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Abstract
Local Differential Privacy (LDP) provides a formal guarantee of
privacy that enables the collection and analysis of sensitive data
without revealing any individual’s data. While LDP methods have
been extensively studied, there is a lack of a systematic and em-
pirical comparison of LDP methods for descriptive statistics. In
this paper, we first provide a systematization of LDP methods for
descriptive statistics, comparing their properties and requirements.
We demonstrate that several mean estimation methods based on
sampling from a Bernoulli distribution are equivalent in the one-
dimensional case and introduce methods for variance estimation.
We then empirically compare methods for mean, variance, and
frequency estimation. Finally, we provide recommendations for
the use of LDP methods for descriptive statistics and discuss their
limitations and open questions.
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1 Introduction
The advent of mobile applications has led to the emergence of
numerous modern applications that necessitate the collection and
analysis of sensitive data generated in a decentralized manner by
different users or devices. These include, but are not limited to,
applications in the field of medicine [6, 51, 61, 83], telemetry [28],
or usage statistics [27, 37]. Historically, this data has been collected
by a central entity for analysis, which has required individuals to
trust the central entity. In light of recent advances towards sharing
sensitive data with more entities, especially in the field of healthcare,
the consideration of individuals’ privacy has become more critical.

While these advances in data sharing often require the use of
anonymization or pseudonymization techniques, these methods
have been demonstrated to be inadequate for the protection of
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privacy, as evidenced by the findings of Sweeney [64] and Berrang,
Gerhart, and Schröder [15]. Differential Privacy (DP), as proposed
by Dwork, represents a more robust privacy definition that provides
strong privacy guarantees, yet still requires trust in the central en-
tity [34]. The local variant of differential privacy, Local Differential
Privacy (LDP) [52], eliminates the need for trust in the system. In
LDP, each participant perturbs their data locally before sending it
to the central aggregator. The LDP mechanism ensures a formal
privacy guarantee for each user while enabling the central entity to
estimate aggregate statistics. LDP preserves privacy by introducing
noise into the data shared with the aggregator, making it difficult to
perform accurate analysis. This privacy-utility trade-off is a central
challenge in the design of LDP mechanisms.

A review of the literature reveals that there are only a few docu-
mented applications of LDP in practice, with the majority of these
being implemented by large corporations [27, 28, 37]. In contrast,
the majority of the literature focuses on theoretical aspects of LDP.
This underscores a significant disparity between LDP research and
its practical applications, likely attributable to the absence of a
comprehensive overview and empirical comparison to assess the
efficacy of LDP methods in real-world settings.

A number of surveys on LDP methods have been conducted,
e.g., [70, 74, 78]. However, none of these surveys provide a compre-
hensive empirical evaluation of these methods for data analysis,
which are crucial for practical implementation. These evaluations
reveal real-world performance, context-specific effectiveness, and
implementation challenges that theoretical analyses often over-
look. Empirical studies serve to bridge the gap between theory
and practice, thereby aiding practitioners in making informed deci-
sions and driving further research and development. For instance,
Wang et al. [70] review various LDP techniques, focusing on defini-
tions, frequency estimation, mean estimation, and machine learning.
However, their work does not offer empirical comparisons. Simi-
larly, Xiong et al. [74] summarize LDP applications in frequency
estimation, mean estimation, distribution estimation, and machine
learning. However, their work also lacks empirical evaluations. Yang
et al. [78] present an overview of LDP methods and applications,
but their work provides only a broad summary. They do not cover
all methods comprehensively and do not emphasize descriptive
statistics. Consequently, a detailed empirical comparison of LDP
methods remains a critical missing piece in the literature, necessary
for bridging the gap between theoretical research and practical
application.
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This paper presents a systematization of LDP methods for de-
scriptive statistics, including mean estimation, variance estima-
tion, frequency and distribution estimation, contingency tables,
range queries, and quantile estimation. We compare the methods
in terms of their properties, requirements, and error bounds (where
available) and show empirical comparisons for the most common
applications. Our main contributions are as follows:

(1) We provide a systematization of LDP methods for descriptive
statistics, including mean estimation, variance estimation,
quantile estimation, and distribution estimation. We compare
the methods in terms of their properties, requirements, and
error bounds.

(2) We show that several mean estimation methods based on
sampling from a Bernoulli distribution are equivalent in the
one-dimensional case.

(3) We generalize a method for variance estimation from mean
estimation methods and provide an error bound for the vari-
ance estimate.

(4) We empirically compare methods for mean estimation, vari-
ance estimation and frequency estimation and give recom-
mendations for the choice of method.

(5) We discuss the limitations of LDP methods for data analysis
and open problems.

Related Privacy Definitions. While this work only focuses on pure
(or approximate) local differential privacy, other variants of local
differential privacy exist. One such variant is personalized local dif-
ferential privacy, where each participant can choose a different pri-
vacy budget [3, 63, 76]. Another variant, metric LDP, relaxes LDP’s
requirement of indistinguishability over the whole domain [5]. This
may allow an adversary to learn some approximate information
about the private value while still hiding the exact value and en-
ables a more accurate data analysis in many applications. This
variant can be applied in all domains provided with a metric, and it
provides a better privacy-utility trade-off especially with more so-
phisticated notions of statistical utility, such as those that measure
the quality of a distribution estimation in terms of the earth mover’s
distance (aka Wasserstein distance or Kantorovich-Rubinstein met-
ric) [4, 17, 36]. For this reason, metric LDP is particularly successful
in those applications that require an estimation of distributions
(or frequencies, or histograms) that takes into account the ground
distance. It has been applied in a wide range of domains, including
location privacy [17], private text processing [39], and private and
personalized federated learning [43].

Organization. In Section 2, we overview key concepts and defini-
tions related to LDP and descriptive statistics. Section 3 summarizes
LDP methods for descriptive statistics. In Section 4, we present the
results of our empirical comparison of LDP methods for mean, vari-
ance, and frequency estimation. We discuss the limitations and open
topics in Section 5 before concluding in Section 6. In the appendix,
Table 4 provides an overview of the notation and Tables 5 and 6
summarize all discussed algortihms.

2 Preliminaries
This section defines local differential privacy and related concepts,
and provides an overview of descriptive statistics.

2.1 (Central) Differential Privacy
Dwork et al. [34] introduced the concept of differential privacy,
which provides a framework for quantifying the privacy loss result-
ing from computations on datasets containing sensitive informa-
tion. The premise of differential privacy is that two nearly identical
databases, differing by only one element, should yield similar out-
puts. An algorithm is defined as differentially private if its outputs
for these databases fall within a specified closeness threshold. This
guarantees that the outcome of the computation reveals little about
an individual’s data, thereby protecting privacy while still allowing
the analysis of valuable aggregate data. More formally:

Definition 2.1 (Differential Privacy). A randomized algorithm A
is (𝜀, 𝛿)-differentially private if for all data sets 𝐷1 and 𝐷2 differing
on at most one element, and all S ⊆ Range(A):

Pr[A(𝐷1 ) ∈ S] ≤ exp(𝜀 ) Pr[A(𝐷2 ) ∈ S] + 𝛿,

If 𝛿 = 0, we say that A achieves 𝜀-DP.
Achieving differential privacy involves the injection of a precise

amount of random noise into the algorithm’s output, effectively
obscuring the impact of any individual data point. This noising
approach strikes a balance between preserving privacy and main-
taining the utility of the data, allowing insights to be gained with-
out compromising individual privacy. One of the biggest advan-
tages of using differential privacy is that the privacy guarantees
are information-theoretical and hold against adversaries with un-
bounded computational power. This means no matter which com-
putation is done after the data is published in a differentially private
way, the privacy bounds still hold. Yet, central DP has a downside:
It allows data to be disclosed in a privacy-compliant manner after it
has been processed by the curator A. However, all data must first
be given to A, which requires trusting the curator. To remove this
trust assumption, local differential privacy was proposed.

2.2 Local Differential Privacy
In contrast to the central model of differential privacy, the local
model operates without a trusted curator. The local model of differ-
ential privacy was first formalized by Kasiviswanathan et al. [52].
In the local model, each client randomizes its data before send-
ing it to the server that aggregates and potentially publishes it.
This minimizes the trust required. The algorithm performing the
randomization on each client is often called local randomizer. An
adversary observing the output of the local randomizer should
not be able to infer the private input as any possible input value
is similarly likely to have generated the observed output. More
formally:

Definition 2.2 (Local Differential Privacy). A randomized algo-
rithm A with domain 𝐷 is (𝜀, 𝛿)-locally differentially private (an
(𝜀, 𝛿)-DP local randomizer) if for all S ⊆ Range(A) and for all
pairs of client’s values 𝑥,𝑦 ∈ 𝐷 :

Pr[A(𝑥 ) ∈ S] ≤ exp(𝜀 ) Pr[A(𝑦) ∈ S] + 𝛿,

If 𝛿 = 0, we say that A is an 𝜀-DP local randomizer (or (purely)
𝜀-LDP).

2.3 Sequential Composition
While local differential privacy ensures the privacy of individual
queries, the question arises as to how we can integrate multiple
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queries without violating overall privacy. Sequential composition
solves this dilemma by showing that the aggregate privacy loss from
sequentially applying different differentially private algorithms is
limited to the sum of their individual privacy losses. Sequential
composition is a strength of (local) differential privacy since the
obtained bounds hold without any special effort by the curator.
We now recite the theorem of sequential composition for central
differential privacy and refer the reader to [35] for the proof. It
should be noted that the theorem also holds for local differential
privacy when considering databases of size 1.

Theorem 2.3 (Seqential Composition [35]). Let A𝑖 be an
(𝜀𝑖 , 𝛿𝑖 )-differentially private algorithm for 1 ≤ 𝑖 ≤ 𝜆. Then A :=
(A1, . . . ,A𝜆) is (

∑𝜆
𝑖=1 𝜀𝑖 ,

∑𝜆
𝑖=1 𝛿𝑖 )-differentially private.

2.4 Interactivity
Local differential privacy algorithms can be classified into three
categories: non-interactive, sequentially interactive, and fully in-
teractive. In the non-interactive setting, the server assigns a local
randomizer to each client before the clients send their responses to
the server. In the sequentially interactive setting, the server may
query clients with adaptively chosen local randomizers based on
the responses of previous clients, but may only query each client
once. In the fully interactive setting, the server is permitted to query
each client multiple times with adaptively chosen local randomizers
(ensuring that the privacy guarantees remain intact throughout the
interaction). The majority of the methods discussed in this paper
are non-interactive, with the exception of a few sequentially in-
teractive methods that are explicitly marked as such. We refer the
reader to the work by Joseph et al. [47] for a detailed discussion of
interactivity in local differential privacy.

2.5 Descriptive Statistics
Descriptive statistics form the foundation of data analysis and are
employed to analyze data prior to the application of other methods,
such as inferential statistics or machine learning [19, 59]. Descrip-
tive statistics describe or summarize the main features of a dataset,
which can consist of quantitative or categorical data. Quantitative
data can be continuous (e.g., body weight) or discrete (e.g., number
of children). Categorical data consist of values from a finite set
of categories and can be unordered (e.g., blood type) or ordered
(e.g., cancer stage). For continuous data, measures of central ten-
dency (mean, median) and variability (standard deviation/variance,
range/min/max, interquartile range) can be employed. In the case
of unordered categorical data, the absolute or relative frequencies
of each category can be calculated (i.e., the number of occurrences
of each category divided by the total number of observations). This
allows for the creation of contingency tables, which summarize the
relationship or joint distribution between two categorical variables
(providing frequencies for each combination of categories).

3 Descriptive Statistics Under Local Differential
Privacy

This section provides an overview of methods for estimating de-
scriptive statistics under local differential privacy.

3.1 Mean Estimation
The most common statistic is the mean, which describes the cen-
tral tendency of a data set. Formally, we are given a data set 𝑋 =
{𝑥1, . . . , 𝑥𝑛} with 𝑥𝑖 ∈ R𝑑 and wish to estimate the sample mean
𝑥 = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 . In certain instances, we are also interested in esti-

mating the population mean 𝜇 (i.e., the mean of the underlying
distribution 𝜇 = E[P], 𝑥𝑖 ∼ P). While we are generally interested
in estimating the mean of data in R𝑑 , we will see that most methods
require the data to be bounded. While these methods require spe-
cific input ranges, data from many applications can be transformed
into this range by scaling and shifting the data (e.g., by using the
min-max scaling if the bounds of the data are known). Some meth-
ods only handle 1-dimensional data (i.e., a single scalar value per
participant) while others specifically focus on 𝑑-dimensional data
(i.e., a vector or multiple attributes per participant).

In the following, we summarize the mean estimation methods
and split them into two categories: methods for bounded data and
Gaussian data. For each algorithm, we provide a brief description in
the text and give details such as the input range and the error of the
algorithms in Table 1 for bounded data and Table 7 in the appendix
for Gaussian data. We also briefly summarize special cases of mean
estimation that may be of interest for specific applications but are
not directly comparable to the other methods.

3.1.1 Mean Estimation for Bounded Data. In the 1-dimensional
setting, Dwork et al. [34] introduced the Laplace mechanism for
central DP, which can also be used for LDP. The Laplace mecha-
nism involves adding noise, drawn from a Laplace distribution, to
each value 𝑥𝑖 ∈ [−1, 1]. The mean of these noisy values is then
calculated as 𝜇 = 1

𝑛

∑𝑛
𝑖=1 (𝑥𝑖 + 𝐿𝑎𝑝 ( 2

𝜀 )). Duchi et al. [32, 33] show
that the Laplace mechanism is asymptotically optimal for 𝑑 = 1.
They further provide mechanisms for 𝑑 ≥ 1, either bounded by
the ℓ2 or ℓ∞ norm, both of which are based on sampling from a
Bernoulli distribution. The ℓ∞ mechanism additionally randomly
rounds each dimension of the input to −𝑟 or 𝑟 . They show that both
mechanisms are unbiased (i.e., the expected value of the responses
is the true mean) and provide minimax squared error bounds for
both cases. In the earlier work by Duchi et al. [31], they provide
error bounds for the ℓ∞-norm case for general data, while in the
later work by Duchi et al. [32], they only provide error bounds for
the ℓ∞ mechanism for 1-sparse data, which is data where only one
dimension is non-zero.

Nguyên et al. [58] claim to find issues in the method by Duchi
et al. [31, 32] and aim to fix them with their method. At the core,
their method only handles one dimension and samples from a
Bernoulli distribution with a probability that depends on the input
value. In fact, their method is equivalent to the ℓ∞ mechanism by
Duchi et al. [32] for 𝑑 = 1 (see Proposition 3.1 below). To enable the
method to handle 𝑑-dimensional data, they randomly select one
dimension for each user and only transmit the response for this
dimension.

Ding et al. [28] propose 1BitMean which estimates the mean of
data in the range [0,𝑚]. An input 𝑥𝑖 is rounded to 1 with probability
𝑥𝑖
𝑚 and 0 otherwise. The resulting bit is flipped with probability

1
𝑒𝜀+1 (by sampling from a Bernoulli distribution) and transmitted
to the aggregator. The aggregator corrects for the bit flipping to
obtain an unbiased estimate for the mean.
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Table 1: Comparison of mean estimation mechanisms for bounded data. All methods are non-interactive and are purely 𝜀-LDP.

Algorithm Input Range Error

Laplace 𝑥𝑖 ∈ [−1, 1] minimax squared error [33]: 𝑂
(

1
𝑛𝜀2

)
Duchi et al. [32, 33] for 𝜀 ∈ [0, 1]:
- for ℓ2 [32, 33] 𝑥𝑖 ∈ R𝑑 , ∥𝑥𝑖 ∥2 ≤ 𝑟 - minimax squared error: 𝑂

(
𝑟 2 𝑑

𝑛𝜀2

)
- for ℓ∞ [32]𝑎 𝑥𝑖 ∈ R𝑑 , ∥𝑥𝑖 ∥∞ ≤ 𝑟 - minimax ℓ∞ error: 𝑂

(
𝑟
√
𝑑 log(2𝑑 )√
𝑛𝜀2

)
- for 1-sparse ℓ∞ [32] 𝑥𝑖 ∈ R𝑑 , ∥𝑥𝑖 ∥∞ ≤ 𝑟, ∥𝑥𝑖 ∥0 = 1 - minimax squared error: 𝑂

(
𝑟 2 𝑑 log(2𝑑 )

𝑛𝜀2

)
Nguyên et al. [58]𝑎 𝑥𝑖 ∈ [−1, 1]𝑑 with prob. 1 − 𝛽 : ∥𝜇 − 𝑥 ∥∞ =𝑂

(√
𝑑 log(𝑑/𝛽 )
𝜀
√
𝑛

)
Ding et al. [28]𝑎 𝑥𝑖 ∈ [0,𝑚] with prob. 1 − 𝛽 : |𝜇 − 𝑥 | ≤ 𝑚√

2𝑛
𝑒𝜀+1
𝑒𝜀−1

√︁
log (2/𝛽)

Wang et al. [65]

- Piecewise Mechanism 𝑥𝑖 ∈ [−1, 1] with prob. 1 − 𝛽 : |𝜇 − 𝑥 | =𝑂

(√
log(1/𝛽 )
𝜀
√
𝑛

)
- Hybrid Mechanism 𝑥𝑖 ∈ [−1, 1]𝑑 with prob. 1 − 𝛽 : ∥𝜇 − 𝑥 ∥∞ =𝑂

(√
𝑑 log(𝑑/𝛽 )
𝜀
√
𝑛

)
Waudby-Smith et al. [73]𝑎 𝑥𝑖 ∈ [0, 1] with prob. 1 − 𝛽 : |𝜇 − 𝜇 | ≤ 1√

2𝑛
𝑒𝜀+1
𝑒𝜀−1

√︁
log(1/𝛽)

𝑎 These methods are equivalent for 𝑑 = 1 (see Proposition 3.1).

Wang et al. [65] (who mostly consist of the same authors as
Nguyên et al. [58]) handle multiple dimensions by randomly se-
lecting 𝑘 ≤ 𝑑 dimensions for each user and only transmitting
mechanism responses for these dimensions. The authors combine
the 1-dimensional case of the ℓ∞ mechanism by Duchi et al. [32]
with the introduction of the Piecewise mechanism to create the
Hybrid mechanism. The Piecewise mechanism randomly samples a
value from a range [−𝐷, 𝐷] (where 𝐷 depends on 𝜀), where values
close to the input have the same high probability of being sampled
and values further away have the same low probability. The Hybrid
mechanism randomly selects a mechanism to use based on 𝜀 – with
a higher probability for the Piecewise mechanism for large 𝜀 and
the ℓ∞ mechanism for small 𝜀.

Waudby-Smith et al. [73] present methods for estimating the
population mean and a corresponding confidence interval using
a generalization of 1BitMean [28]. When using the default pa-
rameters, the mean estimation part of their method reduces to
1BitMean.

We find that all Bernoulli-based methods [28, 32, 58, 73] are
equivalent for 𝑑 = 1. We formalize this observation in the following
proposition and give the proof in the appendix.

Proposition 3.1. The Bernoulli-based mechanisms𝑀𝐷𝑢 by Duchi
et al. [32] (ℓ∞ case),𝑀𝑁 by Nguyên et al. [58],𝑀𝐷 by Ding et al. [28],
and𝑀𝑊 by Waudby-Smith et al. [73] (with default parameters) are
equivalent for 𝑑 = 1, i.e., they sample the response from the same
probability distribution given the same input (in the corresponding
input range).

3.1.2 1-Dimensional Mean Estimation for Gaussian Distributions.
In addition to the methods discussed in the previous sections, it
is worth noting that there are approaches specifically designed to
estimate the mean of unbounded data. Specifically, Gaboardi et al.
[42] and Joseph et al. [46] provide methods for estimating the mean
of a Gaussian distribution (see Table 7 in the appendix).

Gaboardi et al. [42] aim to estimate a confidence interval for the
mean of an unknown Gaussian distribution. They assume that the
population mean is bounded in [−𝑅, 𝑅] and provide variants for
known and unknown variance. Both variants are (𝜀, 𝛿)-LDP with
𝛿 > 0. Furthermore, both variants are sequentially interactive and
use multiple rounds of communication.

Joseph et al. [46] provide a set of algorithms to estimate the mean
of an unknown Gaussian distribution with known or unknown
variance. Furthermore, their algorithms are strictly 𝜀-LDP (𝛿 = 0)
and require at most 2 rounds of communication (i.e., they provide
non-interactive and sequentially interactive variants).

3.1.3 Special Cases of Mean Estimation. Further special cases of
mean estimation have been proposed in the literature. Bhowmick
et al. [16] and Asi et al. [9] introduce methods for transmitting
data sampled from the unit sphere, which is specifically useful for
applications in machine learning. They claim that their algorithms
are optimal, but also relax the privacy setting compared to standard
𝜀-LDP. Xue et al. [76] provide algorithms for mean estimation with
personalized LDP (i.e., every data point 𝑥𝑖 is perturbed using a
different 𝜀𝑖 ). Mean estimation for key-value pairs has been discussed
by Ye et al. [80] and Gu et al. [44]. The estimation of means of sparse
vectors has been discussed by Zhou et al. [82] and Duchi et al. [33].

3.2 Standard Deviation & Variance
Next to the mean, the standard deviation and variance are prob-
ably the most ubiquitous statistics. Per its definition [19] and fol-
lowing their notations, the unbiased sample variance 𝑠2

𝑋 can ei-
ther be calculated by subtracting the mean from each value as
𝑠2
𝑋 = 1

𝑛−1
∑

𝑖 (𝑥𝑖 − 𝜇𝑋 )2 or directly from the mean and the mean of
the squared values as 𝑠2

𝑋 = 𝑛
𝑛−1 (𝜇𝑋 2 − 𝜇2

𝑋 ).
The first option can be implemented through sequential interac-

tivity by first estimating the mean using a subset of the participants
and then estimating the variance using the remaining participants
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and the estimated mean. Given an 𝜀-LDP mean estimation method,
the resulting variance estimation is also 𝜀-LDP as each participant is
only queried by an 𝜀-LDP mechanism once. Note that this method is
necessarily sequentially interactive and requires two rounds of com-
munication as the mean estimate is a prerequisite for the variance
estimate.

The second option can be implemented non-interactively by
estimating the mean and the mean of the squared values simulta-
neously. Ding et al. [29] discuss how their 1BitMean algorithm
can be used to estimate the mean 𝜇𝑋 and the mean of the squared
values 𝜇𝑋 2 and use those estimates to calculate the variance. By
splitting the privacy budget between the two estimations (𝜀1 and
𝜀2 for the mean of 𝑋 and 𝑋 2 respectively), they can provide an
estimate for the variance with a total privacy budget of 𝜀 = 𝜀1 + 𝜀2
(sequential composability). Similarly, Waudby-Smith et al. [73] dis-
cuss the estimation of the population variance using their method
for estimating confidence intervals for the mean.

We now generalize these insights to other mean estimation al-
gorithms and provide an upper bound for the error of the sample
variance estimate. Assume an 𝜀-LDP mean estimation method 𝜇

with error |𝜇 − 𝜇 | ≤ 𝑓 (𝑛, 𝜀) (only depending on 𝑛 and 𝜀). Using
this method with privacy budget 𝜀𝑋 and 𝑛𝑋 participants, the mean
𝜇𝑋 = 1

𝑛

∑
𝑖 𝑥𝑖 can be estimated with error |𝜇𝑋 − 𝜇𝑋 | ≤ 𝑓 (𝑛𝑋 , 𝜀𝑋 ).

Analogously, the mean of the squared values 𝜇𝑋 2 = 1
𝑛

∑
𝑖 𝑥

2
𝑖 can

be estimated with error |𝜇𝑋 2 − 𝜇𝑋 2 | ≤ 𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ). The sample
variance 𝑠2

𝑋 can then be estimated as 𝑠2
𝑋 = 𝑛

𝑛−1 (𝜇𝑋 2 − 𝜇2
𝑋 ) . It is

now possible to either split the participants into two groups and
estimate both means with the full privacy budget (𝑛 = 𝑛𝑋 + 𝑛𝑋 2

and 𝜀 = 𝜀𝑋 = 𝜀𝑋 2 ) or to split the privacy budget and include all
participants in the estimation of both means (𝑛 = 𝑛𝑋 = 𝑛𝑋 2 and
𝜀 = 𝜀𝑋 + 𝜀𝑋 2 ). The first method is 𝜀-LDP as it applies an 𝜀-LDP
mechanism to each participant once. The second method is 𝜀-LDP
by sequential composability if 𝜀 = 𝜀𝑋 + 𝜀𝑋 2 .

The error of the non-interactive sample variance estimate can
be calculated as follows:

Proposition 3.2. Given a dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, 𝑥𝑖 ∈
[−1, 1] and an 𝜀-LDP mean estimation method 𝜇 with error |𝜇 − 𝜇 | ≤
𝑓 (𝑛, 𝜀), the non-interactive sample variance estimator described above
has error

|𝑠2
𝑋 − 𝑠2

𝑋 | ≤ 𝑛

𝑛 − 1
(
𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + 𝑓 (𝑛𝑋 , 𝜀𝑋 )2 + 2𝑓 (𝑛𝑋 , 𝜀𝑋 ) ) . (1)

This result allows the estimation of a private dataset’s mean and
variance in one step, as the mean estimate is a necessary prerequi-
site for the variance estimate. Note that the error of the variance
estimate is always at least as large as the error of the mean esti-
mate. By selecting appropriate values for 𝜀𝑋 and 𝜀𝑋 2 , 𝑛𝑥 and 𝑛𝑋 2 ,
the errors of the mean and the variance estimates can be balanced.
An aggregator may allocate more privacy budget (or participants)
to the mean estimate if the mean is more important for their ap-
plication, or vice versa. The exact impact of the privacy budget
allocation on the error of the variance estimate depends on the
error function of the mean estimation method.

3.3 Frequency & Distribution Estimation
Another important task in data analysis is estimating the data distri-
bution. We first discuss this in the form of frequency estimation of
categorical values, before moving to the estimation of histograms

and probability density functions for numerical values (often called
“distribution estimation” in literature).

3.3.1 Frequency Estimation. In frequency estimation, we have 𝑛
data owners, each owning a single categorical value 𝑥𝑖 from a do-
main D of size |D| = 𝑘 .1 For a given item 𝑥 ∈ D, we define the
frequency2 as 𝑓 (𝑥) = 1

𝑛 |{𝑖 ∈ [𝑛] | 𝑥𝑖 = 𝑥}|. The goal of LDP fre-
quency estimation is to privately obtain an estimate 𝑓 of 𝑓 (often
called a frequency oracle). Note that in this paper, we are interested
in the relative frequency, i.e.,

∑
𝑥∈D 𝑓 (𝑥) = 1. Postprocessing may

be necessary to ensure that the sum of frequencies equals 1 and to
improve the accuracy of frequency estimates from the input data.
Methods for this range from simple normalization (dividing the fre-
quencies of a value by the sum of all frequencies) to more advanced
techniques like the matrix inversion method by Kairouz et al. [48].
A more sophisticated approach is the Iterative Bayesian Update
(IBU) [7, 36, 56], which is a form of the expectation maximization
(EM) method. IBU computes the maximum likelihood estimator
(MLE) of input frequencies based on output frequencies. Additional
postprocessing methods are discussed by Cormode et al. [24]. A
common approach used by some methods (and applied to all meth-
ods in this paper) is the projection onto the probability simplex. The
probability simplex is defined as Δ𝑘 = {𝑝 ∈ R𝑘 | 𝑝 ≥ 0,

∑𝑘
𝑖=1 𝑝𝑖 = 1}

and represents the set of all (valid) probability distributions over 𝑘
categories [32]. The projection of a vector 𝑝 onto the probability
simplex is defined as ΠΔ𝑘 (𝑝) = arg min𝑞∈Δ𝑘 ∥𝑞 − 𝑝 ∥2.

Literature also considers the problem of finding heavy hitters,
which are often defined as items 𝑥 with 𝑓 (𝑥) ≥ 𝜙 for some threshold
𝜙 or the top-𝑙 items with the largest frequencies. We do not cover
heavy hitters in this paper and refer the reader to Cormode et al.
[24] for an overview and the relevant literature for details [11, 13,
37, 60, 69].

Randomized response is the basis for many frequency estimation
methods and was first introduced by Warner [72] for binary data.
The original idea was to give survey participants plausible denia-
bility for sensitive questions. It works by flipping a biased coin and
answering truthfully with probability 𝑝 and answering randomly
with probability 1 − 𝑝 . Randomized response is 𝜀-LDP if 𝑝 = 𝑒𝜀

𝑒𝜀+1
[67, 72].

Frequency oracles are the main component of locally differen-
tially private frequency estimation, but vary in their construction,
accuracy and the size of domain they are best suited for. Wang et al.
[67] unify a number of frequency oracles under their proposed
concept of pure LDP protocols. Note that this “pure” differs from
the “pure” in pure LDP protocols (see Section 2.2) and refers to the
simplicity of the protocols. In the following definition and the rest
of the paper, we use “pure” to refer to the type of the protocols
introduced by Wang et al. [67] and not the LDP property. Pure
LDP protocols rely on an additional function Support(𝑧), which
is selected by the mechanism designer. This function defines the
set of items that a given output 𝑧 should be mapped to during fre-
quency estimation, and therefore also influences the perturbation
step. Informally, Support(𝑧) can be understood as representing the

1In literature the domain size is sometimes denoted 𝑑 instead of 𝑘 . To avoid confusion
with the dimensionality 𝑑 of the data we use 𝑘 for the domain size.
2Note that the frequency 𝑓 (𝑥 ) is unrelated to the error function 𝑓 (𝑛, 𝜀 ) used in
Section 3.2.
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idea that observing output 𝑧 “supports” the “hypothesis” that the
true value lies within the set Support(𝑧). We give examples for the
definition of this function for some mechanisms in the following
paragraphs.

Definition 3.3 (Pure LDP Protocol [67]). A protocol PE is a pure
LDP protocol if and only if there exists a function Support and two
probability values 𝑝∗ > 𝑞∗ such that for all 𝑣1,

𝑃𝑟 [PE(𝑣1 ) ∈ {𝑧 | 𝑣1 ∈ Support(𝑧 ) } ] = 𝑝∗,

∀𝑣2 ≠ 𝑣1𝑃𝑟 [PE(𝑣2 ) ∈ {𝑧 | 𝑣1 ∈ Support(𝑧 ) } ] = 𝑞∗

Pure protocols are 𝜀-LDP if 𝑝∗/𝑞∗ = 𝑒𝜀 . Responses 𝑧𝑖 for 𝑖 ∈ [𝑛]
from pure LDP protocols can be used to estimate the frequency of
an item 𝑥 as 𝑓 (𝑥) = 1

𝑝∗−𝑞∗
(∑

𝑗 1𝑥∈Support(𝑧𝑖 ) − 𝑛𝑞∗
)
.

We now briefly summarize pure and non-pure LDP frequency
estimation protocols. The following protocols are known to be pure
LDP protocols [24, 67] (see Cormode et al. [24] for a more detailed
description):

Direct encoding or 𝑘-ary randomized response (𝑘-RR; sometimes
𝑑-RR in literature) was first introduced by Kairouz et al. [49, 50] and
generalizes randomized response to 𝑘-ary data. The mechanism’s
output space is equal to the input space and the probability of
reporting the true value is 𝑝 = 𝑒𝜀

𝑒𝜀+𝑘−1 , while the probability of
reporting any other value is 𝑞 = 1

𝑒𝜀+𝑘−1 . In this case, Support(𝑧) =
{𝑥 | 𝑥 = 𝑧}, i.e., we count every response as though it were the true
value.

Another method, proposed by Wang et al. [67], is histogram
encoding. It works by encoding the input into a “histogram” 𝐵, i.e.,
a vector of size 𝑘 with a 1 indicating the index of the item and
0’s elsewhere. Each participant now perturbs each entry of this
vector with Laplace noise (𝐵′ [𝑖] = 𝐵 [𝑖] + 𝐿𝑎𝑝 (𝜀/2)) and sends the
perturbed vector 𝐵′ to the aggregator. Reports can be aggregated
using summation (SHE), where all noisy reports are summed up
in a noisy frequency estimate. SHE is not a pure protocol as there
is no known Support function. Alternatively, thresholding (THE)
can be used, where each noisy vector 𝐵′ is interpreted as a binary
vector through the definition of Support(𝐵′) = {𝑖 | 𝐵′ [𝑖] > 𝜃 }.
The intuition here is that 𝜃 is used to distinguish between samples
from the two possibly overlapping distributions 1 + 𝐿𝑎𝑝 (𝜀/2) and
0 + 𝐿𝑎𝑝 (𝜀/2). The binarized vectors are then summed up to result
in a frequency estimate. Wang et al. [67] claim that an optimal 𝜃
can be found numerically to be in ( 1

2 , 1) and depends on 𝜀.
Unary encoding methods encode the input into a one-hot-encoded

binary string (a vector of size 𝑘 with a 1 indicating the index of the
item and 0’s elsewhere) and independently flip the single 1 bit with
probability 1 − 𝑝 and the 0 bits with probability 𝑞. To the best of
our knowledge, this method was first introduced by Duchi et al.
[31]. Symmetric unary encoding (SUE) uses 𝑝 +𝑞 = 1 (equivalent to
the basic RAPPOR protocol [37]). Optimized unary encoding (OUE)
was introduced by Wang et al. [67] and uses optimized choices for
𝑝 and 𝑞. In both cases, Support(𝐵) = {𝑖 | 𝐵 [𝑖] = 1}, i.e., we “decode”
the one-hot encoding and count every response as though it were
the true value.

Following the ideas of RAPPOR (see non-pure protocols below),
Wang et al. [67] propose local hashing methods. In the local hash-
ing approach, users randomly pick a hash function 𝐻 to map the

input to a smaller output space of size 𝑔 and then apply direct
encoding to the output of the hashed values. Binary local hash-
ing (BLH) uses binary hash functions with 𝑔 = 2 and optimal
local hashing (OLH) uses hash functions with 𝑔 = 𝑒𝜀 + 1. Here,
Support(⟨𝐻, 𝑧⟩) = {𝑥 | 𝐻 (𝑥) = 𝑧}, i.e., the set of items that are
hashed to the observed output𝑦. Bassily and Smith [12] use random
matrix projection to reduce the dimensionality of the data to one
bit and then use randomized response to perturb the bit, which is
logically equivalent to BLH according to Wang et al. [67]. Fast local
hashing (FLH) [24] proposes a heuristic modification to speed up
OLH by reducing the number of hash functions to sample from.

Hadamard methods are based on the Hadamard transform which
is closely related to the discrete Fourier transform. The Hadamard
mechanism (HM) [11] samples an index 𝑗 and calculates the corre-
sponding Hadamard coefficient of the input vector and the index
𝑗 . It reports this coefficient using direct encoding. This allows the
aggregator to estimate the Hadamard coefficients and use them
to approximate the frequency of any item. The related Hadamard
response protocol (HR) [1] also reports a random Hadamard co-
efficient, but does not randomly choose a fixed index. Instead, it
randomly chooses whether to report a positive or negative coeffi-
cient and chooses an appropriate index 𝑗 .

Wang et al. [67] give some guidelines for the selection of an
appropriate pure protocol: For small domains (𝑘 < 3𝑒𝜀 + 2), direct
encoding is the best choice, whereas OUE should be used for larger
domains if its communication cost is acceptable. When the domain
is so large that the communication cost is a concern, OLH is the
best choice. Cormode et al. [24] add that FLH is several times faster
than OLH with comparable accuracy and that Hadamard-based
methods are orders of magnitudes faster and almost as accurate in
extremely large domains (more than thousands of items).

Next to pure protocols, there are also protocols that do not fit
the definition of pure protocols (or where no mapping to pure
protocols is known). Erlingsson et al. [37] introduced the well-
known RAPPOR protocol, which uses a Bloom filter to project the
input to a smaller space of fixed size and then applies randomized
response. Its basic version is pure (see above) and similar to earlier
work by Duchi et al. [31].

Kairouz et al. [48] show that 𝑘-RR and basic RAPPOR are order-
optimal for frequency estimation in certain privacy regimes (k-RR
in the regime where 𝜀 ≈ log(𝑘) and basic RAPPOR in the regime
where 𝜀 is close to 0). They introduce the O-RR mechanism based
on 𝑘-RR and hash functions for settings with domains that are not
enumerable, but show that this method also outperforms 𝑘-RR and
RAPPOR on closed domains of size 𝑘 when using permutations
instead of hash functions. The downside to this method is that the
aggregator needs to choose the number of cohorts that each use a
different hash function or permutation in advance and the authors
do not discuss how to choose this number optimally.

Wang et al. [66] and Ye and Barg [79] independently propose
the 𝑙-Subset mechanism (𝑘-Subset in literature), in which each
participant reports a random subset of size 𝑙 < 𝑘 of the input
domain, which contains the true value with a certain probability. Ye
and Barg [79] claim that this method fills the gap between RAPPOR
and 𝑘-RR and is optimal for “medium” privacy regimes that are
far from 0 and log(𝑘). They show that their method can improve
utility when 3.8 ≪ 𝜀 ≪ 𝑙𝑛(𝑙/9).
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Nguyên et al. [58] base their frequency estimation method on the
work by Bassily and Smith [12]. Instead of constructing a random
matrix, they create a binary 𝑘 × 𝑘 matrix where any two column
vectors are orthogonal. By letting each user randomly select one at-
tribute to report, they enable a combination of frequency estimation
and mean estimation for multiple categorical and numeric attributes
without reducing the privacy budget of individual reports.

Murakami et al. [56] specifically care about the setting where 𝑛
or 𝜀 are small and propose a solution based on the IBU to improve
the accuracy of the frequency estimation. They use 𝑘-RR to obtain
noisy reports and then apply the IBU to reduce the estimation error
of the frequencies.

ElSalamouny and Palamidessi [36] make two main contribu-
tions: First, they generalize the IBU postprocessing to the case of
personalized privacy, and second, they compare it to other stan-
dard postprocessing methods used in LDP, in particular the matrix
inversion method by Kairouz et al. [48]. They show that while the
IBU is equivalent to the matrix inversion method in the case of the
𝑘-RR mechanism, it outperforms it when applied to other obfusca-
tion mechanisms such as those used in metric privacy. In general,
IBU is the only known postprocessing method that is universally
optimal, as it is shown to produce a maximum likelihood estimator
regardless of the mechanism used for obfuscation.

3.3.2 Histogram Estimation. At the intersection of frequency and
distribution estimation we find the estimation of histograms. A
histogram is a discretization of the continuous data space into bins
and the estimation of the frequency of data points in each bin.
Note that the histogram estimation problem is a special case of the
frequency estimation problem where each bin is a different item in
the domain. For this reason, few methods are designed explicitly
for histogram estimation.

Duchi et al. [31] discuss histogram estimation as an approxima-
tion of the density estimation problem. They split the data space
[0, 1] into 𝑘 equal-sized bins and replace each data point 𝑥𝑖 with a
one-hot vector of length 𝑘 where the 𝑗-th entry is 1 if 𝑥𝑖 falls into
the 𝑗-th bin and 0 otherwise. Each vector is then perturbed using
the Laplace mechanism. The aggregator then sums up the perturbed
vectors to obtain counts for each bin. The counts are normalized
and projected onto the 𝑘-dimensional probability simplex to obtain
a differentially private estimate for the density. They note that the
histogram estimator is also asymptotically optimal for the density
estimation problem for Lipschitz densities.

Ding et al. [28] introduce dBitFlip, a method for estimating
histograms with 𝑘 buckets. Their method works by sampling 𝑙

bucket indices from [𝑘] for each user and responding with one
bit for each selected bucket. The bits are drawn from a Binomial
distribution with probability 𝑒𝜀/2/(𝑒𝜀/2 + 1) for the correct bucket
and 1/(𝑒𝜀/2 + 1) for all other buckets. The aggregator sums up the
received bits for each bucket and uses the noisy counts to estimate
the histogram (compensating for the random bit flipping).

IBU postprocessing has been used for histogram estimation by
Agrawal and Aggarwal [2]. Although their work predates the de-
velopment of differential privacy and applies IBU to a different
obfuscation mechanism, the method they proposed is general and
can be applied to LDP as well.

3.3.3 Distribution Estimation. In distribution estimation, the goal
is to estimate the probability density function of continuous data.
Duchi et al. [33] argue that the Laplace mechanism does not provide
optimal error bounds for distribution estimation. They then discuss
minimax bounds for LDP density estimation for cases where the
underlying density belongs to a Sobolev class defined using trigono-
metric functions as basis functions. For densities in the Sobolev
class of order 1, histogram estimators (like the estimator by Duchi
et al. [31] discussed in the previous section) are asymptotically
optimal. For densities with higher orders of smoothness (i.e., den-
sity functions that are more often differentiable), they develop an
estimator based on orthogonal series expansions and show that it
is asymptotically optimal.

Diao et al. [26] aim to model the data distribution as a Gaussian
Mixture Model (GMM) and provide a method to estimate the pa-
rameters of the GMM in a differentially private manner. They build
on the Gaussian mechanism and therefore only provide (𝜀, 𝛿)-LDP
instead of 𝜀-LDP.

Li et al. [53] introduce the square wave mechanism which is
conceptually very similar to the Piecewise mechanism by Wang
et al. [65]. They construct a histogram of the perturbed values
and use an Expectation Maximization algorithm to estimate the
underlying input distribution. They use the prior knowledge that
the frequencies of neighboring numerical values are similar to
introduce a smoothing step in the EM algorithm. The authors relate
the core of their algorithm to frequency oracles (for numerical
values) and show how their method can be used to estimate the
mean, variance and quantiles of the input distribution. Their method
works best for smooth input domains and is less effective for spiky
distributions.

3.4 Contingency Tables & Marginal Tables
The methods in the previous section are designed for estimating
distributions over univariate data, but many applications require
the estimation of joint distributions over multiple attributes. In this
section, we discuss methods for estimating contingency tables and
marginal tables under local differential privacy. All methods in this
section assume that there are up to 𝑑 categorical attributes and
that the domain of each attribute is known (see Table 2 for details).
First, we need to define some terms: A full contingency table gives
the joint distribution of all 𝑑 attributes in a dataset, but may be
very large and computationally expensive to estimate. The 𝑘-way
marginal over a set 𝐴 of 𝑘 < 𝑑 attributes gives the joint distribution
of the attributes in 𝐴. The set of all 𝑘-way marginals contains the
marginals for all possible subsets of size 𝑘 .3

Fanti et al. [38] show how reports from RAPPOR can be used to
estimate the joint distribution of two categorical variables (contin-
gency table) by applying an expectation maximization algorithm to
the noisy reports. They explain that their proposed method is not
RAPPOR-specific and can be used with other locally differentially
private encoding methods. The main limitation of their method is
that it only works for two categorical variables and is not directly
applicable to higher-dimensional data.

3Note that the 𝑘 < 𝑑 in this section denotes a subset of attributes/dimensions and is
different from the 𝑘 in frequency estimation, which denotes the size of the domain.
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Method # Attributes Goal Main Component

Fanti et al. [38] 2 categorical full contingency table Expectation Maximization
Ren et al. [62] 𝑑 categorical fixed 𝑘-way marginal Expectation Maximization / Lasso regression
Cormode et al. [22] 𝑑 binary all 𝑘-way marginals Hadamard Transform on private data
Zhang et al. [81] 𝑑 categorical all 𝑘-way marginals Entropy Maximization + Frequency Oracle for sample marginal
Xue et al. [75] 2 categorical joint distribution Extension of 𝑙-Subset for frequency estimation [66, 79]
Table 2: Comparison of methods for estimating contingency and marginal tables under local differential privacy.

Ren et al. [62] aim to privately publish synthetically generated
data with a similar joint distribution as the underlying discrete
𝑑-dimensional private data. Inspired by the work of Fanti et al. [38],
they use the EM algorithm to estimate the joint distribution of the
private data, but introduce LASSO regression to deal with the spar-
sity of high-dimensional data. They then perform dimensionality
reduction on the learned distribution and sample from the result-
ing low-dimensional distributions to synthesize an approximate
dataset. Note that their method for estimating the joint distribution
only works for a specific 𝑘-way marginal and does not provide a
method for estimating the full contingency table or the set of all
𝑘-way marginals.

Cormode et al. [22] provide a method for estimating 𝑘-way
marginals of a high-dimensional binary dataset under local differ-
ential privacy based on the discrete Fourier transform (Hadamard
transform) which has previously been studied in the central differen-
tial privacy setting. The authors claim that in practical applications,
analysts are often interested in lower-dimensional marginals and
therefore provide a method of estimating all 𝑘-way marginals with-
out having to select a specific subset of attributes in advance. They
compare several algorithm variants and conclude that computing
the Hadamard transform on the private data and releasing a random
coefficient via randomized response is the most effective method for
reconstructing any 𝑘-way marginal through postprocessing. They
also compare their methods to the EM-based approach by Fanti
et al. [38] and claim that the EM-based approach does not provide
any worst case guarantees for the accuracy and may terminate with
a poor estimate.

Zhang et al. [81] propose the CALM method to estimate any 𝑘-
way marginal of a high-dimensional dataset under local differential
privacy. They claim that previous methods [22, 38, 62] are not prac-
tical for high-dimensional data. CALM is based on PriView, which
was used in the central differential privacy setting, and works by
first selecting 𝑚 marginals of size 𝑙 and then assigning each user
to one of the selected marginals. The aggregator uses a frequency
oracle to estimate the frequencies for the selected marginals. Since
the selected marginals do not cover all possible 𝑘-way marginals,
the authors rely on the postprocessing steps of PriView to esti-
mate the remaining marginals: The resulting frequencies are first
checked for consistency and non-negativity and then used to esti-
mate the remaining marginals using maximum entropy estimation.
The authors discuss that their method has three sources of error:
noise errors from the frequency oracle, reconstruction errors when
a 𝑘-way marginal is not covered by the selected marginals, and
sampling errors since each marginal is only estimated from a sub-
set of the population. Since the choice of 𝑚 and 𝑙 is crucial for

the accuracy of the method and the reconstruction error depends
on the dataset, the authors provide a method to determine these
parameters based on some required error threshold.

Xue et al. [75] propose the JESS method for estimating the joint
distribution of two categorical attributes under local differential
privacy. The method is inspired by the 𝑘-subset mechanism [66,
79] for frequency estimation and extends it to transmitting two
categorical attributes.

3.5 Range Queries
In this section, we discuss methods for estimating range queries
on discrete ordinal data, which can be used to estimate quantiles
and other statistics. Assuming 𝑛 participants, each with a private
value 𝑥𝑖 ∈ [𝑘], a range query 𝑅[𝑎,𝑏 ] ≥ 0 with 𝑎, 𝑏 ∈ [𝑘] and 𝑎 < 𝑏

counts the relative frequency of participants with a value in the
range [𝑎, 𝑏]: 𝑅[𝑎,𝑏 ] = 1

𝑛

∑𝑛
𝑖=1 1𝑎≤𝑥𝑖 ≤𝑏 . The goal is to privately collect

enough information upfront to be able to estimate any 𝑅[𝑎,𝑏 ] with
a small error.

Cormode et al. [23] are the first to introduce range queries in
the LDP setting, and discuss methods for performing range queries
on discrete (ordered) one-dimensional data. They first consider the
naive solution of summing up point queries (i.e., frequencies ob-
tained through frequency oracles; see section 3.3) for each value
in the range, but show that the variance of this approach grows
linearly with the size of the range. Inspired by methods from the
central DP setting, they propose a method based on hierarchical
histograms, where the variance of the estimate only grows loga-
rithmically with the size of the range. Additionally, they provide a
method based on the discrete Haar transform which has a similar
variance growth, but empirically shows better results for small
privacy budgets.

Wang et al. [68] introduce the problem of answering multi-
dimensional analytical queries, where the goal is to aggregate a
non-private measure for participants for which certain constraints
on their private data (point constraints for categorical data and
range constraints for ordinal data) are satisfied. Their special case of
COUNT-queries is comparable to range queries on multi-dimensional
data of mixed types. They introduce HIO, which – for the one-
dimensional case – works by building a 𝑏-way tree of height ℎ,
where each node represents an interval with 𝑏 equally sized subin-
tervals as children. A range query can then be answered by sum-
ming up the frequencies for the appropriate sub-intervals. Similar
to the other methods, they use one frequency oracle (OLH [67])
per tree level and split the participants over the levels. Their base
approach is extended to 𝑑 ordinal dimensions by constructing mul-
tiple trees and taking the Cartesian product, resulting in (ℎ + 1)𝑑

125



Proceedings on Privacy Enhancing Technologies 2025(1) René Raab, Pascal Berrang, Paul Gerhart, and Dominique Schröder

𝑑-dimensional tree levels. Each participant then responds their in-
terval membership for one of these multi-dimensional levels using
a frequency oracle. They additionally introduce categorical dimen-
sions by constructing a tree of height 2, where the root covers
the whole domain and has children for each possible value of the
categorical dimension. Since their method does not scale well to
large 𝑑 , they propose a conjunctive frequency estimator which
combines single-dimension responses from OLH to estimate the
joint frequencies for multiple dimensions. However, in their experi-
ments they only test the methods on settings with small 𝑑 ≤ 4 and
the conjunctive method does not work well for multiple ordinal
dimensions.

Li et al. [53] show how their work on estimating the distribution
of numerical one-dimensional data can be used to answer range
queries. They compare against the method by Cormode et al. [23]
on a number of real-world datasets and show that their method has
lower error in most cases.

Yang et al. [77] estimate multi-dimensional range queries with
what they call the hybrid-dimensional grid (HDG) approach. Their
approach constructs grids for each individual dimension (similar
to binning in histograms) and for all pairs of dimensions. Partici-
pants are split over the 𝑑 + (𝑑

2
)

grids and asked to respond their cell
membership using OLH [67]. These responses are then used to con-
struct answers for 𝜆-dimensional (𝜆 ≤ 𝑑) range queries by selecting
relevant grids and performing maximum entropy estimation to
combine the estimates. This approach is very similar to CALM [81]
for marginal estimation, which first collects 𝑙-way marginals (𝑙 < 𝑘)
and uses maximum entropy estimation to estimate the requested
𝑘-way marginals.

Du et al. [30] notice that sparse areas in the data space can lead
to large errors for the respective sub-intervals or grid cells in the
previous methods. They therefore propose AHEAD, which adap-
tively builds a hierarchical grid structure that avoids sparse regions
(only cells/intervals with a large enough estimated frequency are
further sub-divided). At each level of the hierarchy, they estimate
the frequencies of the cells/intervals using OUE [67]. They per-
form experiments on real-world datasets and show that AHEAD
outperforms the previous methods in terms of mean squared error.

3.6 Order Statistics: Quantiles, Median,
Maximum, Minimum

As the final type of descriptive statistics, we now discuss order
statistics, such as the median, quantiles, maximum, and minimum.
Although they are rather important in non-private data analysis,
we have waited until now to discuss these statistics because they
are closely related or build on the methods we have discussed in the
previous sections. Quantiles divide the data into equal-sized groups,
with the median dividing the data into two equal-sized groups. The
maximum and minimum represent the largest and smallest values
in the data, respectively.

In local differential privacy, binary search has been used to es-
timate the median and quantiles. Cyphers and Veeramachaneni
[25] first introduce the concept of using binary search for estimat-
ing the median in the LDP setting, but do not analyze the error
of their method. Later, Gaboardi et al. [42] provide a method for
estimating quantiles as part of their method for estimating the

mean and variance of Gaussian distributions. For a given privacy
budget and maximum deviation from the target quantile, they pro-
vide the required number of participants and search rounds to
achieve this deviation with high probability. Finally, Fukuchi et al.
[41] aim to find the minimum (or maximum) value in a numerical
1-dimensional dataset bounded in [−1, 1] using binary search in
combination with randomized response and a fixed search depth.4
While the approach is very straightforward, they show that the
minimum finding problem is fundamentally difficult in the LDP
setting and that no LDP mechanism can consistently estimate the
minimum value under the worst case data distribution. They show
that the problem is easier if the data has a larger minimum-side
fatness, i.e., if more data points are close to the minimum. All three
methods [25, 41, 42] require some initial bounded search interval
that contains the target quantile and a search depth to be set in
advance.

Another approach to estimating the median is to use stochastic
gradient descent. Duchi et al. [33] provide a sequentially interactive
method for estimating the median of a numerical 1-dimensional
dataset in the LDP setting using stochastic gradient descent. The
method starts with a random estimate for the median and sequen-
tially asks each participant to provide a noisy answer to whether
their value is larger or smaller than the current estimate. After each
step, the estimate is updated based on the noisy answer and a de-
creasing learning rate. This procedure requires each participant to
only respond once and therefore does not need to split the privacy
budget between multiple rounds of communication (as the binary
search methods do). The authors only discuss the method for 𝜀 ≤ 1,
and it is not immediately clear whether the method can be adapted
to larger privacy budgets and other quantiles.

Next to binary search and gradient descent, range queries of
the form 𝑅[0,𝑞 ] (so-called prefix queries) can be used to estimate
quantiles by setting 𝑞 to the desired quantile [23].

4 Empirical Comparison
The previous section outlines many methods estimating various
descriptive statistics under local differential privacy. However, it is
not immediately clear which method is best suited for a given task,
number of participants, or privacy budget. In this section, we aim
to provide an empirical comparison of the methods for estimating
the mean and the variance of numerical data and estimating the
frequency of categorical data. We do not provide comparisons for
the other statistics, as the relevant methods often have differing
goals or requirements and are not directly comparable.

For the empirical comparisons, we used a number of synthetic
and real-world datasets, which are summarized in Table 3 and
visualized in Figure 17 in the appendix. For each numerical dataset,
we defined a specific data range [𝑎, 𝑏], which was used to transform
the data to the range required by the methods.

4.1 Mean Estimation
For the mean estimation task, we simulated each method from
Table 1 with 100 different random seeds for each combination of

4The method can potentially also be adapted to finding any quantile. However, the
utility analysis in the paper only applies to finding the minimum/maximum as it is
based on the fatness of the data near the minimum/maximum.
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Table 3: Datasets used for the empirical evaluation. Type: Num=Numeric, Cat=Categorical. Domain: 𝑘 is the number of categories
for categorical data. Size: Number of data points.

Dataset Type Domain Size Notes

Synthetic Data

Uniform small Num [0, 1] any Uniform Distribution
Uniform large Num [−100, 100] any Uniform Distribution
Bimodal Num [0, 1] any N(0.3, 0.1) + N(0.6, 0.2)
Binomial Num [0, 100] any B(100, 0.2)
Binomial Cat 𝑘 = {8, 128} any B(𝑘, 0.2)
Geometric Cat 𝑘 = {8, 16, . . . , 512} any Geometric Distribution over 𝑘 elements with 𝑝 = 5/𝑘 , as in Kairouz et al. [48]

Real Data

Adult Num [16, 100] 48 842 “Age” column from the UCI Adult dataset [14]
NYC Taxi Num [0, 86400] 8 760 687 “Pick-up time” column (in seconds) from the Yellow Taxi Trip records dataset

for January 2018 [21]
US Census Cat 𝑘 = 400 2 458 285 US Census [55] dataset processed to 400 binary attributes as in [56]
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Figure 1: Mean absolute error of the mean estimation aver-
aged over all datasets (scaled by the respective input range)
and 𝑛 = 104. “Duchi” and “Wang” refer to the works by Duchi
et al. [31, 33] and Wang et al. [65] respectively. Ding et al.
[28], Nguyên et al. [58], Waudby-Smith et al. [73], and the ℓ∞
mechanism by Duchi et al. [31] are equivalent and are sum-
marized as “Bernoulli Mechanisms”. For better readability,
we have omitted the standard deviations of the errors, which
are shown in Figure 5 in the appendix. Figures 7, 8 and 9
show the mean absolute error, the mean squared error and
response variances for the different methods, respectively.

𝑛, 𝜀, and dataset to account for the random nature of the methods.
As many methods are designed for a specific input range, we first
transformed the data to the required range, applied the method, and
then transformed the result back to the original range. To evaluate
the utility, we consider the mean squared error ( 1

𝑛

∑(𝜇 − 𝑥)2) and
the mean absolute error ( 1

𝑛

∑ |𝜇 − 𝑥 |). To account for the different
dataset and input ranges, we mainly consider “range-scaled” errors,
where the error is divided by the size of the input data range to
allow for a comparison between datasets.

4.1.1 One-Dimensional Mean Estimation. Figure 1 shows the mean
absolute error of the mean estimation methods for all numerical

datasets (scaled by the respective input range) and 𝑛 = 104. We
observe that the error decreases with increasing privacy budget,
but that the rate of decrease differs between the methods. While
all methods show a similar error for 𝜀 ⪅ 1, the errors deviate for
larger 𝜀, with Bernoulli methods [28, 31, 58, 73] showing the largest
error and the methods by Wang et al. [68] showing the smallest
error. Looking more closely at the Piecewise and Hybrid methods
by Wang et al. [68], we see that the Hybrid method shows a lower
error than the Piecewise method for small 𝜀. However, for larger 𝜀,
the Piecewise method shows a lower error than the Hybrid method,
although Wang et al. [68] have constructed the Hybrid method to
be optimal for all 𝜀.

Further, we find that the Bernoulli mechanisms [28, 31, 58, 73]
and the ℓ2 mechanism by Duchi et al. [31] show similar error rates
and converge to the same (high) error for increasing 𝜀. As 𝜀 in-
creases, these methods reduce to randomly rounding the data, i.e.,
𝑃𝑟 (𝑧𝑖 = 1) = 𝑥𝑖 and 𝑃𝑟 (𝑧𝑖 = 0) = 1 − 𝑥𝑖 . We have also simulated
this “random rounding” method and show the result in the relevant
figures. We see that the error of the Bernoulli mechanisms indeed
converge towards the error of this random rounding procedure.

From Figures 7 and 8 in the appendix we see that the mean abso-
lute error and the mean squared error behave similarly. Figure 9 in
the appendix shows the variance of the responses for the different
methods. Here we see that, similar to the errors, the variance of
responses for all unbiased methods decreases with increasing pri-
vacy budget, but the decrease levels off as 𝜀 approaches 10. We also
note that the variance of the method by Ding et al. [28] is constant
for all privacy budgets, which is due to the biased nature of the
method (i.e., the mean of the noisy responses is not the true mean
and needs correction to be applied).

4.1.2 Multi-Dimensional Mean Estimation. We now consider the
multi-dimensional mean estimation task. For the evaluation, we
use the Binomial dataset stacked 𝑑 times to create a 𝑑-dimensional
dataset. In addition to the ℓ2 and ℓ∞ methods by Duchi et al. [31, 33]
and the method by Wang et al. [68], we also add variants of the
latter: First, instead of setting 𝑘 optimally, we set 𝑘 = 1 (as in the
previous version of the paper [58]). Additionally, we test the naive
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Figure 2: Mean absolute error of the multi-dimensional mean estimation (scaled by the input range) for 𝑛 = {102, 104, 105} and
𝑑 = 32 for the Binomial dataset stacked 𝑑 times. The methods refer to Wang et al. [68] and Duchi et al. [31, 33]. The “split”
variants perform 1-dimensional mean estimation on each dimension, where split 𝑛 splits the participants by the number of
dimensions and split 𝜀 splits the privacy budget by the number of dimensions. The shaded areas show the standard deviation of
the errors. See Figures 10 and 11 in the appendix for different combinations of 𝑛 and 𝑑 .

approaches of splitting the privacy budget or the participants by
the number of dimensions.

Figure 2 shows the mean absolute error of the multi-dimensional
mean estimation (scaled by the input range) for 𝑛 = {102, 104, 105}
and 𝑑 = 32 (see Figures 10 and 11 in the appendix for further
combinations of 𝑛 and 𝑑). We observe that the ℓ∞ method [31]
shows a constant error for all settings with 𝑑 > 1. While Duchi
et al. [31] discussed this method for general mean estimation in the
earlier version of their paper, the later publication [33] only discuss
its use for 1-sparse data, which could explain the bad performance
for our dense data.

Out of the other methods, splitting the privacy budget by the
number of dimensions shows the highest error, whereas splitting
the participants by the number of dimensions shows the lowest
error. The other methods show a similar error, with the ℓ2 method
showing a slightly higher error than the method by Wang et al. [68]
(both for optimal 𝑘 and 𝑘 = 1). Interestingly, there is no substantial
difference between setting 𝑘 optimally and setting 𝑘 = 1 for the
method by Wang et al. [68]. In fact, both variants are equivalent
for 𝜀 < 5 as the optimal value 𝑘 = max(1,min(𝑑, ⌊ 𝜀

2.5
⌋)) is equal to

1 for 𝜀 < 5. The optimal variant only slowly increases 𝑘 from 2 to 4
for 𝜀 between 5 and 10.

4.2 Variance Estimation
We have introduced and discussed three options for variance es-
timation in Section 3.2 and now evaluate their performance. We
simulated each variant of variance estimation 20 times for each
combination of 𝑛 (between 102 and 107), 𝜀 (between 0.1 and 10), and
dataset. In all cases, we used the Piecewise mechanism by Wang
et al. [65] as the underlying mean estimator. Figure 3 shows the
range-scaled MAE of the estimated mean and variance over differ-
ent split ratios (i.e., how much 𝑛 or 𝜀 is used for the mean estimation
step) for 𝑛 = 104 and 𝜀 = 2. The split ratio defines how much of the
privacy budget (or participants) is used for the mean estimation step.
If the split ratio is 0.9, 90% of the privacy budget (or participants) is
used for the mean estimation step, and if the split ratio is 0.5, half of
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Figure 3: Mean absolute error of the variance estimation av-
eraged over all datasets (scaled by the respective input range)
with 𝑛 = 104 and 𝜀 = 2. The split ratio defines how much
of the privacy budget (or participants) is used for the mean
estimation step. The variance estimation uses the Piecewise
mechanism by Wang et al. [65] as the underlying mean esti-
mator. The shaded areas show the standard deviation of the
errors. See Figures 12 and 13 in the appendix for different 𝑛
and 𝜀.

the privacy budget (or participants) is used for the mean estimation
step. See Figures 12 and 13 in the appendix for different 𝑛 and 𝜀.
The error for the split by 𝜀 method is, on average, larger than that
of the other two methods for both mean and variance estimation.
This aligns with the general idea that splitting 𝑛 is preferred over
splitting 𝜀 when performing multiple queries in LDP [67].

The errors for the split by 𝑛 and sequential split methods are
similar for the mean estimation, which is expected as those methods
are equivalent for the mean estimation. In the variance estimation,
the sequential split method has a slightly lower error on average
than the split by 𝑛 method. However, since both errors show a large
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Figure 4: Mean squared error of the frequency estimation averaged over all datasets with 𝑛 = 103, 𝑛 = 104, 𝑛 = 105. For better
readability, we have omitted the standard deviations of the errors, which are shown in Figure 6 in the appendix.

standard deviation, the difference is not significant (in fact, the split
by 𝑛 method shows a lower error for some individual simulations).

4.3 Frequency Estimation
We simulated all non-pure frequency oracles from Section 3.3 (RAP-
POR [37], 𝑙-Subset [66, 79], and the methods by Kairouz et al.
[48], Nguyên et al. [58], and Murakami et al. [56]) and the pure
frequency oracles recommended by Wang et al. [67] and Cormode
et al. [24] (i.e., 𝑘-RR/direct encoding, symmetric and optimized
unary encoding, optimized local hashing, Hadamard mechanism,
and Hadamard response) for different 𝑛, 𝜀, and datasets of differ-
ent domain sizes. Each simulation was repeated 20 times for each
combination of 𝑛, 𝜀, and dataset.

To ensure a fair comparison, we applied projection onto the
probability simplex for all methods (implemented according to the
algorithm by Wang and Carreira-Perpiñán [71]). Following liter-
ature, we used the mean squared error

(
1
𝑑

∑
𝑥∈𝐷 (𝑓 (𝑥) − 𝑓 (𝑥))2

)
and the variance of the frequency estimates as evaluation metrics.
We calculate the variance as the mean over the sample variances of
the individual frequency estimates.

We evaluated the frequency estimation methods on the categori-
cal datasets from Table 3, where the Geometric distribution dataset
was used with varying domain size to evaluate the impact of the
domain size on the frequency estimation methods (see Figure 16 in
the appendix).

Figure 4 shows the mean squared error of the frequency estima-
tion methods for different 𝑛 and 𝜀 averaged over all datasets. We
provide a more detailed overview of the results in Figure 14 in the
appendix. From these figures, we observe that most methods have
a similar error for given 𝑛 and 𝜀 and that an increase in 𝑛 or 𝜀 typi-
cally leads to a decrease in error. However, some frequency oracles
show a different behavior: OLH, OUE, Nguyên et al. [58], and HM
all show a “levelling off” effect where the error does not decrease
further for increasing 𝜀. OUE and OLH even show an increase in
error before levelling off for larger 𝜀. Nguyên et al. [58] produces
roughly the same error for 𝜀 < 3 regardless of 𝑛. RAPPOR [37]
shows another interesting behavior, where the error first decreases

with increasing 𝜀 reaching a minimum around 𝜀 = 1 and then in-
creases again for larger 𝜀. Furthermore, while RAPPOR shows the
lowest error among all methods for 𝜀 around 1 and 𝑛 = 1000, this
advantage diminishes for larger 𝑛. For 𝑛 = 100 000, RAPPOR only
performs best for 𝜀 ≈ 1 and performs worse than the best methods
for all other 𝜀.

The other methods show comparable error rates, with a few
exceptions: SUE (or Duchi et al. [31]) and HR perform similarly but
do not decrease as fast for large 𝜀 as the other methods. 𝑙-Subset
shows competitive error for large 𝑘 , but does not scale well with 𝑛

for smaller 𝜀 around 1 and small 𝑘 (see panels for 𝑛 = 10000, 100000
and 𝑘 = 8, 16 in Figure 16). Direct Encoding / 𝑘-RR / O-RR [48]5

behave similarly to the other methods for small𝑑 , but show a higher
error for larger 𝑘 . Murakami et al. [56] on the other hand benefits
from large 𝑘 and small 𝑛 and 𝜀 and shows substantially smaller error
for small 𝜀 and 𝑛. This effect is stronger for larger 𝑘 . In terms of
their performance, we were unable to see a clear difference between
the groups of pure and non-pure frequency oracles.

Comparing the variance of the frequency oracles (see Figure 15
in the appendix) to the MSE (see Figure 14 in the appendix), we see
a mismatch between the two. While the variance of most methods
stays roughly constant for 𝜀 > 1, the MSE of most methods still
decreases. Furthermore, for most methods the variance converges
to the same method-specific value regardless of 𝑛 when 𝜀 increases.
This indicates that the variance is not a good indicator of the error
of the frequency estimation methods, although several previous
works have only discussed the variance of the frequency estimates
as a measure of the methods’ utility (see e.g., [67] and [24]).

5 Practical Considerations
This section presents the general findings of our empirical evalua-
tion and discusses some open topics that the research community
must address before local differential privacy can be widely adopted
for the estimation of descriptive statistics in practice.

5Note that we were unable to reproduce a reduction in error for O-RR [48] when
increasing the number of cohorts, as reported in their paper. For this reason, O-RR is
equivalent to 𝑘-RR in our evaluation.
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5.1 General Findings
There is an abundance of literature describing methods for estimat-
ing various descriptive statistics under LDP (see Section 3). How-
ever, practical differences between the methods are often minor,
with most methods showing similar performance in our empirical
evaluations. For the mean estimation task, the choice of method
becomes relevant when 𝜀 > 1, where the error rates of the meth-
ods start to diverge. Here, the Piecewise method by Wang et al.
[68] shows the best performance and the Bernoulli-based methods
[28, 31, 58, 73] show the worst performance, even falling behind
the basic Laplace mechanism.

In multi-dimensional mean estimation and variance estimation,
our results validate the well-known fact that for multiple queries
(or dimensions), splitting the participants by the number of queries
is performs better than splitting the privacy budget.

While most methods show similar performance in the frequency
estimation task, their differences for different parameters are more
complex and do not allow to pick a clear winner for all cases. For
small 𝑘 , 𝑘-RR or 𝑙-Subset are good choices regardless of 𝑛 and 𝜀. For
larger 𝑘 (we tested up to 𝑘 = 512), the method by Murakami et al.
[56] shows the best performance for small 𝜀 and 𝑛, RAPPOR shows
the best performance for 𝜀 ≤ 3 and 𝑙-Subset, 𝑘-RR and Murakami
et al. [56] show the best performance for 𝜀 > 3. For guidelines on
very large 𝑘 , refer to Wang et al. [67] and Cormode et al. [24].

5.2 Towards Practical Application
When utility is the primary concern, central differential privacy
would be the preferred choice for estimating descriptive statistics.
However, as discussed in the introduction, LDP offers a better trust
model and is more suitable for applications where the data is dis-
tributed across multiple parties. In this section, we discuss how this
gap may be bridged to make LDP more practical for estimating de-
scriptive statistics. Furthermore, choosing the right privacy budget
𝜀 and explaining the privacy guarantee given by LDP to the users
of the system are difficult tasks that need to be addressed to ensure
the usability of LDP in practice.

5.2.1 Improved Utility and Multiple Queries. Most methods are
designed for low-dimensional data or single queries. In practice,
datasets may be high-dimensional or contain multiple attributes
of different types (e.g., numerical and categorical) thus requiring
multiple queries to calculate all statistics of interest. The naive
solution for handling multiple queries is to apply the methods for
each query separately either with a reduced privacy budget or a
reduced number of participants to ensure the overall privacy budget
is not exceeded. While this may be acceptable when the number
of queries is small, it is not practical when the number of queries
is large. In this case, the shuffle model [18] may provide a path
forward.

The shuffle model introduces an additional participant, the shuf-
fler S, into the protocol. This shuffler is a trusted and randomized
entity that takes the input values from each party and produces a
random permutation of those inputs. The main goal of this shuffling
process is to eliminate any trace of information about the original
position of each input before the data is made public. Several ap-
proaches have been used to achieve shuffling in this model. One
such method involves secret sharing, as demonstrated in the work

of Balle et al. [10]. Another strategy uses well-shufflable data struc-
tures, such as wedges, as proposed by Imola et al. [45]. In addition,
shuffling can be accomplished using strings [20] or by employing
frequency estimation techniques [54].

5.2.2 Guarantees and Confidence Intervals. We have seen that the
errors are often accompanied by large standard deviations, i.e., large
differences between individual runs of the randomized algorithms,
which can make the interpretation of the resulting statistics difficult
as it is unclear how far they deviate from the true value. Here,
methods that provide confidence intervals could be beneficial. To
the best of our knowledge, only Waudby-Smith et al. [73] and
Gaboardi et al. [42] discuss methods for estimating confidence
intervals for mean estimation and there is no work on confidence
intervals for the other statistics discussed in this paper.

5.2.3 Susceptibility to Attacks. While different LDP methods with
the same privacy budget 𝜀 offer the same worst-case privacy guaran-
tees, they may show a different susceptibility to attacks in practice.
Arcolezi et al. [8] analyze the success rate of re-identification at-
tacks on frequency estimation methods under LDP and find that,
given the same privacy budget, different methods show a different
success rate. It is therefore important to consider differences in
attack susceptibility when choosing an LDP method.

5.2.4 Choosing 𝜀 and Improving Usability. Choosing the right pri-
vacy budget 𝜀 is a difficult task for practitioners as can be seen by
the differences in choice for the few known applications [27, 28, 37].
Fernandes et al. [40] use information theory and quantitative in-
formation flow to give an interpretation of 𝜀 in the context of LDP.
Their work provides an important step towards understanding 𝜀

under multiple threat models. However, further work is needed
to make these theoretical insights approachable for practitioners.
Relatedly, the choice of 𝜀 and the guarantee given by LDP is diffi-
cult to explain to the end users of the system, which can lead to
a lack of trust in the system and a reduction in their willingness
to participate. Nanayakkara et al. [57] is one of the few works to
address the issue of explaining 𝜀 in the central DP setting. Further
work is needed to transfer these ideas to the LDP setting.

6 Conclusion
Local differential privacy (LDP) offers strong privacy guarantees
and a trust model for estimating descriptive statistics in distributed
settings, which are increasingly relevant in practice. In this SoK,
we systematize the literature on LDP for estimating descriptive
statistics and provide an extensive empirical comparison of methods
for estimating the mean, variance, and frequency of data. Although
some open topics remain before LDP can be widely adopted, its
use can enhance trust in data analysis and sharing in distributed
settings. Our systematization and empirical evaluation serve as
a starting point for practitioners to choose the right method for
their specific use case and for researchers to focus on the practical
aspects of LDP.
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A Notation and Methods Overview
Table 4 provides an overview of the notation used in this paper.
Tables 5 and 6 provide an overview of the methods for estimating
descriptive statistics under local differential privacy. Table 7 gives
more details on the methods for estimating the mean of Gaussian
data.

Table 4: Notation used in this paper. Further notation may
be used in parts of the paper and is defined there.

Symbol Description

General Notation
𝑛 Number of participants/clients
[𝑛] The set {1, 2, . . . , 𝑛}
𝜀 Privacy budget of 𝜀-(L)DP
𝛿 Privacy parameter (“privacy failure”)
𝑥𝑖 Private input of participant 𝑖
𝑧𝑖 Noisy output of participant 𝑖
𝑑 Dimension of the data
A Randomized algorithm
𝐵 [𝑖] Entry at index 𝑖 in vector 𝐵

Mean Estimation
𝑥 True sample mean
𝜇 True population mean
𝜇 Estimated (sample or population) mean
�̂�2 Estimated variance

Frequency Estimation
D Domain of the data
𝑘 Domain size
𝑙 ≤ 𝑘 Subset size (for the 𝑙-Subset mechanism)
𝑓 (𝑥) Estimated frequency of 𝑥
𝑓 (𝑥) True frequency of 𝑥
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Table 5: Overview of the methods for estimating descriptive statistics under local differential privacy. Continued in Table 6.

Mean Estimation

Method Summary

Laplace Mechanism Add noise from Laplace distribution to the mean
Duchi et al. [31, 33] – ℓ2 Bernoulli-based mechanism for data in an ℓ2 ball
Duchi et al. [31] – ℓ∞ Bernoulli-based mechanism for data in an ℓ∞ ball
Duchi et al. [31] – 1-sparse Bernoulli-based mechanism for 1-sparse data (only one non-zero entry)
Nguyên et al. [58] Bernoulli-based mechanism for mean estimation
Ding et al. [28] Bernoulli-based mechanism for mean estimation
Wang et al. [68] Piecewise and Hybrid mechanisms for mean estimation
Waudby-Smith et al. [73] Bernoulli-based mechanism for mean estimation

Frequency Estimation

Method Summary

Randomized Response [67, 72] Randomized response mechanism for frequency estimation
Direct Encoding / 𝑘-ary randomized response [48] Randomized response for non-binary data
Histogram Encoding [67] Encode data as one-hot vectors and add Laplace noise
Unary Encoding [31] Encode data as one-hot vectors and independently flip bits
Symmetric Unary Encoding / Basic RAPPOR [37] like Unary Encoding, but with a specific probability
Optimized Unary Encoding [67] like Unary Encoding, but with optimized probability
RAPPOR [37] Apply randomized response to a Bloom filter
Local Hashing [67] Apply a hash function to the data before using direct encoding
Fast Local Hashing [24] Local Hashing with heuristics
Hadamard Mechanism [11] Respond with random Hadamard coefficient
Hadamard Response [1] Randomly choose a positive or negative Hadamard coefficient to report
Optimized Randomized Response [48] Randomized response with cohorts and hash functions
𝑙-Subset [66, 79] Submit a subset of the domain of size 𝑙 < 𝑘 to the aggregator
Nguyên et al. [58] Encoding using an orthogonal matrix
ElSalamouny and Palamidessi [36] Postprocessing using Iterative Bayesian Update (IBU) to enable best accuracy. Opti-

mal for any obfuscation mechanism.
Murakami et al. [56] Postprocessing using IBU – designed to cope with small samples

Histogram Estimation

Method Summary

Duchi et al. [31] Encode bins as one-hot vector and apply the Laplace mechanism
Ding et al. [28] Randomly sample buckets and respond with randomly flipped bits to indicate

whether the bucket was the correct one
Distribution Estimation

Method Summary

Duchi et al. [33] Estimator based on orthogonal series expansion
Diao et al. [26] Model data distribution as a Gaussian mixture model – only approximately LDP
Li et al. [53] Square wave mechanism – conceptually similar to the Piecewise mechanism for

mean estimation [65]
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Table 6: Overview of the methods for estimating descriptive statistics under local differential privacy [Continuation of Table 5].

Contingency Tables & Marginal Tables

Method Summary

Fanti et al. [38] Full contingency table for 2 categorical variables using Expectation Maximization
Ren et al. [62] Fixed k-way marginal for 𝑑 categorical variables using Expectation Maximization / Lasso regression
Cormode et al. [22] All k-way marginals for 𝑑 binary variables using a Hadamard transform on private data
Zhang et al. [81] All k-way marginals for 𝑑 categorical using Entropy Maximization + Frequency Oracle
Xue et al. [75] Joint distribution for 2 categorical variables based on the k-subset mechanism [66, 79]

Range Queries

Method Summary

Cormode et al. [23] Range queries based on hierarchical histograms
Wang et al. [68] Range queries based on subintervals stored as nodes in a tree structure
Li et al. [53] Range queries based on the distribution estimation method in the same paper
Yang et al. [77] Range queries based on multi-dimensional (sub-)grids
Du et al. [30] Range queries based on an adaptive hierarchical grid structure

Order Statistics

Method Summary

Cyphers and Veeramachaneni [25] Find the median using binary search – no analysis of error
Gaboardi et al. [42] Estimate quantiles based on binary search
Fukuchi et al. [41] Find the minimum/maximum based on binary search
Duchi et al. [33] Find the median based on stochastic gradient descent
Cormode et al. [23] Find any quantile using range queries

Table 7: Comparison of mean estimation mechanisms for Gaussian data.

Algorithm Input Range Error Rounds LDP Type

Gaboardi et al. [42] 𝑥𝑖 ∼ N(𝜇, 𝜎2), 𝜇 ∈ [−𝑅, 𝑅] with prob. 1 − 𝛽 , 𝜇 ∈ 𝐼 , |𝐼 | = . . . (𝜀, 𝛿)
- KnownVar - known 𝜎 𝑂

(
𝜎
𝜀

√︂
1
𝑛 log

(
1
𝛽

)
log

(
𝑛
𝛽

)
log

( 1
𝛿

) )
2

- UnkVar - 𝜎 ∈ [𝜎min, 𝜎max], 𝜎max ≤ 2𝑅 𝑂

(
𝜎
𝜀

√︂
1
𝑛 log

(
1
𝛽

)
log

(
𝑛
𝛽

)
log

( 1
𝛿

) )
Ω(log( 𝑅

𝜎min
))

Joseph et al. [46] 𝑥𝑖 ∼ N(𝜇, 𝜎2), 𝜇 =𝑂

(
2𝑛𝜀2/log(𝑛/𝛽 )

)
with prob. 1 − 𝛽 , |𝜇 − 𝜇 | = . . . 𝜀

- KVGausstimate - known 𝜎 𝑂

(
𝜎
𝜀

√︂
1
𝑛 log

(
1
𝛽

))
2

- 1RoundKVGausstimate - known 𝜎 𝑂

(
𝜎
𝜀

√︂
1
𝑛 log

(
1
𝛽

) √︁
log(𝑛)

)
1

- UVGausstimate - 𝜎 ∈ [𝜎min, 𝜎max] 𝑂

(
𝜎
𝜀

√︂
1
𝑛 log

(
1
𝛽

)
log (𝑛)

)
2

- 1RoundUVGausstimate - 𝜎 ∈ [𝜎min, 𝜎max] 𝑂
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𝜎
𝜀

√︂
1
𝑛 log

(
𝜎max
𝜎min

+ 1
)

log
(

1
𝛽

)
log3/2 (𝑛)
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1
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B Proofs
Proof of Proposition 3.1. We claim that all Bernoulli-based

mechanisms 𝑀𝐷𝑢 , 𝑀𝑁 , 𝑀𝐷 , and 𝑀𝑊 are equivalent for the mean
estimation of 1-dimensional input. The fact, that 𝑀𝑊 and 𝑀𝐷 are
equivalent (for default parameters of 𝑀𝑊 ), has already been shown
by Waudby-Smith et al. [73]. We therefore only need to show that
𝑀𝐷𝑢 and 𝑀𝑁 are equivalent and that 𝑀𝑁 and 𝑀𝐷 are equivalent.

We first show that 𝑀𝑁 and 𝑀𝐷 are equivalent. We begin, by
recalling the definitions of the mechanisms 𝑀𝐷 and 𝑀𝑁 and their
mean estimators.

The mechanism 𝑀𝐷 by Ding et al. [28] takes inputs 𝑥𝑖 ∈ [0,𝑚]
and outputs 𝑧𝑖 ∈ {0, 1}. The 𝑧𝑖 are sampled from a Bernoulli distri-
bution as

𝑧𝑖 ∼ Bern (𝑝) , 𝑝 =
1

𝑒𝜀 + 1 + 𝑥𝑖

𝑚

𝑒𝜀 − 1
𝑒𝜀 + 1 .

The mean estimator 𝜇 is defined as

𝜇 =
𝑚

𝑛

𝑛∑︁
𝑖=1

𝑧𝑖 · (𝑒𝜀 + 1) − 1
𝑒𝜀 − 1 .

The mechanism 𝑀𝑁 by Nguyên et al. [58] (in the 1-dimensional
case) takes inputs 𝑥 ′𝑖 ∈ [−1, 1] and outputs 𝑧′𝑖 ∈ {0, 1}. The 𝑧𝑖 are
sampled from a Bernoulli distribution as

𝑧′𝑖 ∼ Bern (𝑝′) , 𝑝′ = 𝑥 ′𝑖 (𝑒𝜀 − 1) + 𝑒𝜀 + 1
2𝑒𝜀 + 2 .

The participants then respond with

𝑢′
𝑖 =

{
𝑒𝜀+1
𝑒𝜀−1 if 𝑧′𝑖 = 1
− 𝑒𝜀+1

𝑒𝜀−1 if 𝑧′𝑖 = 0
.

The mean estimator 𝜇′ is defined as

𝜇′ =
1
𝑛

𝑛∑︁
𝑖=1

𝑢′
𝑖 .

The authors mention that the participants can also directly respond
with 𝑧′𝑖 instead of 𝑢′

𝑖 as this can be calculated by the aggregator. We
can rewrite 𝑢′

𝑖 as 𝑢′
𝑖 = (2𝑧′𝑖 − 1) 𝑒𝜀+1

𝑒𝜀−1 and get for the mean estimator

𝜇′ =
1
𝑛

𝑛∑︁
𝑖=1

(2𝑧′𝑖 − 1) 𝑒
𝜀 + 1
𝑒𝜀 − 1 .

We now show that both mechanisms sample from the same
distribution if the input is transformed accordingly. We define the
transformation 𝑇 : [0,𝑚] → [−1, 1] as

𝑇 (𝑥) = 2 𝑥
𝑚

− 1.

We can then rewrite the probability 𝑝′ as

𝑝′ =
𝑇 (𝑥𝑖 ) (𝑒𝜀 − 1) + 𝑒𝜀 + 1

2𝑒𝜀 + 2

=

(
2𝑥𝑖
𝑚 − 1

) (𝑒𝜀 − 1) + 𝑒𝜀 + 1
2𝑒𝜀 + 2

=
2𝑥𝑖
𝑚 (𝑒𝜀 − 1) − 𝑒𝜀 + 1 + 𝑒𝜀 + 1

2𝑒𝜀 + 2

=
2𝑥𝑖
𝑚 (𝑒𝜀 − 1) + 2

2𝑒𝜀 + 2

=
2
( 𝑥𝑖
𝑚 (𝑒𝜀 − 1) + 1

)
2(𝑒𝜀 + 1)

=
1

𝑒𝜀 + 1 + 𝑥𝑖

𝑚

𝑒𝜀 − 1
𝑒𝜀 + 1

= 𝑝.

Therefore, the mechanisms 𝑀𝐷 and 𝑀𝑁 sample from the same
distribution if the input is transformed accordingly.

We now show that the mean estimators are equivalent if we
transform their outputs accordingly. We take the mean estimator 𝜇
and transform the output from [0, m] to [-1,1] using 𝑇 .

𝑇 (𝜇) = 2 𝜇

𝑚
− 1

= 2
𝑚
𝑛

∑𝑛
𝑖=1

𝑧𝑖 · (𝑒𝜀+1)−1
𝑒𝜀−1

𝑚
− 1

=
2
𝑛

(
𝑛∑︁
𝑖=1

𝑧𝑖 · (𝑒𝜀 + 1) − 1
𝑒𝜀 − 1

)
− 1

=
1
𝑛

(
𝑛∑︁
𝑖=1

2𝑧𝑖 · (𝑒
𝜀 + 1) − 1
𝑒𝜀 − 1

)
− 1
𝑛

𝑛∑︁
𝑖=1

1

=
1
𝑛

𝑛∑︁
𝑖=1

2𝑧𝑖 · (𝑒
𝜀 + 1) − 1
𝑒𝜀 − 1 − 1

=
1
𝑛

𝑛∑︁
𝑖=1

(
2𝑧𝑖 · (𝑒𝜀 + 1) − 2

𝑒𝜀 − 1 − 1
)

=
1
𝑛

𝑛∑︁
𝑖=1

2𝑧𝑖 · (𝑒𝜀 + 1) − 2 − (𝑒𝜀 − 1)
𝑒𝜀 − 1

=
1
𝑛

𝑛∑︁
𝑖=1

2𝑧𝑖 · (𝑒𝜀 + 1) − 𝑒𝜀 − 1
𝑒𝜀 − 1

=
1
𝑛

𝑛∑︁
𝑖=1

2𝑧𝑖 · (𝑒𝜀 + 1) − (𝑒𝜀 + 1)
𝑒𝜀 − 1

=
1
𝑛

𝑛∑︁
𝑖=1

(2𝑧𝑖 − 1) (𝑒
𝜀 + 1)
𝑒𝜀 − 1

= 𝜇′ .

We now show that 𝑀𝐷𝑢 and 𝑀𝑁 are equivalent. Recall the defi-
nition of the mechanism 𝑀𝐷𝑢 and its mean estimators (we already
recalled the definition of 𝑀𝑁 above). The mechanism 𝑀𝐷𝑢 by Duchi
et al. [32, 33] (for 𝑑 = 1) takes inputs 𝑥𝑖 ∈ [−𝑟, 𝑟 ] and outputs
𝑧𝑖 ∈ {−𝐵, 𝐵}. Without loss of generality, we assume that 𝑟 = 1.

It calculates 𝑥𝑖 =

{
+1 with probability 1

2 + 𝑥𝑖
2

−1 with probability 1
2 − 𝑥𝑖

2 .
It samples 𝑇

from a Bernoulli distribution as𝑇𝑖 ∼ Bern
(

𝑒𝜀

𝑒𝜀+1

)
. It then calculates

𝑧𝑖 =


𝐵 if 𝑇𝑖 = 1 and 𝑥𝑖 = 1
−𝐵 if 𝑇𝑖 = 1 and 𝑥𝑖 = −1
−𝐵 if 𝑇𝑖 = 0 and 𝑥𝑖 = 1
𝐵 if 𝑇𝑖 = 0 and 𝑥𝑖 = −1

where 𝐵 = 𝑒𝜀+1
𝑒𝜀−1 .

Note that the possible return values 𝐵 and −𝐵 are the same as
the return values of 𝑀𝑁 . We therefore only need to show that the
sampling distributions of 𝑀𝐷𝑢 and 𝑀𝑁 are the same. We rewrite
the output of 𝑀𝐷𝑢 as

𝑃𝑟 [𝑧𝑖 = 𝐵] = 𝑃𝑟 [𝑇𝑖 = 1 and 𝑥𝑖 = 1] + 𝑃𝑟 [𝑇𝑖 = 0 and 𝑥𝑖 = −1]
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= 𝑃𝑟 [𝑇𝑖 = 1]𝑃𝑟 [𝑥𝑖 = 1] + 𝑃𝑟 [𝑇𝑖 = 0]𝑃𝑟 [𝑥𝑖 = −1]
= 𝑃𝑟 [𝑇𝑖 = 1]𝑃𝑟 [𝑥𝑖 = 1] + (1 − 𝑃𝑟 [𝑇𝑖 = 1]) (1 − 𝑃𝑟 [𝑥𝑖 = 1])
= 𝑃𝑟 [𝑇𝑖 = 1]𝑃𝑟 [𝑥𝑖 = 1] + 1 − 𝑃𝑟 [𝑥𝑖 = 1]
− 𝑃𝑟 [𝑇𝑖 = 1] + 𝑃𝑟 [𝑇𝑖 = 1]𝑃𝑟 [𝑥𝑖 = 1]

= 2𝑃𝑟 [𝑇𝑖 = 1]𝑃𝑟 [𝑥𝑖 = 1] + 1 − 𝑃𝑟 [𝑥𝑖 = 1] − 𝑃𝑟 [𝑇𝑖 = 1]

= 2 𝑒𝜀

𝑒𝜀 + 1

(
1
2 + 𝑥𝑖

2

)
+ 1 −

(
1
2 + 𝑥𝑖

2

)
− 𝑒𝜀

𝑒𝜀 + 1

=
𝑒𝜀

𝑒𝜀 + 1 + 𝑒𝜀

𝑒𝜀 + 1𝑥𝑖 +
1
2 − 𝑥𝑖

2 − 𝑒𝜀

𝑒𝜀 + 1

=
𝑒𝜀

𝑒𝜀 + 1𝑥𝑖 +
𝑒𝜀 + 1
𝑒𝜀 + 1 (

1
2 − 𝑥𝑖

2 )

=
1

2𝑒𝜀 + 2 (2𝑒𝜀𝑥𝑖 + 𝑒𝜀 − 𝑒𝜀𝑥𝑖 + 1 − 𝑥𝑖 )

=
(𝑒𝜀 − 1)𝑥𝑖 + 𝑒𝜀 + 1

2𝑒𝜀 + 2

This is the same as the probability 𝑝′ of 𝑀𝑁 . Therefore, the
mechanisms 𝑀𝐷𝑢 and 𝑀𝑁 are equivalent. □

Proof of Proposition 3.2. We assume that the error of the mean
estimator is bounded by 𝑓 (𝑛, 𝜀), i.e., |𝜇−𝜇 | ≤ 𝑓 (𝑛, 𝜀). We now derive
an upper bound for the error of the variance estimator.

��𝑠2
𝑋 − 𝑠2

𝑋

�� = ��� 𝑛

𝑛 − 1 (𝜇𝑋 2 − 𝜇2
𝑋 ) −

𝑛

𝑛 − 1 (𝜇𝑋 2 − 𝜇2
𝑋 )

���
=

𝑛

𝑛 − 1
��𝜇𝑋 2 − 𝜇𝑋 2 − 𝜇2

𝑋 + 𝜇2
𝑋

��
=

𝑛

𝑛 − 1
��(𝜇𝑋 2 − 𝜇𝑋 2 ) + (−(𝜇2

𝑋 − 𝜇2
𝑋 ))

��
(applying the Triangle Inequality)

≤ 𝑛

𝑛 − 1 ( |𝜇𝑋 2 − 𝜇𝑋 2 | +
��𝜇2
𝑋 − 𝜇2

𝑋

��)
(using |𝜇 − 𝜇 | ≤ 𝑓 (𝑛, 𝜀))

≤ 𝑛

𝑛 − 1 (𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + |(𝜇𝑋 + 𝜇𝑋 ) (𝜇𝑋 − 𝜇𝑋 ) |)

=
𝑛

𝑛 − 1 (𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + |𝜇𝑋 + 𝜇𝑋 | |𝜇𝑋 − 𝜇𝑋 |)
(using |𝜇 − 𝜇 | ≤ 𝑓 (𝑛, 𝜀))

≤ 𝑛

𝑛 − 1 (𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + |𝜇𝑋 + 𝜇𝑋 | 𝑓 (𝑛𝑋 , 𝜀𝑋 ))

=
𝑛

𝑛 − 1 (𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + |𝜇𝑋 − 𝜇𝑋 + 𝜇𝑋 + 𝜇𝑋 | 𝑓 (𝑛𝑋 , 𝜀𝑋 ))
(applying the Triangle Inequality)

≤ 𝑛

𝑛 − 1 (𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + (|𝜇𝑋 − 𝜇𝑋 | + |𝜇𝑋 + 𝜇𝑋 |) 𝑓 (𝑛𝑋 , 𝜀𝑋 ))
(using |𝜇 − 𝜇 | ≤ 𝑓 (𝑛, 𝜀) and 𝜇𝑋 ≤ 1 if 𝑥𝑖 ∈ [−1, 1])

≤ 𝑛

𝑛 − 1 (𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + (𝑓 (𝑛𝑋 , 𝜀𝑋 ) + 2) 𝑓 (𝑛𝑋 , 𝜀𝑋 ))

=
𝑛

𝑛 − 1
(
𝑓 (𝑛𝑋 2 , 𝜀𝑋 2 ) + 𝑓 (𝑛𝑋 , 𝜀𝑋 )2 + 2𝑓 (𝑛𝑋 , 𝜀𝑋 )

)
In the case where we split 𝜀 = 𝜀𝑋 + 𝜀𝑋 2 , we have 𝑛 = 𝑛𝑋 = 𝑛𝑋 2 .

Therefore, we have��𝑠2
𝑋 − 𝑠2

𝑋

�� ≤ 𝑛

𝑛 − 1
(
𝑓 (𝑛, 𝜀𝑋 2 ) + 𝑓 (𝑛, 𝜀𝑋 )2 + 2𝑓 (𝑛, 𝜀𝑋 )

)

In the case where we split 𝑛 = 𝑛𝑋 + 𝑛𝑋 2 , we use the same 𝜀 for
all participants: 𝜀 = 𝜀𝑋 = 𝜀𝑋 2 . Therefore, we have��𝑠2

𝑋 − 𝑠2
𝑋

�� ≤ 𝑛

𝑛 − 1
(
𝑓 (𝑛𝑋 2 , 𝜀) + 𝑓 (𝑛𝑋 , 𝜀)2 + 2𝑓 (𝑛𝑋 , 𝜀)

)
□

C Error Bound of the Mean Estimator by
Waudby-Smith et al. (2023)

Waudby-Smith et al. [73] produce a confidence interval that con-
tains the population mean 𝜇 with probability 1 − 𝛼 .

The lower and upper bounds are defined as 𝜇𝑛 ±
√︂

log(1/𝛼 )
2𝑛( 1

𝑛
∑𝑛
𝑖=1 𝑟𝑖 )2 .

Since we set 𝜀𝑖 = 𝜀 for all clients and follow the authors’ recommen-

dation𝐺𝑖 = 1, 𝑟𝑖 = 𝑒𝜀−1
𝑒𝜀+1 . Therefore, the bounds are 𝜇𝑛 ±

√︄
log(1/𝛼 )

2𝑛
(
𝑒𝜀 −1
𝑒𝜀+1

)2 .

Since the population mean 𝜇 is within the bounds with probability
1 − 𝛼 ,

𝜇𝑛 −
√︄

log(1/𝛼)
2𝑛

( 𝑒𝜀−1
𝑒𝜀+1

)2 ≤ 𝜇 ≤ 𝜇𝑛 +
√︄

log(1/𝛼)
2𝑛

( 𝑒𝜀−1
𝑒𝜀+1

)2 (2)

Therefore, we have with probability 1 − 𝛼 :

|𝜇𝑛 − 𝜇 | ≤
�����𝜇𝑛 − 𝜇𝑛 −

√︄
log(1/𝛼)

2𝑛
( 𝑒𝜀−1
𝑒𝜀+1

)2

����� (3)

=

√︄
log(1/𝛼)

2𝑛
( 𝑒𝜀−1
𝑒𝜀+1

)2 (4)

=
1√
2𝑛

𝑒𝜀 + 1
𝑒𝜀 − 1

√︁
log(1/𝛼) (5)
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Figure 5: Mean absolute error of the mean estimation aver-
aged over all datasets (scaled by the respective input range)
and 𝑛 = 104. Shaded areas indicate the standard deviation.
“Duchi” and “Wang” refer to the works by Duchi et al. [31, 33]
and Wang et al. [65] respectively. Ding et al. [28], Nguyên
et al. [58], Waudby-Smith et al. [73], and the ℓ∞ mechanism
by Duchi et al. [31] are equivalent and are summarized as
“Bernoulli Mechanisms”.
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Figure 6: Mean squared error of the frequency estimation averaged over all datasets with 𝑛 = 103, 𝑛 = 104, 𝑛 = 105. Shaded areas
indicate the standard deviation.
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Figure 7: Mean absolute error for 1-dimensional mean estimation. Shaded areas indicate the standard deviation. All results are
averaged over 100 runs. “Duchi ℓ2” refers to the ℓ2 method by Duchi et al. [31, 33], “Wang” refers to the method by Wang et al.
[65], and “Bernoulli” groups the methods by Ding et al. [28], Nguyên et al. [58], Waudby-Smith et al. [73], and the ℓ∞ method
by Duchi et al. [31].
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Figure 8: Mean squared error for 1-dimensional mean estimation. Shaded areas indicate the standard deviation. All results are
averaged over 100 runs. “Duchi ℓ2” refers to the ℓ2 method by Duchi et al. [31, 33], “Wang” refers to the method by Wang et al.
[65], and “Bernoulli” groups the methods by Ding et al. [28], Nguyên et al. [58], Waudby-Smith et al. [73], and the ℓ∞ method
by Duchi et al. [31].
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Figure 9: Variance of the participants’ responses for 1-dimensional mean estimation. Shaded areas indicate the standard
deviation. All results are averaged over 100 runs. “Duchi ℓ2” refers to the ℓ2 method by Duchi et al. [31, 33], “Wang” refers to the
method by Wang et al. [65], and “Bernoulli” groups the methods by Nguyên et al. [58], Waudby-Smith et al. [73], and the ℓ∞
method by Duchi et al. [31]. The variance of the responses generated by the method by Ding et al. [28] is not included in the
“Bernoulli” group here as its responses are biased and therefore show a different behavior.
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Figure 10: Mean absolute error for multi-dimensional mean estimation. Shaded areas indicate the standard deviation. All results
are averaged over 100 runs. “Wang” refers to the method by Wang et al. [65] with “optimal k” using the value suggested by the
authors. “Wang k=1” refers to the same method with 𝑘 = 1 (as in the earlier version of the paper by Nguyên et al. [58]). The
variants “split 𝜀” and “split 𝑛” refer to the naive approaches of splitting the privacy budget or the participants by the number of
dimensions and use the method by Wang et al. [65] for the 1-dimensional mean estimation. “Duchi” refers to the methods by
Duchi et al. [31, 33].
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Figure 11: Mean absolute error for multi-dimensional mean estimation. Shaded areas indicate the standard deviation. All results
are averaged over 100 runs. “Wang” refers to the method by Wang et al. [65] with “optimal k” using the value suggested by the
authors. “Wang k=1” refers to the same method with 𝑘 = 1 (as in the earlier version of the paper by Nguyên et al. [58]). The
variants “split 𝜀” and “split 𝑛” refer to the naive approaches of splitting the privacy budget or the participants by the number of
dimensions and use the method by Wang et al. [65] for the 1-dimensional mean estimation. “Duchi” refers to the methods by
Duchi et al. [31, 33].
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Figure 12: Mean absolute error of the variance estimation averaged over all datasets (scaled by the respective input range) with
𝑛 = {103, 104} and 𝜀 = {0.1, 1, 4, 8}. The split ratio defines how much of the privacy budget (or participants) is used for the mean
estimation step. The variance estimation uses the Piecewise mechanism by Wang et al. [65] as the underlying mean estimator.
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Figure 13: Mean absolute error of the variance estimation averaged over all datasets (scaled by the respective input range) with
𝑛 = {105, 106} and 𝜀 = {0.1, 1, 4, 8}. The split ratio defines how much of the privacy budget (or participants) is used for the mean
estimation step. The variance estimation uses the Piecewise mechanism by Wang et al. [65] as the underlying mean estimator.

145



Proceedings on Privacy Enhancing Technologies 2025(1) René Raab, Pascal Berrang, Paul Gerhart, and Dominique Schröder

10−8

10−5

10−2

M
ea

n
Sq

ua
re

d
Er

ro
r

Murakami et al. (2018)Murakami et al. (2018)Murakami et al. (2018)Murakami et al. (2018)Murakami et al. (2018)

Non-Pure Frequency Oracles

10−8

10−5

10−2

:-RR / DE / O-RR (Kairouz et al. (2016)):-RR / DE / O-RR (Kairouz et al. (2016)):-RR / DE / O-RR (Kairouz et al. (2016)):-RR / DE / O-RR (Kairouz et al. (2016)):-RR / DE / O-RR (Kairouz et al. (2016))

Pure Frequency Oracles

10−8

10−5

10−2

M
ea

n
Sq

ua
re

d
Er

ro
r

;-Subset;-Subset;-Subset;-Subset;-Subset 10−8

10−5

10−2

SUE / Duchi et al. (2013)SUE / Duchi et al. (2013)SUE / Duchi et al. (2013)SUE / Duchi et al. (2013)SUE / Duchi et al. (2013)

10−8

10−5

10−2

M
ea

n
Sq

ua
re

d
Er

ro
r

Nguyen et al. (2016)Nguyen et al. (2016)Nguyen et al. (2016)Nguyen et al. (2016)Nguyen et al. (2016) 10−8

10−5

10−2

Optimized Unary EncodingOptimized Unary EncodingOptimized Unary EncodingOptimized Unary EncodingOptimized Unary Encoding

10−8

10−5

10−2

M
ea

n
Sq

ua
re

d
Er

ro
r

RAPPORRAPPORRAPPORRAPPORRAPPOR 10−8

10−5

10−2

Optimized Local HashingOptimized Local HashingOptimized Local HashingOptimized Local HashingOptimized Local Hashing

10−8

10−5

10−2

10−8

10−5

10−2

Hadamard MechanismHadamard MechanismHadamard MechanismHadamard MechanismHadamard Mechanism

10−1 100 101

10−8

10−5

10−2

10−1 100 101

Y

10−8

10−5

10−2

Hadamard ResponseHadamard ResponseHadamard ResponseHadamard ResponseHadamard Response

n=100 n=1000 n=10 000 n=100 000 n=1 000 000

Figure 14: Mean squared error for 𝑛 = {102, 103, 104, 105, 106, 107} for pure and non-pure frequency oracles averaged over all
datasets (see table 3). Shaded areas indicate the standard deviation. All results are averaged over 20 runs and each estimate is
post-processed by projection onto the probability simplex. 146
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Figure 15: Variance of the estimated frequencies for 𝑛 = {102, 103, 104, 105, 106, 107} for pure and non-pure frequency oracles
averaged over all datasets (see table 3). All results are averaged over 20 runs and each estimate is post-processed by projection
onto the probability simplex. 147
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Figure 17: Visualization of the datasets used in the empirical evaluation (see Table 3).
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