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Abstract
In this paper, we study differentially private point and confidence

interval estimators for simple linear regression. Motivated by re-

cent work that highlights the strong empirical performance of an

algorithm based on robust statistics, DPTheilSen, we provide a

rigorous, finite-sample analysis of its privacy and accuracy proper-

ties, offer guidance on setting hyperparameters, and show how to

produce differentially private confidence intervals to accompany

its point estimates.
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1 Introduction
Science and social science research often requires analyzing sen-

sitive datasets. However, decades of study and real-world attacks

have shown that release of many, accurate pieces of statistical in-

formation can enable reconstruction of the data subjects’ sensitive

attributes [12, 25]. One promising solution is differential privacy
(DP) [29], a rigorous mathematical framework for characterizing

privacy loss. Over the last several years, DP has become a widely

accepted standard for protecting the privacy of data subjects while

releasing useful statistical information about datasets [1, 4, 15]. Yet,

designing usable DPmethods for common statistical inference tasks

remains an ongoing challenge [10, 38, 48].

In this work, we focus on the problem of creating usable DP

methods for simple (i.e. one-dimensional) linear regression, which

is one of the most fundamental tasks in data analysis. Practitioners

from the social sciences have found that there is a lack of guid-

ance and theoretical tools to help researchers choose accurate DP

algorithms for simple linear regression on regimes commonly used

in practice [10]. For example, in 2018, the prominent economics

research group, Opportunity Insights, searched for a DP algorithm

that would maintain high accuracy in the setting of small-area anal-

ysis, with 40 to 400 datapoints per regression [21]. Despite much

review of the literature and engagement with DP experts, the group

could not find DP techniques that provided adequate utility. Instead,

they turned to a heuristic method that did not satisfy the formal

guarantees of DP to release linear regression estimates within their

high-profile Opportunity Atlas tool [21, 22].
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Recent work has started to address these gaps around practical

DP algorithms for simple linear regression in real-world settings. In

particular, Alabi et al. [2] conducted an empirical evaluation of sev-

eral DP algorithms for simple linear regression. They found that a

suite of robust, median-based algorithms, DPTheilSen, based on the
non-private Theil-Sen estimator developed by Theil [52] and Sen

[49], performed better than standard OLS-based algorithms across

a range of practical regimes. In particular, DPTheilSen provided

significant accuracy benefits over sufficient statistics perturbation

and gradient descent approaches when the dataset size, variance

of the independent variable, and privacy-loss parameter is small.

Alabi et al.’s work opened up a new line of research around this

estimator [5, 43], yet our work is the first to analyze the versions

of DPTheilSen that exhibit the strongest empirical performance.

Studying the Theil-Sen estimator is fruitful for enhancing our

practical toolkit around linear regression as well advancing our

theoretical understanding of robust and private algorithms. In the

non-private setting, not only is Theil-Sen one of themost commonly

used robust estimators in practice [33], offering better accuracy

compared to Ordinary Least Squares (OLS) for data that is skewed or

has outliers, it is also a easy-to-implement algorithm with connec-

tions to a wide range of other robust or nonparametric techniques.

As shown in Figure 1, the non-private algorithm proceeds in two

straightforward steps: first, it computes the slope for some or all

pairs of points and second, it uses a median sub-routine to output a

single estimate of the slope. To make the algorithm satisfy DP, the

median sub-routine can be replaced with a DP analogue.
1

Figure 1: Illustration of the standard non-private Theil-Sen
algorithm [49, 52], which computes the slopes between all
pairs of points (light blue) and outputs the median slope
(dark blue).

1
The intercept can be computed either along with the slope or using the final estimate

of the slope, as described in [49] and [2].

216

https://orcid.org/0000-0001-5852-5182
https://orcid.org/0000-0002-4059-4072
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0013


Analyzing the Differentially Private Theil-Sen Estimator Proceedings on Privacy Enhancing Technologies 2025(1)

While Alabi et al.’s empirical study was a valuable starting point

in highlighting the strong performance of DPTheilSen, the au-

thors stated that further theoretical understanding of the accuracy

guarantees, as well as design of uncertainty estimates, would be

needed to make this set of algorithms fully usable in practice. This

assessment is shared by Barrientos et al. [10], who in their survey

of DP linear regression algorithms emphasize various criteria for

designing feasible and practical algorithms in practice, including:

assumptions that align with practical applications, ease of imple-

mentation, computational efficiency, minimal tuning parameters,

and development of uncertainty estimates.

In this paper, we address these open questions by analyzing the

accuracy guarantees of the DPTheilSen algorithms. Our contribu-

tions can be summarized as follows.

(1) We provide a rigorous theoretical analysis of the DPTheilSen
algorithms shown to perform strongly by Alabi et al. [2]. Our

analyses offer finite-sample convergence bounds and shed

light on why and when DPTheilSen outperforms other DP

linear regression algorithms.

(2) We design and analyze DP confidence intervals for simple

linear regression via DPTheilSen.

We intentionally restrict our focus in this work to the one-

dimensional setting. There is a rich literature around DP linear re-

gression, but most of these works jump directly to high-dimensional

data and machine learning contexts [13, 18, 35, 50, 53, 54, e.g.]. How-

ever, results about optimal algorithms in high-dimensional contexts

are not directly applicable to the one-dimensional problem, which is

a setting still widely used in social science applications and one that

has posed barriers to adoption of DP [21]. In particular,Alabi et al.

[2] show that leading algorithms in the multi-dimensional setting,

such as gradient descent approaches, do not necessarily exhibit

strong performance in the one-dimensional context. Rather, a tai-

lored analysis of algorithms such as DPTheilSen that have proven

to be empirically strong is essential. Explaining the performance of

DPTheilSen in the one-dimensional setting is a natural theoretical

question and is a stepping stone to understanding and designing

better DP linear regression methods in higher dimensions, as well

as other DP algorithms based on robust statistics.

Overall, our work aims tomake DP linear regression significantly

more usable for practitioners. Before providing an overview of our

main results, we describe the problem of simple linear regression

and the assumptions we make in this work, which are minimal.

1.1 Simple linear regression
We are given 𝑛 values, 𝑥1, . . . , 𝑥𝑛 , of the predictor variable 𝑥 . For

each 𝑥𝑖 , we observe the corresponding value 𝑦𝑖 of the response

random variable 𝑦. The model is 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 for 𝑖 = 1, . . . , 𝑛,

where 𝛽0 and 𝛽1 are unknown parameters. We make the following

assumptions:

Assumption 1.1.1. 𝑥1, . . . , 𝑥𝑛 are fixed and not all equal.

Assumption 1.1.2. Each 𝑒𝑖 is sampled independently from the

same continuous, symmetric, mean-0 distribution 𝐹𝑒 .

Note that these assumptions are relevant only to the utility anal-

ysis of the linear regression algorithms.
2
Our privacy analysis does

not rely on these assumptions and provides the usual protections

of DP on (𝑥,𝑦) pairs. Our goal is to design and analyze 𝜀-DP point

and interval estimators for the slope 𝛽1.

A common formulation of linear regression is the Ordinary Least

Squares (OLS) objective, which is characterized by the following

optimization problem:

( ˆ𝛽0, ˆ𝛽1) = arg min

𝛽0,𝛽1∈R
∥y − 𝛽1x − 𝛽01∥2,

where x = (𝑥1, . . . , 𝑥𝑛)𝑇 , y = (𝑦1, . . . , 𝑦𝑛)𝑇 , and 1 is the all-ones

vector. OLS has a simple closed form solution:

ˆ𝛽1 =
𝑛cov(x, y)
𝑛var(x) and

ˆ𝛽0 = 𝑦 − ˆ𝛽1𝑥,

where 𝑥 = 1

𝑛

∑𝑛
𝑖=1

𝑥𝑖 , 𝑦 = 1

𝑛

∑𝑛
𝑖=1

𝑦𝑖 , 𝑛cov(x, y) = ⟨x − 𝑥1, y − 𝑦1⟩,
and 𝑛var(x) = ⟨x − 𝑥1, x − 𝑥1⟩. When y is generated according to

the model 𝑦𝑖 = 𝛽0 + 𝛽1 · 𝑥𝑖 + 𝑒𝑖 ,∀𝑖 ∈ [𝑛] for i.i.d. Gaussian noise

𝑒𝑖 , then the OLS solution is the maximum likelihood estimator.

If we remove the assumption of Gaussian noise and add privacy

constraints, however, robust estimators such as Theil-Sen have been

shown to provide better accuracy [2, 30]. In this work, we analyze

DP algorithms based on Theil-Sen, comparing them to the OLS-

based approaches. Below, we provide brief descriptions of these

two approaches:

• OLS-based algorithms: The DPSuffStats algorithm [2, 32,

53] follows the OLS approach closely, in that it involves

perturbing the sufficient statistics 𝑛cov(x, y) and 𝑛var(x).
While this algorithm is computationally efficient and enables

releasing the DP sufficient statistics at no extra privacy cost,

it has been shown to not performwell in common regimes.
3
A

second algorithm is DPOLSExp [3, 11], which implements the

exponential mechanism [46] with the OLS objective function.

• Theil-Sen-based algorithms: Theil-Sen [49, 52] is a family

of robust linear regression estimators that proceed via two

steps (as illustrated in Fig. 1) for estimating the slope 𝛽1: (1)

compute the slope for some or all pairs of points, and (2)

output the median of these estimates. To make this algorithm

DP, we can simply replace the median with a DP median.

Although there are many choices for the DP median, we

consider a version of this algorithm, DPWideTS, which uses

the widened exponential mechanism [2, 46] as the DP median

sub-routine, as this version has been shown to exhibit strong

empirical performance by [2]. The DPWideCIUnion version

of the algorithm does so by outputting an interval that con-

tains the non-private interval with high probability, while

the DPWideCI algorithm outputs a tighter interval via more

nuanced coverage analysis.

1.2 Overview of results
This work offers two main contributions: finite-sample guaran-

tees and confidence intervals for DPTheilSen. First, we provide

2
In particular for the first assumption, we analyze accuracy as a function of the 𝑥-

values, as is common in regression analyses in the statistics literature. Analyses for

random 𝑥 ’s can be interpreted as being done conditional on the 𝑥-values.
3
In particular, [2] showed that DPSuffStats performs poorly in the high privacy, small

dataset, and/or clustered independent variable regime.
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a finite-sample convergence bound for DPWideTS, the variant of
DP Theil-Sen that was recommended by Alabi et al. [2]. We attain

the convergence bound by developing a finite-sample analysis of

non-i.i.d. U-statistics [20, 39], which may be of independent interest.

We state our convergence bound informally below. While our

main analysis does not require any data assumptions beyond the

ones stated above (Assumptions 1.1.1 and 1.1.2), the theorem is

stated for a special case, where the independent variables 𝑥1, . . . , 𝑥𝑛
are evenly split between the endpoints of an interval of length

Δ𝑥 (known as an asymptotically optimal design [49]), and the noise

variables 𝑒1, . . . , 𝑒𝑛 are drawn i.i.d. from N(0, 𝜎2

𝑒 ). The asymptoti-

cally optimal design is common in the non-private literature and

often found in practice (e.g. to model treatment and control groups).

Theorem 1.2 (Main result applied for a special case of asymp-
totically optimal design, informally stated). Let 𝛽1

DPWideTS
be

the DPWideTS estimator with privacy loss parameter 𝜀, hyperparam-
eter 𝑅 for the range of the outputs, and hyperparameter 𝜃 for the
granularity of the outputs. Assume that the true slope 𝛽1 lies in the
interval [−𝑅 + 𝜃, 𝑅 − 𝜃 ]. Let 𝜏 be defined as follows.

𝜏 = Φ−1

(
1 − 𝑝

8

)
·
√︂

4

3𝑛
+𝑂

(
ln(𝑅/𝑝𝜃 )

𝜀𝑛

)
where Φ−1 is the inverse standard normal distribution function. Then,
for suff. large 𝑛, and suff. small 𝜏 and 𝜎𝑒/Δ𝑥 , we have that with
probability at least 1 − 𝑝 ,

𝛽1

DPWideTS ∈ [𝛽1 − 𝑧 − 𝜃, 𝛽1 + 𝑧 + 𝜃 ]

for 𝑧 =

√
𝜋 · 𝜎𝑒
Δ𝑥

·
(
𝜏 +𝑂

(
𝜏3/2

))
.

The constants in our accuracy bounds are universal and do not

depend on any parameters of the problem. Thus our results are

considered finite-sample. As the accuracy bounds (intentionally)

depend on the private 𝑥-values, it is not useful to specify these

constants; in practice, one should use our DP confidence intervals

to estimate uncertainty.

In Table 1 below, we provide an informal comparison between

the convergence bounds for DPWideTS (described above) and the

OLS-based DPSuffStats algorithm for this setting (analyzed in [3]).

We also compare these DP estimators with their non-private coun-

terparts. Notation is provided in the caption.

We can see that DPWideTS maintains the same leading constant

of 2

√︁
𝜋/3 as that of non-private TS, while non-private OLS and

DPSuffStats have a leading constant of 2, so the latter are slightly

better in the asymptotic 𝑛 → ∞ regime. The bounds for DPWideTS
and DPSuffStats both contain lower-order terms corresponding

to the noise due to privacy. For DPWideTS, we see a logarithmic

dependence on the output range 𝑅, as compared to the quadratic de-

pendence shown by DPSuffStats on the input range 𝑟 . Our compar-

ison provides theoretical backing to the empirical finding of Alabi

et al. [2]—that the quantity 𝜀𝑛Δ2

𝑥 is important in choosing between

the standard DPSuffStats algorithm and the robust DPWideTS al-
gorithm. In particular, when 𝜀𝑛Δ2

𝑥 is small, which indicates a high

privacy, small dataset size, and/or clustered independent variable

regime, DPWideTS is the more accurate estimator.

Finally, our convergence bound enables us to provide guidance

on setting the 𝜃 hyperparameter (corresponding to the granularity

of the widened exponential mechanism) for DPWideTS, which was

a key open problem raised by Alabi et al. [2] towards making this

algorithm usable for practitioners.

Estimator 1 − 𝑝 Convergence Bound

Non-priv OLS
2𝜎𝑒
Δ𝑥

· 𝑐𝑝/2√
𝑛

Non-priv TS

√︁
𝜋
3
· 2𝜎𝑒
Δ𝑥

· 𝑐𝑝/4√
𝑛

DPSuffStats 2𝜎𝑒
Δ𝑥

·
𝑐𝑝/6√

𝑛
· (1 + 𝜏 ) + 𝜏 (1 + 𝜏 + |𝛽1 | ) ,

[3] 𝜏 ≈ (1−1/𝑛)𝑟 2
log(3/𝑝 )

𝜀 ·𝑛 ·Δ2

𝑥

DPWideTS
√︁

𝜋
3
· 2𝜎𝑒

Δ𝑥
·
(
𝑐𝑝/8√

𝑛
+ 𝛾

)
(1 + 𝑜 (1) )

(Thm. 1.2) + 𝜃, 𝛾 ≈ ln(𝑅/𝑝 ·𝜃 )
𝜀𝑛

Table 1: (1 − 𝑝)-convergence bounds for simple lin-
ear regression point estimators in special case of
asymptotically optimal design. 𝑟 is range for both the
input 𝑥𝑖 , 𝑦𝑖 datapoints, 𝑅 is range for the output estimate of
𝛽1, and 𝑐𝑝/2 = Φ−1 (1 − 𝑝/2) = Θ(log(1/𝑝) for small 𝑝.

In addition to analyzing the DPWideTS point estimator, we design

and analyze corresponding confidence interval estimators for sim-

ple linear regression.We describe two algorithms—DPWideTSCIUnion
and DPWideTSCI—and analyze their privacy, coverage, and accuracy
guarantees.

We use the DP median estimators proposed by Drechsler et al.

[27] as sub-routines in our algorithms, making them additionally us-

able by analyzing the width of the confidence intervals they provide.

We show that the confidence interval for DPWideTSCIUnion is ap-
proximately twice as large as the convergence bound for DPWideTS,
and can be further improved using the algorithm DPWideTSCI with
some tradeoff in computational efficiency.

1.3 Related work
Linear regression is one of the most fundamental tasks in statistics

and has received much attention in the DP literature [8, 9, 13, 18,

35, 43–45, 47, 50, 53, 54]. Although we cannot provide a full survey

here, we note that most prior works focus on non-robust meth-

ods, require additional assumptions on the data or model, or only

provide asymptotic analysis. With respect to simple linear regres-

sion, Alabi et al. [2] conducted an experimental evaluation of DP

algorithms, demonstrating that DP analogues of robust algorithms,

such as DPTheilSen, perform better than non-robust methods in

practical settings—in particular, when the dataset size, variance of

the independent variables, and/or privacy loss parameter is small.

However, Alabi et al. did not provide theoretical bounds or DP

confidence intervals for this estimator, which are open questions

we address in this work.
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Our work draws on the rich connections between robust sta-

tistics and DP [6, 30, 40]. Dwork and Lei [30] stated that “robust

estimators are a useful starting point for constructing highly ac-

curate differentially private estimators.” They gave an asymptotic

analysis of what they called the “Short-Cut Regression Method,"

which is similar to a simplified variant of DPTheilSen. However,
they did not consider the more statistically efficient variants that we

do in this work, provide finite sample guarantees, or offer measures

of uncertainty for the estimates like the confidence intervals we

provide. Other works [7, 23] confirm the findings of Dwork and Lei

in the context of hypothesis testing, showing that robust estima-

tors perform better than parametric estimators under differential

privacy, even when the data comes from a parametric model. How-

ever, these works provide either empirical or asymptotic guarantees

rather than finite-sample analysis.

Our confidence interval algorithms build upon Drechsler et al.

[27]’s non-parametric DP confidence intervals for the median, but

ours are more general in that they provide finite-sample validity for

some forms of non-i.i.d. variables and characterizes the width of the

confidence intervals. Prior work has also considered DP confidence

intervals for mean estimation [28, 37, 41], but these cannot directly

be applied for the median-based estimator we consider. Other work

produces DP confidence intervals using bootstrapping [9, 16, 26, 36],

but these can be expensive to compute and rely on assumptions,

such as normally distributed errors, that our work avoids. To the

best of our knowledge, our work is the first to theoretically analyze

the different variants of DPTheilSen as well as to design and ana-

lyze non-parametric, differentially private confidence intervals to

accompany its point estimates.

1.4 Concurrent Work
Since our results were first announced,

4
there has been a flurry of

work that uses median-based approaches for DP tasks [17, 24, 43, 45,

47] and clarifies the connections between privacy and robustness [6,

40]. We do not provide a comprehensive survey here but touch on

the most relevant works.

Amin et al. [5] provide empirical evaluation of higher-dimensional

variations of Theil-Sen, but unlike our work, do not offer theoretical

bounds on accuracy or convergence. Knop and Steinke [43], on the

other hand, do provide theoretical privacy and utility analysis of

some of the DP Theil-Sen algorithms in higher dimensions, as well

as an experimental evaluation. They offer a finite-sample conver-

gence bound that is consistent with our results, but their statement

only applies for the highly simplified variant of DPTheilSen where
each data point is used only once, so only 𝑛/2 slopes are com-

puted and the slopes are independent of each other. Our results are

more general and can handle cases that achieve provably stronger

performance by reusing data points and introducing correlations.

Examples include the asymptotically optimal design of Thm. 1.2

and the full Theil-Sen variant where all

(𝑛
2

)
points are used.

5
In

addition, Knop and Steinke’s results are stated for the setting where

features and noise are Gaussian, and they do not aim to match

the leading constant of the non-private estimators, which is an

4
This work was presented at the Workshop on Theory and Practice of DP in 2021.

5
Note that the simplified variant of Theil-Sen can be analyzed using a Chernoff-

Hoeffding bound, while the versions of Theil-Sen with correlated slopes require more

complex analytical tools such as U-statistics.

important feature of our results. While Knop and Steinke analyze

these algorithms in the high-dimensional setting, we find that the

one-dimensional case is already a challenging and understudied

regime to analyze with correlated slopes.

Recent work has also significantly advanced our understanding

of the connection between robust and private algorithms. Asi et

al. [6] establish a tight connection between privacy and robustness,

providing a black-box transformation from optimal robust to opti-

mal differentially private algorithms. They also design and analyze

estimators for DP linear regression for high-dimensional tasks un-

der assumptions of Gaussianity. Hopkins et al. [40] show how to

implement this black-box transformation in a computationally effi-

cient manner via the sum-of-squares method. While these methods

provide important general toolkits for designing DP algorithms,

they do not provide finite-sample bounds for specific estimators

such as DPTheilSen.
Finally, studies analyzing the practical use of DP have further

highlighted the need for more usable DP algorithms for basic sta-

tistical tasks such as simple linear regression. A study of data prac-

titioners’ use of DP by Sarathy et al. [48] calls for algorithms with

minimal hyperparameters and assumptions, as well as useful un-

certainty measures, that will enable data analysts to navigate the

constraints of the DP analysis process. In addition, work by Barrien-

tos et al. [10] evaluates a range of DP linear regression algorithms

in terms of feasibility for real-world use. They develop criteria for

usable algorithms, including: assumptions that align with practi-

cal applications, ease of implementation, computational efficiency,

minimal tuning parameters, and accompanied by uncertainty esti-

mates. Barrientos et al. find that a suprisingly few number of DP

algorithms satisfy these criteria. We believe that developing the

design and analysis of DPTheilSen enables this suite of algorithms

to better align with these critiera, making DPTheilSenmore usable

for real-world DP deployments.

2 Preliminaries
We consider datasets that are multisets. The space of datasets is

denoted by Multisets(D, 𝑛), where D is the underlying set of ele-

ments and 𝑛 is the cardinality of each multiset. Let distms (d, d′) be
the number of records that must be changed to transform dataset d
into another dataset d′.6

Since our algorithms include hyperparameters, we state a defini-

tion of DP for algorithms that take as input not only the dataset,

but also the desired privacy parameters and any required hyper-

parameters. Two datasets d, d′ ∈ Multisets(D, 𝑛) are neighboring,
denoted d ∼ d′, if dist(d, d′) = 1. LetH be a hyperparameter space

and Y be an output space.

Definition 2.0.1 (Differential Privacy [31]). For 𝜀 ∈ R≥0, a ran-

domized algorithm𝑀 : Multisets(D, 𝑛) ×R≥0 ×H → Y is 𝜀-DP if

and only if for all neighboring datasets d ∼ d′ ∈ Multisets(D, 𝑛)
hyperparams ∈ H , and sets 𝐸 ⊆ Y,

Pr[𝑀 (d, 𝜀, hyperparams) ∈ 𝐸]
≤ 𝑒𝜀 · Pr[𝑀 (d′, 𝜀, hyperparams) ∈ 𝐸] .

where the probabilities are taken over the random coins of𝑀 .

6
I.e. “change-one distance” [19]).
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Now, we will define the non-private Theil-Sen family of estimators.

Definition 2.0.2 (Theil-Sen Estimator [49, 52]). Let (𝑥1, 𝑦1), . . . ,
(𝑥𝑛, 𝑦𝑛) be an arbitrary ordering of dataset d ∈ Multisets(R ×
R, 𝑛). Let 𝑆 be a set of 𝑁 unordered pairs of elements of [𝑛] =

{1, . . . , 𝑛} such that for each pair {𝑖, 𝑗} ∈ 𝑆 , 𝑥𝑖 ≠ 𝑥 𝑗 . Then, for each

{𝑖, 𝑗} ∈ 𝑆 , compute the slope 𝑠𝑖 𝑗 between the points (𝑥𝑖 , 𝑦𝑖 ) and
(𝑥 𝑗 , 𝑦 𝑗 ) as follows: 𝑠𝑖 𝑗 = (𝑦 𝑗 − 𝑦𝑖 )/(𝑥 𝑗 − 𝑥𝑖 ). Let s = {𝑠𝑖 𝑗 }{𝑖, 𝑗 }∈𝑆
denote the multiset of the slopes. The Theil-Sen estimator ˆ𝛽1

TS
with

corresponding set 𝑆 is computed as follows:
ˆ𝛽1

TS

=median(s).

3 DPTheilSen Algorithm

Algorithm 3.1: DPTheilSen: 𝜀-DP Algorithm

Data: d = (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
∈ Multisets(R × R, 𝑛),

Privacy params: 𝜀 ∈ R≥0

Hyperparams: 𝑆 ∈
([𝑛]

2

)
, DPmed, hyperparams ∈ H

s = {}
for each {𝑖, 𝑗} ∈ 𝑆 do

if 𝑥 𝑗 ≠ 𝑥𝑖 then
𝑠𝑖 𝑗,1 = (𝑦 𝑗 − 𝑦𝑖 )/(𝑥 𝑗 − 𝑥𝑖 )
𝑠𝑖 𝑗,2 = 𝑠𝑖 𝑗,1

else
𝑠𝑖 𝑗,1 = −∞
𝑠𝑖 𝑗,2 =∞

Add 𝑠𝑖 𝑗,1 and 𝑠𝑖 𝑗,2 to s
Let 𝑘 = max𝑖∈[𝑛] {# 𝑗 ∈ [𝑛] : {𝑖, 𝑗} ∈ 𝑆}
𝛽1

TS

= DPmed (s, 𝜀/2𝑘, hyperparams)
return 𝛽1

TS

In the differentially private version of Theil-Sen, which we call

DPTheilSen (Algorithm 3.1), we similarly compute pairwise es-

timates of the slope. However, we replacing the computation of

the median of the slopes with a differentially private median algo-

rithm (denoted by DPmed, which can be one of several algorithms).

DPmed takes as input the multiset of slopes, s ∈ Multisets(R ∪
{−∞,∞}, 𝑁 ), the scaled privacy parameter 𝜀/2𝑘 ∈ R≥0, where 𝑘 is

the max number of slopes computed using each datapoint, and the

hyperparameters ∈ H for the given median algorithm.

Note that the set 𝑆 and value 𝑘 are chosen independently of the

dataset and are meant to capture different variants of the Theil-Sen

algorithm. For example, 𝑆 could be constructed by matching the

𝑖’th data point with the (𝑖 + ⌊𝑛/2⌋) th point, for 1 ≤ 𝑖 ≤ ⌊𝑛/2⌋, or
with a randomly chosen set of 𝑘 ∈ [1, 𝑛 − 1] other points. Under
bounded DP, changing one data point will not change 𝑆 or 𝑘 . In

order to handle the cases where 𝑥𝑖 = 𝑥 𝑗 under bounded DP, the

DPTheilSen algorithm adds∞ and −∞ for that case, and otherwise

adds each slope twice to the multiset s.

Lemma 3.0.1 ([2]). Algorithm 3.1 (DPTheilSen) is 𝜀-DP.

In this work, we consider a version of DPTheilSen called DPWideTS,
which uses for DPmed thewidened exponential mechanism, DPWide [2,
46]. described below (Algorithm 3.2). This variant of DPTheilSen
was found to have strong performance in the empirical work of [2].

Algorithm 3.2: Widened Exponential Mechanism for

Quantile (DPWide): 𝜀-DP Algorithm

Data: s = (𝑠1, . . . , 𝑠𝑁 ) ∈ R𝑁

Privacy params: 𝜀 ∈ R≥0

Hyperparams: 𝑞 ∈ (0, 1),−𝑅, 𝑅 ∈ R2
;𝜃 ∈ R>0

Sort s
/* Clip s to the range [−𝑅, 𝑅] and insert space 𝜃

around the 𝑞th quantile: */

for 𝑖 ∈ [1, ⌊𝑁𝑞⌋] do
s[𝑖] = min(max(−𝑅, s[𝑖] − 𝜃 ), 𝑅)

for 𝑖 ∈ [⌊𝑁𝑞⌋ + 1, 𝑁 ] do
s[𝑖] = max(min(𝑅, s[𝑖] + 𝜃 ),−𝑅)

Insert −𝑅 and 𝑅 into s and set 𝑁 = 𝑁 + 2

Set maxNoisyScore = −∞
Set argMaxNoisyScore = −1

for 𝑖 ∈ [2, 𝑁 ) do
score = log(s[𝑖] − s[𝑖 − 1]) − 𝜀

2
· ⌊|𝑖 − 𝑁𝑞 |⌋

𝑍 ∼ Gumbel(0, 1)
noisyScore = score + 𝑍

if noisyScore > maxNoisyScore then
maxNoisyScore = noisyScore

argMaxNoisyScore = 𝑖

left = s[argMaxNoisyScore − 1]
right = s[argMaxNoisyScore]
Sample 𝑞DPWide ∼ Unif [left, right]
return 𝑞DPWide

Below, we state the standard utility theorem for DPWide with

widening hyperparameter 𝜃 on a fixed dataset s. Let 𝐹s
−1

be the

inverse empirical distribution function for the set of slopes, s. We

use the following assumption on the range and widening hyperpa-

rameters 𝑅, 𝜃 ∈ R>0.

Assumption 3.0.2. For a target 𝑞 ∈ (0, 1) and fixed dataset s ∈ R𝑁
,

the true quantile 𝐹s
−1(𝑞) ∈ [−𝑅 + 𝜃, 𝑅 − 𝜃 ].

Theorem 3.0.3 (Utility of DPWide). Let s ∈ R𝑁 be a fixed sample
of 𝑁 points, and let 𝐹s

−1 be the inverse empirical distribution function.
For 𝑞 ∈ (0, 1), let [−𝑅, 𝑅], the range hyperparameter, satisfy Assump-
tion 3.0.2, and let 𝜃, 𝜀 > 0. Let 𝑞DPWide = DPWide(s, 𝜀, (𝑞,−𝑅, 𝑅, 𝜃 ).
Then, for 0 < 𝑐 < min(𝑞, 1/2),

Pr

DPWide(s,𝜀,
(𝑞,−𝑅,𝑅,𝜃 ) )

(
𝑞DPWide ∉ [𝐹s−1(𝑞 − 𝑐) − 𝜃, 𝐹s

−1(𝑞 + 𝑐) + 𝜃 ]
)

≤ 𝑅

𝜃
exp

(
−𝜀𝑐𝑁

2

)
The widening parameter 𝜃 needs to be carefully chosen. All

outputs within 𝜃 of the target quantile are given the same utility

score, so a large 𝜃 represents a lower bound on the performance.

Conversely, choosing 𝜃 too small may result in the area around the

target quantile not being given sufficient weight in the sampled

distribution. We describe how to set 𝜃 for DPWideTS in Section 5.1.

4 Convergence Bound for DPWideTS
In this section, we provide a finite-sample analysis of DPWideTS.
We look beyond asymptotics solely in 𝑛, as this will not explain the
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strong empirical performance of the DPWideTS algorithm compared

to others such as DPSuffStats, as shown by [2]. In addition, finite-

sample analysis will allow us to better understand the conditions
under which DPWideTS outperforms non-robust algorithms.

The main challenge of analyzing DPWideTS is that the slopes

computed from 𝑆 are correlated.7 To deal with correlated slopes, [49]

relies on the properties ofU-statistics [39] for an asymptotic analysis

of the non-private Theil-Sen algorithm.

Definition 4.0.1 (U-statistic for simple linear regression [49]). Let

𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1, and let 𝑦1, . . . , 𝑦𝑛 be the corre-

sponding response variables under the model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 ,

where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖 is sampled i.i.d from a continuous,

symmetric, mean-0 distribution 𝐹𝑒 . The U-statistic takes as input

a “guess”
ˆ𝛽1 ∈ R for the true slope 𝛽1, as well as the datapoints

(𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
, indexed arbitrarily. Then, the U-statistic for simple linear

regression is defined as follows.

𝑈 ( ˆ𝛽1, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
) = 1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

sign

(
𝑦 𝑗 − 𝑦𝑖

𝑥 𝑗 − 𝑥𝑖
− ˆ𝛽1

)
, (1)

where 𝑆 is the set of unordered pairs of datapoints used to compute

the slopes (where each pair has distinct 𝑥 values), 𝑁 = |𝑆 | is the
number of such pairs, and sign(𝑞) = −1 if 𝑞 < 0, 0 if 𝑞 = 0, and 1 if

𝑞 > 0. For ease of notation, we will let
ˆ𝛽1 = 𝛽1 + 𝑧, for some 𝑧 ∈ R,

and use𝑈𝑧 as shorthand for𝑈

(
ˆ𝛽1, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

)
.

We build on this approach, adapting finite-sample ‘Berry-Esseen-

type’ bounds for the convergence of the U-statistic in order to

develop a finite-sample convergence bound for the DPWideTS esti-
mate.

Theorem 4.0.2 (Convergence bound for 𝛽1

DPWideTS
). Let 𝑥1, . . . , 𝑥𝑛

satisfy Assumption 1.1.1 and have empirical variance𝜎2

𝑥 . Let𝑦1, . . . , 𝑦𝑛
be the corresponding response variables under the model 𝑦𝑖 = 𝛽0 +
𝛽1𝑥𝑖 +𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖 is sampled i.i.d from a continu-

ous, symmetric, mean-0 distribution 𝐹𝑒 . Let 𝛽1

DPWideTS
= DPTheilSen({𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1

, 𝜀, (𝑆, DPWide, 𝜃,−𝑅, 𝑅)),
where 𝜀, 𝑅, 𝜃 > 0, 𝛽1 ∈ [−𝑅 + 𝜃, 𝑅 − 𝜃 ], and 𝑆 ∈

([𝑛]
2

)
is a set of un-

ordered pairs with distinct x-values. Let 𝑈𝑧 be the U-statistic defined
with respect to 𝑆 .

Then, there exists a constant 𝑐 > 0 such that for sufficiently large

𝑛, with probability at least 1− 𝑝 , 𝛽1

DPWideTS ∈ [𝛽1 − 𝑧 −𝜃, 𝛽1 + 𝑧 +𝜃 ]
for every 𝑧 that satisfies the following:

𝜇 (𝑧) − 4 ln(4𝑅/𝑝𝜃 )
𝜀 ·𝑛

𝜎 (𝑧) ≥ Φ−1

(
1 − 𝑝

2

+ 𝑐

𝑛2 · 𝜎3 (𝑧)

)
where 𝜇 (𝑧) = E[𝑈𝑧], 𝜎2 (𝑧) = Var[𝑈𝑧], and Φ is the std. normal cdf.

The quantities 𝜇 (𝑧) and 𝜎2 (𝑧) can be further described and evalu-
ated, as shown in Sections B.1 and 5. In the next section, we provide

an overview of the analysis and the use of the U-statistic. How-

ever, this result will be easier to interpret when applied to a special

setting, as described in Section 5.

7
We can avoid correlated slopes if we use an ‘incomplete’ version of the algorithm

where each data point is only used in one slope, ie. 𝑘 = 1. Our general analysis applies

to this simplified version, as well as to variants that compute a linear # of total slopes

for computational efficiency.

4.1 Overview of analysis
To analyze the performance of DPTheilSen, we further consider
the U-statistic from Definition 4.0.1. In particular, we can rewrite

statistic (1) in the form of a Kendall’s tau statistic [42] that measures

the rank correlation between the 𝑥 ’s and the residuals from a line

of slope 𝛽1 + 𝑧.

𝑈𝑧 =𝑈 (𝛽1 + 𝑧, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
)

=
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆
𝑖< 𝑗

sign(𝑥 𝑗 − 𝑥𝑖 ) · sign
(
𝑒 𝑗 − 𝑒𝑖 − 𝑧 · (𝑥 𝑗 − 𝑥𝑖 )

)
(2)

Suppose 𝑧 = 0. Then, we define the null U-statistic as

𝑈0 =𝑈 (𝛽1, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
)

=
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

sign(𝑥 𝑗 − 𝑥𝑖 ) · sign(𝑒 𝑗 − 𝑒𝑖 ) (3)

Furthermore, the distribution of𝑈0 matches the null distribution

of the Kendall’s 𝜏-statistic, which is known to be asymptotically

normal [42]. Observe that 𝐸𝑒1,...,𝑒𝑛 [𝑈𝑧] = 0 since 𝑒1, . . . , 𝑒𝑛 are i.i.d.

In fact, we have:

Fact 4.1.1 ([49]). E𝑒1,...,𝑒𝑛 [𝑈𝑧] = 0 iff 𝑧 = 0.

We will also point out another fact about the U-statistic, which

will be used in our proof of Theorem 4.0.2.

Fact 4.1.2 ([49]). For all 𝑧 ∈ R,𝑈𝑧 is a non-increasing function.

Using these properties of the U-statistic, we proceed with the

algorithm analysis in two steps.

(1) By the utility theorem of the widened exponential mecha-

nism (Theorem 3.0.3), we show that with high probability,

𝑈

(
𝛽1

DPWideTS
, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

)
≈ 0.

(2) Putting together 𝑈

(
𝛽1

DPWideTS
, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

)
≈ 0, and the as-

ymptotic normality of𝑈𝑧 for appropriate 𝑧 (Theorem 4.2.1),

we show that 𝛽1

DPWideTS ≈ 𝛽1 and characterize the finite-

sample convergence of the estimator.

Note that the second step requires showing that𝑈𝑧 , not just𝑈0, is

asymptotically normal, and we must characterize the convergence

using the quantity 𝑧 itself. We do so in the next section.

4.2 Finite-sample convergence of U-statistic
We develop a finite-sample bound for the absolute value difference

between the distribution function of𝑈𝑧 and the standard normal

distribution function Φ. To do so, we modify Berry-Esseen bounds

for linear functions, such as U-statistics, of i.i.d mean-0 random

variables (see, e.g., [20]). In the case of the U-statistic𝑈𝑧 described

in (2), the terms sign(𝑒 𝑗−𝑒𝑖−𝑧 · (𝑥 𝑗−𝑥𝑖 )) for {𝑖, 𝑗} ∈ 𝑆, 𝑖 < 𝑗 are non-

identically distributed since 𝑥 𝑗 − 𝑥𝑖 may be different for different

pairs (𝑖, 𝑗). Therefore, we adapt the Berry-Esseen bounds to work

for U-statistics of independent, non-identical random variables. Our

finite-sample convergence bound is stated in Theorem 4.2.1 below

and proved in the Appendix.

Theorem 4.2.1. Let 𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1 (ie. not all
equal) and let𝑦1, . . . , 𝑦𝑛 be the corresponding response variables under
the model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖 is
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sampled i.i.d from a continuous, symmetric, mean-0 distribution. Let
𝑆 be a set of unordered pairs of datapoints such that each pair has
distinct x-values, and let 𝑈𝑧 be defined with respect to 𝑆 as in (2).
Let 𝜇 (𝑧) = E𝑒1,...,𝑒𝑛 [𝑈𝑧], and let 𝜎2 (𝑧) = Var𝑒1,...,𝑒𝑛 [𝑈𝑧]. Then, for
sufficiently large 𝑛,

sup

𝑡 ∈R

����Pr

[
𝑈𝑧 − 𝜇 (𝑧)

𝜎 (𝑧) ≤ 𝑡

]
− Φ(𝑡)

���� =𝑂

(
1

𝑛2 · 𝜎3 (𝑧)

)
where Φ is the cdf of a standard normal distribution.

This result shows that the normalized U-statistic,𝑈𝑧 , converges

to a standard normal distribution at a rate of 𝑂
(
1/(𝑛2 · 𝜎3 (𝑧))

)
,

where 𝜎2 (𝑧) = Θ(1/𝑛) is the variance of the U-statistic.8

4.3 Proof of Theorem 4.0.2
Here, we prove our first main result: the finite-sample convergence

bound for 𝛽1

DPWideTS
. As described earlier in Section 4.1, the proof

of Theorem 4.0.2 follows in two main steps; first, we argue that

𝑈 (𝛽1

DPWideTS) is close to 0 with high probability by utility theorem

of the exponential mechanism (Theorem 3.0.3). Second, we use the

convergence of the U-statistic distribution (Theorem 4.2.1) to show

that 𝛽1

DPWideTS
is close to 𝛽1.

Proof of Theorem 4.0.2. First, we consider the event that

𝛽1

DPWideTS
> 𝛽1+𝑧+𝜃 . We take a union bound over two possibilities

that could lead to this event: the first is that 𝑈 (𝛽1

DPWideTS − 𝜃 ) is
less than an arbitrary value −𝑐 ∈ (−1, 0) (ie. DPWide returned an

output that is more than 𝑐𝑁 /2 away in rank from the median of

the 𝑁 slopes), which implies that 𝛽1

DPWideTS
is not within 𝑧 of 𝛽1

with high probability. The second that𝑈 (𝛽1

DPWideTS − 𝜃 ) is within
𝑐 of 0, yet 𝛽1

DPWideTS − 𝜃 is still more than 𝑧 greater than 𝛽1. We

can simplify these expressions by noting that𝑈 is a non-increasing

function (Fact 4.1.2). Then, for all 𝑧 ∈ R and sufficiently large 𝑛, we

have that

Pr

𝑌,DPWide

[
𝛽1

DPWideTS
> 𝛽1 + 𝑧 + 𝜃

]
≤ Pr

𝑌,DPWide

[
𝑈 (𝛽1

DPWideTS − 𝜃, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
) < −𝑐

]
+

Pr

𝑌,DPWide

[
𝑈 (𝛽1

DPWideTS − 𝜃, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
) ≥ −𝑐 ∩

𝛽1

DPWideTS − 𝜃 > 𝛽1 + 𝑧

]
≤ Pr

𝑌,DPWide

[
𝑈 (𝛽1

DPWideTS
, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

) < −𝑐
]
+

Pr

𝑌,DPWide

[
𝑈 (𝛽1 + 𝑧 + 𝜃, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

) ≥ −𝑐
]

≤ Pr

𝑌,DPWide

[
1/2 − 𝐹s (𝛽1

DPWideTS) < −𝑐/2

]
+

Pr

𝑌,DPWide

[
𝑈 (𝛽1 + 𝑧, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

) ≥ −𝑐
]

≤ 𝑅

𝜃
exp (−𝜀 · 𝑐 · 𝑁 /4) +

(
1 − Φ

(
−𝑐 − 𝜇 (𝑧)

𝜎 (𝑧)

))
+𝑂

(
1

𝑛2 · 𝜎3 (𝑧)

)
8
For example, the variance of the U-statistic evaluated for the

asymptotically optimal design is 4/3𝑛 + 𝑂 (1/𝑛) , as shown in Lemma C.0.3.

The general case is shown in Lemma B.1.2.

where 𝐹s is the empirical distribution function for the set of slopes

computed by DPWideTS. Then, the first term in the last line comes

from Theorem 3.0.3 and the second term follows from Lemma 4.2.1.

We can run through a similar analysis for the event that 𝛽1

DPWideTS
<

𝛽1 − 𝑧 − 𝜃 to get the following:

Pr

𝑌,DPWide

[
𝛽1

DPWideTS
< 𝛽1 − 𝑧 − 𝜃

]
≤ 𝑅

𝜃
exp (−𝜀 · 𝑐 · 𝑁 /4) +

Φ

(
𝑐 − 𝜇 (−𝑧)
𝜎 (−𝑧)

)
+𝑂

(
1

𝑛2 · 𝜎3 (−𝑧)

)
Setting the first terms less than or equal to 𝑝/4 and then solving

for 𝑐 and 𝑧 gives the desired result. Finally, the expressions for 𝜇 (𝑧)
and 𝜎 (𝑧) follow directly from Lemmas B.1.1 and B.1.2. □

To make this result more interpretable, we apply this bound to

a special setting in Section 5, providing intuition and comparison

with convergence bounds for other non-DP and DP algorithms.

5 Evaluating Bound for Special Case
In this section, we will consider the special setting (called an asymp-

totically optimal design [49]) where the x-values are evenly split

between the endpoints of an interval of length Δ𝑥 . The DPWideTS
algorithm computes 𝑁 = ⌊𝑛/2⌋ · ⌈𝑛/2⌉ slopes9 from pairs of data-

points on opposite ends of the interval. In addition, we assume that

the noise variables are sampled i.i.d from a normal distribution.

Assumption 5.0.1. 𝑥1, . . . , 𝑥 ⌊𝑛/2⌋ = 0, 𝑥 ⌊𝑛/2⌋+1, . . . , 𝑥𝑛 = Δ𝑥 .

Assumption 5.0.2. 𝐹𝑒 =N(0, 𝜎2

𝑒 ).

In Theorem 1.2 below, we state a convergence bound for this

special case. The bound relies on the general bound of Theorem 4.0.2

along with evaluations of the expectation and variance of the U-

statistic. We are able to simplify the expressions for the expectation

and variance because in this special case, all of the slopes are drawn

from an identical distribution, yet we still require Theorem 4.0.2

because the slopes are correlated.

Theorem 1.2. Let 𝑥1, . . . , 𝑥𝑛 be at two endpoints of an interval of size
Δ𝑥 such that they satisfy Assumption 5.0.1, and let 𝑒1, . . . , 𝑒𝑛 be drawn
i.i.d from 𝐹𝑒 =N(0, 𝜎2

𝑒 ) according to Assumption 5.0.2. Let 𝑦1, . . . , 𝑦𝑛
be the corresponding response variables under the model 𝑦𝑖 = 𝛽0 +
𝛽1𝑥𝑖+𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R. Let 𝛽1

DPWideTS
= DPTheilSen({𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1

, 𝜀, (DPWide, 𝜃,−𝑅, 𝑅)),
where 𝜀, 𝑅, 𝜃 > 0, and 𝛽1 ∈ [−𝑅 + 𝜃, 𝑅 − 𝜃 ] as in Assumption 3.0.2.
Let 𝜏 be defined as follows.

𝜏 = Φ−1

(
1 − 𝑝

8

)
·
√︂

4

3𝑛
+ 8 ln(4𝑅/𝑝𝜃 )

𝜀𝑛

where Φ−1 is the inverse standard normal distribution function. Then,
we have that for sufficiently large 𝑛, where for some constant 𝑐 , 𝑛 ≥
𝑐

(
log(𝑅/𝑝𝜃 )/𝜀

√︁
log(1/𝑝)

)
2

, and sufficiently small 𝜏 , we have that
with probability at least 1 − 𝑝 ,

𝛽1

DPWideTS ∈ [𝛽1 − 𝑧 − 𝜃, 𝛽1 + 𝑧 + 𝜃 ]

for 𝑧 =
2

√
𝜋 · 𝜎𝑒
Δ𝑥

·
(
𝜏 +𝑂

(
𝜏3/2

))
.

9
Our analysis extends to efficient versions of this algorithm that compute a linear,

rather than quadratic, number of slopes.
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Proof. We start with the bound from Theorem 4.0.2 and sub-

stitute the expressions for 𝜇 (𝑧) and 𝜎2 (𝑧) using Lemmas C.0.2

and C.0.3 in the Appendix. This gives the following: for sufficiently

large 𝑛 and sufficiently small 𝑧 ·Δ𝑥/𝜎𝑒 , 𝛽1

DPWideTS ∈ [𝛽1 −𝑧−𝜃, 𝛽1 +
𝑧 + 𝜃 ] provided that

𝑧 ≥
√
𝜋 · 𝜎𝑒
Δ𝑥

·
(
Φ−1

(
1 − 𝑝

4

+ 𝑐1

𝑛2 · 𝜎3 (𝑧)

)
·√︄(

4

3𝑛
+ 𝑒𝜎2 (𝑧)

)
+ 8 ln(4𝑅/𝑝𝜃 )

𝜀𝑛
+ 𝑒𝜇 (𝑧)

)
(4)

where the error terms 𝑒𝜎2 (𝑧) and 𝑒𝜇 (𝑧 ) are bounded as follows

𝑒𝜎2 (𝑧) ≤ 𝑐2 · Δ𝑥 · 𝑧
𝑛 · 𝜎𝑒

+ 𝑐3

𝑛2
and 𝑒𝜇 (𝑧) ≤

𝑐4 · Δ3

𝑥 · 𝑧3

𝜎3

𝑒

and where 𝑐1, 𝑐2, 𝑐3, 𝑐4 > 0 are constants. Now, we will show that 𝑧

can actually be set so as to satisfy condition (4). In particular, it can

be shown that setting 𝑧 as

𝑧 :=
2

√
𝜋 · 𝜎𝑒
Δ𝑥

·
(
𝜏 + 𝑐2 · 𝜏3/2

)
for 𝜏 = Φ−1

(
1 − 𝑝

8

)
·
√︂

4

3𝑛
+ 8 ln(4𝑅/𝑝𝜃 )

𝜀𝑛

satisfies condition (4). To see this, first note that for any 𝑧 ∈ R,
𝜎2 (𝑧) ≥ 4/3𝑛 by Lemma C.0.3. Then, for 𝑛 ≥ (6𝑐1/𝑝)2

, we have

that

Φ−1

(
1 − 𝑝

4

+ 𝑐1

𝑛2 · 𝜎3 (𝑧)

)
≤ Φ−1

(
1 − 𝑝

8

)
.

Using this, we can see that for 𝑛 ≥ max(3𝑐3/4, 8𝑐2

2
(Φ−1 (1 − 𝑝/8))2,

(6𝑐1/𝑝)2), we can bound the highest-order term on the right-hand

side of (4) as follows.

√
𝜋 · 𝜎𝑒
Δ𝑥

· Φ−1

(
1 − 𝑝

4

+ 𝑐1

𝑛2 · 𝜎3 (𝑧)

)
·

√︄(
4

3𝑛
+ 𝑒𝜎2 (𝑧)

)
≤

√
𝜋 · 𝜎𝑒
Δ𝑥

· Φ−1

(
1 − 𝑝

8

)
·
(√︂

4

3𝑛
+

√︂
2 · 𝑐2 · 𝜏

𝑛
+√︄

2 · 𝑐2

2
· 𝜏3/2

𝑛
+

√︂
𝑐3

𝑛2

)
≤

√
𝜋 · 𝜎𝑒
Δ𝑥

· 𝜏 ·
(
1 +

√
3 · 𝑐2 · 𝜏 +

√
3 · 𝑐2 · 𝜏4

)
≤ 2

√
𝜋 · 𝜎𝑒
Δ𝑥

·
(
𝜏 + 𝑐2 · 𝜏3/2

)
= 𝑧

where the first inequality follows from the condition that 𝑛 >

(6𝑐1/𝑝)2
, the second inequality follows for 𝑛 > 3𝑐3/4 and the defi-

nition of 𝜏 , and the third inequality follows from 𝑛 > 8(𝑐2 ·Φ−1 (1−
𝑝/8))2

. From this, we can see that there exists a setting of 𝑧 that

satisfies condition (4), which completes the proof. □

Table 2 shows the DPWideTS convergence bound for this special

setting, along with convergence bounds for the non-private algo-

rithms OLS and Theil-Sen and the private algorithms DPSuffStats
and DPOLSExp [3] (these were described briefly in Section 1.1), all

under the same assumptions.

The first two bounds in the table correspond to the non-private

algorithms OLS and Theil-Sen. Both of these non-private algorithms

have a convergence rate of𝑂 (𝜎𝑒 ·𝑐𝑝/Δ𝑥 ·
√
𝑛). Looking at the leading

constant, we see that Theil-Sen nearly recovers the accuracy of

OLS, up to a factor of

√︁
𝜋/3. The Theil-Sen bound has the term

𝑐𝑝/4 instead of 𝑐𝑝/2, which comes from the convergence of the U-

statistic to a standard normal distribution at a rate of 𝑂 (1/
√
𝑛)

(Theorem 4.2.1).

The bounds for DPSuffStats and DPTheilSen have the same

constant factors for the highest order term as OLS and Theil-Sen,

respectively, but they also contain two main differences from their

non-private counterparts. First, the DP estimators have constant

factor changes in 𝑝 in the 𝑐𝑝 terms compared to those in the non-

private bounds; this comes from the DP estimators taking a union

bound over both the sampling and privacy error, which splits up

the failure probability 𝑝 further. Note that 𝑐𝑝 = Θ(
√︁

log(/𝑝)) for
small 𝑝 , so these constant factor changes in 𝑝 are not impactful.

Second, the DP estimators include lower order terms correspond-

ing to the noise due to privacy,
10

which provide insight into the

relative performance of the DP algorithms in practical regimes.

For example, we can see that DPSuffStats’s lower order term

𝜏 is 𝑂 (𝑟 2/𝜀 · 𝑛 · Δ2

𝑥 ); the 𝜀𝑛Δ2

𝑥 quantity in the denominator was

highlighted in the empirical work of [2] as important for the perfor-

mance of the algorithm but lacked theoretical backing prior to our

work.
11
Meanwhile, the lower order term in DPOLSExp has the quan-

tity

√
𝜀𝑛Δ𝑥 in the denominator, which indicates that it performs

better than DPSuffStats for small 𝑛 and for small 𝜀. The lower

order term in DPWideTS has the quantity 𝜀𝑛Δ𝑥 in the denominator,

which indicates that it performs better than DPSuffStats for small

Δ𝑥 , but not as well as DPOLSExp in the small 𝜀 regime.

Finally, we can compare the DPSuffStats, DPOLSExp, and
DPWideTS bounds in terms of their dependence on hyperparam-

eters. While DPSuffStats has a quadratic dependence on 𝑟 , the

range of the input datapoints, the other two algorithms avoid any

dependence on the range of the inputs. Instead, DPOLSExp has a

square root dependence on the range 𝑅 of the output estimate, while

DPWideTS has a milder logarithmic dependence on 𝑅. The bound

for DPWideTS also includes the parameter 𝜃 (corresponding to the

granularity of outputs in DPWide). In Section 5.1, we discuss how

to set this parameter, addressing an open question of [3].

5.1 Choosing the widening parameter, 𝜃
Theorem 1.2 offers insight on how to set 𝜃 in the DPWideTS al-

gorithm, which was an open question raised by [2]. For fixed

𝑝, 𝜀, 𝑅, 𝜎𝑒 ,Δ𝑥 , and 𝑛 that satisfy the conditions stated in the Theo-

rem, we can set 𝜃 to minimize the bound as follows:

𝜃 ≈ max

(
𝜎𝑒 · ln(𝑅𝜀𝑛Δ𝑥/𝑝𝜎𝑒 )

𝜀𝑛Δ𝑥

,
𝑅

𝑝
exp(−𝜀𝑛)

)
The first term in the max comes from allowing the two terms involv-

ing 𝜃 in Thm. 1.2 to be approximately equal, whereas the second

10
For example, the ln(𝑅/𝑝𝜃 )/𝜀𝑛 term for DPWideTS corresponds to the noise due to

privacy, which is𝑂 (1/𝜀𝑛) and thus overshadowed by the sampling error𝑂 (1/
√
𝑛)

for sufficiently large 𝑛.
11
Alabi et al. specificially looked at the quantity 𝜀 · 𝑛 · 𝜎2

𝑥 , where 𝜎
2

𝑥 is the empirical

variance of the constants 𝑥1, . . . , 𝑥𝑛 , but they did not provide theoretical basis for the

importance of this quantity. In our special setting, Δ2

𝑥 = 4𝜎2

𝑥 .
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Estimator Size of 1 − 𝑝 Convergence Bound Constraints

OLS 2 · 𝜎𝑒
Δ𝑥

· 𝑐𝑝/2√
𝑛

Theil-Sen [49] 2 ·
√︁

𝜋
3
· 𝜎𝑒
Δ𝑥

· 𝑐𝑝/4√
𝑛

DPSuffStats 2 · 𝜎𝑒
Δ𝑥

· 𝑐𝑝/6√
𝑛

· (1 + 𝜏) + 𝜏 (1 + 𝜏 + |𝛽1 |), 𝑝 ∈ (3 exp(−𝜀𝑛Δ2

𝑥 /12), 1)

[3] 𝜏 ≈ 12(1−1/𝑛)𝑟2
log(3/𝑝 )

𝜀 ·𝑛·Δ2

𝑥

DPOLSExp [3] 2 · 𝜎𝑒
Δ𝑥

· 𝑐𝑝/4√
𝑛

+
√︃

64𝑅 · (3 log(3)+log(2/𝑝 ) )
𝜀𝑛Δ2

𝑥

DPWideTS 2 ·
√︁

𝜋
3
· 𝜎𝑒
Δ𝑥

·
(
𝑐𝑝/8√
𝑛

+ 4

√
3 ln(4𝑅/𝑝𝜃 )

𝜀 ·𝑛

)
+ 𝜃 𝑝 ∈ (0, 4𝑅/𝜃 ) ,

(Thm 1.2)
𝜎𝑒
Δ𝑥

suff. small, 𝑛 suff. large

Table 2: High-probability (1 − 𝑝) convergence bounds for estimators for special setting (Assumptions 5.0.1 and 5.0.2). Note that 𝑟
is a hyperparameter range for both the input 𝑥𝑖 , 𝑦𝑖 datapoints, while 𝑅 is a range for the output estimate of the slope.

term in the max comes from upper bounding 𝑂 (ln(𝑅/𝑝𝜃 )/𝜀𝑛) by
some constant. The reason for having both terms is to account for

both widespread and concentrated slopes.
12
The factor 𝜎𝑒/(𝑛Δ𝑥 )

in the first term corresponds to the standard deviation of the slopes

computed by DPWideTS; when the slopes are highly concentrated,

the first term becomes small. The second term, however, is indepen-

dent of 𝜎𝑒 and Δ𝑥 , which allows 𝜃 to remain bounded away from 0

and prevents a blowup in the convergence bound. Note that 𝑅, 𝜀, 𝑛

and 𝑝 are known in practice; if the experimental design suggests

that the slopes may be concentrated (e.g. if the x-values are located

at one of two endpoints of an interval as in this special case), our

analysis suggests setting 𝜃 to scale with the second term.

6 Confidence Intervals for DPWideTS
In this section, we design and analyze DP confidence intervals for

the linear regression slope 𝛽1. We adapt the ExpMech(Union) algo-

rithm from Drechsler et al. [27] as a subroutine for our setting (see

Algorithm 6.1) and prove its validity and accuracy in Theorem 6.3.1

(See Appendix). We begin by describing both the non-private Theil-

Sen and DPTheilSen confidence intervals.

Definition 6.0.1 (Confidence intervals for simple linear regres-

sion.). Let d = (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
be a dataset real-valued pairs, where

𝑥1, . . . , 𝑥𝑛 are fixed values that are not all equal, and 𝑦1, . . . , 𝑦𝑛
are the corresponding response variables under the model 𝑦𝑖 =

𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖 is sampled i.i.d from a

continuous, symmetric, mean-0 distribution 𝐹𝑒 . Let 𝐼R be the set of

all intervals in R, and let𝑀nonpriv : Multisets(R × R, 𝑛) × H → 𝐼R
be a deterministic mechanism that outputs an interval. For any

𝛼1 ∈ (0, 1), 𝑀nonpriv outputs a (1 − 𝛼1)-confidence interval for the

12
Handling the case of concentrated slopes was [2]’s original motivation for designing

the widened exponential mechanism.

slope 𝛽1 if for all hyperparams ∈ H , and sufficiently large 𝑛,

Pr

𝑒1,...,𝑒𝑛∼𝐹𝑒

[
𝛽1 ∈ 𝑀nonpriv (d, hyperparams)

]
≥ 1 − 𝛼1

where the probability is over the randomness of the dataset d.
Next, let𝑀DP : Multisets(R×R, 𝑛) ×R>0×H → 𝐼R be a random-

ized 𝜀-DP mechanism that outputs an interval. For any 𝛼 ∈ (0, 1),
𝑀DP outputs a (1 − 𝛼)-DP confidence interval for the slope 𝛽1 if

for all privacy loss parameters 𝜀 ∈ R>0, hyperparams ∈ H , and

sufficiently large 𝑛,

Pr

𝑒1,...,𝑒𝑛∼𝐹𝑒
𝑀

DP

[𝛽1 ∈ 𝑀DP (d, 𝜀, hyperparams)] ≥ 1 − 𝛼

where the probability is over the randomness of both the dataset d
and the mechanism𝑀DP.

6.1 Nonprivate Confidence Intervals for
Theil-Sen

Now, we briefly describe the non-private confidence interval for
Theil-Sen. This estimator returns the (1/2 − 𝑏)th and (1/2 + 𝑏)th
quantiles of the set of Theil-Sen slopes, s, where 𝑏 is computed

according to the distribution of the corresponding U-statistic.

Definition 6.1.1. Let 𝑆 be a set of 𝑁 unordered pairs of points, and

let𝑈0 be the corresponding null U-statistic given by Definition 4.0.1,

Equation 3). For the corresponding set of slopes s, let 𝐹s be the

empirical distribution function for s. Let 𝜎2 (0) = Var𝑒1,...,𝑒𝑛 [𝑈0] as
evaluated in Corollary B.1.3. For any 𝛼1 ∈ (0, 1), let 𝑏 be defined as

follows:

𝑏 :=
1

2

· Φ−1

(
1 − 𝛼1

8

)
· 𝜎 (0)

where Φ is the standard normal cdf. Let
ˆ𝛽1𝐿 = 𝐹s

−1(1/2 − 𝑏) and
ˆ𝛽1𝑈 = 𝐹s

−1(1/2+𝑏). Then, the non-private 1−𝛼1-Theil-Sen confidence
interval is [ ˆ𝛽1𝐿,

ˆ𝛽1𝑈 ].
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Lemma 6.1.2. For any 𝛼1 ∈ (0, 1), let [ ˆ𝛽1𝐿,
ˆ𝛽1𝑈 ] be the non-private

Theil-Sen confidence interval as in Definition 6.1.1. Then, there exists
a constant 𝑐 > 0 such that for all 𝑛 ≥ 𝑐/𝛼2

1
, [ ˆ𝛽1𝐿,

ˆ𝛽1𝑈 ] is a (1 − 𝛼1)-
confidence interval for the true slope 𝛽1.

The proof of validity can be found in the Appendix.

6.2 DPTSCI Algorithm
Now, we consider the differentially private confidence interval

for 𝛽1, DPTSCI, which we describe in Algorithm 6.1 (See Appen-

dix). This algorithm is similar to the DPTheilSen point estimator

(Alg. 3.1), except that we replace the call to DPMed with a call to an

𝜀-DP confidence interval algorithm for the median, DPMedCI.

Algorithm 6.1: DPTSCI: 𝜀-DP Algorithm

Data: d = (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
∈ Multisets(R × R, 𝑛)

Privacy params: 𝜀 ∈ R≥0

Hyperparams: 𝑆 ∈
([𝑛]

2

)
, DPMedCI, hyperparams ∈ H

s = {}
for each {𝑖, 𝑗} ∈ 𝑆 (such that 𝑥𝑖 ≠ 𝑥 𝑗 ) do

if 𝑥 𝑗 ≠ 𝑥𝑖 then
𝑠𝑖 𝑗,1 = (𝑦 𝑗 − 𝑦𝑖 )/(𝑥 𝑗 − 𝑥𝑖 )
𝑠𝑖 𝑗,2 = 𝑠𝑖 𝑗,1

else
𝑠𝑖 𝑗,1 = −∞
𝑠𝑖 𝑗,2 =∞

Add 𝑠𝑖 𝑗,1 and 𝑠𝑖 𝑗,2 to s
Let 𝑘 = max𝑖∈[𝑛] {# 𝑗 ∈ [𝑛] : {𝑖, 𝑗} ∈ 𝑆}
[𝛽1

TS

𝐿 , 𝛽1

TS

𝑈 ] = DPMedCI (s, 𝜀/2𝑘, hyperparams)
return [𝛽1

TS

𝐿 , 𝛽1

TS

𝑈 ]

Lemma 6.2.1. Algorithm 6.1 is 𝜀-DP.

Proof. The call to DPMedCI is 𝜀/𝑘-DP by definition, so by simple

composition and post-processing, DPTSCI is 𝜀-DP. □

6.3 DPWideCIUnion
In Algorithm 6.2, we describe one possible algorithm for the DPMedCI
subroutine: DPWideCI(Union). This algorithm is based on a non-

parametric confidence interval for the median designed by Drech-

sler et al. [27]. The idea is to run the DPWide point estimator twice

such that with high probability, the two estimates capture the true

slope 𝛽1. The DPWideCIUnion algorithm does so by outputting an

interval that contains the non-private interval with high proba-

bility, while the DPWideCI algorithm outputs a tighter interval via

more nuanced coverage analysis. While Drechsler et al. [27] assume

that the inputs to the confidence interval mechanism are sampled

i.i.d. from a population distribution, here we only assume that we

have a uniform bound on the convergence of the empirical distri-

bution 𝐹s to the standard normal distribution (which we develop in

Thm. 4.2.1).

Let DPWideTSCIUnion = DPTSCI (d, 𝜀, 𝑆 , DPWideCIUnion, (𝛼 ,
𝑟𝛼 , 𝜃 , −𝑅, 𝑅, Union=1)), where DPWideCIUnion is defined in Al-

gorithm 6.2.

Algorithm 6.2: DPWideCI(Union): 𝜀-DP Algorithm

Data: s = (𝑠1, . . . , 𝑠𝑁 ) ∈ R𝑁

Privacy params: 𝜀 ∈ R>0

Hyperparams: 𝛼 ∈ (0, 1), 𝑟𝛼 ∈ (0, 1), 𝜃 ∈ R>0, [−𝑅, 𝑅] ⊂
R, Union ∈ {0, 1}

if Union then
Let 𝛼1 = 𝑟𝛼 · 𝛼 and 𝛼2 = (1 − 𝑟𝛼 ) · 𝛼
Let 𝑏 = 1

2
· Φ−1 (1 − 𝛼1/8) · 𝜎 (0) // 𝜎2 (0) is the

variance of the null U-statistic, 𝑈0,

corresponding to the set of slopes s. As shown

in Corollary B.1.3, it does not depend on the

data.

Let 𝑐 = 2 ln(4𝑅/𝛼2𝜃 )/(𝜀𝑁 )
Set 𝑞𝐿 = 1/2 − 𝑏 − 𝑐 and 𝑞𝑈 = 1/2 + 𝑏 + 𝑐

else
𝑞𝐿, 𝑞𝑈 = ComputeExpMechCITargets(s, 𝜀, 𝛼,−𝑅, 𝑅, 𝜃 )
// Algorithm 6.3

𝐿𝛼 (s) = DPWide(s, 𝜀/2, (𝑞𝐿, 𝑅, 𝜃 )) // Algorithm 3.2

𝑈𝛼 (s) = DPWide(s, 𝜀/2, (𝑞𝑈 , 𝑅, 𝜃 ))
return [𝐿𝛼 (s) − 𝜃,𝑈𝛼 (s) + 𝜃 ]

The theorem below describes the validity and width of the DP

confidence interval when we use DPWideCIUnion (Alg 6.2) as the
DPMedCI algorithm. The proof of the validity relies on the validity

of the non-private interval (Lemma 6.1.2), along with the utility of

DPWide (Thm. 3.0.3). The proof of the width is similar to the proof

of Thm. 4.0.2.

Theorem 6.3.1 (Validity and width of DPWideTSCIUnion). Let
𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1, and let 𝑦1, . . . , 𝑦𝑛 be the corre-
sponding response variables under the model𝑦𝑖 = 𝛽0+𝛽1𝑥𝑖+𝑒𝑖 , where
𝛽0, 𝛽1 ∈ R and each 𝑒𝑖 is sampled i.i.d from a continuous, symmetric,
mean-0 distribution 𝐹𝑒 . Let 𝑆 be a set of 𝑁 unordered datapoints. For
𝛼 ∈ (0, 1), 𝑟𝛼 ∈ (0, 1), 𝜀, 𝑅, 𝜃 > 0, and 𝛽1 ∈ [−𝑅 + 𝜃, 𝑅 − 𝜃 ] as in
Assumption 3.0.2, let [𝛽1

DPWideTS
𝐿 , 𝛽1

DPWideTS
𝑈 ] =

DPTSCI({𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1
, 𝜀, 𝑆, DPWideCIUnion, (𝛼, 𝑟𝛼 , 𝜃,−𝑅, 𝑅, Union = 1)).

Then, the interval [𝛽1

DPWideTS
𝐿 , 𝛽1

DPWideTS
𝑈 ] is a 1 − 𝛼-confidence in-

terval for the true slope 𝛽1 over the randomness in (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
and

DPWideTSCIUnion.
In addition, let 𝑈𝑧 be defined as in Definition 4.0.1, Equation (2)

according to set 𝑆 . Then, there exists a constant 𝑣 > 0 such that
for sufficiently large 𝑛, we have that with probability at least 1 − 𝛼 ,

𝛽1

DPWideTS
𝑈 − 𝛽1

DPWideTS
𝐿 < 2𝑧 + 2𝜃 for all 𝑧 that satisfies the following.

−𝜇 (𝑧) − 8 ln(2𝑅/𝛼𝜃 )
𝜀 ·𝑛

𝜎 (𝑧) ≥ 2 · Φ−1

(
1 − 𝛼

2

+ 𝑣

𝑛2 · 𝜎3 (𝑧)

)
where 𝜇 (𝑧) = E[𝑈𝑧], 𝜎2 (𝑧) = Var[𝑈 (𝑧)], and Φ is the standard
normal cdf.

Proof. First, let us prove the validity of the confidence interval

[𝛽1

DPWideTS

𝐿 , 𝛽1

DPWideTS

𝑈 ]. We consider the upper limit of the inter-

val, 𝛽1

DPWideTS

𝑈 , for simplicity. First, we will bound the probability

that the upper limit of the private interval fails (𝛽1

DPWideTS

𝑈 < 𝛽1)

conditioned on the success of the upper limit of the non-private
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interval (𝛽1 < ˆ𝛽1𝑈 ). This analysis uses a translation between the

𝑈 -statistic and the distribution function 𝐹s, as well as the utility of

the exponential mechanism (Theorem 3.0.3) with target quantile

𝑞𝑈 = 1/2 + 𝑏 + 𝑐 .

Pr

d,DPWideCI

(
𝛽1

DPWideTS

𝑈 < 𝛽1 ∧ 𝛽1 ≤ ˆ𝛽1𝑈

)
≤ Ed

[
Pr

DPWideCI

(
𝛽1

DPWideTS

𝑈 < ˆ𝛽1𝑈 | d
)]

≤ Ed

[
Pr

DPWideCI

(
𝑈 (𝛽1

DPWideTS

𝑈 ) > 𝑈 ( ˆ𝛽1𝑈 ) | d
)]

= Ed

[
Pr

DPWideCI

(
1 − 2𝐹s (𝛽1

DPWideTS

𝑈 ) > −2𝑏 | d
)]

= Ed

[
Pr

DPWideCI

(
𝐹s (𝛽1

DPWideTS

𝑈 ) < 1/2 + 𝑏 | d
)]

= Ed

[
Pr

DPWideCI

(
𝐹s (𝛽1

DPWideTS

𝑈 ) − 𝑞𝑈 < −𝑐 | d
)]

≤ Ed [𝛼2/2]
= 𝛼2/2

We use this bound to evaluate the total failure probability of the

private upper limit. We also use the failure probability of the upper

limit of the non-private confidence interval, ˆ𝛽1𝑈 , as characterized

in Lemma 6.1.2.

Pr

d,DPWideCI

[
𝛽1

DPWideTS

𝑈 < 𝛽1

]
= Pr

d,DPWideCI

[
𝛽1

DPWideTS

𝑈 < 𝛽1 ∧ 𝛽1 > ˆ𝛽1𝑈

]
+

Pr

d,DPWideCI

[
𝛽1

DPWideTS

𝑈 < 𝛽1 ∧ 𝛽1 ≤ ˆ𝛽1𝑈

]
≤ Pr

d

[
𝛽1 > ˆ𝛽1𝑈

]
+ Pr

DPWideCI

[
𝛽1

DPWideTS

𝑈 < ˆ𝛽1𝑈

]
≤ 𝛼1/2 + 𝛼2/2

= 𝛼/2

The same analysis holds for the other end of the interval, so this

proves the validity of the confidence interval. Next, let us consider

the width of the interval. For simplicity, let us consider the event

that 𝛽1

DPWideTS

𝑈 > 𝛽1 + 𝑧 + 𝜃 . The analysis is similar to the proof of

Theorem 4.0.2. For all 𝑧 ∈ R and sufficiently large 𝑛, we have that

Pr

𝑌,DPWideCI

[
𝛽1

DPWideTS

𝑈 > 𝛽1 + 𝑧 + 𝜃

]
≤ Pr

𝑌,DPWideCI

[
𝑈 (𝛽1

DPWideTS

𝑈 − 𝜃 ) < −𝑑
]
+

Pr

𝑌
DPWideCI

[
𝑈 (𝛽1

DPWideTS

𝑈 − 𝜃 ) ≥ −𝑑 ∧ 𝛽1

DPWideTS

𝑈 − 𝜃 > 𝛽1 + 𝑧

]
≤ Pr

𝑌,DPWideCI

[
𝑈 (𝛽1

DPWideTS

𝑈 ) < −𝑑
]
+ Pr

𝑌
[𝑈 (𝛽1 + 𝑧) ≥ −𝑑]

≤ Pr

𝑌,DPWideCI

[
𝐹s (𝛽1

DPWideTS

𝑈 ) − 𝑞𝑈 > 𝑑/2 − 𝑏 − 𝑐

]
+

Pr

𝑌
[𝑈 (𝛽1 + 𝑧) ≥ −𝑑]

≤ 𝑅

2𝜃
exp (−𝜀 · (𝑑/2 − 𝑏 − 𝑐) · 𝑁 /2) +(

1 − Φ

(
−𝑑 − 𝜇 (𝑧)

𝜎 (𝑧)

))
+𝑂

(
1

𝑛2 · 𝜎3 (𝑧)

)

where 𝑏, 𝑐 are defined as in Algorithm 6.2. The first term in the last

line follows from Theorem 3.0.3 and the second term follows from

Lemma 4.2.1. Setting this probability to ≤ 𝛼 and solving for 𝑑 and 𝑧

gives us the desired result. We can run through a similar analysis

for the event that 𝛽1

DPWideTS

𝐿 < 𝛽1 − 𝑧 − 𝜃 . □

The width of the DPWideTSCIUnion confidence interval is ap-

proximately twice the size of the convergence bound of the point

estimator (Thm. 4.0.2), which we expect even in the non-private

setting. However, there is an additional factor of 4 in the term corre-

sponding to privacy noise (ln(2𝑅/𝛼𝜃 ). This can be improved using

a more nuanced coverage analysis, as we will explore in the next

section.

6.4 Tighter Confidence Interval
To improve the width of the confidence interval, we apply the more

sophisticated approach from Drechsler et al. [27]. In particular,

we call DPWideCI with the Union flag set to 0, so that 𝑞𝐿, 𝑞𝑈 are

computed using ComputeExpMechCITargets (Alg. 6.3).

Algorithm 6.3: ComputeExpMechCITargets
Data: s = (𝑠1, . . . , 𝑠𝑁 )
Input: 𝜀 ∈ R>0, 𝛼 ∈ (0, 1), [−𝑅, 𝑅] ⊂ R, 𝜃 ∈ R>0

for 𝑡𝐿 ∈ N, 1 ≤ 𝑡𝐿 ≤ 𝑁 /2 do
𝛾𝑡𝐿 = 1 − 𝐹𝑈 (1 − 2(𝑡𝐿 − 1)/𝑁 ) +∑𝑛

𝑚=𝑡𝐿
𝐹 ′
𝑈
(1 − 2𝑚/𝑁 ) · 𝑅

𝜃
exp(−(𝑚 − 𝑡𝐿) · 𝜀/2)

// 𝐹𝑈 , 𝐹
′
𝑈

are the CDF and PDF of the null

U-statistic corresponding to s
𝑞𝐿 = max𝑡𝐿 ∈N,1≤𝑡𝐿<⌈𝑁 /2⌉ {𝑡𝐿 : 𝛾𝑡𝐿 ≤ 𝛼/2}/𝑁
for 𝑡𝑈 ∈ N, 𝑁 /2 ≤ 𝑡𝑈 < 𝑁 do

𝛾𝑡𝑈 = 𝐹𝑈 (1 − 2𝑡𝑈 /𝑁 ) + ∑𝑡𝑈
𝑚=1

𝐹 ′
𝑈
(1 − 2𝑚/𝑁 ) ·

𝑅
𝜃

exp(−(𝑡𝑈 −𝑚) · 𝜀/2)
𝑞𝑈 = min𝑡𝑈 ∈N,⌈𝑁 /2⌉≤𝑡𝑈 <𝑁 { 𝑗 : 𝛾𝑡𝑈 ≤ 𝛼/2}/𝑁
return 𝑞𝐿, 𝑞𝑈

We offer a brief overview of the algorithm here: For a given

𝑡𝐿, 𝑡𝑈 ∈ [𝑁 ], 𝜀 ∈ R>0, let𝐿𝛼 (s, 𝑡𝐿) = DPWide(s, 𝜀/2, (𝑡𝐿/𝑁, 𝜃,−𝑅, 𝑅))
and 𝑈𝛼 (s, 𝑡𝑈 ) = DPWide(s, 𝜀/2𝑘, (𝑡𝑈 /𝑁, 𝜃,−𝑅, 𝑅)). As before, the
goal is to control the probability that the interval [𝐿𝛼 (s, 𝑡𝐿) −
𝜃,𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 ] fails to contain the true slope 𝛽1. In particular,

for 𝛼 ∈ (0, 1), we would like to find the target ranks 𝑡𝐿 and 𝑡𝑈
closest to 𝑁 /2 such that

Pr

s,DPWideCI

[
𝐿𝛼 (s, 𝑡𝐿) − 𝜃 > 𝛽1

]
≤ 𝛼/2, and

Pr

s,DPWideCI

[
𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1

]
≤ 𝛼/2 (5)

In Algorithm 6.3, we find these target ranks by first computing

the probabilities above for all possible 𝑡𝐿 and 𝑡𝑈 ’s, and then by

numerically searching for the target ranks closest to 𝑁 /2 such that

the probabilities above are both within 𝛼/2. This search can be

implemented more efficiently by noting that 𝑡𝐿 is greater than or

equal to 𝑁 · (1/2 − 𝑏 − 𝑐) as defined in Algorithm 6.2, and similarly

𝑡𝑈 is less than or equal to 𝑁 · (1/2 + 𝑏 + 𝑐).
As the outputs𝑞𝐿, 𝑞𝑈 of ComputeExpMechCITargets are≥ 1/2−

𝑏 − 𝑐 and ≤ 1/2 + 𝑏 + 𝑐 , where 𝑏, 𝑐 are defined in DPWideCIUnion
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algorithm, the width of the interval will always be less than or

equal to that of the DPWideTSCIUnion interval (Thm. 6.3.1).

Theorem 6.4.1. Let 𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1, and let
𝑦1, . . . , 𝑦𝑛 be the corresponding response variables under the model
𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖 is sampled
i.i.d from a continuous, symmetric, mean-0 distribution 𝐹𝑒 . Let 𝑆
be a set of unordered pairs of datapoints. For 𝛼 ∈ (0, 1), 𝑟𝛼 =

1/2 (as a default, since it won’t be used), 𝜀, 𝑅, 𝜃 > 0, and 𝛽1 ∈
[−𝑅 + 𝜃, 𝑅 − 𝜃 ] as in Assumption 3.0.2, let [𝛽1

DPWideTS
𝐿 , 𝛽1

DPWideTS
𝑈 ] =

DPTSCI({𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1
, 𝜀, 𝑆, DPWideCI, (𝛼, 𝑟𝛼 , 𝜃,−𝑅, 𝑅, Union = 0)). Then,

the interval
[𝛽1

DPWideTS
𝐿 , 𝛽1

DPWideTS
𝑈 ] is a 1−𝛼-confidence interval for the true slope

𝛽1 over the randomness in (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
and DPWideTSCI.

The validity analysis for Alg. 6.3 (proof of Theorem 6.4.1) relies

on characterizing the distribution of the rank of the population

median in the dataset. Drechsler et al. used the fact that for i.i.d.

data, the rank of the population median in the dataset follows a

binomial distribution. In our setting, where the slopes s computed

by DPTSCI are not necessarily i.i.d, weinstead characterize the rank

of the population median (ie. the true slope 𝛽1) via the distribution

of the corresponding U-statistic (Thm. 4.2.1).

To analyze this algorithm, we will first state a lemma that trans-

lates between the empirical distribution 𝐹s to the distribution of

the null U-statistic, 𝐹𝑈 .

Lemma 6.4.2. Let s = (𝑠1, . . . , 𝑠𝑁 ) ∈ R𝑁 be a multiset of (not
necessarily independent) slopes computed via the DPTSCI algorithm,
where each 𝑠 𝑗 is drawn from a marginal distribution function that has
true median 𝛽1. Let 𝐹s be the empirical distribution of the slopes, let
𝑈0 be the corresponding U-statistic (as defined in (3), and let 𝐹𝑈 , 𝐹 ′𝑈
be the cdf and pdf, respectively, of 𝑈0

(
𝛽1, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

)
. Then, for any

𝑚 ∈ [𝑁 ],

Pr

[
𝐹s (𝛽1) =

𝑚

𝑁

]
= 𝐹 ′𝑈

(
1 − 2𝑚

𝑁

)
Pr

[
𝐹s (𝛽1) ≤

𝑚

𝑁

]
= 1 − 𝐹𝑈

(
1 − 2𝑚

𝑁

)
.

Proof. We can rewrite 𝐹s (𝛽1) as 1/2 −𝑈0 (𝛽1)/2, which directly

gives that

Pr

[
𝐹s (𝛽1) =

𝑚

𝑁

]
= Pr

[
𝑈0 (𝛽1) = 1 − 2𝑚

𝑁

]
Pr

[
𝐹s (𝛽1) ≤

𝑚

𝑁

]
= Pr

[
𝑈0 (𝛽1) ≥ 1 − 2𝑚

𝑁

]
.

□

Using the above lemma, we show the validity of the DPWideTSCI
using ComputeExpMechCITargets.

Proof. For simplicity, consider the upper endpoint of the inter-

val. Recall that for a given 𝑡𝑈 ∈ [𝑁 ], 𝑈𝛼 (s, 𝑡𝑈 ) = DPWide(s, 𝜀/2𝑘,

(𝑡𝑈 /𝑁, 𝜃,−𝑅, 𝑅)), and 𝐹s is the empirical distribution of the set of

slopes s. We will consider the probability that 𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1

by splitting this event into two cases: first, when 𝐹s (𝛽1) ≤ 𝑡𝑈 /𝑁 ,

and second, when 𝐹s (𝛽1) > 𝑡𝑈 /𝑁 .

Pr

s,DPWideCI

[
𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1

]

=

𝑡𝑈∑︁
𝑚=1

Pr

DPWideCI

[
𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1 | 𝐹s (𝛽1) =

𝑚

𝑁

]
· Pr

s

[
𝐹s (𝛽1) =

𝑚

𝑁

]
+

𝑁∑︁
𝑚=𝑡𝑈 +1

Pr

DPWideCI

[
𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1 | 𝐹s (𝛽1) =

𝑚

𝑁

]
· Pr

s

[
𝐹s (𝛽1) =

𝑚

𝑁

]
We can simplify the first sum using Lemma 6.4.2 and the utility of

the widened exponential mechanism, Theorem 3.0.3:

𝑚=𝑡𝑈∑︁
𝑚=1

Pr

DPWideCI

[
𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1 | 𝐹s (𝛽1) =

𝑚

𝑁

]
· Pr

s
[𝐹s (𝛽1) =𝑚/𝑁 ]

≤
𝑚=𝑡𝑈∑︁
𝑚=1

Pr

DPWideCI

[
𝑈𝛼 (s, 𝑡𝑈 ) < 𝛽1 | 𝐹s (𝛽1) =

𝑚

𝑁

]
· Pr

s
[𝐹s (𝛽1) =𝑚/𝑁 ]

=

𝑚=𝑡𝑈∑︁
𝑚=1

Pr

DPWideCI

[
𝐹s

(
𝑈𝛼 (s, 𝑡𝑈 )

)
< 𝑚/𝑁

]
· 𝐹 ′𝑈

(
1 − 2𝑚

𝑁

)
≤

𝑚=𝑡𝑈∑︁
𝑚=1

Pr

DPWideCI

[ 𝑡𝑈
𝑁

− 𝐹s

(
𝑈𝛼 (s, 𝑡𝑈 )

)
>

𝑡𝑈 −𝑚

𝑁

]
· 𝐹 ′𝑈

(
1 − 2𝑚

𝑁

)
≤

𝑚=𝑡𝑈∑︁
𝑚=1

𝑅

𝜃
exp (−(𝑡𝑈 −𝑚) · 𝜀/2) · 𝐹 ′𝑈

(
1 − 2𝑚

𝑁

)
For the second sum, we simply upper bound the first probability

in the summation by 1 and use Lemma 6.4.2 to characterize the

distribution of 1𝐹s (𝛽1 )=𝑚/𝑁 .

𝑚=𝑁∑︁
𝑚=𝑡𝑈 +1

Pr

DPWideCI

[
𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1 | 𝐹s (𝛽1) =

𝑚

𝑁

]
· Pr

s

[
𝐹s (𝛽1) =

𝑚

𝑁

]
≤

𝑚=𝑁∑︁
𝑚=𝑡𝑈 +1

Pr

s

[
𝐹s (𝛽1) =

𝑚

𝑁

]
≤ 𝐹𝑈

(
1 − 2 · 𝑡𝑈

𝑁

)
Therefore, we have that

Pr

s,DPWideCI

(
𝑈𝛼 (s, 𝑡𝑈 ) + 𝜃 < 𝛽1

)
≤ 𝐹𝑈

(
1 − 2 · 𝑡𝑈

𝑁

)
+

𝑡𝑈∑︁
𝑚=1

𝐹 ′𝑈

(
1 − 2𝑚

𝑁

)
· 𝑅
𝜃

exp (−(𝑡𝑈 −𝑚) · 𝜀/2)

A similar result holds for the other side of the interval. Then, validity

of the interval follows directly from the selection of the target quan-

tiles 𝑡𝐿, 𝑡𝑈 (viaComputeExpMechCITargets) such that the interval

has at least 1 − 𝛼 coverage. □

7 Conclusion
In this work, we aimed to advance the usability of DP for a funda-

mental statistical task: simple linear regression. Our work provides
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a deeper theoretical understanding of the privacy and accuracy

guarantees of the DPTheilSen algorithms, which were found by Al-

abi et al. [2] to have strong empirical performance in practical (e.g.

small dataset, high privacy) regimes. We provide finite-sample con-

vergence bounds, offer insight into hyperparameter selection, and

show how to produce differentially private confidence intervals, all

under minimal assumptions.

This work’s focus on the one-dimensional setting is an inten-

tional choice. Prior work demonstrated how computer science re-

search has overlooked the importance of focusing on one-dimensional

linear regression, and how existing solutions in higher-dimensions

do not adequately translate to the one-dimensional setting [2]. Our

work shows that though it may seem simple, analyzing the full

suite of DPTheilSen algorithms in the one-dimensional setting is

itself challenging and requires tailored analyses. Nevertheless, we

hope our results serve as a stepping stone for future work that ana-

lyzes the optimality of these algorithms and extends the confidence

intervals to multivariate settings.

By studying the DPTheilSen family of algorithms, this work

provides usable theory for one of the most commonly used robust

estimators, which is one of the most accurate algorithms for practi-

cal regimes in the private setting. We hope these results enhance

the usability of DP estimators for linear regression and advance

our theoretical toolkit for understanding robust, private regression.
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A Widened Exponential Mechanism (DPWide)
In this section, we provide more background on the widened expo-
nential mechanism for quantile estimation designed by [2], which

is a variant of the standard exponential mechanism [46] described

below.

Definition A.0.1 (Exponential Mechanism [46]). The exponential

mechanism is defined with respect to a utility function 𝑢, which

maps (data set, output) pairs to real values. Given dataset s and
range of possible outputs, [−𝑅, 𝑅], the exponential mechanism out-

puts 𝑟 ∈ [−𝑅, 𝑅] with probability density proportional to exp

(
𝜀𝑢 (s,𝑟 )

2Δ𝑢

)
,

where Δ(𝑢) = sup𝑟 ∈[−𝑅,𝑅 ] sups∼s′ |𝑢 (s, 𝑟 ) − 𝑢 (s′, 𝑟 ) |. The exponen-
tial mechanism is 𝜀-DP.

The standard instantiation of the exponential mechanism for

quantile estimation (used, e.g., in [51]) uses a utility function that

assigns a score to output 𝑟 based on how far 𝑟 is in rank from the

desired quantile of s. For all outputs 𝑟 within the range [−𝑅, 𝑅], and
for a target quantile 𝑞 ∈ (0, 1), the standard utility function is:

𝑢 (s, 𝑟 ) = −⌊|#below 𝑟 − 𝑛 · 𝑞 |⌋
where #below 𝑟 denotes the number of datapoints in s that are less
than or equal to 𝑟 in value. Note that this utility function assigns

the same utility score to every output 𝑟 in the interval between two

data points.

One issue with this mechanism is that when the output space is

the real line and the data is highly concentrated, the mechanism

may not place enough probability density near the target quantile.

To mitigate this issue, [2] design a variation on the standard utility

function. For widening parameter 𝜃 > 0, and target quantile 𝑞 ∈
(0, 1), the widened utility function is:

𝑢 (s, 𝑟 ) = −⌊ min

𝑤∈[𝑟−𝜃,𝑟+𝜃 ]
|#below𝑤 − 𝑛 · 𝑞 |⌋

This utility function provides a lower bound on the probability

density the mechanism assigns around the target quantile.

Below, we prove the standard utility theorem for DPWide with
widening hyperparameter 𝜃 on a fixed dataset s.

Proof of Theorem 3.0.3. Let 𝐹s be the empirical distribution

function for s, and let 𝐹s
−1

be the inverse empirical distribution func-

tion. The utility score of an output 𝑟 ∈ [−𝑅, 𝑅] is−⌊min𝑤∈[𝑟−𝜃,𝑟+𝜃 ] 𝑁 ·
|𝐹s (𝑤) − 𝑞 |⌋. Let 𝑟 ∗ ∈ [max(−𝑅, 𝑟 − 𝜃 ),min(𝑅, 𝑟 + 𝜃 )] be the value
that maximizes the utility function for potential output value 𝑟 .

Therefore, we can rewrite the utility score of 𝑟 as −⌊𝑁 |𝐹s (𝑟 ∗) − 𝑞 |⌋.
Next, let us upper bound the probability that the mechanism

selects an output with score ≤ −𝑐𝑁 . The exponential mechanism as-

signs un-normalized probability density of at most exp(−𝜀𝑐𝑁 /2) to
each of these outputs, and they span at most the interval [−𝑅, 𝑅]. On
the other hand, the exponential mechanism assigns un-normalized

probability density of 1 to output values with score of zero, which

we know exist in the range [−𝑅, 𝑅] by Assumption 3.0.2. In partic-

ular, all outputs within 𝜃 of 𝐹s
−1(𝑞) have score of zero. Therefore,

we have that

Pr

DPWide(s,𝜀,(𝑞,−𝑅,𝑅,𝜃 ) )

(
𝑞DPWide∗ ∉ [𝐹s−1(𝑞 − 𝑐), 𝐹s−1(𝑞 + 𝑐)]

)
= Pr

DPWide(s,𝜀,(𝑞,−𝑅,𝑅,𝜃 ) )

(��𝐹s (𝑞DPWide∗) − 𝑞
�� ≥ 𝑐

)
= Pr

DPWide(s,𝜀,(𝑞,−𝑅,𝑅,𝜃 ) )

(
𝑁

��𝐹s (𝑞DPWide∗) − 𝐹s (𝑞)
�� ≥ 𝑐𝑁

)
≤ 2𝑅 exp(−𝜀𝑐𝑁 /2)

2𝜃 exp(−𝜀 · 0 · 𝑁 /2)

=
𝑅 exp(−𝜀𝑐𝑁 /2)

𝜃

Since 𝑞DPWide is at most 𝜃 away from 𝑞DPWide∗, we can expand the

interval by 𝜃 on each side and obtain the desired bound for 𝑞DPWide.

□

B Finite-Sample Convergence of U-Statistic
In this section, we develop a finite-sample convergence bound for

U-statistics (Definition 4.0.1) that will be a key component towards
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proving the finite-sample convergence bound for DPWideTS. The
bound is stated in Theorem 4.2.1. To develop this bound, we adapt

the convergence bounds for linear statistics of i.i.d. mean-0 random

variables [20] to work for U-statistics of independent, non-identical
random variables.

We begin by analyzing the expectation and variance of the U-

statistic in question.

B.1 Expectation and Variance of U-statistic
Here, we consider the expectation and variance of 𝑈𝑧 (Equation 2)

in a very general form. These expressions are not fully evaluated in

order to be as general as possible. They can be further characterized

(as shown in Section C) based on features of the 𝑥 values (number

of ties, spacings, etc.) and the paired datapoints that are included

within the set 𝑆 .

Lemma B.1.1. Let 𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1 and have
variance 𝜎2

𝑥 , and let𝑦1, . . . , 𝑦𝑛 be the corresponding response variables
under the model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖
is sampled i.i.d from a continuous, symmetric, mean-0 distribution
𝐹𝑒 with variance 𝜎2

𝑒 . Let 𝑆 be a set of unordered pairs of datapoints,
let 𝑁 = |𝑆 |, and let 𝑈𝑧 be defined accordingly as in Definition 4.0.1,
Equation (2). Let 𝐹diff refer to the CDF of the difference in any two
i.i.d. noise variables 𝑒 𝑗 , 𝑒𝑖 , and let Δ𝑖 𝑗 = 𝑥 𝑗 − 𝑥𝑖 . Then, we have that

E𝑒1,...,𝑒𝑛 [𝑈𝑧] =
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

sign(𝑥 𝑗 − 𝑥𝑖 ) ·
(
1 − 2 · 𝐹diff (𝑧 · Δ𝑖 𝑗 )

)
Proof. Using the definition of 𝐹diff, we can expand the expecta-

tion of𝑈𝑧 as follows.

E𝑒1,...,𝑒𝑛 [𝑈𝑧]

=
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

E𝑒𝑖 ,𝑒 𝑗

[
sign(𝑥 𝑗 − 𝑥𝑖 ) · sign

(
𝑒 𝑗 − 𝑒𝑖 − 𝑧 · Δ𝑖 𝑗

) ]
=

1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

sign(𝑥 𝑗 − 𝑥𝑖 ) ·
(
1 − 2 · 𝑃𝑒 𝑗 ,𝑒𝑖

(
𝑒 𝑗 − 𝑒𝑖 < 𝑧 · Δ𝑖 𝑗

) )
=

1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

sign(𝑥 𝑗 − 𝑥𝑖 ) ·
(
1 − 2 · 𝐹diff (𝑧 · Δ𝑖 𝑗 )

)
□

The next lemma bounds the variance of the U-statistic,𝑈𝑧 .

Lemma B.1.2. Let 𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1 and have
variance 𝜎2

𝑥 , and let𝑦1, . . . , 𝑦𝑛 be the corresponding response variables
under the model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖
is sampled i.i.d from a continuous, symmetric, mean-0 distribution
𝐹𝑒 with variance 𝜎2

𝑒 . Let 𝑆 be a set of unordered pairs of datapoints,
let 𝑁 = |𝑆 |, and let 𝑈𝑧 be defined accordingly as in Definition 4.0.1,
Equation (2). Let 𝐵𝑖 𝑗 (𝑧) = sign(𝑥 𝑗 − 𝑥𝑖 ) · sign(𝑒 𝑗 − 𝑒𝑖 − 𝑧 · (𝑥 𝑗 − 𝑥𝑖 )).
Then, we have that

1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)
≤ Var𝑒1,...,𝑒𝑛 [𝑈𝑧]

≤ 1

𝑁
+ 1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)
Proof. We begin by rewriting the variance of 𝑈𝑧 as a sum of

covariances. Then, we can split up the sum based on the number of

overlaps of datapoints 𝑖, 𝑗, 𝑠, 𝑡 where {𝑖, 𝑗}, {𝑠, 𝑡} ∈ 𝑆 .

Var𝑒1,...,𝑒𝑛 [𝑈𝑧]

=
1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

Cov

(
𝐵𝑖 𝑗 (𝑧) · 𝐵𝑠𝑡 (𝑧)

)
=

1

𝑁 2

( ∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

Var

(
𝐵𝑖 𝑗 (𝑧)

)
+

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)

+
∑︁

{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=0

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

) )

≤ 1

𝑁
+

(
1

(𝑁 )2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

) )
+ 0

The first sum in the second line can be evaluated by noting that

|𝑆 | = 𝑁 and since Pr𝑒𝑖 ,𝑒 𝑗 [𝐵𝑖 𝑗 ∈ {−1, 1}] = 1, Var(𝐵𝑖 𝑗 (𝑧)) ≤ 1. For

the third sum, note that for |{𝑖, 𝑗} ∩ {𝑠, 𝑡}| = 0, 𝐵𝑖 𝑗 (𝑧) and 𝐵𝑠𝑡 (𝑧)
are independent, so Cov(𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)) = 0. This leaves the second

sum, which can be evaluated based on additional assumptions about

the number of ties and spacings between𝑥 values, as in LemmaC.0.3.

Note that since Var(𝐵𝑖 𝑗 (𝑧)) ≥ 0, we also have that

𝑉𝑎𝑟𝑒1,...,𝑒𝑛 [𝑈𝑧] ≥
1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)
which gives the desired result. □

Using Lemma B.1.2, we will evaluate the variance of the null

U-statistic,𝑈0.

Corollary B.1.3. Let 𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1 and have
variance 𝜎2

𝑥 , and let𝑦1, . . . , 𝑦𝑛 be the corresponding response variables
under the model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖
is sampled i.i.d from a continuous, symmetric, mean-0 distribution
𝐹𝑒 with variance 𝜎2

𝑒 . Let 𝑆 be a set of unordered pairs of datapoints,
let 𝑁 = |𝑆 |, and let 𝑈0 be defined accordingly as in Definition 4.0.1,
Equation (3). Then, we have that

Var𝑒1,...,𝑒𝑛 [𝑈0]

=
1

𝑁
+

©­­­­­­«
1

3 · 𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

sign(𝑥 𝑗 − 𝑥𝑖 ) · sign(𝑥𝑡 − 𝑥𝑠 )

ª®®®®®®¬
Proof. For any {𝑖, 𝑗} ∈ 𝑆, 𝑖 < 𝑗 , let 𝐵𝑖 𝑗 (0) = sign(𝑥 𝑗 − 𝑥𝑖 ) ·

sign(𝑒 𝑗−𝑒𝑖 ). First, note thatVar

[
𝐵𝑖 𝑗 (0)

]
= 1 andCov(𝐵𝑖 𝑗 (0), 𝐵𝑠𝑡 (0))
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can be expanded as follows.

Cov

(
𝐵𝑖 𝑗 (0), 𝐵𝑠𝑡 (0)

)
= E𝑒𝑖 ,𝑒 𝑗 ,𝑒𝑠 ,𝑒𝑡 [𝐵𝑖 𝑗 (0) · 𝐵𝑠𝑡 (0)] − E𝑒𝑖 ,𝑒 𝑗 [𝐵𝑖 𝑗 (0)] · E𝑒𝑠 ,𝑒𝑡 [𝐵𝑠𝑡 (0)]

= sign(𝑥 𝑗 − 𝑥𝑖 ) · sign(𝑥𝑡 − 𝑥𝑠 ) ·
(
E

[
sign(𝑒 𝑗 − 𝑒𝑖 ) · sign(𝑒𝑡 − 𝑒𝑠 )

]
− E

[
sign(𝑒 𝑗 − 𝑒𝑖 )

]
· E [sign(𝑒𝑡 − 𝑒𝑠 )]

)
It can be shown that for all {𝑖, 𝑗} ∈ 𝑆, 𝑖 < 𝑗 and {𝑠, 𝑡} ∈ 𝑆, 𝑠 < 𝑡 such

that |{𝑖, 𝑗}∩{𝑠, 𝑡}| = 1, we have that E[sign(𝑒 𝑗 −𝑒𝑖 ) ·sign(𝑒𝑡 −𝑒𝑠 )] =
1/3 [42]. In addition, by the symmetric, mean-0 nature of 𝐹𝑒 , we

have that E[sign(𝑒 𝑗 − 𝑒𝑖 )] = E[sign(𝑒𝑡 − 𝑒𝑠 )] = 0. Plugging these

into the characterization of Var[𝑈𝑧] from Lemma B.1.2 gives the

desired result.

Var𝑒1,...,𝑒𝑛 [𝑈0]

=
1

𝑁 2

©­«
∑︁

{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

Var

(
𝐵𝑖 𝑗 (0)

)ª®¬+©­­­­­­«
1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (0), 𝐵𝑠𝑡 (0)

)ª®®®®®®¬
=

1

𝑁
+

©­­­­­­«
1

3 · 𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

sign(𝑥 𝑗 − 𝑥𝑖 ) · sign(𝑥𝑡 − 𝑥𝑠 )

ª®®®®®®¬
□

B.2 Berry-Esseen-type bound for U-statistic
Now, we move onto developing the finite-sample convergence

bound for independent, non-identical U-statistics, shown in The-

orem 4.2.1. First, we state a standard Berry-Esseen theorem for

independent, mean-0, (not necessarily identical) statistics.

Theorem B.2.1 (Berry-Esseen bound for independent mean-0

r.v.s [14, 34]). Let 𝜁1, . . . , 𝜁𝑛 be independent random variables with
E[𝜁𝑖 ] = 0, E[𝜁 2

𝑖 ] > 0, and E[|𝜁𝑖 |3] = 𝜌3

𝑖 < ∞, for 𝑖 ∈ [𝑛]. Let∑𝑛
𝑖=1

Var(𝜁𝑖 ) = 1 and 𝜌3 =
∑𝑛

𝑖=1
𝜌3

𝑖 . Let𝑊 =
∑𝑛

𝑖=1
𝜁𝑛 and Φ be the

standard normal cdf. Then,

sup

𝑡 ∈R
| Pr(𝑊 ≤ 𝑡) − Φ(𝑡) | ≤ 𝐶 · 𝜌3

where 𝐶 > 0 is a universal constant.

Now, to prove Theorem 4.2.1, we begin by stating an inequal-

ity presented by [20] that bounds the difference between the cu-

mulative distributions of a non-linear function 𝑇 and a linear ap-

proximation function𝑊 . Note that this inequality, stated below

in Lemma B.2.2, does not require i.i.d random variables, but the

subsequent theorems in [20] that rely on this bound do require

identical marginals.

Lemma B.2.2 ([20]). Let 𝜁1, . . . , 𝜁𝑛 be independent random variables
satisfying E[𝜁𝑖 ] = 0, E[𝜁 2

𝑖 ] > 0, and E[|𝜁𝑖 |3] < ∞ for 𝑖 ∈ [𝑛]. Let∑𝑛
𝑖=1

Var(𝜁𝑖 ) = 1, 𝑊 =
∑𝑛

𝑖=1
𝜁𝑖 , and 𝑇 = 𝑊 + Δ for some Δ :=

Δ(𝜁1, . . . , 𝜁𝑛). For each 𝑖 ∈ [𝑛], let Δ𝑖 be a random variable such that
𝜁𝑖 and (𝑊 − 𝜁𝑖 ,Δ𝑖 ) are independent. Then, for all 𝑡 ∈ R,��

Pr(𝑇 ≤ 𝑡) − 𝑃 (𝑊 ≤ 𝑡)
�� ≤ 2

𝑛∑︁
𝑖=1

E[𝜁 2

𝑖 ]1 |𝜁𝑖 |>1+

2

𝑛∑︁
𝑖=1

E[|𝜁𝑖 |3]1 |𝜁𝑖 | ≤1 + E [|𝑊Δ|] +
𝑛∑︁
𝑖=1

E [|𝜁𝑖 (Δ − Δ𝑖 ) |] .

Using the inequality above in Lemma B.2.2, along with a standard

Berry-Esseen theorem (Theorem B.2.1) to replace Pr[𝑊 ≤ 𝑡] with
Φ(𝑡), Chen et al. [20] develop a Berry-Esseen bound for non-linear

statistics of i.i.d. mean-0 random variables. We will adapt this bound

for non-identical yet independent, mean-0 random variables to

match the setting of our U-statistic,𝑈𝑧 .

To do so, we first state some definitions that allow us to rewrite

𝑈𝑧 as the sum of a linear approximation function𝑊 and a remainder

Δ. These include defining the variables Ψ1, . . . ,Ψ𝑛 and 𝜁1, . . . , 𝜁𝑛 . To

help parse the notation in the following lemma, note that each Ψ𝑖 is
conditioned on the corresponding noise variable 𝑒𝑖 , soΨ1, . . . ,Ψ𝑛 are
independent. In addition, note that the expectation 𝜇Ψ and variance

𝜎Ψ of the sum of the Ψ𝑖 ’s can be related to the expectation and

variance of𝑈𝑧 (as shown in Lemma B.2.4). The linear approximation

function𝑊 is the sum of 𝜁𝑖 , 𝑖 ∈ [𝑛], which are normalized versions

of the Ψ𝑖 random variables.

Lemma B.2.3. Let 𝑆 be a set of unordered pairs of datapoints from
(𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

, where |𝑆 | = 𝑁 = 𝑛𝑘/2 . For {𝑖, 𝑗} ∈ 𝑆, 𝑖 < 𝑗 , let 𝑎𝑖 𝑗 =

sign(𝑥 𝑗−𝑥𝑖 ),𝑏𝑖 𝑗 = sign(𝑒 𝑗−𝑒𝑖 ), 𝑐𝑖 𝑗 (𝑧) = sign
(
𝑒 𝑗 − 𝑒𝑖 − 𝑧 · (𝑥 𝑗 − 𝑥𝑖 )

)
,

and 𝐵′
𝑖 𝑗 = E𝑒′

[
sign

(
𝑒′ − 𝑒𝑖 − 𝑧 · (𝑥 𝑗 − 𝑥𝑖 )

)
| 𝑒𝑖

]
where 𝑒′ is a fresh

draw from the distribution 𝐹𝑒 . Then, for 𝑖 ∈ [𝑛], let

Ψ𝑖 =
1

𝑘

∑︁
𝑗 :{𝑖, 𝑗 }∈𝑆

𝑎𝑖 𝑗 · 𝐵′
𝑖 𝑗 and 𝜁𝑖 =

Ψ𝑖 − 𝜇𝑖

𝜎Ψ · 𝑛

where 𝜇𝑖 = E𝑒1,...,𝑒𝑛 [Ψ𝑖 ] and 𝜎2

𝑖 = Var𝑒1,...,𝑒𝑛 [Ψ𝑖 ]. In addition, let
𝜇Ψ =

∑𝑛
𝑖=1

𝜇𝑖/𝑛 and 𝜎2

Ψ =
∑𝑛

𝑖=1
𝜎2

𝑖 /𝑛2. Now, we define the following:

¯ℎ(𝑖, 𝑗) = 𝑎𝑖 𝑗 · 𝑐𝑖 𝑗 −
1

2

· Ψ𝑖 −
1

2

· Ψ𝑗

Δ =
1

2 · 𝜎Ψ · 𝑁
∑︁

{𝑖, 𝑗 }∈𝑆

¯ℎ(𝑖, 𝑗) and Δ𝑙 =
1

2 · 𝜎Ψ · 𝑁
∑︁

{𝑖, 𝑗 }∈𝑆
𝑖,𝑗≠𝑙

¯ℎ(𝑖, 𝑗)

Finally, let𝑊 =
∑𝑛

𝑖=1
𝜁𝑖 . Then, we claim the following.

(1) 𝜁1, . . . , 𝜁𝑛 are independent
(2) 𝑊 + Δ = (𝑈𝑧 − 𝜇Ψ) /(𝜎Ψ)
(3) For each 𝑙 ∈ [𝑛], 𝜁𝑙 is independent of (𝑊 − 𝜁𝑙 ,Δ𝑙 ).

Proof. First, note that each 𝜁𝑖 conditions on the corresponding

noise variable 𝑒𝑖 , and the only randomness in each 𝜁𝑖 is a fresh draw

𝑒′ from the distribution 𝐹𝑒 , so 𝜁1, . . . , 𝜁𝑛 are independent.

Next, using the definitions of Ψ𝑖 and ¯ℎ(𝑖, 𝑗, 𝑧), we can expand

𝑊 + Δ as follows. In particular, note that the Ψ𝑖 and Ψ𝑗 variables

cancel out, so we are left with sums of 𝑎𝑖 𝑗𝑐𝑖 𝑗 and 𝜇𝑖 .

𝑊 + Δ

=

𝑛∑︁
𝑖=1

𝜁𝑖 +
1

𝜎Ψ · 𝑁
∑︁

{𝑖, 𝑗 }∈𝑆

¯ℎ(𝑖, 𝑗)
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=
1

𝜎Ψ · 𝑛

𝑛∑︁
𝑖=1

(Ψ𝑖 − 𝜇𝑖 ) +
1

2 · 𝜎Ψ · 𝑁
∑︁

{𝑖, 𝑗 }∈𝑆

(
𝑎𝑖 𝑗𝑐𝑖 𝑗 −

1

2

· Ψ𝑖 −
1

2

· Ψ𝑗

)
=

1

2 · 𝜎Ψ · 𝑁
∑︁

{𝑖, 𝑗 }∈𝑆
𝑎𝑖 𝑗𝑐𝑖 𝑗 −

1

𝜎Ψ · 𝑛

𝑛∑︁
𝑖=1

𝜇𝑖

+ 1

𝜎Ψ · 𝑛

𝑛∑︁
𝑖=1

Ψ𝑖 −
1

4 · 𝜎Ψ · 𝑁
∑︁

{𝑖, 𝑗 }∈𝑆

(
Ψ𝑖 + Ψ𝑗

)
=

1

𝜎Ψ · 𝑁
∑︁

{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

𝑎𝑖 𝑗𝑐𝑖 𝑗 −
1

𝜎Ψ · 𝑛

𝑛∑︁
𝑖=1

𝜇𝑖

=
𝑈𝑧 − 𝜇Ψ

𝜎Ψ

Finally, note that for each 𝑙 ∈ [𝑛], the random variables𝑊 − 𝜁𝑙 and

Δ𝑙 are functions of 𝜁 𝑗 , 𝑗 ≠ 𝑙 . As 𝜁1, . . . , 𝜁𝑛 are independent of each

other, this means that 𝜁𝑙 is independent of (𝑊 − 𝜁𝑙 ,Δ𝑙 ). □

Below, we relate the quantities 𝜇Ψ and 𝜎2

Ψ to 𝜇 (𝑧) and 𝜎2 (𝑧) , the
expectation and variance of𝑈𝑧 .

Lemma B.2.4. Let 𝑆 be the set of unordered pairs of datapoints from
(𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

, and let 𝑁 = |𝑆 |. Let 𝜇Ψ, 𝜎Ψ be defined as in Lemma B.2.2.
In addition, let 𝑈𝑧 be defined as in (2), namely 𝜇 (𝑧) = E𝑒1,...,𝑒𝑛 [𝑈𝑧],
and 𝜎2 (𝑧) = Var𝑒1,...,𝑒𝑛 [𝑈𝑧]. Then,

𝜇Ψ = 𝜇 (𝑧) and 𝜎2

Ψ = 𝜎2 (𝑧) + Θ(1/𝑁 )

Proof. First, we show that 𝜇Ψ (𝑧) can be rewritten as 𝜇 (𝑧). Let
𝐵𝑖 𝑗 = 𝐸𝑒′

[
𝑒 𝑗 − 𝑒𝑖 − 𝑧 (𝑥 𝑗 − 𝑥𝑖 ) | 𝑒𝑖

]
and𝐵′

𝑖 𝑗 = 𝐸𝑒′
[
𝑒′ − 𝑒𝑖 − 𝑧 (𝑥 𝑗 − 𝑥𝑖 ) | 𝑒𝑖

]
,

where 𝑒′ is a fresh draw of the random variable 𝑒 . Note that as 𝑒 𝑗 and

𝑒′ are identical random variables, both of which are independent

from 𝑒𝑖 , 𝐵𝑖 𝑗 = 𝐵′
𝑖 𝑗 . Then, we have that

𝜇Ψ =
1

𝑛

𝑛∑︁
𝑖=1

E𝑒1,...,𝑒𝑛 [Ψ𝑖 ]

=
1

𝑛

𝑛∑︁
𝑖=1

E𝑒1,...,𝑒𝑛


1

𝑘

∑︁
𝑗 :{𝑖, 𝑗 }∈𝑆

𝑎𝑖 𝑗 · 𝐵′
𝑖 𝑗


=

2

𝑛𝑘

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

𝑎𝑖 𝑗 · 𝐵𝑖 𝑗

= 𝐸𝑒1,...,𝑒𝑛 [𝑈𝑧]
= 𝜇 (𝑧)

Next, for 𝜎 (𝑧), we know from Lemma B.1.2 that

1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)
≤ 𝜎2 (𝑧)

≤ 1

𝑁
+ 1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)
In addition, note that Cov(𝐵′

𝑖 𝑗 , 𝐵
′′
𝑠𝑡 ) = Cov(𝐵𝑖 𝑗 , 𝐵𝑠𝑡 ). To see this,

notice that 𝑒′ is identical to 𝑒 𝑗 , and both are independent from the

other random variables 𝑒𝑖 , 𝑒𝑠 , 𝑒𝑡 , 𝑒
′′
, so 𝑒′, 𝑒 𝑗 are interchangeable

in this expression. Similarly, 𝑒′′ is identical to 𝑒𝑡 , and both are

independent from 𝑒𝑖 , 𝑒 𝑗 , 𝑒
′, 𝑒𝑠 , so 𝑒′′ and 𝑒𝑡 are interchangeable in

this expression.

Then, note that we can rewrite 𝜎Ψ as follows.

𝜎2

Ψ =
1

𝑛2

𝑛∑︁
𝑖=1

Var[Ψ𝑖 ]

=
1

𝑛2

𝑛∑︁
𝑖=1

©­­­«
1

𝑘2

∑︁
𝑗 :{𝑖, 𝑗 }∈𝑆
𝑡 :{𝑖,𝑡 }∈𝑆

Cov(𝐵′
𝑖 𝑗 , 𝐵

′′
𝑖𝑡 )

ª®®®¬
=

1

𝑛2𝑘2

𝑛∑︁
𝑖=1

©­­­«
∑︁

𝑗 :{𝑖, 𝑗 }∈𝑆
Cov(𝐵′

𝑖 𝑗 , 𝐵
′′
𝑖 𝑗 ) +

∑︁
𝑗 :{𝑖, 𝑗 }∈𝑆

𝑡 :{𝑖,𝑡 }∈𝑆,𝑡≠𝑗

Cov(𝐵′
𝑖 𝑗 , 𝐵

′′
𝑖𝑡 )

ª®®®¬
=

2

𝑛2𝑘2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

Cov(𝐵′
𝑖 𝑗 , 𝐵

′′
𝑖 𝑗 ) +

4

𝑛2𝑘2

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆,𝑠<𝑡

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov(𝐵′
𝑖 𝑗 , 𝐵

′′
𝑠𝑡 )

=
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

Cov(𝐵′
𝑖 𝑗 , 𝐵

′′
𝑖 𝑗 ) +

1

𝑁 2
·

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗
{𝑠,𝑡 }∈𝑆

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov(𝐵𝑖 𝑗 , 𝐵𝑠𝑡 )

= 𝜎2 (𝑧) + Θ

(
1

𝑁

)
As we can see, this gives the desired result. □

Next, we use bounds for E[Δ2] and E[(Δ−Δ𝑙 )2] shown by Chen

et al. [20]. The proof is lengthy so it is omitted here.

Lemma B.2.5 ([20]). Let Δ,Δ𝑙 and 𝜁𝑙 (for 𝑙 ∈ [𝑛]) be defined as
in Lemma B.2.3. In addition, for 𝑈𝑧 as defined in (2), let 𝜎2 (𝑧) =

Var𝑒1,...,𝑒𝑛 [𝑈𝑧], and let 𝜎2

Ψ =
∑𝑛

𝑙=1
Var[Ψ𝑙 ]/𝑛2. Then,

E

[
Δ2

]
≤ 𝜎2 (𝑧)

2(𝑛 − 1) · 𝜎2

Ψ

and E

[
(Δ − Δ𝑙 )2

]
≤ 2𝜎2 (𝑧)

2𝑛(𝑛 − 1) · 𝜎2

Ψ

The above lemma allows us to bound the right side of the in-

equality in Lemma B.2.2.

Lemma B.2.6. Let𝑊,Δ,Δ𝑙 , and 𝜁𝑙 (for 𝑙 ∈ [𝑛]) be defined as in
Lemma B.2.3, where 𝜌3 =

∑𝑛
𝑙=1

E[|𝜁𝑙 |3]. Let 𝛾 be defined as follows.

𝛾 =𝐶 · 𝜌3 + 2

𝑛∑︁
𝑖=1

E[𝜁 2

𝑖 ]1 |𝜁𝑖 |>1 + 2

𝑛∑︁
𝑖=1

E[|𝜁𝑖 |3]1 |𝜁𝑖 | ≤1+

E [|𝑊Δ|] +
𝑛∑︁
𝑙=1

E [|𝜁𝑙 (Δ − Δ𝑙 ) |]

where 𝐶 > 0 is a universal constant. . In addition, let 𝜎2 (𝑧) =

Var𝑒1,...,𝑒𝑛 [𝑈𝑧], where𝑈𝑧 is defined in (2). Then, for sufficiently large
𝑛, 𝛾 =𝑂

(
1/(𝑛2𝜎3 (𝑧))

)
.

Proof. First, note that |Ψ𝑖 − 𝜇𝑖 | ≤ 2 for all 𝑖 ∈ [𝑛], because this
term consists of a product and expectation of signs. Therefore, we

have that

|𝜁𝑖 | =
���� Ψ𝑖 − 𝜇𝑖

2 · 𝜎Ψ · 𝑛

���� ≤ 1

𝜎Ψ · 𝑛 , 𝜌
3 =

𝑛∑︁
𝑖=1

E

[
|𝜁𝑖 |3

]
≤ 1

𝜎3

Ψ · 𝑛2
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Note that 𝜎Ψ = Θ(1/
√
𝑛), so 𝜁𝑖 = Θ(1/

√
𝑛). Thus, for sufficiently

large 𝑛, we have that

𝑛∑︁
𝑖=1

E[𝜁 2

𝑖 ] · 1 |𝜁𝑖 |>1 + 2

𝑛∑︁
𝑖=1

E[|𝜁𝑖 |3] · 1 |𝜁𝑖 | ≤1 = 0 + 𝜌3 ≤ 1

𝜎3

Ψ · 𝑛2

Next, note that E[𝑊 ] = E

[∑𝑛
𝑖=1

𝜁𝑖
]
= 0. Therefore,

E[𝑊 2] = Var[𝑊 ] = 1

4 · 𝜎2

Ψ · 𝑛2

∑︁
𝑖∈[𝑛]

𝜎2

𝑖 =𝑂

(
𝑛2𝜎2

Ψ

𝜎2

Ψ𝑛
2

)
=𝑂 (1)

Using this and the fact from Lemma B.2.5 that

𝐸 [Δ2] =𝑂
(
𝜎2 (𝑧)/𝑛 · 𝜎2

Ψ

)
, we have that

E[|𝑊Δ|] ≤ E[|𝑊 | |Δ|]

≤
√︁

E [|𝑊 |2] · E [|Δ|2]

=
√︁

E [𝑊 2] · E [Δ2]

=
√︁

E [𝑊 2] · E [Δ2]

=𝑂

(
𝜎 (𝑧)

√
𝑛 · 𝜎Ψ

)
Similarly, using the fact from Lemma B.2.5 that 𝐸 [(Δ − Δ𝑙 )2] =

𝑂 (𝜎2 (𝑧)/𝑛2 · 𝜎2

Ψ), we have that∑︁
𝑙∈[𝑛]

E [|𝜁𝑙 · (Δ − Δ𝑙 ) |] ≤
∑︁
𝑙∈[𝑛]

√︃
E

[
𝜁 2

𝑙

]
· E [(Δ − Δ𝑙 )2]

=
∑︁
𝑙∈[𝑛]

√√√
𝜎2

𝑙

𝑛2 · 𝜎2

Ψ

·𝑂
(
𝜎2 (𝑧)
𝑛2 · 𝜎2

Ψ

)
=𝑂

(
𝜎 (𝑧)
𝑛2 · 𝜎2

Ψ

)
·
∑︁
𝑙∈[𝑛]

𝜎𝑙

=𝑂

(
𝜎 (𝑧)
𝑛2 · 𝜎2

Ψ

)
·𝑂 (𝑛)

=𝑂

(
𝜎 (𝑧)
𝑛 · 𝜎2

Ψ

)
where the second to last line follows from noting that 𝜎𝑙 ∈ (0, 1].
This gives us that

𝛾 =𝑂

(
1

𝑛2 · 𝜎3

Ψ

)
+𝑂

(
𝜎 (𝑧)

√
𝑛 · 𝜎Ψ

)
+𝑂

(
𝜎 (𝑧)
𝑛 · 𝜎2

Ψ

)
=𝑂

(
1

𝑛2 · 𝜎3 (𝑧)

)
where the second step follows from noting that 𝜎Ψ < 1 for suffi-

ciently large 𝑛, and by replacing 𝜎Ψ with 𝜎 (𝑧) via Lemma B.2.4. □

Below, we put all the above lemmas together to restate and prove

the finite-sample convergence of the distribution of the U-statistic

to the standard normal distribution.

Theorem 4.2.1. Let 𝑥1, . . . , 𝑥𝑛 satisfy Assumption 1.1.1 (ie. not all
equal) and let𝑦1, . . . , 𝑦𝑛 be the corresponding response variables under
the model 𝑦𝑖 = 𝛽0 +𝛽1𝑥𝑖 +𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R and each 𝑒𝑖 is sampled
i.i.d from a continuous, symmetric, mean-0 distribution. Let 𝑆 be a set
of unordered pairs of datapoints, and let 𝑈𝑧 be defined with respect
to 𝑆 as in (2). Let 𝜇 (𝑧) = E𝑒1,...,𝑒𝑛 [𝑈𝑧], and 𝜎2 (𝑧) = Var𝑒1,...,𝑒𝑛 [𝑈𝑧].

Then, for sufficiently large 𝑛,

sup

𝑡 ∈R

����Pr

[
𝑈𝑧 − 𝜇 (𝑧)

𝜎 (𝑧) ≤ 𝑡

]
− Φ(𝑡)

���� =𝑂

(
1

𝑛2 · 𝜎3 (𝑧)

)
where Φ is the cdf of a standard normal distribution.

Proof. Recall from Lemma B.2.3 the following definitions: for

𝑎𝑖 𝑗 = sign(𝑥 𝑗 − 𝑥𝑖 ) and
𝐵′
𝑖 𝑗 = E𝑒′

[
sign

(
𝑒′ − 𝑒𝑖 − 𝑧 · (𝑥 𝑗 − 𝑥𝑖 )

)
| 𝑒𝑖

]
, where 𝑒′ is a fresh draw

of the random variable 𝑒 , we let

Ψ𝑖 =
1

𝑘

∑︁
𝑗 :{𝑖, 𝑗 }∈𝑆

𝑎𝑖 𝑗 · 𝐵′
𝑖 𝑗 and 𝜁𝑖 =

Ψ𝑖 − 𝜇𝑖

𝜎Ψ · 𝑛

where 𝜇𝑖 = E𝑒1,...,𝑒𝑛 [Ψ𝑖 ], 𝜎𝑖 = Var𝑒1,...,𝑒𝑛 [Ψ𝑖 ], and 𝜎2

Ψ =
∑𝑛

𝑖=1
𝜎2

𝑖 /𝑛2
.

From these definitions, it can be shown that 𝐸 [𝜁𝑖 ] = 0, 𝐸 [𝜁 2

𝑖 ] >

0, 𝐸 [|𝜁𝑖 |3] < ∞, and

∑𝑛
𝑖=1

Var[𝜁𝑖 ] = 1. In addition, Lemma B.2.4

shows that for 𝜇Ψ =
∑𝑛

𝑖=1
𝜇𝑖/𝑛,

𝜇 (𝑧) = 𝜇Ψ, 𝜎
2 (𝑧) = 𝜎2

Ψ + Θ(1/𝑁 ),
where 𝑁 = |𝑆 |. By Lemma B.2.3, we therefore have that

𝑈𝑧 − 𝜇 (𝑧)
𝜎 (𝑧) =𝑊 + Δ,

and for each 𝑖 ∈ [𝑛], 𝜁𝑖 is independent of (𝑊 −𝜁𝑖 ,Δ𝑖 ). Then, putting
together Lemma B.2.2 and Lemma B.2.6 gives the desired result. □

C Evaluating DPWideTS Bound for Special Case
We consider the special setting where the x-values are evenly split

between the endpoints of an interval of length Δ𝑥 . The DPWideTS
algorithm computes𝑁 = ⌊𝑛/2⌋ · ⌈𝑛/2⌉ slopes. This section evaluates
the bound from Theorem 4.0.2 for this special setting.

To do so, we first solve for the expectation and variance of the

U-statistic for this case so that we can plug these values into the gen-

eral convergence bound. We rely on the following approximation

of the normal CDF.

Lemma C.0.1 (Normal CDF approximation). Let 𝐹 (·) be the cumu-
lative distribution function for a Gaussian with mean 𝛽1 and variance
𝜎2. For all 𝑦 such that |𝑦 − 𝛽1 |/𝜎 is sufficiently small, we have that

𝐹 (𝑦) = 1

2

+ 𝑦 − 𝛽1

𝜎
√

2𝜋
+𝑂

(
(𝑦 − 𝛽1)3

𝜎3

)
Proof. For any 𝑦 ∈ R, the distribution function 𝐹 (𝑦) is defined

as follows.

𝐹 (𝑦) = 1

2

(
1 + erf

(
𝑦 − 𝛽1

𝜎
√

2

))
The error function erf(𝑧) can be rewritten using a power series

expansion. For 𝑧 close to 0, we have:

erf(𝑧) = 2

√
𝜋

∫ 𝑧

0

𝑒−𝑡
2

𝑑𝑡

=
2

√
𝜋

∫ 𝑧

0

(
1 − 𝑡2 + 𝑡4

2!

+ . . .

)
𝑑𝑡

=
2

√
𝜋

(
𝑧 − 𝑧3

3

+ . . .

)
=

2

√
𝜋
𝑧 +𝑂 (𝑧3)
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Setting 𝑧 = (𝑦 − 𝛽1)/(𝜎
√

2), we have that when 𝑧 is close to 0,

𝐹 (𝑦) = 1

2

(
1 +

√
2(𝑦 − 𝛽1)√

𝜋𝜎
+𝑂

(
(𝑦 − 𝛽1)3

𝜎3

))
=

1

2

+ 𝑦 − 𝛽1

𝜎
√

2𝜋
+𝑂

(
(𝑦 − 𝛽1)3

𝜎3

)
which gives us the desired result. □

Now, we can evaluate the expectation and variance of𝑈𝑧 for this

special setting.

Lemma C.0.2. Suppose that 𝑥1, . . . , 𝑥𝑛 be at two endpoints of an
interval of size Δ𝑥 such that they satisfy Assumption 5.0.1, and let
𝑒1, . . . , 𝑒𝑛 be drawn i.i.d from 𝐹𝑒 = N(0, 𝜎2

𝑒 ) according to Assump-
tion 5.0.2. Let𝑦1, . . . , 𝑦𝑛 be the corresponding response variables under
the model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R. Let 𝑆 be the set of
unordered pairs of datapoints , and let𝑈𝑧 be defined accordingly as
in (2). Then, we have that for sufficiently small 𝑧 · Δ𝑥/𝜎𝑒 ,

E𝑒1,...,𝑒𝑛 [𝑈𝑧] =
−𝑧 · Δ𝑥√

𝜋𝜎𝑒
+𝑂

(
𝑧3 · Δ3

𝑥

𝜎3

𝑒

)
Proof. First, let 𝐹diff refer to the CDF of the difference in any

two i.i.d. noise variables 𝑒 𝑗 , 𝑒𝑖 . In addition, let 𝑁 = |𝑆 |. Then, we
have from Lemma B.1.1 that

E𝑒1,...,𝑒𝑛 [𝑈𝑧] =
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

sign(Δ𝑥 ) · (1 − 2 · 𝐹diff (𝑧 · Δ𝑥 ))

Next, note that for our special case (assumptions 5.0.1 and 5.0.2),

sign(Δ𝑥 ) = 1 and 𝐹diff is the CDF of the difference between two

i.i.d noise variables from a N(0, 𝜎2

𝑒 ) distribution. Therefore, using
a Taylor approximation of the normal cdf from Lemma C.0.1, we

have that for sufficiently small 𝑧 · Δ𝑥/𝜎𝑒 ,

E𝑒1,...,𝑒𝑛 [𝑈𝑧] =
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

(1 − 2 · 𝐹diff (𝑧 · Δ𝑥 ))

=
1

𝑁

∑︁
{𝑖, 𝑗 }∈𝑆,𝑖< 𝑗

(
1 − 2

(
1

2

+ 𝑧Δ𝑥

2

√
𝜋𝜎𝑒

+𝑂

(
𝑧3Δ3

𝑥

𝜎3

𝑒

)))
=

−𝑧 · Δ𝑥√
𝜋𝜎𝑒

+𝑂

(
𝑧3 · Δ3

𝑥

𝜎3

𝑒

)
which gives the desired result. □

Lemma C.0.3. Suppose that 𝑥1, . . . , 𝑥𝑛 be at two endpoints of an
interval of size Δ𝑥 such that they satisfy Assumption 5.0.1, and let
𝑒1, . . . , 𝑒𝑛 be drawn i.i.d from 𝐹𝑒 = N(0, 𝜎2

𝑒 ) according to Assump-
tion 5.0.2. Let𝑦1, . . . , 𝑦𝑛 be the corresponding response variables under
the model 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 , where 𝛽0, 𝛽1 ∈ R. Let 𝑆 be the set of
unordered pairs of datapoints , and let𝑈𝑧 be defined accordingly as
in (2). Then, for sufficiently small 𝑧 · Δ𝑥/𝜎𝑒 ,

Var𝑒1,...,𝑒𝑛 [𝑈𝑧] =
4

3𝑛
+𝑂

(
𝑧 · Δ𝑥

𝑛 · 𝜎𝑒

)
+𝑂

(
1

𝑛2

)

Proof. Let 𝐵𝑖 𝑗 (𝑧) = sign(Δ𝑥 ) · 𝑐𝑖 𝑗 (𝑧), where 𝑐𝑖 𝑗 = sign(𝑒 𝑗 − 𝑒𝑖 −
𝑧 · Δ𝑥 ). Starting with the result from Lemma B.1.2, we have that

Var𝑒1,...,𝑒𝑛 [𝑈𝑧] ≤

©­­­­­­«
1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆
{𝑠,𝑡 }∈𝑆

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)ª®®®®®®¬
+ 1

𝑁

Note that under our additional assumptions 5.0.1 and 5.0.2, sign(Δ𝑥 ) =
1 and 𝑁 = ⌊𝑛/2⌋ · ⌈𝑛/2⌉.

Next, for |{𝑖, 𝑗} ∩ {𝑠, 𝑡}| = 1 (and supposing 𝑖 = 𝑠), we have that

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)
≤ E𝑒1,...,𝑒𝑛

[
𝐵𝑖 𝑗 (𝑧) · 𝐵𝑠𝑡 (𝑧)

]
= E𝑒𝑖 ,𝑒 𝑗 ,𝑒𝑡

[
𝑐𝑖 𝑗 (𝑧) · 𝑐𝑖𝑡 (𝑧)

]
= E𝑒𝑖

[
𝐸𝑒 𝑗 ,𝑒𝑡

[
𝑐𝑖 𝑗 (𝑧) · 𝑐𝑖𝑡 (𝑧) | 𝑒𝑖

] ]
= E𝑒𝑖

[
𝐸𝑒 𝑗 [𝑐𝑖 𝑗 (𝑧) | 𝑒𝑖 ] · 𝐸𝑒𝑡 [𝑐𝑖𝑡 (𝑧) | 𝑒𝑖 ]

]
= E𝑒𝑖

[
(1 − 2 · 𝐹𝑒 (𝑒𝑖 + 𝑧 · Δ𝑥 ))2

]
The same expression follows for the case where 𝑗 = 𝑡 instead of 𝑖 = 𝑠 .

Note that 𝐹𝑒 is the cumulative distribution function for 𝑒𝑖 , 𝑖 ∈ [𝑛],
which by Assumption 5.0.2 is N(0, 𝜎2

𝑒 ).
Setting 𝑤 = 𝑧Δ𝑥 , let 𝑔(𝑤) = E𝑒𝑖

[
(1 − 2 · 𝐹𝑒 (𝑒𝑖 +𝑤))2

]
. Now,

we can rewrite 𝑒𝑖 as 𝐹
−1

𝑒 (𝑈 ), where 𝑈 is a uniform [0, 1] random
variable, and then compute 𝑔(0) as follows.

𝑔(𝑤) = E𝑈

[ (
1 − 2 · 𝐹𝑒

(
𝐹 −1

𝑒 (𝑈 ) +𝑤
) )

2

]
𝑔(0) = 𝐸𝑈

[
(1 − 2 · 𝐹𝑒 (𝐹 −1

𝑒 (𝑈 )))2
]
= 𝐸𝑈

[
(1 − 2 ·𝑈 )2

]
= 1/3

Next, we know that for any constant 𝑐 > 0, if |𝑔′ (𝑤) | ≤ 𝑐 for all

𝑤 ∈ R, then

𝑔(𝑤) ∈ (𝑔(0) − 𝑐𝑤,𝑔(0) + 𝑐𝑤)

To bound 𝑔′ (𝑤), we can first express it as follows.

𝑔′ (𝑤) = E𝑈

[
2 ·

(
1 − 2 · 𝐹𝑒

(
𝐹 −1

𝑒 (𝑈 ) +𝑤
) )
·
(
−2 · 𝐹 ′𝑒

(
𝐹 −1

𝑒 (𝑈 ) +𝑤
) ) ]

= E𝑈

[
− 4 ·

(
1 − 2 · 𝐹𝑒

(
𝐹 −1

𝑒 (𝑈 ) +𝑤
) )
· 1

𝜎𝑒 ·
√

2𝜋
·

exp

(
−

(
𝐹 −1

𝑒 (𝑈 ) +𝑤
)

2

2𝜎2

𝑒

) ]
where the second line follows by noting that 𝐹 ′𝑒 is a pdf of aN(0, 𝜎2

𝑒 )
random variable. As a cumulative distribution function, 𝐹𝑒 (·) is
between 0 and 1. In addition, we can see that the exp factor is

between 0 and 1. Therefore, we have that

|𝑔′ (𝑤) | ≤ 4 · 1

𝜎𝑒 ·
√

2𝜋
=𝑂

(
1

𝜎𝑒

)
, so 𝑔(𝑤) = 𝑔(0) +𝑂

(
𝑤

𝜎𝑒

)
Finally, the number of terms that share one datapoint, ie. #{𝑖, 𝑗} ∈
𝑆, {𝑠, 𝑡} ∈ 𝑆 s.t. |{𝑖, 𝑗} ∩ {𝑠, 𝑡}| = 1, divided by the 𝑁 2

factor, is less

than or equal to

2 · (𝑛/2)2 · (𝑛/2 − 1)
(𝑛/2)4

=
4(𝑛 − 2)

𝑛2

Putting this all together, we have that for𝑤 = 𝑧Δ𝑥 , the following

holds.

Var𝑒1,...,𝑒𝑛

[
𝑈 (𝛿𝑛, (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1

)
]
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≤

©­­­­­­«
1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆
{𝑠,𝑡 }∈𝑆

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

Cov

(
𝐵𝑖 𝑗 (𝑧), 𝐵𝑠𝑡 (𝑧)

)ª®®®®®®¬
+ 1

𝑁

≤

©­­­­­­«
1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆
{𝑠,𝑡 }∈𝑆

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

E𝑒𝑖

[
(1 − 2 · 𝐹𝑒 (𝑒𝑖 + 𝑧 · Δ𝑥 ))2

]ª®®®®®®¬
+ 1

𝑁

=

©­­­­­­«
1

𝑁 2

∑︁
{𝑖, 𝑗 }∈𝑆
{𝑠,𝑡 }∈𝑆

| {𝑖, 𝑗 }∩{𝑠,𝑡 } |=1

𝑔(𝑤)

ª®®®®®®¬
+ 1

𝑁

≤ 1

(𝑛/2)4
· 2 · (𝑛/2)2 · (𝑛/2 − 1) ·

(
1

3

+𝑂

(
𝑤

𝜎𝑒

))
+ 1

(𝑛/2)2

=
4(𝑛 − 2)

𝑛2

(
1

3

+𝑂

(
𝑤

𝜎𝑒

))
+𝑂

(
1

𝑛2

)
≤ 4

3𝑛
+𝑂

(
𝑧 · Δ𝑥

𝑛 · 𝜎𝑒

)
+𝑂

(
1

𝑛2

)
□

D Confidence Intervals
First, we will prove the coverage validity of the non-private Theil-

Sen confidence interval [49] stated in Lemma 6.1.2.

Proof of Lemma 6.1.2. We will consider the upper limit of the

interval,
ˆ𝛽1𝑈 , for simplicity. First, note that

𝑈 ( ˆ𝛽1𝑈 ) = 1 − 2𝐹s ( ˆ𝛽1𝑈 ) = 1 − 2𝐹s (𝐹s−1(1/2 + 𝑏))
= −2𝑏 = Φ−1 (𝛼1/8) · 𝜎 (0)

Next, we rely on the fact that if 𝛽1 > ˆ𝛽1𝑈 , 𝑈 (𝛽1) < 𝑈 ( ˆ𝛽1𝑈 ). There-
fore, we can use the distribution of 𝑈 (𝛽1) and its convergence to a

standard normal via Theorem 4.2.1 to evaluate the probability that

𝛽1 > ˆ𝛽1𝑈 .

Pr

s

[
𝛽1 > ˆ𝛽1𝑈

]
= Pr

s

[
𝑈 (𝛽1) < 𝑈

(
ˆ𝛽1𝑈

)]
≤ Φ

©­­«
𝑈

(
ˆ𝛽1𝑈

)
𝜎 (0)

ª®®¬ +𝑂

(
1

𝑛2 · 𝜎3 (0)

)
= Φ

(
Φ−1 (𝛼1/8) · 𝜎 (0)

𝜎 (0)

)
+𝑂

(
1

𝑛2 · 𝜎3 (0)

)
= 𝛼1/8 +𝑂

(
1

𝑛2 · 𝜎3 (0)

)
= 𝛼1/8 +𝑂

(
1

√
𝑛

)
≤ 𝛼1/2

where the second to last line holds follows from Corollary B.1.3

and the last line holds for 𝑛 ≥ 𝑐/𝛼2

1
. We can go through a similar

argument for
ˆ𝛽1𝐿 , which gives the desired result. □
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