 simulations). If the adversary wants to make 10,000

accusations, with 20.6 ± 3.0 colluding buyers, the adversary can

on average identify 9913.4 ± 1.6 visitors out of 10,000 true visitors
(with 86.6± 1.6 users falsely linked). Even with a lower privacy loss

budgets of 𝜖 = 1, the simulated averaged PPV in the prediction of

this attack exceeds 99 percent over 10,000 accusations once there

are over 200 colluding buyers (194.6 ± 4.6 in the simulations). This

means the adversary can on average identify around 9906 visitors

out of 10,000 true visitors with 94 false accusations.

Figure 3 shows the relationship between the selection of the

number of accusations and the False Positive Rate (FPR) achieved

by the adversary’s prediction algorithm when the adversary con-

trols 20 buyers for different size candidate pools. The FPR of the

attack remains very close to 0 (always below 0.00001) when the

adversary only makes 100 accusations regardless the candidate pool

size up to one million for both 𝜖 = 1 and 𝜖 = 10. The FPR becomes

unacceptably high for all but the most ruthless accuser at 𝜖 = 1 once

the number of accusations exceeds a few hundred, indicating the

need for more than 20 colluding buyer sites for a high confidence

large-scale surveillance attack.

5 CIRCUMVENTING K-ANONYMITY
In the previous section, our attacks in Scenarios 2 and 3 assume the

adversary creates a user-specific interest group by including the

𝑈 𝐼𝐷 in the interest group name, and that the seller can extract the

𝑈 𝐼𝐷 in the interest group name and convey it to colluding buyers

when generating encrypted report. The𝑘-anonymity checks in PrAu
are designed to prevent tracking using user-specific interest groups.

Recall from Section 2.6 that there are two types of 𝑘-anonymity

checks. The first check excludes the interest group name when

determining ad eligibility for auction wins, thwarting attempts

to track users through unique creative URLs. The second check,

building upon the first, includes the interest group name in its

assessment to decide if the name can be disclosed during report

generation, thus preventing re-identification of users via interest

group names in auction reports. The attack can easily pass the

first 𝑘-anonymity check by having 𝑘 users visit the primary site.

However, since the interest group name is specific to each user, the

second 𝑘-anonymity check will fail, blocking the interest group

name from being visible to the seller worklet in generating an

auction report.

In this section we show that the design of the 𝑘-anonymity check

in PrAu is ineffective, and the attacks can easily be adapted to main-

tain tracking even when the 𝑘-anonymity check is implemented.

We show two approaches to obtain 𝑈 𝐼𝐷 during reporting time de-

spite the 𝑘-anonymity check: controlling multiple Google accounts

and employing covert channels.

5.1 Controlling Multiple Google Accounts
Themost intuitive way to bypass the 𝑘-anonymity check is to create

a group of fake users and associate them with the same interest

group as each targeted user.

Tomitigate this type of attack, Google limits the number of Join(·)
requests a user can perform, even if they control many browser

identifiers, by requiring a one-time-use Private State Token [50]

for each Join(·) request. Currently, Google only provides a Private

State Token in response to requests from an authenticated Google

user, and limits the number of tokens each user may obtain. Google

employs a Privacy Pass protocol [8] to issue and redeem these

tokens to prevent them from being tied back to Google accounts.

While it is relatively easy to create Google accounts and control

multiple browser identifiers, this attack has limited scalability, as

the number of Join(·) requests is limited to the number of Google

accounts controlled by the adversary times the number of Private

State Tokens Google issues to each account for each time period.

Assume Google issues 𝑡 Private State Tokens to each account, in

order to track 𝑢 users, the adversary would need to control at least
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𝑢
𝑡 · 𝑘 Google accounts, assuming they all get a unique browser

identifier.

5.2 Employing Covert Channels
The more scalable way to circumvent the 𝑘-anonymity check is

to use covert channels to re-identify the individual 𝑈 𝐼𝐷 without

accessing interest group name during the report generation phase

since the 𝑈 𝐼𝐷-specific interest group name will be hidden by the

browser. Fortunately (for the attacker, that is), the PrAu protocol

offers several potential covert channels to use for this. Figure 4

shows the auction process within the browser and illustrates two

potential covert channels that could be used by the buyer to convey

the𝑈 𝐼𝐷 to the seller during the auction, as the buyer has full access

to the interest group object when generating a bid. By using covert

channels, the seller can extract the𝑈 𝐼𝐷 in the ad creative URL or

reconstruct the𝑈 𝐼𝐷 through bid and score values after the failed 𝑘-

anonymity check hides the𝑈 𝐼𝐷 in the interest group name during

reporting time (Step 5, Figure 4). The attributes with arrows are

inputs and outputs of pre-defined worklet functions. We discuss

two available covert channels below—each is sufficient by itself to

reconstruct the full 𝑈 𝐼𝐷 , but they could also be combined if the

amount of information available through each channel were to be

limited by mitigations.

Ad creative URLs. The 𝑘-anonymity check is designed to prevent

a unique creative URL from winning an auction since the winning

creative URL will be available to the seller during report generation

phase. However, a single interest group may contain multiple ads

and the buyer’s code chooses which ad to bid on during the auction.

This means an adversary could strategically distribute an ad tailored

for one user among the ad inventory of another user’s interest

group, thereby undermining the 𝑘-anonymity threshold. Assuming

an interest group can hold 𝐴 distinct creative URLs (PrAu does not

appear to place any limit on 𝐴; we have tested up to 𝐴 = 200), the

adversary could segment the total number of tracked users 𝑢 by

𝐴, allocating a set of user-specific ads to each segment of users

within their interest group. Thus, each user’s interest group has a

distinct name that includes the𝑈 𝐼𝐷 and a set of 𝐴 ads, and these

ads embed unique IDs within their URLs, one of which matches

the 𝑈 𝐼𝐷 . Given that 𝐴 ≥ 𝑘 , the 𝑘-anonymity check at auction

phase will be successful. When generating the bid, the buyer can

choose to bid exclusively on the ad whose𝑈 𝐼𝐷 matches that of the

interest group name, and the colluding seller will let this ad win

the auction later. In this way, the seller can directly obtain the𝑈 𝐼𝐷

in the winning ad creative URL during reporting time and send it

to the buyer (Step 5 and 6, Figure 4).

Bid and score values. As shown in Figure 4 Step 5, the winning

bid and score values are revealed to the seller for use in gener-

ating reports. Since the buyer and seller are colluding, the buyer

can generate any positive floating-point number as the bid value,

embed information about the 𝑈 𝐼𝐷 in these bits, and still secure

the auction win. The seller can also encode information within

the floating-point score value, as long as the score assigned to the

colluding buyer’s bid remains the highest among all bids, ensuring

the buyer’s victory in the auction. To avoid these numbers exfil-

trating information from the interest group, PrAu plans to perform

stochastic rounding in the browser to limit the precision to an 8-bit

exponent and 8-bit mantissa. However, this still leaves room for a

32-bit information channel, 16 bits in each the bid and score, be-

tween the buyer’s code and the seller’s code. Suppose each user is

assigned a 30-bit𝑈 𝐼𝐷 in the interest group name. When generating

the bid, the buyer converts the first 15 bits of𝑈 𝐼𝐷 to floating point

number as a positive bid value to fit within the precision available,

puts the whole 30-bit𝑈 𝐼𝐷 in the ad description field, and returns

them along with other fields to the browser (Step 1 and 2, Figure 4).

When the seller’s code receives the bid, it extracts the 𝑈 𝐼𝐷 from

ad description, converts the latter 15-bits of the𝑈 𝐼𝐷 to a floating

point number encoding, and returns this positive value as score

to the browser (Step 3 and 4, Figure 4). For all the bids from other

buyers, the seller simply returns a negative score so that the score

that encodes the𝑈 𝐼𝐷 is guaranteed to be the highest score and win

the auction. Then, during reporting time (Step 5 and 6, Figure 4),

the seller can reconstruct the𝑈 𝐼𝐷 by converting the winning bid

and score back to two 15-bit representations and concatenate them

together to form the 30-bit𝑈 𝐼𝐷 , sufficient for uniquely tracking up

to 2
30

(over 1 billion) distinct users.

6 COUNTERMEASURES
Based on our analysis, there are two types of potential counter-

measures to mitigate the linking attacks. We note, however, that

given the myriad opportunities available for adversaries to obtain

information through the basic in-browser auction and reporting

functionalities, it is difficult to have high confidence that any set of

countermeasures, short of reconsidering the design and drastically

limiting available communication channels, would be sufficient to

eliminate tracking opportunities.

Limit arbitrary code execution within worklets. To re-identify
a user with the 𝑘-anonymity check in place, the adversary exploits

worklet functions to execute arbitrary code during auctions, using

covert channels to exchange information between buyers and sellers

via function outputs. A potential mitigation strategy would impose

stricter controls on the format and content of these outputs. For

example, rather than allowing buyers to transmit any ad metadata

to sellers during auctions, browsers could restrict communications

to a selection of predefined categorical attributes. Similarly, instead

of permitting sellers to assign arbitrary scores to ads, browsers

could enable them to evaluate bids and ads using a fixed set of stan-

dardized rankings. Such measures would complicate adversaries’

efforts to conduct widespread surveillance by limiting the possible

combinations of transmitted values. However, it remains uncer-

tain how these restrictions might affect advertisers, particularly

regarding their bidding strategies which may be designed to take

advantage of any information available to a bidder.

Different aggregate reporting mechanism. In the proposed at-

tack, the adversary takes advantage of the expectation linearity

within noise addition mechanisms used by the Private Aggregation

Service. To counteract this, PrAu could implement an alternative

method for adding noise that offers increased resistance to such

exploits. One potential approach is to utilize local differential pri-

vacy (LDP) [14], which introduces noise at the individual data point
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BROWSER

Buyer's Worklet Browser's Internal Code Seller's Worklet

1. send interestGroup
and auctionConfig objects

5. send bid, score, and
creative URL of the winner ad

2. send ad description,
bid value, and creative URL

3. send values returned
from buyer's worklet

with other auction information

4. send score value

Select the ad with highest score
and display it. Perform k-

anonymity check that includes
IG name to determine whether to
send IG name in the next step.

6. send message to
the winning buyer7. send message returned from

seller's worklet with other 
winning ad's information

GenerateBid:
Extract UID from interest
group name and put it in
ad description. Select the
creative URL that contains
UID. Encode the first 15-bit

of UID in bid value.

ScoreAd:
Extract UID from ad
description. Encode
the last 15-bit UID in

score value.

ReportResult:
Extract UID from the

creative URL. 
Reconstruct UID from 
bid and score value. 

Send UID as message
to the winning buyer.

ReportWin:
Extract UID from seller's

message. Generate
encrypted report based on

UID.

Perform k-anonymity check that
excludes IG name to determine

ad eligibility for winning.

Figure 4: Using Covert Channels to Reconstruct𝑈 𝐼𝐷 during in-Browser Auctions. Red text represents the way to extract𝑈 𝐼𝐷 in

creative URL. Blue text represents the way to reconstruct𝑈 𝐼𝐷 through bid value and score value.

level before the aggregation process. As each piece of data is in-

dependently obscured, it will be more difficult for an adversary to

neutralize the noise by aggregating the data. This method ensures

that the added noise remains effective in preserving privacy, even

when data is combined. The amount of information available to

an adversary could also be limited by substantially reducing the

number of available bucket keys (currently 2
128

) and the maximum

value sensitivity (which effectively reduces 𝜖 if it is still set based

on the original value). Any limits on the information available in a

report, though, reduce the potential value of reports to advertisers.

7 DISCUSSION
Beyond assessing the privacy attributes in the design of PrAu, it
is essential to contextualize its role within the broader advertising

ecosystem. Our discussion extends to how PrAu influences com-

petitive dynamics and the role of trusted third parties within the

Privacy Sandbox framework.

Market Dynamics. While we focus on privacy aspects of PrAu,
there is also a concern among competing ad networks that the

design of the protocol could diminish their ability to compete ef-

fectively. They fear losing access to valuable information that is

crucial for targeting and measuring ads, which might consolidate

Google’s dominance in the online advertising space. The UK’s Com-

petition and Markets Authority (CMA) has taken an active role in

scrutinizing the Privacy Sandbox proposals, launching a formal

investigation to understand their implications for competition and

consumer welfare [7]. This process involves collaboration between

the CMA and the Information Commissioner’s Office (ICO), blend-

ing expertise from privacy and competition regulatory perspectives.

Google has responded by offering commitments designed to ensure

that the implementation of the Privacy Sandbox proposals is trans-

parent, equitable, and does not confer an unfair data advantage to

Google’s own advertising services [2]. These commitments include

engaging in open dialogue with the CMA and the industry, ensuring

no preferential treatment for Google’s products, and not using al-

ternative identifiers or Chrome browsing histories for ad targeting.

This situation underscores the complex interplay between privacy

and competitive dynamics in digital markets. The CMA’s public

consultation process on these commitments represents a critical

step in addressing these concerns, with the potential to set legally

binding conditions for the design and operation of PrAu and other

components of the Privacy Sandbox.

Trusted Third Parties. In PrAu, several servers needs to be trusted
to prevent information leakage during the auction. To limit expo-

sure through these trusted servers, the service must run in a TEE on

an approved cloud platform and the code implementing the trusted

server must be approved before deployment. For example, these ser-

vices must not perform event-level logging or log data that would

potentially identify users such as IP addresses and timestamps, and

the auditor must ensure that the set of keys and the way they are

updated cannot be used for user tracking or profiling purposes.

At least initially, it seems that the only candidate for this auditor

would be Google, although none of the available Privacy Sandbox

documents acknowledge this.
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In addition, the full implementation of 𝑘-anonymity server re-

quires a trusted third-party company that is not affiliated with

Google to operate a relay server and will not exchange request data

with them. The need for an additional trusted party poses inherent

privacy risks, since this server is collecting IP addresses from the

browsers submitting these requests, and can also manipulate which

messages it relays and introduce other timing channels. It is unclear

from the PrAu documentation what business model would be used

to support the independent relay operators in the protocol. Future

research work might examine the feasibility of this type of business

models and measure their effectiveness.

Finally, the code running in the web browser that manages the

ad auction, including setting up the worklets for the buyer and

seller code, implementing the 𝑘-anonymity checks, and controlling

all the information passing between the worklets and external

servers, is also a critical trusted component of the system. Although

it is possible that the protocol will be standardize to the point

where it can be implemented in independent browsers, current

implementation are only in Google’s Chrome browser.

Responsible Disclosure. Since our results concern privacy vulner-
abilities in a proposed system that is not yet deployed, there is no

immediate disclosure risk—the vulnerabilities we discuss are only

risks in a future world where third-party cookies are blocked so

the current tracking they enable is no longer possible. The goal of

PrAu is to support targeted advertising in a world where third-party

cookies are no longer available and the essential privacy property

PrAu intended to provide is unlinkability of requests, and the focus

of our work is analyzing how well the proposed design meets that

privacy goal in a future where third-party cookies are no longer

supported. Nevertheless, we did share a version of this paper with

the team at Google developing PrAu. They expressed appreciation

for our work and did not raise any technical objections to our de-

scription or conclusions, but have not yet shared with us any plans

to change the PrAu design to address the issues we have identified.

8 CONCLUSION
Google’s Privacy Sandbox initiative aims to provide a balanced

solution to address privacy concerns associated with web tracking

while supporting the business of targeted advertising. The core idea

behind the Privacy Sandbox is to create a set of APIs that enable

targeted advertising through in-browser auctions.

Overall, the Privacy Sandbox represents a step forward in balanc-

ing privacy concerns with the needs of advertisers. Google deserves

credit for their relatively transparent process in developing this

initiative, which has involved seeking input from a variety of stake-

holders and experts. However, there is still a great deal of uncer-

tainty surrounding the Privacy Sandbox. While it is already widely

deployed to the general public, essential privacy mechanisms are

not in place. For instance, the auditing process of Trusted Servers

has not been determined and event-level clear-text reporting will

be supported until at least 2026, leaving concerns about how the

system will be implemented in its final design and whether it will

effectively protect user privacy as intended. As such, it is crucial

to provide an early analysis of the proposed system. By identify-

ing potential risks and areas for improvement before widespread

deployment, we hope to ensure that the privacy properties of the

final version of the Privacy Sandbox are clearly defined and its

implementation achieves them as well as possible.

AVAILABILITY
Open-source code for producing our simulation results and corre-

sponding graphs (Figure 2, Table 1, and Figure 3) is available as

https://github.com/Elena6918/PrAu-Simulation.
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A THE API CALLING SEQUENCE IN FOT
Figure 5 shows the current design of PrAu in the FOT .

BrowserBuyer Server Seller Server

1. visit

5. Running Auctions with
Bidding URL in Bidding
Worklet and Decision

URL in Auction Worklet

2. joinAdInterestGroup
(interestGroup, time)

5a. send bidding
signals keys

5b. send bidding
signal values

6. Report Auction
Outcome with Bidding
Worklet and Auction

Worklet
6b. sendReportTo(url)

4. runAdAuction
(auctionConfig)

3. visit

5d. send scoring 
signal values

5c. send scoring
signal keys

6a. sendReportTo(url)

Figure 5: FOT of PrAu with API Calling Sequence among
Servers and the Browser. For simplicity, we show a single seller

and buyer (who is also the winner of the auction), although there

would typically be many buyers and sellers.

B PROOF OF THEOREM 4.1
As all colluding buyers reports full ℓ1 contribution budget when

a target user visits the seller site, we can simplify the analysis by

dividing ℓ1 in all terms.

The adversary implements a simple prediction algorithm: select

the prediction 𝑗 as the index of the value in 𝒙 with the highest value.

Then, the expected accuracy of this algorithm can be defined as a

function 𝐸 (𝜖,𝑢, 𝑛), which is the probability 𝑃 (𝑥 𝑗 > 𝑥𝑖 ,∀𝑖 ≠ 𝑗). This
can be further written as

∏
𝑖∈[𝑢 ]−𝑗 𝑃 (𝑌𝑖 < 𝑛 + 𝑌𝑗 ).

Recall the probability density function (PDF) of𝑌 is 𝑓𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑌 ) =
1

2
𝑒−𝜖 |𝑌 | , and the cumulative density function (CDF) is

𝐹𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑌 ) =
{
1

2
𝑒𝜖𝑌 , if 𝑌 < 0

1 − 1

2
𝑒−𝜖𝑌 if 𝑌 ≥ 0

Since each𝑌𝑖 is drawn independently from Laplace(0, 1𝜖 ), we can
represent

∏
𝑖∈[𝑢 ]−𝑗 𝑃 (𝑌𝑖 < 𝑛 + 𝑌𝑗 ) as∫

𝑌𝑗

𝐹𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑛+𝑌𝑗 )𝑢−1𝑑𝑌𝑗 =
∫ ∞

−∞
𝑓𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑌𝑗 )·𝐹𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑛+𝑌𝑗 )𝑢−1𝑑𝑌𝑗

Since 𝐹𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑛 +𝑌𝑗 ) has two different forms depending on the

sign of 𝑌𝑗 + 𝑛 and 𝑓𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (𝑌𝑗 ), we need to split it into two cases

for calculation:

Case 1: 𝑛 + 𝑌𝑗 ≥ 0

To solve the following two integrals, we use the midpoint rule

method to approximate the value. This divides the interval [𝑎, 𝑏]
into 𝑛 subintervals of equal width, denoted by Δ𝑥 . The midpoints

of these subintervals are denoted as 𝑥∗
𝑖
, where 𝑖 = 1, 2, . . . , 𝑛. The

approximation of the integral using the Midpoint Rule is given by:∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≈
𝑛∑︁
𝑖=1

𝑓 (𝑥∗𝑖 )𝑌𝑥

where Δ𝑥 = 𝑏−𝑎
𝑛 .

Case 1A. 𝑌𝑗 > 0. To apply the midpoint rule to approximate∫ ∞
0

𝜖
2
𝑒−𝜖𝑌𝑗 · (1− 1

2
𝑒−𝜖 (𝑛+𝑌𝑗 ) )𝑢−1𝑑𝑌𝑗 , we first discretize the integral

by dividing the range [0,∞) into 𝐿 subintervals of equal width. Let

Δ𝑥 be the width of each subinterval: Δ𝑥 = ∞−0
𝐿

, and the midpoints

of these subintervals are denoted as 𝑥𝑖 =
(2𝑖−1)Δ𝑥

2
, where 𝑖 =

1, 2, . . . , 𝐿. For simplicity, let Δ𝑥 = 1, then for each subinterval, we

have 𝑓 (𝑥𝑖 ) = 𝜖
2
𝑒−𝜖𝑥𝑖 (1 − 1

2
𝑒−𝜖 (𝑛+𝑥𝑖 ) )𝑢−1.

Lastly, we sum up the approximations for all subintervals to

obtain an approximation for the entire integral:

1𝐴 =

∫ ∞

0

𝜖

2

𝑒−𝜖𝑌𝑗 ·
(
1 − 1

2

𝑒−𝜖 (𝑛+𝑌𝑗 )
)𝑢−1

𝑑𝑌𝑗 (3)

≈
∞∑︁
𝑖=1

𝜖

2

𝑒−𝜖 (𝑖−
1

2
) · (1 − 1

2

𝑒−𝜖 (𝑛+𝑖−
1

2
)) )𝑢−1 (4)

Case 1B. 𝑌𝑗 < 0. To apply the Midpoint Rule to approximate∫
0

−𝑛
𝜖
2
𝑒−𝜖 |𝑌𝑗 | · (1 − 1

2
𝑒−𝜖 (𝑛+𝑌𝑗 ) )𝑢−1𝑑𝑌𝑗 , we first discretize the in-

tegral by dividing the range [−𝑛, 0] into 𝑛 subintervals of equal

width Δ𝑥 = 1. Then, the midpoints of these subintervals can be

expressed as 𝑥𝑖 = −𝑛 + (2𝑖−1)
2

, where 𝑖 = 1, 2, . . . , 𝑛. Thus, for each

subinterval, we have 𝑓 (𝑥𝑖 ) = 𝜖
2
𝑒−𝜖𝑥𝑖 (1 − 1

2
𝑒−𝜖 (𝑛+𝑥𝑖 ) )𝑢−1.

Lastly, we sum up the approximations for all subintervals to

obtain an approximation for the entire integral:

1𝐵 =

∫
0

−𝑛

𝜖

2

𝑒−𝜖 |𝑌𝑗 | · (1 − 1

2

𝑒−𝜖 (𝑛+𝑌𝑗 ) )𝑢−1𝑑𝑌𝑗 (5)

≈
𝑛∑︁
𝑖=1

𝜖

2

𝑒𝜖 (−𝑛+𝑖−
1

2
)) · (1 − 1

2

𝑒−𝜖 (𝑖−
1

2
)) )𝑢−1 (6)

Case 2: 𝑛 + 𝑌𝑗 < 0

Case 2A. 𝑌𝑗 > 0. Given 𝑛 > 0 and 𝑌𝑗 > 0, it is impossible that

𝑌𝑗 > 0, and thus Case 2A is invalid.

Case 2B. 𝑌𝑗 < 0

2𝐵 =

∫ −𝑛

−∞

𝜖

2

𝑒−𝜖 |𝑌𝑗 | · ( 1
2

𝑒𝜖 (𝑛+𝑌𝑗 ) )𝑢−1 𝑑𝑌𝑗 (7)

=

∫ −𝑛

−∞

𝜖

2

𝑒𝜖𝑌𝑗 · 1

2
𝑢−1 𝑒

𝜖 (𝑢−1) (𝑛+𝑌𝑗 )𝑑𝑌𝑗 (8)

=
𝜖

2
𝑢
· [ 1

𝜖𝑢
𝑒𝜖𝑢𝑌𝑗+𝜖 (𝑢−1)𝑛]−𝑛−∞ (9)

=
1

2
𝑢 · 𝑢 𝑒

−𝜖𝑛
(10)

Lastly, after summing up all 4 cases, we can evaluate the integral

as the following form:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∞∑︁
𝑖=1

𝜖

2

𝑒−𝜖 (𝑖−
1

2
) · (1 − 1

2

𝑒−𝜖 (𝑛+𝑖−
1

2
)) )𝑢−1 Case 1A

(11)

+
𝑛∑︁
𝑖=1

𝜖

2

𝑒𝜖 (−𝑛+𝑖−
1

2
)) · (1 − 1

2

𝑒−𝜖 (𝑖−
1

2
)) )𝑢−1 Case 1B

(12)

+ 1

𝜖 · 𝑢 · 2𝑢 𝑒
−𝜖𝑛

Case 2B

(13)
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