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Abstract
Web users can gather data from secure endpoints and demonstrate

the provenance of sensitive data to any third party by using privacy-

preserving TLS oracles. In practice, privacy-preserving TLS ora-

cles remain limited and cannot verify larger, sensitive data sets. In

this work, we introduce new optimizations for TLS oracles, which

enhance the efficiency of selectively verifying the provenance of

confidential web data. The novelty of our work is a construction

which secures an honest verifier zero-knowledge proof system in

the asymmetric privacy setting while retaining security against

malicious adversaries. Concerning TLS 1.3 in the one round-trip

time (1-RTT) mode, we propose a new, optimized garble-then-prove

paradigm in a security setting with malicious adversaries. Our im-

provements reach new performance benchmarks and facilitate a

practical deployment of privacy-preserving TLS oracles in web

browsers.

Keywords
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Secure Two-party Computation, TLS Oracle

1 Introduction
In the current age of the Internet where generative artificial intel-

ligence (AI) boosts the spread of misinformation as never before,

industry leading companies combat misinformation with new data

provenance initiatives to maintain a responsible and verifiable data

economy [36, 46]. The goal of the initiatives is the establishment and

integration of data provenance solutions into today’s web, which

lacks support of verifiable data provenance. For instance, secure

channel protocols such as transport layer security (TLS) provide

confidential and authenticated communication sessions between

two parties: a client and a server. However, if clients present data of

a TLS session to any third party (e.g. website), then the third party

cannot verify if the presented data originated from an authentic
and correct TLS session (cf. top part of Figure 1). Thus, the third

party cannot verify the provenance of the TLS data. In the eyes of

the third party, TLS data counts as authentic if the origin of the data
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Figure 1: Illustration of TLS sessions in today’s web (top part)
and TLS sessions accompanied by a TLS oracle (bottom part).
TLS sessions, per default, are secure channels between two
parties and prevent a third-party from verifying the prove-
nance of TLS data. In contrast, TLS oracles use a trusted veri-
fier to audit and certify the provenance of TLS data, making
TLS data publicly verifiable.

can be verified. Further, TLS data counts as correct if the third-party
is able to verify the integrity of presented TLS data against a valid

TLS session.

To save a third party from individually verifying data prove-

nance, current approaches either require servers to attest to TLS

data via digital signatures [9, 45], or employ TLS oracles [43, 59].

Data attestation through servers is an efficient data provenance

solution but requires server-side software changes and access to a

certification infrastructure. By contrast, TLS oracles relieve servers
from maintaining a data provenance infrastructure by taking over

the provisioning and verification of data provenance. Due to the

seamless integration into the web, TLS oracles count as legacy-
compatible as they do not introduce any server-side changes. TLS

oracles depend on a verifier to examine the provenance of TLS

data (cf. Janus verifier at the bottom of Figure 1). To validate the

provenance of TLS data, the verifier captures the transcript of a
511
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TLS session and challenges the TLS client with a proof computa-

tion. If a TLS client can prove authenticity and correctness of secret
TLS session parameters against the captured TLS transcript at the

verifier , then the verifier certifies the TLS data of the client. With

the certificate, TLS clients are able to convince any third party of

data provenance if the third party trusts the verifier .
TLS oracles have originated in the context of blockchain ecosys-

tems, where TLS oracles originally solved the “oracle problem” of

importing trustworthy data feeds to isolated smart contracts [43,

58, 59]. However, TLS oracles are generally applicable to the Inter-

net, which makes them a crucial technique to build user-centric

and data-sovereign systems [17]. For instance, through TLS oracles,

users are able to present solvency checks without giving up control

and privacy of their data [38]. The accountability and credibility

guarantees of data provenance systems are used to combat price

discrimination [59], bootstrap legacy credentials [39], or attest if a

digital resource originated from a generative AI website [4].

Challenge: Even though different solutions exist, TLS oracles re-
main constrained in the amount of sensitive data they can validate.

This means that for larger sensitive resources such as confiden-

tial documents, images, or data sets, data provenance solutions

are impractical. For instance, clients are required to prove non-

algebraic encryption algorithms (e.g. AES128) in zero-knowledge

succinct non-interactive argument of knowledge (zkSNARK) proof

systems [59]. However, current zkSNARK proof systems operate

efficiently if the computed algorithm relies on algebraic structures

(e.g. MiMC [3]). Current approaches leverage the structure of TLS

1.3 stream ciphers and separate non-algebraic algorithms from the

computations performed by the zkSNARK proof system [43]. In this

case, the client is required to know the structure of TLS data in ad-

vance and cannot selectively verify dedicated parts of TLS records.

Even if the computation of non-algebraic algorithms is shifted into

a pre-computation phase [57], end-to-end (E2E) efficiency of private

provenance solutions remains expensive.

Contribution: Our work addresses the above mentioned limita-

tions with two new contributions. We leverage the fact that, in the

challenge phase (cf. stage 2 in Figure 1), TLS oracles introduce an

asymmetric privacy setting between collaboratively acting parties;

the TLS client and the verifier . We leverage the asymmetric pri-

vacy setting to construct a honest verifier zero-knowledge (HVZK)

proof system with security against malicious adversaries. Our con-

struction relies on a new validation phase which is unilaterally

performed by the client. The benefit of the HVZK proof system [29]

is that it efficiently evaluates non-algebraic algorithms and im-

proves proof computations in the challenge phase. Our approach

does not require a trusted setup security assumption. With that,

our work achieves new E2E benchmarks and solves a main bot-

tleneck of current TLS oracles; the efficient evaluation of legacy

algorithms without compromising on security guarantees. Our first

contribution applies to TLS oracles running TLS 1.2 or 1.3.

Our second contribution applies to TLS 1.3 in the one round-

trip time (1-RTT) mode. Here, we require the client to select a

cipher suite which is supported by the server . In a non-optimistic

scenario, the client is supposed to perform one pre-fetch call. If the

client sends a compliant client hello (CH) message during the TLS

1.3 handshake, then the server instantly responds with the entire

server-side handshake transcript. We leverage this effect and show

that the verifier can securely authenticate the server handshake

traffic secret (SHTS) in a malicious security setting. With access

to an authentic SHTS at the verifier , we run the garble-then-prove

paradigm [53] and rely on a semi-honest two party computation

(2PC) system which does not depend on authenticated garbling.

We detect malicious activities of a client by matching transcript

commitments against authenticity guarantees derived from SHTS.

We achieve performance advantages by utilising more lightweight,

semi-honest 2PC for the majority of TLS 1.3 computations.

Result: Our E2E benchmarks for TLS 1.3 verify 8 kB of public

TLS data in 0.58 seconds and verify 8 kB of sensitive TLS data in 6.7

seconds. Running TLS 1.2, we verify 8 kB of sensitive TLS data in

6.2 seconds. Concerning proof computations in the client challenge,

our work outperforms related approaches by a factor of 8𝑥 (cf. Sec-

tion 6.2) and relies on a security setting which does not require

a trusted setup assumption. In analogy to Roman mythology, we

name our contributions for TLS oracles after the god of transitions,

Janus. With that, the Janus optimizations guard an efficient transi-

tion of web resources into a representation where provenance can

be verified. In summary,

• We formalize the asymmetric privacy setting of TLS 1.2 and

TLS 1.3 oracles. We show that in the asymmetric privacy

setting, maliciously secure proof systems can be replaced

with a construction that combines a HVZK proof system and

a new unilateral validation phase.

• We optimize the efficiency of TLS 1.3 oracles by considering

SHTS authenticity guarantees during the garble-then-prove

paradigm while retaining security properties equivalent to

previous works.

• We analyse the security of our constructions (cf. Appen-

dix B), provide performance benchmarks (cf. Section 6), and

open-source
1
the implementation of our secure computation

building blocks.

2 Preliminaries
This section highlights the key concepts of TLS which data prove-

nance solutions build upon. Extensive details of each cryptographic

construction or protocol are in the Appendix A.

2.1 General Notations
The TLS notations of this work are introduced in Section 2.2, and

closely follow the notations of the work [16]. Further, we denote vec-

tors as bold characters x = [𝑥1, . . . , 𝑥𝑛], where 𝑙𝑒𝑛(x) = 𝑛 returns

the length of the vector. Base points of elliptic curves are repre-

sented by 𝐺 ∈ 𝐸𝐶 (F𝑝 ), where the finite field F is of a prime size

𝑝 . For elliptic curve elements, the operators ·,+ refer to the scalar

multiplication and addition of elliptic curve points 𝑃 ∈ 𝐸𝐶 (F𝑝 ). The
symbol 𝜆 indicates the security parameter. For bits or bit strings, the

operators · represents the logical AND, and ⊕ represents the logical

XOR. Other operators describe a random assignment of a variable

with

$←, the concatenation of strings with | |, and the comparison

of variables with

?

=.

1
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Table 1: Notations and formulas of TLS variables.

Variable Formula

H2 H(ClientHello∥ServerHello)

H3 H(ClientHello∥. . . ∥ServerFinished)

H6 H(ClientHello∥. . . ∥ServerCert)

H7 H(ClientHello∥. . . ∥ServerCertVfy)

H9 H(ClientHello∥. . . ∥ClientCertVfy)

label11 “TLS 1.3, server CertificateVerify”

(kSATS, ivSATS) | DeriveTK(s=SATS|CATS) =
(kCATS, ivCATS) ( hkdf.exp(s,“key”,H(“ ”),len(𝑘)),

hkdf.exp(s,“iv”,H(“ ”),len(𝑖𝑣)) )

2.2 Transport Layer Security
TLS is a standardized suite of cryptographic algorithms to establish

secure and authenticated communication channels between two

parties. TLS exists in different versions; TLS 1.2 and TLS 1.3. TLS

has two phases, where the handshake phase derives cryptographic
parameters to secure data sent in the record phase. TLS relies on the

algorithms of hash-basedmessage authentication code (HMAC) and

HMAC-based key derivation function (HKDF) to securely derive

cryptographic parameters and relies on digital signatures to authen-

ticate parties (cf. ds.Sign, ds.Verify, hkdf.ext, hkdf.exp, hmac
in Figure 2). We provide further details of TLS-specific security

algorithms in the Appendix A and present TLS-specific transcript

hashes, labels, and key derivation functions of traffic keys in Table 1.

2.2.1 Handshake Phase. Key Exchange and Key Derivation: To
establish a secure channel between a server and a client, TLS relies

on the Diffie-Hellman key exchange (DHKE) to securely exchange

cryptographic secrets between two parties (cf. Figure 2, lines 1-4).

For example, with TLS 1.3 configured to use elliptic curve cryptog-

raphy, parties protect secrets 𝑥,𝑦 with an encrypted representation

𝑋,𝑌 and exchange 𝑋,𝑌 via the CH and server hello (SH) mes-

sages𝑚CH,𝑚SH. With access to 𝑋,𝑌 , only the client and server can

securely derive the Diffie–Hellman ephemeral (DHE) key, where

DHE = 𝑥 · 𝑦 · 𝐺 = 𝑦 · 𝑋 = 𝑥 · 𝑌 holds. Both parties continue to

use DHE to derive traffic secrets. In the TLS 1.3 1-RTT mode, the

server is able to encrypt all server-side handshake messages after

receiving a supported client key share in the CH message𝑚CH.

In contrast, TLS 1.2 exchanges the messages𝑚CH,𝑚SH in plain

and refers to the DHE value as the premaster secret. TLS 1.2 uses the

premaster secret together with the client and server randomness to

derive a master secret, which, in turn, is used to derive traffic secrets.

When TLS 1.2 is configured to use authenticated encryption with

associated data (AEAD) based on stream ciphers, TLS 1.2 generates

two application traffic keys to secure record phase traffic (𝑘CATS,

𝑘SATS). Otherwise, if TLS 1.2 uses a cipher block chaining (CBC)

mode to encrypt records, TLS 1.2 generates additional message

authentication code (MAC) keys. In contrast to the Galois Counter

Mode (GCM) mode, the CBC mode counts as key-committing [20,

57], which guarantees the existence of a non-ambiguous mapping

between traffic secrets and authentication tags. Per default, TLS 1.3

generates two keys (𝑘CHTS, 𝑘SHTS) to secure handshake traffic and

generates two keys to secure record traffic (𝑘SATS, 𝑘CATS). Due to the

key-independence property of TLS 1.3 [15], disclosing handshake

TLS Handshake between the client 𝑐 and server 𝑠:

inputs: 𝑥
$← F𝑝 by 𝑐 . (𝑦

$← F𝑝 , 𝑠𝑘𝑆 , 𝑝𝑘𝑆 ) by 𝑠 .
outputs: (tkCATS, ivCATS, tkSATS, ivSATS) to 𝑐 and 𝑠 .

1. 𝑐: 𝑋 = 𝑥 ·𝐺 ; send 𝑋 in𝑚CH

2. 𝑠: 𝑌 = 𝑦 ·𝐺 ; send 𝑌 in𝑚SH

3. 𝑏: dES = hkdf.exp(hkdf.ext(0,0),“derived” | | H(“ ”))
4. 𝑏: DHE = 𝑥 · 𝑦 ·𝐺 ; HS = hkdf.ext(dES, DHE)
5. 𝑏: SHTS = hkdf.exp(HS,“s hs traffic” | | H2)

6. 𝑏: CHTS = hkdf.exp(HS,“c hs traffic” | | H2)

7. 𝑏: (kCHTS, ivCHTS) =DeriveTK(CHTS)

8. 𝑏: (kSHTS, ivSHTS) =DeriveTK(SHTS)

9. 𝑏: fk𝑆 = hkdf.exp(SHTS, “finished” | | “ ”)
10. 𝑠: SCV=ds.Sign(𝑠𝑘𝑆 ,label11 | |H6); send SCV in𝑚SCV

11. 𝑠: SF = hmac(fk𝑆 , H7); send SF in𝑚SF

12. 𝑐: SF’ = hmac(fk𝑆 , H7); verify SF’

?

= SF

13. 𝑐: ds.Verify(𝑝𝑘𝑆 , label11 | | H6, SCV)

?

= 1

14. 𝑏: fk𝐶 = hkdf.exp(CHTS, “finished” | | “ ”)
15. 𝑐: CF = hmac(fk𝐶 , H9); send CF in𝑚CF

16. 𝑠: CF’ = hmac(fk𝐶 , H9); verify CF’

?

= CF

17. 𝑏: dHS = hkdf.exp(HS,“derived” | | H(“ ”))
18. 𝑏: MS = hkdf.ext(dHS, 0)
19. 𝑏: CATS = hkdf.exp(MS, “c ap traffic” | | H3)

20. 𝑏: SATS = hkdf.exp(MS, “s ap traffic” | | H3)

21. 𝑏: (kCATS, ivCATS) =DeriveTK(CATS)

22. 𝑏: (kSATS, ivSATS) =DeriveTK(SATS)

Figure 2: TLS 1.3 specification of session secrets and keys.
Characters at the beginning of lines indicate if the server 𝑠,
the client 𝑐, or both parties 𝑏 call the functions per line.

traffic secrets (e.g. SHTS) does not compromise the security of

record traffic secrets. For instance, to compute the server application

traffic secret (SATS), a party requires access to the handshake secret

(HS). Even though, HS is used to derive SHTS (cf. line 5 of Figure 2),

hkdf.exp prevents the reconstruction of HS from SHTS.

Authenticity: To mutually authenticate each other, both parties

exchange certificates and compute authentication parameters (cf.

Figure 2, lines 9-16). Notice that in TLS, client-side authentication

is optional, which is why we omit client certificates in Figure 2.

But, we show the computations of the server finished (SF) and

client finished (CF) values, because, to constitute an authenticated

TLS session, both parties must successfully exchange and verify

the SF and CF messages𝑚SF,𝑚CF. For a server-side authentication,

the server computes the certificate verification value (e.g. SCV),

which binds a Public Key Infrastructure (PKI) X.509 certificate to

the TLS transcript via a digital signature [1]. Here, the signature is

computed with the server secret key 𝑠𝑘𝑆 and is verified with the

corresponding server public key 𝑝𝑘𝑆 . The client obtains the server

public key 𝑝𝑘𝑆 in the PKI certificate and aborts the TLS session if

the signature verification fails.

2.2.2 Record Phase. The TLS record phase requires parties to pro-

tect data with authenticated encryption (AE) algorithms before data

can be exchanged. AE algorithms translate plaintext data pt into a
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Figure 3: Example of a garbled circuit C expressing the func-
tion 𝑓 of a secure computation via boolean logic gates. Every
circuit wire𝑤𝐿 is encoded with secret internal labels i, a se-
cret and random signal bit 𝜎𝐿 , external labels e=𝜎𝐿 ⊕ i (where
𝑖, 𝑒, 𝜎 ∈ {0, 1}), and wire keys ki

𝐿 . Internal labels are associated
with input data bits and the lists 𝑻 𝑙−𝑑 map output labels to
output data bits.

confidential and authenticated representation (ct, 𝑡 ), with cipher-

text ct and authentication tag 𝑡 . Ciphertext data is computed based

on block or stream cipher algorithms and depends on keys estab-

lished in the handshake phase. We elaborate on TLS data protection

algorithms in the Appendix A.4.

2.3 Cryptographic Building Blocks
This section provides an overview of the cryptographic fundamen-

tals that support the Janus optimizations. Formal descriptions of

cryptographic building blocks can be found in the Appendix A.

2.3.1 Semi-honest 2PC with Garbled Circuits (GCs). Secure 2PC

allows two mutually distrusting parties with private inputs 𝑥 , 𝑦 to

jointly compute a public function 𝑓 (𝑥,𝑦) without learning the coun-
terparty’s private input [34, 55]. A 2PC system based on boolean

garbled circuits involves a party 𝑝1 with input x as the garbler

and party 𝑝2 with input y as the evaluator. Party 𝑝1 is supposed

to generate the garbled circuit 𝑮 (C), where the boolean circuit

C implements the logic of the public function 𝑓 (cf. Figure 3). To

generate the garbled circuit, 𝑝1 randomly samples wire keys k0

𝐿,k
1

𝐿

and a signal bit 𝜎𝐿 at every wire𝑤𝐿 . For the purpose of evaluating

the function 𝑓 , wire keys ki
𝐿 encode binary data representations

of 𝑓 using internal labels i. The purpose of signal bits is twofold.
Signal bits encrypt internal bits to external bits 𝑒𝐿=𝜎 ⊕ i which can

be shared with 𝑝2. With that, signal bits enable the evaluator to

discover valid entries of garbled tables 𝐺 (C) through external bits

𝑒 [26]. Further, signal bits randomize garbled truth tables 𝐺 (C) to
obfuscate truth table bit mappings.

Once wire keys, signal bits, and external labels exist, 𝑝1 com-

putes the garbled table entries as follows. Per row of table 𝐺 (C)
(cf. Figure 3), the bit tuples in the left column are combinations

of external labels which correspond to incoming gate wires. The

right column contains double encrypted wire keys that correspond

to outgoing gate wires. For gates yielding output labels, garbled

entries encrypt wire keys. For intermediate gates, garbled entries

encrypt wire keys concatenated with corresponding external labels.

After garbling a circuit, 𝑝1 shares 𝑮 (C), 𝑻 𝑙−𝑑 , and, if x=[1,0],
(𝑘1𝑎, 𝑒=0) and (𝑘0𝑏 , 𝑒=1) with 𝑝2. To obtain wire keys that correspond
to the input bits of y, 𝑝2 interacts with 𝑝1 in two 1-out-of-2 Obliv-

ious Transfer (OT) protocols (cf. Section 2.3.2). The OT protocol

requires 𝑝1 to share 𝑘
y
𝑒 , 𝑘

y
𝑑
with corresponding external values with

𝑝2. Further, the OT scheme gives 𝑝2 access to the keys (𝑘0𝑐 , 𝑒=0) and
(𝑘1
𝑑
, 𝑒=0) if y=[0,1], and prevents 𝑝1 from learning 𝑝2’s selection of

wire keys. With access to 𝑮 (C), input wire keys and corresponding
external labels, 𝑝2 is able to evaluate the garbled circuit. To evaluate

the first output bit, 𝑝2 decrypts the third entry of table𝐺 (C0,(1,2)
𝐴𝑁𝐷

)
and obtains (𝑘0𝑒 , 𝑒=0). With that, 𝑝2 continues to decrypt the first

entry of table𝐺 (C1,(0,1)
𝐴𝑁𝐷

) to obtain 𝑘0
𝑓
(cf. Figure 3). Last, 𝑝2 decodes

𝑘0
𝑓
using the decoding table 𝑇 0

𝑙−𝑑 to obtain the first output bit 0. If

required, 𝑝2 shares the obtained 2PC output back to 𝑝1.

2.3.2 Oblivious Transfer. Secure 2PC based on GCs depends on the

1-out-of-2 OT
1

2
sub protocol to secretly exchange input parameters

of the circuit [11]. The OT
1

2
scheme involves two parties where

party 𝑝1 sends two messages𝑚1,𝑚2 to party 𝑝2. Party 𝑝1 does not

learn which of the two messages𝑚𝑏 is revealed to party 𝑝2. Party

𝑝2 inputs a secret bit 𝑏 which decides the selection of the message

𝑚𝑏 . In this work, we make use of the OT
1

2
scheme defined in the

work [11], which does not require a trusted setup. The trusted

setup procedure introduces a third party which (i) takes over the

generation of cryptographic material and (ii) is trusted to delete

the underlying random parameters of the material.

2.3.3 2PC with Malicious Adversaries. We consider the work [27]

to secure the semi-honest 2PC defined in Section 2.3.1 against ma-

licious adversaries. The dual-execution mode in [27] runs two in-

stances of the semi-honest 2PC, where both parties 𝑝1 and 𝑝2 succes-

sively act as the garbler and evaluator. Subsequently, both parties

interact in a secure validation phase to verify if both executions

yield the same output. We describe details of the maliciously secure

2PC system in the Appendix A.5.5.

2.3.4 Zero-knowledge Proofs based on Garbled Circuits. Proof sys-
tems allow a prover 𝑝 to convince a verifier 𝑣 of whether or not a

statement is true. In theory, proof systems rely on a NP language L
and the existence of an algorithm 𝑅L , which decides in polynomial

time if witness𝑤 is a valid proof for the statement 𝑥 ∈ L by evaluat-

ing 𝑅L (𝑥,𝑤)
?

= 1. The assumption is that for any statement 𝑥 ∈ L,
there exist a valid witness𝑤 and no witness exists for statements

𝑥 ∉ L [41, 50]. Proof systems provide the properties, where

Completeness ensures that an honest prover convinces an honest

verifier by presenting a valid witness for a statement.

Soundness guarantees that a cheating prover cannot convince a

honest verifier by presenting an invalid witness for a statement.

Zero-knowledge guarantees that a malicious verifier does not learn

anything except the validity of the statement.

HVZK holds if the zero-knowledge property can be shown for a

semi-honest verifier, who honestly follows the protocol definition.

514



Janus Proceedings on Privacy Enhancing Technologies 2025(1)

Interestingly, zero-knowledge is a subset of secure 2PC and a

zero-knowledge proof (ZKP) can be computed using GC-based 2PC

if only one party inputs private data. In this work, we make use of

the HVZK notion based on boolean GCs [29]. In this setting, the

garbler and constructor of the GC acts as the verifier and is assumed

to behave semi-honest. The GC evaluates a function 𝑓 , which yields

{0, 1}. The evaluator, as the prover, obtains the GC, input wire keys
and corresponding external labels but does not obtain the decoding

table. After the prover evaluates the GC and returns the wire key

which corresponds to a 1, the verifier is convinced of the proof.

Formal security proofs for completeness, soundness, and HVZK of

the garbled circuits proof system are provided in the work [29].

2.3.5 Cryptographic Commitments. Commitment schemes allow a

party to hide a message string𝑚 via a commitment string 𝑐 . The

c.Commit algorithm outputting 𝑐 takes as input the message𝑚

and a secret commitment randomness 𝑟 . To verify if𝑚 computes to

𝑐 under randomness 𝑟 requires a party to call an opening algorithm

c.Open, which takes as input𝑚,𝑐, 𝑟 . Commitments count as binding

if a non-ambiguous mapping between𝑚, 𝑟 towards 𝑐 exist.

Commitments are often used in protocols which rely on ZKP

cryptography. Using a ZKP to compute the c.Open function allows

a prover to convince the verifier from knowing a valid commit-

ment opening without revealing the witness. We formally define

commitment schemes in the Appendix A.8

2.3.6 Secret Sharing. Secret sharing involves a trusted dealer to

break a secret into shares with a ss.Share algorithm. Shares are dis-

tributed to qualified recipients which can reconstruct the secret by

computing individual shares back together with a ss.Reconstruct
algorithm [24]. In this work, we consider secret sharing with an

access structure of 𝑡=𝑛=2, where 𝑡 out of𝑛 parties must add together

secret shares to reconstruct the secret [47]. We provide the formal

definition of secret sharing in the Appendix A.7.

3 System Model
The system model defines system roles, the threat model, and sys-

tem goals in form of security properties.

3.1 System Roles & Adversarial Behavior
Clients establish a TLS sessionwith servers, query data from servers,
and present TLS data proofs to the verifiers. We assume that clients
behave maliciously and arbitrarily deviate from the protocol speci-

fication in order to learn secret shares of TLS parameters. Further,

malicious clients try to learn any information that contributes to

convincing the verifier of false statements on presented TLS data.

Servers participate in TLS sessions with clients and return record

data upon the reception of compliant API queries. We assume hon-

est servers which follow the protocol specification.

Verifiers act as proxies and take over the role of TLS oracle verifiers.

Verifiers are configured at the client and route TLS traffic between

the client and the server . We assume malicious verifiers deviating
from the protocol specification with the goal to learn TLS session

secret shares or private session data of clients.

3.2 Threat Model
We rely on a threat model with secure TLS communication channels

between clients and servers (TLS security guarantees hold). Further,

we assume that fresh randomness is used per TLS session. Network

traffic, even if it is intercepted via a machine-in-the-middle (MITM)

attack by the adversary (e.g. the client), cannot be blocked indefi-

nitely. We assume up-to-date Domain Name System (DNS) records

at the verifier such that the verifier can resolve and connect to

correct Internet Protocol (IP) addresses of servers. The IP address

of a server cannot be compromised by the adversary such that ad-

versaries cannot request malicious PKI certificates for a valid DNS

mapping between a domain and a server IP address. Servers share
valid PKI certificates for the authenticity verification in the TLS

handshake phase. Server impersonation attacks are infeasible be-

cause secret keys, which correspond to exchanged PKI certificates,

are never leaked to adversaries. Our protocol imposes multiple

verification checks on the client and the verifier , where failing veri-

fication leads to protocol aborts at the respective parties. All system

roles are computationally bounded and learn message sizes of TLS

transcript data. For employed ZKP systems, we expect complete-

ness, soundness, and HVZK to hold. We assume that the client and
verifier do not collude.

3.3 System Goals
The following security properties concern the client and verifier as
the server is assumed to behave honestly.

Session-authenticity guarantees that verifiers attest web traffic

which originates from an authentic TLS session. Authenticity is

guaranteed if the verifier successfully verifies the PKI certificate of

the server.

Session-integrity guarantees that a malicious client and verifier
cannot deviate from the TLS specification if a TLS session has been

authenticated. This means that an adversary cannot modify server-

side or client-side TLS traffic in any TLS phase. Notice that for

client-side TLS traffic of the record phase, a malicious client is able
to send arbitrary queries to the server , such that servers decide if
queries conform with API handlers.

Session-confidentiality guarantees that the verifier neither learns
any entire TLS session secrets nor any record data which has been

exchanged between the client and the server . Further, the notion
guarantees that the verifier learns nothing beyond the fact that a

statement on TLS record data is true or false.

MITM-resistance guarantees that the properties of session-integrity,
session-authenticity, and session-confidentiality hold in a system set-

ting, where adversaries are capable of mounting MITM attacks.

4 Optimizing Proof Computations In The
Asymmetric Privacy Setting

We analyze TLS oracles with regard to performance tradeoffs and

the asymmetric privacy setting (cf. Section 4.1). Next, we deploy

a HVZK proof system in the asymmetric privacy setting (cf. Sec-

tion 4.2). Our construction relies on a new secure validation phase to

establish security against malicious adversaries (cf. Appendix B.1).
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Figure 4: High-level protocol of TLS oracles. After the key
derivation computation (KDC), it holds that 𝑘𝑋 = 𝑘𝑣𝑋 + 𝑘𝑐𝑋 ,
where 𝑋 indicates server or client side AE keys. Algorithms
executed by two parties are surrounded by red boxes and
achieve security against malicious adversaries. The syntax
‘?encryption_mode:’ on arrows applies the arrow if the TLS
oracle configured the questioned encryption mode.

4.1 Analyzing Oracles & Asymmetric Privacy
In this section, we analyze the performance bottlenecks of TLS

oracles and identify the conditions of asymmetric privacy.

4.1.1 Three-party Handshake. TLS oracles turn the two-party pro-

tocol of TLS into a three-party protocol by introducing a veri-
fier [43]. The verifier ensures that the TLS data of the client pre-
serves integrity according to an authenticated TLS session via a

verifiable computation trace. To audit the integrity of TLS data, the

verifier and client establish a mutually vetting but collaborative TLS

client. To construct a collaborative TLS client, TLS oracles replace

the TLS handshake with a three-party handshake (3PHS) [43, 59].

In the 3PHS, every party injects secret randomness such that the

DHE secret on the client-side depends on two secrets. As such,

the DHE value, which is individually derived at the server , can be

jointly reconstructed if the client and verifier add shared secrets

together. Appendix A.1 presents the cryptography of the 3PHS.

The consequence of the 3PHS is that the client depends on the

computational interaction with the verifier to proceed in a TLS ses-

sion with the server . The client preserves computational integrity

according to the TLS specification if the joint TLS computations

with the verifier progress. Without access to the secret share of the

verifier , clients cannot derive and use full TLS secrets and encryp-

tion keys that are required for the secure session with the server .
Introducing false session parameters on the client side leads to a

TLS session abort at the server.

4.1.2 Client-side Two-party Computation. With secret shared TLS

parameters, the client and verifier proceed according to the TLS

specification by using secure 2PC techniques [10, 59]. To achieve

efficient secure 2PC [43, 59], TLS oracles convert secret-shared

DHE values in form of elliptic curve (EC) coordinates into bit-

wise additive secret shares with the Elliptic Curve to Field (ECTF)

algorithm (cf. Appendix A.5) [19]. Additive secret shares can be

efficiently added together in 2PC circuits that are based on boolean

GCs [12, 27, 52, 55, 59]. After the ECTF conversion (cf. Figure 4),

the client and verifier perform the TLS key derivation and record

phase computations using maliciously secure 2PC based on boolean

GCs, which comes with optimized binary circuits for the required

computations (e.g. AES) [24, 25].

Mac-then-Encrypt (e.g. CBC-HMAC). The efficiency of TLS or-

acles in the record phase heavily depends on the cipher suite

configuration. If TLS uses Mac-then-Encrypt (MtE) AE (TLS 1.2

with cipher block chaining hash-based message authentication

code (CBC-HMAC)), then the client and verifier end up deriving

four secret-shared keys in the handshake phase:

• 𝑘𝐶𝐴𝑇𝑆=𝑘𝑣𝐶𝐴𝑇𝑆+𝑘𝑐𝐶𝐴𝑇𝑆 to encrypt request data pt𝑟𝑒𝑞 .
• 𝑘𝑆𝐴𝑇𝑆=𝑘𝑣𝑆𝐴𝑇𝑆+𝑘𝑐𝑆𝐴𝑇𝑆 to encrypt response data pt𝑟𝑒𝑠𝑝 .
• 𝑘𝑡

𝐶𝐴𝑇𝑆
=𝑘𝑣𝑡

𝐶𝐴𝑇𝑆
+𝑘𝑐𝑡

𝐶𝐴𝑇𝑆
to authenticate requests t𝑟𝑒𝑞 .

• 𝑘𝑡
𝑆𝐴𝑇𝑆

=𝑘𝑣𝑡
𝑆𝐴𝑇𝑆

+𝑘𝑐𝑡
𝑆𝐴𝑇𝑆

to authenticate responses t𝑟𝑒𝑠𝑝 .

The verifier can disclose the encryption keys 𝑘𝑣𝑆𝐴𝑇𝑆 , 𝑘𝑣𝐶𝐴𝑇𝑆 to the

client. However, key shares to compute authentication tags must

be kept private in order to control the integrity of joint TLS compu-

tations [59]. Partly disclosing key shares improves the efficiency of

2PC computations in the record phase. Because, clients can encrypt

or decrypt records locally without costly 2PC calls. Concerning

the computation of MtE authentication tags, the 2PC complexity

remains independent of record sizes (e.g. using a 2PC-optimized

evaluation of HMAC) [59].

Another benefit of CBC-HMAC is that it counts as key commit-

ting [20, 59], which guarantees the existence of an unambiguous

mapping between a TLS session key and record data. As a conse-

quence, capturing ct is the only requirement for the verifier before
secret shares can be disclosed to the client. TLS oracles use the key
committing property and simplify the ZKP computation during the

client challenge to (i) three invocations of advanced encryption

standard (AES) and (ii) a selective data opening which leverages

the Merkle–Damgård construction [18, 59].

AEAD (e.g GCM / CHACHA20_POLY1305). If TLS is configured
to protect records with AEAD algorithms (TLS 1.3 and optionally

TLS 1.2), then the client and verifier derive two secret-shared keys

(𝑘𝐶𝐴𝑇𝑆=𝑘𝑣𝐶𝐴𝑇𝑆+𝑘𝑐𝐶𝐴𝑇𝑆 , 𝑘𝑆𝐴𝑇𝑆=𝑘𝑣𝑆𝐴𝑇𝑆+𝑘𝑐𝑆𝐴𝑇𝑆 ). Thus, to maintain

session-integrity, the verifier cannot disclose any secret shared

AEAD key in the record phase before receiving a commitment.

Since keys are not decoupled as with CBC-HMAC, the efficiency

of TLS oracles running AEAD cipher suites deteriorates for larger

record sizes. The bottleneck is the 2PC computation of authentica-

tion tags, which evaluate algebraic structures over all ciphertext

chunks (e.g. polynomials over large fields GF(2
128

) for GCM and

GF(2
130 − 5) for POLY1305).

Insight 1: The performance of 2PC AEAD tag computa-
tions deteriorates for larger record sizes.

Further, AEAD configurations require special attention as AEAD

cipher suites are not key committing [21–23, 37, 57]. This means

that an adversary can perform commitment attacks [40]. For ex-

ample, the message franking attack finds two messages𝑚1 ≠ 𝑚2
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CMtE(pt, 𝑘𝑐 , 𝑘𝑐𝑡 ; 𝑘𝑣 , 𝑘𝑣𝑡 , ct𝛼=ct[end-3:], 𝜙):

1. t’ = HMAC(𝑘𝑐𝑡 + 𝑘𝑣𝑡 , pt)
2. ct𝛼 ’ = AES(𝑘𝑐 + 𝑘𝑣 , t’)

3. assert: ct𝛼
?

= ct𝛼 ’, 1
?

= 𝑓𝜙 (pt)
CAEAD(pt, 𝑘𝑐 ; 𝑘𝑣 , ct, iv, 𝑡𝛼 , c𝑘 , 𝜙):
1. 𝑡𝛼 ’ = [ AES(𝑘𝑐 + 𝑘𝑣 , 0) , AES(𝑘𝑐 + 𝑘𝑣 , iv||1) ]
2. ct’ = AES(𝑘𝑐 + 𝑘𝑣 , pt); c𝑘 ’ = commit(𝑘𝑐)

3. assert: 𝑡𝛼
?

= 𝑡𝛼 ’, c𝑘
?

= c𝑘 ’, ct
?

= ct’, 1 ?

=𝑓𝜙 (pt)

Figure 5: Circuit logic of ZKPs in the client challenge. The
semicolon ; separates private inputs (left side) from public
inputs (right side). The function 𝑓𝜙 evaluates conditions ex-
pressed by a public statement 𝜙 on the plaintext pt.

and two keys 𝑘1 ≠ 𝑘2 such that encrypting 𝑚1 under 𝑘1 and en-

crypting𝑚2 under 𝑘2 yield the same ciphertext 𝑐𝑡 and tag 𝑡 [13].

This attack is problematic and would break session-integrity and,

with that, session-authenticity. In other words, a successful attack

allows the client to prove arbitrary TLS data as TLS-authentic in

the client challenge. TLS oracles solve this attack by letting the

client disclose a commitment of the key share to the verifier (cf.
Figure 4) [59]. The extra commitment binds the client to a fixed key
share, which is verified during the client challenge. Fixing the key

share must happen before the verifier discloses remaining session

secrets (e.g. kvX in Figure 4). Otherwise, an attacker can arbitrarily

compute valid authentication tags and ciphertext chunks, which is

a prerequisite to perform the attack [13].

4.1.3 Client Challenge in Asymmetric Privacy Setting. Once the

client has gathered enough TLS data, the verifier reveals remaining

secret shares to the client (cf. Figure 4). When the client obtains full
access to session secrets, an asymmetric privacy setting between the

client and verifier is established. Now, the client is able to access TLS
data by decrypting exchanged records which the verifier cannot.

To preserve session-integrity, the verifier confronts the client

with irreversible challenges via ZKP circuits (cf. Figure 5). For ci-

pher suites running MtE, the client must prove that the plaintext

evaluates against the authentication tag which is encrypted un-

der the last three ciphertext chunks. For AEAD cipher suites, the

client shows that the secret key share 𝑘𝑐 (i) maps to the previously

shared key share commitment, (ii) connects plaintext and cipher-

text chunks, and (iii) evaluates to intermediate values 𝑡𝛼 for the tag

computation. Here, the verifier validates public ZKP inputs (e.g. 𝑡𝛼 )

out-of-circuit, which have been shared by the client.
Current TLS oracles rely on proof systems (e.g. Groth16), which

efficiently evaluate algebraic or zkSNARK-friendly arithmetic [10,

18, 53, 57, 59]. However, the ZKP circuits of TLS oracles (cf. Figure 5)

heavily depend on legacy algorithms (e.g. AES or SHA256) which

rely on zkSNARK non-friendly, non-algebraic arithmetic.

Insight 2: Proof systems are not tailored to the arithmetic
requirements and the privacy setting found in TLS oracles.

4.2 HVZK and Asymmetric Privacy
This section picks up on our second insight (cf. Section 4.1.3) and

formalizes asymmetric privacy. In the asymmetric privacy setting,

we secure a HVZK proof system, which efficiently proves non-

algebraic statements, against malicious adversaries. Subsequently,

we show how our formal definitions apply to TLS.

4.2.1 Formalizing Asymmetric Privacy. In the scope of this work,

we formalize asymmetric privacy in a setting with three parties;

parties 𝑝1 and 𝑝2 and a trusted dealer 𝑑 . We rely on a maliciously

secure 2PC scheme Π2PC, a secure commitment scheme ΠCom, and

a secret sharing scheme ΠSS (cf. Appendix A for formal definitions).

To set up an asymmetric privacy setting between 𝑝1 and 𝑝2, the

dealer 𝑑 calls ΠSS.Share and individually shares 𝑟1 with 𝑝1 and 𝑟2
with 𝑝2. It holds that the secret shares 𝑟1+𝑟2 sum to 𝑟 . We define

two cases to commit a message string𝑚 into a commitment string

𝑐 using 𝑟 . The first case requires 𝑝1 and 𝑝2 to execute a circuit

C in the 2PC scheme Π2𝑃𝐶 , where C calls ΠSS.Reconstruct and
ΠCom.Commit. In this case, 𝑝1 inputs𝑚 and 𝑟1 and 𝑝2 inputs 𝑟2. Af-

ter the commitment 𝑐 has been computed and disclosed, 𝑝2 releases

the secret share 𝑟2 to 𝑝1, and, with that, initiates the asymmetric

privacy setting. Now, 𝑝1 can reconstruct 𝑟 . With access to𝑚 and 𝑟 ,

only 𝑝1 is capable of successfully proving ΠCom.Open.
For the second case, the trusted dealer computes and discloses

the commitment string 𝑐 on a message string𝑚 with randomness

𝑟 . If the trusted dealer performs the commitment, then the dealer

additionally shares the message string𝑚 with a party (e.g. with 𝑝1).

To set up the asymmetric privacy setting, 𝑝2 discloses the secret

share 𝑟2 after receiving the commitment string 𝑐 from the dealer. In

the second case, the dealer and 𝑝1 have access to 𝑟 and can prove a

successful commitment opening to 𝑝2.

4.2.2 HVZK and Selective-failure Attacks. To improve the perfor-

mance of proof computations during the client challenge (cf. Fig-

ure 4), we deploy a HVZK proof challenge to evaluate the circuits

of Figure 5. We consider the asymmetric privacy setting between

𝑝1 as the client and 𝑝2 as the verifier , where 𝑝1 has access to all

TLS session secrets. The proof system of the work [29] uses semi-

honest 2PC based on boolean garbled circuits to achieve the notion

of HVZK and assumes an honest verifier (cf. Section 2.3.4). How-

ever, in a setting with malicious adversaries, semi-honest 2PC is

susceptible to selective failure attacks [52]. Notice that if a mali-

cious 𝑝2 intentionally corrupts one or multiple rows of the garbling

tables, 𝑝2 can learn information on which row has been evaluated

by 𝑝1. On top and with knowledge of the row permutations, 𝑝2 is

capable of deriving secret information of 𝑝1’s inputs. In the follow-

ing subsection, we introduce a secure validation protocol which is

unilaterally performed by 𝑝1. The validation detects a maliciously

acting 𝑝2 before any secrecy leakage occurs.

4.2.3 Unilateral Secure Validation. The unilateral secure validation
is performed once 𝑝1 obtains all public semi-honest 2PC parame-

ters of the HVZK proof system [29], which comprise garbled tables

𝑮 (CHVZK) and external labels e (cf. Section 2.3.1). The parties 𝑝2
and 𝑝1 exchange wire keys k corresponding to the private inputs

pt via the OT1

2
oblivious transfer protocol [11] and 𝑝2 omits sharing

the output label decoding table 𝑻 𝑙−𝑑 . The party 𝑝2, acting as the

garbler and verifier , is convinced of the HVZK proof if 𝑝1, acting
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Unilateral Secure Validation

Figure 6: Secure unilateral validation protocol in the asym-
metric privacy setting to assert correct garbling of CHVZK.

as the evaluator and client, returns the output wire key that corre-

sponds to the output bit 1. Depending on the cipher suite, the 2PC

circuit CHVZK implements the logic of the circuits CMtE or CAEAD
(cf. Figure 5) and yields a 1 if all assertions are satisfied.

In the default HVZK proof system [29], the client 𝑝1 must return

the output wire key back to the verifier 𝑝2 to complete the HVZK

proof protocol. However, to achieve security in a malicious setting,

we require 𝑝1 to run a new secure validation phase (cf. Figure 6). The

unilateral validation enforces 𝑝1 to share a commitment 𝑐𝑘𝑜𝑢𝑡 of the

output wire key. After sharing the commitment 𝑐𝑘𝑜𝑢𝑡 , 𝑝2 discloses

all garbling parameters of the semi-honest 2PC computationwith 𝑝1.

Revealing all garbling parameters allows 𝑝1 to verify if C𝐻𝑉𝑍𝐾 has

been garbled correctly by recomputing the garbled circuit. And, due

to the asymmetric privacy setting, 𝑝1 learns nothing new because

all TLS session secrets of 𝑝2 have already been shared with 𝑝1. If 𝑝1
detects a malicious garbling, then 𝑝1 aborts the protocol. Otherwise,

𝑝1 discloses the commitment randomness 𝑟 such that 𝑝2 can verify

the correct output wire key via 𝑐𝑘𝑜𝑢𝑡 . We show the security of this

construction in the Appendix B.1.

4.2.4 TLS Compatibility. Our formalization is compatible with the

typical TLS oracle setting with a single verifier . The server takes
over the role of the trusted dealer to set up multiplicative secret

shares between the client parties via the 3PHS. Subsequently, the

ECTF protocol converts client secret shares into an additive rep-

resentation. The client and verifier collaboratively commit to TLS

session parameters by computing authentication tags and cipher-

text chunks (cf. first case commit in Section 4.2.1). Otherwise, the

client-side parties receive commitments by capturing server-side

traffic (cf. second case commit in Section 4.2.1). Remember that if a

cipher suite is not key-committing (e.g. AEAD cipher suites), then

the verifier needs an additional key share commitment from the

client. Access to secure commitments is a prerequisite for the asym-

metric privacy setting. Next, the verifier initiates the asymmetric

privacy setting by disclosing secret shares of TLS parameters to the

client. From here on, only the client is capable of computing valid

commitment openings. Thus, in the client challenge, a HVZK proof

system with our unilateral validation protocol can be deployed.

5 Optimizing End-to-end Performance
Our second contribution applies to TLS oracles running the TLS 1.3

1-RTT mode and targets our first insight (cf. Section 4.1.2). In detail,

CHCH'

KDC Capture

Verify SHTS

Server-side Handshake Transcript

ECTF

3PHS

SHTS

Verify SHTS

Figure 7:Mutual SHTS verification at client parties. Red boxes
indicate values derived in maliciously secure 2PC protocols.

we show how client parties can securely derive and authenticate

the SHTS parameter in a malicious security setting (cf. Section 5.1).

Subsequently, we leverage the SHTS authenticity to deploy an

optimized garble-then-prove paradigm, which entirely relies on

semi-honest 2PC techniques (cf. Section 5.2).

5.1 Authenticating SHTS
This section explains why pre-fetching cipher suites is a necessity

to reliably validate SHTS authenticity. Further, we show how our

SHTS validation sequence counters possible attacks.

5.1.1 Pre-fetch for Immediate Server-side Handshake Transcript.
In the 1-RTT mode of TLS 1.3, servers immediately derive session

secrets and return authenticated handshake messages upon the

reception of compliant CHmessages (cf. Figure 7). Even though TLS

1.3 allows the configuration of three AEAD cipher suites and two

possible parameters for the key agreement (ECDHE with X25519

or P-256), clients may select an unsupported parameterization. In

this case, TLS parameters must be renegotiated. To prevent any

renegotiation, we expect clients to perform a single pre-fetch call

to detect compatible configurations. This way, clients and verifiers
can reliably launch a TLS oracle session and expect the server to
return the handshake transcript after a single CH message.

The pre-fetch call is a fingerprinting technique which returns

server-supported configurations of cipher suites. In this work, the

pre-fetch call sends a CH message to the server . The requested

TLS handshake session by the CH message is aborted once the

server-side parameters are returned [32].

5.1.2 Compute and Disclose of SHTS. Once clients receive the

server-side handshake traffic, both the client and verifier continue
to derive secret-shared session parameters via the 3PHS (cf. Appen-

dix A.1) and the ECTF protocol (cf. Appendix A.5.2) [43, 59]. In the

end, the verifier locally maintains 𝑠1 and the client locally keeps

𝑠2 and it holds that 𝑠1 + 𝑠2 = DHE. To derive SHTS, the verifier
and client evaluate the circuit CSHTS (cf. Table 2) in a maliciously

secure 2PC system. Similar to the works [18, 21, 59], we leverage

the fact that, during the handshake phase, the client can securely

disclose the SHTS parameter to the verifier . Even though the verifier
knows SHTS, the key independence property of TLS 1.3 prevents

the verifier from learning the HS secret [15], as HS is protected by
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hkdf.exp (cf. line 5 and 17 of Figure 2). Without access to HS, the

adversary cannot derive application traffic keys from HS.

5.1.3 Attacking SHTSAuthenticity. The server-side handshake tran-
script contains the SF message, which can be seen as a commitment

to established TLS session parameters [18, 21]. We require both

client parties to capture the server-side handshake transcript before

the client and verifier compute SHTS via the 2PC circuit CSHTS (cf.

Figure 7). This condition prevents adversaries from forging the au-

thenticity of SHTS as client parties can validate handshake session

secrets against the commitment (cf. Appendix B.2).

To provide more context, the following aspects must be consid-

ered. Our system model prevents the adversary (i) from compromis-

ing the server’s private key and (ii) from accessing full handshake

secrets through the 3PHS and the ECTF protocol. Thus, to obtain a

valid signature from the server , an adversary must replay a previous

and individually established handshake transcript.

Malicious Client. If the adversary takes the role of the client,
then the verifier injects fresh randomness by determining the CH

transcript. As a consequence, a replayed handshake signature does

not match the new transcript and the adversary cannot sign a new

transcript without the server’s private key. Thus, in this scenario,

the signature verification detects malicious behavior.

Malicious Verifier. If the adversary acts as a verifier , then the

adversary determines the CH message transcript which the client
cannot. This gives the adversary the opportunity to replay a previ-

ously established handshake session, where the adversary knows

the session secret DHE. If we allow the computation of SHTS be-

fore capturing the server-side handshake transcript, the following

attack is possible
2
: The adversary picks a random input to com-

pute SHTS’ and recomputes the last part of a previously established

handshake transcript using SHTS’ (cf. lines 8,9,11 of Figure 2). Once

the adversary shares the forged server-side handshake transcript,

the client accepts because the SF validation succeeds. Afterwards,

the adversary accepts any incoming requests from the client which
could contain confidential data (e.g. credentials). This attack com-

promises session-authenticity and session-integrity. However, if the
client honestly proceeds the 2PC computations according to TLS

1.3, then session-confidentiality on record phase data holds.

We close this attack with the previously defined condition, where

client parties capture the server-side handshake transcript before

the joint evaluation of SHTS. Here, the adversary is faced with

the following challenge. The adversary must replay a handshake

transcript which complies with the prospective SHTS value. Since

the adversary cannot predict the outcome of CSHTS without access

to the secret 𝑠2 of the client, the adversary has negligible chances

in guessing a compliant SF message beforehand (cf. Appendix B.2).

This way, session-authenticity and session-integrity hold.

5.1.4 SHTS Validation. To validate SHTS, the client and verifier
match the locally computed SF’ values against the SF value from the

server . To access SF, both client parties derive the handshake traffic

secrets 𝑘SHTS, ivSHTS and decrypt server-side handshake messages.

Additionally, the client parties assert the validity of the server’s

2
This attack applies to the wok [59] in the TLS 1.3 mode. The work [10] indicates this at-

tack. Our work provides the first full attack description and proposes a countermeasure.

Table 2: Mapping of TLS Computation traces to 2PC circuits.
We use XHTS for SHTS/CHTS and XATS for SATS/CATS.

Circuit Computation Trace

CXHTS DHE=𝑠1+𝑠2; DHE to XHTS

C(k,iv) DHE=𝑠1+𝑠2; DHE to (𝑘𝑐XATS, 𝑘𝑣XATS, ivXATS)

CCB2+ (𝑘𝑐XATS, 𝑘𝑣XATS, ivXATS) to CB2+
C𝑡 (𝑘𝑐XATS, 𝑘𝑣XATS, ivXATS, ct) to 𝑡

Copen DHE=𝑠1+𝑠2; DHE to SHTS; DHE to CB

certificate. Afterwards, the client side jointly computes CCHTS using

maliciously secure 2PC, which outputs the client handshake traffic

secret (CHTS) to the client. With CHTS, the client completes the

handshake by computing and sharing the CF message.

5.2 Garble-then-prove with Semi-honest 2PC
We apply a modified garble-then-prove paradigm [53]. In the gar-

ble phase, we replace 2PC computations based on authenticated

garbling with lightweight semi-honest 2PC computations that do

not require authenticated garbling. We show the security of our

construction in the Appendix B.3.

5.2.1 Intuition of Garble-then-Prove. The idea behind the garble-

then-prove paradigm is as follows. If a malicious client acts as the
garbler of the semi-honest 2PC system, then the client can mount

selective failure attacks throughout the record phase. However,

as TLS oracles eventually disclose session secrets of the verifier ,
the malicious client learns nothing beyond what the honest client
would have learned. The prove phase is supposed to (i) detect any

cheating activities of the client and (ii) provide the verifier with a

conditional abort option before any data attestations occur. To do

so, the prove phase recomputes and compares all semi-honest 2PC

computations of the client against securely authenticated session

parameters at the verifier (cf. Section 5.2.3).

5.2.2 Garble Phase. In the garble phase, the client and verifier col-
laboratively evaluate multiple 2PC circuits (cf. Table 2), where the

client acts as the garbler and the verifier acts as the evaluator. In the

handshake phase, the circuit C(k,iv) yields secret-shared application
traffic secrets to the client and verifier . The additive relation of

secrets (e.g. 𝑘XATS=𝑘𝑐XATS+𝑘𝑣XATS) continues to hold.

In the record phase, the 2PC circuit CCB2+ outputs counter blocks
CB𝑖 (cf. Figure 11) to the client, with 𝑖>1. To prevent commitment

attacks on records, no block CB𝑖 ever includes any CB0,CB1 blocks.

To encrypt a request, the client computes ct𝑟𝑒𝑞 = CB2+ ⊕ pt𝑟𝑒𝑞 and
shares the ciphertext ct𝑟𝑒𝑞 with the verifier . Next, the client parties
jointly compute 𝑡𝑟𝑒𝑞 using C𝑡 and the verifier sends the request to
the server . After client parties receive a response (ct𝑟𝑒𝑠𝑝 , 𝑡𝑟𝑒𝑠𝑝 ), the
verifier discloses all session secrets and initiates the asymmetric

privacy setting. Notice that computing the AEAD key commitment

𝑐𝑘 is redundant because, in the client challenge, we can consider

SHTS as an authenticated commitment on session secrets.

5.2.3 Prove Phase. The prove phase starts with the asymmetric

privacy setting (cf. Section 4.2), where the verifier has captured
the TLS 1.3 transcript and disclosed session secrets to the client.
The prove phase of this work considers the authenticated SHTS

519



Proceedings on Privacy Enhancing Technologies 2025(1) Lauinger et al.

CzkOpen(𝑠2, pt ; 𝑠1, Iopen, ct, 𝑡 , SHTS, 𝜙):

1. SHTS’, CB’ = Copen(𝑠1, 𝑠2, Iopen)
2. ct’ = CB’ ⊕ pt, 𝑡 ’ = [ CB0’ , CB1’ ]

3. assert: SHTS’

?

=SHTS, ct’ ?= ct, 𝑡 ’ ?

= 𝑡 , 1
?

= 𝑓𝜙 (pt)
CtpOpen(𝑠2 ; 𝑠1, Iopen, CB, 𝑡 , SHTS):

1. SHTS’, CB’ = Copen(𝑠1, 𝑠2, Iopen), 𝑡 ’ = [CB0’, CB1’]

2. assert: SHTS’

?

=SHTS, 𝑡 ’
?

= 𝑡 , CB ?

=CB’

Figure 8: Extending the ZKP circuit CAEAD (cf. Figure 5) to
the HVZK circuit used by our E2E-optimized TLS 1.3 oracle
for the privacy-preserving and transparent client challenges.

parameter as a commitment string. Further, the 2PC circuit CHVZK

of the client challenge is set to the CzkOpen algorithm (cf. Figure 8).

The circuit Copen derives SHTS and counter blocks CB𝑖 , where the
list of indices Iopen indicates the plaintext/ciphertext chunks of

interest. The client determines Iopen according to plaintext chunks

that are passed to 𝑓𝜙 . Notice that the assertion of the authentication

tag is reduced to comparing intermediate values CB0,CB1. The in-

circuit derivation of CB0,CB1 hides application traffic keys from the

verifier and frees CzkOpen from expensive algebraic operations (e.g.

multiplication of Galois field (GF) polynomials). Remember that the

HVZK proof system which evaluates CzkOpen runs the unilateral

secure validation to detect a malicious verifier (cf. Section 4.2). After
the client challenge, the verifier derives 𝑡𝑟𝑒𝑠𝑝 ’ from 𝑡 ’ out-of-circuit

and asserts if 𝑡𝑟𝑒𝑠𝑝 ’
?

=𝑡𝑟𝑒𝑠𝑝 . If all assertions succeed, the verifier attests
the TLS 1.3 data of the client (cf. Section 5.3.3).

5.3 Additional Considerations
The following aspects complete the context of TLS 1.3 oracles be-

yond our contributions in Section 5.1 and 5.2. We provide complete

E2E oracles with Janus optimizations in the Appendix D.

5.3.1 Operation Modes. TLS oracles can be operated in two dif-

ferent modes, which introduce distinct arrangements in the prove

phase. Both operation modes depend on a list of indices Iopen, which
the client shares to the verifier . Iopen contains indices of TLS record
chunks that are of interest for the statement evaluation in 𝑓𝜙 . For

example, if the client wants to prove TLS data of the chunk pt
3
,

then the index i=3 is included in the list Iopen. The client selectively
determines Iopen once session secrets are obtained and records are

decrypted. The verifier uses Iopen to identify public inputs in form

of ciphertext chunks for the verification of CHVZK (cf. Figure 8).

Transparent Mode In the transparent mode, the verifier checks
(i) if the AEAD encryption of presented plaintext chunks matches

the captured ciphertext transcript and (ii) if a computation trace

from the encryption key to SHTS exists. To prevent the verifier
from learning TLS encryption keys, the transparent mode requires

an adapted circuit CtpOpen (cf. Figure 8). CtpOpen takes as public

input counter blocks CB, which have been computed and shared

by the client. Further, CtpOpen asserts SHTS, counter blocks CB,
and authentication tags via intermediate values. The assertions

1

?

= 𝑓𝜙 (pt) and ct
?

=ct’=CB ⊕ pt are computed out-of-circuit because

plaintext chunks are publicly disclosed.

Privacy-preserving Mode In the privacy-preserving mode, the

client does not share pt. Instead, the client shares Iopen and proves

knowledge of authentic plaintext data via the HVZK proof system.

To do so, the client evaluates the 2PC circuit CzkOpen and applies

the unilateral secure validation.

5.3.2 Processing Multiple Records. Concerning the collaborative
processing of multiple records in the record phase, we differentiate
computations with respect to the following dependencies:

Requests are independent of responses. If no request depends
on the contents of a response, then the circuit CCB2+ is only called

for the compilation of requests. Response counter blocks (CBs) can

be locally computed by the client once the asymmetric privacy

setting enforces the disclosure of full session secrets to the client.
Requests depend on responses. If a request of number 𝑛 >

1 depends on the contents of responses ct=[𝑐𝑡1, . . . , 𝑐𝑡𝑙 ], where
each response 𝑐𝑡𝑚 has an index𝑚 < 𝑛, then the client and verifier
perform 𝑙 executions of the circuit CCB2+ . The evaluation of 𝑙 circuits
CCB2+ yields 𝑙 vectors of encrypted counter blocks CB2+ to the

client. With 𝑙 vectors of CB2+, the client is capable of accessing

the contents of the responses ct=[𝑐𝑡1, . . . , 𝑐𝑡𝑙 ] to construct the 𝑛-

th request. To preserve MITM-resistance and prevent commitment

attacks, it must hold that the verifier intercepts the pair (ct, 𝑡 ) before
the circuit CCB2+ outputs the corresponding CB2+ of response ct.

5.3.3 Data Attestation. The attestation structure varies according

to the operation modes. In the transparent mode, the verifier hashes
verified TLS data and signs the hash. Here, the certification pa-

rameter 𝑝𝑐𝑒𝑟𝑡=(𝑡 , 𝜙 , 𝑝𝑘 , 𝜎) includes a signature 𝜎=ds.Sign(𝑠𝑘 ,[𝜙, 𝑡])
computed at time 𝑡 . The verifier overwrites the statement𝜙 = 𝐻 (pt)
to the hash of verified data such that every third party can evaluate

presented TLS data against 𝜙 and against arbitrary statements. In

the privacy-preserving mode, the structure of 𝑝𝑐𝑒𝑟𝑡 remains the

same except that the statement 𝜙 expresses asserted constraints.

This attestation ensures that the verifier successfully validated pri-

vate TLS data against the statement 𝜙 at time 𝑡 . The certificate

𝑝𝑐𝑒𝑟𝑡 enables verifiable provenance of TLS data because 𝑝𝑐𝑒𝑟𝑡 can

be verified by any third party who trusts the verifier and the server .

6 Performance Evaluation
The evaluation describes the software stack and measures the im-

pacts of our two contributions; The first contribution improves

proof computation times for TLS 1.2/1.3 oracles. The second con-

tribution improves the E2E performance of TLS 1.3 oracles. We

provide micro benchmarks on a circuit level in the Appendix C.

6.1 Implementation
Tooling:We implement the 3PHS by modifying the Golang cryp-
to/tls standard library

3
and configure the NIST P-256 elliptic curve

for the elliptic curve Diffie–Hellman exchange (ECDHE). Our ECTF

conversion algorithm uses the Golang Paillier cryptosystem
4
. We

use the mpc library5 to access semi-honest 2PC based on garbled

circuits, which supports the optimizations free-XOR [31], fixed-key

AES garbling (AES-NI instruction set) [5], and half-gates [56]. We

3
https://pkg.go.dev/crypto/tls

4
https://github.com/didiercrunch/paillier

5
https://github.com/markkurossi/mpc
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Figure 9: Scalability analysis of ZKP circuits, where circuits
C𝑀𝑡𝐸 (dotted) are compatible with TLS 1.2 only. Circuits Cℎ𝑣𝑧𝑘
leverage Janus optimizations. Lines closer to the bottom right
corner are "better" and prove more data in less time.

adjust mpc to output single wire labels if we execute 2PC circuits

in the context of the HVZK proof systems. We rely on the ag2pc
framework

6
to implement maliciously secure 2PC circuits in TLS

1.2. To compute ZKPs, we rely on the gnark framework [8]. We

open-source our secure computation circuits
7
. Based on our cipher

suite analysis (cf. Appendix C.1), we implement the secure compu-

tation circuits AES128 and SHA256 to achieve compatibility with

the most popular TLS 1.2/1.3 cipher suites.

E2E Benchmarks: The numbers of TLSn8 and DiStefano9 are
reproduced by running publicly available experiments (cf. Table 4).

Due to the fact that Deco [59] is closed source, we open source

our Deco𝑧𝑘 re-implementation
10
, which executes TLS 1.2 config-

ured with CBC-HMAC. The implementation of Janus12 is equal to
Deco𝑧𝑘 except for the post-record phase. Here, Janus12 employs

the HVZK proof system implemented with the mpc framework.

The TLS 1.3 oracles DecoProxy and Janus13 rely on AEAD cipher

suites which we implement with the mpc library. Malicious 2PC

circuits computed with the mpc framework use the dual-execution

mode [27]. We rely on gnark to implement ZKP circuits for Deco,
DecoProxy, and Origo.

6.2 Performance
All performance benchmarks have been averaged over ten execu-

tions and have been collected on a MacBook Pro configured with

the Apple M1 Pro chip and 32 GB of random access memory (RAM).

6.2.1 Client Challenge Benchmarks. Concerning our first optimiza-

tion (cf. Section 4), we evaluate ZKP circuits that are used during the

client challenge. We execute the traditional circuits C𝑧𝑘
𝐴𝐸𝐴𝐷

, C𝑧𝑘
𝑀𝑡𝐸

(cf.

Figure 5) as a baseline using the fastest gnark proof system Groth16.
We execute the circuits Cℎ𝑣𝑧𝑘

𝑧𝑘𝑂𝑝𝑒𝑛
as an AEAD variant with the SHTS

assertion (cf. Figure 8) and Cℎ𝑣𝑧𝑘
𝑀𝑡𝐸

using the HVZK proof system.

We depict the protocol support of the circuit variants in Table 3.

Generally, the HVZK circuits (cf. red in Figure 9) achieve the best

performance, where MtE-based circuits are ahead of AEAD circuits.

6
https://github.com/emp-toolkit/emp-ag2pc

7
https://github.com/jplaui/circuits_janus

8
https://github.com/tlsnotary/tlsn/tree/main

9
https://github.com/brave-experiments/DiStefano/tree/main

10
https://github.com/jplaui/decoTls12MtE

Table 3: Mapping protocols to cipher suite modes which sup-
port the ECDHE_ECDSA_AES128_SHA256 configuration.

Mode Variant Protocols

12_GCM AEAD TLSn
12_CBC MtE Deco,Janus12
13_GCM AEAD DiStefano, DecoProxy, Origo, Janus13

This makes sense as the circuit Cℎ𝑣𝑧𝑘
𝑧𝑘𝑂𝑝𝑒𝑛

requires additional logic of

constant size to derive and validate keys against SHTS. For larger

data sizes, this overhead diminishes as AES (e.g. AEAD circuits) or

SHA256 (e.g. MtE circuits) dominate the circuit complexity. Further,

we benchmark the transparent validation of TLS data via C𝑡𝑝𝑂𝑝𝑒𝑛
(cf. Figure 8), which outperforms the privacy-preserving validation

for data sizes beyond 500 bytes.

6.2.2 Optimized End-to-end Performance. We present E2E bench-

marks of open-source TLS oracles in Table 4 and provide additional

micro benchmarks in the Appendix C. Concerning TLS 1.2 (cf. top

part of Table 4), we run Janus12 using CBC-HMAC to benefit from

constant size circuits in the record phase. For TLSn, which runs TLS

1.2 using AEAD, record phase 2PC complexity is determined by the

size of the record (cf. row 1 vs row 2/3 in Table 4). Even though the

post-record communication increases, Janus12 achieves the fastest
post-record execution benchmarks. For instance, the HVZK proof

computations of Janus12 outperform related works by a factor of 9

in the local area network (LAN) setting.

Concerning TLS 1.3, Origo and DecoProxy circumvent 2PC com-

putation of the record phase by introducing an additional trust

assumption (clients cannot mount MITM attacks). As a result, these

works behave equal to the TLS 1.3 baseline in the record phase.

DiStefano sets the fastest handshake execution times, which we link

to the enhanced Multiplicative to Additive (MtA) algorithm in the

ECTF protocol [10, 54]. Our implementation does not incorporate

handshake optimizations proposed by DiStefano yet, because we
achieve practical handshake benchmarks with our Paillier-based

MtA conversion of session secrets. Janus13 runs an AEAD cipher

suite and evaluates 8 times more data (256b request, 2kb response)

while remaining practical in all protocol phases.

7 Discussion
The discussion presents related works and summarizes remaining

limitations and future work directions.

7.1 Related Works
The work XYWY23 [53] introduce the garble-then-prove paradigm
based on semi-honest 2PC with authenticated garbling. After the

garble phase, authenticated garbling bits are transformed into a

Pedersen commitment which can be opened in a zkSNARK proof

system. By contrast, our E2E optimization for TLS 1.3 derives SHTS

authenticity in a malicious setting. In the garble phase, we deploy

semi-honest 2PC without authenticated garbling.

The work Zombie [57] notices that legacy algorithms constitute

over 40% of TLS computations and decouples stream cipher com-

putations with a pad commitment. The pad commitment is used
to partly outsource legacy algorithms from the zkSNARK circuit
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Table 4: End-to-end (E2E) benchmarks of open-sourced TLS oracles. For the LAN setting, we assume a round-trip-time RTT=0
ms and a transmission rate r𝑡=1 Gbps. The wide area network (WAN) setting assumes a round-trip time (RTT) =50 ms and
r𝑡=100 Mbps. Protocols starting with an * require an additional security assumption. Works marked with a ’ use a transparent
setup assumption to compute ZKPs. Entries marked with " take over the value of the entry above.

Communication (kb) Execution LAN (s) / WAN (s)
Protocol Data vTLS Offline Handshake Record Post-record Offline Handshake Record Post-record

TLS - 1.2 - 1.6 0.67 - - / - 0.32 / 0.72 0.3 (ms) / 0.2 - / -

TLSntp 579b 1.2 178 (MB) 36 (MB) 40 (MB) 0.57 3.3 / 17.54 1.18 / 4.46 1.12 / 4.52 0.76 / 0.9

Decozk 32b 1.2 523.51 (MB) 294.52 150.55 0.23 14.38 / 56.26 0.94 / 2.36 0.68 / 1.59 0.76 / 0.86

’Janus12
zk

32b 1.2 415.22 (MB) " " 28.13 2.9 / 36.1 " / " " / " 0.08 / 0.23

TLS - 1.3 - 1.42 0.71 - - / - 0.36 / 0.76 0.49 (ms) / 0.2 - / -

*Origo
zk

32b 1.3 367.61 (MB) " " 0.24 29.16 / 58.56 " / " " / " 1.26 / 1.36

*DecoProxy
zk

32b 1.3 578.47 (MB) 307.7 " 0.27 24.34 / 70.61 0.95 / 2.37 " / " 1.35 / 1.45

DiStefano 256b 1.3 220.484 (MB) 343.42 48.82 - 5.85 / 23.48 0.43 / 0.85 0.12 / 0.32 - / -

’Janus13
tp

2.2kb 1.3 305.17 (MB) 113.8 984 583 1.99 / 26.4 0.51 / 0.91 1.04 / 1.51 0.46 / 0.6

’Janus13
zk

2.2kb 1.3 406.29 (MB) " " 2 (MB) 2.63 / 35.13 " / " " / " 2.08 / 2.34

Table 5: Related works feature comparison.

Paper Type Key Feature

TLSn/Deco Notary 3PHS & 2PC-based TLS Client

Zombie Proxy Pad Commit

Origo Proxy 2PC-free

DiStefano Notary Secure MtA & Browsing Privacy

XYWY23 Notary Garble-then-prove & Pedersen Commit

Janus Proxy Secure 2PC-based hvZKP

to a pre-processing phase. We tackle the arithmetic requirements

of legacy algorithms with a well-suited, 2PC-based HVZK proof

system which we secure using an unilateral validation phase.

Another way to improve the efficiency of the client challenge is
to decouple the maliciously secure 2PC evaluation of CBs, which is

done in the works DiStefano, TLSn, Deco [10, 43, 59]. Notice that this
optimization applies to TLS oracles which run AEAD cipher suites.

The work DiStefano [10] secures a leakage of the Paillier-based MtA

conversion protocol [51] and achieves browsing privacy, where the

verifier does not lean which servers the client queries. The work
Origo [18] proposes a 2PC-free oracle solution and reduces 2PC

bandwidth overheads at the cost of requiring an additional security

assumption (clients cannot mount MITM attacks). We summarize

our feature analysis of related works in the Table 5.

7.2 Asymmetric Privacy & Related Concepts
Our definition of asymmetric privacy relates to the concept of

a trapdoor hash function (THF) between two parties [14]. THFs

guarantee function privacy for the sender and input privacy for the

receiver. The private function evaluates receiver data at a private

index. In contrast, our asymmetric privacy setting ensures input

privacy for a sender and convinces the receiver of a public function

which holds on the entire sender input. Further, to differentiate

against other notions such as asymmetric differential privacy [49],

our notion of asymmetric privacy targets a threshold number of

parties with access to commitment secrets.

7.3 Limitations
A reliable execution of Janus optimizations for TLS 1.3 oracles re-

quires an additional pre-fetch call. We recommend that operators of

the verifier pre-fetch servers before launching oracle sessions. This

way, verifiers can provide seamless attestation services for clients.
We like to highlight that the verifier as a proxy is susceptible to

blocking if server-side endpoints detect reoccurring Transmission

Control Protocol (TCP) sessions from the same proxy IP [6, 57]. In

this case, we recommend running the verifier as a notary service be-
hind the client (as described by TLSn, Deco [43, 59]). Our work does
not investigate compression techniques to lower 2PC bandwidth

overheads. Neither does our work currently support the MtA opti-

mizations pointed out by DiStefano [10] (1. ring-based MtA instead

of Paillier-basedMtA, 2. parallelizedMtA for TLS 1.3 authentication

tags). We consider these topics for future improvements.

7.4 Disclaimer: Legal and Compliance Issues
This section informs users and companies running the Janus TLS
oracle about subsidiary conditions and agreements. As TLS oracles

are legacy-compatible, companies running the verifier connect seam-

lessly to web endpoints which are queried by users. Web endpoints

do not necessarily notice the verifier . Legal issues (e.g. copyright
infringements) arise if users export proprietary content or declare

false data ownership. In this case, companies are supposed to deny

content. If companies operate oracles in the privacy-preserving

mode, then companies learn nothing from transport data beyond

the statement validity. In the transparent mode, companies can

surveil opened data in plain. Users must be aware that companies

learn network layer data (e.g. IP addresses, domains), which is re-

quired to operate the proxy service. Tracking or profiling oracle

data may cause regulatory compliance violations.

7.5 Applications
Generally, the Janus optimizations make ZKP-computing clients
practical in constrained environments (e.g. browsers, mobile, IoT).

And, with that, serve existing oracle applications such as confi-

dential financial instruments, legacy credentials, or the combating

of price discrimination [59]. On top, our scalability benefits open

new application fields where larger data sets or documents require
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proofs of provenance. In this context, our contributions help in

fighting the dissemination of disinformation by attesting gener-

ative AI content, which is among the goals of the Coalition for

Content Provenance and Authenticity (C2PA) [30, 46].

8 Conclusion
We reconsider the selection of secure computation techniques in

TLS oracles by putting an emphasis on the asymmetric privacy

setting and the conditions found in TLS 1.3. Concerning the asym-

metric privacy setting, we show that a HVZK proof system can

be deployed if the client performs a unilateral validation of the

verifier . Concerning TLS 1.3 in the 1-RTT mode, we show that the

authenticity of SHTS can lower algorithmic security requirements

in the garble-then-prove paradigm. Our contributions improve the

efficiency of ZKP computations and improve E2E benchmarks.
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A Cryptographic Building Blocks
We describe algorithmic constructions by introducing security prop-

erties and provide concise tuples of algorithms to explain input

to output parameter mappings. For cryptographic protocols, we

describe the inputs and outputs which are provided and obtained by

involved parties. Additionally, we mention the security properties

of exchanged parameters.

Client / ProverProxy / VerifierServer

Figure 10: Illustration of the 3PHS and exchanged crypto-
graphic parameters between the server, the proxy, and the
client. The gray box at the bottom indicates the relationship
between shared client-side secrets 𝑍𝑣 and 𝑍𝑝 , which corre-
sponds to the session secret 𝑍𝑠 of the server.

A.1 Three-party Handshake
In the 3PHS (cf. Figure 10), each party picks a secret randomness

(𝑠 , 𝑣 , 𝑝) and computes its encrypted representation (𝑆 , 𝑉 , 𝑃 ). By

sharing 𝑉 + 𝑃 = 𝑋 with the server in the CH, the server derives

the session secret 𝑍𝑠 = 𝑠 · 𝑋 , which corresponds to the TLS 1.3

secret DHE. When the server shares 𝑆 in the SH, both the proxy

and client derive their shared session secrets 𝑍𝑣 and 𝑍𝑝 respectively

such that 𝑍𝑠 = 𝑍𝑣 + 𝑍𝑝 holds. In the end, neither the client nor the

verifier have full access to the DHE secret of the TLS handshake

phase. The 3PHS works for both TLS versions but in Figure 10, we

show a TLS 1.3-specific configuration based on the ECDHE, where

the parameters (e.g. 𝑍𝑝 ) are EC points structured as 𝑃 = (𝑥,𝑦).

A.2 Digital Signatures
A digital signature scheme is defined by the following tuple of

algorithms, where

• ds.Setup(1𝜆) −→ (𝑠𝑘 , 𝑝𝑘) takes in a security parameter 𝜆 and

outputs a public key cryptography key pair (𝑠𝑘 , 𝑝𝑘).

• ds.Sign(𝑠𝑘 ,𝑚) −→ (𝜎) takes in a secret key 𝑠𝑘 and message𝑚

and outputs a signature 𝜎 .

• ds.Verify(𝑝𝑘 , 𝑚, 𝜎) −→ {0, 1} takes in the public key 𝑝𝑘 , a

message𝑚, and a signature 𝜎 . The algorithm outputs a 1 or

0 if or if not the signature verification succeeds.

By generating a signature 𝜎 on a fixed size message𝑚 with secret

key 𝑠𝑘 , any party with access to the public key 𝑝𝑘 is able to verify

message authenticity. Digital signatures guarantee that only the

party in control of the secret key is capable of generating a valid

signature on a message.

A.3 Keyed-hash or Hash-based Key Derivation
Function

A HKDF function converts parameters with insufficient random-

ness into suitable keying material for encryption or authentication

algorithms. The HKDF scheme is defined by a tuple of algorithms,

where

• hkdf.ext(𝑠salt, 𝑘ikm) −→ (𝑘pr) takes in a string 𝑠salt, input key

material 𝑘ikm, and returns a pseudorandom key 𝑘pr.
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Figure 11: TLS 1.3 AEAD stream cipher in the GCM mode
which encrypts a plaintext pt = [𝑝𝑡1, . . . , 𝑝𝑡𝑙 ] to a ciphertext
ct = [𝑐𝑡1, . . . , 𝑐𝑡𝑙 ] under key 𝑘 and authenticates the ciphertext
ct and associated data 𝐴𝐷 with the tag 𝑡 .

• hkdf.exp(𝑘pr, 𝑠info, 𝑙 ) −→ (𝑘okm) takes in a pseudorandom key

𝑘pr, a string 𝑠info and a length parameter 𝑙 and returns output

key material 𝑘okm of length 𝑙 .

Both functions hkdf.ext and hkdf.exp internally use the hmac
algorithm (cf. Formula 1), which takes in a key 𝑘 , a bit string𝑚, and

generates a string which is indistinguishable from uniform random

strings. The hmac algorithm requires a hash function 𝐻 with input

size 𝑏 (e.g. 𝑏=64 if 𝐻=SHA256).

hmac(𝑘,𝑚) =𝐻 ((𝑘 ′ ⊕ 𝑜𝑝𝑎𝑑) | |𝐻 ((𝑘 ′ ⊕ 𝑖𝑝𝑎𝑑) | |𝑚))
with 𝑘 ′ = 𝐻 (𝑘), if 𝑙𝑒𝑛(𝑘) > 𝑏

and 𝑘 ′ = 𝑘, else

(1)

A.4 Authenticated Encryption
AEAD provides communication channels with confidentiality and

integrity. This means, exchanged communication records can only

be read by parties with the encryption key and modifications of

encrypted data can be detected. An AEAD encryption scheme is

defined by the following tuple of algorithms, where

• aead.Setup(1𝜆) −→ (pp
aead

) takes in the security parameter

𝜆 and outputs public parameters pp
aead

of a stream cipher

scheme 𝐸 and authentication scheme 𝐴.

• aead.Seal(pp
aead

, 𝑝𝑡 , 𝑘 , 𝑎𝐷 ) −→ (𝑐𝑡 , 𝑡 ) takes in pp
aead

, a plain-

text 𝑝𝑡 , a key 𝑘 , and additional data 𝑎𝐷 . The output is a

ciphertext-tag pair (𝑐𝑡, 𝑡 ), where 𝑐𝑡 = 𝐸 (𝑝𝑡) and 𝑡 = 𝐴(𝑝𝑡, 𝑘, 𝑎𝐷 , 𝑐𝑡)
authenticates 𝑐𝑡 .

• aead.Open(pp
aead

, 𝑐𝑡 , 𝑡 , 𝑘 , 𝑎𝐷 ) −→ {𝑝𝑡 , ∅} takes in pp
aead

, a

ciphertext 𝑐𝑡 , a tag 𝑡 , a key 𝑘 , and additional data 𝑎𝐷 . The

algorithm returns the plaintext 𝑝𝑡 upon successful decryp-

tion and validation of the ciphertext-tag pair, otherwise it

returns an empty set ∅.
Stream ciphers are characterized by pseudorandom generators

(AES in the GCM mode), which incrementally output key streams

or CBs (cf. Figure 11). CBs are combined with plaintext data chunks

to compute ciphertext data chunks. Subsequently, AEAD ciphers

compute an authenticated tag 𝑡 on all ciphertext chunks and associ-

ated data. The symbol𝑀H is a GF multiplication which translates

bit strings into GF(2
128

) polynomials, multiplies the polynomials

modulo the field size, and translates the polynomial back to the bit

string representation.

A.5 Secure Two-party Computation
Secure 2PC allows two mutually distrusting parties with private

inputs 𝑥1, 𝑥2 to jointly compute a public function 𝑓 (𝑥1, 𝑥2) without
learning the private input of the counterparty. With that, secure

2PC counts as a special case of multi-party computation (MPC),

with𝑚 = 2 parties and the adversary corrupting 𝑡 = 1 parties [34].

The adversarial behavior model in 2PC protocols divides adver-

saries into semi-honest and malicious adversaries. Semi-honest

adversaries honestly follow the protocol specification, whereas

malicious adversaries arbitrarily deviate. In the following, we in-

troduce secure 2PC protocols which are used in this work, and

briefly introduce cryptographic constructions which are used to

instantiate the secure 2PC protocols.

A.5.1 MtA Conversion based on Homomorphic Encryption. The
secure 2PC MtA protocol converts multiplicative shares 𝑥,𝑦 into

additive shares 𝛼, 𝛽 such that 𝛼 + 𝛽 = 𝑥 · 𝑦 = 𝑟 yield the same

result 𝑟 . The MtA protocol exists in a vector form, which maps

two vectors x, y, with a product 𝑟 = x · y, to two scalar values 𝛼, 𝛽 ,

where the sum 𝑟 = 𝛼 + 𝛽 is equal to the product 𝑟 . The functionality

of the vector MtA scheme can be instantiated based on Paillier

additive Homomorphic Encryption (HE) [42]. Additive HE allows

parties to locally compute additions and scalar multiplications on

encrypted values. With the functionality provided by the Paillier

cryptosystem, we define the vector MtA protocol, as specified in

the work [19], with the following tuple of algorithms, where

• mta.Setup(1𝜆) −→ (𝑠𝑘𝑃 ,𝑝𝑘𝑃 ) takes in the security parameter

𝜆 and outputs a Paillier key pair (𝑠𝑘𝑃 ,𝑝𝑘𝑃 ).

• mta.Enc(x,𝑠𝑘𝑃 ) −→ (c1) takes in a vector of field elements

x=[𝑥1, . . . , 𝑥𝑙 ] and a private key 𝑠𝑘𝑃 and outputs a vector of

ciphertexts c1=[𝐸𝑠𝑘𝑃 (𝑥1), . . . , 𝐸𝑠𝑘𝑃 (𝑥𝑙 )].
• mta.Eval(c1,y,𝑝𝑘𝑃 ) −→ (𝑐2,𝛽) takes in the vector of cipher-

texts c1=[c11, . . . , c1𝑙 ], a vector of field elementsy=[𝑦1, . . . , 𝑦𝑙 ],
and a public key 𝑝𝑘𝑃 . The output is a tuple of a ciphertext

c2 = c1
𝑦1
1
· . . . · c1𝑦𝑙

𝑙
· 𝐸𝑝𝑘𝑃 (𝛽 ′) and the share 𝛽 = −𝛽 ′, where

𝛽 ′
$← Z𝑝 .

• mta.Dec(c2,𝑠𝑘𝑃 ) −→ (𝛼) takes as input a ciphertext c2 and a

private key 𝑠𝑘𝑃 and outputs the share 𝛼=𝐷𝑠𝑘𝑃 (c2).
The tuple of algorithms is supposed to be executed in the order

where party 𝑝1 first calls mta.Setup and mta.Enc. The function
𝐸𝑘 (𝑧) is a Paillier encryption of message 𝑧 under key 𝑘 . After 𝑝1
shares the public key 𝑝𝑘𝑃 and the vector of ciphertexts c1 with

party 𝑝2, then 𝑝2 calls mta.Eval and shares the ciphertext c2 with

𝑝1. Last, 𝑝1 calls mta.Dec, where 𝐷𝑘 (𝑧) is a Paillier decryption

of message 𝑧 under key 𝑘 . If the algorithms are executed in the

described order, then party 𝑝1 inputs private multiplicative shares

in the vector x and obtains the additive share 𝛼 . Party 𝑝2 inputs the

private vector of multiplicative shares y and obtains the additive

share 𝛽 . In the end, the relation x · y = 𝛼 + 𝛽 holds, and neither the

party 𝑝1 nor the party 𝑝2 learn anything about the private inputs

of the counterparty.

A.5.2 ECTF Conversion. The ECTF algorithm is a secure 2PC pro-

tocol and converts multiplicative shares of two EC x-coordinates

into additive shares [43, 59]. Figure 12 shows the computation se-

quence of the ECTF protocol which makes use the vector MtA
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ECTF between two parties 𝑝1 and 𝑝2.

inputs: 𝑃1 = (𝑥1, 𝑦1) by 𝑝1, 𝑃2 = (𝑥2, 𝑦2) by 𝑝2.
outputs: 𝑠1 to 𝑝1, 𝑠2 to 𝑝2.

𝑝1: (𝑠𝑘 ,𝑝𝑘)=mta.Setup(1𝜆); send 𝑝𝑘 to 𝑝2

𝑝1: 𝜌1
$← Z𝑝 ; c1=mta.Enc([−𝑥1,𝜌1], 𝑠𝑘);

send c1 to 𝑝2

𝑝2: 𝜌2
$← Z𝑝 ;(c2,𝛽)=mta.Eval(c1,[𝜌2,𝑥2],𝑝𝑘);

𝛿2=𝑥2 · 𝜌2+𝛽 ; send (c2,𝛿2) to 𝑝1
𝑝1: 𝛼=mta.Dec(c2,𝑠𝑘);𝛿1=−𝑥1 · 𝜌1+𝛼 ;𝛿=𝛿1+𝛿2;

𝜂1=𝜌1 · 𝛿−1; c1=mta.Enc([−𝑦1,𝜂1],𝑠𝑘);
send (c1,𝛿1) to 𝑝2

𝑝2: 𝛿=𝛿1+𝛿2; 𝜂2=𝜌2 · 𝛿−1;
(c2, 𝛽)=mta.Eval(c1,[𝜂2,𝑦2],𝑝𝑘); 𝜆2=𝑦2 · 𝜂2+𝛽 ;
send c2 to 𝑝1

𝑝1: 𝛼=mta.Dec(c2,𝑠𝑘); 𝜆1=−𝑦1 · 𝜂1 + 𝛼 ;
c1=mta.Enc([𝜆1],𝑠𝑘); send c1 to 𝑝2

𝑝2: (c2,𝛽)=mta.Eval(c1, [𝜆2], 𝑝𝑘); 𝑠2 = 2 · 𝛽 + 𝜆2
2
− 𝑥2;

send c2 to 𝑝1
𝑝1: 𝛼=mta.Dec(c2,𝑠𝑘); 𝑠1 = 2 · 𝛼 + 𝜆2

1
− 𝑥1

Figure 12: The ECTF algorithm converts multiplicative
shares in form of EC point x-coordinates from points 𝑃1, 𝑃2 ∈
𝐸𝐶 (F𝑝 ) to additive shares 𝑠1, 𝑠2 ∈ F𝑝 . It holds that 𝑠1 + 𝑠2 = 𝑥 ,
where 𝑥 is the coordinate of the EC point 𝑃1 + 𝑃2.

algorithm defined in Section A.5.1. By running the ECTF protocol,

two parties 𝑝1 and 𝑝2, with EC points P1, P2 as respective private

inputs, mutually obtain additive shares 𝑠1 and 𝑠2, which sum to the

x-coordinate of the EC points sum P1+P2. TLS oracles use the ECTF

protocol to transform the client-side EC secret shares 𝑍𝑣 and 𝑍𝑝
into additive shares 𝑠𝑣 and 𝑠𝑝 [43, 59]. Since the relation 𝑠𝑣 + 𝑠𝑝 = 𝑥

for (𝑥,𝑦) = 𝑍𝑠 holds, it becomes possible to follow the TLS specifi-

cation by using secure 2PC based on boolean garbled circuits with

bitwise additive shares as input.

A.5.3 Oblivious Transfer. Secure 2PC based on boolean GCs de-

pends on the 1-out-of-2 OT
1

2
sub protocol to secretly exchange

input parameters of the circuit [11]. The OT
1

2
involves two parties

where party 𝑝1 sends two messages𝑚1,𝑚2 to party 𝑝2 and does not

learn which of the two messages𝑚𝑏 is revealed to party 𝑝2. Party

𝑝2 inputs a secret bit 𝑏 which decides the selection of the message

𝑚𝑏 . An OT scheme is defined by a tuple of algorithms, where

• ot.Setup(1𝜆) −→ (pp
OT

) takes as input a security parameter 𝜆

and outputs public parameters pp
OT

of a hash function𝐻 and

encryption schemes, where 𝐸1/𝐷1 encrypts/decrypts based

on modular exponentiation and 𝐸2/𝐷2 encrypts/decrypts

with a block cipher.

• ot.TransferX(pp
OT

) −→ (𝑋 ) takes in pp
OT

, samples 𝑥
$← Z𝑝 ,

and outputs an encrypted secret 𝑋 = 𝐸1 (𝑥).
• ot.TransferY(pp

OT
, 𝑋 , 𝑏) −→ (𝑌 , 𝑘𝐷 ) takes in pp

OT
, a cipher

𝑋 , a bit 𝑏, and samples 𝑦
$← Z𝑝 . The output is a decryption

key 𝑘𝐷 = 𝑋 𝑦
and a cipher𝑌 encrypting as𝑌 = 𝐸1 (𝑦) if 𝑏

?

= 0,

or as 𝑌 = 𝑋 · 𝐸1 (𝑦) if 𝑏
?

= 1.

• ot.Encrypt(pp
OT
, 𝑋 , 𝑌 ,𝑚1,𝑚2, 𝑥) −→ (Z) takes in pp

OT
, 𝑌 ,

and derives 𝑘1 = 𝐻 (𝑌𝑥 ), 𝑘2 = 𝐻 (( 𝑌
𝑋
)𝑥 ). The output is a

vector of ciphers Z = [𝐸2 (𝑚1, 𝑘1), 𝐸2 (𝑚2, 𝑘2)].
• ot.Decrypt(pp

OT
, Z, 𝑘𝐷 , 𝑏) −→ (𝑚𝑏 ) takes in pp

OT
, key 𝑘𝐷 ,

the bit 𝑏, and a vector of ciphers Z = [𝑍1, 𝑍2]. The output is
the message𝑚𝑏 = 𝐷2 (𝑍𝑏 , 𝑘𝐷 ).

In the OT
1

2
protocol, party 𝑝1 calls ot.Setup and ot.TransferX,

and sends the public parameters and cipher 𝑋 to 𝑝2. Party 𝑝2 calls

ot.TransferY, locally keeps the decryption key and shares the

cipher 𝑌 with 𝑝1. Now, 𝑝1 shares the output of ot.Encrypt with 𝑝2,
who obtains𝑚𝑏 by calling ot.Decrypt.

A.5.4 Semi-honest 2PC with Garbled Circuits. We define secure

2PC based on boolean garbled circuits by extending our OT defini-

tion of Section A.5.3 with the tuple of algorithms, where

• gc.Setup(1𝜆) −→ (pp
GC

) takes in the security parameter 𝜆 and

outputs public parameters pp
GC

.

• gc.Garble(pp
GC

, C𝐺 , 𝑑in) −→ (k𝑔
𝑖𝑛
, e, 𝑮 (C), 𝑇k-d, 𝑇d-k) takes

as input pp
GC

, a boolean circuit C𝐺 , the input bit string 𝑑in,
and randomly samples signal bits and wire keys 𝜎 ,𝑘

$← Z𝑛 .
Every wire receives two wire keys where the internal labels

map wire keys to the numbers 0 and 1. Based on the signal

bits and internal labels, every wire receives two external

labels. The output consists of input wire keys k𝑖𝑛 , the garbled
tables 𝑮 (C), input and output decoding tables 𝑇d-k,𝑇k-d, and

external labels e.
• gc.Evaluate(pp

GC
, k𝑔
𝑖𝑛
, k𝑒𝑖𝑛 , e, 𝑮 (C))−→ (𝑘𝑜𝑢𝑡 ) takes in public

parameters, input wire keys, external labels, and the garbled

circuit tables and outputs output wire keys.

On a high-level, a 2PC system based on boolean garbled circuits

involve a party 𝑝1 as the garbler and party 𝑝2 as the evaluator. Party

𝑝1 calls gc.Setup and gc.Garble. Subsequently, 𝑝1 sends e, k
𝑔

𝑖𝑛
,

𝑮 (C), and 𝑇k-d to 𝑝2. If the semi-honest 2PC system is used in the

context of an HVZK proof system, then 𝑝1 does not share𝑇k-d. Next,

to obtain the remaining input labels k𝑒𝑖𝑛 of the evaluator 𝑝2, 𝑝1 and

𝑝2 interact with the OT
1

2
scheme defined in Section A.5.3. Initially

both parties call the transfer functions. Next, 𝑝1 sends input wire

keys encrypted by ot.Encrypt as messages (𝑚1=
ˆ𝑘𝑒
in
,𝑚2=

ˆ𝑘¬𝑒
in
) to 𝑝2.

Party 𝑝2 obtains labels 𝑘
𝑒
𝑖𝑛 by calling ot.Decrypt. Then, 𝑝2 calls

gc.Evaluate and if 𝑇k-d has been shared, decodes output wire keys

to obtain the output data bit string 𝑑out.

A.5.5 Maliciously Secure TwoPC based on dual-execution. We con-

sider running the semi-honest 2PC protocol based on boolean gar-

bled circuits [55] to instantiate the maliciously secure 2PC scheme

of the work [27]. Again, the 2PC dual-execution protocol runs two

instances of the semi-honest 2PC, where both parties 𝑝1 and 𝑝2 suc-

cessively act as the garbler and evaluator. Before any 2PC output is

shared with the counterparty, the protocol runs a secure validation

phase on obtained outputs. The idea of the mutual output verifica-

tion is as follows. If 𝑝1, as the evaluator, obtains output wire keys

k𝑥 and output bits b from a correctly garbled circuit of 𝑝2, then 𝑝1
knows which output labels k𝑦 according to b 𝑝2 must evaluate on

a correctly garbled circuit of 𝑝1. Thus, if 𝑝1 shares a commitment in

form of a hash 𝐻 (k𝑦 | |k𝑥 ) with 𝑝2 after the first circuit evaluation,

and 𝑝2 returns the same hash 𝐻 (k𝑦 | |k𝑥 ) after the second circuit
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evaluation, then 𝑝1 is convinced of a correct garbling by 𝑝2. Be-

cause, if 𝑝2 incorrectly garbles a circuit, then 𝑝1 obtains the bits b’.
And, if 𝑝1 correctly garbles a circuit, 𝑝2 obtains correct bits b. The
incorrect bits b’ lead 𝑝1 to a selection of labels k’𝑥 and k’𝑦 and the

correct bits b lead 𝑝2 to a correct selection of k𝑦 ≠ k’𝑦 . Since 𝑝2
does not know which output keys 𝑝1 evaluates, 𝑝2 cannot predict

any keys k’𝑥 ,k’𝑦 which lead to the hash that is expected by 𝑝1. To

communicate the output of a maliciously secure 2PC to a single

party, only the first garbler is required to share the output decoding

table with the counterparty.

Notice: Secure 2PC using the dual-execution mode is susceptible

to a single bit leakage. However, if the input is random and leaking

even the most significant bit does not yield any advantage, then

using this technique is sufficient. The key derivation functions in

TLS oracles (e.g. 2PC SHTS circuit) depend on sufficiently random

inputs with secret shared input parameters. Thus, applying the

dual-execution mode in TLS oracles is feasible [35].

A.6 Zero-knowledge Proof Systems
In practice, zero-knowledge proof systems are implemented by a

tuple of algorithms, where

• zk.Setup(1𝜆 , C) −→ (CRSC ) takes in a security parameter and

algorithm, and yields a common reference string,

• zk.Prove(CRSC , 𝑥 ,𝑤 ) −→ (𝜋 ) consumes the CRS, public input

𝑥 , and the private witness𝑤 and outputs a proof 𝜋 .

• zk.Verify(CRSC , 𝑥 , 𝜋 ) −→ {0, 1} yields true (1) or false (0)

upon verifying the proof 𝜋 against public input 𝑥 .

The tuple of algorithms achieves the properties of a zero-knowledge

proof systems. If zero-knowledge proof frameworks depend on

cryptographic constructions that require a trusted setup (e.g. use

pairings or KZG commitments), the zk.Setup function must be

called by a trusted third party. For transparent instantiations of

zero-knowledge proof frameworks (e.g. based on FRI commitments),

the zk.Setup function can be called by either party. The function

zk.Prove and zk.Verify are called by the prover and verifier re-

spectively.

A.6.1 Zero-Knowledge Succinct Non-Interactive Argument of Knowl-
edge. A zkSNARK proof system is a zero-knowledge proof system,

where the four properties of succinctness, non-interactivity, compu-

tational sound arguments, and witness knowledge hold [44]. Suc-

cinctness guarantees that the proof system provides short proof

sizes and fast verification times even for lengthy computations.

If non-interactivity holds (e.g., via the Fiat-Shamir security [7]),

then the prover is able to convince the verifier by sending a single

message. Computational sound arguments guarantee soundness in

the zkSNARK system if provers are computationally bounded. Last,

the knowledge property ensures that provers must know a witness

in order to construct a proof.

A.7 Secret Sharing
We formally define a secret sharing scheme with the following tuple

of algorithms, where

• ss.Setup(𝜆) −→ (pp) takes in a security parameter and returns

public parameters and randomness 𝑟
$← R(𝜆).

• ss.Share(pp, 𝑟 ) −→ (r) takes in public parameters and random-

ness and returns additive secret shares r=[𝑟1,. . ., 𝑟𝑛], where∑𝑛
𝑥=1 𝑟𝑥 = 𝑟 holds.

• ss.Reconstruct(r) −→ (𝑟 ) takes in additive secret shares and

returns their sum.

A.8 Cryptographic Commitment Schemes
We formally define cryptographic commitments with the following

tuple of algorithms, where

• c.Commit(𝑚, 𝑟𝑐 ) −→ (𝑐) takes in a string𝑚 and commit ran-

domness 𝑟𝑐
$← R and yields a commitment string 𝑐 .

• c.Open(𝑚, 𝑟𝑐 , 𝑐) −→ ({0, 1}) takes in a message string, a com-

mit randomness, and a commitment string and outputs 1

only if 𝑐 is a valid commitment string of the tuple (𝑚, 𝑟𝑐 ).

The algorithms c.Commit, c.Open satisfy the properties of a

secure commitment scheme, where computational binding ensures

that after committing to𝑚1, a probabilistic polynomial time (PPT)

adversary cannot find c.Commit(𝑚2, 𝑟2)==c.Commit(𝑚1, 𝑟1), with
(𝑚1,𝑚2) ∈ M, (𝑟1, 𝑟2) ∈ R, and 𝑚2 ≠ 𝑚1. Further, anyone see-

ing 𝑐 learns nothing on 𝑚 due to the property of statistical hid-
ing, where c.Commit(𝑚1, 𝑟𝑐 ) is statistically indistinguishable from
c.Commit(𝑚2, 𝑟𝑐 ) with (𝑚1,𝑚2) ∈ M and 𝑟𝑐 ∈ R.

B Security Analysis
The security analysis concerns the deployment of the HVZK proof

system and the unilateral validation in the asymmetric privacy

setting. Further, we show that the Janus protocol is secure against
malicious adversaries during themutual authentication of the SHTS

parameter. The security analysis relies on our threat and system

model (cf. Section 3) and uses our formalized cryptographic building

blocks (cf. Sections 2.3, Appendix A)

B.1 Construction 1
The first construction creates a maliciously secure evaluation of

the HVZK proof system in the asymmetric privacy setting. The

proof system leverages semi-honest 2PC based on boolean garbled

circuit [29] and is combined with a unilateral validation phase. To

show the security of the construction, we first define the security

guarantees of the asymmetric privacy setting and conclude that the

unilateral validation protocol patches remaining vulnerabilities.

Theorem 1. If three parties 𝑝0, 𝑝1, and 𝑝2 with access to
• a three-party TLS handshake protocol Π3𝑃𝐻𝑆

• a secure commitment scheme Π𝑐𝑜𝑚
• a secret sharing scheme Π𝑠𝑠 with 𝑝0 as the trusted dealer
• a secure channel 𝑠𝑐0-1 between 𝑝0 and 𝑝1
• a secure channel 𝑠𝑐1-2 between 𝑝1 and 𝑝2
• a secure channel 𝑠𝑐0-2 between 𝑝0 and 𝑝2
• a maliciously secure 2PC scheme Π2𝑃𝐶 between 𝑝1 and 𝑝2

perform the sequence of computations

(1) 𝑝0 calls [𝑟1, 𝑟2]= Π𝑠𝑠 .Share(𝑟 ), with 𝑟
$← R(𝜆)

(2) 𝑝0 shares 𝑟1 using 𝑠𝑐0−1 and 𝑟2 using 𝑠𝑐0−2
(3) either 𝑝0 calls 𝑐=Π𝑐𝑜𝑚 .Commit(𝑚, 𝑟 ) with bit strings𝑚,𝑐 and

shares𝑚,𝑐 using 𝑠𝑐0−1 and 𝑐 using 𝑠𝑐0−2, or
Π2𝑃𝐶 evaluates Π𝑐𝑜𝑚 .Commit(𝑚, 𝑟1+𝑟2) where 𝑝1 has𝑚
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(4) 𝑝2 shares 𝑟2 using 𝑠𝑐1−2
under the assumptions that
• the TLS 3PHS implements Π𝑠𝑠 and the sequence of computa-
tions (1) and (2)
• 𝑝0 discards calling Π𝑐𝑜𝑚 .Open
• 𝑝0 cannot be compromised by the adversary
• 𝑝1 never discloses the secret share 𝑟1
• the security of the schemes Π2𝑃𝐶 , Π3𝑃𝐻𝑆 , etc. holds (e.g. 3PHS
relies on the discrete logarithm hardness to find 𝑎 from 𝑎𝐺 ,

with random 𝑎
$← 𝐸𝐶 (F𝑝 ) and base point 𝐺 ∈ 𝐸𝐶 (F𝑝 ))

we say that asymmetric privacy holds between 𝑝1 and 𝑝2 such that
only 𝑝1 can call Π𝑐𝑜𝑚 .Open.

Proof 1.1: The security of the 3PHS keeps secret shares con-

fidential. Without access to the initially shared secret shares, the

adversary A cannot compute the commitment string 𝑐 . Further,

the security of the commitment scheme prevents the adversary

from finding a collision of 𝑐 . When computing the commitment

through a maliciously secure 2PC system, then A cannot learn

any information on the inputs of the counterparty. Since all parties

use secure channels to communicate parameters, A learns noth-

ing of communicated parameters. Thus, A cannot find any𝑚 or

reconstruct 𝑟 which prevents A from calling Π𝑐𝑜𝑚 .Open.

Theorem 2. If two parties 𝑝1 and 𝑝2 with access to
• a HVZK proof system ΠHVZK using a semi-honest 2PC system
Πsh2PC
• two secure commitment scheme Π1

𝑐𝑜𝑚,Π
2

𝑐𝑜𝑚

• an asymmetric privacy setting Πasym using Π2

𝑐𝑜𝑚

• a 2PC circuit Copen implementing Π2

𝑐𝑜𝑚 .Open
• a secure channel 𝑠𝑐1-2 between 𝑝1 and 𝑝2
• a unilateral validation Π𝑢𝑣 using Π2

𝑐𝑜𝑚

perform the sequence of computations
(1) ΠHVZK.Setup: 𝑝2 calls p=Πsh2PC.Garble(Copen)
(2) ΠHVZK.Setup: 𝑝2 shares {p \𝑇𝑘−𝑑 } using 𝑠𝑐1-2
(3) ΠHVZK.Prove: 𝑝1 calls 𝑘=Πsh2PC.Evaluate

(4) Π𝑢𝑣 : 𝑝1 calls c=Π1

𝑐𝑜𝑚 .Commit(𝑘 ,𝑟 ) with 𝑟
$← R(𝜆)

(5) Π𝑢𝑣 : 𝑝1 shares 𝑐 using 𝑠𝑐1-2
(6) Π𝑢𝑣 : 𝑝2 shares {p} using 𝑠𝑐1-2
(7) Π𝑢𝑣 : 𝑝1 recomputes Copen to verify {p}
(8) Π𝑢𝑣 : 𝑝1 shares 𝑟 using 𝑠𝑐1-2
(9) ΠHVZK.Verify: 𝑝2 calls Π1

𝑐𝑜𝑚 .Open(𝑐 ,𝑟 )
under the assumptions that
• in Πsh2PC 𝑝1 acts as the evaluator and 𝑝2 acts as the garbler
• Πasym gives 𝑝1 access to Π2

𝑐𝑜𝑚 .Commit
we say that after running Πasym, composition of ΠHVZK and Π𝑢𝑣 as
Πcomp establishes security against malicious adversaries.

Proof 1.2: The security of Πsh2PC allows the adversary A to

maliciously garble the circuit Copen. However, if A receives 𝑐 upon

disclosure of {p \𝑇𝑘−𝑑 }, the hiding property of Π𝑐𝑜𝑚 prevents A
from learning any secret information on the 2PC inputs of 𝑝1. Fur-

ther, 𝑝1 detects a cheatingA at the sequence number (7) and aborts

the protocol before disclosing 𝑟 to A. Further, Πsh2PC prevents A
from predicting a 𝑘 that corresponds to a 1. If A uses Π1

𝑐𝑜𝑚 to

commit garbage, then 𝑝2 aborts at the sequence number (9).

Notice. We define Πcomp(Π𝑠ℎ2𝑃𝐶=arg1, Copen=arg2, Π2

𝑐𝑜𝑚=arg3)

as an construction that takes as input a semi-honest 2PC system

which is executed in the context of the HVZK proof system. The

HVZK proof system evaluates a 2PC circuit as the second argument.

The third argument is a commitment scheme which establishes the

asymmetric privacy setting.

B.2 Construction 2
The second construction provides the verifier with a secure au-

thenticity verification of the TLS 1.3 SHTS secret in a setting with

malicious adversaries. To do so, the construction combines the ef-

fects of the TLS 1.3 1-RTT mode with the TLS 3PHS and a secure

2PC computation of the session secret SHTS. This combination in-

troduces an unsolvable challenge to the adversary which prevents

the adversary from forging the authenticity of SHTS.

Theorem 3. If three parties 𝑝0, 𝑝1, and 𝑝2 with access to
• a secure channel 𝑠𝑐0-1 between 𝑝0 and 𝑝1
• a secure channel 𝑠𝑐0-2 between 𝑝0 and 𝑝2
• a three-party TLS handshake protocol Π3𝑃𝐻𝑆

• a secure commitment scheme Π𝑐𝑜𝑚
• a maliciously secure 2PC scheme Π2𝑃𝐶 between 𝑝1 and 𝑝2
• a secret sharing scheme Π𝑠𝑠 with 𝑝0 as the trusted dealer
• a secure AEAD scheme ΠAEAD
• a secure signature scheme Π𝜎 where 𝑝0 maintains the private
key 𝑠𝑘

perform the sequence of computations

(1) 𝑝0 calls [𝑟1, 𝑟2]= Π𝑠𝑠 .Share(𝑟 ), with 𝑟
$← R(𝜆)

(2) 𝑝0 shares 𝑟1 using 𝑠𝑐0−1 and 𝑟2 using 𝑠𝑐0−2
(3) 𝑝2 samples 𝑡

$← R(𝜆) and discloses 𝑡
(4) 𝑝0 calls 𝑐=Π𝑐𝑜𝑚 .Commit(𝑡 , 𝑟 ), with bit strings 𝑐
(5) 𝑝0 calls 𝜎=Π𝜎 .Sign(𝑠𝑘 , 𝑡 )
(6) 𝑝0 calls s=ΠAEAD.Seal(𝑐 ,𝜎) and discloses s
(7) Π2𝑃𝐶 evaluates Π𝑐𝑜𝑚 .Commit(𝑡 , 𝑟1+𝑟2)
(8) 𝑝2 calls 𝜎=ΠAEAD.Open(𝑐 ,𝑠) and checks Π𝜎 .Verify(𝑝𝑘 ,𝑡 , 𝜎)

under the assumptions that
• the TLS 3PHS implements Π𝑠𝑠 and the sequence of computa-
tions (1) and (2)
• 𝑝0 cannot be compromised by the adversary
• 𝑝𝑘 , and 𝑡 are public
• 𝑝0 never discloses 𝑠𝑘
• 𝑝2 only performs step (7) if a 𝑠 has been captured

we say that an PPT adversary has negligible probability with respect
to 𝜆 in forging 𝑐 such that 𝑝2 accepts step (8) and that 𝑐 is authentic.

Proof 2.1: Again, Π3𝑃𝐻𝑆 and Π2𝑃𝐶 keep the secret shares confi-

dential. Thus, the adversaryA can only access 𝑐 at step (7). With 𝑐 ,

the adversary can forge a new transcript 𝑠 but cannot change a 𝑠

which has already been captured by 𝑝2. Thus, the challenge for A
is to predict a valid 𝑐’ at a point in time where 𝑐 remains hidden.

Predicting a correct 𝑐 requires A either to find a collision for 𝑐

which the secure commitment prevents. Or, A correctly guesses

the secret share 𝑟2 which evaluates to a correct 𝑐 before a 𝑠 is cap-

tured by 𝑝2. In the case of a correct guess, A can replay a 𝜎’ on

previous 𝑡 ’ and encrypt 𝜎’ under the right 𝑐 such that 𝑝2 accepts.

However, guessing 𝑟2 or 𝑟1 has negligible probability in 𝜆.
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B.3 Construction 3
The third construction reduces the security requirements of cryp-

tographic constructions in the garble-then-prove paradigm [53].

Specifically, we show that the existence of a computation trace to

an authenticated commitment string to allows to replace a semi-

honest 2PC system based on authenticated garbling with a semi-

honest 2PC system that does not require authenticated garbling.

Our garble-then-prove paradigm leverages the efficient proof sys-

tem construction in the asymmetric privacy setting in the prove

phase. Further it requires commitment authenticity through SHTS.

Thus, for this construction, we use our definitions of Πcomp and

Πauth (cf. proof 1.1, 1.2, and 2.1 of Appendix B).

Theorem 4. If two parties 𝑝1 and 𝑝2 with access to
• a garble-then-prove scheme Πg-t-p using two semi-honest 2PC
system Π1

sh2PC , Π2

sh2PC
• a composition scheme Πcomp
• a secure commitment scheme Π𝑐𝑜𝑚
• an authenticated commitment scheme Π𝑎𝑢𝑡ℎ using Π𝑐𝑜𝑚
• a 2PC circuit Copen implementing Π𝑐𝑜𝑚 .Open
• a 2PC circuit Ckdc+record implementing the TLS 1.3 specification
• a 2PC circuitC𝜙 implementing a data compliance check against
a statement 𝜙

perform the sequence of computations
(1) Πg-t-p.Garble: 𝑝1 calls Π1

sh2PC.Garble(Ckdc+record)
(2) Πg-t-p.Garble: 𝑝2 calls Π1

sh2PC.Evaluate(Ckdc+record)
(3) Πg-t-p.Prove: Πcomp(Π2

sh2PC , (Ckdc+record + Copen + C𝜙 ) , Πcom)
under the assumptions that
• in Π1

sh2PC 𝑝2 acts as the evaluator and 𝑝1 acts as the garbler
• in Π2

sh2PC 𝑝1 acts as the evaluator and 𝑝2 acts as the garbler
• Πauth initially authenticates Πcom

we say that malicious security holds for the garble-then-prove para-
digm with a semi-honest 2PC system in the garble phase.

Proof 3.1: The adversary A is able to maliciously garble Π1

sh2PC

and obtain secrets from 𝑝2. However, due to the asymmetric pri-

vacy setting established during the prove phase, A learns nothing

beyond what A would have learned during the prove phase. And,

a malicious garbling of A is recorded at 𝑝2 because 𝑝2 obtains all

outputs of 2PC circuits executed in the garble phase. Thus, once

the construction proceeds to step (3), and A has cheated, 𝑝2 is able

to detect it in step (9) of the Πcomp construction and can abort the

protocol. This conditional abort option prevents A from obtaining

a false provenance attestation of TLS data.

C Benchmarks Extended
The following subsection provides additional benchmarks.

C.1 Cipher Suite Analysis
To evaluate cipher suite support among today’s APIs, we scanned

the first 15k entries of the top-1m.csv.zip list11. To perform the

scan, we rely on a publicly available TLS cipher suite scanner
12
.

We remove scans which encounter network errors (e.g. no such

host) or TLS errors (e.g. EOF, handshake failures). The cipher suite

11
https://github.com/PeterDaveHello/top-1m-domains

12
https://github.com/TeoLj/TLSscanner

Figure 13: TLS cipher suite scan performed at the 11th of June
2024. Green bars refer to TLS 1.3 cipher suites and yellow
bars indicate TLS 1.2 cipher suites.

Table 6: Maliciously-secure 2PC benchmarks averaged over
10 executions using the framework emp-ag2pc.

2PC Functions Communication Execution

Online Offline Online Offline

SHA256 13.184 KB 12.16 MB 10.095 ms 59.4 ms

AES128 6.8 KB 4.33 MB 2.8 ms 55.5 ms

support distribution is depicted in Figure 13. TLS 1.2 configured

with GCM reaches a support of 73.5% while TLS 1.2 CBC-HMAC

reaches 70.05%. TLS 1.3 support is lower at 55.8%. Even though TLS

oracles relying on CBC-HMAC have efficient record phase compu-

tations, multiple attacks on the CBC MAC-then-encrypt pattern

have been introduced [2, 28, 33]. Even though countermeasures

exist, protecting records with the CBC MAC-then-encrypt pattern

is not recommended anymore [48]. Our distribution of scans aligns

with this recommendation. Further, most endpoints support AEAD

cipher suites, where the TLS 1.2 support is 17.7% ahead of TLS 1.3.

C.2 Microbenchmarks of 2PC Circuits
We present micro benchmarks of secure computation building

blocks in Tables 6 and 7. Table 7 compares circuit complexities, ex-

ecution times, and communication overhead of 2PC circuits, where

execution times and communication overhead is further divided

into offline and online benchmarks. The 2PC circuits CXHTS and

Ck,iv derive session secrets in milliseconds and compute CBs via the

circuit CX
CB2+

for a 2 kB record in 164.9 milliseconds. An interesting

fact to notice is that the AEAD tag circuit C𝑡𝑎𝑔 is efficient for small

request sizes and scales sufficiently but not ideally for larger request

sizes. The overhead in the circuit C𝑡𝑎𝑔 is introduced by the algebraic
structure of the Galois field polynomials in GF(2

128
), which, as an

algebraic structure, is in conflict with the binary representation

of computation in boolean GCs. The related works [10, 43] pro-

pose a scalable OT-based computation of the AEAD tag, which we

consider as future work to improve our implementation.
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Table 7: Secure computation benchmarks to implement the Janus optimizations. We allocate values to offline/online execution
and communication columns. Dashed lines indicate which circuits belong to the handshake, record, and post-record phases.

2PC Circuit Constraints (x106) Execution Offline Execution Online Communication Offline Communication Online

ECTF - - 212.96 ms - 1.861 kB

CXHTS 3.14 215.56 ms 144 ms 34 MB 110 kB

C
k
𝑚

1 ,iv 10.34 723.96 ms 484.82 ms 108.08 MB 356 kB

C256 B
ECB2+

/ C2 kB
ECB2+

1.16 / 9.18 67.78 / 578.76 ms 67.6 / 164.9 ms 10.12 / 86.02 MB 116 / 566 kB

C256 B𝑡𝑎𝑔 / C2 kB𝑡𝑎𝑔 4.04 / 29.01 285.98 ms / 2.42 s 492.24 ms / 3.78 s 52.06 / 378.02 MB 512 kB / 2 MB

C256 B q, 2 kB r

tpOpen
12.69 0.89 s 0.46 s 126.01 MB 583 kB

C256 B q, 2 kB r

zkOpen
/ 𝑓𝜙 12.73 / 17.15 0.89 / 1.13 s 2.04 / 2.08 s 127.02 / 168.03 MB 2.13 / 2 MB

Concerning data opening times, we can see that the transparent
mode with the circuit CtpOpen is more efficient compared to the

privacy-preserving mode with the circuit CzkOpen. This behavior is
expected because, the 2PC circuit of the transparent mode does

not include the ciphertext, SHTS, and CB𝑡𝑎𝑔 verification inside the

circuit (cf. Figure 8). As a consequence, the data communicated in

the OT scheme of the transparent mode is about half the size of the

privacy-preserving mode. The effect is further visible in the online

communication cost, where the transparent mode communicates

3x less data than the privacy-preserving opening mode. As another

reference benchmark (cf. 𝑓𝜙 of the last row in Table 7), we evaluate

the verification of a confidential document hash 𝐻 (𝑓 ) in the circuit

CzkOpen. To do so, we set the function 𝑓𝜙=𝐻 (𝑓 )
?

= 𝐻 (pt) to a hash

check on the 2 kB response data, with 𝐻=SHA256. Concerning

online execution times, the extra hash evaluation yields a negligible

overhead for the client but increases the communication overhead

by a factor of 1.3x.

D Complete E2E Janus Protocol
To simplify the reproduction of this work, we provide complete E2E

descriptions of TLS oracles integrating the Janus optimizations. We

consider a simple scenario where a single request and response is

exchanged during the TLS session.

Concerning TLS 1.2, we describe a TLS oracle configured with

TLSMtE (e.g. CBC-HMAC). This configuration performs best due to

the constant-size 2PC circuits of the record phase (cf. Section 4.1.2).

We depict the full E2E protocol of a TLS 1.2 oracle using the first

Janus contribution in Figure 14. TLS 1.3 oracles are configured

with AEAD cipher suites. We depict a full E2E protocol of a TLS

1.3 oracle using both Janus optimizations in Figure 15. Notice that

for the computation of CzkOpen, the key shares 𝑘𝑣, 𝑘𝑥 indicate the

secrets 𝑠1, 𝑠2 of the circuit (cf. Figure 8).

ClientVerifier as ProxyServer

Three-party Handshake (3PHS)
ECTF
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Figure 14: End-to-end protocol of a TLS 1.2 oracle running
the first Janus optimization. Boxes crossing two vertical lines
indicate 2PC protocols.

ClientVerifier as ProxyServer

Apply Figure 7
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Figure 15: End-to-end protocol of a TLS 1.3 oracle running
both Janus optimizations. Boxes crossing two vertical lines
indicate 2PC protocols. Orange boxes belong to the garble
phase and the blue box indicates the prove phase.
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