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Abstract

Insight into user experience and behavior is critical to the success

of large software systems and web services. Gaining such insights,

while preserving user privacy, is a significant challenge. Recent

advancements in multi-party computation have made it practical

to securely compute aggregates over secret shared data. Two such

protocols have emerged as candidates for standardization at the

IETF: Prio (NSDI 2017) for general-purpose statistics; and Poplar

(IEEE S&P 2021) for heavy hitters, where the goal is to compute

the most popular inputs held by users without learning the inputs

themselves. While each of these protocols is well-suited to certain

applications, there remain a number of use cases identified by IETF

for which neither Prio nor Poplar is practical.

We introduce Mastic, a protocol for the following functionality:

each of a large number of clients holds an input (e.g., a URL) and its

corresponding weight (e.g., page load time); for a given candidate

input (or prefix), a small number of non-colluding servers wish

to securely aggregate the weights of clients that hold that input

(or some input with that prefix), without learning the weights or

which client holds which input. This functionality makes two new

classes of applications possible. The first is a natural generalization

of heavy hitters we call weighted heavy-hitters. The second is an

enhancement of Prio-style metrics we call attribute-based metrics in

which aggregates are grouped by hierarchical user attributes (e.g.,

their geographic location or software version). We demonstrate

Mastic’s practicality for these applications with a real-world exam-

ple of each. We also compare our protocol with Prio and Poplar on a

wide area network. Overall, we report over one order of magnitude

performance improvement over Poplar for plain heavy-hitters and

1.5 − 2× improvement over Prio for attribute-based metrics.
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1 Introduction

Critically important to the success of today’s digital technology is

the ability to gain insight into user behavior and experience. Web

browsers, operating systems, and web services collect telemetry to

detect performance issues, bugs, and security vulnerabilities [28];

advertisers track ad impressions to make sense of which ads drive

revenue [24, 34, 38, 43]; and AI models are trained on user data

for specific purposes, like detecting landmarks in photos [3] or

classifying malicious behavior [16].

Enabling such use cases requires collecting privacy-sensitive

measurements from users. However, often these measurements are

not consumed directly, but only in some aggregated form, such as a

summary statistic (e.g., mean, median, or standard deviation) [19],

a probabilistic data structure (e.g., Bloom filter [8] or count-min

sketch [18]), or machine learningmodel (such as linear regression or

gradient descent) [20]. In these situations, to preserve user privacy

it is desirable to collect only what the application needs – i.e., the

aggregate – and avoid gathering raw measurements and computing

over the plaintexts directly.

Many in the tech industry are investing in multi-party compu-

tation (MPC) to help address this problem [3, 17, 28, 30, 36, 42] as

it allows multiple parties to jointly compute a function on private

inputs. Much of this work revolves around a special class of light-

weight and highly parallelizable MPC protocols undergoing stan-

dardization at IETF [5, 27]. Called verifiable, distributed aggregation

functions (VDAFs) [22], these protocols delegate the computation of

the aggregate to a small number of servers – typically two. Measure-

ments are secret shared (i.e., cryptographically split) and uploaded

to the servers such that no one server sees any measurement in

the clear. In addition, the computation is verifiable in the sense

that the servers are guaranteed to compute an aggregate of only

valid measurements.
1
The validity of the measurement depends on

the application: each measurement might be a bit (0 or 1) and the

aggregate result would be the frequency of these binary outcomes;

each measurement might fall within a predetermined integer range

and the aggregate would be the sum of the integers; or each mea-

surement might be a one-hot vector (i.e., everywhere zero except

a single one) and the aggregate would be a histogram computed

from the sum of the vectors.

1
In verifiable distributed aggregation functions (VDAFs), verifiability refers to the

ability of the servers to assert that the result was computed from valid inputs – not to

be confused with the notion of publicly verifiable MPC [6].
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VDAFs are being integrated into a variety of real-world ap-

plications as we speak. One of the keys to the success of these

schemes is their flexibility. The seminal example is Prio, first pro-

posed by Corrigan-Gibbs and Boneh [19] and now a candidate for

standardization [5]. Prio can compute any aggregation function

𝐹 (𝑚1, . . . ,𝑚N) that can be represented as the sum of (some encod-

ing of) the measurements𝑚1, . . . ,𝑚N. Validity is then defined by

an arithmetic circuit evaluated over each encoded measurement

and proven using a zero-knowledge proof on secret shared data [10].

This enables servers to privately validate that their shares of each

𝑚𝑖 sum up to a valid measurement.

While many private aggregation problems can be solved with

Prio, others do not fit cleanly into this rubric. The most important

example for IETF currently is privately computing heavy hitters.

Here each client C𝑖 holds a private input 𝛼 ∈ {0, 1}𝑛 and the servers’
goal is to compute the subset of inputs held by at least T clients

for some target threshold T. For example, if each input 𝛼 represents

a URL, then the T-heavy-hitters would represent the set of URLs

visited by at least T users. Poplar [11] was the first solution for heavy
hitters with enough scalability for use cases of practical interest.

Poplar is based on the function secret sharing [13] paradigm, where

each client produces secret shares of some function 𝑓 such that

the servers can compute secret shares of 𝑓 (𝑥) for a chosen input 𝑥

with minimal (𝒪( |𝑥 |)) communication overhead. In particular, the

authors construct a secret sharing of a function 𝑓𝛼,𝛽 for which

𝑓𝛼,𝛽 (𝑥) = 𝛽 for each prefix 𝑥 of bitstring𝛼 and 𝑓𝛼,𝛽 (𝑥) = 0 otherwise.

Given such a scheme, called an incremental distributed point function

(IDPF), the servers can count how many of the inputs begin with a

given candidate prefix.

Given the practical importance of the heavy hitters, Poplar is also

being considered for standardization at IETF [5]. However, both

Prio and Poplar have some functional and operational limitations

observed by participants in the IETF working group.

First, many applications of Prio require breaking down metrics

by client attributes, such as the HTTP user agent, software version,

geographic location, etc. [26]. For example, a website developer

may wish to track metrics across different web browsers in order to

gain insight into performance differences between them. Moreover,

it is desirable to break down metrics this way without reducing the

anonymity set by revealing attributes to the server in plaintext. We

refer to this feature as attribute-based metrics. Prio can be extended

to support this feature, but the communication overhead would be

too high to be practical in most cases. (See Section 4.2 for details.)

Second, a natural generalization of heavy hitters is to associate

with each input 𝛼 a weight 𝛽 such that the servers compute the

subset of inputs for which (some function of) the sum of the weights

exceeds the threshold T. For example, if the input is a URL as before,

and the weight is the page load time measured by the browser, the

heavy hitters might represent the URLs with the highest average

or median load times. We refer to this problem as weighted heavy

hitters. Poplar solves only a special case of this problem, namely

when 𝛽 ∈ {0, 1}.
Third, a feature of Poplar that limits its deployability is the

procedure bywhich the servers verify that their shares of 𝑓𝛼,𝛽 (𝑥) for
each candidate prefix 𝑥 add up to a valid value. The main drawback

of their approach is that it requires two rounds of communication,

whereas many VDAFs, like Prio, require just one round to complete

verification. Multiple rounds inhibits performance (especially over

wide-area networks) and also requires the servers to keep state,

which adds complexity to the protocol [27]. Ideally, our solution for

(weighted) heavy hitters or (attribute-based) metrics would require

just one round trip over the network.

An important goal of this paper is to advance the state of the art

by devising a protocol that overcomes these limitations, fits well

within the VDAF framework, and is also aligned with IETF’s work

on privacy-preserving measurement.

1.1 Our Contribution

We present Mastic, a new VDAF for the following functionality:

Each client holds a private pair (𝛼, 𝛽), where 𝛼 ∈ {0, 1}𝑛 is called

the input and 𝛽 is the corresponding weight. For a given candi-

date prefix 𝑥 ∈ {0, 1}≤𝑛 , Mastic allows the servers to aggregate

the weights 𝛽 for all clients for which 𝑥 is a prefix of their in-

put 𝛼 . This functionality immediately enables the two classes of

applications described above, namely attribute-based metrics and

weighted heavy-hitters. Mastic also achieves our goal of completing

verification in one round of communication, while also having zero

bandwidth overhead compared to Poplar (for plain heavy-hitters).

Our contributions are summarized as follows:

(1) We introduce Mastic (Section 3), a flexible protocol oriented

toward real-world use cases and operational considerations,

which elegantly adopts two primitives from prior work: The

first is the Verifiable IDPF (VIDPF) of Mouris et al. (PETS

2024 [35]), a lightweight extension of IDPF that leads to re-

duced round complexity compared to Poplar. The second

is the zero-knowledge proof system on secret-shared data

of Boneh et al. (CRYPTO 2019 [10]), giving us the flexibil-

ity needed to support our use cases. As we will see, the

novel composition of these primitives enables us to achieve

tasks that were infeasible in prior works. Notably, Mastic’s

simplicity makes it relatively easy to implement and offers

confidence in its security.

(2) We prove Mastic is secure in the same threat model as Poplar.

Specifically, Mastic ensures (i) privacy of the input measure-

ments in the presence of malicious clients and one malicious

server (i.e., in each round the servers learn only the intended

output: a weighted prefix histogram) and (ii) robustness of

the aggregate result in the presence of malicious clients (i.e.,

servers correctly compute aggregate of valid measurements

only). See Section 5.

(3) We implement Mastic and demonstrate its suitability for two

real-life applications of interest to IETF [29], namely Net-

work Error Logging (NEL) [44] and Browser Telemetry [28].

In the first, we propose a privacy-preserving version of NEL,

a tool that provides telemetry crucial for detecting and di-

agnosing connectivity issues between clients and servers

on the internet. In the second, we introduce attribute-based

browser telemetry with improved usability compared to Prio

without sacrificing privacy. We describe these applications in

Section 4 and report our implementation and experimental

evaluation in Section 6.
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Table 1: Comparison of protocols from distributed ZKP and distributed point functions (DPFs).

Protocol
∗

Number of

Servers

Rounds (per level)

for Input Validation

Heavy

Hitters

Attribute-Based

Metrics

Robustness Against Malicious

Clients & a Malicious Server

Prio [19] ≥ 2 1
† ‡

Poplar [11] 2 2

Doplar [22] 2 1

PLASMA [35] 3 1

Mastic (this work) 2 1

∗
All protocols protect the honest clients’ privacy against malicious clients and a malicious server. Additionally, all are robust against malicious clients.

†
Prio could theoretically do heavy hitters but it would incur multiple rounds and leakages, rendering it impractical.

‡
Prio is not able to perform attribute-based metrics but can do a simplified version which we refer to as “plain metrics” (see Section 4.2).

1.2 Related Works

We discuss related works for private heavy hitters and statistics

along with their models and the applications they enable. In Table 1,

we provide a theoretical comparison with works relying on dis-

tributed ZKPs and DPFs, which are most closely related to Mastic.

Private Statistics fromDistributed Point Functions. Poplar [11]

proposed IDPFs to address the problem of heavy hitters by com-

puting the total number of private client inputs that begin with a

given prefix. This incremental property allowed efficient evalua-

tion of strings based on prefixes which was not possible with DPFs

[13]. Poplar’s servers ensure that the client measurements are valid

based on a two-round MPC. PLASMA (PETS 2024 [35]) improved

on IDPFs by proposing the Verifiable IDPF (VIDPF) primitive that

combined IDPFs with the verifiability property of [23]. As a result,

PLASMA relies solely on hashing rather than MPC operations to

assert client measurement validity. PLASMA ensures robustness

when one of the three servers colludes with the malicious clients;

Mastic targets the two-server setting instead. Notably, Mastic can

also be instantiated with three servers, thereby achieving security

in the same threat model as PLASMA. The concurrent work of

Doplar (PETS 2023 [22]) introduced a construction they also call a

“VIDPF”, but the construction is less efficient than that of [35]. Like

Poplar and PLASMA, Doplar only solves the plain heavy hitters

problem. Boneh et al. recently [12] generalized the MPC used in

Poplar to verify richer sets of outputs, thereby making it suitable

for weighted heavy hitters. However, their protocol requires more

rounds of communication than ours.

Private Statistics fromDifferential Privacy.Differential Privacy

(DP)-based techniques [39, 46] have been used to solve the problem

of heavy hitters. Thus, they offer a trade-off between utility and

privacy: to obtain higher data utility, they leak some information

about the client measurements to the server. Other works that focus

on stronger guarantees require at least two non-colluding servers.

The work of Anderson et al. [2] relies on oblivious shuffling

to unlink reports from the clients that generated them, combines

them with artificial data to add DP noise, and finally computes

approximate statistics over the shuffled data.

A recent line of work beginning with Bell et al. [7] studies the

related problem of aggregating sparse histograms. Like DPF-based

protocols, their protocols also rely on two servers to achieve pri-

vacy. However, their protocols rely on shuffling and homomorphic

encryption rather than secret sharing, leading to a different set of

operational considerations for deployments. Notably, their proto-

cols rely heavily on mechanisms for differential privacy and cannot

be used for exact statistics. On the other hand, DPF-based proto-

cols like Poplar, PLASMA, and Mastic can be composed with such

mechanisms to enhance their privacy properties, albeit with lower

utility than the protocol of Bell et al.

Statistics from (Non-DPF) MPC. The work of [9] utilizes general-

purpose MPC [15, 32] for computing heavy hitters but results in

prohibitively expensive solutions. Asharov et al. [4] propose an

MPC sorting-based protocol for heavy hitters that improves on

Poplar and PLASMA in terms of performance but requires sig-

nificantly higher communication between the servers, which in

many scenarios (especially over WAN) is not practical. Similarly,

Vogue [31] relies on MPC sorting but inherently has high server-

to-server communication. Both of these protocols specifically solve

the plain heavy hitters problem and have not been extended to

weighted heavy hitters. More specifically, the client votes for their

input 𝛼 by sharing 𝛼 with the servers. The servers sort the shared

inputs, and then in the aggregation phase, they consider a point

to be heavy-hitting if there are more than a threshold number of

votes for it. In the weighted version, the clients also have to share

their weights for each point 𝛼 , and the servers need to consider that

during aggregation. The weights have to be sorted based on the

input values, and then the weights corresponding to each unique

input have to be obliviously added (using techniques from [37])

and then compared against the threshold. This would significantly

affect the performance of the final protocol. We would also like to

note that the weighted heavy hitter problem is not related to the

recent notion of weighted MPC introduced in [25].

Heavy Hitters via Threshold Secret Sharing. A recent line of

work beginning with Davidson et al. (CCS 2022 [21]) shows how

to compute heavy hitters using a threshold secret sharing scheme

along with other primitives. The high-level idea is that clients who

generate the same measurement will arrange to upload shares of a 𝑡-

of-𝑛 secret sharing of the measurement: once the aggregation server

has received the desired threshold of shares 𝑡 , it can immediately

recover the underlying measurement. Clients submit their shares

through an anonymizing proxy in order to ensure any recovered

measurements cannot be linked to them. This scheme was later

improved by Li et al. (USENIX 2024 [33]) by reducing the amount of

information leaked to the attacker beyond the 𝑡-heavy-hitters. Their

protocol leaks about the same amount of information as IDPF-based

protocols do.
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Figure 1: IDPF tree for input 𝛼 = 100 and weight 𝛽 = 1.

2 Preliminaries

2.1 Notation

Fix a prime order field F. We use J·K to denote additive secret shares:
if 𝑥 ∈ F𝑚 for some𝑚, then J𝑥K0 and J𝑥K1 denote shares of 𝑥 for

which 𝑥 = J𝑥K0 + J𝑥K1. We use [𝑛] to denote the set of integers

{1, . . . , 𝑛}. We use “:=” for assignment, “
$←− 𝐷” for sampling uni-

formly from a finite set 𝐷 , and “∥” for concatenation of strings. For

bitstring 𝑠 , we denote by 𝑠 |𝑛 the 𝑛-bit prefix of 𝑠 . We use square

brackets to denote vectors, e.g., 𝑣 = [𝑣1, . . . , 𝑣𝑛] is the length-𝑛 vec-

tor with elements 𝑣1, . . . , 𝑣𝑛 . For any two sets 𝐷 and 𝑅, we denote

by AF (𝐷, 𝑅) the set of all functions with domain 𝐷 and range 𝑅.

Our protocol involves a large number of clients and a small number

of servers, which we also call aggregators. Let S0 and S1 denote the
two aggregator servers.

2.2 Distributed Point Functions

Mastic is based on function secret sharing [13]. Secret sharing a

function 𝑓 allows the share holders to locally compute J𝑓 (𝑥)K0,
J𝑓 (𝑥)K1 for a given input 𝑥 without revealing anything about 𝑓 . A

distributed point function (DPF) [13] is a special case in which 𝑓 is

defined as follows. Fix 𝛼, 𝛽 ∈ {0, 1}𝑛 × F𝑚 for some 𝑛,𝑚: we call 𝑓

the point function for 𝛼, 𝛽 if 𝑥 = 𝛼 implies 𝑓 (𝑥) = 𝛽 and 𝑥 ≠ 𝛼

implies 𝑓 (𝑥) = 0
𝑚
. Mastic requires two additional properties.

Incrementality. The incremental DPF (IDPF) of [11] secret shares

an incremental point function, where 𝑓 (𝑝) = 𝛽 for any non-empty

prefix 𝑝 of 𝛼 .2 This allows for richer statistics, including (weighted)

heavy hitters. Each share holder has a share of the prefix tree for

𝛼, 𝛽 . As illustrated in Fig. 1, a prefix tree is a complete binary tree

whose nodes are labeled with output values, which we call weights.

Each path in this tree corresponds to a unique prefix; when we

evaluate the incremental point function 𝑓 at prefix 𝑝 , the output

gives the weight of the node that we reach when we traverse path 𝑝 .

For example, in Fig. 1: 𝑓 (1) = 𝛽 ; 𝑓 (10) = 𝛽 ; and 𝑓 (101) = 0
𝑚
.

Verifiability. In many applications (including Mastic), the DPF

shares are generated by an untrusted client, e.g., in a web browser.

Since the shares reveal nothing about the underlying function, it is

trivial for a malicious client to craft malformed shares that evalu-

ate to something other than an (incremental) point function, thus

breaking the correctness of the application. To detect such attacks,

Boneh et al. [11] use a two-roundMPC protocol between the servers

to verify that for a given level of the prefix tree, at most one of the

outputs has a non-zero value. de Castro and Polychroniadou [23]’s

2
Boneh et al. [11] consider a slightly richer function parameterized by 𝛽1, . . . , 𝛽𝑛
where 𝛽𝑖 is the output for the length-𝑖 prefix of 𝛼 . For our purposes, it is sufficient for

each output to be the same.

verifiable DPF ensures a similar property for the DPF’s output.

However, their approach is based on hashing, is lighter weight, and

requires just one round of communication rather than two.

2.3 Verifiable IDPFs (VIDPFs)

Our starting point for Mastic is the verifiable IDPF (VIDPF) of Mouris

et al. [35]. This scheme adapts the techniques of de Castro and

Polychroniadou to the IDPF of Boneh et al. to allow the servers to

verify the correctness of the computation without revealing the

input or its weight.

For each node it traverses in its share of the prefix tree, each

server computes a short bit string 𝜋𝑝
, where 𝑝 is the path to the

node from the root. We refer to this string as the VIDPF proof (or

simply proof ) for prefix 𝑝 . Each proof is computed from the proof

of its parent node in such a way that, if each server computes the

same proof for 𝑝 , then there is at most one prefix of length |𝑝 | that
evaluates to a non-zero value.

A VIDPF is comprised of the following algorithms:
3

• V .Gen(𝛼, 𝛽) → (pub, key
0
, key

1
): The key generation takes

an input 𝛼 ∈ {0, 1}𝑛 and its weight 𝛽 ∈ F𝑚 and outputs the

keys key
0
and key

1
and a public share pub.

• V .Eval(key𝑏 , pub, 𝑝, st
𝑝′

𝑏
, 𝜋

𝑝′

𝑏
) → (J𝑦𝑝K𝑏 , st𝑝𝑏 , 𝜋

𝑝

𝑏
): The pre-

fix evaluation algorithm takes one of the keys and the public

share and returns a share of a node of the prefix tree. It oper-

ates on a prefix 𝑝 ∈ {0, 1}≤𝑛 and the state st𝑝
′

𝑏
and proof 𝜋

𝑝′

𝑏

for a prefix 𝑝′ of 𝑝 . (Usually 𝑝′ is the parent of 𝑝 , i.e., 𝑝 = 𝑝′ ∥𝑧
for some bit 𝑧.) Its outputs are the state and proof for 𝑝 and

a share of the weight 𝑦𝑝 associated with 𝑝 .4 The proof and

state for the root (𝑝′ = 𝜖) are defined to be 𝜖 .

• V .EvalRoot(key𝑏 , pub) → J𝛽K𝑏 : The root evaluation algo-

rithm takes in one of the keys and the public share and

outputs the aggregator’s share of 𝛽 .

• V .Valid(𝜋𝑝

0
, 𝜋

𝑝

1
) → {true, false}: The validity algorithm takes

in both servers’ proofs and determines whether they hold

keys that represent a valid (i.e., one-hot) prefix tree. For the

specific construction used by Mastic and [35], Valid sim-

ply checks equality of 𝜋
𝑝

0
and 𝜋

𝑝

1
. Therefore, it can be effi-

ciently batch-evaluated over many prefixes using a collision-

resistant hash function.

Since the specific VIDPF scheme we use proves its security in the

random oracle model, we require it to define two setsDom and Rng.
Every security game using the scheme must begin by sampling

a uniformly random function from the set of all functions with

domain Dom and range Rng. It must then provide the adversary

and Gen, Eval, and EvalRoot with oracle access to this function.

In Appendix A we define the properties of VIDPFs we need for

Mastic. Briefly,V should be:

• Correct: when the client and aggregators are honest, the

aggregators correctly evaluate shares of the prefix tree;

3
There are a few differences between our syntax and [35]. The main one is the addition

of the root evaluation algorithm, which Mastic uses (and is implicit in [35]). We also

have a public share, which contains parts of the keys that are sent to both servers

(namely, correction words [35, Fig. 14]). Finally, we explicitly capture in syntax that

validity only holds when both servers derive identical proofs.

4
If 𝑝 is a prefix of 𝛼 , then 𝑦𝑝 = 𝛽 ; otherwise 𝑦𝑝 = 0

𝑚
.
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• Verifiable:when the aggregators are honest, malicious clients

cannot construct a public share and keys (pub, key
0
, key

1
)

for which the evaluation tree contains more than one non-

zero node at any level 𝑘 ∈ [𝑛]; and
• Private: the information revealed to each aggregator reveals

nothing about an honest client’s input.

PLASMA [35] proved the security of their VIDPF construction

based on a pseudorandom generator and XOR-collision resistant

hash function. The XOR-collision resistant hash is instantiated

using a random oracle. Mastic uses the same construction based on

a pseudorandom generator in the random oracle model.

Limitations.Observe that VIDPF already providesmost of what we

need for Mastic: using the same tree traversal and pruning strategy

for PLASMA [35], modified slightly to use sums of weights rather

than prefix counts (see Section 3 for details), we can compute the

subset of inputs whose total weight exceeds the desired threshold.

However, the degree of verifiability it provides is not enough for

most applications, including ours (Section 4). In Section 3.2.2 we

describe in detail how Mastic overcomes this gap.

2.4 Shared ZK Proofs

Zero-knowledge (ZK) proof systems enable a prover to demon-

strate to a verifier that a value has some specific property in zero-

knowledge, i.e., without revealing anything about the value to the

verifier beyond its validity. The specific variant we use, from [10],

operates on secret-shared inputs, and verification is distributed

amongst the share holders. This proof system has been incorpo-

rated into the candidate standard for Prio [5]; here, we devise a

syntax that is suitable for both Prio and Mastic.

A shared ZK proof system defines three algorithms: Prove,Query,
and Decide. In practice, a client splits its input into linear shares

before providing them to Prove, which generates proofs for each

aggregator. We require the existence of an algorithm Extract that
extracts a single input from the shares; this eliminates ambiguity

about the witness. The aggregators then runQuery, exchange their
verification strings, and call Decide to compute a final verdict.

Like VIDPFs, we define the security of shared ZK proofs in the

random oracle model, so we equip the system with two sets Dom
and Rng. Again, at the start of each security game involving shared

ZK, we will sample a uniformly random function H from the set

of all functions with domain Dom and range Rng. Then all three

algorithms and the adversary are given oracle access to H.

• Z.ProveH (J𝑥K0, J𝑥K1) → (𝜋 szk
0

, 𝜋 szk
1

, nonce): Let 𝑥 denote

the private measurement, presumably in the language L ⊆
F𝑚 recognized byZ. The proof generation algorithm takes

linear shares Extract(J𝑥K0, J𝑥K1) = 𝑥 of 𝑥 and outputs a par-

tial proof for each aggregator along with a nonce. This algo-

rithm is run by each client.

• Z.QueryH (𝑣𝑘, nonce, J𝑥K𝑏 , 𝜋 szk
𝑏
) → (st𝑏 , 𝜎𝑏 ): The query gen-

eration algorithm takes in the verification key (𝑣𝑘 ∈ {0, 1}vkl)
shared by the aggregators, the nonce, one of the secret shares

(J𝑥K𝑏 ), and the corresponding partial proof (𝜋 szk
𝑏

). It returns

the aggregator’s state (st𝑏 ) and a partial verifier (𝜎𝑏 ). This

algorithm is run by each aggregator.

• Z.DecideH (𝜎0, 𝜎1, st) → Accept/Reject: Finally, the deci-

sion algorithm takes in the verifier shares and the state (st)

of an aggregator. It outputs Accept if 𝑥 was recognized as a

member of L and Reject otherwise. This algorithm is run

by each aggregator.

We define the security properties required for Z in Appendix B.

Briefly, we requireZ to be: Complete: when the client and aggrega-

tors are honest, the aggregators accept the measurement; Sound:

when the aggregators are honest, invalid measurements are de-

tected with high probability; and Zero-knowledge: when the client

and at least one aggregator is honest, execution of the proof system

reveals nothing about the measurement beyond its validity.

The shared ZK systemZ can be instantiated from a fully linear

proof system [22] similar to the candidate standard for Prio [5]. See

Fig. 9 of Appendix B for details.

3 Weighted Heavy-Hitters and Attribute-Based

Metrics

This section describes the Mastic protocol, built from a VIDPF and

shared ZK proof system. We focus the presentation on weighted

heavy hitters and capture attribute-based metrics as a mode of

operation for Mastic in Section 3.2.3. We begin by describing our

threat and communication model.

3.1 Threat and Communication Model

There are many clients (thousands or millions), each of which

holds a private measurement consisting of an input 𝛼 ∈ {0, 1}𝑛
and its weight 𝛽 . There are two aggregators who are responsible

for gathering the private client measurements and aggregating

them. One of these aggregators plays a special role: we call it the

leader S0 and the other the helper S1. For the most part, the leader

and helper perform the same computation except that the leader

picks a shared verification key that is used for verifying the weights.

No other cryptographic asset is required to execute the protocol

(except those needed to establish secure channels). Fundamentally,

we trust the leader and helper not to collude against client privacy,

and we trust them to honestly enforce integrity of the results, which

is a goal in their own interest.

Each client sends a message to each aggregator that encodes a

secret share of its measurement. Thereafter, the aggregators interact

with one another to verify each pair of shares is a validmeasurement

and to compute the (weighted) heavy hitters. The clients do not

participate in the protocol beyond sending their initial messages.

We make the following assumptions about the adversary. First,

we assume that all malicious parties are active: they may deviate

arbitrarily from the protocol. Second, the set of clients and aggrega-

tors is fixed for the adversary’s attack. Third, multiple instances of

the protocol may be executed simultaneously. Fourth, corruptions

are static: the adversary chooses the set of parties it controls be-

fore beginning its attack. Finally, the adversary may eavesdrop on

any communication channel except for those between each honest

client and each honest aggregator (in practice, a secure channel

will be established between them). We consider two security goals:

Privacy in the presence of malicious clients and a malicious aggre-

gator. Our primary goal is that the attacker learns nothing more

than the aggregates of the honest clients’ measurements over the
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course of a single protocol execution.
5
Particularly, the individual

measurements themselves are not revealed to the adversary. We are

interested in protecting the measurements from a malicious aggre-

gator, but will further allow the attacker to corrupt some fraction

of the clients in order to target the remaining honest participants.

Robustness in the presence of malicious clients.Malicious clients

may attempt to disrupt the protocol by providing malformed inputs.

Our goal is to prevent an attacker from forcing the aggregators to

compute anything other than aggregate measurements submitted

by honest clients and valid partial measurements submitted by

malicious clients. (A valid partial measurement is of the form (𝛼𝑖 , 𝛽𝑖 )
where 𝛽𝑖 is valid, i.e., 𝛽𝑖 ∈ L, and 𝛼𝑖 is a string of length ≤ 𝑛 bits

instead of 𝑛 bits; see Section 5 for details.)

We formalize these goals in Section 5. Note that privacy is not

achievable if both aggregators are corrupted by the adversary. Like-

wise, we achieve robustness only when both aggregators behave

honestly. Robustness can be added in the presence of a corrupt

aggregator at a significant cost: either by adding a third aggregator

(where one out of three can be corrupted) as in PLASMA [35], or us-

ing verifiable computation in the two aggregator setting where the

aggregators prove the correctness of their computation using a zero-

knowledge proof [45]. General-purpose zero-knowledge proofs are

prohibitively expensive for this application [45] since the ZK circuit

(which each aggregator has to prove) would scale linearly with the

number of clients.

3.2 The Mastic Protocol

Mastic is specified in Fig. 2 in terms of a VIDPF V , a shared ZK

proof system Z, and a hash function H with domain Dom and

range Rng. The input to the computation is the set {(𝛼𝑖 , 𝛽𝑖 )}𝑖∈[N]
of client input/weight pairs; the output is the subset of 𝛼𝑖 ’s that

have the highest total weight. Its execution is associated with a

threshold T ≥ 0 and a function order : F𝑚 ↦→ R defining a total

ordering of sums of weights.

3.2.1 Client Report Generation. Each client C𝑖 holds a private mea-

surement that comprises two parts: a bit-string 𝛼𝑖 of length 𝑛

and an associated weight 𝛽𝑖 in some language L ⊆ F𝑚 of valid

weights. The language L depends on the application. For exam-

ple, we might want 𝛽 to be a bit (i.e., L = {0, 1}), an integer

in a public range (L = [R] for some R), or a one-hot vector

(L = {[1, 0, . . . , 0], [0, 1, 0, . . . , 0], . . . , [0, . . . , 0, 1]}). The language
must be agreed upon by the clients and aggregators before report

generation and processing begins.

The client report generation phase is shown in Fig. 2 under

“Client Computation”. During this phase, each client first encodes

its 𝛼𝑖 , 𝛽𝑖 using the VIDPF key generation algorithm that produces a

pair of keys key(𝑖,0) , key(𝑖,1) and a public share pub𝑖 . Next, it gen-
erates a shared ZK proof that asserts to the aggregators that its

private weight 𝛽𝑖 is indeed a member of the language L. To do this,
the client passes the exact secret shares of 𝛽𝑖 to the proof generation

algorithm that the aggregators will receive when evaluating the

5
A single execution of Mastic computes a prefix histogram over the client measure-

ments, and this histogram is released in the clear to the aggregators as the protocol

output. Our privacy definition ensures that the attacker learns only the histogram.

When executing Mastic repeatedly as a subroutine for heavy hitters, histograms at

intermediate steps may be considered additional leakage. This leakage is inherent to

how IDPFs are used by Mastic and related works [11, 35].

VIDPF at the root (i.e., the empty bit-string 𝜖). The client computes

these shares by invoking V .EvalRoot twice, each time with the

inputs of each aggregator. TheZ.Prove algorithm returns the par-

tial proofs 𝜋 szk
(𝑖,0) , 𝜋

szk
(𝑖,1) as well as a nonce to the client. Finally, the

client sends the nonce nonce𝑖 , the public share pub𝑖 , the VIDPF key
key(𝑖,𝑏 ) , and the partial proof 𝜋 szk

(𝑖,𝑏 ) to each aggregator S𝑏 . After
each client sends its messages, it goes offline.

3.2.2 Aggregator Computation. Next, we delve into the main phase

of our protocol in Fig. 2, the “Aggregator Computation”.

Initialization. The aggregatorsS0 andS1 must first agree on a ver-

ification key 𝑣𝑘 ∈ {0, 1}vkl. For the sake of simplicity, we assume the

leader S0 chooses this value unilaterally and sends it to the helper

S1. This is sufficient for security, as long as the aggregators commit

to this value before the protocol begins (see [22, Section 3.2]).
6

They then initialize a set of sets HH≤𝑛 := {HH0,HH1, . . .HH𝑛} as
{𝜖, ∅, . . . , ∅}, where 𝑛 is the size of the clients’ bit-strings. As the

aggregators evaluate all 𝑛 levels, they will start populating HH≤𝑛

with the weighted heavy hitter bit-strings. Finally, the aggregators

initialize a list Reports that contains the candidate reports from the

clients. A report is removed from this set if a validity check fails.

Verifying Client Inputs. The aggregators can now start gener-

ating secret shares of the client reports by evaluating the VIDPF

keys of each client. It is crucial for the aggregators to verify that

the client’s input is well-formed in a privacy-preserving manner.

There are three things to check:Weight Check: J𝛽𝑖K0 + J𝛽𝑖K1 ∈ L,
where J𝛽𝑖K0, J𝛽𝑖K1 are the aggregators’ shares of 𝛽𝑖 ; One-Hotness
Check: evaluating the keys of C𝑖 on different prefixes at the same

level should yield secret shares of a one-hot vector (i.e., only one

pair of secret shares should correspond to 𝛽𝑖 and the rest to zero);

and Path Check: Each node along the 𝛼𝑖 -path of the prefix tree has

weight 𝛽𝑖 . We emphasize that all the aforementioned checks need

to be performed by the aggregators while keeping the measurement

(𝛼𝑖 , 𝛽𝑖 ) private. If any of these checks are omitted, then a malicious

client will be able to trick the aggregators and affect the robustness

of the protocol (i.e., data poisoning attack).

We split these checks into two different categories; the checks

we perform at the root level of the VIDPF tree and the checks we

perform at any other level (including the leaves).

Root-Level Checks. The aggregators need to verify that the private

𝛽𝑖 is indeed a valid weight (i.e., 𝛽𝑖 ∈ L, where L depends on the

type of statistic). This is a two-fold process: First, the aggregators

evaluate each client’s VIDPF keys at the root level of the tree (i.e.,

the empty bit string 𝜖) to get secret shares of 𝛽𝑖 (i.e., J𝛽𝑖K0 and J𝛽𝑖K1).
Each S𝑏 acquires J𝛽𝑖K𝑏 by invokingV .EvalRoot using the client’s

key key(𝑖,𝑏 ) and the public share information pub𝑖 . Next, each ag-

gregator S𝑏 performs a shared ZK query using their retrieved J𝛽𝑖K𝑏
share, the verification key 𝑣𝑘 shared by the aggregators, the nonce

nonce𝑖 associatedwith the client’s report, and the partial proof𝜋 szk
(𝑖,𝑏 )

generated by the client. Each S𝑏 receives a state st𝑖,𝑏 and partial

verifier 𝜎𝑖,𝑏 . The aggregators exchange their partial verifiers and

run the shared ZK decision algorithm to verify if the client’s weight

6
In our robustness model, the verification key is sampled by an honest aggregator. In

the privacy model, the leader may sample the key maliciously, but the honest helper

will enforce that this is done independently of client reports and not retroactively

changed. This technique ensures a tight security bound in the random oracle model

for the shared zero-knowledge component, as shown in [22].
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Client Computation:

Input: Each client C𝑖 for 𝑖 ∈ [N] holds measurement (𝛼𝑖 , 𝛽𝑖 ) ∈ ({0, 1}𝑛, L) composed of an input 𝛼𝑖 and its weight 𝛽𝑖 .

1. C𝑖 runs (pub𝑖 , key(𝑖,0) , key(𝑖,1) ) := V .Gen(𝛼𝑖 , 𝛽𝑖 ) .
2. C𝑖 runs (𝜋 szk

(𝑖,0) , 𝜋
szk
(𝑖,1) , nonce𝑖 ) := Z.Prove(J𝛽𝑖K0, J𝛽𝑖K1 ) where J𝛽𝑖K𝑏 := V .EvalRoot(key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}.

3. C𝑖 sends report share (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk
(𝑖,𝑏) ) to S𝑏 for each 𝑏 ∈ {0, 1}.

Aggregator Computation:

Input: The aggregators S0 and S1 start with a verification key 𝑣𝑘 ∈ {0, 1}vkl established out-of-band. Each sets HH≤𝑛 := {HH0,HH1, . . .HH𝑛 }
as {𝜖, ∅, . . . , ∅}, the initial set of candidate prefixes for each level and sets Reports := [N], the initial set of candidate reports. Finally each

initializes (J𝑦𝜖
𝑖
K𝑏 , st

𝑝

(𝑖,𝑏) , 𝜋
𝜖
(𝑖,𝑏) ) = (⊥, 𝜖, 𝜖 ) for each 𝑖 ∈ [N].

1. For each client 𝑖 ∈ Reports: ⊲ Weight check using Z at the root.

a. Remove 𝑖 from Reports if (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk
(𝑖,𝑏) ) does not follow the correct formatting. ⊲ Input-Formatting check.

b. S𝑏 runs (st𝑏 , 𝜎𝑏 ) := Z.Query(𝑣𝑘, nonce𝑖 , J𝛽𝑖K𝑏 , 𝜋 szk
(𝑖,𝑏) ) , where J𝛽𝑖K𝑏 := V .EvalRoot(key(𝑖,𝑏) , pub𝑖 ) .

c. S𝑏 sends 𝜎𝑏 to S1−𝑏 . If Z.Decide(𝜎0, 𝜎1, st𝑏 ) ≠ Accept, then S𝑏 removes 𝑖 from Reports.
2. For each level 𝑘 ∈ [0, . . . , 𝑛 − 1] and prefix 𝑝 ∈ HH𝑘

:

a. For each candidate report 𝑖 ∈ Reports: ⊲ Path & One-hot Verifiability checks.

i. Each S𝑏 retrieves the state (J𝑦𝑝
𝑖
K𝑏 , st

𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) from memory corresponding to prefix 𝑝 and client C𝑖 .
ii. Each S𝑏 runs as (J𝑦𝛾

𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .Eval(key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and stores the results in

memory.

iii. The aggregators check that the output for prefix 𝑝 is equal to the sum of the outputs on prefixes 𝑝 ∥ 0 and 𝑝 ∥ 1. To do so, each S𝑏
computes ℎ

𝑝

(𝑖,𝑏) := (−1)
𝑏 · (J𝑦𝑝

𝑖
K𝑏 − J𝑦𝑝 ∥0

𝑖
K𝑏 − J𝑦𝑝 ∥1

𝑖
K𝑏 ) . ⊲ Observe that ℎ

𝑝

(𝑖,0) = ℎ
𝑝

(𝑖,1) .

iv. S𝑏 accumulates its local state as 𝑅𝑘
(𝑖,𝑏) := H

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(𝑖,𝑏) , 𝜋
𝑝 ∥0
(𝑖,𝑏) , 𝜋

𝑝 ∥1
(𝑖,𝑏)

) )
. ⊲ This is for all heavy-hitter prefixes.

v. S𝑏 sends 𝑅𝑘
(𝑖,𝑏) to S1−𝑏 . If 𝑅

𝑘
(𝑖,0) ≠ 𝑅𝑘

(𝑖,1) , then S𝑏 removes 𝑖 from Reports. ⊲ One hash for each client.

b. For each 𝑘-bit heavy-hitting prefix 𝑝 ∈ HH𝑘
the aggregators prune on 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as: ⊲ Aggregation & Pruning.

i. Each S𝑏 accumulates Jweight𝛾 K𝑏 := Jweight𝛾 K𝑏 + J𝑦𝛾
𝑖
K𝑏 . ⊲ Each J𝑦𝛾

𝑖
K𝑏 is a vector of field elements F𝑚 .

ii. S0 and S1 recover weight𝛾 := Jweight𝛾 K0 + Jweight𝛾 K1. If order(weight𝛾 ) < T, then prune 𝛾 from the candidate prefix set. Otherwise,

accumulate HH𝑘+1
:= HH𝑘+1 ∪ {𝛾 }. ⊲ order( ·) is decided by the aggregators.

3. Finally, the servers output HH𝑛
as the set of weighted T-heavy-hitters.

ΠMastic for weighted heavy hitters

Figure 2: Protocol ΠMastic for (T, order)-weighted-heavy-hitters built from VIDPFV, shared ZKZ, and hash function H.

is valid. Finally, the aggregators remove from the candidate reports

Reports each client C𝑖 whose proof was not verified successfully.

This check is described in “Step 1.” in “Aggregator Computation”

in Fig. 2 and is performed for every client. Essentially, the shared ZK

proof allows the aggregators to check that they have valid shares

of a weight 𝛽𝑖 ∈ L without reconstructing it. However, so far the

aggregators have only verified that the client has submitted a report

with a valid weight for the root of the VIDPF tree (i.e., the empty

bit string). The next step is to verify that this weight is correctly

propagated down the tree and compute the weighted heavy hitters.

Intermediate Levels and Leaves Checks. The protocol continues it-

eratively by processing one level at a time, starting from the two

children of the root node (𝜖). The goal of the aggregators is to eval-

uate all the client reports on both children of the root node (namely

𝜖 ∥ 0 and 𝜖 ∥ 1), verify for each client that they have valid shares

of these evaluations, aggregate them all together, and finally, only

keep the bit strings whose aggregate weight is above the thresh-

old T. For instance, if 0, 1 are both heavy hitters at level one, then

the aggregators will evaluate the children of both (i.e., 00, 01, 10, and

11) at level two. For each evaluation of C𝑖 ’s report at each of these

prefixes, the aggregators acquire secret shares of weight 𝛽𝑖 if 𝑝 is

a prefix of 𝛼𝑖 and secret shares of zero (0
𝑚
) otherwise. So, if C𝑖 ’s

measurement is 𝛼𝑖 = 111 . . . , then all the evaluations of C𝑖 ’s VIDPF

keys at level two yield shares of zero, except for the evaluation on

𝑝 = 11which returns shares of 𝛽𝑖 . At the next level, the aggregators

need to verify the evaluated path, i.e., the evaluation on 𝑝 = 111

returns shares of the same weight 𝛽𝑖 as in the previous level, while

all other evaluations at level three return secret shares of zero.

The way to do this is surprisingly simple and efficient: check

that the output for 𝑝 is equal to the sum of the outputs of its two

children (i.e., the prefixes 𝑝 ∥ 0 and 𝑝 ∥ 1):

S0 computes ℎ
𝑝

(𝑖,0) := J𝑦𝑝
𝑖
K0 − J𝑦𝑝 ∥0

𝑖
K0 − J𝑦𝑝 ∥1

𝑖
K0; and

S1 computes ℎ
𝑝

(𝑖,1) := −J𝑦
𝑝

𝑖
K1 + J𝑦𝑝 ∥0

𝑖
K1 + J𝑦𝑝 ∥1

𝑖
K1 .

Observe that checking that ℎ
𝑝

(𝑖,0) and ℎ
𝑝

(𝑖,1) are equal can be done by

hashing both and comparing the hashes. This equality guarantees us

that the evaluation of the parent node is the sum of the evaluations

of the children since ℎ
𝑝

(𝑖,0) = ℎ
𝑝

(𝑖,1) then:

J𝑦𝑝
𝑖
K0 − J𝑦𝑝 ∥0

𝑖
K0 − J𝑦𝑝 ∥1

𝑖
K0 = −J𝑦𝑝𝑖 K1 + J𝑦𝑝 ∥0

𝑖
K1 + J𝑦𝑝 ∥1

𝑖
K1

⇔J𝑦𝑝
𝑖
K0 + J𝑦𝑝

𝑖
K1 = J𝑦𝑝 ∥0

𝑖
K0 + J𝑦𝑝 ∥1

𝑖
K0 + J𝑦𝑝 ∥0

𝑖
K1 + J𝑦𝑝 ∥1

𝑖
K1

⇔𝑦
𝑝

𝑖
= 𝑦

𝑝 ∥0
𝑖
+ 𝑦𝑝 ∥1

𝑖
.

However, this path check alone is not sufficient as the weight of

the parent can be split between the children. This check will still

pass, but this is not a valid report since it is not one-hot.
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One-hotness is assured by the verifiability property of VIDPF

(Section 2.3). For each prefix evaluation, the two aggregators also

receive a proof. By combining multiple proofs at the same level,

the aggregators can verify that the evaluations for a specific level

are one-hot. This one-hot check, in conjunction with the path and

weight check, is sufficient to ensure the validity of each client’s

report at a given level.

The aforementioned checks are described in “Step 2.a.” in “Aggre-

gator Computation” in Fig. 2 and are performed for every client. In

more detail, the aggregators evaluate the VIDPF in the two children

𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} of the current path 𝑝 , each receives a secret share

J𝑦𝛾
𝑖
K𝑏 and VIDPF proof 𝜋

𝛾

(𝑖,𝑏 ) . Then, they use the secret shares for

the path verifiability check and generate ℎ
𝑝

(𝑖,𝑏 ) for each prefix 𝑝 . As

there are usually multiple candidate prefixes at each, we batch all

the checks for all the prefixes per client: the aggregators hash all

ℎ
𝑝

(𝑖,𝑏 ) , 𝜋
𝑝 ∥0
(𝑖,𝑏 ) , 𝜋

𝑝 ∥1
(𝑖,𝑏 ) for all 𝑝 ∈ HH

𝑘
into 𝑅𝑘(𝑖,𝑏 ) . Finally, the aggrega-

tors exchange 𝑅𝑘(𝑖,𝑏 ) for each client C𝑖 and check that 𝑅𝑘(𝑖,0) = 𝑅𝑘(𝑖,1) .

If they are not equal, then the aggregators remove 𝑖 from the set of

candidate reports Reports as either the path or the one-hot check

has failed. The aggregators exchange as many hashes as the total

clients, but this can be improved as described in Section 3.2.4.

Aggregation and Pruning.After the “Verifying Client Inputs” step

is done, the two aggregators have removed all malformed reports for

the root level as well as for the current level (e.g., level 𝑘). The next

step is to aggregate all the client reports together and compute the

heavy hitter prefixes HH𝑘
of length 𝑘 . This step is shown in “Step

2.b.” in “Aggregator Computation” in Fig. 2. Each S𝑏 accumulates

all secret shares J𝑦𝛾
𝑖
K𝑏 for prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} into Jweight𝛾 K𝑏 .

Then, both aggregators recover weight𝛾 and decide to keep (or

prune) the prefix 𝛾 based on whether or not the output of a function

order(·) is greater than a threshold T. Note that each weight 𝛽𝑖
is a vector of field elements (𝛽𝑖 ∈ F𝑚 as defined in Section 2.3).

Finally, the aggregators prune all prefixes with order less than T
and continue to the next level.

3.2.3 Modes of Operation. Mastic is designed to support a variety

of secure aggregation tasks. These can be categorized into three

modes of operation.

WeightedHeavyHitters.Mastic is designed primarily to solve the

weighted heavy hitters problem. In this problem, each measurement

is a pair (𝛼, 𝛽) ∈ {0, 1}𝑛×L and the output is the subset of inputs for

which order(weight) ≥ T, where weight is the sum of the weights

and L ⊆ F𝑚 , order : F𝑚 ↦→ R, and T ∈ R are determined by

the application. We provide an example of such an application in

Section 4.1.

Plain Heavy Hitters. The plain heavy hitters problem is a special

case of weighted heavy hitters where each𝑚 = 1, L = {[0], [1]},
and order(·) is the identity function. In this case, Mastic reduces to

a two-aggregator variant of PLASMA.

Attribute-Based Metrics.Mastic admits an enhanced variant of

general-purpose metrics (à la Prio [5]) in which aggregates are

broken down by client attributes. Just as with weighted heavy

hitters, each measurement consists of a pair (𝛼, 𝛽) ∈ {0, 1}𝑛 × L,
where we call 𝛼 the client’s attribute and 𝛽 the client’s value. The

aggregators evaluate the reports on a set of attributes of interest

[𝑥1, . . . , 𝑥𝐴]. The result is the aggregate (i.e., total of the values)

of reports that share the same attribute. We give an example in

Section 4.2.

Mastic in this mode of operation is essentially a subset of the tree

traversal algorithm in Fig. 2. The main difference is that, instead

of using the weights to decide which paths to traverse, the aggre-

gators decide in advance which leaves they want to evaluate (i.e.,

the attributes) and traverse the path to each of these leaves. The

shared ZK proof is checked at the root. The VIDPF proof, state, and

path checks are all computed as usual, except they only exchange

the 𝑅𝑘(𝑖,𝑏 ) -values at the last level of the tree. (The shared ZK partial

proofs are exchanged in the same flow.) Note that, in order to com-

pute the path checks, it is also necessary to evaluate the sibling of

each node traversed along a path to a leaf.

3.2.4 Optimizations. A few techniques can be used to reduce the

concrete communication cost of Mastic.

Batched Path and One-Hot Checks. In the “Client Input Verifi-

cation” of Section 3.2.2, during the intermediate levels (say 𝑘) and

leaves verification, the aggregators need to exchange (up to)
7 N

hashes (i.e., 𝑅𝑘(𝑖,𝑏 ) for 𝑖 ∈ [N]) to verify the inputs of N clients. We

adopt a batching optimization based on Merkle trees proposed by

PLASMA [35] to reduce this number and allow the aggregators to

verify N clients in a batch. Each S𝑏 creates a Merkle tree from the

N hashes and sends the Merkle tree root to the other aggregator. If

they match, then we know that the one-hot and path checks passed

for all clients. If the roots are different, then the aggregators repeat

the same process for the next level until they traverse down the

tree and remove the malicious clients.

Batched Weight Checks. In concurrent work (IEEE S&P 2024

[40]), it was shown how to transform the ZK proof system on

secret-shared data of Boneh et al. [10]. The same transformation

could be applied to shared ZK during the first round of aggregation.

We remark that, as this work is concurrent with our own, we did

not evaluate this optimization in our implementation (Section 6).

MinimizingCommunication forWeightChecks. In plain heavy

hitters mode, the shared ZK evaluation can be foregone completely

in favor of the simpler, 𝛽 = 1 check of PLASMA. This decreases

the size of the reports sent from clients to aggregators (shared ZK

partial proofs are omitted) as well as the size of the messages sent

between the aggregators (shared ZK partial verifiers are omitted

from the root checks).

The size of the shared ZK partial proofs used in our construction

ofZ is 𝒪(𝑚) in general. With standard PRG-based secret sharing

techniques, we can ensure the concrete communication cost of

the Z partial proofs is small. (The helper’s partial proof can be

represented by a PRG seed; see [5, Section 7] for details.)

4 Applications

This section describes two key applications that motivate Mastic.

Bothwere described in discussions in and around theworking group

at the IETF developing standards for secure aggregation [29]. In fact,

Mastic is designed to overcome limitations of existing protocols

already being considered [5]: Poplar [11] and Prio [19].

7
Note that the number of hashes here may be less than N as some reports may have

been removed at a previous level of the tree.
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Poplar (and PLASMA [35]) are designed specifically to solve the

plain (i.e., non-weighted) heavy hitters problem. There is a plethora

of applications for which this limited functionality falls short, one

of which we describe in detail below (Section 4.1). Our primary

goal for Mastic is to provide a replacement for Poplar that is more

flexible and therefore useful in a wider variety of applications.

Another goal is to extend Prio with a feature often requested at

the IETF [26, 41]: the ability to group Prio-style metrics by client

attributes. For example, when aggregating a histogram, we may

want to split the results into a separate histogram for clients grouped

by some property, like their geographical location. We describe a

motivating application in Section 4.2.

Prio can be extended to support such functionality: instead of

aggregating a length-𝑚 histogram, we would aggregate a length-

(𝑚 ·𝐴) histogram comprised of𝐴 length𝑚 histograms, one for each

of the 𝐴 attributes of interest. However, this would result in 𝒪(𝐴)
overhead in communication, which is impractical in most situations.

Mastic, on the other hand, provides the same functionality, but with

only 𝒪(𝑛) overhead, where 𝑛 is the length in bits of each attribute.

4.1 Network Error Logging

Network Error Logging (NEL) [44] is a mechanism used by web

browsers to report errors that occur while attempting to establish a

connection to a server. Some of these errors are visible to the server,

but not all: failures in DNS, TCP, TLS, and HTTP can occur without

the server having any visibility into the issue. A small number of

connection errors is expected, even under normal operating condi-

tions; but a sudden increase in errors may be an indication of an

outage, or a configuration issue impacting millions of users. With-

out a reporting mechanism like NEL, these events would manifest

in the server’s telemetry merely as a drop in overall traffic.

NEL is particularly important for content delivery networks,

such as Akamai, AWS, or Cloudflare, that handle HTTP traffic for

a large number of websites (typically millions). A content delivery

network acts as a reverse proxy between clients and origin servers

that provides a layer of caching and security services.

Reports are comprised of the URL the client attempted to nav-

igate to (e.g., https://example.com), the type of error that oc-

curred, and metadata related to the attempt, such as the time that

elapsed between when the connection attempt began and when the

error was observed (e.g., [44, Section 7]). Clients may also report

successful connection attempts to give the server a sense of the

error rate. The exact client behavior is determined by the reporting

policy specified by the server (see [44, Section 5.1]).

NEL data is privacy-sensitive for two reasons. First, it exposes

information that the server would not otherwise have access to,

which can be abused to probe the client’s network configuration

as described in [44, Section 9]. Second, for operational reasons, the

reporting endpoint may be organizationally separated from the

server (i.e., run on different cloud infrastructures), leading to an

increased risk of the client’s browsing history being exposed (e.g.,

in a data breach).

Initial experiments with Poplar for this use case were reported on

the IETF working group mailing list [1]. They found that NEL was

too latency-sensitive for Poplar to be useful, as there is a need for

real-time detection of errors and impacted origins. In this section,

we show how to apply Mastic to help overcome this challenge.

Private NEL with Mastic.We consider here a simplified version

of NEL (similar to [1]) where each client reports a tuple (dom, err)
consisting of a domain name dom (e.g., example.com) and a value

err that represents an error (for instance, dns.unreachable) or an
indication that no error occurred (e.g., ok). Notably, this can be

easily extended in Mastic to represent more elaborate metrics. e.g.,

where each weight includes the time it took each browser to report

the error (and the aggregate is the average error reporting time),

user agent (browser type and version), etc. However, our main goal

is to understand 1) the distribution of errors and 2) which domains

are impacted.

We expect there to be a large number of distinct domain names

(millions in the case of content delivery networks) and only a small

number of error variants (the NEL spec [44] defines 30 variants).

The following Mastic parameters are suitable for this application.

Inputs: Each 𝛼 encodes the domain dom truncated to 𝑛 = 256

bits, which is sufficient to represent most of the domains on the

internet [11, 35]. Shorter domains are padded with 0s.

Weights: Each weight 𝛽 represents the error variant dom. To com-

pute the distribution of errors, we encode each error variant as a

distinct bucket of a histogram so that [1, 0, 0, . . .] represents ok,
[0, 1, 0, . . .] represents dns.unreachable, [0, 0, 1, . . .] represents
dns.name_not_resolved, and so on. There are 30 such variants

(see [44, Section 6]), so the language L of weights is exactly the set

of length-30 vectors over F containing all 0s except for a single 1.

Ordering: Our order(·) function computes the ratio of reports

with err ≠ ok to reports with err = ok. The latter is simply the

first bucket of the aggregated histogram; the former is the sum of

the remaining 29 buckets. Note that our ordering of aggregated

weights considers the error rate rather than the raw error count.

This ensures that the signal for less popular domains is not swamped

by the noise generated by popular sites (network issues may impact

some domains but not others). Another benefit is that, under normal

operating conditions, there will be a small number of heavy-hitting

domains, which means Mastic will run very efficiently. During an

incident, there will be more heavy hitters, which means it will take

longer to compute the set of impacted domains. However, we get

the errors immediately at the root of the prefix tree, which is the

most important information needed to begin remediation. As more

levels are evaluated, we get more detailed errors.

4.2 Attribute-Based Browser Telemetry

Web browsers, like Chrome, Firefox, or Safari, collect telemetry

generated by users as they surf the web to gain insights into trends

that guide product decisions. In many cases, Prio can be used to

privately aggregate this telemetry. However, this comes at the cost

of flexibility.

For example, Mozilla is using Prio [28] to collect page load met-

rics from Firefox for a list of known popular sites (e.g., google.com).
The purpose of these metrics is to detect if changes to these sites

cause regressions that might be correlated with an increased av-

erage load time or error rate. A subtle, but important requirement

for this system is the ability to break down the metrics by client
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attributes. The most crucial attributes are 1) the software version,

and 2) the information about the client’s location.

Meeting this requirement by increasing the size of the histogram

leads to intolerable communication overhead. An alternative is to

have each client upload this information in the clear alongside

its Prio report so that the reports can be grouped by version and

location. The downside of this approach is that it significantly

reduces the anonymity set of each user since they are only mixed

with their attribute group rather than the entire population.

Private Browser Telemetry with Mastic. Mastic provides a sim-

ple solution to this problem. For the sake of presentation, we con-

sider a simplified version of Mozilla’s use case (the same approach

can be applied to any aggregation task for which Prio is suitable).

Each client reports a tuple (ver, loc, site, time) where: ver is a string
representing the client’s software version (e.g., Firefox/122.0);
loc is a string encoding its country code (e.g., GR, US, IN, etc.); site is
one of a fixed set of sites (e.g., google.com, wikipedia.org, etc.);
and time is the load time of the site in seconds. The version and

location are included in the Mastic input; the site and load time

are encoded by the corresponding weight. Notably, this is just one

example of what Mastic can do; the same idea can be applied to

other types of metrics.

Compared to the private NEL application in Section 4.1, the

number of possible inputs here is relatively small: there are fewer

than 200 country codes and a handful of browser versions in wide

use at any given time. This means the aggregators can enumerate

a set of inputs of interest and evaluate them immediately. Consider

the following parameters for Mastic, in its attribute-based metrics

mode of operation (Section 3.2.3):

Attributes: Two-letter country codes can easily be encoded in 2

bytes. Likewise, the number of distinct browser versions is easily

less than 2
16
, so 2 bytes are sufficient. Therefore, each 𝛼 can be

encoded with just 𝑛 = 32 bits.

Values: Similar to private NEL, each weight 𝛽 is a 0-vector except

for a single 1 representing a bucket in a histogram. We represent

(site, time) as a histogram bucket as follows. First, we quantize time
(in seconds) into one of four buckets: [0, 0.1), [0.1, 1), [1, 5), and
[5,∞). Let 𝑡 ∈ [4] denote the time bucket for time. Next, suppose
we wish to track metrics for 25 sites. Let 𝑠 ∈ [25] denote the index
of site in this list. Then the index of 1 in 𝛽 is simply 𝑡 · 𝑠 such that

|𝛽 | =𝑚 = 4 · 25 = 100.

5 Security Analysis of Mastic

In this section, we present our security analysis of ΠMastic (Fig. 2).

Following [19, 22], we consider privacy and robustness separately.

5.1 Privacy: Malicious Clients and Aggregator

To define privacy, we first consider what information is protected

and what is leaked. The Mastic protocol is designed to reveal the

sum of the weights for every valid report whose point 𝛼 is prefixed

by the query 𝑝 of interest to the aggregators. We require that even

if one of the two aggregators is malicious, neither aggregator learns

more than this sum, even if it knows something else about the

individual client measurements.

We capture this property in a simulation-based model, presented

in Figs. 10 and 11 found in Appendix C. Essentially, we ask for

the existence of a stateful algorithm Sim that can interact with a

malicious aggregator exactly as an honest aggregator and clients

would. This simulator should be indistinguishable from the real

protocol operations, even if the adversary knows all honest clients’

measurements, and the simulator knows only the aggregate results.

When one of the aggregators is fully malicious, Mastic can be

used in a variety of ways that do not conform to the weighted

heavy-hitters application, so we consider privacy over all modes of

operation in Section 3.2.3. This means that a malicious aggregator

can ask for aggregate results across any set of client reports it

desires without violating our privacy notion. Consequently, we

do not protect against inference or Sybil attacks and leave the

according defenses up to higher-level systems.

We define two games, Gpriv-real
Mastic (c.f. Fig 10), and Gpriv-ideal

Sim (c.f.

Fig 11). Each of these games initially requests a verification key 𝑣𝑘

and the corrupt aggregator index 𝑏 from the adversary A, then

presents an interface of six oracles capturing all the interactions

of an honest aggregator: with honest clients, corrupt clients, and

the malicious aggregator. The adversary may interact with these

oracles at will; when it halts, it must output a bit denoting whether

it believes the interface is real or simulated.

Informally, the game Gpriv-real
Mastic presents the adversary with a view

of the real Mastic protocol, and Gpriv-ideal
Sim presents a simulated view

that doesn’t depend on the value of individual client measurements.

Our model is actually slightly stronger, in that we give the adversary

a little more information than it would learn from a real Mastic

interaction. This is because in Mastic, aggregators process many

prefixes simultaneously for each report, and they verify one-hot

and path verifiability proofs in batches that are hashed together.

However, since Mastic doesn’t place any restrictions on the size of

these batches or whether they overlap, we let the model capture

only the worst-case scenario and have aggregators process prefixes

individually and return all proofs without hashing. It should be

clear that any information that is leaked by the batched proofs will

also be leaked by the inputs to the hash function, so this strictly

strengthens the security definition.

We define the advantage Adv
priv
Mastic,Sim (A) of A against the pri-

vacy of Mastic with respect to simulator Sim as:��� Pr[Gpriv-real
Mastic (A) ⇒ 1] − Pr[Gpriv-ideal

Sim (A) ⇒ 1]
���.

Informally, we say that Mastic is private if there is a PPT simula-

tor for which all PPT adversaries get negligible advantage in the

security parameter.

Let AdvprivZ,Sim
SZK

(·) denote the advantage of an adversary in at-

tacking the privacy ofZ with respect to simulator SimSZK (we de-

fine this function precisely in Appendix B). Likewise, let AdvprivV (·)
denote the advantage of an adversary in attacking the privacy of

V (defined in Appendix A). We claim the following theorem and

prove it via a full pseudocode specification of the simulator and a

series of game hops in Appendix C.

Theorem 1. For any simulator SimSZK, there exists a simulator

Sim such that for any adversary A, there exist Z-attacker B and

V-attacker D such that

AdvprivMastic,Sim (A) ≤ AdvprivZ,Sim
SZK

(B) + 𝑞 · AdvprivV (D) ,
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where 𝑞 is the number of queries made to the “Honest Client Com-

putation” oracle, and the runtime of D is about that of an honest

aggregator in the Mastic protocol, and the runtime of B is about

that of an honest aggregator plus the time to run SimSZK once per

interaction with the honest aggregator.

Proof sketch. For each honest client, our simulator generates one

false input share to pass on to the adversary. These false input

shares consist of a VIDPF key for a random measurement and a

seemingly valid proof generated by the zero-knowledge simulator

for the SZK proof system without knowledge of the corresponding

input. It deletes the honest aggregator’s key immediately, so VIDPF

privacy guarantees that the adversary cannot detect that the single

remaining key corresponds to an incorrect measurement.

When the adversary asks the simulator in its role as honest ag-

gregator to produce an SZK verifier share or decision for an honest

client, the simulated aggregator has no input share to query. In-

stead, we refer the request to the SZK simulator’sQuery andDecide
interfaces, which provide the required values. The final component

that the simulator must produce is the honest aggregator’s share of

the path verifier checks. For malicious reports, the simulator simply

runs the honest query algorithm on the share it is provided. For

honest reports, recall that the simulator generates the adversary’s

input share, and can thus perform the path verifier checks on behalf

of the adversary. Since all honest reports are well-formed, the mali-

cious and honest path verifier check shares will sum to zero, so the

simulator negates the adversary’s checks for a perfect simulation.

The reduction, therefore, has two components: one reduction to

VIDPF privacy for each false input share, and a reduction to SZK

privacy capturing the substitution of the SZK simulator for a real

prover. The simulation of the path-verifier checks is always correct

and indistinguishable, so it does not factor into the theorem bound.

5.2 Robustness: Malicious Clients

Next, we focus on the robustness guarantees provided by Mas-

tic against malicious clients. To argue robustness we assume the

aggregators follow the Mastic protocol steps correctly.

We capture this property in a simulation-based model [14]. The

adversary A initially corrupts a set Reports′ of clients. In the real-

world game Grob-real
Mastic (Fig. 18 in Appendix D), the parties run the

Mastic protocol using their input measurements. Both the honest

and corrupt clients provide their report shares to the aggregators,

who compute the output (set of heavy-hitter strings and their chil-

dren, and also the weights of the heavy-hitting strings and their

children) and return it to Grob-real
Mastic . The game forwards this to A.

We also define a corresponding ideal-world game, Grob-ideal
Sim,FwHH

(Fig. 18). In this game, the corrupt clients (controlled by A) par-

ticipate in the same way as in the real world, but with a pair of

simulated aggregators. This simulation is performed by a PPT algo-

rithm called Sim (Fig. 19). The simulator also has access to an ideal

functionality FwHH (Fig. 16) for weighted heavy-hitters. The simu-

lator obtains the report shares of the corrupt clients, extracts the

input measurements (𝛼 ′𝑖 , 𝛽 ′𝑖 ) from those shares, and invokes FwHH
(on behalf of the corrupt clients) with the extracted measurements.

Upon obtaining the client measurements from both honest and

corrupt clients, FwHH checks the measurements and then computes

the output. For the consistency check, FwHH discards the measure-

ments if they are not correctly formatted, i.e., (𝛼𝑖 , 𝛽𝑖 ) = (⊥,⊥), or
if the weight is not valid, i.e., 𝛽𝑖 ∉ L. The functionality also allows

corrupt clients to submit prefix strings, i.e., 𝛼𝑖 ∈ {0, 1}≤𝑛 . Once the
measurements are validated, the functionality aggregates the vali-

dated measurements by computing the weights and heavy-hitting

set similar to the aggregation phase in Mastic. FwHH computes the

output and this is returned to Grob-ideal
Sim,FwHH

. Finally, the game forwards

this to A.

Define the advantage AdvrobMastic,Sim (A) of A in breaking the

robustness of ΠMastic with respect to simulator Sim as��� Pr[Grob-real
Mastic (A) ⇒ 1] − Pr[Grob-ideal

Sim,FwHH (A) ⇒ 1]
��� .

Informally, we say ΠMastic is robust if there exists a PPT simulator

Sim such that AdvrobMastic,Sim (A) is negligible in the security param-

eter for all PPT adversaries A.

We write Advcoll
H
(·) to denote the probability of an attacker find-

ing a collision against hash function H. We write AdvverifV,𝑘
(·) to

denote the probability of an attacker breaking verifiability ofV at

level 𝑘 ∈ [𝑛] (we define this function in Appendix A). We write

AdvsoundZ (·) for the probability that an attacker breaks the sound-

ness ofZ (Appendix B).

Theorem 2. There exists a simulator Sim such that for all 𝑘 ∈ [𝑛]
and all ΠMastic-robustness attackers A, there exist aZ-soundness at-

tackerB, an algorithmC for findingH-collisions, and aV-verifiability

attacker D such that

AdvrobMastic,Sim (A) ≤ N′ ·
(
AdvsoundZ (B)+

𝑛 · (Advcoll
H
(C) + AdvverifV,𝑘

(D))
)
,

where at most N′ clients are corrupted by A and the run times of

Sim, B, C, and D are upper bounded by the combined run time of

honest aggregators in ΠMastic and the run time of A.

Proof sketch. To argue robustness, the aggregators need to ensure

that the report shares provided by a corrupt client encode a valid

measurement (𝛼𝑖 , 𝛽𝑖 ). This involves checking three things.
• The weight 𝛽𝑖 encoded inside the report shares is valid, i.e.,

𝛽𝑖 ∈ L. This is ensured by the aggregators by evaluating the

V keys at the root layer to obtain 𝛽𝑖 , and then running the

Z to validate 𝛽𝑖 (without reconstructing 𝛽𝑖 ). An adversarial

client who provides an invalid 𝛽𝑖 , i.e., 𝛽𝑖 ∉ L, but passes the
checks ofZ breaks soundness ofZ.

• Next, the aggregators must ensure that the same 𝛽𝑖 value is

propagated across a single path in the evaluation tree (en-

coded inside theV keys). This reduces to verifying that each

level 𝑘(∈ [𝑛]) in the evaluation tree contains only a single

non-zero node. This is ensured by verifying theV proofs for

every node considered (as part of an evaluation path) during

the computation of the heavy-hitter set. Suppose an adver-

sarial client’s report shares encode more than one non-zero

node (as part of two evaluation paths), and those nodes are

also encountered during the heavy-hitter evaluation. If such

a client passes the checks, then we show how to use such an

adversarial report to break the verifiability ofV .

• Lastly, the aggregator nodes must ensure that the non-zero

nodes at each level are along the same path, say 𝑝 . This is
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performed by checking that the output for prefix 𝑝 is equal

to the sum of the output of its children, namely 𝑝 ∥ 0 and
𝑝 ∥ 1. This check is information-theoretic. By combining

the one-hot verifiability and path-verifiability properties,

we provide stronger guarantees where the adversarial input

𝛼𝑖 ∈ {0, 1}≤𝑛 can be extracted from the report shares.

Finally, we optimize the communication by allowing the aggre-

gator nodes to hash the results of the consistency checks for each

client and then match the hash values. So, here we also need to rely

on the collision-resistance of the hash function to ensure that if the

hashes match then the underlying preimages are also equal. We

defer the simulation-based proof to Appendix D.

6 Experimental Evaluation

Our goal in this section is to assess whether Mastic is efficient

enough for the applications described in Section 4.

Setup. We perform experiments on two c5.18xlarge AWS in-

stances, each with 72 vCPUs at 3.60 GHz, 144 GB memory, and 25

Gbps of network bandwidth. All our experiments are over a wide

area network (WAN), with one server in Ohio (us-east-2) and the
other in Oregon (us-west-2). We only focus on WAN as this is

the most common way an MPC protocol will be deployed in the

real world. We measure the runtime from the moment the aggrega-

tors receive all client report shares and start running the protocol.

Mastic is implemented in Rust 1.74 and uses tarpc for asynchro-
nous Remote Procedure Calls (RPC) and rayon for multi-threading.

We conduct client-side experiments using a laptop with an Intel

i7-8650U CPU (1.90 GHz). For heavy hitters (plain and weighted)

we set the T to be 1% of the clients’ bit strings.
8

Target experiments. The goals of our experiments are to: 1) eval-

uate Mastic for weighted heavy-hitters and attribute-based metrics;

2) compare Mastic with related works; and 3) demonstrate the fea-

sibility of Mastic for the applications described in Section 4 – i.e.,

NEL and attribute-based telemetry.

Weighted Heavy Hitters & Attribute-Based Metrics.Mastic is the only

protocol for weighted heavy hitters and we use various weight sizes

𝑚 (namely 5, 10, and 30) for a fixed number of bits 𝑛=256. Note

that there are multiple ways to implement pruning based on the

weights. For consistency with our plain heavy-hitter examples, we

increase𝑚 by one and use the identity function for order(·); i.e., the
last index of the aggregated weight counts the number of reports.

This way, we can use the same threshold as in plain heavy-hitters,

T = 1% ofN. Additionally, we explore how the presence of malicious

clients affects the protocol latency. For plain and attribute-based

metrics, we fix the𝑚 to 100 and vary the number of attributes 𝐴

between 1 (for plain metrics) to 128 and 1024 for attribute-based

metrics. In all these cases, our field size is 128 bits.

Related Works. First, we compare Mastic to Poplar [11], the state

of the art for plain heavy hitters in the two-aggregator setting. For

plain heavy hitters with Mastic, we use𝑚 = 1 and a field size of 64

bits. Poplar’s implementation
9
uses 62-bit fields for intermediate

levels and 256 bits for the leaves.

8
Mastic is open-source at https://github.com/TrustworthyComputing/mastic.

9
https://github.com/henrycg/heavyhitters
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Figure 3: Report generation times (left) and report size (right)

for different values of 𝑛 and𝑚.

Second, we wish to benchmark Mastic’s attribute-based metrics

mode with Prio [19]. Prio can provide a (less flexible) form of this

functionality, as described in Section 4. Concretely, our goal is to

aggregate a histogram of length𝑚 = 100 (as in Section 4.2) for each

of 𝐴 (fixed, in the case of Prio) attributes. We emulate this in Prio

by aggregating a length𝑚 ·𝐴 histogram, where the first𝑚 buckets

correspond to the first attribute, the next 𝑚 buckets correspond

to the next attribute, and so on. We consider various numbers of

attributes, 𝐴 = 1, 128, and 1024. Correspondingly: for Mastic we set

the bit length to 𝑛 = 1, 7, and 10, respectively; and for Prio we set

the input length to 100, 12800, and 102400, respectively. For Prio we

use libprio-rs,10 which implements the candidate standard [5].

We apply the same parallelization techniques across all protocols

(Mastic, Poplar, and Prio) and run them in the same WAN setup.

Applications.Our last goal is to demonstrate the feasibility of Mastic

for NEL and attribute-based browser telemetry. In this case, we use

the exact parameters described in Sections 4.1 and 4.2, respectively.

Client Cost. First, we benchmark the client costs: the time it takes

for a client to generate a report as well as the size of each report

share (the message sent to each aggregator). Both of these costs

vary based on the length of 𝛼 and the size𝑚 of the weight 𝛽 . We

report the combination of three different sizes of 𝛼 (𝑛 = 64, 128,

and 256 bits) with𝑚 = 1 (for plain heavy hitters),𝑚 = 5, 10, and 30

(for weighted heavy hitters).

The client costs are shown in Fig. 3. On the left-hand side, we

show the report generation time; as expected, the larger values of 𝑛

and𝑚 take more time than the smaller variants, but in all cases, the

report generation time is minimal. On the right-hand side of Fig. 3,

we show the report sizes for the different 𝛼 and𝑚 configurations.

The smallest report size (64 bits,𝑚 = 1) is less than 5 KB, while the

biggest key size (256 bits,𝑚 = 30) is less than 200 KB.

Prio is not suitable for weighted heavy hitters and therefore does

not appear in Fig. 3. Instead, we compare the client cost for our

application from Section 4.2: the total size of Mastic report shares

for 𝑛 = 32 and 𝑚 = 100 uploaded by each client is about 53KB,

while Prio for the same purpose with 𝐴 = 1024 attributes needs

about 1.6MB (30× overhead). Prio is also less flexible since the set

of attributes would need to be known to the clients in advance.

Aggregator Cost. Next, we focus on aggregator costs for plain and

weighted heavy hitters. In Fig. 4, we show the aggregator runtime

over WAN for an increasing number of clients, 1k, 10k, 100k, and 1

million, and for 𝑛 = 256 bit strings. For plain heavy hitters (𝑚 = 1),

Mastic outperforms Poplar by almost an order of magnitude. In

10
https://github.com/divviup/libprio-rs
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103 104 105 106
Number of clients (N)

102

Ru
nti

me
 (s

ec
.)

Honest
20% malicious

40% malicious

Figure 5: Mastic plain heavy-hitters with malicious clients.

the same figure, we show Mastic’s aggregator runtime for three

different weight sizes (i.e.,𝑚 =5, 10, and 30). As expected, the bigger

𝑚 values have an impact on the runtime of the protocol; due both

to increased communication and increased computation (i.e., path

verifiability now has to consider𝑚 values). For 10
6
clients, going

from𝑚 = 5 (18 minutes) to𝑚 = 30 (44 minutes) more than doubles

the latency (but still outperforms Poplar).

In Fig. 5, we vary the number of malicious clients for plain heavy

hitters between 20% and 40% of the total number of clients. We

observe that a higher percentage of malicious clients results in

lower latency for Mastic, which is primarily because malicious

clients fail to pass the shared ZK verification so they are eliminated

from the protocol. If the weight check succeeds, but the path or one-

hot check fails, Mastic performs similarly to PLASMA [35]. Note

that Mastic exhibits the same scaling for weighted heavy hitters

as with plain, as the only difference between the two is the size of

the weight. The Poplar paper did not evaluate how it scales in the

presence of malicious clients but we expect a similar trend.

In Fig. 6, we show the aggregator cost for attribute-based metrics

with Mastic versus Prio. With this experiment, we aim to answer

the question: “at what cost can Mastic replace Prio?”. As expected,

for a single attribute (𝐴 = 1) Prio is faster than Mastic after 10
5

clients as it uses 𝑛 = 0. However, as we increase the value of 𝐴, we

observe that Mastic quickly outperforms Prio (about 1.5 − 2× as

fast). Another benefit of Mastic is that the attributes do not need to

be fixed a priori; Mastic can support any number.

Suitability of Mastic for NEL. The NEL application (Section 4.1)

is time-sensitive: the sooner the results are available, the sooner

they can be acted upon to diagnose and resolve the issue that

precipitated the errors. As shown in Fig. 4, for realistic parameters

(𝑛 = 256; 𝑚 = 30; N = 10
6
clients), Mastic takes 44 minutes to

compute the high-error rate domains (i.e., inputs 𝛼) and their error

distributions. The end-to-end latency could be further improved

by issuing parallel RPCs and utilizing all the available network

bandwidth. Still, waiting even 5 minutes for results might be too

long, depending on the conditions. Fortunately, Mastic produces
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Figure 6: Plain (𝐴 = 1) and Attribute-based (𝐴 > 1) metrics
with𝑚 = 100. For Mastic, we use 𝑛 = ⌊log

2
(𝐴 + 1)⌋. For Prio,

the faded-out lines represent extrapolated values as the eval-

uation did not finish after exceeding the available server

memory. Aggregator runtime over WAN for an increasing N.

the errors themselves much faster, immediately after evaluating the

first level of the prefix tree for each report (in just 10.4 seconds in

our experiment). To summarize, Mastic is the first work that enables

such an application; this can be used in a real NEL instantiation as

long as some latency for learning the domains can be tolerated.

Suitability of Mastic for Browser Telemetry. Lastly, we consider the

parameters described in Section 4.2, i.e., 𝑛 = 32,𝑚 = 100 and 200

with a 128-bit field. For a single attribute, the latency for Mastic is

103 and 168 seconds for 1 million clients for𝑚 = 100 and𝑚 = 200,

respectively. Going up to 10 attributes, Mastic takes approximately

9 minutes for𝑚 = 100. Based on this result, we believe it is clear

that Mastic is concretely efficient enough for this application.

7 Concluding Remarks

This work presents Mastic, the first two-server MPC protocol for

general-purpose metrics that supports both weighted heavy-hitters

and aggregation grouped by user attributes. Mastic offers notable

benefits over the previous state-of-the-art Prio and Poplar frame-

works that focused on either plain aggregations or plain heavy

hitters. At its core, our protocol leverages verifiable incremental dis-

tributed point functions along with shared zero-knowledge proofs

to enable privacy and robustness in the presence of malicious clients

and privacy in the presence of a malicious aggregator. Mastic is

efficient for real-life applications, such as network error logging

and attribute-based telemetry, and outperforms Poplar and Prio on

heavy-hitters and attribute-based scenarios, respectively.
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Appendix

A Security Definitions for VIDPF

LetV = (Gen, Eval, EvalRoot,Valid) be a VIDPF as defined in Sec-

tion 2.3. We recall the security definitions forV of [35], adapted to

our refined syntax.

Correctness. For all inputs 𝛼 ∈ {0, 1}𝑛 , all weights 𝛽 ∈ F𝑚 , all 𝑘 ∈
[𝑛], and all 𝑝 ∈ {0, 1}𝑘 , when we let (pub, key

0
, key

1
) := Gen(𝛼, 𝛽)

and (J𝑦𝑝 |𝑖 K𝑏 , st𝑝 |
𝑖

𝑏
, 𝜋

𝑝 |𝑖
𝑏
) := Eval(key𝑏 , pub, 𝑝 |𝑖 , st

𝑝 |𝑖−1
𝑏

, 𝜋
𝑝 |𝑖−1
𝑏
) for all

𝑖 ≤ 𝑘 and 𝑏 ∈ {0, 1}, it holds that Valid(𝜋𝑝

0
, 𝜋

𝑝

1
) and

J𝑦𝑝K0 + J𝑦𝑝K1 =

{
𝛽 if 𝑝 = 𝛼 |𝑘

0
𝑚

otherwise.

Privacy. The information revealed to each aggregator leaks noth-

ing about the underlying measurement. We formalize this via an

indistinguishability game. First, for adversaryA and challenge bit 𝑐 ,

define Gpriv
V,𝑐
(A) as the following experiment:

(1) RunA to get (𝛼0, 𝛽0) ∈ {0, 1}𝑛 ×F𝑚 and corrupt aggregator

index 𝑏 ∈ {0, 1}.
(2) Sample (𝛼1, 𝛽1) uniformly from {0, 1}𝑛 × L.
(3) Run (pub, key

0
, key

1
) := Gen(𝛼𝑐 , 𝛽𝑐 ) and give the public

share and corrupt aggregator’s key (pub, key𝑏 ) to A.

(4) Run A to get its guess of the challenge bit and output it.

The advantage of A in attacking the privacy ofV is

Adv
priv
V (A) :=

��� Pr[Gpriv
V,1
(A) ⇒ 1] − Pr[Gpriv

V,0
(A) ⇒ 1]

���.
Informally, we say that V is private if no PPT adversary gets a

non-negligible advantage in breaking its privacy.

Note that, if the V is correct, then an aggregator learns noth-

ing from its interaction with its peer. This is because both parties

compute the same proof string for each prefix.

Verifiability. No corrupt client can construct (pub, key
0
, key

1
) for

which the portion of the prefix tree traversed by the aggregators

contains more than one non-zero node at any level 𝑘 ∈ [𝑛]. For-
mally, we define the advantage AdvverifV,𝑘

(A) of adversary A in

breaking the verifiability ofV at level 𝑘 as the probability that the

following experiment outputs true:

(1) Run A(1𝑘 ) to get (pub, key
0
, key

1
) and 𝑢, 𝑣 ∈ {0, 1}𝑘 .

(2) Evaluate the prefix tree for (pub, key
0
, key

1
) and 𝑢, 𝑣 . That

is, for all (𝑖, 𝑏) ∈ [𝑘] × {0, 1} let

(J𝑦𝑢 |𝑖 K𝑏 , st𝑢 |
𝑖

𝑏
, 𝜋

𝑢 |𝑖
𝑏
) := Eval(key𝑏 , pub, 𝑢 |𝑖 , st

𝑢 |𝑖−1
𝑏

, 𝜋
𝑢 |𝑖−1
𝑏
)

(J𝑦𝑣 |𝑖 K𝑏 , st𝑣 |
𝑖

𝑏
, 𝜋

𝑣 |𝑖
𝑏
) := Eval(key𝑏 , pub, 𝑣 |𝑖 , st

𝑣 |𝑖−1
𝑏

, 𝜋
𝑣 |𝑖−1
𝑏
)

(3) Output

(
J𝑦𝑢K0 + J𝑦𝑢K1 ≠ 0

𝑚
)
∧
(
J𝑦𝑣K0 + J𝑦𝑣K1 ≠ 0

𝑚
)
∧(

𝜋𝑢
0
= 𝜋𝑢

1

)
∧
(
𝜋 𝑣
0
= 𝜋 𝑣

1

)
∧ (𝑢 ≠ 𝑣).

The adversary wins if the output is true, i.e., it finds two distinct,
equal length paths in the prefix tree for which 1) both nodes are

non-zero and 2) the proofs for path 𝑢 and 𝑣 are valid.We say that

V is 𝜖-verifiable if for all PPT adversaries A and 𝑘 ∈ [𝑛] it holds
that AdvverifV,𝑘

(A) ≤ 𝜖 .
PLASMA [35] proved that their V construction satisfied this

property based on the XOR-collision resistance of the hash function

used in the construction. [23] proved the verifiability property

of their verifiable distributed point function based on the XOR-

collision resistance property of a hash function. The hash function

is modeled as a random oracle to prove XOR-collision resistance.

Mastic requires the same assumption as it uses the same VIDPF

construction.

B Security Definitions for shared ZK

LetZ = (Prove,Query,Decide,Dom,Rng) be a shared ZK scheme

as defined in Section 2.4. In this section, we define the security

properties we require forZ. These are comparable to definitions

from [10, Section 6] but apply to our syntax.

Completeness. We say that Z is complete if for all 𝑏 ∈ {0, 1},
𝑣𝑘 ∈ {0, 1}vkl, H : Dom → Rng, and all J𝑥K0, J𝑥K1 such that

Extract(J𝑥K0, J𝑥K1) ∈ L, it holds that
Pr[DecideH (𝜎0, 𝜎1, st𝑏 ) = 1] = 1 ,

where the state and verifier shares were generated by running

(𝜋 szk
0

, 𝜋 szk
1

, nonce) := ProveH (J𝑥K0, J𝑥K1) then (st𝑏 , 𝜎𝑏 ) := QueryH

(𝑣𝑘, nonce, J𝑥K𝑏 , 𝜋 szk
𝑏
) for 𝑏 ∈ {0, 1}.

Zero-Knowledge. The aggregators should learn nothing about

any honest client’s input while validating it as long as one ag-

gregator is honest. To formalize this, let A be an adversary (the

corrupt aggregator) and let Sim be a simulator with interfaces Init,
Prove, Query, and Decide. We define games Gshared ZK-real

Z (A) and
Gshared ZK-ideal
Sim (A) as shown in Figs. 7 and 8, respectively. In these

games, the adversary may request the honest client to prove the

validity of a shared input 𝑥 , and it may ask the honest aggregator

to run the SZK query or decision algorithms on the input and proof

shares it has received from any honest client. Define the advantage

of A in distinguishing execution ofZ from simulator Sim as

AdvprivZ,Sim (A) :=
��� Pr[Gshared ZK-real

Z (A) ⇒ 1]

− Pr[Gshared ZK-ideal
Sim (A) ⇒ 1]

���.
Informally, we say that Z is zero-knowledge if there exists a PPT

simulator for which no PPT adversary gets a non-negligible distin-

guishing advantage.

Soundness. The proof system is sound if a malicious client cannot

fool honest aggregators into accepting an invalid measurement.

Formally, define the advantage AdvsoundZ (A) of A in breaking the
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Init(𝑣𝑘,𝑏 )
1. H

$←− AF(Dom,Rng)
2. Store 𝑣𝑘 and 𝑏 in memory.

Prove(J𝑥K0, J𝑥K1 )
We require that Extract(J𝑥K0, J𝑥K1 ) ∈ L
1. (nonce, 𝜋 szk

0, 𝜋
szk

1 ) $←− Z.ProveH (J𝑥K0, J𝑥K1 )
2. 𝑇client [nonce] ← J𝑥K1−𝑏 , 𝜋 szk

1−𝑏
3. return (nonce, 𝜋 szk

𝑏 )

Query(nonce)
1. (J𝜎K, st) ← Z.QueryH (𝑣𝑘, 1 − 𝑏, nonce,𝑇client [nonce] )
2. 𝑇sZK [nonce] ← J𝜎K, st
3. return J𝜎K

Decide(nonce, J𝜎K𝑏 )
1. J𝜎K1−𝑏 , st← 𝑇sZK [nonce]
2. return Z.DecideH (J𝜎K0, J𝜎K1, st)

RO(𝑑 )
1. return H(𝑑 )

Gshared ZK-real
Z

Figure 7: Real game for defining zero-knowledge of

shared ZK schemeZ.

Init(𝑣𝑘,𝑏 )
1. Store 𝑣𝑘 and 𝑏 in memory.

Prove(J𝑥K0, J𝑥K1 )
We require that Extract(J𝑥K0, J𝑥K1 ) ∈ L
1. (nonce, 𝜋 szk

𝑏 , st) $←− SimSZK .Prove(st, 𝑏 )
2. return (nonce, 𝜋 szk

𝑏 )

Query(nonce)
1. (J𝜎K, st) ← SimSZK .Query(𝑣𝑘, 1 − 𝑏, nonce, st)
2. return J𝜎K

Decide(nonce, J𝜎K𝑏 )
1. return SimSZK .Decide(J𝜎K𝑏 , 1 − 𝑏, nonce, st)

RO(𝑖, 𝑑 )
1. st, ℎ ← SimSZK .RO(st, 𝑖, 𝑑 )
2. return ℎ

Gshared ZK-ideal
Sim

SZK

Figure 8: Ideal game for defining zero-knowledge for

shared ZK schemeZ.

soundness ofZ as the probability that the following experiment

outputs true:

(1) Run A to get (nonce, J𝑥K0, J𝑥K1, 𝜋 szk
0

, 𝜋 szk
1
).

(2) Sample 𝑣𝑘
$←− {0, 1}vkl.

(3) Run (st𝑏 , J𝜎K𝑏 ) := Query(𝑣𝑘, nonce, J𝑥K𝑏 , J𝜋 szkK𝑏 ) for each
𝑏 ∈ {0, 1}.

(4) Output

(
∃𝑏 Decide(J𝜎K0, J𝜎K1, st𝑏 ) = 1

)
∧

Extract(J𝑥K0, J𝑥K1) ∉ L.

The adversary wins if the output is true, i.e., the measurement is

invalid but the proof verifies. Informally, we say thatZ is 𝜖-sound

if for all PPT A it holds that AdvsoundZ (A) ≤ 𝜖 .

B.1 Constructing Shared ZK from Fully Linear

Proofs

Similar to the candidate standard for Prio [5], the shared ZK system

Z can be instantiated from a fully linear proof (FLP) system [22].

In the remainder, we give the high level idea of the construction.

First, FLPs are designed to provide the same properties as con-

ventional zero-knowledge proof systems (for membership in a finite

language L ⊆ F𝑚); in a addition, they are “fully linear” in the sense

the verifier’s computations over the input and proof is linear. This

allows verification to be distributed amongst multiple verifiers, each

of which holds only a share of the input and proof.

FLP is the core component of the shared ZKproof system; what

remains forZ to specify is 1) secret sharing of the FLP itself and 2)

generation of shared randomness used by the prover and verifiers.

The FLP used in Prio [5, Section 7.3] involves “joint randomness”

used for proof generation and evaluation and “query randomness”

used by the verifiers to check the proof’s correctness: in Prio, the

former is derived from the input shares using an extension of the

Fiat-Shamir heuristic to proofs on secret shared data; the query

randomness is derived by applying a PRF to the nonce generating

by client and using the key 𝑣𝑘 shared by the verifiers. The full

construction is defined in Figure 9.

We refer to [22, Section 4] for concrete security bounds for the

underlying FLP system. Note that their security model for privacy

and robustness does not immediately yield bounds for our setting.

C Proof of Theorem 1 (ΠMastic is Private)

In this section, we prove Theorem 1, which for convenience we

restate here.

Theorem. For any simulator SimSZK, there exists a simulator Sim
such that for any adversary A, there exist Z-attacker B and V-

attacker D such that

AdvprivMastic,Sim (A) ≤ AdvprivZ,Sim
SZK

(B) + 𝑞 · AdvprivV (D) ,

where 𝑞 is the number of queries made to the “Honest Client Com-

putation” oracle, and the runtime of D is about that of an honest

aggregator in the Mastic protocol, and the runtime of B is about

that of an honest aggregator plus the time to run SimSZK once per

interaction with the honest aggregator.

The privacy advantage of A against the mastic protocol is its

advantage in distinguishing between games Gpriv-real
Mastic (c.f. Figure 10)

and Gpriv-ideal
Sim (c.f. Figure 11). We will establish the claim by con-

structing a simulator Sim and adversaries BZ against the zero-

knowledge security of the shared ZK scheme and BV against the

privacy of the VIDPF scheme. Then we transform game Gpriv-ideal
Sim

into game Gpriv-real
Mastic via a series of hybrid transitions and bound the

distinguishing advantage between each pair of hybrids.

First, we define simulator Sim in Figure 12. This simulatormimics

the behavior of an honest aggregator in the Mastic protocol with-

out knowledge of any client’s underlying measurements. Broadly,

the simulator handles two types of client reports: honest clients
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Z.Prove[F,RO] (J𝑥K0, J𝑥K1 )

(1) seed0, seed1, nonce
$←− {0, 1}kl

(2) 𝑥 ← J𝑥K0 + J𝑥K1
(3) for 𝑖 ∈ {0, 1}:

(a) jrpart𝑖 ← RO1 (seed𝑖 ∥ nonce ∥ J𝑥K𝑖 )
(4) jrseed← RO2 (jrpart0 ∥ jrpart1 )
(5) jrand← RO3 (jrseed)
(6) 𝜋FLP

$←− F.Prove(𝑥 ; jrand)
(7) 𝜋1 ← RO4 (pf, seed1 ∥ nonce ∥ J𝑥K1 )
(8) 𝜋0 ← 𝜋FLP − 𝜋1

(9) return (𝜋0, seed0, jrpart1 ), (seed1, jrpart0 )
Z.Query[F,RO] (𝑣𝑘, 𝑖, nonce, J𝑥K𝑖 , 𝜋𝑖 , seed𝑖 , jrpart1−𝑖 )

(1) if 𝑖 = 1 𝜋1 ← RO(seed1 ∥ nonce ∥ J𝑥K1 )
(2) jrpart𝑖 ← RO1 (seed𝑖 ∥ nonce ∥ J𝑥K𝑖 )
(3) jrseed← RO2 (jrpart0 ∥ jrpart1 )
(4) jrand← RO3 (jrseed)
(5) qrand← RO5 (𝑣𝑘, nonce)
(6) 𝜎𝑖

$←− ⟨F.Q(qrand, jrand), J𝑥K𝑖 ∥ 𝜋𝑖 ⟩
(7) st𝑖

$←− jrseed
(8) return (𝜎𝑖 , jrpart𝑖 ), st𝑖

Z.Decide[F,RO] (𝜎0, jrpart0, 𝜎1, jrpart1, st𝑖 )
(1) 𝜎 ← 𝜎0 + 𝜎1
(2) 𝑏 ← F.Decide(𝜎 )
(3) if (𝑏 & [ [RO(jrseed, jrpart

0
∥ jrpart

1
) = st𝑖 ] ] )

(4) Return Accept
(5) else return Reject

Shared ZK Proof from Fully Linear Proof

Figure 9: Construction of a shared Zero Knowledge proof

system from a Fully Linear Proof system F and random

oracles RO1 . . .RO5.

for whom the simulator must generate the malicious aggregator’s

report share, and malicious clients for whom the simulator receives

only its own (maliciously generated) report share. The simulator

processes these two types of reports separately in every oracle.

Let us first discuss maliciously generated client reports. The sim-

ulator receives these reports through the AcceptReport interface,
and it simply stores them with a tag “mal” denoting that the share

is malicious. In all other oracles, whenever the malicious tag is

detected, the simulator honestly runs the Mastic protocol using its

stored report share. Clearly, the behavior of the simulator and of

an honest aggregator are identical for all malicious reports.

For honest client reports, the simulator’s behavior is slightly

more complex. In the GenReport interface, the simulator receives

only an index 𝑖 indicating that a new client report share should

be generated. This report share must contain a nonce, aV public

share and key, and a shared ZK partial proof, all corresponding

to a measurement that the simulator does not know. Instead, the

simulator picks its own measurement (𝛼𝑖 , 𝛽𝑖 ) at random from the

set of all valid measurements, and creates a V public share and

two keys by running the honest key generation algorithm. To hide

the fact that these keys correspond to the wrong measurement,

it immediately discards its own key key
1−𝑏 . It then uses the zero-

knowledge simulator SimSZK to generate a simulated partial proof

and nonce (nonce, 𝜋 szk
𝑏
). Before it returns all these values to the

adversary, it stores them with a tag “honest” indicating that the

client is honest (and, by extension, that the simulator only knows

the malicious aggregator’s report share).

We must also simulate the validation of honest client reports,

despite the lack of an honest report share. For shared ZK validation,

the simulator refers again to the shared ZK zero-knowledge simu-

lator to produce a verifier share and a decision. The remaining two

portions of report validation are equality checks: the honest aggre-

gator must produce a one-hot verifiability proof 𝜋 for every prefix

and level, and a path-verifiability proof ℎ. Although we cannot com-

pute these proofs directly, we know that for an honestly generated

client report, the malicious and honest aggregators should always

derive equal-valued proofs for both one-hot and path verifiability

by the correctness of the VIDPF scheme. The simulator therefore

uses its stored malicious report share to compute the malicious

aggregator’s proofs instead of the honest aggregator’s, knowing

they will be equal.

Formal Proof. The first change we make is to replace, one by

one, the randomly sampled 𝛼𝑖 , 𝛽𝑖 in line 2 of GenReport. Let 𝑞 be

the number of queries A makes to the Honest Client Computa-

tion oracle. We design 𝑞 hybrids, indexed by the integers 𝑗 from

0 to 𝑞. In hybrid HYB𝑗 (c.f. Figure 13), the first 𝑗 queries to the

Honest Client Computation oracle will compute pub, key𝑏 by run-

ning GenReport honestly. In the remaining queries, it will instead

compute (pub, key
0
, key

1
) := V .Gen(𝛼, 𝛽), then discard the key

key
1−𝑏 . HYB0 is clearly identical to Gpriv-ideal

Sim , while HYB𝑞 uses the

honest client measurement to generate keys for every query. The

distinction between HYB𝑗 and HYB𝑗 + 1 is that the ( 𝑗 + 1)th Honest
Client Computation query generates (pub, key𝑏 ) from either the

real measurement (𝛼, 𝛽) or a randomly sampled measurement. Con-

sequently, for each 𝑗 we can build a reduction D that breaks the

privacy ofV with exactly the same probability thatA distinguishes

between HYB𝑗 and HYB𝑗 + 1.
Our reduction D runs the hybrid HYB𝑗 for A. When the sim-

ulated “Honest Client Computation” oracle receives the ( 𝑗 + 1)th
query, it submits the client’s measurement (𝛼, 𝛽) as its own chal-

lenge along with the corrupt aggregator’s index 𝑏. It uses the re-

sponse pub, key𝑏 in the corrupt aggregator’s report share. If the

challenge bit 𝑏 in the V privacy game equals 0, the simulation

of the 𝑗 th hybrid is perfect. Otherwise, D perfectly simulates the

( 𝑗 + 1)th hybrid. We define D to return 1 when A returns 1 and

return 0 otherwise. Then

Adv
priv
V (D) :=

��� Pr[Gpriv
V,1
(D) ⇒ 1] − Pr[Gpriv

V,0
(D) ⇒ 1]

��� ≤��� Pr[A ⇒ 1|HYB𝑗 + 1] − Pr[A ⇒ 1|HYB𝑗 ]
���.

By a union bound over all 𝑗 ∈ [𝑞], the probability of A distin-

guishing between hybrids HYB0 and HYB𝑗 is at most��� Pr[A ⇒ 1|HYB𝑞] − Pr[A ⇒ 1|HYB0]
��� ≤ 𝑞 · AdvprivV (D) .

In our next hybrid, HYB𝑞 + 1(c.f. Figure 14), we stop relying on

the shared ZK simulator SimSZK. We replace all calls to SimSZK with

the corresponding Z scheme operations. We first stop referring

random oracle queries with 𝑗 = 2 to the simulator and instead,

sample a random function H2. Then in GenReport we compute
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At the start of the game, the adversary outputs a key 𝑣𝑘 and the index 𝑏 of the corrupt aggregator and the game samples H1

$←−
AF(V .Dom,V .Rng) , and H2

$←− AF(Z.Dom,Z.Rng) , initializes lists 𝑇client and 𝑇agg, and sets 𝑖 := 0.

Honest Client Computation:

Input: measurement (𝛼, 𝛽 ) ∈ ({0, 1}𝑛, L) .
1. 𝑖 := 𝑖 + 1
2. Generate (nonce, pub, {key𝑐 , 𝜋 szk

𝑐 }𝑐∈{0,1} ) as in Fig. 2.

3. 𝑇client [𝑖 ] := (𝜀, nonce, pub, key1−𝑏 , 𝜋 szk
1−𝑏 )

4. st𝜀(𝑖,1−𝑏) := 𝜋𝜀
(𝑖,1−𝑏) := 𝜀

5. Return (nonce, pub, key𝑏 , 𝜋 szk
𝑏
)

Corrupt Client Computation:

Input: report share (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 )

1. 𝑖 := 𝑖 + 1
2. If 𝑇client [𝑖 ] ≠ ⊥ return ⊥
3. st𝜀(𝑖,1−𝑏) := 𝜋𝜀

(𝑖,1−𝑏) := 𝜀

4. 𝑇client [𝑖 ] := (𝜀, nonce, pub, key1−𝑏 , 𝜋 szk
1−𝑏 )

Aggregation

Input: set Reports of report indices and a prefix 𝑝

1. if 𝑇agg [𝑝 ] ≠ ⊥ then return ⊥
2. else 𝑇agg [𝑝 ] := Reports; JweightK1−𝑏 := 0

3. for 𝑖 in Reports
4. JweightK1−𝑏 := JweightK1−𝑏 + J𝑦𝑝

𝑖
K1−𝑏

5. return JweightK1−𝑏

Random Oracle:

Input: Index 𝑗 and payload 𝑑 . Outputs an independent random

string (or vector)

(1) return H𝑗 (𝑑 )

Honest Aggregator Evaluation:

Input: report index 𝑖 and prefix 𝑝

1. (st, nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 ) :=𝑇client [𝑖 ]

2. if st = 𝜀 then

3. J𝑦𝜀
𝑖
K1−𝑏 := V .EvalRootH1 (key

1−𝑏 , pub)
4. (stszk, 𝜎 ) := Z.QueryH2 (𝑣𝑘, nonce, J𝑦𝜀

𝑖
K1−𝑖 , 𝜋 szk )1−𝑏

5. 𝑇client [𝑖 ] := ( (stszk, 𝜎 ), nonce, pub, key1−𝑏 , 𝜋 szk
1−𝑏 )

6. return 𝜎

7. if (st𝑝(𝑖,1−𝑏) = 𝜀 or J𝑦𝑝
𝑖
K1−𝑏 = 𝜀) and 𝑝 ≠ 𝜀

8. return ⊥
9. for 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1}
10. (J𝑦𝛾

𝑖
K1−𝑏 , st

𝛾

(𝑖,1−𝑏) , 𝜋
𝛾

(𝑖,1−𝑏) ) :=
V .EvalH1 (key

1−𝑏 , pub, 𝛾, st
𝑝

(𝑖,1−𝑏) , 𝜋
𝑝

(𝑖,1−𝑏) )

11. ℎ
𝑝

(𝑖,1−𝑏) := (−1)
1−𝑏 · (J𝑦𝑝

𝑖
K1−𝑏 − J𝑦𝑝 ∥0

𝑖
K1−𝑏 − J𝑦𝑝 ∥1

𝑖
K1−𝑏 )

12. return 𝜋
𝑝

(𝑖,1−𝑏) , 𝜋
𝑝 ∥0
(𝑖,1−𝑏) , 𝜋

𝑝 ∥1
(𝑖,1−𝑏) , ℎ

𝑝

(𝑖,1−𝑏)

Honest Aggregator Validation:

Input: report index 𝑖 and partial shared ZK verifier 𝜎𝑏

1. (st, nonce, pub, key, 𝜋 szk ) :=𝑇client [𝑖 ]
2. if st ∈ {⊥, 𝜀 }
3. return ⊥
4. (stszk, 𝜎1−𝑖 ) := st
5. 𝑇client [𝑖 ] ← (⊥, nonce, pub, key, 𝜋 szk )
6. return Z.Decide(𝜎0, 𝜎1, stszk )

Gpriv-real
Mastic

Figure 10: Real game for defining privacy of ΠMastic.

shares J𝑦𝜖𝑖 K0 and J𝑦𝜖𝑖 K1 of 𝛽 . We can do this by using key𝑏 to compute

J𝑦𝜖𝑖 K𝑏 via EvalRoot, then relying on the completeness ofV and our

knowledge of 𝛽 to find J𝑦𝜖𝑖 K1−𝑏 . Then we callZ.Prove𝐻𝑎𝑠ℎ2
on these

shares to generate the nonce and proofs. We store the shares and

proofs, and in theHonest Aggregator Evaluation oracle, we compute

the verifier share usingZ.QueryH2 (𝑣𝑘, nonce, J𝑦𝜖𝑖 K1−𝑏 , 𝜋 szk
1−𝑏 ).

We then design a reduction B whose advantage in breaking

the zero-knowledge security of Z is exactly the probability that

A distinguishes hybrid HYB𝑞 + 1 from HYB𝑞 . Our reduction runs

HYB𝑞 + 1, with a few changes to the highlighted lines.WhenHYB𝑞 + 1
would queryZ.Prove on the input shares in line 5 of the Honest

Client Computation oracle, it instead calls its own Prove oracle to

get back a nonce and proof. In line 9 of the Honest Aggregator Eval-

uation oracle, it queries Query on the honest client’s nonce to get

back a partial verifier string 𝜎1−𝑏 . Finally, in line 8 of the Honest Ag-

gregator Validation oracle, the reduction queries its Decide oracle

on the nonce and malicious verifier share instead of calling Decide.
Additionally, everywhere HYB𝑞 + 1 would call H2, the reduction

instead forwards the query to its own random oracle. Finally, B
returns 1 if and only if A returns 1 in its simulated hybrid.

If we consider the behavior of the B when it plays Gshared ZK-real
Z ,

notice that like HYB𝑞 + 1, the random oracle implements a ran-

domly sampled function from the correct set, and the Prove,Query,

and Decide oracles runZ on the proper inputs exactly as HYB𝑞 + 1
would. Therefore the probability thatB returns 1 is exactly Pr[A ⇒
1|HYB𝑞 + 1]. Conversely, when B is playing Gshared ZK-ideal

Sim
SZK

, the ran-

dom oracle and the Prove, Query, and Decide forward their in-

puts to SimSZK exactly as HYB𝑞 would, and we have that Pr[B ⇒
1|Gshared ZK-ideal

Sim
SZK

] = Pr[A ⇒ 1|HYB𝑞]. Therefore,��� Pr[A ⇒ 1|HYB𝑞 + 1] − Pr[A ⇒ 1|HYB𝑞]
��� ≤ AdvprivZ,Sim

SZK

(B).

In our next hybrid, HYB𝑞 + 2(c.f. Figure 15), we are now ready to

stop discarding the honest aggregator’s VIDPF key key
1−𝑏 . Instead

of computing the honest input share as 𝛽−V .EvalRootH (key𝑏 , pub),
we start to compute it directly asV .EvalRootH (key

1−𝑏 , pub). These
values are equivalent due to the correctness of the VIDPF, so the

adversary’s view of the Honest Client Computation oracle does not

change between HYB𝑞 + 1 and HYB𝑞 + 2.
The next change is that we also use key

1−𝑏 in the Honest Ag-

gregator Evaluation oracle to generate VIDPF proofs for honest

reports. To enable this change, we now store key
1−𝑏 instead of key𝑏

in st[𝑖] for all honest reports. This means that the output shares

and proofs generated byV .Eval are now produced from the honest

aggregator’s key share instead of the malicious aggregator’s key

share. By V correctness and the definition of Valid as the equal-

ity function, however, the proofs 𝜋
𝑝

𝑖
are equal for every prefix 𝑝
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The simulator Sim is stateful and defines interfaces Init, GenReport,AcceptReport,Query,ValidateSZK, Aggregate, and RO. At the beginning of

the game, the adversary outputs a key 𝑣𝑘 and the index 𝑏 of the corrupt aggregator, and the game sets 𝑖 := 0, initializes list 𝑇client, and runs

Sim.Init(𝑣𝑘,𝑏 ) .

Honest Client Computation:

Input: measurement (𝛼, 𝛽 ) ∈ {0, 1}𝑛 × L
1. 𝑖 := 𝑖 + 1
2. (nonce, pub, key𝑏 , 𝜋 szk

𝑏
) := Sim.GenReport(𝑖 ) .

3. 𝑇client [𝑖 ] := (𝛼, 𝛽 )
4. Return (nonce, pub, key𝑏 , 𝜋 szk

𝑏
)

Corrupt Client Computation:

Input: report share (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 )

1. 𝑖 := 𝑖 + 1
2. Sim.AcceptReport(𝑖, nonce, pub, 𝜋 szk, key)

Random Oracle:

Input: Index 𝑗 and payload 𝑑

1. return Sim.RO( 𝑗, 𝑑 )

Honest Aggregator Evaluation:

Input: report index 𝑖 and prefix 𝑝 .

1. (pf, stSim
SZK
) := Sim.Query(𝑖, 𝑝 )

⊲ Depending on the state, pf may contain a verifier string 𝜎 or a

tuple (𝜋𝑝

(𝑖,1−𝑏) , 𝜋
𝑝 ∥0
(𝑖,1−𝑏) , 𝜋

𝑝 ∥1
(𝑖,1−𝑏) , ℎ

𝑝

(𝑖,1−𝑏) )
2. return pf

Honest Aggregator Validation:

Input: Report index 𝑖 and partial sharedZK verifier string 𝜎

1. return Sim.ValidateSZK(𝑖, 𝜎 )

Aggregation

Input: set Reports of report indices, and a prefix 𝑝 .

1. a := 0

2. for 𝑖 ∈ Reports
3. (𝛼, 𝛽 ) :=𝑇client [𝑖 ]
4. if 𝑝 is a prefix of 𝛼 then a := a + 𝛽 .
5. return Sim.Aggregate(𝑝, 𝑁 , a)

Gpriv-ideal
Sim

Figure 11: Ideal game for defining the privacy of ΠMastic. Let Sim be a simulator.

regardless of which aggregator computes them, so the change in

their derivation is undetectable.

What is left is to consider the path-verifiability check ℎ output

by Sim.Query. ByV correctness, we have that for any 𝑘 ∈ [𝑛] and
any 𝑝 ∈ {0, 1}𝑘 , it holds that J𝑦𝑝

𝑖
K𝑏 = 𝛽 − J𝑦𝑝

𝑖
K1−𝑏 if 𝑝 is a prefix of

𝛼 and J𝑦𝑝
𝑖
K𝑏 = −J𝑦𝑝

𝑖
K1−𝑏 otherwise. Consequently, we have that:

J𝑦𝑝
𝑖
K𝑏−J𝑦𝑝 ∥0𝑖

K𝑏 − J𝑦𝑝 ∥1
𝑖

K𝑏 =

𝛽 − J𝑦𝑝
𝑖
K1−𝑏 − 𝛽 + J𝑦𝑝 ∥0

𝑖
K1−𝑏 + J𝑦𝑝 ∥1

𝑖
K1−𝑏 ,

if 𝑝 is a prefix of 𝛼,

−J𝑦𝑝
𝑖
K1−𝑏 + J𝑦𝑝 ∥0

𝑖
K1−𝑏 + JK𝑦

𝑝 ∥1
𝑖 1−𝑏 ,

otherwise.

When 𝛽 cancels out, we see that:

J𝑦𝑝
𝑖
K𝑏 − J𝑦𝑝 ∥0

𝑖
K𝑏 − J𝑦𝑝 ∥1

𝑖
K𝑏 =

(−1) (J𝑦𝑝
𝑖
K1−𝑏 − J𝑦𝑝 ∥0

𝑖
K1−𝑏 − J𝑦𝑝 ∥1

𝑖
K1−𝑏 ) .

Accordingly, when we switch from key𝑏 to key1−𝑏 in the derivation

ofℎ, wemust alsomultiply it by−1. With this tweak, the behavior of

the Honest Aggregator Evaluation oracle in both hybrids is identical

in the view of the adversary.

Now that we are storing key
1−𝑏 for all oracles, we must change

the Aggregation oracle to maintain the consistency of the results.

For each honest client reports 𝑖 ∈ Reports, in HYB𝑞 + 1 we added
the stored weight 𝛽 to JweightK1−𝑏 when 𝑝 prefixed 𝛼 . Then we sub-

tracted the malicious aggregator’s share J𝑦𝑝
𝑖
K𝑏 from JweightK1−𝑏 .

Since we can no longer compute the malicious aggregator’s share,

in HYB𝑞 + 2 we stop adding 𝛽 and subtracting J𝑦𝑝
𝑖
K1−𝑏 . Instead we

add the honest aggregator’s share J𝑦𝑝
𝑖
K1−𝑏 to JweightK1−𝑏 . The cor-

rectness of V grants that J𝑦𝑝
𝑖
K1−𝑏 = 𝛽 − J𝑦𝑝

𝑖
K𝑏 when 𝑝 prefixes

𝛼 and −J𝑦𝑝
𝑖
K𝑏 otherwise, so the substitution we perform gives an

identical value of JweightK1−𝑏 , and consequently

Pr[A ⇒ 1|HYB𝑞 + 2] = Pr[A ⇒ 1|HYB𝑞 + 1] .

Notice that in HYB𝑞 + 2, we now treat both honest and malicious

client reports identically regardless of the value of the tags (“honest”

and “mal”) in all oracles (exceptGenReport andAcceptReport, since
we must generate the report ourselves in the former). Furthermore,

the values computed and returned by each oracle in HYB𝑞 + 2 are

identical to those returned in Gpriv-real
Mastic , so

Pr[A ⇒ 1|HYB𝑞 + 2] = Pr[A ⇒ 1|Gpriv-real
Mastic ] .

Collecting bounds proves the claim.

D Proof of Theorem 2 (ΠMastic is Robust)

In this section, we focus on the robustness guarantees provided

by Mastic against malicious clients. To argue robustness against

malicious clients, we assume the aggregators follow the Mastic

protocol steps correctly. An adversary that maliciously corrupts

multiple clients may attempt to disrupt the protocol by providing

malformed report shares in Step. 3 of Fig. 2. A report share is con-

sidered to be malformed if 1) a client double-votes using the single

report share, or 2) the report share contains an invalid measure-

ment (𝛼𝑖 , 𝛽𝑖 ) ∉ {0, 1}𝑛 × L. We argue that if the malformed report

share passes the consistency checks and gets incorporated into the

aggregation process by the honest aggregators then the malicious

client breaks the verifiability ofV in the first case, and soundness

ofZ in the second case.
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The simulator Sim is stateful and defines interfaces Init, GenReport, AcceptReport, Query, ValidateSZK, Aggregate, and RO.

Sim.Init(vk, b)
1. st[Z] ← 𝜖

2. H1

$←− AF(V .Dom,V .Rng)
3. Store 𝑣𝑘 , 𝑏, and st as globally available state.

Sim.GenReport(i)
1. if st[𝑖 ] ≠ ⊥ return ⊥
2. 𝛼𝑖 , 𝛽𝑖

$←− {0, 1}𝑛 × L
3. (pub, key

0
, key

1
) := V .Gen(𝛼𝑖 , 𝛽𝑖 )

4. (nonce, 𝜋 szk
𝑏

, st[Z]) := SimSZK .Prove(st[Z, 𝑏 ] )
5. st[V𝜖

𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

6. st[𝑖 ] := (“ honest”, 𝜖, (nonce, pub, key𝑏 , 𝜋 szk
𝑏
) )

7. Return (nonce, pub, key𝑏 , 𝜋 szk
𝑏
)

Sim.AcceptReport(𝑖,nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 )

1. if st[𝑖 ] ≠ ⊥ return ⊥
2. st[V𝜖

𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

3. st[𝑖 ] ← (“mal”, 𝜖, (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 ) )

Sim.ValidateSZK(𝑖, 𝜎𝑏 )
1. hon, status, params := st[𝑖 ]
2. if status ∈ {𝜖,⊥} return ⊥
3. (nonce, pub, key, 𝜋 szk ) := params
4. 𝜎1−𝑏 ← status
5. st[𝑖 ] ← (hon,⊥, params)
6. if hon = “mal”

7. return Z.Decide(𝜎0, 𝜎1, st[Z, 𝑖 ] )
8. return SimSZK .Decide(𝜎𝑏 , 1 − 𝑏, nonce, st[Z])

Sim.RO( 𝑗, 𝑑 )
1. if 𝑗 = 2 then return SimSZK .RO(𝑑 )
2. else return H1 (𝑑 )

Sim.Query(𝑖, 𝑝 )
1. hon, status, params := st[𝑖 ]
2. if (st[V𝑝

𝑖
] = 𝜀 or st[J𝑦𝑝

𝑖
K] = 𝜖) and 𝑝 ≠ 𝜀 return ⊥

3. (nonce, pub, key, 𝜋 szk ) := params
4. if status = 𝜖

5. stJ𝑦𝜖
𝑖
K := V .EvalRootH1 (key, pub)

6. if hon = “mal”

7. (st[Z, 𝑖 ], 𝜎1−𝑏 ) := Z.Query(𝑣𝑘, nonce, J𝑦𝜖
𝑖
K, 𝜋 szk )

8. else

9. (st[Z], 𝜎1−𝑏 ) := SimSZK .Query(𝑣𝑘, 1 − 𝑏, nonce, st[Z])
10. st[𝑖 ] ← (hon, 𝜎1−𝑏 , params)
11. return 𝜎1−𝑏
12. for 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1}
13. (st[J𝑦𝛾

𝑖
K], st[V𝛾

𝑖
], st[𝜋𝛾

𝑖
] ) := V .EvalH1 (pub, key, 𝛾, st[V𝑝

𝑖
], st[𝜋𝑝

𝑖
] )

14. if hon = “mal”

15. ℎ := (−1)1−𝑏 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

16. else

17. ℎ := (−1)𝑏 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

18. return st[𝜋𝑝

𝑖
], st[𝜋𝑝 ∥0

𝑖
], st[𝜋𝑝 ∥1

𝑖
], ℎ

Sim.Aggregate(𝑝, 𝑁 , a)
1. JweightK1−𝑏 := a; 𝑘 := |𝑝 |
2. for 𝑖 ∈ Reports
3. hon, status, params := st[𝑖 ]
4. (nonce, pub, key, 𝜋 szk ) := params

5. if (𝑝 |𝑘−1 = 𝜀 or st[V𝑝 |𝑘−1
𝑖

] ≠ 𝜀)

6. (J𝑦𝑝
𝑖
K, _, _) := V .EvalH1 (key, pub, 𝑝, st[V𝑝 |𝑘−1

𝑖
], st[𝜋𝑝 |𝑘−1

𝑖
] )

7. if hon = “mal”

8. JweightK1−𝑏 := JweightK1−𝑏 + J𝑦𝑝
𝑖
K

9. else

10. JweightK1−𝑏 := JweightK1−𝑏 − J𝑦𝑝
𝑖
K

11. return JweightK1−𝑏

SimSim
SZK
(𝑣𝑘,𝑏 )

Figure 12: Simulator Sim for the proof of Theorem 1. It takes as a parameter a simulator SimSZK for the privacy ofZ.

To argue robustness formally, for each pair of report shares sub-

mitted by a malicious client, the protocol needs to either “extract”

a valid measurement from or detect that it is invalid. Once this

distinction is performed the protocol needs to “compute” the aggre-

gation function over the honest client inputs (𝛼𝑖 , 𝛽𝑖 ) ∈ {0, 1}𝑛 × L
(represented via their report shares) and the valid measurements

submitted by the malicious clients.

We capture this property in a simulation-based model [14], pre-

sented in Fig. 18 (Appendix D). The adversary A initially corrupts

a set Reports′ of clients. In the real-world game Grob-real
Mastic (Fig. 17),

the parties run the Mastic protocol using their input measurements.

Both the honest and corrupt clients provide their report shares

to the aggregators, who compute the output (set of heavy-hitter

strings and their children, and also the weights of the heavy-hitting

strings and their children) and return it to Grob-real
Mastic . The game for-

wards this to A.

We also define a corresponding ideal-world game, Grob-ideal
Sim,FwHH

(Fig. 18). In this game, the corrupt clients (controlled by A) par-

ticipate in the same way as in the real world, but with a pair of

simulated aggregators. This simulation is performed by a PPT algo-

rithm called Sim (Fig. 19). This simulator obtains the report shares

of the corrupt clients, extracts the input measurements (𝛼 ′𝑖 , 𝛽 ′𝑖 ) from
those shares, and invokes FwHH (on behalf of the corrupt clients)

with the extracted measurements.

Upon obtaining the client measurements from both honest and

corrupt clients, FwHH checks the measurements and then computes

the output. For consistency check, FwHH discards the measurements

if they are not correctly formatted, i.e. (𝛼𝑖 , 𝛽𝑖 ) ≠ (⊥,⊥), or if the
weight is not valid, i.e. (𝛼𝑖 , 𝛽𝑖 ) ∉ L. The functionality also allows

corrupt clients to submit prefix strings, i.e. 𝛼𝑖 ∈ {0, 1}≤𝑛 . Once the
measurements are validated, the functionality aggregates the vali-

dated measurements by computing the weights and heavy-hitting

set similar to the aggregation phase in Mastic. This is the Aggrega-

tion step in Fig. 16. FwHH computes the output and this is returned

to Grob-ideal
Sim,FwHH

. The game forwards this to A.

Robustness guarantees that an adversary (who has corrupted an

arbitrary number of clients) cannot distinguish between the real

and ideal world outputs. We define the advantage of an adversary

A against the robustness of Mastic with respect to simulator Sim
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At the beginning of the game, the adversary outputs a key 𝑣𝑘 and the index 𝑏 of the corrupt aggregator, and the game sets 𝑖 := 0, initializes list

𝑇client, and runs Sim.Init(𝑣𝑘,𝑏 ) .
Honest Client Computation:

Input: measurement (𝛼, 𝛽 ) ∈ {0, 1}𝑛 × L
1. 𝑖 := 𝑖 + 1
2. 𝛼𝑖 , 𝛽𝑖

$←− {0, 1}𝑛 × L
3. if 𝑖 > 𝑗 then (pub, key

0
, key

1
) := V .Gen(𝛼𝑖 , 𝛽𝑖 )

4. else (pub, key
0
, key

1
) := V .Gen(𝛼, 𝛽 )

5. (nonce, 𝜋 szk
𝑏

, st[Z]) := SimSZK .Prove(st[Z, 𝑏 ] )
6. st[V𝜖

𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

7. st[𝑖 ] := (“ honest”, 𝜖, (nonce, pub, key𝑏 , 𝜋 szk
𝑏
) )

8. 𝑇client [𝑖 ] := (𝛼, 𝛽 )
9. Return (nonce, pub, key𝑏 , 𝜋 szk

𝑏
)

Corrupt Client Computation:

Input: report share (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 )

1. 𝑖 := 𝑖 + 1
2. st[V𝜖

𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

3. st[𝑖 ] ← (“mal”, 𝜖, (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 ) )

Aggregation

Input: set Reports of report indices, and a prefix 𝑝 .

1. a := 0

2. for 𝑖 ∈ Reports
3. (𝛼, 𝛽 ) :=𝑇client [𝑖 ]
4. if 𝑝 is a prefix of 𝛼 then a := a + 𝛽 .
5. JweightK1−𝑏 := a; 𝑘 := |𝑝 |
6. for 𝑖 ∈ Reports
7. hon, status, params := st[𝑖 ]
8. (nonce, pub, key, 𝜋 szk ) := params

9. if (𝑝 |𝑘−1 = 𝜀 or st[V𝑝 |𝑘−1
𝑖

] ≠ 𝜀)

10. (J𝑦𝑝
𝑖
K, _, _) := V .EvalH1 (key, pub, 𝑝, st[V𝑝 |𝑘−1

𝑖
], st[𝜋𝑝 |𝑘−1

𝑖
] )

11. if hon = “mal”

12. JweightK1−𝑏 := JweightK1−𝑏 + J𝑦𝑝
𝑖
K

13. else

14. JweightK1−𝑏 := JweightK1−𝑏 − J𝑦𝑝
𝑖
K

15. return JweightK1−𝑏

Honest Aggregator Evaluation:

Input: report index 𝑖 and prefix 𝑝 .

1. hon, status, params := st[𝑖 ]
2. if (st[V𝑝

𝑖
] = 𝜀 or st[J𝑦𝑝

𝑖
K] = 𝜖) and 𝑝 ≠ 𝜀 return ⊥

3. (nonce, pub, key, 𝜋 szk ) := params
4. if status = 𝜖

5. stJ𝑦𝜖
𝑖
K := V .EvalRootH1 (key, pub)

6. if hon = “mal”

7. (st[Z, 𝑖 ], 𝜎1−𝑏 ) := Z.QuerySimSZK
.RO (𝑣𝑘, nonce, J𝑦𝜖

𝑖
K, 𝜋 szk )

8. else

9. (st[Z], 𝜎1−𝑏 ) := SimSZK .Query(𝑣𝑘, 1 − 𝑏, nonce, st[Z])
10. st[𝑖 ] ← (hon, 𝜎1−𝑏 , params)
11. return 𝜎1−𝑏
12. for 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1}
13. (st[J𝑦𝛾

𝑖
K], st[V𝛾

𝑖
], st[𝜋𝛾

𝑖
] ) := V .EvalH1 (pub, key, 𝛾, st[V𝑝

𝑖
], st[𝜋𝑝

𝑖
] )

14. if hon = “mal”

15. ℎ := (−1)1−𝑏 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

16. else

17. ℎ := (−1)𝑏 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

18. return st[𝜋𝑝

𝑖
], st[𝜋𝑝 ∥0

𝑖
], st[𝜋𝑝 ∥1

𝑖
], ℎ

Honest Aggregator Validation:

Input: Report index 𝑖 and partial sharedZK verifier string 𝜎

1. hon, status, params := st[𝑖 ]
2. if status ∈ {𝜖,⊥} return ⊥
3. (nonce, pub, key, 𝜋 szk ) := params
4. 𝜎1−𝑏 ← status
5. st[𝑖 ] ← (hon,⊥, params)
6. if hon = “mal”

7. return Z.DecideSimSZK
.RO (𝜎0, 𝜎1, st[Z, 𝑖 ] )

8. return SimSZK .Decide(𝜎𝑏 , 1 − 𝑏, nonce, st[Z])

Random Oracle:

Input: Index 𝑗 and payload 𝑑

1. if 𝑗 = 2 then return SimSZK .RO(𝑑 )
2. else return H1 (𝑑 )

HYB𝑗

Figure 13: Hybrid HYB𝑗 in the proof of Theorem 1 . Changes from Gpriv-ideal
Sim have been highlighted .

by AdvrobMastic,Sim (A) as:��� Pr[Grob-real
Mastic (A) ⇒ 1] − Pr[Grob-ideal

Sim,FwHH (A) ⇒ 1]
���.

Mastic (also PLASMA and Poplar) permits a malicious client to

submit report shares (in Mastic protocol) which are only valid until

level 𝑘 ≤ 𝑛, after which robustness requires the report shares to be

discarded.

Assume the adversary A corrupts N′ = |Reports′ | clients. We

formally introduce the games Grob-real
Mastic and Grob-ideal

Sim,FwHH
for robustness

in Figs. 17 and 18. We prove the robustness of Mastic in this section

by proving that Grob-real
Mastic is indistinguishable from Grob-ideal

Sim,FwHH
by

providing the formal simulator algorithm Sim in Fig. 19.

Proof Sketch. To argue robustness, the aggregators need to ensure

that the report shares provided by a corrupt client encode a valid

measurement (𝛼𝑖 , 𝛽𝑖 ). As described in Section. 3.2.2, this involves

checking three things.

The weight 𝛽𝑖 encoded inside the report shares is valid, i.e. 𝛽𝑖 ∈
L. The aggregators ensure this by evaluating theV keys at the root

layer to obtain 𝛽𝑖 and then running theZ to validate 𝛽𝑖 (without

reconstructing 𝛽𝑖 ). An adversarial client who provides an invalid

𝛽𝑖 , i.e. 𝛽𝑖 ∉ L, but passes the checks ofZ breaks soundness ofZ.

Next, the aggregators must ensure that the same 𝛽𝑖 value is prop-

agated across a single path in the evaluation tree (encoded inside

theV keys). This reduces to verifying that each level 𝑘(∈ [𝑛]) in
the evaluation tree contains only a single non-zero node. This is

ensured by verifying theV proofs for every node considered (as
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At the beginning of the game, the adversary outputs a key 𝑣𝑘 and the index 𝑏 of the corrupt aggregator, and the game sets 𝑖 := 0, initializes list

𝑇client, and runs Sim.Init(𝑣𝑘,𝑏 ) . We also sample H2

$←− AF(Z.Dom,Z.Rng) .

Honest Client Computation:

Input: measurement (𝛼, 𝛽 ) ∈ {0, 1}𝑛 × L
1. 𝑖 := 𝑖 + 1
2. (pub, key

0
, key

1
) := V .Gen(𝛼, 𝛽 )

3. J𝑦𝜖
𝑖
K𝑏 := EvalRoot(pub, key𝑏 )

4. J𝑦𝜖
𝑖
K1−𝑏 := 𝛽 − J𝑦𝜖

𝑖
K𝑏

5. (nonce, 𝜋 szk
0

, 𝜋 szk
1
) := Z.ProveH2 (J𝑦𝜖

𝑖
K0, J𝑦𝜖𝑖 K1 )

6. st[V𝜖
𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

7. st[𝑖 ] := (“ honest”, 𝜖, (nonce, pub, key𝑏 , 𝜋 szk
𝑏
) )

8. 𝑇client [𝑖 ] := (𝛼, 𝛽 )
9. Return (nonce, pub, key𝑏 , 𝜋 szk

𝑏
)

Corrupt Client Computation:

Input: report share (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 )

1. 𝑖 := 𝑖 + 1
2. st[V𝜖

𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

3. st[𝑖 ] ← (“mal”, 𝜖, (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 ) )

Aggregation

Input: set Reports of report indices, and a prefix 𝑝 .

1. a := 0

2. for 𝑖 ∈ Reports
3. (𝛼, 𝛽 ) :=𝑇client [𝑖 ]
4. if 𝑝 is a prefix of 𝛼 then a := a + 𝛽 .
5. JweightK1−𝑏 := a; 𝑘 := |𝑝 |
6. for 𝑖 ∈ Reports
7. hon, status, params := st[𝑖 ]
8. (nonce, pub, key, 𝜋 szk ) := params

9. if (𝑝 |𝑘−1 = 𝜀 or st[V𝑝 |𝑘−1
𝑖

] ≠ 𝜀)

10. (J𝑦𝑝
𝑖
K, _, _) := V .EvalH1 (key, pub, 𝑝, st[V𝑝 |𝑘−1

𝑖
], st[𝜋𝑝 |𝑘−1

𝑖
] )

11. if hon = “mal”

12. JweightK1−𝑏 := JweightK1−𝑏 + J𝑦𝑝
𝑖
K

13. else

14. JweightK1−𝑏 := JweightK1−𝑏 − J𝑦𝑝
𝑖
K

15. return JweightK1−𝑏

Honest Aggregator Evaluation:

Input: report index 𝑖 and prefix 𝑝 .

1. hon, status, params := st[𝑖 ]
2. if (st[V𝑝

𝑖
] = 𝜀 or st[J𝑦𝑝

𝑖
K] = 𝜖) and 𝑝 ≠ 𝜀 return ⊥

3. (nonce, pub, key, 𝜋 szk ) := params
4. if status = 𝜖

5. stJ𝑦𝜖
𝑖
K := V .EvalRootH1 (key, pub)

6. if hon = “mal”

7. (st[Z, 𝑖 ], 𝜎1−𝑏 ) := Z.QueryH2 (𝑣𝑘, nonce, J𝑦𝜖
𝑖
K, 𝜋 szk )

8. else

9. (st[Z, 𝑖 ], 𝜎1−𝑏 ) := Z.Query(𝑣𝑘, nonce, J𝑦𝜖
𝑖
K, 𝜋 szk )

10. st[𝑖 ] ← (hon, 𝜎1−𝑏 , params)
11. return 𝜎1−𝑏
12. for 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1}
13. (st[J𝑦𝛾

𝑖
K], st[V𝛾

𝑖
], st[𝜋𝛾

𝑖
] ) := V .EvalH1 (pub, key, 𝛾, st[V𝑝

𝑖
], st[𝜋𝑝

𝑖
] )

14. if hon = “mal”

15. ℎ := (−1)1−𝑏 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

16. else

17. ℎ := (−1)𝑏 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

18. return st[𝜋𝑝

𝑖
], st[𝜋𝑝 ∥0

𝑖
], st[𝜋𝑝 ∥1

𝑖
], ℎ

Honest Aggregator Validation:

Input: Report index 𝑖 and partial sharedZK verifier string 𝜎

1. hon, status, params := st[𝑖 ]
2. if status ∈ {𝜖,⊥} return ⊥
3. (nonce, pub, key, 𝜋 szk ) := params
4. 𝜎1−𝑏 ← status
5. st[𝑖 ] ← (hon,⊥, params)
6. if hon = “mal”

7. return Z.DecideH2 (𝜎0, 𝜎1, st[Z, 𝑖 ] )

8. return Z.DecideH2 (𝜎0, 𝜎1, st[Z, 𝑖 ] )

Random Oracle:

Input: Index 𝑗 and payload 𝑑

1. if 𝑗 = 2 then return H2 (𝑑 )
2. else return H1 (𝑑 )

HYB𝑞 + 1

Figure 14: Hybrid HYB𝑞 + 1 in the proof of Theorem 1 . Changes from HYB𝑞 have been highlighted .

part of an evaluation path) during the computation of the heavy-

hitter set. An adversarial client whose – report shares encode more

than one non-zero node (as part of or two evaluation paths), and

those nodes are also encountered during the heavy-hitter evalua-

tion, and still the client passes the checks, can be used to break the

verifiability ofV . Finally, the aggregator nodes must ensure that

the non-zero nodes at each level are along the same path, say 𝑝 .

This is performed by checking that the output for prefix 𝑝 is equal

to the sum of the output of its children - (𝑝 ∥ 0, 𝑝 ∥ 1). This check
is information-theoretic. By combining the one-hot verifiability

and path-verifiability guarantees, we provide stronger guarantees

where the adversarial input 𝛼𝑖 ∈ {0, 1}≤𝑛 can be uniquely extracted

from the report shares.

Finally, we optimized the communication by allowing the aggre-

gator nodes to hash the results of the consistency checks for each

client and then match the hash values. So, here we also need to rely

on the collision-resistance of the hash function to ensure that if the

hashes match then the underlying preimages are also equal.

Formal Proof. We prove Theorem 2 by showing that Grob-real
Mastic and

Grob-ideal
Sim,FwHH

are computationally indistinguishable in the presence of

our Sim against all PPT adversaries. We argue this via a sequence

of hybrids.

• HYB0 : This is game Grob-real
Mastic the clients compute their report

shares based on their inputs, provide these shares to the

honest aggregators, the honest aggregators compute the
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At the beginning of the game, the adversary outputs a key 𝑣𝑘 and the index 𝑏 of the corrupt aggregator, and the game sets 𝑖 := 0, initializes list

𝑇client, and runs Sim.Init(𝑣𝑘,𝑏 ) . We also sample H2

$←− AF(Z.Dom,Z.Rng) .

Honest Client Computation:

Input: measurement (𝛼, 𝛽 ) ∈ {0, 1}𝑛 × L
1. 𝑖 := 𝑖 + 1
2. (pub, key

0
, key

1
) := V .Gen(𝛼, 𝛽 )

3. J𝑦𝜖
𝑖
K𝑏 := EvalRoot(pub, key𝑏 )

4. J𝑦𝜖
𝑖
K1−𝑏 := EvalRoot(pub, key

1−𝑏 )

5. (nonce, 𝜋 szk
0

, 𝜋 szk
1
) := Z.ProveH2 (J𝑦𝜖

𝑖
K0, J𝑦𝜖𝑖 K1 )

6. st[V𝜖
𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

7. st[𝑖 ] := (“ honest”, 𝜖, (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 ) )

8. 𝑇client [𝑖 ] := (𝛼, 𝛽 )
9. Return (nonce, pub, key𝑏 , 𝜋 szk

𝑏
)

Corrupt Client Computation:

Input: report share (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 )

1. 𝑖 := 𝑖 + 1
2. st[V𝜖

𝑖
] := st[𝜋𝜖

𝑖
] := 𝜖

3. st[𝑖 ] ← (“mal”, 𝜖, (nonce, pub, key
1−𝑏 , 𝜋

szk
1−𝑏 ) )

Aggregation

Input: set Reports of report indices, and a prefix 𝑝 .

1. JweightK1−𝑏 := 0 ; 𝑘 := |𝑝 |
2. for 𝑖 ∈ Reports
3. hon, status, params := st[𝑖 ]
4. (nonce, pub, key, 𝜋 szk ) := params

5. if (𝑝 |𝑘−1 = 𝜀 or st[V𝑝 |𝑘−1
𝑖

] ≠ 𝜀)

6. (J𝑦𝑝
𝑖
K, _, _) := V .EvalH1 (key, pub, 𝑝, st[V𝑝 |𝑘−1

𝑖
], st[𝜋𝑝 |𝑘−1

𝑖
] )

7. if hon = “mal”

8. JweightK1−𝑏 := JweightK1−𝑏 + J𝑦𝑝
𝑖
K

9. else

10. JweightK1−𝑏 := JweightK1−𝑏 + J𝑦𝑝
𝑖
K

11. return JweightK1−𝑏

Honest Aggregator Evaluation:

Input: report index 𝑖 and prefix 𝑝 .

1. hon, status, params := st[𝑖 ]
2. if (st[V𝑝

𝑖
] = 𝜀 or st[J𝑦𝑝

𝑖
K] = 𝜖) and 𝑝 ≠ 𝜀 return ⊥

3. (nonce, pub, key, 𝜋 szk ) := params
4. if status = 𝜖

5. stJ𝑦𝜖
𝑖
K := V .EvalRootH1 (key, pub)

6. if hon = “mal”

7. (st[Z, 𝑖 ], 𝜎1−𝑏 ) := Z.QueryH2 (𝑣𝑘, nonce, J𝑦𝜖
𝑖
K, 𝜋 szk )

8. else

9. (st[Z, 𝑖 ], 𝜎1−𝑏 ) := Z.Query(𝑣𝑘, nonce, J𝑦𝜖
𝑖
K, 𝜋 szk )

10. st[𝑖 ] ← (hon, 𝜎1−𝑏 , params)
11. return 𝜎1−𝑏
12. for 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1}
13. (st[J𝑦𝛾

𝑖
K], st[V𝛾

𝑖
], st[𝜋𝛾

𝑖
] ) := V .EvalH1 (pub, key, 𝛾, st[V𝑝

𝑖
], st[𝜋𝑝

𝑖
] )

14. if hon = “mal”

15. ℎ := (−1)1−𝑏 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

16. else

17. ℎ := (−1)𝑏+1 · (st[J𝑦𝑝
𝑖
K] − st[J𝑦𝑝 ∥0

𝑖
K] − st[J𝑦𝑝 ∥1

𝑖
K] )

18. return st[𝜋𝑝

𝑖
], st[𝜋𝑝 ∥0

𝑖
], st[𝜋𝑝 ∥1

𝑖
], ℎ

Honest Aggregator Validation:

Input: Report index 𝑖 and partial sharedZK verifier string 𝜎

1. hon, status, params := st[𝑖 ]
2. if status ∈ {𝜖,⊥} return ⊥
3. (nonce, pub, key, 𝜋 szk ) := params
4. 𝜎1−𝑏 ← status
5. st[𝑖 ] ← (hon,⊥, params)
6. if hon = “mal”

7. return Z.DecideH2 (𝜎0, 𝜎1, st[Z, 𝑖 ] )

8. return Z.DecideH2 (𝜎0, 𝜎1, st[Z, 𝑖 ] )

Random Oracle:

Input: Index 𝑗 and payload 𝑑

1. if 𝑗 = 2 then return H2 (𝑑 )
2. else return H1 (𝑑 )

HYB𝑞 + 2

Figure 15: Hybrid HYB𝑞 + 2 in the proof of Theorem 1 . Changes from HYB𝑞 have been highlighted .

Mastic protocol and then provide the output to Grob-real
Mastic .

This output is returned to the adversary.

• HYB1 : This is same as HYB0, except the simulated aggre-

gators reconstruct 𝛽𝑖 and removes 𝑖 from Reports if 𝛽𝑖 ∉ L.
We present it in Fig. 20.

A distinguisher distinguishes between the two hybrids if

a malformed report containing 𝛽𝑖 ∉ L passes the consis-

tency check for Z in HYB0 and gets included in Reports,
whereas in HYB1 it gets removed from Reports. This alters
the output distribution. Assuming a distinguisher A0,1 that

distinguishes between the two hybrids then we build an

adversary B that breaks the soundness ofZ as follows.

When A0,1 (on behalf of a malicious client 𝑖) returns a mal-

formed report share

(
nonce𝑖 , pub𝑖 , key(𝑖,𝑏 ) , 𝜋

szk
(𝑖,𝑏 )

)
to S𝑏 for

each 𝑏 ∈ {0, 1}, our reduction B extracts

J𝛽𝑖K𝑏 :=V .EvalRootH1 (key(𝑖,𝑏 ) , pub𝑖 )

for each 𝑏 ∈ {0, 1}. B then computes 𝛽𝑖 := J𝛽𝑖K0 + J𝛽𝑖K1
and (st𝑏 , 𝜎𝑏 ) := Z.QueryH2 (𝑣𝑘, nonce𝑖 , J𝛽𝑖K𝑏 , 𝜋 szk

(𝑖,𝑏 ) ). If 𝛽𝑖
∉ L and Accept := Z.DecideH2 (𝜎0, 𝜎1, st𝑏 ), then B returns

(nonce𝑖 , J𝛽𝑖K0, J𝛽𝑖K1, 𝜋 szk
(𝑖,0) , 𝜋

szk
(𝑖,1) ) to the challenger of Z. It

can be observed that B wins the game only when A0,1 con-

structs a malformed report such that the Z verifies but

𝛽𝑖 ∉ L, and this directly translates into a win for B. As-
sume the A0,1 has an advantage Adv0,1 of distinguishing
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Parameters: Aggregators S0 and S1. N clients C𝑖 for 𝑖 ∈ [N].
S0, S1 agree on:

• A bound N on the number of client submissions.

• A bound T on the threshold for heavy hitters.

• Function order that defines a total ordering over sums of

weights.

Inputs:

Aggregators: S0, S1 do not have any input.

Clients: Each client C𝑖 for 𝑖 ∈ [N] holds “partial measurement”

(𝛼𝑖 , 𝛽𝑖 ) ∈ ({0, 1}≤𝑛 ∪ {⊥}) × (F𝑚 ∪ {⊥}) composed of an input 𝛼𝑖

and its weight 𝛽𝑖 . Each honest client holds a valid measurement,

i.e. (𝛼𝑖 , 𝛽𝑖 ) ∈ {0, 1}𝑛 × L. Let 𝛼𝑖,𝑘 represent the 𝑘th bit of 𝛼𝑖 .

Algorithm:

1. Init: HH≤𝑛 := {HH0,HH1, . . .HH𝑛 } := {{𝜖 }, ∅, . . . , ∅}. Set
Reports := [N].

2. Check: For each 𝑖 ∈ [N]: If (𝛼𝑖 , 𝛽𝑖 ) ∉ {0, 1}≤𝑛 × L then discard

it from computation by updating Reports := Reports \ {𝑖 }.
3. Aggregation: For 𝑘 ∈ [0, . . . , 𝑛 − 1] and for each prefix

𝑝 ∈ HH𝑘
, consider 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and update

HH𝑘+1
:= HH𝑘+1 ∪ 𝛾 if order(weight𝛾 ) > T, where weight𝛾 is

the sum of weights 𝛽𝑖 of each input 𝛼𝑖 with prefix 𝛾 . More

formally:

weight𝛾 :=
∑︁
𝑖

𝛽𝑖 for 𝑖 ∈ Reports ∧ (𝛼𝑖 |𝑘+1 = 𝛾 ) .

FwHH outputs the following:

• Aggregators S0, S1: Set of T-heavy hitters HH≤𝑛 . For each
heavy-hitting string 𝑝 the aggregators also obtain weight𝑝 ,
weight𝑝 | |0 and weight𝑝 | |1.
• Clients C𝑖 for 𝑖 ∈ [N]: No output.

Corruption: Adversary AHH corrupts multiple clients together.

AHH sets the input of each corrupt client as a partial measure-

ment (𝛼𝑖 , 𝛽𝑖 ) .

Note: FwHH models the problem of “weighted” heavy-hitters. It

can be weakened to capture “plain” heavy-hitters by letting Check

enforce that 𝛽𝑖 = 1 for every measurement.

FwHH

Figure 16: Ideal Functionality for Weighted Heavy-Hitters

between the two hybrids. Then B wins the soundness game

with at least Adv0,1 probability for a single client. The same

attack should be considered for all N′ clients. By applying

the union bound over all N′ and by using triangle inequality

we bound Adv0,1 as follows:

Adv0,1 ≤
∑︁

𝑖∈[N′ ]
Adv

𝑖
0,1 ≤ N′ · AdvsoundZ (B).

Note: Next, we consider a pair of 2𝑛 hybrids, each pair for

a level. We first replace the hash functions with plain com-

munication and then we rely on the verifiability of V to

argue that each client provides a single non-zero path in the

evaluation tree.

Run the following for 𝑗 ∈ [1, . . . , 𝑛 − 1] :
• HYB2𝑗 : This is the same as HYB2𝑗 − 1, except the simulator

runs both servers on the 𝑖th client’s VIDPF keys on the empty

string at level 0, extracts the 𝑦𝑖 at the root level, checks that

Input: Each client C𝑖 has input (𝛼𝑖 , 𝛽𝑖 ) for 𝑖 ∈ [N].
1. Adversary A initially corrupts a set Reports′ of clients and

sends

(
nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋

szk
(𝑖,𝑏)

)
to aggregator S𝑏 for each

𝑏 ∈ {0, 1} and 𝑖 ∈ Reports′ .
2. Each aggregator S𝑏 obtains

(
nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋

szk
(𝑖,𝑏)

)
from

𝑖th honest client for 𝑖 ∈ Reports \ Reports′ , where
Reports := [N]. Client 𝑖 computes this by running the “Client

Computation" protocol on (𝛼𝑖 , 𝛽𝑖 ) ∈ ({0, 1}𝑛, L) .
3. Each aggregator S𝑏 runs the “Aggregation Computation"

protocol (Fig. 2) on

(
nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋

szk
(𝑖,𝑏)

)
for 𝑏 ∈ {0, 1}

to obtain HH≤𝑛 , and for each heavy-hitting string 𝑝 ∈ HH≤𝑛
obtain weight𝑝 , weight𝑝 | |0 and weight𝑝 | |1.

4. Send the following to A: Output HH≤𝑛 , and weights weight𝑝 ,
weight𝑝 | |0 and weight𝑝 | |1 for each 𝑝 ∈ HH≤𝑛 .

Grob-real
Mastic

Figure 17: Real Game for defining robustness of ΠMastic.

Input: Each client C𝑖 has input (𝛼𝑖 , 𝛽𝑖 ) for 𝑖 ∈ [N].
1. Adversary A initially corrupts a set Reports′ of clients and

sends

(
nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋

szk
(𝑖,𝑏)

)
to the simulated

aggregators S𝑏 (controlled by Sim) for each 𝑏 ∈ {0, 1} and
𝑖 ∈ Reports′ .

2. Sim extracts the 𝑖th malicious client inputs as follows for

𝑖 ∈ Reports′:

(𝑖, 𝛼 ′𝑖 , 𝛽 ′𝑖 ) ← Sim
( (
nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋

szk
(𝑖,𝑏)

)
𝑏∈{0,1}

)
,

(𝛼 ′𝑖 , 𝛽 ′𝑖 ) is a partial measurement that is not necessarily valid.

(E.g., (⊥,⊥) .) Let 𝑅′ := { (𝑖, 𝛼 ′𝑖 , 𝛽 ′𝑖 ) : 𝑖 ∈ Reports′ }.
3. Invoke FwHH on each (𝑖, 𝛼 ′𝑖 , 𝛽 ′𝑖 ) ∈ 𝑅′ (on behalf of each

corrupt client C𝑖 ∈ Reports′ chosen by AHH).

Each honest client provides its input (𝛼𝑖 , 𝛽𝑖 ) ∈ ({0, 1}𝑛, L) to
FwHH. FwHH returns the following outputs:

• T-heavy hitters HH≤𝑛 , and
• For each heavy-hitting string 𝑝 ∈ HH≤𝑛 FwHH also sends

weight𝑝 , weight𝑝 | |0 and weight𝑝 | |1.
4. Send the following to A: Output HH≤𝑛 , and weights weight𝑝 ,

weight𝑝 | |0 and weight𝑝 | |1 for each 𝑝 ∈ HH≤𝑛 .

Grob-ideal
Sim,FwHH

Figure 18: Ideal Game for defining robustness of ΠMastic. Let

FwHH be as defined in 16.

it is valid by verifying that the path-verifiability and one-hot

verifiability checks verify at level 1. If the checks verify then

there will be a single path at level 1 which will be non-zero.

The simulator considers that path as the active path 𝛼𝑖, 𝑗 . The

same process is iteratively repeated by the simulator until

𝑗 − 1 level to extract the first 𝑗 bits of 𝛼𝑖 as 𝛼𝑖,≤ 𝑗 for every
client. Once all the client’s inputs are extracted until the first

𝑗 , the simulator runs FwHH on them to obtain the set of 𝑗th-

length heavy-hitting prefixes. Then the simulator runs Mas-

tic starting from 𝑗 th level. The simulated S𝑏 accumulates its

local state as 𝑅
𝑗

(𝑖,𝑏 ) :=
(����

𝑝∈HH𝑗

(
𝑝, ℎ

𝑝

(𝑖,𝑏 ) , 𝜋
𝑝 ∥0
(𝑖,𝑏 ) , 𝜋

𝑝 ∥1
(𝑖,𝑏 )

) )
instead
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Sim simulates the role of the honest aggregators in this protocol.

Malicious Client Computation: Each corrupt client C𝑖 for 𝑖 ∈ Reports′ sends report share (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk
(𝑖,𝑏) ) to the simulated

aggregators S𝑏 for each 𝑏 ∈ {0, 1}.
Simulated Aggregator Computation:

Input: The aggregators S0 and S1 are run by Sim. They start with a verification key 𝑣𝑘 ∈ {0, 1}vkl established out-of-band. They receive the set

of corrupt clients as Reports′ . Each aggregator S𝑏 obtains (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk
(𝑖,𝑏) ) for 𝑖 ∈ Reports

′
.

1. For each client 𝑖 ∈ Reports:
a. If (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk

(𝑖,𝑏) ) does not follow the correct input-formatting of Mastic then Sim sets (𝛼 ′𝑖 , 𝛽 ′𝑖 ) := (⊥,⊥) as the 𝑖th client’s

measurement and skips rest of this loop for this particular value of 𝑖 . ⊲ Input-Formatting check.

b. Otherwise, Sim computes 𝛽 ′𝑖 := J𝛽𝑖K0 + J𝛽𝑖K1, where J𝛽𝑖K𝑏 := V .EvalRootH1 (key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}.
⊲ Weight-computation. FwHH performs weight-check on this 𝛽 ′𝑖 in Step 2.

c. Sim extracts the 𝛼 ′𝑖 as follows. Initialize 𝑟 := 𝜖 and 𝛼 ′𝑖 := 𝜖 . For 𝑏 ∈ {0, 1}, Sim sets J𝑦𝑟
𝑖
K𝑏 := 𝜖, st𝑟(𝑖,𝑏) := 𝜖 , 𝜋𝑟

(𝑖,𝑏) := 𝜖 and store them in

memory. For 𝑘 ∈ [0, 1, . . . , 𝑛 − 1] run the following:

i. Each S𝑏 retrieves the state (J𝑦𝑟
𝑖
K𝑏 , st𝑟(𝑖,𝑏) , 𝜋

𝑟
(𝑖,𝑏) ) from memory corresponding to prefix 𝑟 .

ii. Each S𝑏 runs (J𝑦𝛾
𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑟 ∥ 0, 𝑟 ∥ 1} and stores the results in

memory.

iii. For 𝛾 ∈ {𝑟 ∥ 0, 𝑟 ∥ 1}, Sim computes 𝑦
𝛾

𝑖
:= J𝑦𝛾

𝑖
K0 + J𝑦𝛾

𝑖
K1.

iv. If any of the three conditions hold then Sim considers (𝛼 ′𝑖 , 𝛽 ′𝑖 ) as the 𝑖th client’s measurement and skips this inner and the outer loop

for this particular value of 𝑖:

• Both 𝜋
𝑟 ∥0
(𝑖,0) ≠ 𝜋

𝑟 ∥0
(𝑖,1) ∧ 𝜋

𝑟 ∥1
(𝑖,0) ≠ 𝜋

𝑟 ∥1
(𝑖,1) ,

• Both 𝑦
𝑟 ∥0
𝑖

≠ 0 and 𝑦
𝑟 ∥1
𝑖

≠ 0, or ⊲ One-hot verifiability.

• 𝑦
𝑟 ∥0
𝑖
+ 𝑦𝑟 ∥1

𝑖
≠ 𝛽 ′𝑖 . ⊲ Path verifiability.

v. If (𝑦𝑟 ∥0
𝑖

= 𝛽 ′𝑖 ) then update 𝑟 := 𝑟 ∥ 0 and 𝛼 ′𝑖 := 𝛼 ′𝑖 ∥ 0. Otherwise, if (𝑦
𝑟 ∥1
𝑖

= 𝛽 ′𝑖 ) then update 𝑟 := 𝑟 ∥ 1 and 𝛼 ′𝑖 := 𝛼 ′𝑖 ∥ 1
d. After the above loop, Sim stores the 𝑖th client’s measurement as (𝑖, 𝛼 ′𝑖 , 𝛽 ′𝑖 ) .

2. Sim returns all the corrupt client measurements as (𝑖, 𝛼 ′𝑖 , 𝛽 ′𝑖 ) for 𝑖 ∈ Reports′ .

Sim for Grob-ideal
Sim,FwHH

Figure 19: Simulator for ideal robustness game Grob-ideal
Sim,FwHH

.

of 𝑅
𝑗

(𝑖,𝑏 ) := H

(����
𝑝∈HH𝑗

(
𝑝, ℎ

𝑝

(𝑖,𝑏 ) , 𝜋
𝑝 ∥0
(𝑖,𝑏 ) , 𝜋

𝑝 ∥1
(𝑖,𝑏 )

) )
. The checks are

performed over 𝑅
𝑗

(𝑖,𝑏 ) . We present it in Figs. 21, 22.

An adversary A2𝑗−1,2𝑗 distinguishes between the two hy-

brids if it finds a collision in H s.t. the verification in HYB2𝑗

fails due to 𝑅
𝑗

(𝑖,0) ≠ 𝑅
𝑗

(𝑖,1) whereas they match in HYB2𝑗 − 1

since to a collision in the hash. Using this adversary, we

construct an adversary C that finds a collision in the hash

by returning

(����
𝑝∈HH𝑗

(
𝑝, ℎ

𝑝

(𝑖,0) , 𝜋
𝑝 ∥0
(𝑖,0) , 𝜋

𝑝 ∥1
(𝑖,0)

) )
and

(����
𝑝∈HH𝑗

(
𝑝,

ℎ
𝑝

(𝑖,1) , 𝜋
𝑝 ∥0
(𝑖,𝑏 ) , 𝜋

𝑝 ∥1
(𝑖,1)

) )
. These two values are unequal but their

hash values match.

If the advantage of A2𝑗−1,2𝑗 is Adv2𝑗−1,2𝑗 then C wins the

game with advantage at least Adv2𝑗−1,2𝑗 . The same attack

should be considered for allN′ clients. By applying the union
bound over all N′ and by using triangle inequality we bound
Adv2𝑗−1,2𝑗 as follows:

Adv2𝑗−1,2𝑗 ≤
∑︁

𝑖∈[N′ ]
Adv

𝑖
2𝑗−1,2𝑗 ≤ N′ · Advcoll

H
(C) .

• HYB2𝑗 + 1 : This is same as HYB2𝑗 , except the servers extract

𝛼𝑖, 𝑗+1 by running the extraction algorithm until level 𝑗 and

then the heavy-hitter set HH≤ 𝑗+1 is computed based on the

extracted values, whereas
�HH𝑗+1

is computed following the

Mastic protocol; and if HH𝑗+1 ≠ �HH𝑗+1
, then Sim return

(⊥,⊥) to FwHH on behalf of the corrupt clients. We present

it in Figures. 23, 24.

An adversaryA2𝑗,2𝑗+1 distinguishes between the two hybrids
if it finds two non-zero evaluation paths in theV evaluation

at level 𝑗 such that they lead to two different non-zero values

on prefixes 𝑟 ∥ 0 and 𝑟 ∥ 1. In such a case, HYB2𝑗 fails to

detect it and HYB2𝑗 + 1 detects it. HYB2𝑗 will consider H̃H𝑗

as the heavy-hitting set and HYB2𝑗 + 1 will return (⊥,⊥) to
FwHH. Using this adversary, we construct an adversary D
that breaks the verifiability of theV . When client 𝑖 returns

the report shares simulated as perHYB2𝑗 and if it encounters

two such non-zero evaluation paths - (𝑟 ∥ 0, 𝑟 ∥ 1) on which

the proofs verify, then return theV keys in the report shares

and (𝑟 ∥ 0, 𝑟 ∥ 1) to the V challenger. Since the proofs are

verified, it means that in Step 2d the V keys evaluate to

two values 𝑦
𝑟 ∥0
𝑖

and 𝑦
𝑟 ∥1
𝑖

such that either 𝑦
𝑟 ∥0
𝑖

≠ 𝑦
𝑟 ∥1
𝑖

≠ 0

or 𝑦
𝑟 ∥0
𝑖
+ 𝑦𝑟 ∥1

𝑖
≠ 𝛽𝑖 . The second case cannot occur in HYB2𝑗

or HYB2𝑗 + 1 since the servers verify that by sending ℎ
𝑝

(𝑖,𝑏 )
in the clear. So it must be the case that 𝑦

𝑟 ∥0
𝑖

≠ 𝑦
𝑟 ∥1
𝑖

≠ 0 and

the corresponding proofs verified. Thus, theV keys sent by

A2𝑗,2𝑗+1 can be used to break the verifiability property ofV
whereD returns theV keys as (key

0
, key

1
) and (𝑟 ∥ 0, 𝑟 ∥ 1)

as (𝑢, 𝑣) respectively in the verifiability game.
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Sim simulates the role of the honest aggregators in this protocol.

Primitives:

1. A VIDPF (V .Gen,V .Eval,V .EvalRoot) as defined in Section 2.3.

2. A shared ZK (Z.Prove,Z.Query,Z.Decide) for a language L ⊆ F𝑚 as defined in Section 2.4.

3. Functions H, H1, H2 modeled in our analysis as random oracles.

Client Computation:

Input: Each client C𝑖 for 𝑖 ∈ [N] holds measurement (𝛼𝑖 , 𝛽𝑖 ) ∈ ({0, 1}𝑛, L) composed of an input 𝛼𝑖 and its weight 𝛽𝑖 .

1. C𝑖 runs (pub𝑖 , key(𝑖,0) , key(𝑖,1) )
$←− V .GenH1 (𝛼𝑖 , 𝛽𝑖 ) .

2. C𝑖 runs (𝜋 szk
(𝑖,0) , 𝜋

szk
(𝑖,1) , nonce𝑖 )

$←− Z.ProveH2 (J𝛽𝑖K0, J𝛽𝑖K1 ) where J𝛽𝑖K𝑏 := V .EvalRootH1 (key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}.
3. C𝑖 sends report share (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk

(𝑖,𝑏) ) to S𝑏 for each 𝑏 ∈ {0, 1}.

Aggregator Computation:

Input: The simulated aggregators S0 and S1 start with a verification key 𝑣𝑘 ∈ {0, 1}vkl established out-of-band. Each sets

HH≤𝑛 := {HH0,HH1, . . .HH𝑛 } as {𝜖, ∅, . . . , ∅}, the initial set of candidate prefixes for each level and sets Reports := [N], the initial set of

candidate reports.

1. For each client 𝑖 ∈ Reports: ⊲ Weight check using Z at the root.

a. Remove 𝑖 from Reports if (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk
(𝑖,𝑏) ) does not follow the correct formatting ⊲ Input-Formatting check.

b. Otherwise, Sim computes 𝛽 ′𝑖 := J𝛽𝑖K0 + J𝛽𝑖K1, where J𝛽𝑖K𝑏 := V .EvalRootH1 (key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}.

Sim removes 𝑖 from Reports if 𝛽 ′𝑖 ∉ L. ⊲ Weight-check.

2. For each level 𝑘 ∈ [0, . . . , 𝑛 − 1] and prefix 𝑝 ∈ HH𝑘
:

a. For each candidate report 𝑖 ∈ Reports: ⊲ Path & One-hot Verifiability checks.

i. Each S𝑏 retrieves the state (J𝑦𝑝
𝑖
K𝑏 , st

𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) from memory corresponding to prefix 𝑝 and client C𝑖 .
ii. Each S𝑏 runs as (J𝑦𝛾

𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and stores the results

in memory.

iii. The aggregators check that the output for prefix 𝑝 is equal to the sum of the outputs on prefixes 𝑝 ∥ 0 and 𝑝 ∥ 1. To do so, each S𝑏
computes ℎ

𝑝

(𝑖,𝑏) := (−1)
𝑏 · (J𝑦𝑝

𝑖
K𝑏 − J𝑦𝑝 ∥0

𝑖
K𝑏 − J𝑦𝑝 ∥1

𝑖
K𝑏 ) . ⊲ Observe that ℎ

𝑝

(𝑖,0) = ℎ
𝑝

(𝑖,1) .

iv. S𝑏 accumulates its local state as 𝑅𝑘
(𝑖,𝑏) := H

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(𝑖,𝑏) , 𝜋
𝑝 ∥0
(𝑖,𝑏) , 𝜋

𝑝 ∥1
(𝑖,𝑏)

) )
. ⊲ This is for all heavy-hitter prefixes.

v. S𝑏 sends 𝑅𝑘
(𝑖,𝑏) to S1−𝑏 . If 𝑅

𝑘
(𝑖,0) ≠ 𝑅𝑘

(𝑖,1) , then S𝑏 removes 𝑖 from Reports. ⊲ One hash for each client.

b. For each 𝑘-bit heavy-hitting prefix 𝑝 ∈ HH𝑘
the aggregators prune on 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as: ⊲ Aggregation & Pruning.

i. Each S𝑏 accumulates Jweight𝛾 K𝑏 := Jweight𝛾 K𝑏 + J𝑦𝛾
𝑖
K𝑏 . ⊲ Each J𝑦𝛾

𝑖
K𝑏 is a vector of field elements F𝑚 .

ii. S0 and S1 recover weight𝛾 := Jweight𝛾 K0 + Jweight𝛾 K1. If order(weight𝛾 ) < T, then prune 𝛾 from the candidate prefix set. Otherwise,

accumulate HH𝑘+1
:= HH𝑘+1 ∪ {𝛾 }. ⊲ order( ·) is decided by the aggregators.

3. Finally, the servers output HH𝑛
as the set of weighted T-heavy-hitters.

Hybrid HYB1

Figure 20: Hybrid HYB1 for the Robustness Proof. Changes from HYB0 are highlighted.

If the advantage of A2𝑗,2𝑗+1 is Adv2𝑗,2𝑗+1 then D wins the

game with advantage at least Adv2𝑗,2𝑗+1. The same attack

should be considered for allN′ clients. By applying the union
bound over all N′ and by using the triangular inequality, we

bound Adv2𝑗,2𝑗+1 as follows:

Adv2𝑗,2𝑗+1 ≤
∑︁

𝑖∈[N′ ]
Adv

𝑖
2𝑗,2𝑗+1 ≤ N′ · AdvverifV,𝑘

(D) .

It can be observed that HYB2𝑛 corresponds to Grob-ideal
Sim,FwHH

. Thus,

we bound the advantage ofA distinguishing between Grob-real
Mastic and

Grob-ideal
Sim,FwHH

as follows:

Adv
rob
Mastic,Sim,FwHH (A) =

Adv0,1 +
∑︁

𝑗∈[1,...𝑛−1]
(Adv2𝑗−1,2𝑗 + Adv2𝑗,2𝑗+1) ≤

N′ · AdvsoundZ (B) +
∑︁

𝑗∈[1,...𝑛−1]

(
N · (Advcoll

H
(C) + AdvverifV,𝑘

(D))
)
,

which is equal to

N′ ·
(
AdvsoundZ (B) + 𝑛 · (Advcoll

H
(C) + AdvverifV,𝑘

(D))
)
.

This concludes the robustness proof.
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Sim simulates the role of the honest aggregators in this protocol.

Primitives:

1. A VIDPF (V .Gen,V .Eval,V .EvalRoot) as defined in Section 2.3.

2. A shared ZK (Z.Prove,Z.Query,Z.Decide) for a language L ⊆ F𝑚 as defined in Section 2.4.

3. Functions H, H1, H2 modeled in our analysis as random oracles.

Client Computation:

Input: Each client C𝑖 for 𝑖 ∈ [N] holds measurement (𝛼𝑖 , 𝛽𝑖 ) ∈ ({0, 1}𝑛, L) composed of an input 𝛼𝑖 and its weight 𝛽𝑖 .

1. C𝑖 runs (pub𝑖 , key(𝑖,0) , key(𝑖,1) )
$←− V .GenH1 (𝛼𝑖 , 𝛽𝑖 ) .

2. C𝑖 runs (𝜋 szk
(𝑖,0) , 𝜋

szk
(𝑖,1) , nonce𝑖 )

$←− Z.ProveH2 (J𝛽𝑖K0, J𝛽𝑖K1 ) where J𝛽𝑖K𝑏 := V .EvalRootH1 (key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}.
3. C𝑖 sends report share (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk

(𝑖,𝑏) ) to S𝑏 for each 𝑏 ∈ {0, 1}.

Aggregator Computation:

Input: The simulated aggregators S0 and S1 start with a verification key 𝑣𝑘 ∈ {0, 1}vkl established out-of-band. Each sets

HH≤𝑛 := {HH0,HH1, . . .HH𝑛 } as {𝜖, ∅, . . . , ∅}, the initial set of candidate prefixes for each level and sets Reports := [N], the initial set of

candidate reports.

1. For each client 𝑖 ∈ Reports: ⊲ Weight check using Z at the root.

a. Remove 𝑖 from Reports if (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk
(𝑖,𝑏) ) does not follow the correct formatting. ⊲ Input-Formatting check.

b. Otherwise, Sim computes 𝛽𝑖 := J𝛽𝑖K0 + J𝛽𝑖K1, where J𝛽𝑖K𝑏 := V .EvalRootH1 (key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}. Sim removes 𝑖 from Reports if

𝛽𝑖 ∉ L
⊲ Weight-check.

2. For each client 𝑖 ∈ Reports: Sim extracts the 𝛼𝑖,≤ 𝑗−1 as follows. Initialize 𝑟 := 𝜖 and 𝛼𝑖 := 𝜖 . For 𝑏 ∈ {0, 1}, Sim sets J𝑦𝑟
𝑖
K𝑏 := 𝜖, st𝑟(𝑖,𝑏) := 𝜖 ,

𝜋𝑟
(𝑖,𝑏) := 𝜖 and store them in memory. For 𝑘 ∈ [0, 1, . . . , 𝑗 − 1] run the following:

a. Each S𝑏 retrieves the state (J𝑦𝑟
𝑖
K𝑏 , st𝑟(𝑖,𝑏) , 𝜋

𝑟
(𝑖,𝑏) ) from memory corresponding to prefix 𝑟 .

b. Each S𝑏 runs (J𝑦𝛾
𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑟 ∥ 0, 𝑟 ∥ 1} and stores the results in

memory.

c. For 𝛾 ∈ {𝑟 ∥ 0, 𝑟 ∥ 1}, Sim computes 𝑦
𝛾

𝑖
:= J𝑦𝛾

𝑖
K0 + J𝑦𝛾

𝑖
K1.

d. If any of the following three conditions hold then Sim considers (𝛼𝑖 , 𝛽𝑖 ) as the 𝑖th client’s measurement and skips this inner and the

outer loop for this particular value of 𝑖:

i. Both 𝜋
𝑟 ∥0
(𝑖,0) ≠ 𝜋

𝑟 ∥0
(𝑖,1) ∧ 𝜋

𝑟 ∥1
(𝑖,0) ≠ 𝜋

𝑟 ∥1
(𝑖,1) , or ⊲ One-hot verifiability.

ii. Both 𝑦
𝑟 ∥0
𝑖

≠ 0 and 𝑦
𝑟 ∥1
𝑖

≠ 0, or ⊲ One-hot verifiability.

iii. 𝑦
𝑟 ∥0
𝑖
+ 𝑦𝑟 ∥1

𝑖
≠ 𝛽𝑖 . ⊲ Path verifiability.

(If any of the above conditions hold then the client’s input is valid up to 𝑟 and invalid for both (𝑟 ∥ 0, 𝑟 ∥ 1) .)
e. If (𝑦𝑟 ∥0

𝑖
= 𝛽𝑖 ) then update 𝑟 := 𝑟 ∥ 0 and 𝛼𝑖 := 𝛼𝑖 ∥ 0. Otherwise, if (𝑦𝑟 ∥1𝑖

= 𝛽𝑖 ) then update 𝑟 := 𝑟 ∥ 1 and 𝛼𝑖 := 𝛼𝑖 ∥ 1
3. Compute HH≤ 𝑗 as follows: For 𝑘 ∈ [0, . . . , 𝑗 − 1] and for each prefix 𝑝 ∈ HH𝑘

, consider 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and update HH𝑘+1
:= HH𝑘+1 ∪ 𝛾 if

order(weight𝛾 ) > T, where weight𝛾 is sum of weights 𝛽𝑖 of each input 𝛼𝑖 with prefix 𝛾 . More formally:

weight𝛾 :=
∑︁
𝑖

𝛽𝑖 for 𝑖 ∈ [Reports] ∧ (𝛼𝑖,≤𝑘+1 = 𝛾 ) .

Hybrid HYB2𝑗

Figure 21: Hybrid HYB2𝑗 for the Robustness Proof (Cont. in Fig. 22). Changes from HYB2𝑗 − 1 are highlighted .
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4. At the 𝑗 th level - For each prefix 𝑝 ∈ HH𝑗
:

a. For each candidate report 𝑖 ∈ Reports: ⊲ Path & One-hot Verifiability checks.

i. Each S𝑏 retrieves the state (J𝑦𝑝
𝑖
K𝑏 , st

𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) from memory corresponding to prefix 𝑝 and client C𝑖 .
ii. Each S𝑏 runs as (J𝑦𝛾

𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and stores the results

in memory.

iii. The aggregators check that the output for prefix 𝑝 is equal to the sum of the outputs on prefixes 𝑝 ∥ 0 and 𝑝 ∥ 1. To do so, each S𝑏
computes ℎ

𝑝

(𝑖,𝑏) := (−1)
𝑏 · (J𝑦𝑝

𝑖
K𝑏 − J𝑦𝑝 ∥0

𝑖
K𝑏 − J𝑦𝑝 ∥1

𝑖
K𝑏 ) . ⊲ Observe that ℎ

𝑝

(𝑖,0) = ℎ
𝑝

(𝑖,1) .

iv. S𝑏 accumulates its local state as 𝑅
𝑗

(𝑖,𝑏) :=
(����

𝑝∈HH𝑗

(
𝑝,ℎ

𝑝

(𝑖,𝑏) , 𝜋
𝑝 ∥0
(𝑖,𝑏) , 𝜋

𝑝 ∥1
(𝑖,𝑏)

) )
. ⊲ This is for all heavy-hitter prefixes.

v. S𝑏 sends 𝑅
𝑗

(𝑖,𝑏) to S1−𝑏 . If 𝑅
𝑘
(𝑖,0) ≠ 𝑅𝑘

(𝑖,1) , then S𝑏 removes 𝑖 from Reports. ⊲ One hash for each client.

b. For each 𝑗-bit heavy-hitting prefix 𝑝 ∈ HH𝑗
the aggregators prune on 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as: ⊲ Aggregation & Pruning.

i. Each S𝑏 accumulates Jweight𝛾 K𝑏 := Jweight𝛾 K𝑏 + J𝑦𝛾
𝑖
K𝑏 . ⊲ Each J𝑦𝛾

𝑖
K𝑏 is a vector of field elements F𝑚 .

ii. S0 and S1 recover weight𝛾 := Jweight𝛾 K0 + Jweight𝛾 K1. If order(weight𝛾 ) < T, then prune 𝛾 from the candidate prefix set. Otherwise,

accumulate HH𝑗+1
:= HH𝑗+1 ∪ {𝛾 }.

5. For each level 𝑘 ∈ [ 𝑗 + 1, . . . , 𝑛 − 1] and prefix 𝑝 ∈ HH𝑘
:

a. For each candidate report 𝑖 ∈ Reports: ⊲ Path & One-hot Verifiability checks.

i. Each S𝑏 retrieves the state (J𝑦𝑝
𝑖
K𝑏 , st

𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) from memory corresponding to prefix 𝑝 and client C𝑖 .
ii. Each S𝑏 runs as (J𝑦𝛾

𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and stores the results

in memory.

iii. The aggregators check that the output for prefix 𝑝 is equal to the sum of the outputs on prefixes 𝑝 ∥ 0 and 𝑝 ∥ 1. To do so, each S𝑏
computes ℎ

𝑝

(𝑖,𝑏) := (−1)
𝑏 · (J𝑦𝑝

𝑖
K𝑏 − J𝑦𝑝 ∥0

𝑖
K𝑏 − J𝑦𝑝 ∥1

𝑖
K𝑏 ) . ⊲ Observe that ℎ

𝑝

(𝑖,0) = ℎ
𝑝

(𝑖,1) .

iv. S𝑏 accumulates its local state as 𝑅𝑘
(𝑖,𝑏) := H

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(𝑖,𝑏) , 𝜋
𝑝 ∥0
(𝑖,𝑏) , 𝜋

𝑝 ∥1
(𝑖,𝑏)

) )
. ⊲ This is for all heavy-hitter prefixes.

v. S𝑏 sends 𝑅𝑘
(𝑖,𝑏) to S1−𝑏 .

vi. S𝑏 computes 𝑑 ′ := 𝑅𝑘
(𝑖,0) = 𝑅𝑘

(𝑖,1) . If 𝑑
′ = 𝐹𝑎𝑙𝑠𝑒 , then remove 𝑖 from Reports.

b. For each 𝑘-bit heavy-hitting prefix 𝑝 ∈ HH𝑘
the aggregators prune on 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as: ⊲ Aggregation & Pruning.

i. Each S𝑏 accumulates Jweight𝛾 K𝑏 := Jweight𝛾 K𝑏 + J𝑦𝛾
𝑖
K𝑏 . ⊲ Each J𝑦𝛾

𝑖
K𝑏 is a vector of field elements F𝑚 .

ii. S0 and S1 recover weight𝛾 := Jweight𝛾 K0 + Jweight𝛾 K1. If order(weight𝛾 ) < T, then prune 𝛾 from the candidate prefix set. Otherwise,

accumulate HH𝑘+1
:= HH𝑘+1 ∪ {𝛾 }. ⊲ order( ·) is decided by the aggregators.

6. Finally, the servers output HH𝑛
as the set of weighted T-heavy-hitters.

Hybrid HYB2𝑗

Figure 22: Hybrid HYB2𝑗 for the Robustness Proof (Cont. from Fig. 21).
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Sim simulates the role of the honest aggregators in this protocol.

Primitives:

1. A VIDPF (V .Gen,V .Eval,V .EvalRoot) as defined in Section 2.3.

2. A shared ZK (Z.Prove,Z.Query,Z.Decide) for a language L ⊆ F𝑚 as defined in Section 2.4.

3. Functions H, H1, H2 modeled in our analysis as random oracles.

Client Computation:

Input: Each client C𝑖 for 𝑖 ∈ [N] holds measurement (𝛼𝑖 , 𝛽𝑖 ) ∈ ({0, 1}𝑛, L) composed of an input 𝛼𝑖 and its weight 𝛽𝑖 .

1. C𝑖 runs (pub𝑖 , key(𝑖,0) , key(𝑖,1) )
$←− V .GenH1 (𝛼𝑖 , 𝛽𝑖 ) .

2. C𝑖 runs (𝜋 szk
(𝑖,0) , 𝜋

szk
(𝑖,1) , nonce𝑖 )

$←− Z.ProveH2 (J𝛽𝑖K0, J𝛽𝑖K1 ) where J𝛽𝑖K𝑏 := V .EvalRootH1 (key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}.
3. C𝑖 sends report share (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk

(𝑖,𝑏) ) to S𝑏 for each 𝑏 ∈ {0, 1}.

Aggregator Computation:

Input: The simulated aggregators S0 and S1 start with a verification key 𝑣𝑘 ∈ {0, 1}vkl established out-of-band. Each sets

HH≤𝑛 := {HH0,HH1, . . .HH𝑛 } as {𝜖, ∅, . . . , ∅}, the initial set of candidate prefixes for each level and sets Reports := [N], the initial set of

candidate reports.

1. For each client 𝑖 ∈ Reports: ⊲ Weight check using Z at the root.

a. Remove 𝑖 from Reports if (nonce𝑖 , pub𝑖 , key(𝑖,𝑏) , 𝜋 szk
(𝑖,𝑏) ) does not follow the correct formatting. ⊲ Input-Formatting check.

b. Otherwise, Sim computes 𝛽𝑖 := J𝛽𝑖K0 + J𝛽𝑖K1, where J𝛽𝑖K𝑏 := V .EvalRootH1 (key(𝑖,𝑏) , pub𝑖 ) for 𝑏 ∈ {0, 1}. Sim removes 𝑖 from Reports if

𝛽𝑖 ∉ L
⊲ Weight-check.

2. For each client 𝑖 ∈ Reports: Sim extracts the 𝛼𝑖,≤ 𝑗 as follows. Initialize 𝑟 := 𝜖 and 𝛼𝑖 := 𝜖 . For 𝑏 ∈ {0, 1}, Sim sets J𝑦𝑟
𝑖
K𝑏 := 𝜖, st𝑟(𝑖,𝑏) := 𝜖 ,

𝜋𝑟
(𝑖,𝑏) := 𝜖 and store them in memory. For 𝑘 ∈ [0, 1, . . . , 𝑗 ] run the following:

a. Each S𝑏 retrieves the state (J𝑦𝑟
𝑖
K𝑏 , st𝑟(𝑖,𝑏) , 𝜋

𝑟
(𝑖,𝑏) ) from memory corresponding to prefix 𝑟 .

b. Each S𝑏 runs (J𝑦𝛾
𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑟 ∥ 0, 𝑟 ∥ 1} and stores the results in

memory.

c. For 𝛾 ∈ {𝑟 ∥ 0, 𝑟 ∥ 1}, Sim computes 𝑦
𝛾

𝑖
:= J𝑦𝛾

𝑖
K0 + J𝑦𝛾

𝑖
K1.

d. If any of the following three conditions hold then Sim considers (𝛼𝑖 , 𝛽𝑖 ) as the 𝑖th client’s measurement and skips this inner and the

outer loop for this particular value of 𝑖:

i. Both 𝜋
𝑟 ∥0
(𝑖,0) ≠ 𝜋

𝑟 ∥0
(𝑖,1) ∧ 𝜋

𝑟 ∥1
(𝑖,0) ≠ 𝜋

𝑟 ∥1
(𝑖,1) , or ⊲ One-hot verifiability.

ii. Both 𝑦
𝑟 ∥0
𝑖

≠ 0 and 𝑦
𝑟 ∥1
𝑖

≠ 0, or ⊲ One-hot verifiability.

iii. 𝑦
𝑟 ∥0
𝑖
+ 𝑦𝑟 ∥1

𝑖
≠ 𝛽𝑖 . ⊲ Path verifiability.

(If any of the above conditions hold then the client’s input is valid up to 𝑟 and invalid for both (𝑟 ∥ 0, 𝑟 ∥ 1) .)
e. If (𝑦𝑟 ∥0

𝑖
= 𝛽𝑖 ) then update 𝑟 := 𝑟 ∥ 0 and 𝛼𝑖 := 𝛼𝑖 ∥ 0. Otherwise, if (𝑦𝑟 ∥1𝑖

= 𝛽𝑖 ) then update 𝑟 := 𝑟 ∥ 1 and 𝛼𝑖 := 𝛼𝑖 ∥ 1
3. Compute HH≤ 𝑗+1 as follows: For 𝑘 ∈ [0, . . . , 𝑗 ] and for each prefix 𝑝 ∈ HH𝑘

, consider 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and update HH𝑘+1
:= HH𝑘+1 ∪ 𝛾 if

order(weight𝛾 ) > T, where weight𝛾 is sum of weights 𝛽𝑖 of each input 𝛼𝑖 with prefix 𝛾 . More formally:

weight𝛾 :=
∑︁
𝑖

𝛽𝑖 for 𝑖 ∈ [Reports] ∧ (𝛼𝑖,≤𝑘+1 = 𝛾 ) .

Hybrid HYB2𝑗 + 1

Figure 23: Hybrid HYB2𝑗 + 1 for the Robustness Proof (Cont. in Fig. 24). Changes from HYB2𝑗 are highlighted .

318



Mastic: Private Weighted Heavy-Hitters and Attribute-Based Metrics Proceedings on Privacy Enhancing Technologies 2025(1)

4. At the 𝑗 th level - For each prefix 𝑝 ∈ HH𝑗
:

a. For each candidate report 𝑖 ∈ Reports: ⊲ Path & One-hot Verifiability checks.

i. Each S𝑏 retrieves the state (J𝑦𝑝
𝑖
K𝑏 , st

𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) from memory corresponding to prefix 𝑝 and client C𝑖 .
ii. Each S𝑏 runs as (J𝑦𝛾

𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and stores the results

in memory.

iii. The aggregators check that the output for prefix 𝑝 is equal to the sum of the outputs on prefixes 𝑝 ∥ 0 and 𝑝 ∥ 1. To do so, each S𝑏
computes ℎ

𝑝

(𝑖,𝑏) := (−1)
𝑏 · (J𝑦𝑝

𝑖
K𝑏 − J𝑦𝑝 ∥0

𝑖
K𝑏 − J𝑦𝑝 ∥1

𝑖
K𝑏 ) . ⊲ Observe that ℎ

𝑝

(𝑖,0) = ℎ
𝑝

(𝑖,1) .

iv. S𝑏 accumulates its local state as 𝑅
𝑗

(𝑖,𝑏) :=
(����

𝑝∈HH𝑗

(
𝑝,ℎ

𝑝

(𝑖,𝑏) , 𝜋
𝑝 ∥0
(𝑖,𝑏) , 𝜋

𝑝 ∥1
(𝑖,𝑏)

) )
. ⊲ This is for all heavy-hitter prefixes.

v. S𝑏 sends 𝑅
𝑗

(𝑖,𝑏) to S1−𝑏 . If 𝑅
𝑗

(𝑖,0) ≠ 𝑅
𝑗

(𝑖,1) , then S𝑏 removes 𝑖 from Reports.

vi. For 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1}: simulated S0 and S1 reconstruct 𝑦
𝛾

𝑖
:= J𝑦𝛾

𝑖
K0 + J𝑦𝛾

𝑖
K1.

b. For each 𝑗-bit heavy-hitting prefix 𝑝 ∈ HH𝑗
the aggregators prune on 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as: ⊲ Aggregation & Pruning.

i. Each S𝑏 accumulates Jweight𝛾 K𝑏 := Jweight𝛾 K𝑏 + J𝑦𝛾
𝑖
K𝑏 . ⊲ Each J𝑦𝛾

𝑖
K𝑏 is a vector of field elements F𝑚 .

ii. S0 and S1 recover weight𝛾 := Jweight𝛾 K0 + Jweight𝛾 K1. If order(weight𝛾 ) < T, then prune 𝛾 from the candidate prefix set.

Otherwise, accumulate
�HH𝑗+1

:= �HH𝑗+1 ∪ {𝛾 }.

If HH𝑗+1 ≠ �HH𝑗+1
then return (⊥,⊥) to FwHH for all corrupt clients.

5. For each level 𝑘 ∈ [ 𝑗 + 1, . . . , 𝑛 − 1] and prefix 𝑝 ∈ HH𝑘
:

a. For each candidate report 𝑖 ∈ Reports: ⊲ Path & One-hot Verifiability checks.

i. Each S𝑏 retrieves the state (J𝑦𝑝
𝑖
K𝑏 , st

𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) from memory corresponding to prefix 𝑝 and client C𝑖 .
ii. Each S𝑏 runs as (J𝑦𝛾

𝑖
K𝑏 , st

𝛾

(𝑖,𝑏) , 𝜋
𝛾

(𝑖,𝑏) ) := V .EvalH1 (key(𝑖,𝑏) , pub𝑖 , 𝛾, st
𝑝

(𝑖,𝑏) , 𝜋
𝑝

(𝑖,𝑏) ) for each prefix 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} and stores the results

in memory.

iii. The aggregators check that the output for prefix 𝑝 is equal to the sum of the outputs on prefixes 𝑝 ∥ 0 and 𝑝 ∥ 1. To do so, each S𝑏
computes ℎ

𝑝

(𝑖,𝑏) := (−1)
𝑏 · (J𝑦𝑝

𝑖
K𝑏 − J𝑦𝑝 ∥0

𝑖
K𝑏 − J𝑦𝑝 ∥1

𝑖
K𝑏 ) . ⊲ Observe that ℎ

𝑝

(𝑖,0) = ℎ
𝑝

(𝑖,1) .

iv. S𝑏 accumulates its local state as 𝑅𝑘
(𝑖,𝑏) := H

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(𝑖,𝑏) , 𝜋
𝑝 ∥0
(𝑖,𝑏) , 𝜋

𝑝 ∥1
(𝑖,𝑏)

) )
. ⊲ This is for all heavy-hitter prefixes.

v. S𝑏 sends 𝑅𝑘
(𝑖,𝑏) to S1−𝑏 . If 𝑅

𝑘
(𝑖,0) ≠ 𝑅𝑘

(𝑖,1) , then S𝑏 removes 𝑖 from Reports. ⊲ One hash for each client.

b. For each 𝑘-bit heavy-hitting prefix 𝑝 ∈ HH𝑘
the aggregators prune on 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as: ⊲ Aggregation & Pruning.

i. Each S𝑏 accumulates Jweight𝛾 K𝑏 := Jweight𝛾 K𝑏 + J𝑦𝛾
𝑖
K𝑏 . ⊲ Each J𝑦𝛾

𝑖
K𝑏 is a vector of field elements F𝑚 .

ii. S0 and S1 recover weight𝛾 := Jweight𝛾 K0 + Jweight𝛾 K1. If order(weight𝛾 ) < T, then prune 𝛾 from the candidate prefix set. Otherwise,

accumulate HH𝑘+1
:= HH𝑘+1 ∪ {𝛾 }. ⊲ order( ·) is decided by the aggregators.

6. Finally, the servers output HH𝑛
as the set of weighted T-heavy-hitters.

Hybrid HYB2𝑗 + 1

Figure 24: Hybrid HYB2𝑗 + 1 for the Robustness Proof (Cont. from Fig. 23).
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