
Privacy-preserving Multiple Sequence Alignment Scheme for
Long Gene Sequence

Yatong Jiang
School of Cyber Science and

Technology, Beihang University
Beijing, China

jiangyatong@buaa.edu.cn

Tao Shang*
School of Cyber Science and

Technology, Beihang University
Bejing, China

shangtao@buaa.edu.cn

Jianwei Liu
School of Cyber Science and

Technology, Beihang University
Bejing, China

liujianwei@buaa.edu.cn

Abstract
Gene Multiple Sequence Alignment is crucial for genomic data
analysis, forming the basis for studying its biological significance.
The digitization of genomic data allows collaborative analysis on
cloud platforms, improving the efficiency and precision of genomic
research. However, gene sequences contain sensitive information,
posing a risk of privacy leakage with unauthorized access. Balanc-
ing privacy, accuracy, and efficiency in multiple sequence alignment
for long gene sequences remains a challenge. In this paper, we pro-
pose a distributed privacy-preserving multiple sequence alignment
scheme for long sequences based on secure multi-party computa-
tion. Our scheme includes a method for segmenting long sequences
to achieve partially distributed computing and a privacy-preserving
method for calculating edit distance among subsequences using
secret sharing. The scheme consists of a distributed computing
phase and an aggregate computing phase, optimizing efficiency by
dropping repeated subsequences alignment. Our proposed scheme
achieves accurate and efficient privacy-preserving alignment for
long gene sequences.

Keywords
Multiple Sequence Alignment, Secure Multi-Party Computation,
Cloud Platform, Privacy-preserving, Distributed computing

1 Introduction
With the advancements in gene sequencing technology and the
adoption of digital storage for gene sequences, the utilization of
genomic data has become widespread across various domains, in-
cluding scientific research, disease treatment, legal forensics, and
drug research and development [27]. Consequently, there has been
a notable escalation in the volume of genomic data, driven by the
enthusiastic pursuit of genomic information by researchers. To
improve the effectiveness of gene sequence analysis, collaborative
analysis of gene sequences is commonly performed among different
institutions. In particular, multiple sequence alignment (MSA) of
gene sequences from different data sets holds a significant role in
comparative genomic research, which is a fundamental tool in the
domain of computational biology [50]. MSA enables researchers to
identify commonalities and differences between gene sequences,
allowing for the prediction of molecular structure and function,

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(1), 236–249
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0014

as well as the construction of phylogenetic trees. By performing
MSA between diverse gene data sets, researchers gain valuable
insights into the evolutionary relationships and functional associa-
tions among different organisms or individuals [6]. Gene sequences
encompass a substantial amount of sensitive personal information,
particularly the extended gene sequence data, which can uniquely
identify individuals through the information on mutation sites
within the long gene sequence. This disclosure of personal informa-
tion may include details concerning heredity, diseases, and kinship,
thereby posing a risk to the privacy of individuals. Furthermore, the
interrelated nature of gene sequences means that the disclosure of
personal information may also result in the exposure of sensitive in-
formation pertaining to relatives or ethnic groups, leading to severe
consequences. Importantly, gene sequences are inherently stable,
meaning that if sensitive information within the gene sequence
data is leaked, the associated risks persist throughout a personal
entire lifespan.

Simultaneously, the progress of technology and digitalization
has engendered more accessible methods for individuals to acquire
gene sequencing information. The internet platform provides a
convenient avenue for obtaining gene sequences, which, in turn,
contain a substantial amount of privacy information pertaining to
the data providers. Researchers have proposed various techniques
to get sensitive information from gene sequences, including indi-
vidual identification [16, 25, 42, 52], linkage attack [12, 24, 30, 32],
genotype inference [2, 8, 11, 31], and Bayesian inference [38, 45, 49].
These attacks on gene sequences can extract private information
about data providers from publicly available genomic data and sub-
sequently trace them back to their actual identities. In 2013, Gymrek
et al. [11] showed that by analyzing short tandem repeats on the Y
chromosome and querying the pedigree database, their last names
can be recovered from the personal gene. In 2017, Lippert et al.
[26] proposed a method of phenotypic prediction. This prediction
can match phenotypic data with individual-level genotype data ob-
tained from Whole Gene Sequencing (WGS). In 2018, Deznabi et al.
[8] used the observable Markov model and the haplotype recombi-
nation model to perform inference attacks on genomic data shared
on public platforms. In 2019, Zhang et al. [49] proposed a scheme
that utilizes GWAS statistics to infer private information about
individuals, employing a Bayesian network construction method
and addressing inference problems related to trait and genotype
inference. In 2020, Her et al. [14] proposed an inference attack algo-
rithm based on belief propagation in factor graphs to predict target
genotypes in GWAS.

As we know, genomic data is not only related to personal privacy
information but also related to the interdependent privacy [4] of

236

https://orcid.org/0000-0003-3438-6442
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0014

Privacy-preserving MSA Proceedings on Privacy Enhancing Technologies 2025(1)

relatives, countries, and even ethnic groups. Numerous researchers
have employed cryptographic techniques, such as homomorphic
encryption [9, 13, 18, 41], garbled circuit [20, 43], blockchain [22, 23,
47], and secure multiparty computation [1, 36, 39, 44], to address
the privacy concerns associated with genomic data privacy. Privacy-
preserving gene sequence alignment based on SMPC emerges as
a crucial research direction among various privacy protection ap-
proaches for genomic data. In 2015, Wang et al. [44] proposed a
highly efficient and precise edit distance protocol based secure
SPQ(SPQ: Similar Patient Query) primitive, that enables privacy-
preserving search in large-scale distributed genomic databases. In
2018, Asharov et al. [1] proposed an efficient and secure compu-
tation approach for a SPQ problem, combining an approximation
method with optimized two-party protocols. Shen et al. [40] pro-
posed an efficient and privacy-preserving set intersection(PSI) pro-
tocol for human genes, ensuring safe paternity and ancestry test-
ing. In 2021, Schneider et al. [39] proposed EPISODE, an efficient
privacy-preserving protocol by homomorphic encryption(HE) that
enables the identification of genetically similar individuals in an out-
sourced genomic database. In 2022, Nakagawa et al. [34] proposed a
technique that utilizes FM-index for secure gene substring matches
in databases and improving efficiency compared to non-indexed
approaches.

As shown in Tab. 1, researchers have done a lot of outstanding
work on gene sequence privacy-preserving alignment and consid-
ered diverse scenarios such as similar patient queries, large-scale
database queries, and outsourced database queries. However, those
schemes typically involve approximate calculations for pairwise
alignment or substring alignment and the security aspect of MSA
has been overlooked. In particular, the single gene sequences in-
volved in MSA are frequently longer than 1,0000 base pairs, contain-
ing more individual information than in normal pairwise alignment
[33]. The increased length and multiple numbers of gene sequences
make ensuring data privacy while performing MSA more difficult.
Given the significant research implications of MSA and the prac-
tical importance of collaborative analysis, this paper proposes a
privacy-preserving multiple sequence alignment scheme designed
specifically for long gene sequences to address this challenge.

The main contributions of this paper are summarized as follows.

• We design the first privacy-preserving multiple sequence
alignment scheme for long gene sequence. Our scheme real-
ized efficient and accurate MSA for over 10000 bps length
gene sequences and achieve data privacy query privacy and
output privacy.

• We provide a segmentation method for long gene sequence.
This segmentation method can achieve efficient accurate
MSA by combination of distributed computing and aggregate
computing accurate to reduce redundant calculations.

• Wedesign a privacy-preservingmethod forMSA. Thismethod
achieve privacy-preserving MSA for long gene sequence
based on the segmentation method and improves the effi-
ciency of alignment by optimizing the selection of different
secret sharing methods of ABY.

This paper is structured as follows. In Section II, we introduce
the related concepts, including gene sequence alignment and se-
cure multi-party Computation. Section III focuses on the overview

of the privacy-preserving long unequal-length gene multiple se-
quence alignment , Section IV descibes segmenting method for
distributed computing and Section V descibes privacy-preserving
MSA method for aggregate computing based on ABY. Section VI
focuses on scheme analysis and Section VII includes the result of
our experiment and discussions. Section VIII is our conclusion.

2 Preliminaries
We introduce some preliminaries for a better understanding of our
scheme, including the gene sequence alignment and ABY frame-
work.

2.1 Gene Sequence Alignment
DNA sequence consists of four bases: A (Adenine, A), T (Thymine,
T), C (Cytosine, C), and G (Guanine, G), and is the carrier of bio-
logical genetic characteristics. Gene sequence alignment involves
comparing the DNA base composition of two sequences to calcu-
late their differences, aiming to identify highly similar gene subse-
quences, known as homologous sequences, among different gene
sequences.

2.1.1 Gene Pairwise Sequence Alignment. Pairwise sequence align-
ment refers to the alignment of two sequences to find their similarity
relationship. When pairwise sequence alignment is required, edit
distance and scoring rules are used to determine the similarity of
two gene sequences. When there are two different DNA chains,
through some operations, the two DNA chains can become the
same. The cost in this process is called edit distance, also called
Levenshtein distance [15]. These operations on bases are divided
into three types:

Ins: Insert one or more bases in the sequence.
Del: Delete one or more bases from the sequence.
Rep: Replace one base in the sequence with another base.
It is usually stipulated that the cost of each operation is 1, then

the scoring rules are determined, so the edit distance between two
gene sequences is the result of gene sequence alignment. Assum-
ing that there are two gene sequences 𝛼 = (𝛼 [1], 𝛼 [2], ..., 𝛼 [𝑚])
and 𝛽 = (𝛽 [1], 𝛽 [2], ...𝛽 [𝑛]), we will calculate the edit distance be-
tween the two sequences, i.e., the minimum cost required to change
the gene sequence 𝛼 to 𝛽 , which is set as 𝐷𝑖 𝑗 . According to the
three operations defined before, the following operations can be
performed.

Ins or Del 𝛼 [𝑖]: 𝐷𝑖 𝑗 = 𝐷 (𝑖−1) 𝑗 + 1.
Ins or Del 𝛽 [𝑗]: 𝐷𝑖 𝑗 = 𝐷𝑖 (𝑗−1) + 1.
Rep 𝛼 [𝑖] or 𝛽 [𝑗]: 𝐷𝑖 𝑗 = 𝐷 (𝑖−1) (𝑗−1) + 𝑡, 𝑡 ∈ {0, 1}.
If 𝛼 [𝑖] = 𝛽 [𝑗], then 𝑡 = 1, otherwise 𝑡 = 0.
So the formula for calculating edit distance is

𝐷𝑖 𝑗 =𝑚𝑖𝑛[𝐷 (𝑖−1) 𝑗 + 1, 𝐷𝑖 (𝑗−1) + 1, 𝐷 (𝑖−1) (𝑗−1) + 𝑡] (1)

2.1.2 Gene Multiple Sequence Alignment. Multiple sequence align-
ment is the generalization of pairwise sequence alignment. MSA
aligns two or more gene sequences, comparing the similarities and
differences of their bases column by column, and finds the oper-
ations method that makes each gene sequence as consistent as
possible, so as to find their common structural features. MSA is
mainly used for molecular evolution relationships, predicting the
secondary structure and tertiary structure of proteins, estimating

237

Proceedings on Privacy Enhancing Technologies 2025(1) Yatong Jiang et al.

Table 1: Related Researchs on Privacy-preserving Gene Sequence Alignment

Reference Function Methods MSA Years

[44] Precise gene edit distance alignment for secure SPQ GC × 2015
[1] Efficient approximate edit distance alignment method for secure SPQ Secure two-party protocol × 2018
[39] Secure gene sequence alignment for outsourced genomic database HE × 2021
[34] Secure gene substring matches in large databases Secret Sharing × 2022
Our Privacy-preserving MSA for long gene sequences ABY ✓ −

the total number of protein folding types, gene sequence analysis,
etc.

Compared with pairwise sequence alignment, MSA can not only
discover the connection between the two species but also build
the connections between multiple species, which helps a lot in
researching the origin and evolution of creatures. Besides, MSA
can improve the accuracy of the alignment by eliminating the acci-
dental effect of individual variation. MSA algorithm can be divided
into progressive approach, iterative approach, centre star approach,
heuristics, machine learning, and divide-and-conquer [51]. An MSA
approach conducts three steps:
Step 1 Finding a sequence to be the basic sequence.
Step 2 Conducting the pairwise sequence alignment between other

sequences and the basic sequence and constructing the dis-
tance matrix.

Step 3 According to the distance matrix from Step 2, construct the
guide tree or find the center sequence to conduct multiple
alignments.

2.2 ABY Framework
ABY is a SMPC mixed-protocol framework, it supports three dif-
ferent types of sharing (arithmetic sharing, Boolean sharing, and
Yao sharing) and provides efficient conversions between them[7],
as shown in Fig. 1.

Arithmetic

Ciphertext

Boolean YaoY2B

B2Y

Arithmetic

Ciphertext

Boolean YaoY2B

B2Y

Figure 1: ABY Framework

2.2.1 Arithmetic Sharing. Arithmetic sharing protocol based on
Beaver’s multiplication triples [3]. For a value 𝑥 with the length of
𝑙 bits , it can be decomposed into the sum of two values by additive
secret sharing on 𝑍2𝑙 , which represents integers modulo 2𝑙 .

𝑆𝑒𝑔 By using additive secret sharing, the secret value ⟨𝑥⟩𝐴 is
split into two values in the space 𝑍2𝑙 . ⟨𝑥⟩𝐴0 + ⟨𝑥⟩𝐴1 ≡ 𝑥𝑚𝑜𝑑2𝑙 ,
which ⟨𝑥⟩𝐴0 , ⟨𝑥⟩𝐴1 ∈ 𝑍2𝑙 .

𝑆ℎ𝑟 𝑆ℎ𝑟𝐴𝑖 (𝑥): Participant 𝑃𝑖 chooses a random number 𝑟 ∈𝑅 𝑍2𝑙 ,
set ⟨𝑥⟩𝐴𝑖 = 𝑥 − 𝑟 and sent 𝑟 to participant 𝑃1−𝑖 , who sets
⟨𝑥⟩𝐴1−𝑖 = 𝑟 .

𝑅𝑒𝑐 𝑅𝑒𝑐𝐴𝑖 (𝑥): 𝑃1−𝑖 sends its shares ⟨𝑥⟩
𝐴
1−𝑖 = 𝑟 to 𝑃𝑖 for recon-

structing 𝑥 = ⟨𝑥⟩𝐴1 + ⟨𝑥⟩𝐴2 .
𝐴𝑑𝑑 ⟨𝑧⟩𝐴 = ⟨𝑥⟩𝐴+⟨𝑦⟩𝐴: The addition can be performed directly

locally.𝑃𝑖 calculates ⟨𝑧⟩𝐴𝑖 = ⟨𝑥⟩𝐴𝑖 + ⟨𝑦⟩𝐴𝑖 𝑚𝑜𝑑2𝑙

𝑀𝑢𝑙 ⟨𝑧⟩𝐴 = ⟨𝑥⟩𝐴 · ⟨𝑦⟩𝐴: Multiplication requires the additive
shaing of Beaver’s multiplication triples 𝑐 = 𝑎𝑏 and needs
online calulation. Firstly, 𝑃𝑖 calculates ⟨𝑒⟩𝐴𝑖 = ⟨𝑥⟩𝐴𝑖 − ⟨𝑎⟩𝐴𝑖
and ⟨𝑓 ⟩𝐴𝑖 = ⟨𝑦⟩𝐴𝑖 − ⟨𝑏⟩𝐴𝑖 . Secondly, ⟨𝑒⟩𝐴𝑖 & ⟨𝑓 ⟩𝐴𝑖 exchange
online between 𝑃𝑖 . Performing 𝑅𝑒𝑐𝐴 (𝑒), 𝑅𝑒𝑐𝐴 (𝑓) to get 𝑒 , 𝑓 .
Finally, 𝑃𝑖 calculates ⟨𝑧⟩𝐴𝑖 = 𝑖 ·𝑒 · 𝑓 + 𝑓 · ⟨𝑎⟩𝐴𝑖 +𝑒 · ⟨𝑏⟩𝐴𝑖 + ⟨𝑐⟩𝐴𝑖 .

2.2.2 Boolean Sharing. Boolean sharing uses bitwise 𝑋𝑂𝑅 oper-
ations to share variables, and evaluates functions expressed as
Boolean circuits based on Goldreich-MicaliWigderson (GMW) pro-
tocol [10].

𝑆𝑒𝑔 A bit ⟨𝑥⟩𝐵 is shared based Boolean secret sharing between
two participants, such as ⟨𝑥⟩𝐵0 +⟨𝑥⟩𝐵1 = 𝑥 , which ⟨𝑥⟩𝐵0 , ⟨𝑥⟩𝐵1 ∈
𝑍2.

𝑆ℎ𝑟 𝑆ℎ𝑟𝐵𝑖 (𝑥): Participant 𝑃𝑖 chooses a random number 𝑟 ∈𝑅
{0, 1}, set ⟨𝑥⟩𝐵𝑖 = 𝑥 ⊕ 𝑟 and sent 𝑟 to participant 𝑃1−𝑖 , who
sets ⟨𝑥⟩𝐵1−𝑖 = 𝑟 .

𝑅𝑒𝑐 𝑅𝑒𝑐𝐵𝑖 (𝑥): 𝑃1−𝑖 sends its shares ⟨𝑥⟩𝐵1−𝑖 = 𝑟 to 𝑃𝑖 for recon-
structing 𝑥 = ⟨𝑥⟩𝐵0 ⊕ ⟨𝑥⟩𝐵1 .

𝑋𝑜𝑟 ⟨𝑧⟩𝐵 = ⟨𝑥⟩𝐵⊕⟨𝑦⟩𝐵 : 𝑃𝑖 locally calculates ⟨𝑧⟩𝐵𝑖 = ⟨𝑥⟩𝐵𝑖 ⊕⟨𝑦⟩𝐵𝑖
𝐴𝑑𝑑 ⟨𝑧⟩𝐵 = ⟨𝑥⟩𝐵 ∧ ⟨𝑦⟩𝐵 : Addition requires a pre-computed

Boolean multiplication triples ⟨𝑐⟩𝐵 = ⟨𝑎⟩𝐵 ∧ ⟨𝑏⟩𝐵 and needs
online calulation. Firstly, 𝑃𝑖 calculates ⟨𝑒⟩𝐵𝑖 = ⟨𝑥⟩𝐵𝑖 ⊕⟨𝑎⟩𝐵𝑖 and
⟨𝑓 ⟩𝐵𝑖 = ⟨𝑦⟩𝐵𝑖 ⊕ ⟨𝑏⟩𝐵𝑖 . Secondly, ⟨𝑒⟩𝐵𝑖 &⟨𝑓 ⟩𝐵𝑖 exchange online
between 𝑃𝑖 . Performing 𝑅𝑒𝑐𝐵 (𝑒), 𝑅𝑒𝑐𝐵 (𝑓) to get 𝑒 , 𝑓 . Finally,
𝑃𝑖 calculates ⟨𝑧⟩𝐵𝑖 = 𝑖 · 𝑒 · 𝑓 ⊕ 𝑓 · ⟨𝑎⟩𝐵𝑖 ⊕ 𝑒 · ⟨𝑏⟩𝐵𝑖 ⊕ ⟨𝑐⟩𝐵𝑖 .

𝑀𝑢𝑙 Boolean Sharing can calculate the 𝑀𝑢𝑙 gate, which is
𝑀𝑢𝑙𝐵 (𝑥,𝑦, 𝑏). If𝑏 = 0,𝑀𝑢𝑙𝐵 (𝑥,𝑦, 𝑏) = 𝑥 , else𝑀𝑢𝑙𝐵 (𝑥,𝑦, 𝑏) =
𝑦.

2.2.3 Yao Sharing. Yao sharing is based on Yao’s garbled circuit
protocol for secure two-party computation [46], the garbler party
encrypts a Boolean function to a garbled circuit, which is evaluated
by the evaluator party. The garbler 𝑃0 randomly chooses a global
𝑘-bit string 𝑅 with 𝑅 [0] = 1. For each wire 𝜔 , the wire keys consist
of 𝑘0𝑤 ∈𝑅 {0, 1}𝑘 and 𝑘1𝑤 = 𝑘0𝑤 ⊕ 𝑅.

𝑆𝑒𝑔 A bit ⟨𝑥⟩𝑌 is shared based Yao sharing between two partic-
ipants as ⟨𝑥⟩𝑌0 = 𝑘0, and ⟨𝑥⟩𝑌1 = 𝑘𝑥 = 𝑘0 ⊕ 𝑥𝑅.

238

Privacy-preserving MSA Proceedings on Privacy Enhancing Technologies 2025(1)

𝑆ℎ𝑟 𝑆ℎ𝑟𝑌0 (𝑥): Participant 𝑃0 samples ⟨𝑥⟩𝑌0 = 𝑘0 ∈𝑅 {0, 1}𝑘 , and
send ⟨𝑥⟩𝑌1 = 𝑘𝑥 = 𝑘0 ⊕ 𝑥𝑅 to participant 𝑃1. 𝑆ℎ𝑟𝑌1 (𝑥): both
participants perform 𝐶 − 𝑂𝑇 1

𝑘
where 𝑃0 acts as a sender,

inputs the correlation function 𝑓𝑅 (𝑥) = (𝑥 ⊕ 𝑅) and obtains
(𝑘0, 𝑘1 = 𝑘0 ⊕ 𝑅) with 𝑘0 ∈𝑅 {0, 1}𝑘 and 𝑃1 acts as receiver
with choice bit x and obliviously obtains ⟨𝑥⟩𝑌1 = 𝑘𝑥 .

𝑅𝑒𝑐 𝑅𝑒𝑐𝑌𝑖 (𝑥): 𝑃1−𝑖 sends its permutation bit 𝜋 = ⟨𝑥⟩𝑌1−𝑖 [0] to
𝑃𝑖 for reconstructing 𝑥 = 𝜋 ⊕ ⟨𝑥⟩𝑌𝑖 [0] .

𝑋𝑜𝑟 ⟨𝑧⟩𝑌 = ⟨𝑥⟩𝑌 ⊕ ⟨𝑦⟩𝑌 : By using the free-XOR [21] technique
for evaluating, 𝑃𝑖 locally calculates ⟨𝑧⟩𝑌𝑖 = ⟨𝑥⟩𝑌𝑖 ⊕ ⟨𝑦⟩𝑌𝑖

𝐴𝑛𝑑 ⟨𝑧⟩𝑌 = ⟨𝑥⟩𝑌 ∧ ⟨𝑦⟩𝑌 : 𝑃0 creates a garbled table using
𝐺𝑏 ⟨𝑧⟩𝑌0

(⟨𝑥⟩𝑌0 , ⟨𝑦⟩𝑌0), where𝐺𝑏 is a garbling function. 𝑃0 sends
the garbled table to 𝑃1, who decrypts it using the keys ⟨𝑥⟩𝑌1
and ⟨𝑦⟩𝑌1 Secondly, ⟨𝑒⟩𝐵𝑖 &⟨𝑓 ⟩𝐵𝑖 exchange online between 𝑃𝑖 .
Performing 𝑅𝑒𝑐𝐵 (𝑒), 𝑅𝑒𝑐𝐵 (𝑓) to get 𝑒 , 𝑓 . Finally, 𝑃𝑖 calcu-
lates ⟨𝑧⟩𝐵𝑖 = 𝑖 · 𝑒 · 𝑓 ⊕ 𝑓 · ⟨𝑎⟩𝐵𝑖 ⊕ 𝑒 · ⟨𝑏⟩𝐵𝑖 ⊕ ⟨𝑐⟩𝐵𝑖 .

3 Privacy-preserving MSA Scheme
Multiple gene data sets want to share data on a cloud platform
server for multiple sequence alignment joint analysis. To protect
the data privacy of the gene data sets, we propose a scheme on
this scene to keep data ciphertext during online computing. In this
section, we will describe the framework of this scheme, clarify
the meaning of the terminologies and notations, and clarify the
operations flow of our scheme.

3.1 Scheme Framework Description
Multiple gene data sets want to share data on a cloud platform
server for multiple sequence alignment joint analysis. The data
must be ciphertext during aggregate computing to achieve privacy-
preserving MSA. For privacy-preserving calculation, the data is
stored in a cloud server and calculated by two independent nodes
A and B through secret sharing, assuming no collusion. Nodes
A and B are honest but curious participants, which means they
will follow the protocol’s flow to complete the task, do not launch
active attacks, but remain curious about each other’s input data.
Our scheme can achieve accurate multiple sequence alignment for
long gene sequences on cloud servers. The scheme will not disclose
the private information of both gene data sets in the process. Based
on ABY secret sharing methods, the scheme realizes the distributed
privacy-preserving MSA between the gene data sets. The system
model is shown in Fig. 2. Different gene data sets are allocated for
distributed computing as child nodes, and A B on the cloud server
are tasked with aggregate computing as master nodes.

3.2 Terminology and Notation Description
To better describe the scheme, we first clarify the terminologies
and notations in Tab. 2.

3.3 Scheme Flow Description
Our privacy-preserving MSA scheme is divided into two phases:
the distributed computing phase, which performs our segment-
ing method for long gene sequences in plaintext at child nodes,
and the aggregate computing phase, which performs our privacy-
preserving MSA method on ciphertexts between two master nodes.

Server A

Server B

Gene data set1

Gene data set2

Upload Data Upload Query

Sequence
SMPC+ABY

Server

A

Server

A

Server

B

Server

B

Server 1

Server 2

Gene data set a

Gene data set b

Upload Data Upload Query

Sequence
SMPC+ABY

Server

1

Server

1

Server

2

Server

2

Server 1

Server 2

Gene data set a

Gene data set b

Upload Data Upload Query

Sequence
SMPC+ABY

Server

1

Server

1

Server

2

Server

2

Server A

Server B

Gene data set 1

Gene data set 2

Upload Data

User 1

OT+ABY

Gene data set n

···

User 2

User m

···

Upload Query

Sequence

Encrypted

data slice A1

Encrypted

data slice A2

Encrypted

data slice Ak···
Encrypted

data slice A1

Encrypted

data slice A2

Encrypted

data slice Ak···

Encrypted

data slice B1

Encrypted

data slice B2

Encrypted

data slice Bk···
Encrypted

data slice B1

Encrypted

data slice B2

Encrypted

data slice Bk···

···

···

···

···

···

···

···

···

···

···

···

···

Original Long Gene Sequences

···

···

···

···

···

···

···

···

···

···

···

···

Establishing Seed Sequences

···

···

···

···

···

···

Establishing Seed Sequences

···

···

···

···

···

···

···

···

···

···

···

···

Chaining Seed Sequences

···

···

···

···

···

···

Chaining Seed Sequences

Extension Sequences

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

Extension Sequences

···

···

···

···

···

···

Upload Data

Upload DataUpload Data

Offline Phase

···

···

···

···

···

···

···

···

···

···

···

···

··· ······ ···

CSS

Ouery Sequences

Seed Sequences

Online Phase

ESS

1 2

1 2 1 2

0

(,) (,)i i

z
l l

i

i

ED S S d S S
=

=

···

···

···

···

···

···

Original Long Gene Sequences

···

···

···

···

···

···

Establishing Seed Sequences

···

···

···

···

···

···

Chaining Seed Sequences

Extension Sequences

···

···

···

···

···

···

Upload Data

Upload Data

Offline Phase

···

···

···

···

···

···

··· ···

CSS

Ouery Sequences

Seed Sequences

Online Phase

ESS

1 2

1 2 1 2

0

(,) (,)i i

z
l l

i

i

ED S S d S S
=

=

Server A

Server B

基因组数据库 1

基因组数据库 2

上传数据

用户 1

ABY

基因组数据库 n

···

用户 2

用户 m

···

上传查询数据

密态数据

切片 A1

密态数据

切片 A2

密态数据

切片 Ak···
密态数据

切片 A1

密态数据

切片 A2

密态数据

切片 Ak···

密态数据

切片 B1

密态数据

切片 B2

密态数据

切片 Bk···
密态数据

切片 B1

密态数据

切片 B2

密态数据

切片 Bk···

···

···

···

···

···

···

···

···

···

···

···

···

原始长基因序列

···

···

···

···

···

···

···

···

···

···

···

···

建立种子序列

···

···

···

···

···

···

建立种子序列

···

···

···

···

···

···

···

···

···

···

···

···

链接种子序列

···

···

···

···

···

···

链接种子序列

序列延伸

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

序列延伸

···

···

···

···

···

···

上传数据

上传数据上传数据

离线阶段

···

···

···

···

···

···

···

···

···

···

···

···

··· ······ ···

CSS

查询序列

种子序列

在线阶段

ESS

1 2

1 2 1 2

0

(,) (,)i i

z
l l

i

i

ED S S d S S
=

=

···

···

···

···

···

···

原始长基因序列

···

···

···

···

···

···

建立种子序列

···

···

···

···

···

···

链接种子序列

序列延伸

···

···

···

···

···

···

上传数据

上传数据

离线阶段

···

···

···

···

···

···

··· ···

CSS

查询序列

种子序列

在线阶段

ESS

1 2

1 2 1 2

0

(,) (,)i i

z
l l

i

i

ED S S d S S
=

=

Gene data set 1 Gene data set nGene data set 2

···

Gene data set n-1

Encrypted

data slice A

Master Node A

Task

 Model

Encrypted

data slice A

Master Node A

Task

 Model

Encrypted

data slice B

Master Node B

Task

 Model

Encrypted

data slice B

Master Node B

Task

 Model

Cloud Server

ABY

Upload Middle

Data
Return Results

Gene data set 1 Gene data set nGene data set 2

···

Gene data set n-1

Encrypted

data slice A

Master Node A

Task

 Model

Encrypted

data slice B

Master Node B

Task

 Model

Cloud Server

ABY

Upload Middle

Data
Return Results

Children Nodes

Gene data set 1 Gene data set nGene data set 2

···

Gene data set n-1

Encrypted

data slice A

Master Node A

Task

 Model

Encrypted

data slice B

Master Node B

Task

 Model

Cloud Server

ABY

Upload Middle

Data
Return Results

Children Nodes

Figure 2: Distributed Privacy-preserving MSA System Model

The distributed computing phase includes subsequence segmenting,
local common subsequence establishing, and seed sequence chain-
ing to segment the long gene sequences. The aggregate computing
phase includes common subsequences searching and extension se-
quence scoring to achieve privacy-preserving multiple sequences
alignment. After the distributed calculating and the aggregate com-
puting, the master nodes will send the result in ciphertext to both
child nodes, and then all the gene data sets will get the results. The
operations flow of our scheme is shown in Fig. 3.

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

Subequences Segmenting

Common Subequences Searching

······

······

······

······

······

······

······

······

······

······

······

······

······ ······

······ ······

······ ······

······

······

······

Local Common Subsequence Searching

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

···

······

···

···

···

···

······

···

··· ···

···

······

···

···

Seed Sequence Chaining

···

···

······

···

···

 Extension Subsequence

···

···

······

···

···

 Extension Subsequence Extension Sequences Scoring

Child Nodes Distribute Computing

Master Nodes Aggerating Computing

Figure 3: Operation Flowchart of Scheme

According to our scheme operation flow in Fig. 3, the operation
and communication steps of our scheme between child nodes and
master nodes is shown in Fig. 4. Assuming that a child node C

239

Proceedings on Privacy Enhancing Technologies 2025(1) Yatong Jiang et al.

Table 2: Terminology Statement

Terminology Notation Explanation

gene sequence 𝑆 𝑆 refers to any gene sequence in a data set.
window size 𝑘 𝑘 refers to the window size used to segment gene sequence into some continuous overlapping

subsequences.
subsequence / The continuous segments of one gene sequence with length 𝑘 .
local common subsequence / The common subsequences of all local gene sequences at one node with length 𝑘 .
common subsequence / The common subsequences of all gene sequences in all child nodes with length 𝑘 .
seed sequence / The subsequences obtained by chaining the contiguous common subsequences and removing

the overlap. Their length is greater than or equal to 𝑘 .
extension subsequence 𝑒𝑠 The subsequences of a long sequence that needs to be calculated after cutting the seed

sequence.
hash value 𝐻𝑠𝑢𝑏 𝐻𝑠𝑢𝑏 denotes the hash of any subsequence, 𝐻𝑠𝑢𝑏 = 𝐻 (𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) .
hash list 𝑆𝐻 𝑆𝐻 denotes the hash list of long sequence 𝑆 including each 𝐻𝑠𝑢𝑏 of all subsequences of 𝑆 .
/ 𝐴𝑛𝑐𝑃𝑜𝑠 𝐴𝑛𝑐𝑃𝑜𝑠 records the hash value of common subsequences and its postion in each long sequence.

𝐴𝑛𝑐𝑃𝑜𝑠 = (𝑝𝑜𝑠0, ...𝑝𝑜𝑠𝑁 , ℎ𝑎𝑠ℎ_𝑣𝑎𝑙𝑢𝑒𝑠)

Child Nodes

Child Nodes

Master Nodes

Master Nodes

1.Subsequence segmenting and local common

subsequence searching

2.Upload local common subsequences

5.Seed sequence Chaining

4.Distribute common subsequences to all child nodes

7.Extension sequence for MSA scoring

8.Return encrypted result

3.Common subsequence searching

6.Upload extension subsequences

Child Nodes

Child Nodes

Master Nodes

Master Nodes

1.Subsequence segmenting and local common

subsequence searching

2.Upload local common subsequences

5.Seed sequence Chaining

4.Distribute common subsequences to all child nodes

7.Extension sequence for MSA scoring

8.Return encrypted result

3.Common subsequence searching

6.Upload extension subsequences

Figure 4: Computional Process Between Nodes

wants to perform MSA with other child nodes by the master nodes
A and B, those nodes need to perform the following steps:

Step 1 C finds the shortest sequence in the local data set, performs
subsequence segmenting in Section 4.1, and does the local
common searching in Section 4.2 to find local common sub-
sequences. Then C performs secret sharing on local common
subsequences, and uploads share separately to master nodes
A and B.

Step 2 A and B perform the common subsequence searching(CSS)
in Section 5.2 to the shares received from C to get the share

of the common subsequences and distribute it to the child
nodes.

Step 3 After receiving the share of the common subsequence fromA
and B, C recovers the plaintext of the common subsequence
by the shares and performs seed sequence chaining in Section
4.3 to get the seed sequences of this MSA. C removes the
seed sequence from all the long sequences and obtains the
extended subsequences that need to be calculated. Then
C performs secret sharing on extended subsequences and
uploads share separately to A and B.

Step 4 A and B perform the extension sequence scoring(ESS) in
Section 5.3 to obtain the editing distance of these sequences
in the form of secret sharing.

Step 5 A and B send the shares of the result to C to construct the
MSA result.

As mentioned in Section 2.1, a basic MSA approach has three
steps. Our scheme mainly performs Step 2 in a basic MSA approach
distributed without information leakage. Steps 1 and 2 can be per-
formed by C locally with the distance matrix to get the MSA result.
In the following sections, we will describe how to implement the
privacy-preserving MSA scheme in detail, including the segment-
ing method for distributed computing and the privacy-preserving
MSA method for aggregate computing.

4 Segmenting Method For Distributed
Computing

In order to facilitate the distributed computing of MSA, we design
a segmenting method for long gene sequences, aiming to minimize
the number of bases involved in aggregate computations and en-
hance the practicality of privacy-preserving MSA. Based on the
low entropy characteristics of gene sequences, our segmentation
method primarily involves dividing the long gene sequence into
equidistant subsequences, finding local common subsequences at
each children node, and seed sequence chaining based on the com-
mon subsequences returned by the master nodes. The child nodes

240

Privacy-preserving MSA Proceedings on Privacy Enhancing Technologies 2025(1)

will obtain a set of common subsequences across all data sets. After
the seed sequence chaining, the children nodes will get the seed
sequences for all long sequences. Subsequently, the seed sequences
are concatenated to serve as the basis for segmenting and align-
ing the long gene sequences during MSA. Our method is executed
through a three-step process as follows.

4.1 Subsequence Segmenting
Gene data sets want to do MSA between each other without infor-
mation leakage, which requires preprocessing gene sequences to
make the data easier to privacy-preserving alignment and reduce
the time-consuming. The gene sequence segmenting method aims
to segment long gene sequences into short equal subsequences for
establishing local common subsequences at the distributed comput-
ing phase and searching common subsequences at the aggregate
computing phase. Our method can be divided into two parts: divid-
ing the long gene sequence into short subsequences and encoding
the subsequences.

A gene data set 𝐷 = {𝑆0, 𝑆1, ..., 𝑆𝑛} has several long gene se-
quences. Each long sequence 𝑆 is divided into overlapping mul-
tiple subsequences of length 𝑘 , denoting as {𝑠0, 𝑠1, ..., 𝑠𝑚−1,𝑚 =

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆) −𝑘 + 1}, and the subsequences are encoded to get a hash
of 𝑆 . The encoding method is described in the following.

The four types of bases 𝐴,𝑇 ,𝐶,𝐺 that make up the gene se-
quence are encoded as ℎ(𝐴) = 0, ℎ(𝑇) = 1, ℎ(𝐶) = 2, ℎ(𝐺) = 3. So
the hash value of a subsequence is calculated as 𝐻𝑠𝑢𝑏 = 𝐻 (ℎ𝑖) =
𝐻 (ℎ0 | |ℎ1 | |...| |ℎ𝑘−1), where 𝐻 (•) denotes hash operation and ℎ𝑖 ∈
{ℎ(𝐴) = 0, ℎ(𝑇) = 1, ℎ(𝐶) = 2, ℎ(𝐺) = 3}. Then each long sequence
𝑆 can be encoded as a hash list that can not be reconstructed as
𝑆𝐻 = [𝐻0, 𝐻1, ..., 𝐻𝑚−1].

To reduce the computational complexity, we use the sliding
convolution window with size 𝑘 and step length 1 to segment long
gene sequences. And we also design an algorithm to calculate the
hash table of the 𝑆 , which is described in Alg. 1.

Algorithm 1 Sliding convolution algorithm for calculating hash
table
Require: 𝑆 , 𝑘
Ensure: 𝑆𝐻

𝑠𝑢𝑏_𝑠𝑒𝑞 = 𝑆 [0 : 𝑘];
𝑆𝐻 [] = [];

for (𝑖 = 0; 𝑖 < (𝑙𝑒𝑛(𝑆) − 𝑘); 𝑖 + +);
𝑠𝑢𝑏_𝑠𝑒𝑞 = 𝑆 [𝑖 : 𝑖 + 𝑘];
ℎ = ℎ𝑎𝑠ℎ(𝑠𝑢𝑏_𝑠𝑒𝑞);
𝑆𝐻 .𝑎𝑝𝑝𝑒𝑛𝑑 [ℎ];

Output the hash table 𝑆𝐻 .

In Alg. 1, we adopt sliding window to calculate the hash value.
After gene sequence segmenting, each long gene sequence can be
converted into a hash list 𝑆𝐻 . The elements in this hash list are the
hash of basic subsequences, and the local common subsequences
can be determined by aligning 𝑆𝐻 .

4.2 Local Common Subsequence Searching
Sequences that control the same expression in a gene sequence
often contain amounts of repeated subsequences. In long gene
sequence alignment, it is a feasible method to reduce the length of
the sequence to be compared by searching common subsequences.
To match the common subsequences of multiple long sequences, we
do local match among 𝑆𝐻 to find local common subsequences at the
distributed computing phase and do aggregate searching among all
the local common subsequences at the aggregate computing phase.
We define some variables to describe the method to complement
common subsequence searching as follows:

𝑆𝑁 𝑆𝑁 = {𝑠0, 𝑠1, ..., 𝑠𝑙𝑁 }, one of the long sequences of a set,
where 𝑁 denotes the index of the sequences and it is unique
in one set.

𝑆𝑁
𝐻

𝑆𝑁
𝐻

= [𝐻𝑁
0 , 𝐻𝑁

1 , ..., 𝐻𝑁
𝑚], the hash list of long sequence 𝑆𝑁 .

𝑆𝐿𝐶
𝐻

𝑆𝐿𝐶
𝐻

= [𝐻𝐿𝐶
0 , 𝐻𝐿𝐶

1 , ..., 𝐻𝐿𝐶
𝑢], the hash table of local common

subsequences, which has 𝑢 local common subsequences at
one child node.

𝐻𝐿𝐶
𝑖 The 𝑖th hash values in 𝑆𝐿𝐶

𝐻
of local common subsequences,

where 𝑖 ∈ [0, 𝑢].
𝐴𝑛𝑐𝑃𝑜𝑠𝑁𝑖 𝐴𝑛𝑐𝑃𝑜𝑠𝑁𝑖 = (𝑎𝑁𝑖 , 𝐻𝐿𝐶

𝑖), a tuple as a binary set con-
taining the hash value 𝐻𝐿𝐶

𝑖 and its position𝑎𝑁𝑖 in the hash
list 𝑆𝑁

𝐻
of every local long sequence 𝑆𝑁 .

Firstly, the local common subsequences searching should be
conducted. We choose the shortest sequence as the reference se-
quence 𝑆𝑅 and encode it into a hash table 𝑆𝑅

𝐻
= [𝐻𝑅

0 , 𝐻
𝑅
1 , ..., 𝐻

𝑅
𝑚].

By comparing the 𝐻𝑅
𝑖 with the hash list of other local sequences,

the local common subsequences that exist in all sequences are
found. We record the position of local common subsequences in
𝐴𝑛𝑐𝑃𝑜𝑠 , so as to maintain the order of subsequence and prepare
for the chaining of seed sequences at Section 4.3. The position
of all local common subsequences can be record in 𝐴𝑛𝑐𝑃𝑜𝑠 =

[𝐴𝑛𝑐𝑃𝑜𝑠0, 𝐴𝑛𝑐𝑃𝑜𝑠1, ..., 𝐴𝑛𝑐𝑃𝑜𝑠𝑣−1] , where 𝑣 is the number of local
common subsequences and 𝐴𝑛𝑐𝑃𝑜𝑠𝑖 = [𝑎0𝑖 , 𝑎2𝑖 , ..., 𝑎𝑁𝑖 ..., 𝑎𝑡−1𝑖 , 𝐻𝐿𝐶

𝑖]
where 𝑡 is the number of local long sequences .

After searching, the step 1 in Fig. 4 is finished and the child nodes
can get the hash table of local common subsequences 𝑆𝐿𝐶

𝐻
and their

position 𝐴𝑛𝑐𝑃𝑜𝑠 . In step 2, all child nodes send 𝑆𝐿𝐶
𝐻

to the master
nodes to get the common seed sequences in step 3 at the aggregate
computing phase by using the function designed in Section 5.2.

4.3 Seed Sequence Chaining
After the step 4 in Fig. 4, child nodes obtained common subse-
quences of all long sequences, and common subsequences need
to be arranged in order and chaining to get seed sequences for
alignment. Firstly, we need to delete high frequency subsequences
to avoid multiple positions that will affect the subsequent chaining.
Then we connect the reduced seed sequences by chaining method
in FMindex [28] to connect a series of seed sequences.

Assumed that genomic data𝐷 to be aligned has 𝑡 long sequencese,
noted as 𝐷 = {𝑆1, 𝑆2, ..., 𝑆𝑡 }. The common subsequences can be
noted as 𝐴𝑛𝑐𝑃𝑜𝑠𝐶 = [𝐴𝑛𝑐𝑃𝑜𝑠𝐶0 , 𝐴𝑛𝑐𝑃𝑜𝑠𝐶1 , ..., 𝐴𝑛𝑐𝑃𝑜𝑠𝐶𝑍−1], where
𝐴𝑛𝑐𝑃𝑜𝑠𝐶𝑖 = [𝑎0𝑖 , 𝑎2𝑖 , ..., 𝑎𝑈𝑖 ..., 𝑎𝑡𝑖 , 𝑎𝑡−1𝑖 , 𝐻𝐶

𝑖], 𝑎𝑈𝑖 are the position of the
common subsequence 𝑖 on long sequence 𝑈 , 𝐻𝐶

𝑖 is the hash value
241

Proceedings on Privacy Enhancing Technologies 2025(1) Yatong Jiang et al.

of the seed sequence, 𝑧 represents the number of the common sub-
sequences. On this basis, the scoring function 𝑓 (𝑖) for searching
the nearest seed sequence and sorting the seed sequences is defined
as follows:

𝑓 (𝑖) =
{0 𝑖 = 0
𝑚𝑎𝑥 (𝑚𝑎𝑥 𝑓 (𝑗) + 𝛼 (𝑖, 𝑗) − 𝛽 (𝑖, 𝑗), 0) 𝑖 > 1

The function 𝛼 (𝑗, 𝑖) evaluates the distance between common subse-
quences 𝑖 and 𝑗 by their positon in the hash table, and the calculation
method is as follows:

𝛼 (𝑗, 𝑖) =

√√
1
𝑡

𝑡∑︁
𝑢=1

(𝑎𝑢
𝑖
− 𝑎𝑢

𝑗
)2

The function 𝛽 (𝑖, 𝑗) is an affine gapenalty that can be changed
according to different demands. We evaluate the order of the subse-
quences by 𝑓 (𝑖), and we considered the subsequences with higher
scores to be closer to each other. For downstream processing in
SMPC, we will not link the common subsequences containing over-
lap, but only sort the subsequences by the index of the tuple𝐴𝑛𝑐𝑃𝑜𝑠
according to the chaining value. We define the previous sequence
position of target subsequence i as 𝑃 (𝑖), so 𝑃 (𝑖) is defined as follows:

𝑃 (𝑖) =
{0 𝑓 (𝑖) = 0
𝑎𝑟𝑔𝑚𝑎𝑥 (𝑚𝑎𝑥 𝑓 (𝑗) + 𝛼 (𝑖, 𝑗) − 𝛽 (𝑖, 𝑗), 0) 𝑓 (𝑖) > 0

After that, we can get an ordered subsequences recorded in
𝐴𝑛𝑐𝑃𝑜𝑠 . The overlapping subsequences are connected in order to
form unequal length seed sequences as the segmentation anchors of
the long sequences at the aggregate computing phase. The chaining
of the seed sequences on different long sequences are shown in
Seed Sequences Chaining part of Fig. 3 .

It can be seen from Fig. 3 that subsequences 1 and 2 may have
overlapping parts on some sequences. Then seed sequence chaining
the common subsequences by merging the overlapping part and
then record the beginning position. The record of the ordered and
merged seed sequences𝐴𝑛𝑐𝑃𝑜𝑠𝑆 = [𝐴𝑛𝑐𝑃𝑜𝑠𝑆0 , 𝐴𝑛𝑐𝑃𝑜𝑠𝑆1 , ..., 𝐴𝑛𝑐𝑃𝑜𝑠𝑆𝑤−1]
is obtained, where𝑤 represents the number of the seed sequences.
After that, child nodes can remove the seed sequences of all long
gene sequences and finally get extension subsequences need to
be calculated at aggregate computing. Then child nodes apply the
arithmetic secret sharing method to share those extension sub-
sequences set 𝐸𝑆 = {𝐸𝑆1, 𝐸𝑆2, ..., 𝐸𝑆𝑡 } = ⟨𝐸𝑆⟩𝐴 + ⟨𝐸𝑆⟩𝐵 , where
𝐸𝑆1 = {𝑒𝑠10, 𝑒𝑠11, ..., 𝑒𝑠1𝑡 } . Through the distributed calculating, child
nodes upload the ciphertexts of ⟨𝐸𝑆⟩𝐴 to master node A and ⟨𝐸𝑆⟩𝐵
to master node B.

5 Privacy-preserving MSA Method For
Aggregate Computing

By comparing the position of the seed sequences, master nodes
can determine the extension subsequences that need to be aligned.
Master node A has the share ⟨𝐸𝑆⟩𝐴 and master node B has the share
⟨𝐸𝑆⟩𝐵 . Alignment of the starting position and edit distance calcula-
tion operations are performed on extension subsequences. There-
fore, we design the privacy-preserving method, which includes the
common subsequence search for step 3 and the extension sequence
scoring (ESS) for step 7 in Fig. 4 to conduct the privacy-preserving
calculation of MSA, and by combining basic functions. Finally, our

scheme conduct the privacy-preserving calculation of MSA through
these functions.

5.1 Basic Functions
In order to achieve common subsequence search and the extension
sequence scoring in privacy, equality (EQ) function and the mini-
mum of three elements (MIN3) function need to be done as basic
functions.

5.1.1 Equality Evaluating (EQ). EQ function is using to compare
the value in different hash list to find out whether it is a common
seubsequence.

Given 𝑥1 and 𝑥2 to be compared are uploaded by Node A and
Node B as a secret sharing data format, that is ⟨𝑥1⟩ = ⟨𝑥1⟩𝐴 + ⟨𝑥1⟩𝐵
and ⟨𝑥2⟩ = ⟨𝑥2⟩𝐴 + ⟨𝑥2⟩𝐵 . The EQ function conduct the function:

𝑓𝑒𝑞 (𝑥1, 𝑥2) =
{0 𝑥1 = 𝑥2

1 𝑥1 ≠ 𝑥2

We design the equality garbled circuit to implement function 𝑓𝑒𝑞 (𝑥1,
𝑥2) with only one add gate. Before inputing the data into EQ circuit,
servers need to conduct some pre-calculated. After the secret shar-
ing, Node A obtains ⟨𝑥1⟩𝐴 = ⟨𝑥1⟩ − Δ𝑥𝐴 and ⟨𝑥2⟩𝐴 = ⟨𝑥2⟩ − Δ𝑥𝐵 .
Node B obtains ⟨𝑥1⟩𝐵 = Δ𝑥𝐴 and ⟨𝑥2⟩𝐵 = Δ𝑥𝐵 . Node A inputs
⟨𝑥1⟩𝐴 − ⟨𝑥2⟩𝐴 and Node B inputs ⟨𝑥1⟩𝐵 − ⟨𝑥2⟩𝐵 . The EQ circuit adds
the two inputs, and outputs the sum 𝜃 .

𝜃 = ⟨𝑥1⟩𝐴 − ⟨𝑥2⟩𝐴 + ⟨𝑥1⟩𝐵 − ⟨𝑥2⟩𝐵
= (⟨𝑥1⟩𝐴 + ⟨𝑥1⟩𝐵) − (⟨𝑥2⟩𝐴 + ⟨𝑥2⟩𝐵)
= ⟨𝑥1⟩ − ⟨𝑥2⟩

Obviously, if 𝜃 is equal to 0, then 𝑥1 is equal to 𝑥2. Through this
circuit, we design the EQ function which main step is described in
Alg. 2.

Algorithm 2 Equality Evaluating Algorithm

Require: Node A inputs ⟨𝑥1⟩𝐴, ⟨𝑥2⟩𝐴 , Δ0 and (1 − Δ1)
Node B inputs ⟨𝑥1⟩𝐵, ⟨𝑥2⟩𝐵 , −Δ0 and Δ1

Ensure: Node A outputs ⟨𝑓𝑒𝑞 (𝑥1, 𝑥2)⟩𝐴
Node B outputs ⟨𝑓𝑒𝑞 (𝑥1, 𝑥2)⟩𝐵

𝑖𝑛1 = ⟨𝑥1⟩𝐴 − ⟨𝑥2⟩𝐴
𝑖𝑛2 = ⟨𝑥1⟩𝐵 − ⟨𝑥2⟩𝐵
𝐴𝐷𝐷 (𝑖𝑛1, 𝑖𝑛2) = 𝜃 ;
if 𝜃 = 0 then

Node A: ⟨𝑓𝑒𝑞 (𝑥1, 𝑥2)⟩𝐴 = Δ0;
Node B: ⟨𝑓𝑒𝑞 (𝑥1, 𝑥2)⟩𝐵 = −Δ0;

else Node A: ⟨𝑓𝑒𝑞 (𝑥1, 𝑥2)⟩𝐴 = (1 − Δ1);
Node B: ⟨𝑓𝑒𝑞 (𝑥1, 𝑥2)⟩𝐵 = Δ1;

We will implement the EQ circuit using a garbled circuit[46]
and Oblivious Transfer[37] protocol since there is only one gate
circuit so the expend of by using Yao’s sharing is acceptable. To
perform CSS function, we need to make some changes to the output
of Algorithm 2 to provide calibration for aligning and slicing of the
common seed sequences by recording the position of them. When
EQ is used in the CSS function, Node A only inputs (⟨𝑥1⟩𝐴 − ⟨𝑥2⟩𝐴),
Δ0 and Node B only inputs (⟨𝑥1⟩𝐵−⟨𝑥2⟩𝐵). While Node A and Node

242

Privacy-preserving MSA Proceedings on Privacy Enhancing Technologies 2025(1)

B do not need to output 𝑓𝑒𝑞 (𝑥1, 𝑥2) in the form of secret sharing, in
fact Node A and Node B will directly obtain the result of the EQ
function, and record the corresponding elements in 𝐴𝑛𝑐𝑃𝑜𝑠 .

5.1.2 Minimum of Three Calculating (MIN3). MIN3 function is
using to find minimum edit distance during the extension sequence
scoring.

Given 𝑥1, 𝑥2 and 𝑥3 to be compared are uploaded by Node A and
Node B as a secret sharing data format, that is ⟨𝑥1⟩ = ⟨𝑥1⟩𝐴 + ⟨𝑥1⟩𝐵
, ⟨𝑥2⟩ = ⟨𝑥2⟩𝐴 + ⟨𝑥2⟩𝐵 and ⟨𝑥3⟩ = ⟨𝑥3⟩𝐴 + ⟨𝑥3⟩𝐵 . The MIN3 conduct
the function:

𝑓𝑚𝑖𝑛3 (𝑥1, 𝑥2, 𝑥3) =

𝑥1 𝑥1 < 𝑥2, 𝑥1 < 𝑥3

𝑥2 𝑥2 ≤ 𝑥1, 𝑥2 < 𝑥3

𝑥3 𝑥3 ≤ 𝑥1, 𝑥3 ≤ 𝑥2

In order to conduct this function in MIN3 function. Firstly, we
design a garbled circuit shown in Fig. 5 to campare the two inputs.
The MIN circuit conduct the function:

𝑦 (𝑥1, 𝑥2) = 𝑦12 =

{1 𝑥1 < 𝑥2

0 𝑜𝑡ℎ𝑒𝑟𝑠

This function 𝑓𝑚𝑖𝑛 (𝑥1, 𝑥2) conducted by circuit compares the two

MIN Circuit

ADD

ADD

CMP MIN

1

1

A

B

x

x

2

2

A

B

x

x

Figure 5: Minimum Circuit

inputs, and outputs 0 or 1 after processing. Secondly, we can con-
struct the 𝑓𝑚𝑖𝑛3 (𝑥1, 𝑥2, 𝑥3) based on it.

𝑓𝑚𝑖𝑛3 (𝑥1, 𝑥2, 𝑥3) = 𝑦12 · 𝑦13 · 𝑥1 + 𝑦12 · 𝑦23 · 𝑥2 + 𝑦13 · 𝑦23 · 𝑥3
Through this equation, we design the MIN3 function which can
calculate the minimum of three elements is described in Alg. 3.

Algorithm 3Minimum of Three Elements Algorithm

Require: Node A inputs ⟨𝑥1⟩𝐴, ⟨𝑥2⟩𝐴 , and ⟨𝑥3⟩𝐴
Node B inputs ⟨𝑥1⟩𝐵, ⟨𝑥2⟩𝐵 , and ⟨𝑥3⟩𝐵

Ensure: Node A outputs ⟨𝑓𝑚𝑖𝑛3 (𝑥1, 𝑥2, 𝑥3)⟩𝐴
Node B outputs ⟨𝑓𝑚𝑖𝑛3 (𝑥1, 𝑥2, 𝑥3)⟩𝐵

𝑦12 =𝑀𝐼𝑁 (𝑥1, 𝑥2);
𝑦13 =𝑀𝐼𝑁 (𝑥1, 𝑥3);
𝑦23 =𝑀𝐼𝑁 (𝑥2, 𝑥3);
𝑓𝑚𝑖𝑛3 (𝑥1, 𝑥2, 𝑥3) = 𝑦12 ·𝑦13 ·𝑥1+𝑦12 ·𝑦23 ·𝑥2+𝑦13 ·𝑦23 ·𝑥3 Node
A: ⟨𝑥𝑚𝑖𝑛⟩𝐴;
Node B: ⟨𝑥𝑚𝑖𝑛⟩𝐵 ;

After the calculation in Alg. 3, this function can obtain the mini-
mum of 𝑥1, 𝑥2, 𝑥3 without leaking information to master nodes A
and B.

5.2 Common Subsequence Searching (CSS)
The common subsequence searching (CSS) is to find the common
subsequences of all the gene data sets. Master node A input the hash
of local common subsequencees 𝐴𝑛𝑐𝑃𝑜𝑠𝐿𝐶 into CSS, and obtains
the common subsequences 𝐴𝑛𝑐𝑃𝑜𝑠𝐶 . The algorithm is described in
Alg. 4.

Algorithm 4 Common Seed Search Algorithm

Require: Node A inputs 𝐴𝑛𝑐𝑃𝑜𝑠𝐿𝐶

Ensure: Node A outputs 𝐴𝑛𝑐𝑃𝑜𝑠𝐶

𝐴𝑛𝑐𝑃𝑜𝑠𝐶= reduce(lamda x,y: x&y,AncPos[h])
Node A: 𝐴𝑛𝑐𝑃𝑜𝑠𝐶 =

[𝐴𝑛𝑐𝑃𝑜𝑠𝐶0 , 𝐴𝑛𝑐𝑃𝑜𝑠𝐶1 , ..., 𝐴𝑛𝑐𝑃𝑜𝑠𝐶𝑧];

After the CSS, we can obtain the common subsequenceS𝐴𝑛𝑐𝑃𝑜𝑠𝐶
recorded the starting position of each subsequence in the form
of secret sharing, and master nodes send them to child nodes to
perform step 5 in Fig. 4. During the aggregate computing of the
CSS, no information about the gene sequences is leaked.

5.3 Extension Sequence Scoring (ESS)
ESS is using to calculate the edit distance between the correspond
extension subsequences of different sequences. After child nodes
perform step 5 by the way in Section 4.3 and perform step 6, master
nodes can obtain the share of extension subsequences ⟨𝐸𝑆⟩𝐴 and
⟨𝑒𝑠⟩𝐵 as the input of ESS. Generally, edit distance is used to score the
direct distance of two extension subsequences. The ESS conducts
the function:

𝑓𝑠𝑒𝑠 (𝑒𝑠1, 𝑒𝑠2) =𝑚𝑖𝑛


𝑑𝑖−1, 𝑗 + 𝑐𝑖𝑛𝑠

𝑑𝑖, 𝑗−1 + 𝑐𝑑𝑒𝑙

𝑑𝑖, 𝑗 + 𝑐𝑠𝑢𝑏

0 ≤ 𝑖 < 𝑙𝑒𝑛(𝑒𝑠1), 0 ≤ 𝑗 < 𝑙𝑒𝑛(𝑒𝑠2)

The master nodes input two extension sequences 𝑒𝑠1, 𝑒𝑠2 in the
form of secret sharing, and obtain the edit diatance in the form of
secret sharing too. The algorithm is is described in Alg. 5.

243

Proceedings on Privacy Enhancing Technologies 2025(1) Yatong Jiang et al.

Algorithm 5 Extension Sequence Scoring Algorithm

Require: Node A inputs ⟨𝑒𝑠1⟩𝐴, ⟨𝑒𝑠2⟩𝐴
Node B inputs ⟨𝑒𝑠1⟩𝐵, ⟨𝑒𝑠2⟩𝐵

Ensure: Node A outputs ⟨𝑑⟩𝐴
Node B outputs ⟨𝑑⟩𝐵

for (𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(𝑒𝑠1); 𝑖 + +) do
Node A: ⟨𝑑𝑖,0⟩𝐴 = 𝑖; Node B: ⟨𝑑𝑖,0⟩𝐵 = 0;

for (𝑗 = 0; 𝑗 < 𝑙𝑒𝑛(𝑒𝑠2); 𝑗 + +) do
Node A: ⟨𝑑0, 𝑗 ⟩𝐴 = 0; Node B: ⟨𝑑0, 𝑗 ⟩𝐵 = 𝑗 ;

for (𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(𝑒𝑠1); 𝑖 + +) do
for (𝑗 = 0; 𝑗 < 𝑙𝑒𝑛(𝑒𝑠2); 𝑗 + +) do
𝑐𝑠𝑢𝑏 = 𝐸𝑄 (𝑒𝑠1 (𝑖 − 1, 𝑗 − 1), 𝑒𝑠2 (𝑖 − 1, 𝑗 − 1));
𝑑𝑠𝑢𝑏 = 𝑑𝑖−1, 𝑗−1 + 𝑐𝑠𝑢𝑏

𝑑𝑖𝑛𝑠 = 𝑑𝑖−1, 𝑗 + 𝑐𝑖𝑛𝑠

𝑑𝑑𝑒𝑙 = 𝑑𝑖, 𝑗−1 + 𝑐𝑑𝑒𝑙

𝑑 =𝑀𝐼𝑁 3(𝑑𝑠𝑢𝑏 , 𝑑𝑖𝑛𝑠 , 𝑑𝑑𝑒𝑙)
Node A: ⟨𝑑⟩𝐴 = ⟨𝑑 [𝑙𝑒𝑛(𝑒𝑠1)] [𝑙𝑒𝑛(𝑒𝑠2)]⟩𝐴
Node A: ⟨𝑑⟩𝐵 = ⟨𝑑 [𝑙𝑒𝑛(𝑒𝑠1)] [𝑙𝑒𝑛(𝑒𝑠2)]⟩𝐵

Through ESS, we obtain the edit distance between the sequences
without leaking the base order of them. Neither Node A nor Node
B can get plaintext gene sequences or the results. After calculating
the edit distance of unmatchable extension subsequences on the
long sequences, and master nodes can obtain the secret sharings of
edit distance.

The edit distance of the seed sequences is considered to be 0,
so the result of pairwise alignment is the sum of the edit distance
of the unmatchable extension subsequences. For example, the edit
distance between long sequences 𝑆1 and 𝑆2 can be calculated as
𝐸𝐷 (𝑆1, 𝑆2) = 𝐸𝐷 (𝐸𝑆1, 𝐸𝑆2) =

∑𝑧
𝑖=0 𝑑𝑖 (𝐸𝑆1 [𝑖], 𝐸𝑆2 [𝑖]). The algo-

rithm is is described in Alg. 6.

Algorithm 6 Privacy-preserving MSA Algorithm

Require: Node A inputs ⟨𝐸𝑆1⟩𝐴 , ⟨𝐸𝑆2⟩𝐴
Node B inputs ⟨𝐸𝑆1⟩𝐵 , ⟨𝐸𝑆2⟩𝐴

Ensure: Node A outputs ⟨𝐸𝐷⟩𝐴
Node B outputs ⟨𝐸𝐷⟩𝐵

for (𝑖 = 0; 𝑖 < 𝑧); 𝑖 + +) do
𝑒𝑠1 = 𝐸𝑆1 [𝑖], 𝑒𝑠2 = 𝐸𝑆2 [𝑖]
𝑑𝑖 = 𝐸𝑆𝑆 (𝑒𝑠1, 𝑒𝑠2)

𝐸𝐷 (𝑆1, 𝑆2) = 𝐸𝐷 (𝐸𝑆1, 𝐸𝑆2) =∑𝑧
𝑖=0 𝑑𝑖

Node A: ⟨𝐸𝐷⟩𝐴
Node A: ⟨𝐸𝐷⟩𝐵

The algorithm is described in Alg. 6. We obtain the edit distance
of long gene sequences without exposing the order of bases. To
achieve MSA, it is necessary to calculate the extension score for
different sequences based on seed sequences. Then, we can calculate
the MSA result between different gene data sets by doing this
several times or construct a multiple demensiong matrixes by Alg.
6. By distributed computing on child nodes, our scheme reduces

Table 3: Communication Overhead During Secret Sharing

Cipher Computation Communication Messsages

𝑆ℎ𝑟𝐴 0 𝑙 1
𝑅𝑒𝑐𝐴 0 𝑙 1
𝑌2𝐴 6𝑙 𝑙𝑘 + (𝑙2 + 𝑙)/2 2
𝑆ℎ𝑟𝑌 6𝑙 2𝑙𝑘 2
𝐴2𝑌 12𝑙 6𝑙𝑘 2

the number of repeated alignments on master nodes, and improves
the efficiency of privacy-preserving MSA.

6 Scheme Analysis
To prove the security and practicality of the scheme, we analyze
the scheme from three aspects: security, privacy, and efficiency.

6.1 Security Analysis
Our security analysis is predicated on the semi-honest parties’ as-
sumption. Specifically, the parties involved in the implementation
of the scheme are assumed to be honest yet curious. They are capa-
ble of carrying out the required calculations and communication
to the protocol’s specifications. However, their curiosity extends
to the content of the communication, potentially leading them to
store intermediate variables to glean additional information. It is
important to note that these parties do not engage in active attacks
or attempt to compromise the integrity of the protocol. Moreover,
the servers participating in the computation are assumed to be
non-colluding, indicating that they do not disclose their respective
information to one another.

Our scheme is based on foundational cryptographic principles
and aims to achieve secure multiple sequence alignment through
distributed computing and aggregate computing. The data trans-
mitted between child nodes and master nodes is ciphertext, so the
data transmission is secure. The aggregate computing conducted
between A and B is also a ciphertext operation. In adherence to
the principle of compositional security, the overall security of our
scheme is contingent upon the individual security of each function
achieved by secret sharing. Therefore, the data is secure during the
computing and transmission, our scheme can be deemed secure as
a whole.

6.2 Communication Overhead Analysis
Our scheme uses the ABY framework to implement privacy preserv-
ing MSA, inculding child nodes conduct gene sequences segmenta-
tion in the distributed computing phase and master nodes conduct
MSA by secret sharing in the aggregate computing phase. The child
nodes do the setup phase of the scheme, which is not included in the
calculation of the ciphertext communication overhead. Assuming
that the length of the message to be transmitted is 𝑙 bits and the
symmetric security parameter is 𝑘 , the communication overhead
in this scheme is listed in Tab. 3.

As is listed in Tab. 3, the communication of A2Y is the most ex-
pensive part, and the part of sharing and reconstructing message in
arithmetic sharing is almost free. We need to minimize the number
of times we need to use A2Y transformations to improve efficiency.

244

Privacy-preserving MSA Proceedings on Privacy Enhancing Technologies 2025(1)

In our scheme, the ESS function requires one A2Y transition and
one Y2A transiton, and the rest part of our scheme needs 𝑆ℎ𝑟𝐴 and
𝑅𝑒𝑐𝐴 which can be done by arithmetic sharing and reconstructing.
Besides, we put the construction of 𝑆ℎ𝑟𝐴 at the child nodes, so there
is no extra communication overhead, and further improve the query
efficiency of the aggregated computing.

7 Experimental Evaluation
Our scheme is implemented in Ubuntu Linux OS 20.04. For the
execution of our scheme, we employ fast garbled circuits[17] for
Yao’s share to achieve the compare calculation functions and using
Paillier homomorphic encrytion[35] to construct the Beaver triple
for Arithmetic sharing. The Oblivc[48] is utilized for GC and file
processing, while the construction of offline seeds is performed
using Python 3.8.

We simulate distributed computing by conducting the prepro-
cess of genomic files locally and output the middle data by packing
them in a file. The aggregate computing is simulated through the
localhost connection of the Linux system, including the middle
files transferring between the child node and master nodes and
the OT communication between Nodes A and B. Consider that
the communication between master nodes and child nodes are
similar, so our experiment architecture only including two master
nodes and two child nodes. It is tested with the real-life dataset
2019nCoVR_20200301 in the form of fasta files. There are 131 long
sequences in this dataset, the minimum sequence length is 29409
bps, the longest sequence length is 29927 bps, the average length is
29860 bps, and the dataset size is 4. 7MB. According to the experi-
mental data of Liu et al., the length of the subsequence of the long
sequences that is more efficient and accurate is 39-41 bps. In the
experiment, we chose a sliding window length of 40 bpS sand step
size of 1 bp to cut the long sequence.

7.1 Time Consuming Analysis
Our experimental scheme is divided into two phases: a distributed
computing phase and an aggregate computing phase. In the dis-
tributed computing phase, we processed all the gene long sequence
files in the dataset, obtained the segmented 40 bps subsequence frag-
ments, established the seed sequences of the gene data set through
local hash value comparison, and recorded the starting position and
sequence length of each seed sequence. In the aggregate comput-
ing phase, the hash values of seed sequences from all child nodes
are compared, the common seed sequences is reconstructed, and
the subsequence that needs to be edited by distance alignment is
segmented. Then, by constructing a confounding circuit, the un-
matching subsequences are calculated one by one, and the final
result is obtained after summing the ciphertext results. For different
data sizes, the comparison between sequence lengths need to be
calculated by edit distance after using our scheme, and the initial
length is listed in Tab. 4. From Tab. 4, With the increase in the
number of long gene sequences involved in alignment, the length
of gene sequences requiring edit distance alignment also increased,
but the maximum was not more than 6.16%. It is understandable
that as the number of sequences in a multiple sequence alignment
increases, the common part of the long sequences decreases, so
the length of the sequence to be aligned increases. But after using

the segmentation method of our scheme, it can be seen that the
base length of edit distance alignment for long gene sequences
after sequence segments is reduced to under 6.16%, which reduces
the depth and number of gates needed to construct secret sharing
circuits, to improve the efficiency of privacy-preserving multiple
sequence alignment. The time of each phase of privacy-preserving
MSA using the segmented method of our scheme is shown in Fig.
6.

20 40 60 80 100 120
the number of long gene sequence

0

10

20

30

40

50

60

tim
e

/s

Time Consuming of Different Data Scales

distributed computing
aggregate computing
original computing
privacy-preserving computing

Figure 6: Time Consuming of Different Data Scales

With the increase in the number of long gene sequences, the
time cost required by our scheme presents a linear relationship.
However, because we constructed the common seed sequences in
the offline phase, the offline construction phase only be performed
once. Compared with the multiple sequence alignment method for
every single comparison, the increase in the time cost of our scheme
with the increase in the number of sequences is lower. As shown in
Fig. 6, with the expansion of the data scale, the online phase is the
most time-consuming part, and the time cost is almost equal to the
overall cost. In the case of the maximum data size of 120 ∗ 29856
bps, the time required for a single alignment in the online phase
is 51.19s. We compare our scheme with the MSA scheme MAFFT
[19] with edit distance calculation by pairwise alignment on this
dataset. The MAFFT takes 22.38s, while the time of our scheme is
65.77s. It takes about three times as long as MAFFT because it adds
the overhead of the privacy-preserving method on the aggregate
computing phase. After adding the privacy-preserving method, our
time cost increases compared with the plaintext calculation of edit
distance, but it is still within the acceptable range.

7.2 Accuracy Rating Analysis
The calculation of the edit distance can be conceptualized as the
count of operations needed to transform two distinct sequences
into identical sequences. So the MSA is basically how to make
multiple gene sequences equal to each other. For disparate gene
sequences, alignment is typically achieved by employing dynamic
programming to fill gaps. In our approach, we have devised an

245

Proceedings on Privacy Enhancing Technologies 2025(1) Yatong Jiang et al.

Table 4: The Length of a Gene Sequence Required Edit Distance Calculations

Sequence Number Full Sequence Calculated Method Our Method Percentage %
max min average max min average

10 29899 29890 29892 53 44 46 0.15
50 29903 29782 29871 739 618 707 0.15
90 29903 29409 29856 1404 910 1357 4.55
130 29927 29409 29860 1907 1389 1839 6.16

Percentage: percentage = (the subsequences length to be calculated / the total sequence length) ∗100%.

Table 5: Comparison of Different Filling Methods of Unequal-Length Gene Sequences

Method
Scale 10 50 90 130

average 𝑙 accuracy rate average 𝑙 accuracy rate average 𝑙 accuracy rate average 𝑙 accuracy rate

Our Method 29899 100.00 29903 100.00 29903 100.00 29927 100.00
Begining Method 29899 75.11 29903 52.24 29903 48.31 29927 51.02
Ending Method 29899 96.67 29903 81.04 29903 80.29 29927 79.04
Random Method 29899 75.11 29903 42.74 29903 39.13 29927 41.47
Original Method 29899 100.00 29903 100.00 29903 100.00 29927 100.00

Original Method denotes the method of calculating edit distance for MSA with sequences’ full length.
Length 𝑙 denotes the length of gene sequence.
Beginning/Ending/Random Method denotes different filling methods for filling empty spaces at the different positions of the sequence.

optimized gap-filling method specifically designed for lengthy se-
quences, aiming to enhance the efficiency of privacy-preserving
computation without compromising accuracy. We used a few differ-
ent filling methods, including filling empty spaces at the beginning,
end, and random positions of the unequal sequence. Compared to
our scheme and the original dynamic programming method of edit
distance calculation, and the accuracy contrast result is listed in
Tab. 5.

As can be seen from Tab. 5, for multiple sequence alignment
with different data scales, the accuracy rate of multiple sequence
alignment after filling in different ways is relatively random and not
high, but the accuracy rate of segmentation and then edit distance
calculation using the long sequence segmentation method proposed
in our scheme is high. For the sequence data set of gene group length
at the same locus, the edit distance calculated by our scheme is
the same as that calculated by the original edit distance, with an
accuracy of up to 100, which can achieve privacy-preserving and
accurate long MSA.

Besides, we experimented with different datasets to compare our
scheme with the general MSA method MAFFT [19], which supports
performing the MSA for long gene sequences. The parameters
with MAFFT are as follows: the scoring matrix is 1PAM/k=2, the
gap opening penalty is 1, and the offset value is 0. We use editing
distance to score MSA, and the result of MSA is measured as the
average score, which is the sum of pairs divided by the number
of sequences. In average score calculating, 0 is added to the score
for the two bases from the same column that are matched, 1 is
added to the score for mismatched, and 1 is added to the score
with a gap. The score of MAFFT output files denotes as 𝑆𝑀𝐴𝐹𝐹𝑇 ,
and the score of our scheme denotes as 𝑆𝑜𝑢𝑟 . The result is listed in

Tab. 6. Except for the HIV dataset, our results are nearly equal to
MAFFT, with an acceptable margin of error due to the selection
of MSA central sequences. As for the multi-sequence alignment
of HIV, the deviation rate is 6.5%; because the similarity of HIV
data sets is lower and the number of data is small, the choice of
basic sequence in MSA will cause more considerable differences.
Considering that the privacy-preserving calculation demands lower
computation complexity, we construct the MSA using the progress
method mentioned in Section 2.1.2, which begins with pairwise
alignment. In pairwise comparison, our scheme is still accurate for
HIV data, but the choice of the basic sequence and the similarity of
the dataset influences our output. We will discuss the problems of
low sequence similarity for experiments in the section on limitation
and discussion.

7.3 Privacy and Utility Analysis
In the distributed computing phase, the data processed by local child
nodes causes no privacy leakage. The aggregate computing phase
includes the communication between child nodes and master nodes
and the interaction between two master nodes,and the data held by
the two master nodes are subjected to secret sharing. The privacy
of this phase relies on the privacy of the secret sharing algorithm.
We use the ABY framework to achieve privacy-preserving results,
so we use this as a baseline to assess our scheme.

During aggregate computing, our scheme employs anchors, which
store the positions of different seed sequences to facilitate the seg-
mentation of long sequences. While the position information of the
common seed sequences may be exposed, the master node can use
this position to guess some information about the base. Assuming
that the average length of sequences is 𝑙 , the window step is 𝑠 , and

246

Privacy-preserving MSA Proceedings on Privacy Enhancing Technologies 2025(1)

Table 6: Score Comparison With MAFFT

Dataset
Score Sequence Number 𝑆𝑀𝐴𝐹𝐹𝑇 𝑆𝑜𝑢𝑟 Deviation Rate %

sum score average score sum score average score
2019nCoVR_20200310 130 5113 39.33 5095 39.19 0.36

SARS-CoV-2 50 2016 40.32 2016 40.32 0
mt genome (20x)[29] 300 10637 35.45 10630 35.43 0.06
HIV data main 1000[5] 27 50521 1871.15 54038 2001.41 6.5

Table 7: Comparison of Different Dataset MSA

Dataset Average 𝑙 Calculated 𝑙 Percentage% Sequence Number Utility Rate% Window Size 𝑘
2019nCoVR_20200301 29860 1005 3.37 130 100.00 20

29866 1371 1.24 50 100.00 30
29860 1292 4.33 130 100.00 30
29860 1839 6.16 130 100.00 40

SARS-CoV-2 29857 324 1.09 50 100.00 20
29857 398 1.33 50 100.00 30
29858 549 1.84 80 100.00 30
29857 581 1.94 50 100.00 40
29858 1764 2.56 80 100.00 40

mt genome (20x)[29] 16569 4244 25.61 180 89.54 20
16569 8113 48.96 180 99.46 40
16569 9767 58.95 300 100.00 40

HIV data main 1000[5] 10287 10085 98.03 27 85.19 13
10287 10144 98.61 27 100.00 15

Length 𝑙 denotes the average length of all gene sequences in one dataset.
Calculated 𝑙 denotes the average length that needs to be computed of all gene sequences in one dataset.
Percentage: percentage = (the subsequences length to be calculated / the total sequence length) ∗100%.
Utility Rate: denotes the utility after using our scheme based on the global MSA on long gene sequences, it equals to the accuracy rate here.

the number of common seed sequences is𝑚. The privacy loss using
our scheme is

𝑃𝐿𝑜𝑠𝑠 = 22∗𝑚/(22∗𝑠 ∗ 22∗𝑙) = 1
22∗(𝑙−𝑚+𝑠)

Our scheme aims for long gene sequences, so 𝑙 >> 𝑚. For example,
on the dataset SARS-CoSARS-CoV-2, the 𝑙 = 29899,𝑚 = 125 and 𝑠 =
1, so 𝐿𝑜𝑠𝑠 = 1

22∗28775 , which can be considered remains undisclosed.
As for utility analysis, secret sharing is a lossless privacy pre-

serving method, so the utility depends on the segment method’s
parameter. In our scheme, the utility loss is from the window step 𝑠
and the chaining method. The loss caused by the chaining method
comes from the approximate feature of MSA itself. The loss caused
by window step 𝑠 comes from a small read mismatch; the larger 𝑠 is,
the easier it is to ignore the mismatch of a short read. When 𝑠 = 1,
single-base mismatch detection can be realized. The 𝑠 influences
the loss of privacy and utility. At the same time, 𝑠 is negatively
correlated with privacy loss and positively correlated with utility
loss. So, for long gene sequences, we can make a tradeoff to choose
𝑠 = 1 because of 𝑙 >> 𝑚. Otherwise, we need to adjust 𝑠 to reduce
privacy loss. Our scheme aims for long gene sequences, so we can
choose 𝑠 = 1 to remain the utility of the dataset for global MSA. We
experimented our scheme with different gene data sets of various

lengths. Those gene data files are in the form of fasta, which con-
cludes the error small read caused by gene sequencing. The result
is shown in Tab. 7.

As shown in Tab. 7, our scheme can remain high utility for
different datasets, but it depends on the sequence number, win-
dow length, and the similarity of all the sequences in a dataset.
For 2019nCoVR_20200301 and SARS-CoV-2, the average sequence
length of the two datasets is near 30000 bps, and they are highly
similar, with the suitable window size 40, the accuracy rate can
reach 100% with the computation length reduced under 10% of
the total length. For mt genome(20x), the accuracy rate can also
reach a high level by adjusting the window length and increasing
the number of sequences. However, the computation length only
reduces to nearly 50%. As for HIV data main 1000, it does not have
a high similarity; although our scheme can achieve a high accuracy
rate, it can barely reduce the computation length. In conclusion,
our scheme can optimize privacy-preserving MSA of relatively long
similar sequences with high accuracy, but it cannot achieve good
efficiency for data sets with low similarity. We will discuss this part
in the limitation analysis.

247

Proceedings on Privacy Enhancing Technologies 2025(1) Yatong Jiang et al.

7.4 Limitation and Discussion
From the efficiency, accuracy, and privacy and utility analysis per-
spective, our scheme can conduct efficient privacy-preserving MSA,
but it still has some limitations. We analyze limitation of the scheme
and discuss the future direction that can be optimized.

Firstly, our scheme operates under the assumption of semi-honest
parties, where participants cannot collude with each other. This is
a crucial aspect of ensuring privacy. Therefore, our scheme must
be implemented within this secure model, requiring at least two
isolated master nodes. Additionally, while we simulate the OT com-
munication at local hosts, it’s essential to consider the potential
communication overhead in a complex cloud server environment.

Secondly, our scheme achieves the privacy-preserving MSA only
on the global alignment algorithm. If future work wants to achieve
local alignment using this method, further work needs to be ex-
tended to get the scores for local matching, especially on the seg-
ment method.

Besides, regarding the conduction on different datasets, we found
that our scheme performed well on the highly similar long gene
sequences MSA because the choice of basic sequence influences
more when those sequences have more differences. However, they
need more optimization on gene sequences with low similarity.
Moreover, we also find that window size strongly influences the
accuracy of our results. It cannot perform well in reducing cal-
culation length if it is too short, making it poorly optimized on
larger data scales. If it is too short, it can decrease the accuracy of
the scheme. Further discussion is needed on the relativity of the
MSA datasets’ sequence length, entropy, and segment window size.
Further discussion is needed on the relativity of the MSA datasets’
sequence length, entropy, and segment window size.

Our scheme needs to find a balance of accuracy and efficiency
for conducting on low similar gene data sets. For better time con-
sumption and accuracy performance on large data scales, we still
need to further optimize the secret sharing method to find a suitable
combination of ABY and the best segment method choice.

8 Conclusion
In this paper, we propose a privacy-preserving scheme to achieve
the multiple sequence alignment. The scheme encompasses a seg-
mentation method for handling long gene sequences by distributed
computing and utilizes ABY secret sharing to achieve privacy-
preserving MSA. Our scheme can efficiently perform multiple se-
quence alignment for long gene sequences with high accuracy.
Future research directions may involve enhancing the utility of the
alignment scheme through parallel alignment or optimizition on
segment method.

Acknowledgments
This project is supported by the Key R&D project of Hebei Province
(22340701D) and the National Natural Science Foundation of China
(No.61971021).

References
[1] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. 2018. Privacy-

Preserving Search of Similar Patients in Genomic Data. Proc. Priv. Enhancing
Technol. 2018, 4 (2018), 104–124. https://doi.org/10.1515/popets-2018-0034

[2] Michael Backes, Pascal Berrang, Matthias Bieg, Roland Eils, Carl Herrmann,
Mathias Humbert, and Irina Lehmann. 2017. Identifying Personal DNA Methy-
lation Profiles by Genotype Inference. In 2017 IEEE Symposium on Security and
Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society,
957–976. https://doi.org/10.1109/SP.2017.21

[3] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.
In Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings (Lec-
ture Notes in Computer Science, Vol. 576), Joan Feigenbaum (Ed.). Springer, 420–432.
https://doi.org/10.1007/3-540-46766-1_34

[4] Gergely Biczók and Pern Hui Chia. 2013. Interdependent Privacy: Let Me Share
Your Data. In Financial Cryptography and Data Security, Ahmad-Reza Sadeghi
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 338–353.

[5] Apetrei C, Hahn B, Rambaut A, and et al. 2021. HIV Sequence Compendium 2021.
In Published by Theoretical Biology and Biophysics Group. Los Alamos National
Laboratory, NM, LA–UR–23–22840.

[6] Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena, Giovanni Bus-
sotti, Ionas Erb, and Cédric Notredame. 2016. Multiple sequence alignment
modeling: methods and applications. Briefings Bioinform. 17, 6 (2016), 1009–1023.
https://doi.org/10.1093/bib/bbv099

[7] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY -
A Framework for Efficient Mixed-Protocol Secure Two-Party Computation.
In 22nd Annual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8-11, 2015. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-
mixed-protocol-secure-two-party-computation

[8] Iman Deznabi, Mohammad Mobayen, Nazanin Jafari, Oznur Tastan, and Erman
Ayday. 2018. An Inference Attack on Genomic Data Using Kinship, Complex Cor-
relations, and Phenotype Information. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 15, 4 (2018), 1333–1343.

[9] Reza Ghasemi, Md Momin Al Aziz, Noman Mohammed, Massoud Hadian Dehko-
rdi, and Xiaoqian Jiang. 2017. Private and Efficient Query Processing on Out-
sourced Genomic Databases. IEEE J. Biomed. Health Informatics 21, 5 (2017),
1466–1472. https://doi.org/10.1109/JBHI.2016.2625299

[10] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental
game, or a completeness theorem for protocols with honest majority. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, Oded Goldreich (Ed.). ACM, 307–328. https://doi.org/10.1145/3335741.
3335755

[11] M. Gymrek, A. L. Mcguire, D. Golan, E. Halperin, and Y. Erlich. 2013. Identifying
Personal Genomes by Surname Inference. Science 339, 6117 (2013), 321–324.

[12] Arif Harmanci and Mark Gerstein. 2016. Quantification of Private Information
Leakage from Phenotype-Genotype Data: Linking Attacks. Nature methods 13
(02 2016). https://doi.org/10.1038/nmeth.3746

[13] Mohammad Zahidul Hasan, Md Safiur Rahman Mahdi, Md. Nazmus Sadat, and
Noman Mohammed. 2018. Secure count query on encrypted genomic data. J.
Biomed. Informatics 81 (2018), 41–52. https://doi.org/10.1016/j.jbi.2018.03.003

[14] Zaobo He, Jiguo Yu, Ji Li, Qilong Han, Guangchun Luo, and Yingshu Li. 2020.
Inference Attacks and Controls on Genotypes and Phenotypes for Individual
Genomic Data. IEEE ACM Trans. Comput. Biol. Bioinform. 17, 3 (2020), 930–937.
https://doi.org/10.1109/TCBB.2018.2810180

[15] Daniel S. Hirschberg. 1997. Serial computations of Levenshtein distances. In
Pattern Matching Algorithms. Oxford University Press, 123–141.

[16] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe,
Jill Muehling, John Pearson, Dietrich Stephan, Stanley Nelson, and David Craig.
2008. Resolving Individuals Contributing Trace Amounts of DNA to Highly
Complex Mixtures Using High-Density SNP Genotyping Microarrays. PLoS
genetics 4 (09 2008), e1000167. https://doi.org/10.1371/journal.pgen.1000167

[17] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure Two-
Party Computation Using Garbled Circuits. In 20th USENIX Security Symposium,
San Francisco, CA, USA, August 8-12, 2011, Proceedings. USENIX Association.
http://static.usenix.org/events/sec11/tech/full_papers/Huang.pdf

[18] Yatong Jiang, Tao Shang, and Jianwei Liu. 2023. Secure Counting Query Protocol
for Genomic Data. IEEE ACM Trans. Comput. Biol. Bioinform. 20, 2 (2023), 1457–
1468. https://doi.org/10.1109/TCBB.2022.3178446

[19] Kazutaka Katoh, Kazuharu Misawa, Kei-ichi Kuma, and Takashi Miyata. 2002.
MAFFT: a novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic acids research 30 14 (2002), 3059–66. https://api.
semanticscholar.org/CorpusID:10960997

[20] Duhyeong Kim, Yongha Son, Dongwoo Kim, Andrey Kim, Seungwan Hong, and
Jung Hee Cheon. 2019. Privacy-preserving Approximate GWAS computation
based on Homomorphic Encryption. IACR Cryptol. ePrint Arch. (2019), 152.
https://eprint.iacr.org/2019/152

[21] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit:
Free XOR Gates and Applications, Vol. 5126. Springer, 486–498.

[22] Tsung-Ting Kuo, Hyeon-Eui Kim, and Lucila Ohno-Machado. 2017. Blockchain
distributed ledger technologies for biomedical and health care applications. J.
Am. Medical Informatics Assoc. 24, 6 (2017), 1211–1220. https://doi.org/10.1093/

248

https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1109/SP.2017.21
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1093/bib/bbv099
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://doi.org/10.1109/JBHI.2016.2625299
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1145/3335741.3335755
https://doi.org/10.1038/nmeth.3746
https://doi.org/10.1016/j.jbi.2018.03.003
https://doi.org/10.1109/TCBB.2018.2810180
https://doi.org/10.1371/journal.pgen.1000167
http://static.usenix.org/events/sec11/tech/full_papers/Huang.pdf
https://doi.org/10.1109/TCBB.2022.3178446
https://api.semanticscholar.org/CorpusID:10960997
https://api.semanticscholar.org/CorpusID:10960997
https://eprint.iacr.org/2019/152
https://doi.org/10.1093/jamia/ocx068
https://doi.org/10.1093/jamia/ocx068

Privacy-preserving MSA Proceedings on Privacy Enhancing Technologies 2025(1)

jamia/ocx068
[23] Tsung-Ting Kuo, Hugo Zavaleta Rojas, and Lucila Ohno-Machado. 2019. Com-

parison of blockchain platforms: a systematic review and healthcare examples.
J. Am. Medical Informatics Assoc. 26, 5 (2019), 462–478. https://doi.org/10.1093/
jamia/ocy185

[24] Sujun Li, Nuno Bandeira, XiaoFeng Wang, and Haixu Tang. 2016. On
the Privacy Risks of Sharing Clinical Proteomics Data. In Summit on Clin-
ical Research Informatics, CRI 2016, San Francisco, CA, USA, March 21-24,
2016. AMIA. http://knowledge.amia.org/amia-59309-cri2016-1.3011827/t003-
1.3012832/f003-1.3012833/a024-1.3012920/a025-1.3012915

[25] Zhen Lin, ART B. Wen, and Russ B. Altman. 2004. Genomic Research and Human
Subject Privacy. Science 305 (07 2004), 183.

[26] Christoph Lippert, Riccardo Sabatini, M Cyrus Maher, Eun Yong Kang, and J Craig
Venter. 2017. Identification of individuals by trait prediction using whole-genome
sequencing data. Proc Natl Acad Sci USA 114, 38 (2017), 10166.

[27] Hai Liu, Changgen Peng, Zhenqiang Wu, Youliang Tian, and Feng Tian. 2021.
A survey of the Theories and Methods of Privacy Preserving of Genome Data.
Chinese Journal of Computers 44, 7 (2021), 51. http://cjc.ict.ac.cn/online/bfpub/lh-
2021127101719.pdf

[28] Huan Liu, Quan Zou, and Yun Xu. 2022. A novel fast multiple nucleotide sequence
alignment method based on FM-index. Briefings Bioinform. 23, 1 (2022). https:
//doi.org/10.1093/bib/bbab519

[29] Tanaka M, Cabrera VM, González AM, and et al. 2004. Mitochondrial genome
variation in eastern Asia and the peopling of Japan. In Genome Res, Vol. 14.
PubMed, 1832–50. https://doi.org/10.1101/gr.2286304

[30] Bradley A. Malin and Latanya Sweeney. 2000. Determining the identi-
fiability of DNA database entries. In AMIA 2000, American Medical Infor-
matics Association Annual Symposium, Los Angeles, CA, USA, November 4-8,
2000. AMIA. https://knowledge.amia.org/amia-55142-a2000a-1.606968/t-001-
1.609408/f-001-1.609409/a-108-1.609653/a-109-1.609650

[31] Bradley A. Malin and Latanya Sweeney. 2002. Inferring Genotype from Clinical
Phenotype through a Knowledge Based Algorithm. In Proceedings of the 7th
Pacific Symposium on Biocomputing, PSB 2002, Lihue, Hawaii, USA, January 3-7,
2002, Russ B. Altman, A. Keith Dunker, Lawrence Hunter, and Teri E. Klein (Eds.).
41–52. http://psb.stanford.edu/psb-online/proceedings/psb02/malin.pdf

[32] Bradley A. Malin and Latanya Sweeney. 2004. How (not) to protect genomic
data privacy in a distributed network: using trail re-identification to evaluate
and design anonymity protection systems. J. Biomed. Informatics 37, 3 (2004),
179–192. https://doi.org/10.1016/j.jbi.2004.04.005

[33] Elliott H. Margulies, Christina W. Chen, and Eric D. Green. 2006. Differences
between pair-wise and multi-sequence alignment methods affect vertebrate
genome comparisons. Trends in Genetics 22, 4 (2006), 187–193. https://doi.org/
10.1016/j.tig.2006.02.005

[34] Yoshiki Nakagawa, Satsuya Ohata, and Kana Shimizu. 2022. Efficient privacy-
preserving variable-length substring match for genome sequence. Algorithms
Mol. Biol. 17, 1 (2022), 9. https://doi.org/10.1186/s13015-022-00211-1

[35] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding (Lecture Notes in Computer Science,
Vol. 1592), Jacques Stern (Ed.). Springer, 223–238. https://doi.org/10.1007/3-540-
48910-X_16

[36] Anna Poon, Steve Jankly, and Tingting Chen. 2018. Privacy Preserving Fisher’s
Exact Test on Genomic Data. In IEEE International Conference on Big Data (IEEE
BigData 2018), Seattle, WA, USA, December 10-13, 2018, Naoki Abe, Huan Liu, Cal-
ton Pu, Xiaohua Hu, Nesreen K. Ahmed, Mu Qiao, Yang Song, Donald Kossmann,
Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, and Jeffrey S. Saltz (Eds.). IEEE,
2546–2553. https://doi.org/10.1109/BigData.2018.8622575

[37] Michael Rabin, O. 2005. How To Exchange Secrets with Oblivious Transfer. IACR
Cryptology ePrint Archive 2005 (01 2005), 187.

[38] Eric Schadt, Sangsoon Woo, and Ke Hao. 2012. Bayesian method to predict
individual SNP genotype from gene expression data. Nature genetics 44 (04 2012),
603–8. https://doi.org/10.1038/ng.2248

[39] Thomas Schneider and Oleksandr Tkachenko. 2021. EPISODE: Efficient Privacy-
PreservIng Similar Sequence Queries on Outsourced Genomic DatabasEs. IACR
Cryptol. ePrint Arch. (2021), 29. https://eprint.iacr.org/2021/029

[40] Liyan Shen, Xiaojun Chen, Dakui Wang, Binxing Fang, and Ye Dong. 2018. Effi-
cient and Private Set Intersection of Human Genomes. In IEEE International Con-
ference on Bioinformatics and Biomedicine, BIBM 2018, Madrid, Spain, December 3-6,
2018, Huiru Jane Zheng, Zoraida Callejas, David Griol, Haiying Wang, Xiaohua
Hu, Harald H. H.W. Schmidt, Jan Baumbach, Julie Dickerson, and Le Zhang (Eds.).
IEEE Computer Society, 761–764. https://doi.org/10.1109/BIBM.2018.8621291

[41] Kana Shimizu, Koji Nuida, and Gunnar Rätsch. 2016. Efficient privacy-preserving
string search and an application in genomics. Bioinform. 32, 11 (2016), 1652–1661.
https://doi.org/10.1093/bioinformatics/btw050

[42] Nora von Thenen, Erman Ayday, and A. Ercüment Çiçek. 2019. Re-identification
of individuals in genomic data-sharing beacons via allele inference. Bioinform.
35, 3 (2019), 365–371. https://doi.org/10.1093/bioinformatics/bty643

[43] Justin Wagner, Joseph N. Paulson, Xiao Wang, Bobby Bhattacharjee, and Héc-
tor Corrada Bravo. 2016. Privacy-preserving microbiome analysis using secure
computation. Bioinform. 32, 12 (2016), 1873–1879. https://doi.org/10.1093/
bioinformatics/btw073

[44] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and
Diyue Bu. 2015. Efficient Genome-Wide, Privacy-Preserving Similar Patient
Query based on Private Edit Distance. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). ACM, 492–
503. https://doi.org/10.1145/2810103.2813725

[45] YueWang, JiaWen, XintaoWu, and Xinghua Shi. 2016. Infringement of Individual
Privacy via Mining Differentially Private GWAS Statistics. In Big Data Computing
and Communications - Second International Conference, BigCom 2016, Shenyang,
China, July 29-31, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9784),
Yu Wang, Ge Yu, Yanyong Zhang, Zhu Han, and Guoren Wang (Eds.). Springer,
355–366. https://doi.org/10.1007/978-3-319-42553-5_30

[46] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In 27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27-29 October 1986. IEEE Computer Society, 162–167. https://doi.org/10.
1109/SFCS.1986.25

[47] Hongru Yu, Haiyang Sun, Danyi Wu, and Tsung-Ting Kuo. 2019. Comparison of
Smart Contract Blockchains for Healthcare Applications. In AMIA 2019, American
Medical Informatics Association Annual Symposium,Washington, DC, USA, Novem-
ber 16-20, 2019. AMIA. https://knowledge.amia.org/69862-amia-1.4570936/t005-
1.4574828/t005-1.4574829/3203516-1.4574836/3202134-1.4574833

[48] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. IACR Cryptol. ePrint Arch. (2015), 1153. http://eprint.
iacr.org/2015/1153

[49] Lu Zhang, Qiuping Pan, Yue Wang, Xintao Wu, and Xinghua Shi. 2019. Bayesian
Network Construction and Genotype-Phenotype Inference Using GWAS Sta-
tistics. IEEE ACM Trans. Comput. Biol. Bioinform. 16, 2 (2019), 475–489. https:
//doi.org/10.1109/TCBB.2017.2779498

[50] Pinglu Zhang, Huan Liu, Yanming Wei, Yixiao Zhai, Qinzhong Tian,
and Quan Zou. 2024. FMAlign2: a novel fast multiple nucleotide
sequence alignment method for ultralong datasets. Bioinformat-
ics 40, 1 (01 2024), btae014. https://doi.org/10.1093/bioinformatics/
btae014 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/40/1/btae014/56416850/btae014_supplementary_data.pdf

[51] Yongqing Zhang, Qiang Zhang, Jiliu Zhou, and Quan Zou. 2022. A survey on the
algorithm and development of multiple sequence alignment. Brief Bioinform 23,
3 (2022), PMID: 35272347.

[52] Xiao-yong Zhou, Bo Peng, Yong Fuga Li, Yangyi Chen, Haixu Tang, and XiaoFeng
Wang. 2011. To Release or Not to Release: Evaluating Information Leaks in Aggre-
gate Human-Genome Data. In Computer Security - ESORICS 2011 - 16th European
Symposium on Research in Computer Security, Leuven, Belgium, September 12-14,
2011. Proceedings (Lecture Notes in Computer Science, Vol. 6879), Vijay Atluri and
Claudia Díaz (Eds.). Springer, 607–627. https://doi.org/10.1007/978-3-642-23822-
2_33

249

https://doi.org/10.1093/jamia/ocx068
https://doi.org/10.1093/jamia/ocy185
https://doi.org/10.1093/jamia/ocy185
http://knowledge.amia.org/amia-59309-cri2016-1.3011827/t003-1.3012832/f003-1.3012833/a024-1.3012920/a025-1.3012915
http://knowledge.amia.org/amia-59309-cri2016-1.3011827/t003-1.3012832/f003-1.3012833/a024-1.3012920/a025-1.3012915
http://cjc.ict.ac.cn/online/bfpub/lh-2021127101719.pdf
http://cjc.ict.ac.cn/online/bfpub/lh-2021127101719.pdf
https://doi.org/10.1093/bib/bbab519
https://doi.org/10.1093/bib/bbab519
https://doi.org/10.1101/gr.2286304
https://knowledge.amia.org/amia-55142-a2000a-1.606968/t-001-1.609408/f-001-1.609409/a-108-1.609653/a-109-1.609650
https://knowledge.amia.org/amia-55142-a2000a-1.606968/t-001-1.609408/f-001-1.609409/a-108-1.609653/a-109-1.609650
http://psb.stanford.edu/psb-online/proceedings/psb02/malin.pdf
https://doi.org/10.1016/j.jbi.2004.04.005
https://doi.org/10.1016/j.tig.2006.02.005
https://doi.org/10.1016/j.tig.2006.02.005
https://doi.org/10.1186/s13015-022-00211-1
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1109/BigData.2018.8622575
https://doi.org/10.1038/ng.2248
https://eprint.iacr.org/2021/029
https://doi.org/10.1109/BIBM.2018.8621291
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1093/bioinformatics/bty643
https://doi.org/10.1093/bioinformatics/btw073
https://doi.org/10.1093/bioinformatics/btw073
https://doi.org/10.1145/2810103.2813725
https://doi.org/10.1007/978-3-319-42553-5_30
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://knowledge.amia.org/69862-amia-1.4570936/t005-1.4574828/t005-1.4574829/3203516-1.4574836/3202134-1.4574833
https://knowledge.amia.org/69862-amia-1.4570936/t005-1.4574828/t005-1.4574829/3203516-1.4574836/3202134-1.4574833
http://eprint.iacr.org/2015/1153
http://eprint.iacr.org/2015/1153
https://doi.org/10.1109/TCBB.2017.2779498
https://doi.org/10.1109/TCBB.2017.2779498
https://doi.org/10.1093/bioinformatics/btae014
https://doi.org/10.1093/bioinformatics/btae014
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/40/1/btae014/56416850/btae014_supplementary_data.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/40/1/btae014/56416850/btae014_supplementary_data.pdf
https://doi.org/10.1007/978-3-642-23822-2_33
https://doi.org/10.1007/978-3-642-23822-2_33

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Gene Sequence Alignment
	2.2 ABY Framework

	3 Privacy-preserving MSA Scheme
	3.1 Scheme Framework Description
	3.2 Terminology and Notation Description
	3.3 Scheme Flow Description

	4 Segmenting Method For Distributed Computing
	4.1 Subsequence Segmenting
	4.2 Local Common Subsequence Searching
	4.3 Seed Sequence Chaining

	5 Privacy-preserving MSA Method For Aggregate Computing
	5.1 Basic Functions
	5.2 Common Subsequence Searching (CSS)
	5.3 Extension Sequence Scoring (ESS)

	6 Scheme Analysis
	6.1 Security Analysis
	6.2 Communication Overhead Analysis

	7 Experimental Evaluation
	7.1 Time Consuming Analysis
	7.2 Accuracy Rating Analysis
	7.3 Privacy and Utility Analysis
	7.4 Limitation and Discussion

	8 Conclusion
	Acknowledgments
	References

