
RSA Blind Signatures with Public Metadata
Ghous Amjad

Google

gamjad@google.com

Kevin Yeo

Google

kwlyeo@google.com

Moti Yung

Google

moti@google.com

Abstract
Anonymous tokens are, essentially, digital signature schemes that

enable issuers to provide users with signatures without learning

the user inputs or the final signatures. These primitives allow appli-

cations to propagate trust while simultaneously protecting the user

identity. They have become a core component for improving the pri-

vacy of several real-world applications including ad measurements,

authorization protocols, spam detection, and VPNs.

In certain applications, it is natural to associate signatures with

specific public metadata, ensuring that trust is only propagated

with respect to only a certain set of users and scenarios. To solve

this, we study the notion of anonymous tokens with public meta-

data. We present a variant of RSA blind signatures with public

metadata where issuers may only generate signatures that verify

for a certain choice of public metadata that is a modification of

a scheme by Abe and Fujisaki [3]. Our protocol exclusively uses

standard cryptography with widely available implementations. We

prove security from the one-more RSA assumptions with multiple

exponents that we introduce. Furthermore, we provide evidence

that the concrete security bounds should be nearly identical to

standard RSA blind signatures. We show that our protocol incurs

minimal overhead over standard RSA blind signatures and report

anonymous telemetry for a real-world deployment to showcase its

scalability. Following our work, our protocol has been proposed as

a technical specification in an IRTF internet draft [6].

Keywords
Anonymous Tokens, RSA Blind Signatures, Public Metadata

1 Introduction
Anonymous tokens are a powerful primitive that have been studied

for decades under various names including anonymous credentials

and blind signatures. They were first introduced by Chaum [19, 20]

in the context of untraceable electronic cash. At a high level, the

idea was that any bank/treasury would be able to attest the validity

of money with the guarantee that no one would ever be able to

trace the usage of the money even if the bank knows the identity

of the user that was originally granted the money. This is just one

example that exhibits the usefulness of anonymous tokens. In recent

years, anonymous tokens have become a core component of many

real-world applications such as private click measurement [61],

privacy-preserving telemetry [37], fraud detection [30], avoiding

repeated CAPTCHA solving [27] and modern VPNs [8, 44].

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(1), 37–57
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0004

There are typically three different roles for participants in anony-

mous token schemes. The user (or signature recipient or receiver)

requests and receives the signature. The signer (or issuer) receives

a blind signing request and issues a response that enables the user

to recover the final signature. Finally, the verifier checks whether

a signature is one that was correctly signed by the signer. Anony-

mous token schemes may be split into two types: designated or

public verifiability. In the designated setting, verification requires

the usage of the private key and thus certain parties with access to

the private key must be explicitly assigned the role of verifier. In the

public verifiability case, anyone with the public key can perform

verification. In our work, we focus only on public verification. We

choose to focus on public verification due to the flexibility that it

offers when used in protocols where any party can verify signatures

without needing the secret key. In particular, parties may act as

verifiers without the ability to also issue signatures.

Anonymous tokens are required to satisfy three important prop-

erties: correctness, unforgeability and unlinkability. For correctness,

it must be that a signature will be successfully accepted by a ver-

ifier if all parties were acting honestly by following the protocol

correctly. Unforgeability describes the property that an adversary

should not be able to create valid signatures without interacting

with the signer e.g., an adversarial user performing ℓ blind signing

protocols with a signer should not be able to create ℓ + 1 distinct
pairs of input message and valid signature. Both of these properties

are required from any digital signature scheme. The last property

of unlinkability formally describes the notion of anonymity with

respect to an untrusted signer. In particular, the signer should be

unable to link any blind signing request with any final signature.

Suppose that the signer answers ℓ blind signing requests. After-

wards, the signer receives the ℓ final signatures that are randomly

permuted. Then, the signer is unable to link any request with a

signature with probability better than 1/ℓ even if the signer may

have maliciously chosen the system’s parameters.

Anonymous Tokens with Public Metadata. In this work, we

study anonymous tokens where each signature will be tied to a

some public metadata (also known as partially blind signatures [2–

4]). Public metadata is a powerful tool that enables additional in-

formation that may be integral during verification. In standard

anonymous tokens (without public metadata), the verifier only re-

ceives the signature and plaintext message. Furthermore, the signer

issuing the signature never sees the plaintext message to maintain

anonymity. In other words, there is no way for a signer to properly

check and embed metadata into a signature that can be later used

by the verifier. This feature ends up being quite useful in multiple

applications as we will show later. Anonymous tokens with public

metadata allow the user and signer to jointly agree on metadata

explicitly encoded into each token. This metadata will be public to

all parties (the input message remains hidden from the signer for

anonymity). Additionally, the verifier will check signatures for a

37

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0004

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

specific choice of public metadata. The primitives must guarantee

that a signature will only be accepted if the verifier uses the correct

public metadata used in signing.

Public Metadata for Privacy-Enhancing Technologies. The
ability to augment anonymous tokens with public metadata serves

as a way to propagate trust for a specific subset of settings that

is useful for designing privacy-enhancing technologies (PETs). In

most applications using anonymous tokens, the signer is typically

responsible for checking that the user is permitted to receive to-

kens. During verification, the verifier no longer has any information

about the user and, thus, may only check that tokens are valid. Pub-

lic metadata enables propagating this permission in a fine-grained

manner. The verifier can check this public metadata with trust

that the signer embedded the public metadata. We present two

real-world example applications where public metadata is critical.

Application 1: Geolocality-based VPN. As a real-world application,
we can consider VPNwhere each user purchases access for a specific

geolocality such as a country. Whenever a user accesses the VPN,

it is critical that the user’s anonymity is maintained. However, the

VPN provider also needs to check that the accessing user has paid

for access in the specified country. In fact, this is the exact problem

encountered by GoogleOne VPN [44]. We show that this can be

solved with public metadata for anonymous tokens. To access the

VPN, a user is first required to authenticate to prove that they have

purchased access for a specific country. Afterwards, the user will

receive several anonymous tokens where the public metadata is

the country for authorized access. When the user accesses the VPN,

the user will redeem anonymous tokens. The VPN provider can

verify that each token was created for the correct country before

permitting VPN access.

Application 2: Short-Lived Anonymous Tokens. As another example,

we consider the general setting where anonymous tokens should

have short expiration times or may be redeemed within a short time

period (for example, 1 hour). This could be useful for many applica-

tions such as timed event access or promotions with expiration. A

trivial approach is to utilize different keys for each expiration time

or valid time period (such as one key per hour). However, man-

aging a large number of keys that is a very challenging problem

in real-world deployments [17, 28, 50]. For example, it requires a

large number of key rotations such as once every hour. Typically,

key rotations are performed after a certain number of operations to

avoid security degradation or mitigating accidental key exposure.

In this case, we are abusing key rotation to enable expirations. The

large number of key rotations may introduce additional problems

(such as missing keys, exposure, etc). It is advantageous to keep the

key set small to avoid these potential issues. Instead, we can use

public metadata to avoid unnecessary key rotations. When issuing

a token, the signer finds the correct expiration time (or valid time

period) for each user and embeds it as public metadata. Then, the

verifier will only permit access to the user if the anonymous token

is redeemed at the right time period.

1.1 Our Contributions
RSABlind Signatureswith PublicMetadata.As ourmain contri-

bution, we present a blind signature with public metadata based on

the RSA assumption that is a modification of a scheme introduced

by Abe and Fujisaki [3]. The construction uses only standard cryp-

tography widely available across most platforms while avoiding

more complex and less supported operations (such as pairings). We

formally prove unforgeability from a variant of the one-more RSA

assumption as well as unconditional unlinkability. Additionally, we

derive concrete security bounds to enable picking parameters in

real-world deployments. We note that the prior work [3] did not

have formal definitions or security proofs. One of this paper’s main

contributions is proving that an adjusted version of their scheme

is secure. Finally, we show that our protocol incurs only slight

overhead over standard RSA blind signatures. We note that there

are prior schemes for public metadata that rely on cryptography

with more limited production availability such as pairings [56].

In Appendix I, we compare the availability of the necessary RSA

operations for our scheme to pairings in production cryptography

libraries. IRTF Draft. Following our paper, the protocols in this

work have been proposed in a CFRG specification in the IRTF [6]

due to the interest of practitioners for real-world applications. By

constructing practical anonymous tokens with public metadata

using widely available production cryptography, our construction

has enabled new applications for PET designers. For example, there

are already work streams to build real-world architectures relying

on our construction in the IETF Privacy Pass working group (such

as [35]). Experimental Evaluation and Deployment Telemetry.
We perform experimental evaluation to show our protocol incurs

minimal overhead over standard RSA blind signatures. Additionally,

our protocol has been deployed in an application for GoogleOne

VPN. We report on anonymous real-world telemetry to showcase

the scalability of our protocol to millions of users.

1.2 Technical Overview
Before we present our protocol for RSA blind signatures with public

metadata, we first show some failed approaches which try to enable

public metadata in an anonymous tokens scheme and outline their

downsides. This provides insights into our design choices.

Naive Solution: Multiple Keys. The first idea is to generate a new
key for each option of public metadata 𝐷 . The main downside of

this approach is that key management becomes significantly more

challenging with large key sets. As mentioned earlier, key man-

agement is one of the most difficult aspects in real-world deploy-

ments [17, 28, 50]. Instead, we want a protocol where the number

of key pairs does not grow with the public metadata universe.

Failed Solution: Embedding into Message. Another approach
is to append the public metadata 𝐷 to the message 𝑀 to obtain

message𝑀 ′ =𝑀 | | 𝐷 . Afterwards, the anonymous token scheme

remains identical using new message 𝑀 ′. Unfortunately, this ap-
proach does not work due to the anonymity guarantees. In partic-

ular, the metadata 𝐷 must be known to the signer during signing.

For anonymity, the message 𝑀 ′ = 𝑀 | | 𝐷 must be hidden from

the signer. Therefore, the signer cannot verify that they are sign-

ing with respect to a specific public metadata 𝐷 and, hence, this

approach fails to satisfy the necessary unforgeability requirements.

Existing Solutions. There are other potential solutions to support
public metadata in anonymous tokens. Silde and Strand [56] present

a pairing-based protocol based on BLS signatures [15]. In general,

pairings are computationally expensive and not widely available in

38

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

production libraries. Several works [38, 57] consider pairing-free

solutions, but require three moves (resulting in multiple roundtrips

during blind signing). There are other options such as Albrecht

et al. [5] using torus-based fully homomorphic encryption (FHE),

which is even more expensive than pairings. We consider two-move

protocols using efficient cryptography to enable easier adoption.

Our Protocol. Using the above approaches as guidance, we can

determine requirements necessary for our construction. First, we

should only use a single key independent of the public metadata

universe. Additionally, we still need the public metadata to be view-

able by the signer during blind signing. Finally, we should avoid

any complex cryptography that is not widely supported.

We first revisit the original RSA blind signature protocol. Recall

that standard RSA blind signatures utilize a modulus that is the

product of two primes 𝑁 = 𝑝𝑞 along with a public exponent 𝑒 and a

private exponent 𝑑 such that 𝑑 = 𝑒−1 mod 𝜙 (𝑁). The signer’s pri-
vate key consists of 𝑑 while the public key is (𝑁, 𝑒). All operations
are done in Z∗

𝑁
. To perform blind signing for a message𝑀 , the user

computes𝐴 = 𝐻M (𝑀) ·𝑅𝑒 where𝐻M (𝑀) hashes the message𝑀 to

an element of Z∗
𝑁
and 𝑅 is a uniformly random element of Z∗

𝑁
. The

signer computes 𝐵 = 𝐴𝑑 = 𝐻M (𝑀)𝑑 · 𝑅𝑒𝑑 = 𝐻M (𝑀)𝑑 · 𝑅. Finally,
the user computes final signature 𝑆 = 𝐵 ·𝑅−1 = 𝐻M (𝑀)𝑑 ·𝑅 ·𝑅−1 =
𝐻M (𝑀)𝑑 . To verify 𝑆 for message𝑀 using (𝑁, 𝑒), one simply com-

putes 𝑆𝑒 and checks if it equals to 𝐻M (𝑀).1
We take insight from the first failed approach that used dif-

ferent keys for each metadata along with prior work of Abe and

Fujisaki [3]. Rather than using different keys, we use a hash func-

tion 𝐻MD to enable generating keys for each metadata 𝐷 . In more

detail, we will set 𝑒MD = 𝐻MD (𝐷) as the public exponent as done
in the scheme presented in [3]. In our scheme, we use a random

string as a salt in 𝐻MD but omit it here for simplicity. Blind signing

for the user remains similar using 𝑒MD as opposed to 𝑒 and putting

𝐷 into the message hash to obtain 𝐴 = 𝐻M (𝑀 | | 𝐷) · 𝑅𝑒MD . Now,

the signer first computes 𝑒MD = 𝐻MD (𝐷). We augment the private

key to contain 𝜙 (𝑁) allowing the signer to compute the inverse

𝑑MD = (𝑒MD)−1 mod 𝜙 (𝑁). Afterwards, the signer uses 𝑑MD as the

private exponent to return 𝐵 = 𝐻M (𝑀 | | 𝐷)𝑑MD · 𝑅 to the user.

Finally, the user removes 𝑅 to obtain 𝑆 = 𝐻M (𝑀 | | 𝐷)𝑑MD .

Unfortunately, the above construction has a slight problem. In

particular, we assumed that the output 𝑒MD = 𝐻MD (𝐷) is always
invertible modulo 𝜙 (𝑁) and, thus, co-prime to 𝜙 (𝑁). For standard
RSA modulus 𝑁 = 𝑝𝑞 where 𝑝 and 𝑞 are distinct primes, it is not

necessarily the case that a random element would be invertible

modulo 𝜙 (𝑁) = (𝑝 − 1) · (𝑞 − 1). To solve this problem, we can use

strong RSA moduli where we require that 𝑁 = 𝑝𝑞 such that both

𝑝 and 𝑞 are safe primes meaning that 𝑝 = 2𝑝′ + 1 and 𝑞 = 2𝑞′ + 1
such that both 𝑝′ and 𝑞′ are also prime numbers. If 𝑁 is a strong

RSA modulus, then we know that 𝜙 (𝑁) = (𝑝 − 1) · (𝑞 − 1) = 4𝑝′𝑞′.
Therefore, an element 𝑥 ∈ Z𝜙 (𝑁) has an inverse as long as 𝑥 is odd

and not divisible by 𝑝′ and 𝑞′. If we assume that both 𝑝 and 𝑞 are 𝜅-

bit prime numbers, then we can guarantee that the output of 𝐻MD

is always invertible in Z𝜙 (𝑁) using the following modifications.

First, we ensure that 𝐻MD always outputs an odd number. Next,

we make sure that 𝐻MD always outputs elements of length at most

1
We assume here that 𝐻M is deterministic. However, there are randomized message

encodings with more complex verification. See Section 5.1 for more details.

𝜅 − 2 bits. As 𝑝 and 𝑞 are 𝜅 bits, we know that both 𝑝′ and 𝑞′ are at
least 𝜅 − 1 bits. As a result, we can guarantee that 𝐻MD is always

invertible modulo 𝜙 (𝑁) as it is odd and always smaller than both 𝑝′

and 𝑞′. Even though similar ideas were previously presented in [3],

no formal security proofs existed prior to our work.

One-More RSA Inversion with Multiple Exponents. Before
proving the security of our protocol, we first define an extension of

the “one-more” RSA assumption [11]. We explore several natural

ways to define RSA assumptions with respect to multiple expo-

nents before arriving at the weakest form that may be used to

prove security of our protocol. To our knowledge, this is the first

exploration of one-more RSA inversion assumptions with multiple

exponents. Finally, we also explore connections with the strong

RSA assumption where the adversary picks the public exponent.

Security of Our Protocol. Finally, we prove the security of our

new protocol with public metadata. We start with proving concrete

security of the non-blind variant from the RSA assumption. In

particular, we show that our new protocol has similar concrete

security guarantees for unforgeability as standard RSA signatures.

We note that our subtle modification where the underlying hash

𝐻M (𝑀 | | 𝐷) includes both𝑀 and𝐷 is integral in our security proof.

Next, we prove the security of our main RSA blind signatures with

public metadata protocol. Using the one-more multi-exponent RSA

inversion assumptions, we are able to prove the unforgeability of

our protocol. For anonymity, we adapt the techniques introduced

by [40] to prove that our protocols satisfy unlinkability even in the

presence of maliciously generated keys.

Underlying Cryptography Operations. One benefit of starting
from RSA blind signatures is that all the underlying cryptographic

operations are widely supported. The only additional functionalities

required by our protocol is the ability to hash strings to random

numbers for 𝐻MD and generating random safe primes (only needed

for key generation). These are cryptographic operations that are

widely supported for production usage. In contrast, pairings (relied

upon by prior works such as [56]) are not yet available in most

widely used production cryptography libraries. Although, recent

interest in pairing-based cryptography (such as IRTF draft [14])

may lead to pairings being more widely available in the future. See

Appendix I for availability of operations in production libraries.

1.3 Related Work
BLS with Public Metadata. Silde and Strand [56] also studied

anonymous tokens with public metadata. For the setting of pub-

lic verifiability, the authors presented a construction from pair-

ings based on the BLS signature scheme [15] along with ideas

from [27, 63]. Comparing with [56], our protocol uses RSA-based

cryptography as opposed to pairing-based cryptography. RSA-based

cryptography is more readily available on all platforms compared

to pairing-based cryptography enabling easier adoption. We note

that recent IRTF work [14] may lead to pairings being more widely

available for production usage in the future. See Appendix I for

comparison of production availability of pairings compared to the

RSA operations for our scheme.

Partial OPRF with Public Metadata. Several works have studied
partially oblivious pseudo-random functions (OPRF) including [56,

60, 63] that essentially allows public metadata for OPRF evaluations.

39

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

We note that there was a proof flaw in [63] that was fixed in [60]

and all schemes are secure.

RSA Blind Signatures with Strong Moduli.We note that similar

variants of RSA blind signatures with public metadata has appeared

in the past [2, 3]. However, the security was proven heuristically.

One can view the main contribution of our work as proving a mod-

ified variant of the scheme in [3] to be secure along with concrete

security bounds. Furthermore, we combine recent work [40] to

obtain protection against maliciously generated keys. Other works

also used strong RSA modulus such as threshold signatures [54]

and integer commitments [25].

Anonymous Tokens with Private Metadata. Recent work [39]

studied anonymous tokens augmented with a single private meta-

data bit along with publicly verifiable variants [13, 46]. The meta-

data bit is explicitly specified only by the signer and observable by

the verifier while hidden from the user. Another recent work [18]

studied augmenting private metadata into anonymous tokens by

using algebraic MACs. To our knowledge, blind signatures cannot

be used to instantiate anonymous tokens with private metadata.

We leave it as future work to support private metadata bits using

RSA-style signatures.

2 Anonymous Tokens
We present the formal definitions for anonymous token schemes

which will also work for non-anonymous protocols with small mod-

ifications. We will solely focus on the settings of public metadata

and public verifiability. Our definitions are interchangeable with the

notion of partially blind signature schemes [2, 4] and we explicitly

focus on two-move (message-response structure) blind signatures.

Non-two-move signatures exist such as [4] but due to the the extra

communication round-trip we do not focus on them in this work.

Definition 2.1. A token scheme with public metadata Tok that is

publicly verifiable is a tuple of efficient algorithms Tok = (Setup,
Blind, Sign, Finalize,Verify).

(1) (pk, sk) ← Tok.Setup(1𝜆): The setup algorithm receives the

security parameter 𝜆 as input and outputs a pair of public

and private keys (pk, sk).
(2) (st, 𝐵𝑀) ← Tok.Blind(𝑀,𝐷, pk): The blinding protocol is

run by the user who receives the plaintext message𝑀 , public

metadata 𝐷 and public key pk. The output 𝐵𝑀 is a blinded

version of the message𝑀 under public metadata𝐷 and some

state st.
(3) 𝑆 ′ ← Tok.Sign(𝐵𝑀 , 𝐷, pk, sk): The signing protocol is run

by the signer who receives the blinded message 𝐵𝑀 , public

metadata 𝐷 , public and private keys (pk, sk). The output 𝑆 ′
is a signature on 𝐵𝑀 under public metadata 𝐷 which needs

to be finalized by the user.

(4) 𝑆 ← Tok.Finalize(st, 𝑆 ′, 𝑀, 𝐷, pk): The user runs the
Finalize protocol on the user state st, the signer’s response 𝑆 ′,
plaintext message𝑀 , public metadata 𝐷 and public key pk.
The output 𝑆 is a signature of the message𝑀 under public

metadata 𝐷 .

(5) 𝑏 ← Tok.Verify(𝑆,𝑀, 𝐷, pk): The verification algorithm re-

ceives the signature 𝑆 , the plaintext message𝑀 , public meta-

data 𝐷 and public key pk and outputs a bit 𝑏 ∈ {0, 1}.

Tok satisfies the correctness properties if, for all choices of messages

𝑀 and public metadata 𝐷 , the following probability

Pr

 Verify(𝑆,𝑀, 𝐷, pk) ≠ 1 :

(pk, sk) ← Setup(1𝜆)
(st, 𝐵𝑀) ← Blind(𝑀,𝐷, pk)
𝑆 ′ ← Sign(𝐵𝑀 , 𝐷, pk, sk)
𝑆 ← Finalize(st, 𝑆 ′, 𝑀, 𝐷, pk)


is at most negligible in 𝜆, negl(𝜆).

The Blind, Sign, Finalize protocols can be viewed as a single

round-trip protocol between the user and signer. One could gen-

eralize the above definition to encompass multiple round, interac-

tive protocols. However, the structure of the Blind, Sign, Finalize
protocol will be useful for proving unforgeability of our schemes.

Therefore, we only focus on this structure throughout our work.

To obtain the standard definition of non-anonymous tokens, we

can simply restrict the functionality of Blind and Finalize. Blind
will return (st←⊥, 𝐵𝑀 ← 𝑀) and Finalize will return 𝑆 ← 𝑆 ′.
Relation with Blind Signatures. In our work, we treat anony-

mous tokens synonymously with blind signatures. In general, blind

signatures may be used to instantiate anonymous tokens (as we do

in our work). However, anonymous tokens may be more general

and may allow for designated (secret key) verifiers as studied in [35].

As we focus exclusively on public verification with public metadata,

Definition 2.1 is equivalent to partially blind signatures [2, 4]. We

also note that it is unknown whether standard blind signatures may

be used to instantiate private metadata [39].

2.1 Unforgeability
Unforgeability, the first cryptographic guarantee provided by anony-

mous tokens, states that no party is able to generate signatures that

will correctly verify unless they have access to the private key. For

our work, we will consider a modification of the standard definition

of unforgeability for blind signatures from [52]. This definition is

known as strong one-more unforgeability as it was a strengthening

of previous definitions in [11, 48]. We modify this definition of

unforgeability to enable public metadata in the following way. In

prior definitions without public metadata, the adversary wins if it

can construct ℓ +1 signatures using at most ℓ signing oracle queries.

In our game, the adversary succeeds if it is able to construct at

least cnt𝐷 + 1 signatures for any choice of public metadata 𝐷 using

at most cnt𝐷 signing oracle queries with 𝐷 . This even covers the

case when a signature is forged for some 𝐷 without ever sending a

signing query with 𝐷 . The security game can be found in Figure 1

and we present the formal definition below.

Definition 2.2 ((𝜖, 𝑡, ℓ)-Strong One-More Unforgeability). Let 𝜆 be

the security parameter and consider the game GSOMUF
Tok,A in Figure 1.

A token scheme Tok is (𝜖, 𝑡, ℓ)-strong one-more unforgeable if, for

any adversary A that runs in probabilistic time 𝑡 and makes at

most ℓ signing queries, then Pr[GSOMUF
Tok,A (𝜆) = 1] ≤ 𝜖 .

Difference with Previous Definition. In a slightly different defi-

nition in [56], the adversary is able tomake at most ℓ signing queries

for any metadata. Then, the adversary wins the game if they fix

some metadata 𝐷 and can create ℓ + 1 valid signatures. We instead

bound the total number of signing queries by ℓ and the adversary

wins the game if they are able to generate cnt𝐷 + 1 valid signatures
40

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

Game GSOMUF
Tok,A (𝜆): Oracle OSign (𝑀,𝐷):

(pk, sk) ← Tok.Setup(1𝜆) cnt𝐷 ← cnt𝐷 + 1
Initialize cnt𝐷 ← 0 for all choices of public metadata 𝐷 . Return Tok.Sign(𝑀,𝐷, pk, sk).
𝐷, (𝑆𝑖 , 𝑀𝑖)𝑖∈[𝑥] ← AO

Sign (pk)
Return 1 if and only if all the following hold:

- cnt𝐷 < 𝑥

- ∀𝑖 ≠ 𝑗 ∈ [𝑥], 𝑆𝑖 ≠ 𝑆 𝑗 ∨𝑀𝑖 ≠ 𝑀 𝑗

- ∀𝑖 ∈ [𝑥], Tok.Verify(𝑆𝑖 , 𝑀𝑖 , 𝐷, pk) = 1

Figure 1: Strong One-More Unforgeability (SOMUF) Game with Public Metadata.

for any metadata 𝐷 while making at most cnt𝐷 oracle queries for

metadata 𝐷 . We do this to derive concrete security bounds with

respect to ℓ as opposed to [56], where the adversary may continue

to make ℓ oracle queries for new choices of public metadata 𝐷 . Fur-

thermore, we note that our definition is no weaker than the prior

definition. If any adversary can produce ℓ + 1 signatures using at
most ℓ oracle queries, then there must exist some public metadata

𝐷 such that the adversary has more valid signatures than oracle

signing queries (see Appendix B for more details).

Multiple Signers. Our definition only considers a single signer

whereas general settings may consider multiple signers. It turns

out that the single and multiple signers are equivalent up to some

factors that depend only on the number of signers. Furthermore,

the strong one-more unforgeability is identical in either the single

or multiple signer settings for two-move protocols (as studied in

this paper). So, it is sufficient to focus security proofs with respect

to a single signer. For more details, we point readers to [40].

Anonymous vs. Non-Anonymous Tokens.Wewill use the same

definition for both token types and slightly overload notation for

convenience. For non-anonymous tokens, the input to the signing

oracle will be the plaintext message. For anonymous tokens, the

input will be the blinded (i.e., encrypted) message.

2.2 Unlinkability
Unlinkability or anonymity, the second cryptographic guarantee

provided by anonymous tokens, states that it must be impossible

to determine the blind signing request that was utilized to create

a signature even by the signer that views the signing interactions,

the final signature as well as the corresponding input message. We

modify the definition of unlinkability from [1] for single-round

schemes to encompass public metadata. In this game-based defini-

tion, the adversary picks the public key, two messages 𝑀0, 𝑀1 as

well as its choice of public metadata 𝐷 . The challenger will first

blind both messages and randomly permute their order. The blinded

messages are submitted to the adversary in this order, who will

return signatures on them. Finally, the challenger finalizes the ad-

versary’s responses to obtain the final signatures. Those are given

to the adversary in the original message order along with input

messages. To win the game, the adversary has to guess the correct

permutation of the blinded messages.

Definition 2.3 ((𝜖, 𝑡)-Unlinkability). Let 𝜆 be the security param-

eter and consider game GUNLINK
Tok,A,𝑞

in Figure 2. Token scheme Tok
satisfies (𝜖, 𝑡)-unlinkability if, for any adversaryA running in time

𝑡 , then: | Pr[GUNLINK
Tok,A (𝜆, 0) = 1] − Pr[GUNLINK

Tok,A (𝜆, 1) = 1] | ≤ 𝜖 .

Discussion about Public Metadata. In our definition, the adver-

sary is able to choose any public metadata. However, the same

Game GUNLINK
Tok,A (𝜆,𝑏) :

Adversary A outputs (pk, 𝑀0, 𝑀1, 𝐷) ← A(1𝜆) .
For 𝑖 ∈ {0, 1}:
Challenger C computes (𝐵𝑖 , st𝑖) ← Tok.Blind(pk, 𝑀𝑖 , 𝐷) .
C samples uniformly random bit 𝑏 ←𝑅 {0, 1}.
A receives 𝐵𝑏 , 𝐵1−𝑏 and computes 𝑆 ′

𝑏
, 𝑆 ′

1−𝑏 .
For 𝑖 ∈ {0, 1}:
C computes 𝑆𝑖 ← Tok.Finalize(pk, st𝑖 , 𝑆 ′𝑖 , 𝑀𝑖 , 𝐷) .

If Tok.Verify(𝑀0, 𝑆0, 𝐷, pk) = 1 ∧ Tok.Verify(𝑀1, 𝑆1, 𝐷, pk) = 1:

C sends (𝑀0, 𝑆0) , (𝑀1, 𝑆1) to A.

Else:

C sends ⊥ to A.

A outputs a bit 𝑏′ .

Figure 2: Unlinkability (UNLINK) Game.

public metadata must be used for signing both messages. This is

necessary as if the adversary may pick different public metadata

for each message then it can trivially win the game. In practice,

this implies that anonymity only applies to all groups of messages

signed with the same public metadata.

Adversarial Signer. Our choice of unlinkability definitions re-

quires anonymity even against malicious adversarial signers. In

particular, we note that the adversary is able to choose any public

key and is free to compute signatures arbitrarily.

Necessity of Successful Verification. In our definition, we note

that the adversary is only permitted to see the resulting signatures

if both signatures successfully verified. This is necessary to rule out

one naive strategy for the adversary where it would issue a valid

signature in response to one of the queries but not the other.

3 Prior RSA Assumptions
In this section, we outline the standard RSA assumption and one-

more RSA inversion assumptions that are relevant to our work.

Strong RSA Modulus. In our work, we will focus on a special

subset of RSA moduli that are strong RSA modulus. All strong RSA

modulus 𝑁 = 𝑝𝑞 are the product of two safe primes that enables

structure to the multiplicative group modulo 𝜙 (𝑁).

Definition 3.1 (Strong RSA Modulus). An integer 𝑁 is a strong

RSA modulus 𝑁 = 𝑝 · 𝑞 where each of 𝑝 and 𝑞 are distinct safe

primes. In other words, 𝑝 = 2𝑝′ + 1 and 𝑞 = 2𝑞′ + 1 where all of
𝑝, 𝑝′, 𝑞, 𝑞′ are distinct prime numbers. Therefore, 𝜙 (𝑁) = 4𝑝′𝑞′.

We assume that both 𝑝′ and 𝑞′ are 𝜅 − 1 bits (𝑝 and 𝑞 are 𝜅 bits).

Since 𝜙 (𝑁) = 4𝑝′𝑞′, we will use that any random odd number from

the set [3, 2𝜅−2] will be co-prime to 𝜙 (𝑁).
RSA Assumption. We will denote generating a random mod-

ulus, the public exponent distribution and secret parameters by

(𝑁,D𝑁 , 𝑝, 𝑞) ←𝑅 Gen(1𝜆). The prime bit-length 𝜅 is chosen to

41

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

Game GRSA
Gen,A (𝜆):

(𝑁,D𝑁 , (𝑝, 𝑞)) ←𝑅 Gen(1𝜆)
𝑒 ←𝑅 D𝑁 , 𝑋 ←𝑅 Z∗

𝑁

𝑌 ← A(𝑁, 𝑒, 𝑋)
Return 1 if and only if 𝑌 𝑒 = 𝑋 mod 𝑁 .

Figure 3: RSA Game.

obtain 𝜆 bits of security. At a high level, the RSA assumption as-

sumes that any probabilistically polynomial time (PPT) adversary

A given a RSA modulus 𝑁 and public exponent 𝑒 coprime to 𝜙 (𝑁)
is unable to compute the e-th root modulo 𝑁 for a random ele-

ment 𝑋 ←𝑅 Z∗
𝑁
. In other words, the PPT adversary A is unable to

compute 𝑋𝑑
mod 𝑁 where 𝑑 = 𝑒−1 mod 𝜙 (𝑁). We will commonly

refer to 𝑋 𝑒
mod 𝑁 as an RSA encryption and 𝑋𝑑 = 𝑋 1/𝑒

mod 𝑁

as an RSA decryption throughout our work. In general, the RSA

assumption is a class of assumptions that is parameterized by some

distribution D𝑁 determining how to pick the public exponent 𝑒 .

Thus, the Gen algorithm also outputs a distribution D𝑁 to sample

𝑒 . Furthermore, for concrete security bounds that may be used for

guiding practical implementations, we consider a more fine-grained

version of the RSA assumption that is additionally parameterized

by the running time 𝑡 and advantage 𝜖 of the adversary.

Definition 3.2 ((𝜖, 𝑡)-RSA Assumption). Let 𝜆 be the security pa-

rameter and consider the game GRSA
Gen,A (𝜆) in Figure 3. The (𝜖, 𝑡)-

RSA assumption is true for Gen if for any PPT adversary A that

runs in time 𝑡 , then Pr[GRSA
Gen,A (𝜆) = 1] ≤ 𝜖 .

In our work, we will focus on the setting when Gen always out-

puts strong RSA modulus 𝑁 . We do not use the safe primes for

reasons related to strengthening the RSA assumption. Instead, we

use safe primes to utilize the additional structure in the multiplica-

tive group Z∗
𝜙 (𝑁) . In particular, we show that safe primes enable an

efficient and simple method of hashing public metadata to a large

subset of elements in Z∗
𝜙 (𝑁) without requiring knowledge of 𝜙 (𝑁).

Definition 3.3 ((𝜖, 𝑡)-RSA Assumption for Strong Modulus). Let
𝜆 be the security parameter and consider the game GRSA

Gen,A (𝜆) in
Figure 3. The (𝜖, 𝑡)-RSA assumption is true for Gen such that Gen
only outputs strong RSA modulus and, if for any PPT adversary A
that runs in time 𝑡 , then Pr[GRSA

Gen,A (𝜆) = 1] ≤ 𝜖 .

As the RSA assumption for strong modulus considers only a

subset of possible modulus, it seems natural that it is no weaker

than the standard RSA assumption (Theorem 3.4). We only assume

thatGen generates 𝑁 as the product of two uniformly random 𝜅-bit

primes, which is common practice (see BoringSSL [33] for example).

See Appendix A for the proof of Theorem 3.4.

Theorem 3.4. If the (𝜖, 𝑡)-RSA Assumption (Definition 3.2) is true
and Gen generates modulus 𝑁 as the product of two uniformly ran-
dom 𝜅-bit primes, then the (𝑂 (𝜖 · 𝜅2), 𝑡)-RSA Assumption for Strong
Modulus (Definition 3.3) is also true.

In our proofs, we will prove the unforgeability of our RSA (non-

blind) signatures with public metadata using the RSA assumption

for strongmodulus. Using Theorem 3.4, one can then re-interpret all

our results as assuming the standard RSA assumption. Finally, we

note that the above reduction lets us interchangeably use various

RSA assumptions for arbitrary modulus as well as strong modulus

at the costs of an 𝑂 (𝜖𝜅2) multiplicative factor.

In practical implementations, the distribution D𝑁 is typically

fixed for all modulus 𝑁 . The most common public exponents used

in RSA implementations are 3 and 65537. On the other hand, theo-

retical works will typically consider D𝑁 to be uniform over some

subset of Z∗
𝜙 (𝑁) such as [23]. We will follow the same approach

in our work and assume D𝑁 outputs random odd 𝛾-bit integers

where 𝛾 is chosen later in our constructions.

One-More RSA Inversion Assumption. Security of RSA blind

signature schemes have been proven by using of a class of com-

putational problems known as one-more RSA inversion problems

introduced in [11]. In these problems, the adversary is given ac-

cess to a decryption oracle ORSA
and a challenge oracle OX . The

decryption oracle takes as input 𝑋 ∈ Z∗
𝑁
and returns ORSA (𝑋) = 𝑌

where 𝑌 𝑒 = 𝑋 mod 𝑁 . The challenge oracle OX will return random

elements from Z∗
𝑁
as random challenge targets. The adversary only

succeeds if it inverts ℓ + 1 challenge targets while making at most

ℓ queries to the decryption oracle ORSA
. We define chosen-target

RSA inversion game in Figure 4 along with the following definition

that were both introduced in [11]. In this definition, chosen-target
implies that the adversary may choose to invert any of the targets

output by the oracle OX .

Definition 3.5 ((𝜖, 𝑡, ℓ)-Chosen-Target RSA Inversion Assumption).
Let 𝜆 be the security parameter and consider the game GCT-RSA

Gen,A (𝜆)
in Figure 4. The (𝜖, 𝑡, ℓ)-chosen-target RSA inversion assumption is

true for Gen if, for any adversary A that runs in time 𝑡 and makes

at most ℓ decryption queries, then Pr[GCT-RSA
Gen,A (𝜆) = 1] ≤ 𝜖 .

4 RSA with Multiple Exponents
In this section, we introduce and explore various generalizations

of the RSA assumption with multiple exponents. Afterwards, we

further extend them to one-more variants (following the definitional

extensions for the RSA assumption in [11]). To our knowledge, we

are unaware of prior formal definitions of multi-exponent variants.

4.1 Multi-Exponent RSA Assumption
We start by extending the standard RSA assumption from one chal-

lenge exponent 𝑒 to a set of ℓ exponents, 𝑒1, . . . , 𝑒ℓ . The adversary

wins the game if it can decrypt a random target for any of the ℓ

exponents provided in the challenge.

Definition 4.1 ((𝜖, 𝑡, ℓ)-Multi-Exponent RSA Assumption). Let 𝜆
be the security parameter and consider GME-RSA

Gen,A,ℓ
(𝜆) in Figure 5. The

(𝜖, 𝑡, ℓ)-multi-exponent RSA assumption is true for Gen, if for any
adversary A that runs in time 𝑡 , then Pr[GME-RSA

Gen,A,ℓ
(𝜆) = 1] ≤ 𝜖 .

As this provides more flexibility for the adversary, it is a stronger

assumption than the standard RSA assumption. However, we can

show that the two assumptions differ by a multiplicative ℓ factor.

The proof may be found in Appendix C.

Theorem 4.2. If the (𝜖, 𝑡)-RSA assumption for strong modulus
(Def. 3.3) is true withD𝑁 choosing uniformly random exponents from
[3, 𝑒max] where 𝑒max ≤ 2

𝜅−2, then the (𝜖 ·ℓ, 𝑡−𝑂 (ℓ), ℓ)-multi-exponent
RSA assumption (Def. 4.1) is with D𝑁 .

42

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

Game GCT-RSA
Gen,A (𝜆): Oracle ORSA (𝑋): Oracle OX ():

(𝑁,D𝑁 , (𝑝, 𝑞)) ←𝑅 Gen(1𝜆) cnt← cnt + 1 𝑋 ←𝑅 Z∗
𝑁

𝑒 ←𝑅 D𝑁 𝑑 ← 𝑒−1 mod 𝜙 (𝑁) SX ← SX ∪ {𝑋 }
𝜙 (𝑁) ← (𝑝 − 1) (𝑞 − 1) 𝑌 ← 𝑋𝑑

mod 𝑁 Return 𝑋

cnt← 0, SX ← ∅ Return 𝑌

(𝑋𝑖 , 𝑌𝑖)𝑖∈[cnt+1] ← AO
RSA,OX (𝑁, 𝑒)

Return 1 if and only if all the following hold:

- ∀𝑖 ≠ 𝑗 ∈ [cnt + 1], 𝑋𝑖 ≠ 𝑋 𝑗

- ∀𝑖 ∈ [cnt + 1], 𝑋𝑖 ∈ SX
- ∀𝑖 ∈ [cnt + 1], 𝑌 𝑒

𝑖 = 𝑋𝑖 mod 𝑁

Figure 4: Chosen-Target RSA Inversion Game.

Game GME-RSA
Gen,A,ℓ

(𝜆):
(𝑁,D𝑁 , (𝑝, 𝑞)) ←𝑅 Gen(1𝜆)
(𝑒1, . . . , 𝑒ℓ) ←𝑅 D𝑁

𝑋 ←𝑅 Z∗
𝑁

(𝑖, 𝑌) ← A(𝑁, 𝑒1, . . . , 𝑒ℓ , 𝑋)
Return 1 if and only if 𝑖 ∈ [𝑙] and 𝑌 𝑒𝑖 = 𝑋 mod 𝑁 .

Figure 5: Multi-Exponent RSA Game. All differences with the RSA
game are in blue.

Tighter Reductions.We show that one can obtain a tighter reduc-

tion with no security loss if we assume a slightly different distri-

butions of exponents in the multi-exponent RSA assumption (that

also appeared in [3]). See Appendix F for the different exponent

distribution and the proof of the reduction.

4.2 One-More Multi-Exponent RSA Assumption
We start from the chosen-target variant of the one-more RSA as-

sumption (Figure 4). We will modify this game to obtain a one-more

variant of the multi-exponent RSA assumption. As the first step,

we will also create an exponent oracle Oexp
that will output chal-

lenge exponents. Next, we generalize the decryption oracle, ORSA
,

to receive both an element 𝑋 and an exponent 𝑒 . However, ORSA

makes the restriction that the input exponent 𝑒 must be a chal-

lenge exponent output by Oexp
. This immediately leads to the first

natural definition of a one-more multi-exponent RSA assumption

where an adversary makes at most cnt𝑒 decryption oracle queries

for some exponent 𝑒 and must output cnt𝑒 + 1 valid decryptions

of the form (𝑋𝑖 , 𝑌𝑖)𝑖∈[cnt𝑒+1] satisfying that 𝑌 𝑒
𝑖 = 𝑋𝑖 mod 𝑁 where

𝑒 must be some challenge exponent output by Oexp
. We keep the

same restriction as the one-more RSA assumption that the targets

𝑋𝑖 must be valid outputs from the message oracle OX . We formally

define this game in Figure 6. In this definition, we use restricted-
exponent to denote the fact that the decryption oracle ORSA

restricts

the adversary to only pick exponents output by Oexp
.

Definition 4.3 ((𝜖, 𝑡, ℓ, ℓ ′)-Chosen-Target, Restricted-Exponent RSA
Inversion Assumption). Let 𝜆 be the security parameter and consider

the game GCT-RE-RSA
Gen,A (𝜆) in Figure 6. The (𝜖, 𝑡, ℓ, ℓ ′)-chosen-target,

restricted-exponent RSA inversion assumption is true for Gen, if
for any adversaryA that runs in time 𝑡 , makes ℓ decryption queries,

and makes ℓ ′ exponent queries, Pr[GCT-RE-RSA
Gen,A (𝜆) = 1] ≤ 𝜖 .

Algebraically Restricted Exponents.We present a variant where

the exponent oracle will perform additional checks to ensure expo-

nents do not satisfy a certain algebraic property. In particular, the

oracle checks that there is no sequence of exponents 𝑒, 𝑒1, . . . , 𝑒𝑧
such that 𝑒 = 𝑝1 · 𝑝2 · · · 𝑝𝑧 and 𝑝𝑖 | 𝑒𝑖 for all 𝑖 ∈ [𝑧]. First, we note

that the primes 𝑝1, . . . , 𝑝𝑧 do not necessarily need to be distinct and

𝑒 can be the product of prime powers. Furthermore, 𝑒 is distinct

from all of 𝑒1, . . . , 𝑒𝑧 . However, the 𝑧 exponents 𝑒1, . . . , 𝑒𝑧 do not

need to be distinct. The exponent oracle continues to pick random

exponents until this algebraic property does not hold. This ends up

being important to avoid various attacks on multi-exponent one-

more RSA assumptions (see Appendix H for details). We present

this game in Figure 6 and the definition below.

Definition 4.4 ((𝜖, 𝑡, ℓ, ℓ ′)-Chosen-Target, Algebraically-Restrict-
ed-Exponent RSA Inversion Assumption). Let 𝜆 be the security pa-

rameter and consider the game GCT-ARE-RSA
Gen,A (𝜆) in Figure 6. The

(𝜖, 𝑡, ℓ, ℓ ′)-chosen-target, algebraically-restricted-exponent RSA in-

version assumption is true for Gen, if for any adversary A that

runs in time 𝑡 , makes ℓ decryption queries, and makes ℓ ′ exponent
queries, Pr[GCT-ARE-RSA

Gen,A (𝜆) = 1] ≤ 𝜖 .

We relate this to the chosen-target, restricted-exponent game

without the algebraic restrictions (Def. 4.3) in Appendix H.2.

Relation toChosen-TargetRSA InversionAssumption.Clearly,
the chosen-target, (algebraically-)restricted-exponent variant is a

no weaker assumption than the original chosen-target variant (Def-

inition 3.5) from [11]. Recall that, in the proof of Theorem 4.2, it was

required to generate fake challenge exponents co-prime to 𝜙 (𝑁).
This can be easily done when 𝑁 is a strong RSA modulus. For this

reduction, we would need to additionally be able to produce decryp-

tions with respect to the fake challenge exponents. Unfortunately,

this seems quite challenging. For example, suppose an adversary

tried to produce pairs (𝑒′, 𝑑 ′) such that 𝑒′𝑑 ′ = 1 mod 𝜙 (𝑁). Then,
the adversary could submit 𝑒′ as a challenge exponent and use 𝑑 ′ to
answer decryption queries. It is well known that producing a pair

(𝑒′, 𝑑 ′) satisfying this property is equivalent to factoring 𝑁 and,

thus, breaking any RSA assumption immediately. This seems like a

very challenging task for an adversary without knowledge of 𝜙 (𝑁).
We leave it as an open problem to determine their relationship.

WinningCondition. In some priorworks, the adversary’s winning

condition is outputting a pair (𝑋,𝑌) for 𝑒 that is different from any

query to ORSA
. In Appendix B, we show this is equivalent to our

condition of outputting the tuple (𝑋𝑖 , 𝑌𝑖)𝑖∈[𝑧] where 𝑧 > cnt𝑒 .

4.3 Connections to Strong RSA Assumption
Finally, we make connections between the above multi-exponent

RSA assumptions and the strong RSA assumption in [10, 31]. We

emphasize that the strong RSA assumptions in this section will not

be used for proving security of any of our protocols.

43

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

Game GCT-ARE-RSA
Gen,A (𝜆): Oracle ORSA (𝑋, 𝑒): Oracle OX (): Oracle Oexp ():

(𝑁,D𝑁 , (𝑝, 𝑞)) ←𝑅 Gen(1𝜆) If 𝑒 ∉ Sexp: 𝑋 ←𝑅 Z∗
𝑁

𝑒 ←𝑅 D𝑁

SX ← ∅, Sexp ← ∅ Return ⊥ SX ← SX ∪ {𝑋 } Sexp ← Sexp ∪ {𝑒}
𝜙 (𝑁) ← (𝑝 − 1) (𝑞 − 1) cnt𝑒 ← cnt𝑒 + 1 Return 𝑋 For 𝑒′ ∈ Sexp:
cnt𝑒 ← 0,∀𝑒 ∈ Z∗

𝜙 (𝑁) 𝑑 ← 𝑒−1 mod 𝜙 (𝑁) 𝑥 ← 𝑒′

𝑒 , (𝑋𝑖 , 𝑌𝑖)𝑖∈[𝑧] ← AO
RSA,OX ,Oexp (𝑁) 𝑌 ← 𝑋𝑑

mod 𝑁 For 𝑒′′ ∈ Sexp \ {𝑒′}:
Return 1 if and only if all the following hold: Return 𝑌 𝑦 ← GCD(𝑥, 𝑒′′)
- cnt𝑒 < 𝑧 While 𝑦 > 1:

- 𝑒 ∈ Sexp 𝑥 ← 𝑥/𝑦
- ∀𝑖 ≠ 𝑗 ∈ [𝑧], 𝑋𝑖 ≠ 𝑋 𝑗 𝑦 ← GCD(𝑥, 𝑒′′)
- ∀𝑖 ∈ [𝑧], 𝑋𝑖 ∈ SX If 𝑥 = 1:

- ∀𝑖 ∈ [𝑧], 𝑌 𝑒
𝑖 = 𝑋𝑖 mod 𝑁 Sexp ← Sexp \ {𝑒}

Go back to first step of Oexp
to re-sample 𝑒 .

Return 𝑒

Figure 6: Chosen-Target, Restricted-Exponent RSA Inversion Game with all differences with the chosen-target RSA inversion game are
highlighted in blue and ignoring highlighted parts in red. If you add the portions highlighted in red as well, we obtain the Chosen-Target,
Algebraically-Restricted-Exponent RSA Inversion Game.

Strong RSA Assumption. In comparison with the standard RSA

assumption, the strong RSA assumption provides more flexibility

to the adversary to choose its own public exponent. The strong

RSA problem states that the original RSA problem is intractable

even whenA is allowed to choose the public exponent 𝑒 ≥ 3. More

specifically, given a RSA modulus 𝑁 , and a random target 𝑋 , it is

infeasible to find any pair (𝑌, 𝑒) such that 𝑋 = 𝑌 𝑒
mod 𝑁 and 𝑒 ≥ 3.

Extending towards One-More Strong RSA Type Assumptions.
A natural next step is to extend the strong RSA assumption using

the one-more style definitions. To our knowledge, we are unaware

of prior work that has formally defined this notion. We will present

two natural definitions and show that they can be broken by an

adversary. Before presenting these definitions, we quickly overview

why the prior chosen-target, restricted-exponent RSA assumption

(Definition 4.3) from Section 4.2 seems weaker. Recall that, in the

strong RSA assumption, the adversary is able to choose any expo-

nent 𝑒 ≥ 3. In contrast, forGCT-RE-RSA
Gen,A,ℓ

(𝜆), the output exponent must

be one of the outputs of the challenge oracle Oexp
and the adversary

is not able to submit any decryption requests for exponents except

for those output by Oexp
. Therefore, it seems that the chosen-target,

restricted-exponent assumption is weaker and not a truly natural

extension of the strong RSA assumption. In Appendix D, we ex-

plore two variants where the adversary may choose exponents for

decryption. We show that, in either case, there exists a polynomial

time adversary breaking both assumptions.

5 RSA Signatures with Public Metadata
We start with RSA (non-blind) signatures with public metadata and

show ourmodification does not degrade concrete security compared

to the original protocol. We present this as further evidence that

our modification does not degrade security substantially.

5.1 Preliminaries and Building Blocks
Unique Concatenation. We will utilize concatenation of multiple

values where each unique tuple should result in a unique concate-

nation. That is, for any pair of tuples, (𝐴, 𝐵) and (𝐴′, 𝐵′), it must

be that their concatenation 𝐴 | | 𝐵 is identical to 𝐴′ | | 𝐵′ if and only

if 𝐴 = 𝐴′ and 𝐵 = 𝐵′. This could also extend to tuples of size larger

than two. A straightforward way to do this is to encode tuples

(𝐴, 𝐵) as |𝐴| | | 𝐴 | | 𝐵 where |𝐴| is the length of 𝐴 stored in some

fixed-length integer (such as 64 bits).

Message Encoding. In our protocols, we will utilize standard en-

coding algorithms for messages used in RSA signatures. Formally,

we will assume that the message encoding consists of two algo-

rithms: 𝐻M and VerifyM . The hash function 𝐻M (𝑋) : {0, 1}∗ →
Z∗
𝑁
maps strings to elements in the multiplicative group modulo

the RSA modulus 𝑁 . The verification algorithm VerifyM (𝑋,𝑌) :
{0, 1}∗ × Z∗

𝑁
→ {0, 1} checks and returns 1 if and only if 𝑌 cor-

responds to the output of 𝐻M (𝑋). In our work, we will consider

two different encodings: full domain hash (FDH) and probabilistic

signature scheme (PSS). At a high level, FDH is a determinsitic

encoding algorithm that maps each message to a random element.

In contrast, PSS is a randomized encoding algorithm that will map

the same message to different outputs when evoked multiple times.

The concrete security of PSS encodings was shown to be better than

FDH encodings when applied to standard RSA signatures in [12].

In our implementations, we use PSS encodings due to its superior

concrete security and randomized properties. Furthermore, we wish

to align our implementation with current IRTF specifications for

standard RSA blind signatures [29]. The parameters of PSS encod-

ings that we use are from prior specifications [42] that essentially

use a variant of PSS encodings with message recovery presented

in [12]. For our proofs, we will prove security of our schemes as-

suming the usage of the FDH encoding. We chose this approach

as to not over-complicate our proof with PSS encoding techniques

that are directly borrowed from prior work [12]. Although, one can

directly apply the proof techniques for PSS encodings from [12] to

our security proofs. As we will use FDH, we present it formally.

Definition 5.1 (Full Domain Hash). The full domain hash (FDH)

message encoding consists of two deterministic algorithms 𝐻M :

{0, 1}∗ → Z∗
𝑁
and VerifyM : {0, 1}∗ × Z∗

𝑁
→ {0, 1} as follows:

• For string 𝑋 , 𝐻M (𝑋) is a random element from Z∗
𝑁
.

• For string 𝑋 , VerifyM (𝑋,𝑌) = 1 if and only if 𝑌 = 𝐻M (𝑋).

Throughout the rest of this section and our proofs, we will as-

sume that all hash functions are modeled as random oracles.

5.2 Our Protocol
For the reader’s convenience, we quickly summarize some terim-

nology. We will denote the strong RSA modulus by 𝑁 of bit length

2𝜅 such that the two safe primes 𝑝, 𝑞 (factors of 𝑁) are both of bit

length 𝜅. The public key will be pk← 𝑁 which is the strong RSA

modulus. The private key will be sk← 𝜙 (𝑁). As 𝑝 = 2𝑝′ + 1 and
44

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

𝑞 = 2𝑞′ + 1 are safe primes, we know that both 𝑝′ and 𝑞′ are also
primes. Therefore, 𝜙 (𝑁) = (𝑝 − 1) · (𝑞 − 1) = 4𝑝′𝑞′.
Public Metadata Hash Function. Next, we define our hash func-

tion that is used to map public metadata to values in the group of

RSA exponents Z∗
𝜙 (𝑁) . Recall that these are all elements that are

invertible modulo 𝜙 (𝑁). This is a straightforward task if 𝜙 (𝑁) was
publicly known by all parties. However, it is critical that 𝜙 (𝑁) is
hidden to all parties except the signer. Therefore, we must come up

with a way to perform this mapping for users that do not know the

value of 𝜙 (𝑁). We present a simple way to do this that relies on

the structure of Z∗
𝜙 (𝑁) and the fact that 𝑁 is a strong RSA modulus

using a random hash function 𝐺 .

𝐻MD (𝐷):
(1) Compute 𝐺 (𝐷) of length 𝛾 bits.

(2) Return 2 ·𝐺 (𝐷) + 1.
The above function simply returns a random odd number of

length 𝛾 + 1 bits. Picking 𝛾 correctly, we can guarantee that the

output of 𝐻MD will always be smaller than the prime values 𝑝′ and
𝑞′. This turns out to be sufficient to guarantee that outputs of 𝐻MD

will always be elements from Z∗
𝜙 (𝑁) .

Lemma 5.2. Suppose 𝑁 is a strong RSA modulus such that 𝑁 = 𝑝𝑞

where 𝑝 = 2𝑝′ + 1 and 𝑞 = 2𝑞′ + 1 are safe primes each of length 𝜅
and 𝛾 ≤ 𝜅 − 3. For all 𝐷 ∈ {0, 1}∗, 𝐻MD (𝐷) is co-prime to 𝜙 (𝑁).

Proof. Fix any 𝑥 ∈ {0, 1}∗. First, we note that the output of

𝐻MD (𝑥) is always odd. Therefore, we know that if 𝐻MD (𝑥) is not
co-prime to 𝜙 (𝑁), then it must be that either 𝑝′ | 𝐻MD (𝑥) or 𝑞′ |
𝐻MD (𝑥). We know that the bit length of 𝑝′ and 𝑞′ is at least 𝜅 − 1
given that 𝑝 = 2𝑝′ + 1 and 𝑞 = 2𝑞′ + 1 and both 𝑝 and 𝑞 are 𝜅 bit

long primes. Also note that the bit length of𝐻MD (𝑥) is 𝛾 +1 ≤ 𝜅−2.
Thus, we know that 𝐻MD (𝑥) < 𝑝′ and 𝐻MD (𝑥) < 𝑞′. Therefore,
𝐻MD (𝑥) is always co-prime to 𝜙 (𝑁). □

RSA Signatures with Public Metadata. Using the public meta-

data hash function𝐻MD, we are ready to present our RSA signatures

with public metadata. We assume that𝐻M and VerifyM correspond

to somemessage encoding algorithm (such as FDH inDefinition 5.1).

The Setup algorithm is identical to the standard RSA signatures

without public metadata protocols except that in our Setup algo-

rithm we only accept 𝑁 if it is a strong RSA modulus. We present

the formal algorithms for all of the necessary algorithms below.

RSAMD .Setup(1𝜆):
(1) Compute (𝑁, 𝑝, 𝑞) ←𝑅 Gen(1𝜆) and 𝜙 (𝑁) ← (𝑝 − 1) (𝑞 − 1).
(2) Return pk← 𝑁, sk← 𝜙 (𝑁).

RSAMD .Sign(𝑀,𝐷, pk← 𝑁, sk← 𝜙 (𝑁)):
(1) Compute 𝑒MD ← 𝐻MD (𝐷) and 𝑑MD ← (𝑒MD)−1 mod 𝜙 (𝑁).
(2) Compute𝑀MD ← 𝐻M (𝑀 | | 𝐷).
(3) Return signature 𝑆 ← (𝑀MD)𝑑MD mod 𝑁 .

RSAMD .Verify(𝑆,𝑀, 𝐷, pk← 𝑁):
(1) Compute 𝑒MD ← 𝐻MD (𝐷) and 𝑋 ← 𝑆𝑒MD mod 𝑁 .

(2) Return VerifyM (𝑀 | | 𝐷,𝑋).
Correctness. First, we show that 𝑑MD ← (𝑒MD)−1 mod 𝜙 (𝑁) is
actually computable. We will rely on Lemma 5.2 stating that all

outputs of 𝐻MD are co-prime with 𝜙 (𝑁) and the signing algorithm

is always well-defined. Next, we will show that the verification

succeeds for well-formed signatures. Let 𝑆 be a signature that is

produced by following the Setup and Sign algorithms properly for

input message𝑀 and public metadata 𝐷 . Then, we know that the

signature satisfies: 𝑆 = (𝐻M (𝑀 | | 𝐷))1/𝐻MD (𝐷) mod 𝑁 . Then, the

verification algorithm will return the following result:

VerifyM (𝑀 | | 𝐷, 𝑆 ·𝐻MD (𝐷)) = VerifyM (𝑀 | | 𝐷,𝐻M (𝑀 | | 𝐷)) = 1

as 𝑆𝐻MD (𝐷) = 𝐻M (𝑀 | | 𝐷) and VerifyM (𝑋,𝐻M (𝑋)) = 1.

Unforgeability. Finally, we show that the concrete security bounds

for unforgeability are similar to those proven by [12] for standard

RSA signatures with FDH message encodings except for a mul-

tiplicative factor loss in number of hashing oracle calls to 𝐻MD.

At a high level, our security proof will construct an adversary A
for the multi-exponent RSA game given exponents from [3, 2𝜅−2].
Afterwards, we can apply Theorem 4.2 to obtain security based on

the standard RSA assumption. Due to lack of space, we present the

formal theorem here and defer the full proof to Appendix E.

Theorem 5.3. Suppose that (𝐻M ,VerifyM) correspond to full do-
main hash (FDH) message encoding. Assuming the (𝜖, 𝑡)-RSA as-
sumption (Definition 3.3) with exponents in [3, 2𝜅−2] and the random
oracle model, then RSAMD is (𝜖𝐹 , 𝑡𝐹 , ℓ𝐹)-strong one-more unforgeable
(Definition 2.2) where

• 𝑡𝐹 = 𝑡 −𝑂 (𝑞M + 𝑞MD + ℓ𝐹)
• 𝜖𝐹 = 𝑞MD · 𝑞M · 𝜖

and the adversary A runs in time at most 𝑡𝐹 and makes at most ℓ𝐹 ,
𝑞M and 𝑞MD queries to the signing oracle and hash functions 𝐻M
and 𝐻MD respectively.

The concrete security is almost identical as those proven in [12]

for RSA signatures except for a multiplicative 𝑞MD loss in 𝜖 . In

Appendix F, we present a modification with identical bounds to [12].

Discussion onMulti-Exponent Attacks. In Section 7, we outline

multi-exponent attacks that assume the availability of an oracle

for RSA decryption of arbitrary elements. Those attacks are not

applicable in this setting since the signer receives a message 𝑀

and metadata 𝐷 and signs (i.e., RSA decryption) on 𝐻M (𝑀 | | 𝐷).
If an attacker wishes to RSA decrypt an element 𝑋 with respect

to exponent 𝑒 = 𝐻MD (𝐷), it must find an input message 𝑀 such

that 𝐻M (𝑀 | | 𝐷) = 𝑋 . This makes the attacks intractable for our

non-blind RSA signatures. See Appendix E.1 for more details.

6 RSA Blind Signatures with Public Metadata
We present our RSA blind signature with public metadata using the

same public metadata hash function𝐻MD from Section 5.2. We note

our scheme is a modified variant of the protocol presented in [3].

Choosing Public Metadata Set. We discuss key requirements for

choosing the public metadata set MD. It will be critical that the set
MD is chosen ahead of time and not too large for both anonymity

and unforgeability. Recall that we ensure anonymity (unlinkability)

amongst all users with the same public metadata. In the extreme

case when MD is too large, each user could be assigned their own

public metadata completely eliminating anonymity.

Additionally, it is also critical that the set MD must be cho-

sen ahead of time during the setup phase. Furthermore, the issuer

should not sign any blinded messages for public metadata𝐷 outside

of the permitted set 𝐷 ∉ MD fixed during the setup phase. These

will be critical to avoid forgeability attacks (as we discuss later). The

45

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

restriction of choosing the public metadata set during setup does

not impede most applications. In our two example applications, the

public metadata set can be fixed to be all countries and all valid

expiration timestamps between scheduled key rotations.

Our Protocol.Wewill assume some message encoding protocol de-

fined by 𝐻M and VerifyM . As a note, we will utilize a modification

presented by Lysyanskaya [40] that enables providing unlinkabil-

ity even against malicious signers. It was shown that appending a

random string to the message of bit length 𝜂 is sufficient to provide

anonymity against even adversarially chosen RSA modulus. Addi-

tionally, we also need checks into the setup portion to ensure that

exponents corresponding the public metdata set MD do not satisfy

certain algebraic properties.

BlindRSAMD .Setup(1𝜆,MD):
(1) Execute (𝑁,𝜙 (𝑁)) ← RSAMD .Setup(1𝜆).
(2) Generate random string salt ∈ {0, 1}𝜆 .
(3) For 𝐷 ∈ MD:
(a) Compute 𝑒 ← 𝐻MD (salt | | 𝐷).
(b) For 𝐷 ′ ∈ MD \ {𝐷}:

(i) Compute 𝑒′ ← 𝐻MD (salt | | 𝐷 ′).
(ii) Compute 𝑔← GCD(𝑒, 𝑒′) as integers.
(iii) While 𝑔 > 1:

(A) Set 𝑒 ← 𝑒/𝑔 as integers.

(B) Compute 𝑔← GCD(𝑒, 𝑒′) as integers.
(iv) If 𝑒 = 1, go back and repeat from Step 2.

(4) Return pk← (𝑁, salt), sk← 𝜙 (𝑁).
BlindRSAMD .Blind(𝑀,𝐷, pk← (𝑁, salt)):

(1) If 𝐷 ∉ MD, return ⊥.
(2) Pick random 𝜂-length string rand and set𝑀 ′ ← 𝑀 | | rand.
(3) Pick 𝑅 uniformly at random from Z∗

𝑁
and set st← (rand, 𝑅).

(4) Compute 𝑒MD ← 𝐻MD (salt | | 𝐷).
(5) Compute blinded message 𝐵𝑀 ← 𝑅𝑒MD ·𝐻M (𝑀 ′ | | 𝐷)mod𝑁 .

(6) Return (st, 𝐵𝑀).
BlindRSAMD .Sign(𝐵𝑀 , 𝐷, pk← (𝑁, salt), sk← 𝜙 (𝑁)):

(1) If 𝐷 ∉ MD, return ⊥.
(2) Compute 𝑒MD ← 𝐻MD (salt | | 𝐷).
(3) Compute 𝑑MD ← (𝑒MD)−1 mod 𝜙 (𝑁).
(4) Return 𝑆 ′ ← (𝐵𝑀)𝑑MD mod 𝑁 .

BlindRSAMD .Finalize(st← (rand, 𝑅), 𝑆 ′, 𝑀, 𝐷, pk← (𝑁, salt)):
(1) Compute 𝑆 ← 𝑆 ′ · 𝑅−1 mod 𝑁 .

(2) If BlindRSAMD .Verify((𝑆, rand), 𝑀, 𝐷, pk) = 0, return ⊥.2
(3) Return signature (𝑆, rand).

BlindRSAMD .Verify((𝑆, rand), 𝑀, 𝐷, pk← (𝑁, salt)):
(1) Compute𝑀 ′ ← 𝑀 | | rand and 𝑒MD ← 𝐻MD (salt | | 𝐷).
(2) Compute 𝑋 ← 𝑆𝑒MD mod 𝑁 .

(3) Return VerifyM (𝑀 ′ | | 𝐷,𝑋).
Correctness. By Lemma 5.2, we know that the algorithm above is

well-defined as the signer can always compute an inverse of 𝑒MD =

𝐻MD (𝐷). To show that the above correctly verifies well-formed

signatures, we consider an execution of the blind signing protocol.

The output of Blind is 𝑅𝑒MD · 𝐻M (𝑀 ′ | | 𝐷). The output of Sign is

(𝑅𝑒MD · 𝐻M (𝑀 ′ | | 𝐷)) (𝑒MD)−1 = 𝑅 · 𝐻M (𝑀 ′ | | 𝐷) (𝑒MD)−1 . Finally,

2
Optional for correctness but is done to check if the server used the correct key.

the output of Finalize is 𝐻M (𝑀 ′ | | 𝐷) (𝑒MD)−1 . Then Verify will out-

put VerifyM (𝑀 ′ | | 𝐷,𝐻M (𝑀 ′ | | 𝐷) (𝑒MD)−1 ·𝑒MD) = VerifyM (𝑀 ′ | |
𝐷,𝐻M (𝑀 ′ | | 𝐷)) = 1. Therefore, a well-formed signature will

always be verified correctly.

Efficiency.We note that the efficiency is similar with only a couple

differences. First, we perform RSA operations with a larger expo-

nent than standard RSA signatures. There are additional calls to

𝐻MD and the signer must perform an inversion. However, we show

that this only incurs minimal overhead (see Section 8). The major

difference is setup that requires generating strong RSA modulus

and checking exponents requiring 𝑂 (|MD|2) time, but this is done

once offline outside of the issuance and verification phases. We

show in Section 7.1 that the number of salt resamples is very small

for most choices of public metadata set sizesMD.
Our construction requires larger exponents than typically mean-

ing more computation. In Appendix G, we discuss why restricting

MD prevents potential DoS attacks leveraging large exponents.

6.1 Unforgeability
Next, we prove the unforgeability of BlindRSAMD by showing that

any adversary that can forge signatures in BlindRSAMD is able to

break the chosen-target, algebraically-restricted-exponent RSA in-

version assumption. At a high level, we show that one can simulate

signing oracle queries using the RSA decryption oracle.

Theorem 6.1. Suppose that (𝐻M ,VerifyM) correspond to full do-
main hash (FDH) message encoding. Assuming the (𝜖, 𝑡, ℓ, |MD|)-
chosen-target, algebrically-restricted-exponent RSA inversion assump-
tion (Definition 4.4) with exponents in [3, 𝑒max] such that 𝑒max = 2

𝜅−2

and the random oracle model, then BlindRSAMD is (𝜖𝐹 , 𝑡𝐹 , ℓ𝐹)-strong
one-more unforgeable (Definition 2.2) where
• 𝜖𝐹 = 𝜖 + 2−𝜅+2 log𝑞M
• 𝑡𝐹 = 𝑡 −𝑂 (𝑞M + 𝑞MD + ℓ𝐹)
• ℓ𝐹 = ℓ

and the adversary A runs in time at most 𝑡𝐹 and makes at most ℓ𝐹 ,
𝑞M and 𝑞MD queries to the signing oracle and hash functions 𝐻M
and 𝐻MD respectively.

Proof. To prove this, we will show that if there exists some ad-

versary A𝐹 that successfully forges signatures for BlindRSAMD to

win the strong one-more unforgeability game, then we can useA𝐹

to construct an adversary A to break the chosen-target, restricted-

exponent RSA inversion assumption. The forger A𝐹 runs in time

𝑡𝐹 , wins the game with probability 𝜖𝐹 and uses at most ℓ𝐹 signing

queries. Our reduction will only increase the running time of the

adversaryA by a factor of𝑂 (𝑞M +𝑞MD + ℓ𝐹), reduces the winning
probability by at most 2

−𝜅+2 log𝑞M , maintains the same number of

oracle queries between signing and RSA decryption and makes

at most |MD| exponent oracle queries. Furthermore, the exponent

distributions are identical as our setup performs similar checks.

Our adversary A will simulate A𝐹 to break the chosen-target,

restricted-exponent RSA game. Note that A needs to be able to

successfully simulate all hash and signing oracle queries performed

by A𝐹 . A simulates these queries as follows:

For any query to 𝐻MD (𝐷):
(1) If MMD [𝐷] is set, returnMMD [𝐷].
(2) Compute MMD [𝐷] ← Oexp () and returnMMD [𝐷].

46

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

For any query to 𝐻M (𝑀,𝐷):
(1) If MM [𝑀,𝐷] is set, returnMM [𝑀,𝐷].
(2) Compute MM [𝑀,𝐷] ← OX () and returnMM [𝑀,𝐷].

For any query to OSign (𝑋, 𝐷):
(1) Compute 𝑒MD ← 𝐻MD (salt | | 𝐷) and return ORSA (𝑋, 𝑒MD).

Adversarial Advantage. First, we note that the simulated outputs

of Oexp
and the real outputs of 𝐻MD are identical as 𝑒max = 2

𝜅−2
.

Similarly, OX returns random elements identical to the FDH encod-

ing. Finally, we note that signing always returns a valid signature

as ORSA
only receives exponents that are output by Oexp

. Finally,

A𝐹 will output the values 𝐷, (𝑆𝑖 , 𝑀𝑖)𝑖∈[𝑥] where 𝑥 ≥ cnt𝐷 + 1 such
that cnt𝐷 is the maximum number of signing oracles performed

with public metadata 𝐷 . If A𝐹 successfully forges, then we know

that 𝑆
𝐻MD (𝐷)
𝑖

= 𝐻M (𝑀𝑖 | | 𝐷) for all 𝑖 ∈ [𝑥]. Then, A will output

𝐻MD (𝐷), (𝑆𝑖 , 𝐻M (𝑀𝑖 | | 𝐷))𝑖∈[𝑥] as its output to the chosen-target,

restricted-exponent RSA inversion game. Note,A wins the game as

long as they are all valid decryptions and there are no collisions in

the output of𝐻M (𝑀𝑖 | | 𝐷). As there are at most 𝑞M queries to𝐻M ,

we know the collision probability is at most 𝑞2M/2
−𝜅 = 2

−𝜅+2 log𝑞M

since |Z∗
𝑁
| ≥ 2

−𝜅
. Therefore, we know that A wins the game if

A𝐹 wins the unforgeability game and there are no collisions in the

outputs of 𝐻M . So, the probability that A wins is 𝜖𝐹 − 2−𝜅+2 log𝑞M .

Adversarial Running Time.We know that A𝐹 runs time at most 𝑡𝐹 .

For each hash and signing oracle query,A performs𝑂 (1) additional
operations to correctly simulate responses. As there are most 𝑞M +
𝑞MD + ℓ𝐹 queries overall, we see thatA requires𝑂 (𝑞M +𝑞MD + ℓ𝐹)
additional time. Furthermore, we note that each signing query

results in exactly one decryption oracle query. Therefore, we know

that at most ℓ𝐹 decryption oracle queries are made. Finally, each

unique metadata 𝐷 ∈ MD results in at most one exponent query

meaning at most |MD| exponent queries. □

Discussion about Exponent Setup Check. In the setup, we sam-

ple random salts until the generated exponents do not satisfy a

certain algebraic property. In particular, we check that there does

not exist some metadata 𝐷 ∈ MD where 𝑒 = 𝐻MD (salt | | 𝐷) =
𝑝1 · 𝑝2 · · · 𝑝𝑧 is the product of 𝑧 primes that are not necessarily

distinct (so, 𝑒 can be the product of prime powers). Additionally,

there must exist (not necessarily distinct) metadata 𝐷1, . . . , 𝐷𝑧 ∈
MD \ {𝐷} such that 𝑝𝑖 | 𝐻MD (salt | | 𝐷𝑖). We perform this check

as there are forgery attacks [16, 22] if an adversary can find such

a sequence 𝐷, 𝐷1, . . . , 𝐷𝑧 of public metadata (see Appendix H for

full attack details). Our requirement that the issuer only operates

over valid metadata 𝐷 ∈ MD ensures that the adversary is re-

stricted to signing oracle (RSA inversion oracle) queries in the set

{𝐻MD (salt | | 𝐷) : 𝐷 ∈ MD}. We show these checks fail with small

probability in Appendix H meaning salts are not re-sampled often.

Omitting Exponent Checks. It is possible to omit the exponent

checks during setup if one is willing to withstand a small probability

of a forgery. In Section 7.1, we analyze the probability that a random

salt satisfies the algebraic properties necessary for a forging attack.

If the public metadata set MD is not too large, we show this proba-

bility is very small (see Figure 7). In our country example where

there |MD| ≤ 200 countries, the probability that the forging attack

in [16] succeeds is at most 2
−52

and 2
−72

for RSA modulus of length

2048 and 3072 respectively. Omitting exponent checks means that

unforgeability probabilistically reduces to Def. 4.4 (see Section 7.1

for probabilities). We note that omitting exponent checks is identi-

cal to directly reducing to the chosen-target, restricted-exponent

game (without the checks in the exponent oracle) in Def. 4.3. We

formalize this relationship in Appendix H.2.

6.2 Unlinkability
To prove that BlindRSAMD provides unlinkability, we will rely on

prior results in [40] that show that appending random strings to

the message is sufficient to provide protections against maliciously

generated parameters. At a high level, the work in [40] shows that

for any maliciously chosen RSA modulus 𝑁 and public exponent

𝑒 , unlinkability for standard RSA blind signatures with appended

random strings of bit length 𝜂 holds with probability except 𝑡 · 2−𝜂
for adversaries running in time 𝑡 . For our case, the adversary is

able to choose the public metadata 𝐷 . However, this ends up being

a more restrictive way for the adversary to choose as the final

exponent 𝑒MD = 𝐻MD (𝐷) as opposed to choosing 𝑒MD directly.

Theorem 6.2. Assuming the random oracle model, BlindRSAMD

satisfies (𝑡 · 2−𝜂 , 𝑡)-unlinkability (Definition 2.3).

Proof. Consider the unlinkability games for BlindRSAMD with

public metadata and the standard RSA blind signatures in [40].

There is only one difference between the two settings. In the for-

mer, the adversary must choose 𝐷 . The final RSA public exponent

becomes 𝑒MD = 𝐻MD (𝐷). In the latter, the adversary is able to

directly choose the final public exponent. Note, we can do this be-

cause BlindRSAMD is nearly identical to standard RSA blind signa-

tures after augmenting the public exponent to be 𝐻MD (𝐷). Clearly,
the scenarios studied in [40] are more favorable for the adversary.

Now, suppose there exists an adversary A for the unlinkability

of BlindRSAMD with probability 𝜖 and running time 𝑡 . A outputs

values public key 𝑁 , messages𝑀0 and𝑀1 and public metadata 𝐷

in the first step. We constructA′ that instead outputs 𝑒 = 𝐻MD (𝐷)
as the public exponent. Then, A′ also wins with probability 𝜖 and

time 𝑡 . □

7 Analyzing Multi-Exponent Attacks
First, we note our public metadata hash function 𝐻MD is similar

to division intractable hash functions used in [32] and analyzed

in [22]. At a high level, these attackswork by trying to obtain a chain

of exponents 𝑒, 𝑒1, . . . , 𝑒𝑧 with the following properties. Suppose

𝑒 = 𝑝1 · 𝑝2 · · · 𝑝𝑧 is the product of 𝑧 primes that are not necessarily

distinct (in other words, 𝑒 can be the product of prime powers).

First, 𝑒 is distinct from all of 𝑒1, . . . , 𝑒𝑧 . However, we note that the

remaining 𝑧 exponents, 𝑒1, . . . , 𝑒𝑧 , do not need to be distinct and

can repeat the same exponent. Secondly, 𝑝𝑖 divides 𝑒𝑖 evenly as an

integer, 𝑝𝑖 | 𝑒𝑖 . Borisov [16] showed that a forging attack is possible
in this case by leveraging similar algebraic properties (this could

also be translated to our chosen-target, restricted-exponent RSA in-

version assumption in Definition 4.3 as well). We present this attack

below.We also note that it is similar to the adversaries we presented

for our chosen-exponent RSA assumptions in Appendix D.

The attack by Borisov [16] aims to find a sequence of public meta-

data𝐷, 𝐷1, . . . 𝐷𝑧 with the following properties. Let 𝑒 = 𝐻MD (salt | |
𝐷) = 𝑝1 · 𝑝2 · · · 𝑝𝑧 that is the product of 𝑧 (not necessarily distinct)

47

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

primes. Then, 𝑝𝑖 should divide 𝑒𝑖 = 𝐻MD (salt | | 𝐷𝑖). That is, 𝑝𝑖 | 𝑒𝑖 .
Then, the forging adversary does the following:

(1) Set 𝑥0 = 𝐻 (𝑀 | | 𝐷).
(2) For each 𝑖 ∈ [𝑧]:
(a) Submit 𝑥

𝑒𝑖 /𝑝𝑖
𝑖−1 for blind signing with 𝐷𝑖 and obtain 𝑥𝑖 .

(3) Return forgery 𝑥𝑧 for message𝑀 and public metadata 𝐷 .

Each intermediate blind signing output for every 𝑖 ≥ 1 satisfies:

𝑥𝑖 = 𝐻 (𝑀 | | 𝐷) (𝑒1/𝑝1) ·· · (𝑒𝑖 /𝑝𝑖) (1/𝑒1) ·· · (1/𝑒𝑖) = 𝐻 (𝑀 | | 𝐷)1/(𝑝1 · · ·𝑝𝑖)

Then, 𝑥𝑧 = 𝐻 (𝑀 | | 𝐷)1/(𝑝1 · · ·𝑝𝑧) = 𝐻 (𝑀 | | 𝐷)1/𝑒 is the forgery.

7.1 Analyzing Exponent Check
In our setup phase, we run exponent checks to guarantee that this

algebraic property does not exist amongst valid public metadata in

the set MD. In this section, we analyze the existence of such bad

sequences for a random choice of salt assuming𝐻MD uses a random

oracle. This analysis will be useful in two scenarios. First, it bounds

the number of salt re-samples during the setup phase. Secondly,

in the case that the exponent check is omitted, this upper bounds

the probability that the forging attack in [16] has the necessary

algebraic property as a function of 𝜅 (prime bit-length) and |MD|.

Theorem 7.1. Consider security parameter 𝜆 and public metadata
setMD. Suppose that𝐻MD outputs 𝛾-bit odd integers where 𝛾 ≤ 𝜅 − 2.
Let 𝐸 be the event that there exists 𝐷, 𝐷1, . . . , 𝐷𝑧 ∈ MD such that:

(1) 𝐷 ≠ 𝐷𝑖 for all 𝑖 ≥ 1, but the remaining 𝑧 metadata,𝐷1, . . . , 𝐷𝑧 ,
are not necessarily distinct;

(2) 𝑒 = 𝐻MD (salt | | 𝐷) = 𝑝1 · 𝑝2 · · · 𝑝𝑧 where each 𝑝𝑖 is a prime
number that are not necessarily distinct;

(3) 𝑒 | 𝑒𝑖 = 𝐻MD (salt | | 𝐷𝑖) for all 𝑖 ≥ 1.
Then, for any randomly chosen salt and for every integer𝑥 ≥ 2,Pr[𝐸] ≤
|MD |2
𝑥
+ 2|MD| · 𝜌 (𝛾/log𝑥) where 𝜌 is Dickman’s function.

Proof. In our analysis, we will rely on Dickman’s function 𝜌

for the analysis of smooth numbers. In particular, the probability

that a random odd integer from [1, 𝑦] has only prime factors no

larger than 𝑥 is 2 · 𝜌 (log𝑦/log𝑥). Let 𝐸′ be the event that there
exists any 𝐷 ∈ MD such that 𝐻MD (salt | | 𝐷) has no prime factors

larger than 𝑥 . Then, we know that Pr[𝐸′] ≤ 2|MD| · 𝜌 (𝛾/log𝑥)
since 𝐻MD outputs 𝛾-bit odd integers. Suppose that event 𝐸′ does
not occur. Fix any 𝐷 ∈ MD and we want to bound the probability

that there exists some sequence starting with 𝐷 satisfying event

𝐸. Pick any prime factor 𝑝 of 𝐻MD (salt | | 𝐷) where 𝑝 > 𝑥 . If 𝐷

is the start of the sequence satisfying the event 𝐸, then it better

be that there exists some metadata 𝐷 ′ ∈ MD such that 𝑝 divides

𝐻MD (salt | | 𝐷 ′). The probability that a prime 𝑝 divides a random

odd integer from [3, 2𝜅−2] (output of 𝐻MD for some 𝐷 ′ ∈ MD) is
1/𝑝 < 1/𝑥 . Then, the probability that there exists any 𝐷 ′ ∈ MD
such that 𝑝 divides 𝐻MD (salt | | 𝐷 ′) is at most |MD|/𝑥 . In other

words, the probability 𝐷 is the start of some sequence satisfying

event 𝐸 is at most |MD|/𝑥 . Using a Union bound over𝐷 , we get that

Pr[𝐸 | ¬𝐸′] ≤ |MD|2/𝑥 . Putting it altogether, we get the following:

Pr[𝐸] ≤ Pr[𝐸 | ¬𝐸′] + Pr[𝐸′] ≤ |MD|2/𝑥 + 2|MD| · 𝜌 (𝛾/log𝑥). □

To use the above, one should attempt to find an integer 𝑥 that

minimizes the probability Pr[𝐸]. We do this for different 𝜅 with

𝛾 = 𝜅 −3 and |MD| in Figure 7. In general, the probabilities are very

Public Metadata
Set Size (|MD |) 𝜅 = 1024 𝜅 = 1536 𝜅 = 2048

100 2
−54

2
−72

2
−87

200 2
−52

2
−70

2
−85

500 2
−50

2
−68

2
−83

1,000 2
−49

2
−66

2
−82

5,000 2
−45

2
−63

2
−78

10,000 2
−43

2
−61

2
−76

50,000 2
−40

2
−58

2
−73

100,000 2
−38

2
−56

2
−71

1,000,000 2
−33

2
−51

2
−66

Figure 7: Table with upper bounds of Pr[𝐸] from Theorem 7.1 with
𝛾 = 𝜅 − 3 and varying sizes of |MD |. Recall that the RSA modulus
bit-length is 2𝜅.

Modulus
Bit Length Algorithm Public

Metadata
No Public
Metadata

2048 Blind 1.4 ± 0.01 0.31 ± 0.01

2048 Sign 4.3 ± 0.01 1.6 ± 0.01

2048 Finalize 1.1 ± 0.01 0.028 ± 0.001

2048 Verify 1.1 ± 0.01 0.025 ± 0.001

3072 Blind 4.1 ± 0.11 0.61 ± 0.01

3072 Sign 12 ± 0.16 4.1 ± 0.01

3072 Finalize 3.4 ± 0.01 0.053 ± 0.001

3072 Verify 3.4 ± 0.01 0.053 ± 0.001

4096 Blind 8.9 ± 0.12 1.2 ± 0.01

4096 Sign 26 ± 0.16 8.1 ± 0.01

4096 Finalize 7.9 ± 0.01 0.088 ± 0.001

4096 Verify 7.9 ± 0.01 0.088 ± 0.001

Figure 8: Comparison of RSA blind signature with and without
public metadata. Computational costs are presented in milliseconds.
Each experiment was repeated 100 times.

small meaning that the expected number of times that salt needs to
be re-sampled is very small (salts are almost never re-sampled). We

also prove an asymptotic bound (see Appendix H.1) on the above

probability, but they are much looser than the values in Figure 7.

8 Experimental Evaluation
Our Implementation. Our implementations of RSA blind signa-

tures with and without public metadata may be found in [7]. Both

implementations utilize PSS message encodings and rely on Bor-

ingSSL [33] for cryptographic primitives. For our protocol, the ran-

dom string for unlinkability will be 𝜂 = 384 bits following [40, 42]

along with SHA384 and 384-bit salts for our hash function.

Experimental Setup.We conducted our experiments usingUbuntu

PCs with 4 cores, AMD EPYC 7B12 2.2 GHz and 32 GB of RAM. Our

experiments are all executed using a single thread.

Key Generation. For a standard RSA key generation protocol that

does not support public metadata, key generation times range from

0.09 to 1 second for RSA modulus sizes from 2048 to 4096 bits. For

our protocol the key needs to have a strong RSA modulus, RSA key

generation takes around 2 seconds for 2048, 45 seconds for 3072 and

90 seconds for 4096 bit strongmoduli.We present the computational

cost of our exponent checks in Figure 10. As setup is an infrequent

operation, the increase in setup time is inconsequential.

Comparison with RSA Blind Signatures.We report all our re-

sults of the computational costs in Figure 8. Note that Verify is also

48

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

[56] [60] Ours (2048) Ours (3072)
Blind 1.6 ± 0.08 1.1 ± 0.13 1.4 ± 0.01 4.1 ± 0.11

Sign 1.0 ± 0.03 5.6 ± 0.38 4.3 ± 0.01 12 ± 0.16

Finalize 3.3 ± 0.21 6.6 ± 0.47 1.1 ± 0.01 3.4 ± 0.01

Verify 3.9 ± 0.28 1.3 ± 0.05 1.1 ± 0.01 3.4 ± 0.01

Signature Size 48 145 256 384

Security Level 128 192 112 128

Figure 9: Comparison of BlindRSAMD with 2048-bit and 3072-bit mod-
ulus and solutions using pairings [56] and POPRFs with only secret
key verification [60]. Computational costs are presented in millisec-
onds and signature sizes in bytes. Security levels are presented for
the underlying curve or RSA group. Each experiment was repeated
100 times.

Figure 10: Setup time for different sizes of moduli against different
Public Metadata set sizes. Every experiment was repeated 10 times.

a sub-routine for the Finalize routine. In general, we note that the

protocol with public metadata is slower. This is expected as Sign
requires an additional inverse operation modulo 𝜙 (𝑁) to compute

the private exponent. Moreover, the output of 𝐻MD and hence the

public exponent can be quite large that is needed for security. There-

fore, it is not surprising that the public metadata variant is slower.

Nevertheless, the RSA blind signatures with public metadata are

still more than sufficiently fast enough for real-world applications.

Both protocols have identical signature sizes depending onmodulus

length.

Comparison with Pairing Variant. We compare with the public

metadata solution in [56] using pairings in Figure 9. We imple-

mented the protocol in C++ using the curve BLS12-381 with the

AMCL library [59] following the IRTF draft [14]. We compare with

our 2048-bit modulus solution here following the draft [6] and with

3072-bit modulus solution in Figure 9. Our scheme was similar

during Blind, 4x slower during Sign but 3x faster during Finalize.

Our scheme is also 3.5x faster for Verify. The signature size for this

protocol is 5x smaller than ours. We note again that pairings are

not readily available in production cryptographic libraries.

Comparison with OPRF Variant. We compare with OPRF-based

protocols with public metadata [36, 60] that only support secret key

verification in Figure 9. We used the implementation available in

Rust [49] with the curve P384 following the RFC [26] and compare

with our 2048-bit modulus protocol here following the draft [6]

and with 3072-bit modulus solution in Figure 9. Our scheme was

slightly slower during Blind, slightly faster for Sign, Verify and 6x

faster for Finalize. This protocol’s signature size is smaller than our

schemes.

Figure 11: Queries per second measured every minute period.

9 Deployment Telemetry
We report anonymous telemetry over 30 days from April 25, 2024

until May 23, 2024 on our deployment of RSA blind signatures with

public metadata with 2048-bit modulus for GoogleOne VPN.

Query Volume. We recorded query volume over each minute

period in Figure 11. Our systems served 5,953 queries on average

every minute. At peak, there were 7,276 queries within one minute.

This works out to 99.2 queries per second on average and 121.3

queries per second at peak. On average, we received more than 85

million queries per day and more than 250 million total queries

over the entire month. Queries were split 50.6% for issuance and

the remainder for redemption. Issuance is naturally higher as some

issued tokens may never be redeemed. The diurnal query pattern

reflects the concentration of users in North America and Europe.

Latency. Overall, the median latency is stable for both operations

at 33 ms for issuance and 91 ms for redemption. We also report that

the 90-th (99-th) percentile latencies were 48 ms (57 ms) and 240

ms (352 ms) for issuance and redemption respectively. The higher

latency (and variance) of redemption come from database reads

and write for tracking and preventing double spending of tokens.

Cost Modeling. For our deployment, the majority of our costs

are tied to computational costs and long-term storage for double

spending checks. The cost of storing all spent tokens over themonth

cost less than $400 (or less than $0.16 every 100,000 redeemed

tokens). Computational costs were less than $2300 (or less than

$0.92 every 100,000 queries). All costs estimated using standard

Google cloud computing and database pricing found here [34].

10 Conclusions
In this paper, we present a protocol for RSA blind signatures that

support public metadata. We prove our schemes secure and provide

strong evidence that concrete security of our scheme is nearly iden-

tical to standard RSA blind signatures. Furthermore, we show that

our public metadata protocol is concretely efficient with compara-

ble overhead as standard RSA blind signatures and other solutions

using less available cryptography or without public key verification.

We also report on anonymous deployment telemetry to showcase

the scalability of our protocol in real-world settings. We leave the

following open question: Can we prove security of our protocol

from the chosen-target RSA inversion assumption (Def. 3.5)?

49

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

References
[1] Michel Abdalla, Chanathip Namprempre, and Gregory Neven. 2006. On the

(Im)possibility of Blind Message Authentication Codes. In CT-RSA 2006 (LNCS,
Vol. 3860), David Pointcheval (Ed.). Springer, Heidelberg, Berlin, Heidelberg,

262–279.

[2] Masayuki Abe and Jan Camenisch. 1997. Partially Blind Signature Schemes. In

1997 Symposium on Cryptography and Information Security.
[3] Masayuki Abe and Eiichiro Fujisaki. 1996. How to Date Blind Signatures.

In ASIACRYPT’96 (LNCS, Vol. 1163), Kwangjo Kim and Tsutomu Matsumoto

(Eds.). Springer, Heidelberg, Kyongju, Korea, 244–251. https://doi.org/10.1007/

BFb0034851

[4] Masayuki Abe and Tatsuaki Okamoto. 2000. Provably Secure Partially Blind

Signatures. In Advances in Cryptology - CRYPTO 2000, 20th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2000,
Proceedings (Lecture Notes in Computer Science, Vol. 1880). Springer, 271–286.
https://doi.org/10.1007/3-540-44598-6_17

[5] Martin R Albrecht, Alex Davidson, Amit Deo, and Daniel Gardham. 2024. Crypto

Dark Matter on the Torus: Oblivious PRFs from Shallow PRFs and TFHE. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 447–476.

[6] Ghous Amjad, Scott Hendrickson, Christopher Wood, and Kevin Yeo. 2023. Par-

tially Blind RSA Signatures. https://datatracker.ietf.org/doc/draft-amjad-cfrg-

partially-blind-rsa/.

[7] Anonymous Tokens (AT) no date. https://github.com/google/anonymous-tokens.

[8] Apple. 2021. iCloud Private Relay Overview. https://www.apple.com/icloud/

docs/iCloud_Private_Relay_Overview_Dec2021.pdf.

[9] arkworks no date. https://github.com/arkworks-rs.

[10] Niko Bari and Birgit Pfitzmann. 1997. Collision-Free Accumulators and Fail-Stop

Signature Schemes Without Trees. In EUROCRYPT’97 (LNCS, Vol. 1233), Walter

Fumy (Ed.). Springer, Heidelberg, Konstanz, Germany, 480–494.

[11] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.

2002. The Power of RSA Inversion Oracles and the Security of Chaum’s RSA-

Based Blind Signature Scheme. In FC 2001 (LNCS, Vol. 2339), Paul F. Syverson
(Ed.). Springer, Heidelberg, Berlin, Heidelberg, 319–338.

[12] Mihir Bellare and Phillip Rogaway. 1996. The Exact Security of Digital Signatures:

How to Sign with RSA and Rabin. In EUROCRYPT’96 (LNCS, Vol. 1070), Ueli M.

Maurer (Ed.). Springer, Heidelberg, Saragossa, Spain, 399–416.

[13] Fabrice Benhamouda, Tancrède Lepoint, Michele Orrù, and Mariana Raykova.

2022. Publicly verifiable anonymous tokens with private metadata bit. Cryptology

ePrint Archive, Paper 2022/004. https://eprint.iacr.org/2022/004 https://eprint.

iacr.org/2022/004.

[14] Dan Boneh, Sergey Gorbunov, Riad Wahby, Hoeteck Wee, Christopher Woor,

and Zhenfei Zhang. 2023. BLS Signatures. https://datatracker.ietf.org/doc/draft-

irtf-cfrg-bls-signature/.

[15] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In ASIACRYPT 2001 (LNCS, Vol. 2248), Colin Boyd (Ed.). Springer,

Heidelberg, Gold Coast, Australia, 514–532.

[16] Nikita Borisov. no date. Metadata Forgery in Partially-Blind RSA Signatures.

Personal Communication.

[17] Carlos Cardenas. no date. Cloud Security: The Challenges with Key Management

in the Cloud (and everywhere else). https://www.tritondatacenter.com/blog/

cloud-security-the-challenges-with-key-management-in-the-cloud-and-

everywhere-else.

[18] Melissa Chase, F. Betül Durak, and Serge Vaudenay. 2023. Anonymous Tokens

with Stronger Metadata Bit Hiding from Algebraic MACs. In Advances in Cryptol-
ogy – CRYPTO 2023. Springer Nature Switzerland, Santa Barbara, USA, 418–449.

[19] David Chaum. 1982. Blind Signatures for Untraceable Payments. In CRYPTO’82,
David Chaum, Ronald L. Rivest, and Alan T. Sherman (Eds.). Plenum Press, New

York, USA, Santa Barbara, USA, 199–203.

[20] David Chaum. 1983. Blind Signature System. In CRYPTO’83, David Chaum (Ed.).

Plenum Press, New York, USA, Santa Barbara, USA, 153.

[21] CIRCL (Cloudflare Interoperable, Reusable Cryptographic Library) no date.

https://github.com/cloudflare/circl.

[22] Jean-Sébastien Coron and David Naccache. 2000. Security Analysis of the

Gennaro-Halevi-Rabin Signature Scheme. In Advances in Cryptology - EURO-
CRYPT 2000, International Conference on the Theory and Application of Crypto-
graphic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding (Lecture Notes
in Computer Science, Vol. 1807). Springer, 91–101. https://doi.org/10.1007/3-540-

45539-6_7

[23] Geoffroy Couteau, Thomas Peters, and David Pointcheval. 2017. Removing the

Strong RSA Assumption from Arguments over the Integers. In EUROCRYPT 2017,
Part II (LNCS, Vol. 10211), Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.).

Springer, Heidelberg, Paris, France, 321–350.

[24] Cryptographic Module Validation Program: Modules In Process List

no date. https://csrc.nist.gov/projects/cryptographic-module-validation-

program/modules-in-process/modules-in-process-list. Accessed on 08.08.2024.

[25] Ivan Damgård and Eiichiro Fujisaki. 2002. A Statistically-Hiding Integer Commit-

ment Scheme Based on Groups with Hidden Order. In ASIACRYPT 2002 (LNCS,
Vol. 2501), Yuliang Zheng (Ed.). Springer, Heidelberg, Queenstown, New Zealand,

125–142.

[26] Alex Davidson, Armando Faz-Hernandez, Nick Sullivan, and Christopher Wood.

2024. Oblivious Pseudorandom Functions (OPRFs) Using Prime-Order Groups.

https://datatracker.ietf.org/doc/rfc9497/.

[27] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo

Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.

PoPETs 2018, 3 (July 2018), 164–180. https://doi.org/10.1515/popets-2018-0026

[28] Randall Degges. no date. The Hardest Thing About Data Encryption. https://

developer.okta.com/blog/2019/07/25/the-hardest-thing-about-data-encryption.

[29] Frank Denis, Frederic Jacobs, and Christopher Wood. 2023. RSA Blind Signatures.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/.

[30] Sam Dutton. no date. Getting started with Trust Tokens. https://web.dev/trust-

tokens/

[31] Eiichiro Fujisaki and Tatsuaki Okamoto. 1997. Statistical Zero Knowledge Pro-

tocols to Prove Modular Polynomial Relations. In CRYPTO’97 (LNCS, Vol. 1294),
Burton S. Kaliski Jr. (Ed.). Springer, Heidelberg, Santa Barbara, USA, 16–30.

https://doi.org/10.1007/BFb0052225

[32] Rosario Gennaro, Shai Halevi, and Tal Rabin. 1999. Secure Hash-and-Sign Signa-

tures Without the Random Oracle. In Advances in Cryptology — EUROCRYPT ’99,
Jacques Stern (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 123–139.

[33] Google. no date. BoringSSL. https://github.com/google/boringssl.

[34] Google Cloud pricing no date. https://cloud.google.com/pricing.

[35] Scott Hendrickson and Christopher Wood. 2023. Privacy Pass Issuance Protocols

with Public Metadata. https://datatracker.ietf.org/doc/draft-ietf-privacypass-

public-metadata-issuance/.

[36] Scott Hendrickson and Christopher A. Wood. 2024. Privacy Pass Issuance Protocols
with Public Metadata. Internet-Draft draft-ietf-privacypass-public-metadata-

issuance-00. Internet Engineering Task Force. https://datatracker.ietf.org/doc/

draft-ietf-privacypass-public-metadata-issuance/

[37] Sharon Huang, Subodh Iyengar, Sundar Jeyaraman, Shiv Kushwah, Chen-Kuei

Lee, Zutian Luo, Payman Mohassel, Ananth Raghunathan, Shaahid Shaikh, Yen-

Chieh Sung, et al. 2021. Dit: De-identified authenticated telemetry at scale.

[38] Julia Kastner, Julian Loss, and Jiayu Xu. 2022. On pairing-free blind signature

schemes in the algebraic group model. In IACR International Conference on Public-
Key Cryptography. Springer, 468–497.

[39] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. 2020. Anony-

mous Tokens with Private Metadata Bit. In CRYPTO 2020, Part I (LNCS, Vol. 12170),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, Santa

Barbara, USA, 308–336.

[40] Anna Lysyanskaya. 2023. Security Analysis of RSA-BSSA. In IACR International
Conference on Public-Key Cryptography. Springer-Verlag, Atlanta, USA, 251–280.
https://doi.org/10.1007/978-3-031-31368-4_10

[41] Pieter Moree. 2014. Integers without large prime factors: from Ramanujan to de

Bruijn. Integers 14 (2014).
[42] K.Moriarty, B. Kaliski, J. Jonsson, andA. Rusch. 2016. PKCS #1: RSACryptography

Specifications Version 2.2. https://datatracker.ietf.org/doc/html/rfc8017.

[43] Network Security Services no date. https://github.com/nss-dev/nss.

[44] Google One. no date. VPN by Google One, explained. https://one.google.com/

about/vpn/howitworks.

[45] OpenSSL no date. https://github.com/openssl/openssl.

[46] Michele Orrù, Stefano Tessaro, Greg Zaverucha, and Chenzhi Zhu. 2024. Oblivious

issuance of proofs. IACR Crypto 2024, Springer-Verlag.

[47] Pairing on the BLS12-381 Elliptic Curve no date.

https://github.com/nccgroup/pairing-bls12381.

[48] David Pointcheval and Jacques Stern. 1996. Provably Secure Blind Signature

Schemes. In ASIACRYPT’96 (LNCS, Vol. 1163), Kwangjo Kim and Tsutomu Mat-

sumoto (Eds.). Springer, Heidelberg, Kyongju, Korea, 252–265. https://doi.org/

10.1007/BFb0034852

[49] POPRF Implementation no date. https://github.com/facebook/voprf.

[50] Luke Probasco. no date. Key Management: The Hardest Part of En-

cryption. https://info.townsendsecurity.com/bid/74336/key-management-the-

hardest-part-of-encryption.

[51] RELIC toolkit no date. https://github.com/relic-toolkit/relic.

[52] Dominique Schröder and Dominique Unruh. 2012. Security of Blind Signatures

Revisited. In PKC 2012 (LNCS, Vol. 7293), Marc Fischlin, Johannes Buchmann, and

Mark Manulis (Eds.). Springer, Heidelberg, Darmstadt, Germany, 662–679.

[53] Atle Selberg. 1949. An elementary proof of the prime-number theorem. Annals
of Mathematics 50, 2 (1949), 305–313.

[54] Victor Shoup. 2000. Practical Threshold Signatures. In Advances in Cryptology —
EUROCRYPT 2000. Springer Berlin Heidelberg, Berlin, Heidelberg, 207–220.

[55] Victor Shoup. 2009. A computational introduction to number theory and algebra.
Cambridge university press, Cambridge.

[56] Tjerand Silde and Martin Strand. 2022. Anonymous Tokens with Public Metadata

and Applications to Private Contact Tracing. In Financial Cryptography and Data
Security. Springer International Publishing, Cham, 179–199.

50

https://doi.org/10.1007/BFb0034851
https://doi.org/10.1007/BFb0034851
https://doi.org/10.1007/3-540-44598-6_17
https://datatracker.ietf.org/doc/draft-amjad-cfrg-partially-blind-rsa/
https://datatracker.ietf.org/doc/draft-amjad-cfrg-partially-blind-rsa/
https://github.com/google/anonymous-tokens
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://eprint.iacr.org/2022/004
https://eprint.iacr.org/2022/004
https://eprint.iacr.org/2022/004
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature/
https://www.tritondatacenter.com/blog/cloud-security-the-challenges-with-key-management-in-the-cloud-and-everywhere-else
https://www.tritondatacenter.com/blog/cloud-security-the-challenges-with-key-management-in-the-cloud-and-everywhere-else
https://www.tritondatacenter.com/blog/cloud-security-the-challenges-with-key-management-in-the-cloud-and-everywhere-else
https://doi.org/10.1007/3-540-45539-6_7
https://doi.org/10.1007/3-540-45539-6_7
https://datatracker.ietf.org/doc/rfc9497/
https://doi.org/10.1515/popets-2018-0026
https://developer.okta.com/blog/2019/07/25/the-hardest-thing-about-data-encryption
https://developer.okta.com/blog/2019/07/25/the-hardest-thing-about-data-encryption
https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/
https://web.dev/trust-tokens/
https://web.dev/trust-tokens/
https://doi.org/10.1007/BFb0052225
https://github.com/google/boringssl
https://cloud.google.com/pricing
https://datatracker.ietf.org/doc/draft-ietf-privacypass-public-metadata-issuance/
https://datatracker.ietf.org/doc/draft-ietf-privacypass-public-metadata-issuance/
https://datatracker.ietf.org/doc/draft-ietf-privacypass-public-metadata-issuance/
https://datatracker.ietf.org/doc/draft-ietf-privacypass-public-metadata-issuance/
https://doi.org/10.1007/978-3-031-31368-4_10
https://datatracker.ietf.org/doc/html/rfc8017
https://one.google.com/about/vpn/howitworks
https://one.google.com/about/vpn/howitworks
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/BFb0034852
https://github.com/facebook/voprf
https://info.townsendsecurity.com/bid/74336/key-management-the-hardest-part-of-encryption
https://info.townsendsecurity.com/bid/74336/key-management-the-hardest-part-of-encryption

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

[57] Stefano Tessaro and Chenzhi Zhu. 2022. Short pairing-free blind signatures

with exponential security. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 782–811.

[58] The Bouncy Castle Crypto Package For Java no date. https://github.com/bcgit/bc-

java.

[59] The MIRACL Core Cryptographic Library no date.

https://github.com/miracl/core.

[60] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and

Christopher A. Wood. 2022. A Fast and Simple Partially Oblivious PRF, with Ap-

plications. In Advances in Cryptology – EUROCRYPT 2022. Springer International
Publishing, Trondheim, Norway, 674–705.

[61] John Wilander. 2021. Introducing Private Click Measurement, PCM. https:

//webkit.org/blog/11529/introducing-private-click-measurement-pcm/

[62] wolfSSL Embedded SSL/TLS Library no date. https://github.com/wolfSSL/wolfssl.

[63] Fangguo Zhang, Reihaneh Safavi-Naini, andWilly Susilo. 2003. Efficient Verifiably

Encrypted Signature and Partially Blind Signature from Bilinear Pairings. In

INDOCRYPT 2003 (LNCS, Vol. 2904), Thomas Johansson and Subhamoy Maitra

(Eds.). Springer, Heidelberg, New Delhi, India, 191–204.

A Discussion about Strong RSA Modulus
Generating Strong RSA Modulus. For our new protocol, we

need to modify the Gen algorithm to always output strong RSA

modulus𝑁 = 𝑝𝑞where 𝑝 and𝑞 are safe primes. The straightforward

approach is to use the same Gen algorithm of generating random

primes and simply check whether the chosen primes are safe. For

any prime 𝑝 , one can simply using primality testing algorithms to

check whether (𝑝 − 1)/2 is prime to see if 𝑝 is a safe prime. As

safe primes are more scarce than primes, this algorithm will be

slower. However, we can estimate the asymptotic additional time

needed to generate safe primes compared to normal primes. By the

prime number theorem [53], we know that the density of prime

numbers is𝑂 (1/𝜅) for numbers at most 2
𝜅
. For safe primes, we can

rely on one of several conjectures e.g. Dickson’s conjecture or the

twin prime conjecture ([55]) that state the density of safe primes is

𝑂 (1/𝜅2). Therefore, we could expect that the Gen algorithm finds

a safe prime after generating 𝑂 (𝜅) random primes.

Next, we compare the Standard RSA Assumption to the one

restricted to only Strong RSA Modulus.

Proof of Theorem 3.4. First, we will assume there is an adver-

sary A that breaks the strong modulus version of the assumption

with probability 𝜖 and running time 𝑡 . We show that A will also

break the standard RSA game with probability 𝑂 (𝜖/𝜅2) and run-

ning time 𝑡 to prove the statement. Recall that 𝜅 is the length of

the prime factors of the RSA modulus. To prove this, we simply

analyze the probability that a randomly generated RSA modulus

is a strong RSA modulus. Assuming Dickson’s conjecture [55], the

probability that a randomly generated prime number of length 𝜅 is

also a safe prime is Θ(1/𝜅). For a RSA modulus to be strong, both

prime factors must be safe. Therefore, this occurs with probability

Θ(1/𝜅2). Conditioned on the RSA modulus being strong, the adver-

sary A wins the standard RSA game with probability 𝜖 . Therefore,

A wins the game with probability at least 𝑂 (𝜖/𝜅2). □

To our knowledge, there is no straightforward relation in the

opposite direction. We leave it as an open question to determine

the relation in this direction.

B Equivalence of Unforgeability Definitions
In this section, we consider the alternative definition of unforgeabil-

ity with public metadata that was introduced in [56]. At a high level,

the difference is that this alternative definition does not limit the

total number of queries explicitly. Instead, the adversary is limited

to at most ℓ oracle signing queries for each choice of public meta-

data 𝐷 . Moreover, to win the game, adversary needs to output ℓ + 1
signature message pairs under a fixed choice of metadata. We de-

note this definition as Alternative Strong One-More Unforgeability

with Public Metadata, GASOMUF
Tok,A,ℓ

(𝜆).
Theorem B.1. A token scheme Tok satisfies alternative strong

one-more unforgeability with public metadata if and only if the token
scheme Tok also satisfies (Def. 2.2). The reductions only lose up to
𝑂 (𝑡 + ℓ) additive factors in the adversary’s running time and number
of oracle signing queries.

Proof. Assume there exists an adversaryA that wins the game

GASOMUF
. The same adversary also wins the game GSOMUF

as the

maximum number of oracle queries sent by the adversary is at

most its running time. In the other direction, assume that A wins

the game GSOMUF
. If the output of A consists of ℓ + 1 tuples, then

it also wins GASOMUF
. Otherwise, we can afford to use additional

queries to the signing oracle in GASOMUF
. Suppose that A outputs

cnt𝐷 + 1 tuples using at most cnt𝐷 signing oracle queries for public

metadata𝐷 . Then, we canwinGASOMUF
by the adversarymaking an

additional ℓ − cnt𝐷 −1 signing oracle queries for different messages.

Therefore, Tok is not (𝜖, 𝑡 +𝑂 (ℓ), 2ℓ)-alternative strong one-more

unforgeable as we bound the additional running time by 𝑂 (ℓ) and
the additional number of signing oracle queries by at most ℓ . □

Winning Conditions for RSA Inversion Games.We note the

same equivalence can be shown to exist for the RSA assumption

games. In our games, the adversary’s condition for winning is

outputting the tuple (𝑋𝑖 , 𝑌𝑖)𝑖∈[𝑧] where 𝑧 > cnt𝑒 where cnt𝑒 oracle
queries are done. For some prior works, the adversary’s winning

condition is outputting a pair (𝑋,𝑌) for 𝑒 that is different from any

query to ORSA
. We show the two are essentially equivalent. Since

there are only cnt𝑒 queries to ORSA
for 𝑒 , the tuple (𝑋𝑖 , 𝑌𝑖)𝑖∈[𝑧]

must contain at least one pair (𝑋,𝑌) that was never queried. If an
adversary is able to find a single pair (𝑋,𝑌) that was never queried
to ORSA

, the adversary can pad the results of the cnt𝑒 oracle queries
for 𝑒 to obtain a tuple of 𝑧 > cnt𝑒 pairs.

C Equivalence of RSA and Multi-Exponent RSA
Assumption

In this section, we present the proof of Theorem F.1 where we show

that the RSA assumption (Def. 3.3) and the multi-exponent RSA

assumption (Def. 4.1) are equivalent up to a multiplicative ℓ factor

when the number of exponents is ℓ in the latter assumption.

Proof of Theorem 4.2. Towards a contradiction, suppose that

there exists an adversary A′ that wins the multi-exponent RSA

game with probability 𝜖′ with running time 𝑡 ′ when given ℓ chal-

lenge exponents. We build an adversary A for the RSA game that

wins with probability 𝜖 = 𝜖′/ℓ with running time 𝑡 = 𝑡 ′ + 𝑂 (ℓ).
Recall that A is given an exponent 𝑒 from [3, 𝑒max] and random

target 𝑋 and must produce 𝑌 satisfying 𝑌 𝑒 = 𝑋 mod 𝑁 . To do

this, A will choose ℓ challenge exponents 𝑒1, . . . , 𝑒ℓ as follows. A
first picks a uniformly random number from 𝑧 ∈ [ℓ]. Then, A
will set 𝑒𝑧 = 𝑒 . For the remaining 𝑖 ∈ [ℓ] \ {𝑧}, A sets 𝑒𝑖 to a

random odd number from the set [3, 𝑒max]. As we assume 𝑁 is a

51

https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

Game GSRSA
Gen,A (𝜆) :

(𝑁, (𝑝,𝑞)) ←𝑅 Gen(1𝜆)
𝑋 ←𝑅 Z∗

𝑁

(𝑒,𝑌) ← A(crs, 𝑁 ,𝑋)
Return 1 if and only if 𝑒 ≥ 3 and 𝑌𝑒 =𝑋 mod 𝑁 .

Figure 12: Strong RSA Game.

strong RSA modulus and the product of two 𝜅-bit primes, we know

that 𝜙 (𝑁) = 4𝑝′𝑞′ for some primes 𝑝′ and 𝑞′ of length at least

𝜅 − 1. Therefore, odd numbers from [3, 2𝜅−2] will be co-prime with

𝜙 (𝑁) and, thus, valid exponents. As each 𝑒𝑖 are chosen such that

𝑒𝑖 ≤ 𝑒max ≤ 2
𝜅−2

, we know that each 𝑒𝑖 is a valid exponent. Finally,

A passes the modulus 𝑁 , the ℓ exponents as well as the random

target 𝑋 to A′ (𝑁, 𝑒1, . . . , 𝑒ℓ , 𝑋). First, we note that the distribution
of inputs seen by A′ is identical to the multi-exponent RSA game

(see Figure 5). A′ successfully forges and, thus, returns 𝑖 as well as

a valid decryption of 𝑋 under 𝑒𝑖 with probability 𝜖′. In other words,

A′ outputs 𝑌 satisfying 𝑌 = 𝑋 1/𝑒𝑖
. Therefore, A can output 𝑌 to

win the RSA game as long as 𝑖 = 𝑧 with probability 𝜖′/ℓ . IfA′ runs
in time 𝑡 ′, thenA runs in time 𝑡 ′ +𝑂 (ℓ) with𝑂 (ℓ) time to generate

random exponents. □

D Connections to Strong RSA Assumption
In this section, we explore two variants of one-more strong RSA

assumptions where we provide adversaries more freedom com-

pared to the assumption we use to prove security of our protocols

(Def. 4.3). In both cases, there exists a polynomial time adversary

that can break the assumption. For completeness, we also present

the game for the strong RSA assumption in Figure 12.

One-More RSA with Chosen Exponents. As our first definition,
we will consider the game in Figure 6 with the following modifica-

tions. The decryption oracle, ORSA
, will now allow the adversary

to submit arbitrary exponents for decryption. As a technical detail,

we do require queried exponents to be co-prime to 𝜙 (𝑁) to enable

decryption. In the case that the input exponent is not co-prime to

𝜙 (𝑁), ORSA
will output ⊥. Note, we will still require the adversary

to output exponents from Oexp
to win the game. Clearly, this is

a stronger assumption compared to the chosen-target, restricted-

exponent assumption (Definition 4.3) as the adversary has signifi-

cantly more freedom when choosing decryption oracle queries. We

formally denote this modified game as the chosen-target, chosen-

exponent RSA inversion game GCT-CE-RSA
Gen,A (𝜆). We use the notion

chosen-exponent to denote that the adversary is now free to pick

any exponents to submit to the decryption oracle ORSA
. The full

game is presented in Figure 13.

Definition D.1 ((𝜖, 𝑡, ℓ)-Chosen-Target, Chosen-Exponent RSA In-
version Assumption). Let 𝜆 be the security parameter and consider

GCT-CE-RSA
Gen,A (𝜆) in Figure 13. The (𝜖, 𝑡, ℓ, ℓ ′)-chosen-target, chosen-

exponent RSA inversion assumption is true for Gen if, for any ad-

versary A that runs in time 𝑡 , makes at most ℓ decryption queries

and ℓ ′ exponent queries, then Pr[GCT-CE-RSA
Gen,A (𝜆) = 1] ≤ 𝜖 .

While this seems like a reasonable assumption, we can show

that this already provides far too much power to an adversary.

Theorem D.2. There exists a polynomial time adversary A that
wins the chosen-target, chosen-exponent RSA inversion game.

Proof. We present a simple adversary A as follows. First, A
gets a target 𝑋 ← OX (). Next, the A gets 𝑒 ← Oexp () and picks a

random number 𝑒′ that are both co-prime to 𝜙 (𝑁). Without loss

of generality, let 𝑒′ > 𝑒 . The adversary calls the decryption oracle

to receive 𝑌 ← ORSA (𝑋 𝑒′ , 𝑒 · 𝑒′). Then, 𝑌 = (𝑋 𝑒′)1/(𝑒 ·𝑒′) = 𝑋 1/𝑒
.

Finally, A outputs 𝑒, (𝑋,𝑌) and wins the game as the adversary

never made a single decryption oracle call for 𝑒 . □

Interestingly, the ability for the adversary to choose arbitrary

exponents to send to the decryption oracle enables far too much

adversarial power. The same reasoning was used in prior RSA as-

sumptions where if the adversary is able to pick arbitrary messages

to decrypt, then the adversary can easily break prior RSA assump-

tions. While this does not happen for exponents in the standard

assumptions without decryption oracles, it ends up being the case

once you provide decryption oracles to the adversary.

One-More RSA with Arbitrary Exponents. In our second at-

tempt, we no longer provide a challenge exponent oracle, Oexp
, to

the adversary. Instead, the adversary is free to choose any exponent

𝑒 ≥ 3 and produce a decryption with respect to 𝑒 . We denote this

game as the chosen-target, arbitrary-exponent RSA inversion game.

Clearly the adversary can win this game as well, as it won the

previous game where it had less adversarial power.

E RSA Signatures with Public Metadata: Proof
of Unforgeability

In this section, we prove the concrete security of our RSA signature

with public metadata from the RSA assumption. We show that the

concrete security bounds are similar to those proven by [12] for

standard RSA signatures with FDH message encodings except for a

multiplicative factor loss in number of hashing oracle calls to 𝐻MD.

At a high level, our security proof will construct an adversary A
for the multi-exponent RSA game given exponents from [3, 2𝜅−2].
Afterwards, we can apply Theorem 4.2 to obtain security based on

the standard RSA assumption. We start with the first step reducing

security to the multi-exponent RSA assumption:

Lemma E.1. Suppose that (𝐻M ,VerifyM) correspond to full do-
main hash (FDH) message encoding. Assuming the (𝜖, 𝑡, 𝑞MD)-multi-
exponent RSA assumption (Definition 4.1) with exponents in [3, 2𝜅−2]
and the random oracle model, then RSAMD is (𝜖𝐹 , 𝑡𝐹 , ℓ𝐹)-strong one-
more unforgeable (Definition 2.2) where

• 𝑡𝐹 = 𝑡 −𝑂 (𝑞M + 𝑞MD + ℓ𝐹)
• 𝜖𝐹 = 𝑞M · 𝜖

and the adversary A runs in time at most 𝑡𝐹 and makes at most ℓ𝐹 ,
𝑞M and 𝑞MD queries to the signing oracle and hash functions 𝐻M
and 𝐻MD respectively.

Proof. Let A𝐹 be an adversary that can break the (𝜖𝐹 , 𝑡𝐹 , ℓ𝐹)-
SOMUF of RSAMD with at most ℓ𝐹 , 𝑞M and 𝑞MD queries to the

signing oracle, 𝐻M and 𝐻MD. That is, A𝐹 can forge a signature

with success probability of 𝜖𝐹 with running time of 𝑡𝐹 . To complete

the proof, we show that one can use A𝐹 to construct an adversary

A that can break the multi-exponent RSA game with exponents

52

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

Game GCT-CE-RSA
Gen,A (𝜆): Oracle ORSA (𝑋, 𝑒): Oracle OX (): Oracle Oexp ():

(𝑁, D𝑁 , (𝑝, 𝑞)) ←𝑅 Gen(1𝜆) If 𝑒 ∉ Z∗
𝜙 (𝑁) : 𝑋 ←𝑅 Z∗

𝑁
𝑒 ←𝑅 D𝑁

SX ← ∅, Sexp ← ∅ Return ⊥ SX ← SX ∪ {𝑋 } Sexp ← Sexp ∪ {𝑒}
𝜙 (𝑁) ← (𝑝 − 1) (𝑞 − 1) cnt𝑒 ← cnt𝑒 + 1 Return 𝑋 Return 𝑒

cnt𝑒 ← 0,∀𝑒 ∈ Z∗
𝜙 (𝑁) 𝑑 ← 𝑒−1 mod 𝜙 (𝑁)

𝑒, (𝑋𝑖 , 𝑌𝑖)𝑖∈[𝑥] ← AO
RSA,OX ,O𝑒 (𝑁) 𝑌 ← 𝑋𝑑

mod 𝑁

Return 1 if and only if all the following hold: Return 𝑌

- cnt𝑒 < 𝑥

- 𝑒 ∈ Sexp
- ∀𝑖 ≠ 𝑗 ∈ [𝑥], 𝑋𝑖 ≠ 𝑋 𝑗

- ∀𝑖 ∈ [𝑥], 𝑋𝑖 ∈ SX
- ∀𝑖 ∈ [𝑥], 𝑌 𝑒

𝑖 = 𝑋𝑖 mod 𝑁

Figure 13: Chosen-Target, Chosen-Exponent RSA Inversion Game. All differences with the chosen-target, restricted-exponent RSA inversion
game, GCT-RE-RSA

Gen,A (𝜆) , are highlighted in blue.

from [3, 2𝜅−2] using𝑂 (𝑞M +𝑞MD+ ℓ𝐹) additional running time and

wins the game with probability at least 𝜖𝐹 /𝑞M .

For any adversary A trying to solve the multi-exponent RSA

problem,A receives as input the challenge RSA exponents (𝑒1, . . . ,
𝑒𝑞MD), strong RSA modulus 𝑁 and a challenge target 𝑋 that is

chosen uniformly at random Z∗
𝑁
. Recall that the goal is to pick any

𝑖 ∈ [𝑞MD] and output the 𝑒𝑖 -th root of 𝑋 modulo 𝑁 . In other words,

compute 𝑌 such that 𝑌 𝑒𝑖 = 𝑋 mod 𝑁 .

A will execute the adversary A𝐹 that outputs a forgery of the

form 𝐷, (𝑆𝑖 , 𝑀𝑖)𝑖∈[𝑥] . Without loss of generality, we will assume

the following. First, 𝑥 ≤ ℓ𝐹 + 1. As A𝐹 makes at most ℓ𝐹 signing

oracle queries,A will only need to produce at most ℓ𝐹 + 1 valid sig-
natures to win the strong one-more unforgeability game. Secondly,

we will assume that A𝐹 will have queried 𝐻M (𝑀𝑖) on all output

messages. Again, this is without loss of generality as it will only

increase the running time of A𝐹 by at most ℓ𝐹 + 1 hash function

queries. Furthermore, we will suppose that A𝐹 will have queried

both𝐻M (𝑀) and𝐻MD (𝐷) before submitting a signing query for𝑀

and 𝐷 . Again, this is without loss of generality, as it only increases

the running time of A𝐹 by at most 2ℓ𝐹 hash queries.

During the execution ofA𝐹 ,Amust successfully simulate queries

for signing as well as the message encoding hash function 𝐻M and

the public metadata hash function 𝐻MD. Before doing so, A keeps

track of a count of the number of unique inputs to the message

oracle 𝐻M . We know that at most 𝑞M queries are made to 𝐻M . A
will pick a random integer 𝑧 ←𝑅 [𝑞M] and will embed the chal-

lenge 𝑋 as the output of the 𝑧-th query to 𝐻M . To keep track, A
keeps counter cntM to count the number of unique inputs to 𝐻M
where cntM is initialized to zero. Similarly, A uses cntMD to count

the number of unique inputs to 𝐻MD with cntMD also initialized to

zero. Finally,A keeps a map of inputs to important information for

the hash function 𝐻MD and 𝐻M denoted by MMD and MM . A will

simulate each of these queries as follows.

For any query to 𝐻MD (𝐷):
(1) If MMD [𝐷] is set, returnMMD [𝐷].
(2) Increment cntMD ← cntMD + 1 and set MMD [𝐷] ← 𝑒cntMD .

(3) Return MMD [𝐷].
For any query to 𝐻M (𝑀,𝐷):

(1) Compute 𝑒MD ← 𝐻MD (𝐷).
(2) If MM [𝑀,𝐷] is set, return first value of tupleMM [𝑀,𝐷].
(3) Increment cntM ← cntM + 1.

(4) If cntM = 𝑧:

(a) Set MM [𝑀,𝐷] ← (𝑋,⊥).
(5) Otherwise when cntM ≠ 𝑧:

(a) Generate random 𝐴←𝑅 Z∗
𝑁
.

(b) Compute 𝐵 = 𝐴𝑒MD mod 𝑁 .

(c) Set MM [𝑀,𝐷] ← (𝐵,𝐴).
(6) Return first value of tuple MM [𝑀,𝐷].

For any query to OSign (𝑀,𝐷):

(1) Retrieve (𝐵,𝐴) ← MM [𝑀,𝐷].
(2) If 𝐴 =⊥, abort. Else, return 𝐴.

Finally, we will suppose that A does not abort and A𝐹 out-

puts some forgery 𝐷, (𝑆𝑖 , 𝑀𝑖)𝑖∈[𝑥] while making strictly less than

𝑥 signing queries for metadata 𝐷 . If 𝐻M (𝑀𝑖 | | 𝐷) = 𝑋 for any

𝑖 ∈ [𝑥], then 𝐻M (𝑀𝑖 | | 𝐷) = 𝑋 = 𝑆
𝐻MD (𝐷)
𝑖

assuming that A𝐹 is

successful at forging. Re-writing the above, we get the following

equality 𝑆𝑖 = 𝑋 1/𝐻MD (𝐷) = 𝑋 1/𝑒 𝑗
for some 𝑗 ∈ [𝑞MD] and 𝑒 𝑗 is

the 𝑗-th challenge exponent. In other words, this is a successful

decryption of the ciphertext 𝑋 that would win the multi-exponent

RSA game. Therefore, A will simply return (𝑗, 𝑆𝑖) that would win

the multi-exponent RSA game.

Adversarial Advantage. First, we show that the simulated view and

real view of A𝐹 are identical. In the real game, A𝐹 receives ran-

dom exponents from [3, 2𝜅−2]. In the simulated game, A𝐹 receives

random challenge exponents 𝑒1, . . . , 𝑒𝑞MD that are also random ex-

ponents from [3, 2𝜅−2]. The view from 𝐻M and the signing oracle

are also identical as long as A does not abort. To upper bound the

aborting probability, we first note that A𝐹 must return at least one

message𝑀𝑖 such that (𝑀𝑖 , 𝐷) was never sent to the signing oracle.

Assuming that A successfully executed A𝐹 without aborting, the

probability that public metadata 𝐷 and message𝑀𝑖 are output by

A𝐹 where 𝐻M (𝑀𝑖 | | 𝐷) = 𝑋 such that (𝑀𝑖 , 𝐷) was not a signing
oracle query by A𝐹 is at least 1/𝑞M . This is because A𝐹 makes

at most 𝑞M queries to 𝐻M and must output at least one message.

In this case, it is clear that A will not abort when executing A𝐹 .

Finally, A produces a forgery with probability at most 𝜖𝐹 meaning

that A wins the RSA game with probability at least 𝜖𝐹 /𝑞M .

Adversarial Running Time. Suppose that A𝐹 runs in time 𝑡𝐹 . By

our assumptions, we note that we increase the running time of A𝐹

by at most 𝑂 (ℓ𝐹) hash queries. For each signing query, A must

perform a single exponentiation. For each query to 𝐻M and 𝐻MD,

53

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

A requires𝑂 (1) time to simulate each answer correctly. Therefore,

A requires 𝑡𝐹 +𝑂 (𝑞M + 𝑞MD + ℓ𝐹) time. □

Using this lemma, we can apply Theorem 4.2 to reduce security

to standard RSA and prove our main theorem about unforgeability.

Proof of Theorem 5.3. We apply Lemma E.1 to reduce security

to the (𝜖𝐹 /𝑞M , 𝑡𝐹 +𝑂 (𝑞M+𝑞MD+ℓ𝐹), 𝑞MD)-multi-exponent RSA as-

sumption with exponents from [3, 2𝜅−2]. By applying Theorem 4.2,

we obtain that this is equivalent to the (𝜖𝐹 /(𝑞MD ·𝑞M), 𝑡𝐹 +𝑂 (𝑞M +
𝑞MD + ℓ𝐹))-RSA assumption with exponents from [3, 2𝜅−2]. □

Encoding of Message and Public Metadata.We note that our

proof critically uses the fact that we pass both the message and

public metadata into the FDH encoding algorithm. When A pro-

grams the random oracle for 𝐻M , A exponentiates according to

𝐻MD (𝐷). This is only possible because 𝐷 is also passed as an input

to 𝐻M . If, instead, we only passed the message 𝑀 into 𝐻M , then

the best that A can do is simply aim to guess the public metadata

that will be later sent with𝑀 to the signing oracle. As there is no

requirement that A𝐹 has even picked 𝐷 yet, it is impossible for A
to guess this correctly. Therefore, it is integral that our algorithm

passes the public metadata 𝐷 into 𝐻M for security.

Extension to PSS Encoding. Finally, we note that our proof can
be modified when using PSS message encoding. In particular, the

random oracle 𝐻M is currently programmed in a trivial way to out-

put random elements that is indistinguishable from FDH encodings.

Instead, we can follow the identical proof techniques of Bellare

and Rogaway [12] to program 𝐻M to follow the PSS encoding. The

main difference is the following. In the FDH proof, the adversary

had to pick one of the query to 𝐻M to choose to embed the random

input target. By using the structure of PSS encoding, the adversary

can instead embed the random input target into every query to𝐻M .

This significantly improves the ability of the adversary to win the

game. As a result, we can obtain identical concrete security when

using PSS encoding as those proved in [12] except for a similar

additive factor exponentially small in 𝜅 when simulating the public

metadata hash function 𝐻MD.

E.1 Non-Applicability of Multi-Exponent
Attacks for RSA Signatures

In this section, we explain in detail why the multi-exponent attacks

in Section 7 that leverage certain algebraic properties that appear

in exponents are not applicable for our standard (non-blind) RSA

signatures with public metadata. At a high level, the reasoning

lies in one of the core difference between standard and blind RSA

signatures. In standard (non-blind) signature schemes, the signer

receives the input message𝑀 along with the public metadata 𝐷 in

plaintext. In contrast, for blind RSA signatures, the signer receives

an element𝑋 in the RSA group that is a blinded version of the input

message 𝑀 (the public metadata 𝐷 is still received in plaintext).

This critical difference is leveraged by the multi-exponents attacks

in Section 7 as we will show.

Taking a closer look at the attack, it requires find a sequence

𝐷, 𝐷1, . . . , 𝐷𝑧 of public metadata with the following properties. Let

𝑒 = 𝐻MD (𝐷) = 𝑝1 · · · 𝑝𝑧 be the product of (not necessarily distinct)

primes such that 𝑝𝑖 | 𝑒𝑖 where 𝑒𝑖 = 𝐻MD (𝐷𝑖). Next, we can consider

the first iteration of the loop of the attack. In particular, we set 𝑥0 =

𝐻M (𝑀 | | 𝐷) for some input message𝑀 . In the next step, we need

to obtain a valid signature of 𝑥
𝑒1/𝑝1
0

for the exponent 𝑒1 = 𝐻MD (𝐷1)
associated with public metadata 𝐷1. The output will essentially

be 𝑥1. The step is repeated to obtain 𝑥𝑖 that is output of the blind

signing protocol for element 𝑥
𝑒𝑖 /𝑝𝑖
𝑖−1 for all 𝑖 ∈ [𝑧]. The final output

is 𝑥𝑧 that is a forgery for message 𝑀 and public metadata 𝐷 . For

the blind RSA signatures with public metadata protocol, we note

that the signer receives a blinded version of the input message𝑀

that is equivalent to some element in the underlying RSA group.

Therefore, it is perfectly valid to send 𝑥
𝑒𝑖 /𝑝𝑖
𝑖−1 as the input element

for the blind signing protocol.

We can now attempt to do the same attack for the standard (non-

blind) RSA signatures with public metadata. The key point is that

the adversary can no longer submit the element 𝑥
𝑒𝑖 /𝑝𝑖
𝑖−1 directly as

input to the signing protocol. If the adversary wished to perform

blind signing for this element, it must find some input message

𝑀𝑖 such that 𝐻M (𝑀𝑖 | | 𝐷𝑖) = 𝑥
𝑒𝑖 /𝑝𝑖
𝑖−1 . As we assume that 𝐻M is a

random oracle (that is, an ideal one-way function), it is computa-

tionally intractable for the adversary to find such a message 𝑀𝑖

such that 𝐻M (𝑀𝑖 | | 𝐷𝑖) = 𝑥
𝑒𝑖 /𝑝𝑖
𝑖−1 . Therefore, this attack does not

apply directly to our standard RSA signatures with public metadata.

As a result, we note that several features required for the blind

RSA signatures with public metadata are not needed for our non-

blind protocol. First, we do not require the exponent checks that

re-sample salts for 𝐻MD when the set of valid exponents satisfy

the algebraic properties required for the attack above. Secondly,

our underlying RSA assumptions can simply use random odd ex-

ponents (instead of only focusing on exponent sets without the

algebraic property). Therefore, it is not surprising that we prove

our standard (non-blind) protocol directly from the RSA assump-

tion (Definition 3.3) while we require the algebraically-restricted

exponent assumption (Definition 4.4) for our blind signatures.

F Modified RSA Signatures with Public
Metadata with Better Concrete Security

In this section, we show that there is a slightly modified variant

of the RSA signatures with public metadata protocol from Sec-

tion 5 with better concrete security reductions. The resulting se-

curity bounds of this modified protocol identically match those

obtained [12] for RSA signatures (without public metadata).

ModifiedProtocol.Ourmodified protocolmakes twominor changes

to the protocol presented in Section 5. First, the public key is aug-

mented to contain both the strong RSA modulus 𝑁 and standard

RSA public exponent 𝑒 . Additionally, we will now compute 𝑒MD as

𝑒 · 𝐻MD (𝐷).
New Reduction to Multi-Exponent RSA Assumption. We con-

sider a modified reduction from the RSA assumption to the multi-

exponent RSA assumption from Theorem 4.2 under different expo-

nent distributions. For the RSA assumption, we will assume that a

fixed public exponent 𝑒 as in practice. For the multi-exponent RSA

assumption, we will use the exponent distribution D′
𝑁,𝑒

defined

as follows. An uniformly random odd number 𝑒′ is chosen from

[3, 2𝜅−2]. The final output is 𝑒 · 𝑒′. We note that the output can be

much larger than 𝜅 − 2 bits (as large as 2𝜅 − 4 bits). Nevertheless, it
is not an issue as it will still be invertible modulo 𝜙 (𝑁).

54

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

Theorem F.1. If the (𝜖, 𝑡)-RSA assumption for strong modulus
(Definition 3.3) is true with a fixed exponent 𝑒 , then the (𝜖, 𝑡−𝑂 (ℓ), ℓ)-
multi-exponent RSA assumption (Definition 4.1) is true with exponents
drawn from D′

𝑁,𝑒
defined above.

Proof. Suppose that there exists an adversaryA′ that wins the
multi-exponent RSA game with probability 𝜖′ with running time 𝑡 ′

when given ℓ challenge exponents. We build an adversary A for

the RSA game that wins with probability 𝜖′ with the running time

𝑡 = 𝑡 ′+𝑂 (ℓ). Recall thatA is given an exponent 𝑒 and random target

𝑋 and must produce 𝑌 satisfying 𝑌 𝑒 = 𝑋 mod 𝑁 . To do this,A will

pick ℓ random odd numbers from the set [1, 2𝜅−2] that we denote as
𝑧1, . . . , 𝑧ℓ . We choose the ℓ challenge exponents as 𝑒𝑖 = 𝑒 · 𝑧𝑖 for all
𝑖 ∈ [ℓ]. Note, each 𝑒𝑖 are essentially valid exponents drawn from the

distributionD′
𝑁,𝑒

. Finally,A passes the modulus𝑁 , the ℓ exponents

as well as the random target𝑋 toA′ (𝑁, 𝑒1, . . . , 𝑒ℓ , 𝑋). We know that

A′ returns 𝑖 and a valid decryption𝑌 of𝑋 under 𝑒𝑖 with probability

𝜖′. Additionally, we know that 𝑌 = 𝑋 1/𝑒𝑖 = 𝑋 1/(𝑒 ·𝑧𝑖)
in this case.

A outputs 𝑌 𝑧𝑖 = 𝑋 1/𝑒
to win the RSA game with probability 𝜖′.

For the running time, A uses an additional 𝑂 (ℓ) time to generate

random exponents. □

Unforgeability. With the new reduction, we can essentially re-

do the proof of Theorem 5.3 using the above multi-exponent RSA

assumption with the modified exponent distribution. The security

bounds are identical to the ones proven in [12] for standard non-

public metadata RSA signatures.

Lemma F.2. Suppose that (𝐻M ,VerifyM) correspond to full do-
main hash (FDH) message encoding. Assuming the (𝜖, 𝑡, 𝑞MD)-multi-
exponent RSA assumption (Definition 4.1) with exponents from D′

𝑁,𝑒

and the random oracle model, then RSAMD is (𝜖𝐹 , 𝑡𝐹 , ℓ𝐹)-strong one-
more unforgeable (Definition 2.2) where
• 𝑡𝐹 = 𝑡 −𝑂 (𝑞M + 𝑞MD + ℓ𝐹)
• 𝜖𝐹 = 𝑞M · 𝜖

and the adversary A runs in time at most 𝑡𝐹 and makes at most ℓ𝐹 ,
𝑞M and 𝑞MD queries to the signing oracle and hash functions 𝐻M
and 𝐻MD respectively.

Proof. The proof follows identically as the proof of Lemma E.1.

The only difference required is the observation that the public

exponents of the modified algorithm are generated identically to

D′
𝑁,𝑒

. □

Theorem F.3. Suppose that (𝐻M ,VerifyM) correspond to full do-
main hash (FDH) message encoding. Assuming the (𝜖, 𝑡)-RSA assump-
tion (Definition 3.3) with fixed public exponent 𝑒 and the random
oracle model, then RSAMD is (𝜖𝐹 , 𝑡𝐹 , ℓ𝐹)-strong one-more unforgeable
(Definition 2.2) where
• 𝑡𝐹 = 𝑡 −𝑂 (𝑞M + 𝑞MD + ℓ𝐹)
• 𝜖𝐹 = 𝑞M · 𝜖

and the adversary A runs in time at most 𝑡𝐹 and makes at most ℓ𝐹 ,
𝑞M and 𝑞MD queries to the signing oracle and hash functions 𝐻M
and 𝐻MD respectively.

Proof. First, we apply Lemma F.2 to reduce security to the

(𝜖𝐹 /𝑞M , 𝑡𝐹 + 𝑂 (𝑞M + 𝑞MD + ℓ𝐹), 𝑞MD)-multi-exponent RSA as-

sumption with exponents D′
𝑁,𝑒

for some public exponent 𝑒 . By

applying Theorem F.1, we obtain that this is equivalent to the

(𝜖𝐹 /𝑞M , 𝑡𝐹 +𝑂 (𝑞M +𝑞MD + ℓ𝐹))-RSA assumption with fixed expo-

nent 𝑒 . □

G Potential Denial-of-Service Risks
The protocols in this paper require performing RSA operations with

larger exponents than standard RSA. The usage of large exponents

may incur additional computation for the signer in the protocols

but note that a user cannot change the size of the exponent (which

is fixed at setup) arbitrarily. In particular, one could consider denial-

of-service (DoS) risks where users wish to pick bad exponents (i.e.,

metadata) that may incur additional computation by the signer. In

general, these risks are mitigated by the fact that the signer only

performs computation on valid metadata 𝐷 ∈ MD. If an attacker

picks badmetadata𝐷 ∉ MD, the signer rejects and avoids additional
computation. Therefore, an attacker is restricted to trying to pick

the worse metadata (and corresponding exponent) that appears in

the valid metadata set MD. If MD is small, this severely restricts

the freedom of the attacker to find bad inputs to cause larger signer

computation. Furthermore, if this is a concern, one can also re-

sample the salt corresponding to 𝐻MD and check that no exponents

corresponding to valid metadata incurs large computation.

H Supplementary Material for Analyzing
Multi-Exponent Attacks

H.1 Asymptotic Analysis of Exponent Check
We can also prove an asymptotic bound on the above probability

using analytical upper bounds on Dickman’s rho function [41].

In general, these upper bounds are much looser than the actual

values of Dickman’s rho function. Therefore, one should use the

Dickman’s rho function directly instead of the asymptotic upper

bound as we will see later.

TheoremH.1. Consider security parameter 𝜆 and public metadata
set MD of size |MD| = poly(𝜆). Suppose that 𝐻MD outputs 𝛾-bit odd
integers where 𝛾 = 𝜅 − 2 and 𝛾 ≥ 32. Let 𝐸 be the event defined in
Theorem 7.1. Then, for any randomly chosen salt, Pr[𝐸] ≤ 𝑂 (2−

√
𝜅).

Proof. We use the asymptotic upper bound from [41] stating

that 𝜌 (𝑢) = 𝑢−𝑢+𝑜 (𝑢) . We set 𝑥 = 2
−
√
𝜅
in Theorem 7.1:

Pr[𝐸] ≤ |MD|2

2

√
𝜅
+ 2|MD| · 𝜌 (𝛾/

√
𝜅)

≤ poly(𝜆)
2

√
𝜅
+ poly(𝜆)
(𝛾/
√
𝜅)𝛾/

√
𝜅

since |MD| = poly(𝜆). Next, we plug in 𝛾 = 𝜅 − 2 and use the fact

that 𝛾 ≥ 32 to get

Pr[𝐸] ≤ poly(𝜆)
2

√
𝜅
+ poly(𝜆)
(
√
𝜅/2)

√
𝜅/2

≤ poly(𝜆)
2

√
𝜅
+ poly(𝜆)
2

√
𝜅/2·log(

√
𝜅)−1

≤ poly(𝜆)
2

√
𝜅
+ poly(𝜆)

2

√
𝜅

=𝑂

(
2
−
√
𝜅
)

to complete the proof. □
55

Proceedings on Privacy Enhancing Technologies 2025(1) Amjad et al.

Roughly speaking, the above lemma states that if one wishes to

have this probability be 2
−𝜆
, then the security parameter should

be chosen as approximately 𝜅 =𝑂 (𝜆2). However, this guidance is
worse than those in Figure 7 using Dickman’s rho function directly.

H.2 Relationship between Restricted-Exponent
and Algebraically-Restricted-Exponent
Assumptions

We utilize the above result to formalize the relationship between the

chosen-target, restricted-exponent assumption (Definition 4.3) and

the chosen-target, algebraically-restricted-exponent assumption

(Definition 4.4). Recall the only difference is that the exponent

oracle performs additional checks in the latter game. We show

that the two games are equivalent where the adversarial advantage

difference is at most the probability upper bound that we proved in

Theorem 7.1.

Theorem H.2. If the (𝜖, 𝑡, ℓ, ℓ ′)-chosen-target, restricted-exponent
RSA inversion assumption (Def. 4.3) is true with D𝑁 choosing uni-
formly random odd exponents from [3, 𝑒max] where 𝑒max ≤ 2

𝜅−2, then
the (𝜖′, 𝑡, ℓ, ℓ ′)-chosen-target, algebraically-restricted-exponent RSA
inversion assumption (Def. 4.4) is true with the same D𝑁 where

𝜖′ = 𝜖 + ℓ ′2

𝑥
+ (2 · ℓ ′ · 𝜌 (𝜅 − 2, log𝑥))

for some integer 𝑥 ≥ 2 and 𝜌 is Dickman’s function.

Proof. Towards a contradiction, suppose there exists an adver-

sary A′ running in time 𝑡 ′ with ℓ and ℓ ′ queries to the decryption

and exponent oracles respectively and advantage 𝜖′ for the chosen-
target, algebraically-restricted-exponent game in Definition 4.4. We

construct an adversaryA for the chosen-target, restricted-exponent

game in Definition 4.3. Essentially, A executes A′ identically. We

note that the advantage of A is identical to A′ whenever the ex-
ponents output by the exponent oracle satisfy the checks. As the

output of D𝑁 is identical to 𝐻MD, we can immediately apply Theo-

rem 7.1 to obtain that the advantage of A satisfies

𝜖 ≤ 𝜖′ − ℓ ′2

𝑥
− (2 · ℓ ′ · 𝜌 (𝜅 − 2, log𝑥))

where we replace |MD| with ℓ ′ to limit the number of exponents

exposed to the adversary. Note, we are free to pick any choice of

integer 𝑥 ≥ 2 to minimize the right hand side of the equation. □

We can now use this relation to prove unforgeability of our blind

RSA signatures with public metadata protocol directly from the

chosen-target, restricted-exponent RSA inversion assumption.

Theorem H.3. Suppose that (𝐻M ,VerifyM) correspond to full
domain hash (FDH) message encoding. Assuming the (𝜖, 𝑡, ℓ, |MD|)-
chosen-target, restricted-exponent RSA inversion assumption (Def-
inition 4.3) with exponents in [3, 𝑒max] such that 𝑒max = 2

𝜅−2 and
the random oracle model, then BlindRSAMD is (𝜖𝐹 , 𝑡𝐹 , ℓ𝐹)-strong one-
more unforgeable (Definition 2.2) where

• 𝜖𝐹 = 𝜖 + 2−𝜅+2 log𝑞M + |MD |2
𝑥
+ (2 · |MD| · 𝜌 (𝜅 − 2, log𝑥)) for

any integer 𝑥 ≥ 2

• 𝑡𝐹 = 𝑡 −𝑂 (𝑞M + 𝑞MD + ℓ𝐹)
• ℓ𝐹 = ℓ

and the adversary A runs in time at most 𝑡𝐹 and makes at most ℓ𝐹 ,
𝑞M and 𝑞MD queries to the signing oracle and hash functions 𝐻M
and 𝐻MD respectively.

Proof. First, we reduce the unforgeability game to the chosen-

target, algebraically-restricted-exponent game in Theorem 6.1. Af-

terwards, we reduce to the final chosen-target, restricted-exponent

game using Theorem H.3. □

We note that one could also plug Theorem H.1 into the above

theorem to obtain the bound on adversarial advantage as

𝜖𝐹 = 𝜖 + 2−𝜅+2 log𝑞M +𝑂
(
2
−
√
𝜅
)
.

I Survey of Cryptography Libraries for
Production Usage

In this section, we survey the availability of various cryptographic

operations across different libraries that are production ready (in-

cluding those that are implemented to be specifically resistant to

side-channel attacks). In particular, we will avoid any experimental

and/or research libraries with explicit disclaimers that their imple-

mentations of cryptographic operations is not ready for production

usage.

For our analysis, we will focus on the availability of the neces-

sary cryptographic operations for our protocol (presented in this

paper) as well as those based on pairings [56]. With respect to our

protocol, we will focus on RSA operations with respect to large

exponents. For pairings, we will simply analyze whether the cryp-

tographic library exposes the necessary pairing-friendly curves for

implementing [56]. As a caveat, we note our protocol also requires

the additional cryptographic operations of generation safe primes

during key generation that may not be exposed by some crypto-

graphic libraries. We ignore safe prime generation because it is done

exclusively by the signer in an offline manner (thus, the efficiency

of safe prime generation is less important and the operation is less

subject to side-channel attacks). Furthermore, it is not complex to

implement safe prime generation using standard prime generation

along with standard primality tests (both of which are available in

every cryptographic library that we surveyed).

To choose production ready libraries, we consider several li-

braries that have active FIPS 140-2 certifications with current re-

views for FIPS 140-3 validations (see [24] for comprehensive list).

We caveat that not all cryptography libraries that are suitable for

production usage have FIPS certifications. For example, we will

include the ACML library [59] that supports pairings that was

built for production usage without FIPS cerifications. Neverthe-

less, we believe this is a reasonable methodology for determining

libraries whose cryptographic implementations are aiming to be

usable in production systems. For our analysis, we will consider

the ACML [59], BoringSSL [33], OpenSSL [45], wolfCrypt [62],

BouncyCastle [58] and NSS [43] libraries. We present our findings

in Figure 14 about the availability of RSA operations with large

exponents and pairing-friendly curves.

RSA Operations with Large Exponents. We note that both Bor-

ingSSL and OpenSSL have the necessary public exposed functions

to enable our protocol (our implementation [7] is built using Bor-

ingSSL). The required RSA operations are available for wolfCrypt

56

RSA Blind Signatures with Public Metadata Proceedings on Privacy Enhancing Technologies 2025(1)

Library RSA with
Large Exponents

Pairing-Friendly
Curves

BoringSSL [33] ✓ ×
OpenSSL [45] ✓ ×
wolfCrypt [62] ✓ ×
BouncyCastle [58] × ×
NSS [43] ✓ ×
ACML [59]* ✓ ✓

Figure 14: Comparison of the availability of RSA with large expo-
nent operations and pairing-friendly curves in various cryptographic
libraries suitable for production usage. Amongst this group, we note
ACML is the only library without FIPS certifications.

that is also a derivative of OpenSSL (and we expect this to be true

for most OpenSSL derivatives). Similarly, both the NSS and ACML

libraries also offer the necessary RSA operations. We note that the

necessary public functions are not available in BouncyCastle, but

the required implementations exist (and would only need to be ex-

posed to enable this implementation). This is not true for pairings

where no implementation exists in BouncyCastle.

Pairing-Friendly Curves. In general, we can see that many of the

cryptographic libraries ready for production usage do not support

pairing-friendly curves (except ACML [59] that does not have FIPS

certifications). This highlights the currently limited availability of

pairing-based cryptography for production systems. We do caveat

that pairings are available in many experimental and/or research-

oriented library including Arkworks [9], CIRCL [21], NCC Group’s

implementation of BLS12-381 [47] and RELIC [51]. However, all of

these have explicit disclaimers that the implementations should not

be used in production. Additionally, we note there has been recent

interest in pairing-based cryptography in IRTF [14] that may lead

to wider availability of pairings in the future.

57

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Anonymous Tokens
	2.1 Unforgeability
	2.2 Unlinkability

	3 Prior RSA Assumptions
	4 RSA with Multiple Exponents
	4.1 Multi-Exponent RSA Assumption
	4.2 One-More Multi-Exponent RSA Assumption
	4.3 Connections to Strong RSA Assumption

	5 RSA Signatures with Public Metadata
	5.1 Preliminaries and Building Blocks
	5.2 Our Protocol

	6 RSA Blind Signatures with Public Metadata
	6.1 Unforgeability
	6.2 Unlinkability

	7 Analyzing Multi-Exponent Attacks
	7.1 Analyzing Exponent Check

	8 Experimental Evaluation
	9 Deployment Telemetry
	10 Conclusions
	References
	A Discussion about Strong RSA Modulus
	B Equivalence of Unforgeability Definitions
	C Equivalence of RSA and Multi-Exponent RSA Assumption
	D Connections to Strong RSA Assumption
	E RSA Signatures with Public Metadata: Proof of Unforgeability
	E.1 Non-Applicability of Multi-Exponent Attacks for RSA Signatures

	F Modified RSA Signatures with Public Metadata with Better Concrete Security
	G Potential Denial-of-Service Risks
	H Supplementary Material for Analyzing Multi-Exponent Attacks
	H.1 Asymptotic Analysis of Exponent Check
	H.2 Relationship between Restricted-Exponent and Algebraically-Restricted-Exponent Assumptions

	I Survey of Cryptography Libraries for Production Usage

