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Abstract
Training machine learning models with differential privacy (DP) is

commonly done using first-order methods such as DP-SGD. In the

non-private setting, second-order methods try to mitigate the slow

convergence of the first-order methods. The existing DP methods

that use second-order information still provide faster convergence,

however they cannot be easily turned into federated learning (FL)

algorithms without an excessive communication cost required by

the exchange of the Hessian or feature covariance information

between the nodes and the server. In this paper we propose DP-

FedNew, a DP method for FL that uses second-order information

and results in per-iteration communication cost similar to first-

order methods such as DP Federated Averaging.

Keywords
Differential Privacy, Federated Learning, Communication-Efficiency,

ADMM, Newton’s Method, Second-Order Optimization Methods,

Distributed Optimization

1 Introduction
Commonly used federated learning methods use first-order infor-

mation, i.e., gradients of the loss function, to performmodel updates.

However, they often suffer from slow convergence. In the literature,

second-order methods which incorporate second-order information

via Hessians or covariance matrices in addition to gradients are

often reported to have faster convergence properties compared to

first-order methods.

The goal of this work is to speed-up differentially private feder-

ated convex optimization with the help of second-order information

in a communication efficient manner, without transmitting Hessian

or covariance matrices. Private convex optimization has recently

gained further interest due to applications in private fine-tuning of

large neural networks.

In the context of FL [23], combining secure aggregation with

DP [19, 22, 42] reduces the trustworthiness assumptions on a central

server. Specifically, when the DP noise in the model updates is

additive and the model updates are sums of user-wise updates,

DP perturbations can be offloaded to clients to obtain the global

model under cryptographic guarantees [41] in addition to DP’s

usual statistical privacy guarantees.

With the performance gap between private and non-private

training shrinking rapidly, communication costs in FL can easily
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become a bottleneck in adoption of DP secure aggregation pro-

tocols. Several works including [8–11, 42] employ the tools from

compression/sketching/quantization literature to design communi-

cation efficient DP perturbations mechanisms for distributed mean

estimation compatible with secure aggregation.

In this work, we take an optimization perspective and rely on

off-the-shelf DP secure aggregation primitives. In private non-FL

setting, methods that use second-order information have been re-

cently developed for private convex learning problems (e.g., private

fine-tuning the last layer of a neural network [34]) and show impres-

sive improvements in increasing the privacy-utility tradeoffs. Mehta

et al. [34] consider a method called DP-FC where the DP gradients

are preconditioned with the noisy feature covariance matrix that is

released only once. The work by Ganesh et al. [17] gives a private

second-order method with rigorous convergence analysis, with

utility bounds matching the lower bounds of private empirical risk

minimization Bassily et al. [5].

Unfortunately, neither of these methods seem to be easy to trans-

fer to the FL setting. For 𝑑𝑥 features, a distributed version of [34]

requires a one time aggregation of a noisy covariance matrix of

size 𝑂 (𝑑2

𝑥 ) from users. The 𝑂 (𝑑2

𝑥 ) term can still dominate in the

total communication cost when 𝑑𝑥 ≫ 𝑇 (training length 𝑇 ). The

method by Ganesh et al. [17] does not seem to be easy to transfer

to the FL setting due to the inverse of a non-private Hessian in the

model update. It is the main goal of this work to fill this gap in

the private FL literature. We demonstrate that it is possible to save

communication bandwidth with the help of a method that avoids

transmitting second-order matrices however yet converges faster

to models with optimal privacy-utility trade-offs.

OurContributions.This paper proposes a DP optimizationmethod

for convex problems in FL that leverages the benefits of fast con-

vergence of second-order methods and the communication cost of

first-order methods. In particular, we build upon the work of Elgabli

et al. [16] where the Newton update step is approximated using

one alternating direction method of multipliers (ADMM) [7] step.

The main contributions of this work are summarized as follows.

• To the best of our knowledge, for convex problems, we pro-

pose the first DP optimization method in the context of FL

that uses second-order information via Hessians and has a

model size communication cost. Consequently, we combine

the fast convergence of second-order methods and the low

communication overhead of first-order methods, while pro-

viding the formal DP guarantees for the training and final

model.

• We give accurate privacy analysis for both user-level and

record-level in FL setting for our algorithm, referred to as

DP-FedNew, in a way that the privacy guarantees are the
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same as the privacy guarantees of a composed Gaussian

mechanism [3].

• We carry out comprehensive experiments where we show

that our proposed algorithm copes with various privacy bud-

get values and excels in terms of test accuracy, outperforming

both the baseline methods. To mitigate the excessive com-

pute and memory requirements for use cases with large size

features, we suggest a variant of DP-FedNew where we re-

place the Hessians with certain approximations that use the

feature covariance matrices and demonstrate higher perfor-

mance compared to the first-order baseline using different

benchmark datasets.

• We provide an asymptotic convergence analysis for the pro-

posed method that shows its stability.

2 Background
2.1 Differential Privacy
We first shortly review the required definitions and results on dif-

ferential privacy.

An input dataset containing 𝑁 data points is denoted as 𝐷 =

(𝑥1, . . . , 𝑥𝑁 ) ∈ D, where D denotes the set of datasets of all sizes.

We say that two datasets 𝐷 and 𝐷 ′ are neighbors if we get one

by adding or removing one element to/from the other (denoted

𝐷 ∼ 𝐷 ′). We say that a mechanismM : D → O is (𝜀, 𝛿)-DP if

the output distributions for neighboring datasets are always (𝜀, 𝛿)-
indistinguishable.

Definition 1. Let 𝜀 ≥ 0 and 𝛿 ∈ [0, 1]. MechanismM : D → O
is (𝜀, 𝛿)-DP if for every pair of neighboring datasets 𝐷, 𝐷 ′, every
measurable set 𝐸 ⊂ O,

P(M(𝐷) ∈ 𝐸) ≤ e
𝜀P(M(𝐷 ′) ∈ 𝐸) + 𝛿.

We callM tightly (𝜀, 𝛿)-DP, if there does not exist 𝛿 ′ < 𝛿 such that
M is (𝜀, 𝛿 ′)-DP.

We refer to Definition (1) as record-level DP. In case we have

𝑛 users and 𝑥𝑖 ’s correspond to the whole local dataset owned by

user 𝑖 , 𝑖 ∈ [𝑛], we call the corresponding DP definition user-level
DP. [32, 33].

In this work, we provide an (𝜀, 𝛿)-analysis for our methods using

the hockey-stick divergence. This way, we are able to get optimal

privacy parameters for the mechanisms we consider and in partic-

ular we obtain lower bounds than using, e.g., the Rényi differential

privacy (RDP) [35] which is a commonly used alternative.

When analyzing iterative DP-FL training methods, we model

them as adaptive compositions such that the adversary has a view

on the output of all intermediate outputs. This means that we

analyze mechanisms of the form

M (𝑇 ) (𝐷) =
(
M1 (𝐷),M2 (M1 (𝐷), 𝐷), . . . ,
M𝑇 (M1 (𝐷), . . . ,M𝑇−1 (𝐷), 𝐷)

)
.

(2.1)

In the methods we consider, each M𝑖 , 𝑖 ∈ [𝑇 ], will correspond
to a Gaussian mechanism with a given sensitivity and noise scale

and thus the privacy analysis is equivalent to that of the Gaussian

mechanism.

Lemma 2. Consider an adaptive composition of 𝑇 Gaussian mech-
anisms, each with 𝐿2-sensitivity Δ and noise scale parameter 𝜎 . The

adaptive composition is (𝜀, 𝛿)-DP for

𝛿 (𝜀) = Φ

(
− 𝜀𝜎
√
𝑇 · Δ

+
√
𝑇 · Δ
2𝜎

)
− 𝑒𝜀Φ

(
− 𝜀𝜎
√
𝑇 · Δ

−
√
𝑇 · Δ
2𝜎

)
.

2.2 Alternating Direction Method of Multipliers
Alternating direction method of multipliers represents a wide class

of distributed optimization methods to minimize loss functions

that are non-separable across users and have a potentially non-

smooth regularizer. Many settings consider 𝑛 compute workers

with a local convex objective function 𝑓𝑖 : R𝑑 → R,∀𝑖 ∈ [𝑛] and
dataset, communicating with the central orchestrating server. The

goal for the server is to learn the global parameter 𝑦 ∈ R𝑑
solving

the following problem,

min

𝑦

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑦) + 𝛾 · 𝑟 (𝑦),

where 𝑟 is a non-smooth and convex regularizer function with

strength 𝛾 > 0. In order to make the loss function separable across

nodes, it is reformulated as

min

𝑦,{𝑦𝑖 }𝑛𝑖=1

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑦𝑖 ) + 𝛾 · 𝑟 (𝑦), s.t. 𝑦𝑖 = 𝑦,∀𝑖 ∈ [𝑛]

.

This constrained optimization problem is then solved by another

class of algorithms called augmented Lagrangian methods which re-

place the original problem with a series of unconstrained problems,

additionally augmented with a quadratic penalty term. As we will

see in the next Section, this introduces the so called primal and the

dual variables. Clients and server locally update these variables to

minimize the original objective function.

Private ADMM. ADMM-based methods are often viewed as an

alternative to standard gradient based optimizers (e.g., Federated

averaging) and exhibit similar privacy vulnerabilities. There is a

long line of work on ADMM under DP including [14, 21, 29, 38]

under both centralized and decentralized settings, however we are

not aware of any work that considers optimizing using second-

order information while also ensuring model-sized communication

cost.

3 FedNew
Let 𝑛 denote the number of users and 𝑓𝑖 (𝜃 ) the empirical loss of

user 𝑖 , 𝑖 ∈ [𝑛], where 𝜃 ∈ R𝑑
denotes the model parameters. We

consider the minimization problem

min

𝜃 ∈R𝑑
𝑓 (𝜃 ) :=

𝑛∑︁
𝑖=1

𝑓𝑖 (𝜃 ) .

The Newton iteration which is the basis for most of the second-

order methods, is given as

𝜃𝑘+1 = 𝜃𝑘 −
(

𝑛∑︁
𝑖=1

∇2 𝑓𝑖 (𝜃𝑘 )
)−1 𝑛∑︁

𝑖=1

∇𝑓𝑖 (𝜃𝑘 ) .

The same Newton iteration has been considered in the central-

ized case by Ganesh et al. [17]. However, extending their method to

FL scenario in a communication efficient way is far from immediate

since each user needs to transmit both local Hessian and gradients
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to take one global step. Therefore, we consider as a starting point

the single pass ADMM-method called FedNew as given in Elgabli

et al. [16]. This method has only 𝑂 (𝑑) user-wise communication

cost per iteration.

The update

(
𝑛∑︁
𝑖=1

∇2 𝑓𝑖 (𝜃𝑘 ))−1

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝜃𝑘 )

in the Newton iteration is approximated such that the ADMM

algorithm is applied to the augmented Lagrangian

L({𝑦𝑖 , 𝜆𝑖 }𝑛𝑖=1
, 𝑦) =

𝑛∑︁
𝑖=1

𝑦𝑇𝑖

(
1

2

(𝐻𝑘
𝑖 + 𝛼𝐼 )𝑦𝑖 − 𝑦𝑇𝑖 𝑔𝑘𝑖

)
+

𝑛∑︁
𝑖=1

⟨𝜆𝑖 , 𝑦𝑖 − 𝑦⟩ +
𝜌

2

𝑛∑︁
𝑖=1

∥𝑦𝑖 − 𝑦∥22,

where 𝐻𝑘
𝑖 = ∇2 𝑓𝑖 (𝜃𝑘 ), 𝑔𝑘𝑖 = ∇𝑓𝑖 (𝜃𝑘 ), and {𝑦𝑖 , 𝜆𝑖 }𝑛𝑖=1

denote the

primal and dual variables for user 𝑖 . The global model parameters at

iteration 𝑘 are 𝜃𝑘 . We refer to [16] for more details on the derivation

of the FedNew method, and simply list here the resulting algorithm.

Let𝑇 denote the total number of training iterations. Also, denote

the primal and dual variables of user 𝑖 , 𝑖 ∈ [𝑛], at iteration 𝑘 ,

𝑘 ∈ [𝑇 ], as 𝑦𝑘𝑖 and 𝜆𝑘𝑖 , respectively, and the global primal and dual

variables at iteration 𝑘 as 𝑦𝑘 and 𝜆𝑘 . Then, the FedNew algorithm

is described by the following steps.

(1) At user 𝑖 , at round 𝑘 , the update of the primal variable is

obtained from the local minimization problem

𝑦𝑘𝑖 = arg min

𝑦

[
1

2
𝑦𝑇 (𝐻𝑘

𝑖 + 𝛼𝐼 )𝑦 + ⟨𝜆𝑘−1

𝑖 , 𝑦 − 𝑦𝑘−1⟩

− 𝑦𝑇𝑔𝑘𝑖 +
𝜌

2
∥𝑦 − 𝑦𝑘−1∥2

2

] (3.1)

for which the solution can be written as

𝑦𝑘𝑖 =
(
𝐻𝑘
𝑖 + (𝛼 + 𝜌)𝐼𝑑

)−1
(
𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1
)
. (3.2)

(2) The primal variable update at the server is obtained by solv-

ing the problem

𝑦𝑘 = arg min

𝑦

[ 𝑛∑︁
𝑖=1

⟨𝜆𝑘−1

𝑖 , 𝑦𝑘𝑖 − 𝑦⟩ +
𝜌

2

𝑛∑︁
𝑖=1

∥𝑦 − 𝑦𝑘𝑖 ∥22
]

which gives the solution

𝑦𝑘 = 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑘𝑖 + 1

𝜌
𝜆𝑘−1

𝑖 ). (3.3)

(3) The dual variables are updated locally:

𝜆𝑘𝑖 = 𝜆𝑘−1

𝑖 + 𝜌 (𝑦𝑘𝑖 − 𝑦𝑘 ) . (3.4)

Also, since

𝑛∑︁
𝑖=1

𝜆𝑘𝑖 = 0,

the update (3.3) can be written as an average of the primal

variables:

𝑦𝑘 = 1

𝑛

𝑛∑︁
𝑖=1

𝑦𝑘𝑖 .

(4) The global model parameters are updated as

𝜃𝑘+1 = 𝜃𝑘 − 𝜂 · 𝑦𝑘 ,
where 𝜂 > 0 denotes the learning rate hyperparameter.

In case of convergence of the local iterations (repeating steps 1

to 3 until convergence), the following conditions are satisfied by the

FedNew iteration for all 𝑖 ∈ [𝑛] [see 16, and the references therein]:
𝑦∗𝑖 (𝜃𝑘 ) = 𝑦∗ (𝜃𝑘 ),

(𝐻𝑘
𝑖 + 𝛼𝐼 )𝑦∗𝑖 (𝜃𝑘 ) − 𝑔𝑘𝑖 + 𝜆∗𝑖 (𝜃𝑘 ) = 0,

(3.5)

where 𝑦∗𝑖 (𝜃𝑘 ) and 𝜆∗𝑖 (𝜃𝑘 ) denote the optimal values of 𝑦𝑘𝑖 and 𝜆𝑘𝑖 ,

respectively, at iteration 𝑘 , i.e., the results of running the ADMM

steps until the end at the iteration 𝑘 .

4 DP-FedNew
From the differential privacy perspective, the FedNew iteration

poses several challenges. First of all, instead of only limiting the

sensitivity of the gradients ∇𝑓𝑖 (𝜃 ) by clipping and adding normally

distributed noise as inDP-SGD [2], we need to consider the potential

privacy leakage via the Hessians ∇2 𝑓𝑖 (𝜃 ) which are data-dependent.

Second, naive differentially private FL approaches suffer from a

very high communication cost due to the communication of the

Hessians.

We next describe the required modifications to FedNew to make

it differentially private. In FedNew, the only part where the data is

used, is in the update of the primal variable 𝑦. At user 𝑖 , at round 𝑘 ,

the primal variable 𝑦𝑘𝑖 is updated as

𝑦𝑘𝑖 = (𝐻𝑘
𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1 (𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1). (4.1)

Here the global primal variable 𝑦𝑘−1
and the dual variable 𝜆𝑘−1

𝑖 are

results of previous iterations and therefore do not incur additional

per-iteration privacy cost. The only data-dependent objects are

the gradients 𝑔𝑘𝑖 = ∇𝑓𝑖 (𝜃𝑘 ) which are functions of data and the

previous iterations primal variables 𝑦𝑘−1, 𝑦𝑘−2, ....

We consider separately the user and record-level DP versions of

DP-FedNew. In both cases, the only modification to the non-private

FedNew algorithm happens in the update of local primal variables.

We use the additive Gaussian noise, however, remark that our al-

gorithm is compatible with any suitable DP secure aggregation

primitive (e.g. [10, 22]) closed under summation and other noise

distributions could be considered.

4.1 DP-FedNew with User-level Privacy
For user-level privacy, we need to hide users 𝑖 whole contribution.

We can obtain this simply by clipping the user-wise updates and

adding normally distributed noise [similar user-level algorithms

considered, e.g., in 30, 37]. This means that we simply replace the

local update (3.2) in FedNew by the pseudocode of Algorithm 1,

where we clip 𝑦𝑘𝑖 with some constant 𝐶 > 0 and add normally

distributed noise with covariance 𝐶2 𝜎2𝐼𝑑
𝑛

, 𝜎 > 0, to the resulting

clipped update clip𝐶 (𝑦𝑘𝑖 ), where the clipping function is defined

for vectors and matrices as

clip𝐶 (𝑦𝑘𝑖 ) =


𝑦𝑘𝑖 , if ∥𝑦𝑘𝑖 ∥𝐹 ≤ 𝐶,
𝐶 · 𝑦𝑘

𝑖

∥𝑦𝑘
𝑖
∥𝐹
, else.
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From the differentially privacy point of view, at each iteration

we release only the noisy sum of the local updates,

M(𝐷) ∼
𝑛∑︁
𝑖=1

(
clip𝐶 (𝑦𝑘𝑖 ) + N (0,

𝐶2𝜎2

𝑛
𝐼𝑑 )

)
. (4.2)

The noisy local primal variable update is distributed as,

𝑦𝑘 =
1

𝑛

𝑛∑︁
𝑖=1

𝑦𝑘𝑖 ∼
1

𝑛

𝑛∑︁
𝑖=1

(
clip𝐶 (𝑦𝑘𝑖 ) + N (0,

𝐶2𝜎2

𝑛
𝐼𝑑 )

)
∼ 1

𝑛

𝑛∑︁
𝑖=1

clip𝐶 (𝑦𝑘𝑖 ) + N (0,𝐶2𝜎2𝐼𝑑 ) .
(4.3)

The local noise of scale
𝜎2

𝑛
is not sufficient to derive the final

privacy guarantee. The final privacy guarantee hinges on the un-

derlying secure aggregation protocol, which privately sums the

perturbed local primal variables. Note that this is a standard as-

sumption in all protocols that combine secure aggregation and

DP.

Algorithm 1 User-level DP-FedNew algorithm.

1: Input: clipping constant𝐶 > 0, number of global steps 𝑇 , noise

scale 𝜎 > 0, regularizers 𝜌 > 0, 𝛼 > 0, public server learning

rate 𝜂 > 0, initial parameter 𝜃0.

2: Initialize {𝜆0

𝑖 }𝑖∈[𝑛] and 𝑦0
to zero.

3: for iteration 𝑘 = 1, . . . ,𝑇 do
4: for user 𝑖 = 1, . . . , 𝑛 do
5: Compute the non-DP update of the primal variable:

𝑦𝑘𝑖 = (𝐻𝑘
𝑖 + (𝛼 + 𝜌)𝐼𝑑 )−1 (𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1).
6: Clip and perturb the primal variable:

𝑦𝑘𝑖 ← clip𝐶 (𝑦𝑘𝑖 ) + 𝐸𝑖 , 𝐸𝑖 ∼ N
(
0,
𝐶2𝜎2

𝑛
𝐼𝑑

)
.

7: Share 𝑦𝑘𝑖 with server.

8: end for
9: Server: 𝑦𝑘 = 1

𝑛

∑𝑛
𝑖=1

𝑦𝑘𝑖 .

10: Server: 𝜃𝑘+1 = 𝜃𝑘 − 𝜂 · 𝑦𝑘 and share with users.

11: for user 𝑖 = 1, . . . , 𝑛 do
12: Recover 𝑦𝑘 from 𝜃𝑘+1, 𝜃𝑘 and 𝜂.

13: Update dual variable:

𝜆𝑘𝑖 = 𝜆𝑘−1

𝑖 + 𝜌 (𝑦𝑘𝑖 − 𝑦𝑘 ) .
14: end for
15: end for

4.2 DP-FedNew with Record-Level Privacy
In the record-level case we also have additive noise, and for the

privacy guarantees we need to bound the sensitivity of 𝑦𝑘𝑖 w.r.t.

changes of data elements. Consider two neighbouring local datasets

such that one of them has one more data element than the other

one. Denote the Hessian of this additional data element 𝑥 ′ by 𝐻 ′

and it’s gradient by 𝑔′.
Suppose the user 𝑖 has the dataset 𝐷𝑖 . Then, the data-dependent

function that needs to be randomized is

𝐹 (𝐷𝑖 , 𝛼, 𝜌, 𝜆
𝑘−1

𝑖 , 𝑦𝑘−1) = (𝐻𝑘
𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1 (𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1).

Here 𝛼 and 𝜌 are pre-defined constant, and 𝜆𝑘−1

𝑖 and 𝑦𝑘−1
are aux-

iliary variables that are outputs of previous iterations. 𝐻𝑘
𝑖 stands

for the Hessian and 𝑔𝑘𝑖 for the gradient of user 𝑖 .

As we are considering an additive-noise mechanism, we need

to bound the sensitivity of the user-wise contributions w.r.t. to

addition and removal of data elements. We have the following

result which justifies our record-level clipping procedure described

in Algorithm 2.

Lemma 3. Let 𝐷 ′𝑖 and 𝐷𝑖 be neighboring datasets such that 𝐷 ′𝑖 =
𝐷𝑖 ∪ {𝑥 ′} for some data-element 𝑥 ′. Let Δ𝑖 be defined as

Δ𝑖 := 𝐹 (𝐷 ′𝑖 , 𝛼, 𝜌, 𝜆𝑘−1

𝑖 , 𝑦𝑘−1) − 𝐹 (𝐷𝑖 , 𝛼, 𝜌, 𝜆
𝑘−1

𝑖 , 𝑦𝑘−1) .

Assume

∥∇2 𝑓 (𝑥, 𝜃𝑘 )∥2 ≤ Δ𝐻 for all 𝑥 ∈ 𝐷𝑖 ,

∥∇𝑓 (𝑥, 𝜃𝑘 )∥2 ≤ 𝐶1 for all 𝑥 ∈ 𝐷𝑖 ,

∥𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1∥ ≤ 𝐶2,

(4.4)

and 𝛾 = 𝛼 + 𝜌 >
Δ𝐻
|𝐷𝑖 | . Then, we have: ∥Δ𝑖 ∥2 ≤ 1

𝛾 · |𝐷𝑖 | · 𝐶1 +
Δ𝐻

𝛾2 · |𝐷𝑖 |−𝛾 ·Δ𝐻
·𝐶2, where |𝐷𝑖 | is the size of the local dataset 𝐷𝑖 .

The record-level DP precedure is described by Algorithm 2.

Clipping the local gradient and Hessian may not be sufficient to

bound the sensitivity of 𝑔𝑠𝑢𝑚 on line 6 due to the additive fac-

tor −𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1
. Therefore, we find a scalar 𝜉 to tightly bound

| |𝑔𝑠𝑢𝑚 | |2 ≤ 𝐶2 using the following analytical formula.

Lemma 4. Let 𝑎, 𝑏 ∈ R𝑛 and 𝐶 > 0. If we set

𝜉 =
−2⟨𝑎, 𝑏

∥𝑏 ∥2 ⟩ +
√︃

4⟨𝑎, 𝑏
∥𝑏 ∥2 ⟩

2 + 4(𝐶2 − ∥𝑎∥2
2
)

2∥𝑏∥2
,

we have that ∥𝑎 + 𝜉 · 𝑏∥2 =𝐶.

4.3 Memory Efficient Hessian Approximation
In each step, our algorithm requires each client to compute local

Hessian with 𝑑2
elements for each private sample. The computation

and memory requirement of this order easily become prohibitive.

For example, considering a logistic regression model with feature

dimension 𝑑𝑥 = 512 and output dimension 𝑐 = 10, assuming 4 bytes

is reserved for each parameter, then for a client with local 256 local

records the per-example Hessian matrices would occupy in total

5120 · 5120 · 256 · 4 bytes equalling ≈ 27GBs of memory. Sequential

Hessian computation is an option, but we could lose the benefit of

vectorized computations offered by modern accelerators (e.g. GPUs)

and incur an unacceptable increase in the run time. This motivates

to search for appropriate approximations of the Hessian.

In our experiments and convergence analysis we focus on gen-

eralized linear models such as the logistic regression. This class of

problems has recently turned out an attractive approach for private

fine-tuning of large models pre-trained using public data [see, e.g.,

15, 34]. Therein, a well-justified approximation of the Hessian us-

ing the covariance matrix of the feature vectors can be derived as

follows [34]. Assume the loss function is of the form

𝑓
(
(𝑥,𝑦), 𝜃 ) = ℓ (𝜃𝑇𝑥 − 𝑦)
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Algorithm 2 Record-level DP-FedNew algorithm.

1: Input: clipping constants Δ𝐻 ,𝐶1,𝐶2 > 0, number of global steps

𝑇 , noise scale 𝜎 > 0, regularizers 𝜌 > 0, 𝛼 > 0, public server

learning rate 𝜂 > 0, initial parameter 𝜃0.

2: Initialize {𝜆0

𝑖 }𝑖∈[𝑛] and 𝑦0
to zero.

3: for iteration 𝑘 = 1, . . . ,𝑇 do
4: for user 𝑖 = 1, . . . , 𝑛 do
5:

𝐻𝑘
𝑖 =

1

|𝐷𝑖 |
∑︁

𝑥∈𝐷𝑖
clipΔ𝐻

(
∇2 𝑓 (𝑥, 𝜃𝑘 )

)
𝑔𝑘𝑖 =

1

|𝐷𝑖 |
∑︁

𝑥∈𝐷𝑖
clip𝐶1

(
∇𝑓 (𝑥, 𝜃𝑘 )

)
6: Scale the auxiliary variables with 𝐶2:

𝑔sum = 𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1 .

7: if ∥𝑔sum∥2 > 𝐶2 then
8:

𝑔sum = 𝑔𝑘𝑖 + 𝜉 · (−𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1),
where the scalar 𝜉 is chosen using Lemma 4 such that

∥𝑔𝑘𝑖 + 𝜉 · (−𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1)∥2 ≤ 𝐶2 .

9: end if
10: 𝛾 = 𝛼 + 𝜌
11: Compute the non-DP update of the primal variable:

𝑦𝑘𝑖 = (𝐻𝑘
𝑖 + 𝛾𝐼𝑑 )−1𝑔sum .

12: Clip and perturb the primal variable:

𝑦𝑘𝑖 ← 𝑦𝑘𝑖 + 𝐸𝑘𝑖 , 𝐸𝑘𝑖 ∼ N(0, 𝐶
2𝜎2

𝑛
𝐼𝑑 ),

where

𝐶 =
𝐶1

𝛾 · |𝐷𝑖 |
+ Δ𝐻 ·𝐶2

𝛾2 · |𝐷𝑖 | − 𝛾 · Δ𝐻

.

13: Share 𝑦𝑘𝑖 with server.

14: end for
15: Server: 𝑦𝑘 = 1

𝑛

∑𝑛
𝑖=1

𝑦𝑘𝑖 .

16: Server: 𝜃𝑘+1 = 𝜃𝑘 − 𝜂 · 𝑦𝑘 and share with users.

17: for user 𝑖 = 1, . . . , 𝑛 do
18: Recover 𝑦𝑘 from 𝜃𝑘+1, 𝜃𝑘 , and 𝜂.

19: Update dual variable: 𝜆𝑘𝑖 = 𝜆𝑘−1

𝑖 + 𝜌 (𝑦𝑘𝑖 − 𝑦𝑘 ) .
20: end for
21: end for

for some twice differentiable function ℓ , where 𝑥 ∈ R𝑑𝑥
, 𝑦 ∈ R𝑐

,

𝜃 ∈ R𝑑𝑥 ×𝑐
. Then, for a (𝑑𝑥 · 𝑐)-dimensional vectorized parameter

vector, the Hessian is of the form

𝐻 ((𝑥,𝑦), 𝜃 ) = ℓ ′′ (𝜃𝑇𝑥 − 𝑦) ⊗ 𝑥𝑥𝑇 ,
where the Hessian ℓ ′′ (𝜃𝑇𝑥−𝑦) is a 𝑐×𝑐 matrix and where ⊗ denotes
the Kronecker product. I.e.,𝐻 ((𝑥,𝑦), 𝜃 ) is a (𝑑𝑥𝑐×𝑑𝑥𝑐) block matrix,

where the 𝑖th 𝑑𝑥 × 𝑑𝑥 diagonal block equals [ℓ ′′ (𝜃𝑇𝑥 −𝑦)]𝑖𝑖𝑥𝑥𝑇 . In
the method with a feature covariance approximation we simply

carry out the approximation

𝐻 ((𝑥,𝑦), 𝜃 ) ≈ 𝐼𝑐 ⊗ 𝑥𝑥𝑇

and then when the variables and gradients are expressed in matrix

form, we can replace the scaled Hessian times the gradient product

with the product (
1

|𝐷𝑖 |𝑋𝑖𝑋
𝑇
𝑖 + 𝛾𝐼

)−1

𝑔sum,

where then the gradient mean 𝑔sum ∈ R𝑑𝑥 ×𝑐
. This reduces both

the compute and memory requirement considerably. In the above

example, instead of memory requirement of 27GBs, we only need to

allocate 256 · 512 · 512 · 4 bytes equalling ≈ 270MBs of memory for a

parallel computation of the covariance matrix. Such proxy does not

affect the privacy nor our convergence analysis and our experiments

show that we still outperform the first order baseline. We call the

resulting method DP FedNew Feature Covariance method (DP-

FedNew-FC).

Remark 5. Note that we assume for the privacy analysis the same
scaling 1/|𝐷𝑖 | for the average per-example Hessians and gradients of
user 𝑖 both in case the averages originated from the datasets 𝑋 and
𝑋 ′. Thus, strictly speaking, as we use the add/remove neighborhood
relation of datasets, the privacy analysis holds in case we have some
fixed scaling 1/|𝐷𝑖 | for every user 𝑖 ∈ [𝑛] regardless of the input
dataset. We could drop this assumption by considering the substitute
neighborhood relation. This would simply double the sensitivity of
the Gaussian mechanism used for the privacy analysis and increase
the 𝜀-values.

5 Convergence Analysis
The analysis of FedNew as given in [16] is an asymptotic analysis

such that the primal variables 𝑦𝑘𝑖 get closer to the optimal primal

variables 𝑦
𝑘,∗
𝑖

which would be the result of running the inner loop

until convergence. I.e., they show that

lim

𝑘→∞
∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥22 = 0. (5.1)

With 𝑦𝑘,∗’s the outer loop corresponds to a single step of Newton’s

iteration.

In case of DP-noise perturbed local updates, we cannot have

the asymptotic convergence of the form (5.1). However, under the

assumptions of the analysis by Elgabli et al. [16] and some weak

assumptions related to the DP version of the algorithm, we obtain

an asymptotic limit of the form

lim

𝑘→∞
∥𝑦𝑘 − 𝑦𝑘,∗∥2

2
= O

(
𝑑𝜎2

𝑛

)
= Õ

(
𝑑

𝑛�̃�2

)
,

where 𝑦𝑘 =
∑𝑛

𝑖=1
𝑦𝑘𝑖 is a sum of the local noisy updates. and �̃�

corresponds to the privacy guarantee of releasing the global result

of a single iteration. The additional noise then matches the amount

of local noise that one has, e.g., in DP gradient descent.

5.1 Convergence Analysis for DP-FedNew
For the convergence analysis of DP-FedNew, we assume that the

clipping constants are chosen such that no clipping happens during

the iteration. This is a natural assumption, e.g., in case the gradients

are Lipschitz, the per-example Hessian is bounded in Frobenius

norm (plausible assumption, e.g., for generalized linear models) and

the auxiliary terms in the local update (4.1), i.e., the terms

𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1,

588



Communication Efficient Differentially Private Federated Learning Using Second Order Information Proceedings on Privacy Enhancing Technologies 2025(1)

ß ∈ [𝑛], stay bounded along the iteration. Then, the noisy update

can be written as

𝑦𝑘𝑖 = (𝐻𝑘
𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1 (𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1) + 𝐸𝑘𝑖 , (5.2)

where 𝐸𝑘𝑖 ∼ N(0,
𝐶2𝜎2

𝑛
𝐼𝑑 ) and 𝐶 is the sensitivity parameter, i.e.,

either the clipping constant in case of user level algorithm or then

the parameter given by Lemma 3 in case of record-level algorithm.

Without loss of generality of our results, we also assume that𝐶 = 1.

The following auxiliary result applies for the noisy update rule (5.2)

and is central in our analysis.

Lemma 6. Consider one iteration of DP-FedNew. Assume the per-
example approximations of the Hessian at user 𝑖 at iteration 𝑘 , 𝐻𝑘

𝑖 , is
positive semidefinite. Denote by 𝜆∗,𝑘 and 𝑦𝑘,∗ the dual variables that
are the results of running the non-DP FedNew inner iteration until
the end (given the results of the DP iterations from 𝑘 − 1 iterations).
Denote the dual residual 𝑠𝑘 := 𝜌 (𝑦𝑘 − 𝑦𝑘−1). We have:

E⟨𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆𝑘,∗, 𝑦𝑘𝑖 − 𝑦𝑘,∗⟩ ≤ −𝛼E∥𝑦𝑘,∗ − 𝑦𝑘𝑖 ∥2

+ 𝜎2 · Trace(𝐻𝑘
𝑖 ) + 𝜎2 · (𝛼 + 𝜌) · 𝑑,

where the expectation is taken over the randomness of 𝐸𝑘𝑖 , the noise
added by the user 𝑖 at iteration 𝑘 .

In the following result, we define a certain Lyapunov function

for the DP-FedNew algorithm, and by using the auxiliary Lemma 23,

we obtain a stochastic inequality which leads us to the main result.

Lemma 7. Let the Lyapunov function 𝑉𝑘 be defined as

𝑉𝑘 :=
1

𝜌

𝑛∑︁
𝑖=1

∥𝜆𝑘𝑖 − 𝜆𝑘,∗∥22 + 2𝛽1

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥22

+ 𝜌𝑛∥𝑦𝑘 − 𝑦𝑘,∗∥2
2
+ 2𝜌𝑛∥𝑦𝑘 − 𝑦𝑘−1∥2

2
,

where 𝑦𝑘𝑖 denotes the noisy update (5.2) Denote 𝑉𝑘 = E𝑉𝑘 , where the
expectation is taken over all additive noises up to iteration 𝑘 . Then,
𝑉𝑘 satisfies

𝑉𝑘 ≤ 𝑉𝑘−1 − 𝛽2E
𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 + 𝜎2 · (𝛼 + 𝜌) · 𝑑

for some constant 𝛽2 > 0, where the expectation is taken over the
noise added at iteration 𝑘 .

Our main convergence result is of qualitative nature and states

that the DP version inherits the stability of FedNew in a sense that

the added DP noise does not make the solution to diverge from the

non-private iterations. The result follows from Lemma 7.

Theorem 8. Let 𝜎 > 0. For all 𝑘 ∈ Z, there exists ℓ > 𝑘 such that

E∥𝑦ℓ − 𝑦ℓ,∗∥2 ≤ 𝜎2 · (𝛼 + 𝜌) · 𝑑
𝑛𝛽2

where the expectation is taken over the noise added at iteration ℓ .

6 Experimental Results
6.1 Experimental Setting and Baselines

Baselines. Noble et al. [36] proposed a DP variant of the Scaf-

fold [24] method designed specifically to tackle data heterogeneity.

Similarly to popular FedAVG [31], in Scaffold each client running

performs multiple local updates before sending their model updates

to the server. Each user and server maintains a control variable

for drift correction. During each local step, subtraction of the lo-

cal and global control variates is added to the perturbed gradients

to counter local models drifting away from the global due to het-

erogeneity in their data distributions. Algorithms 3 and 4 of the

Appendix outline record and user level full-batch versions of the

DP-Scaffold methods. Experiments in Noble et al. [36] show that DP-

Scaffold performs no worse than DP-FedAVG even on IID datasets.

Moreover, we can recover DP-FedAVG by removing the control

variables. Therefore, we use it as our main baseline (proxy for DP-

FedAVG) in our evaluations on both IID and non-IID datasets. We

use the warm start variant of DP-Scaffold in which the local control

variates {𝑐0

𝑖 }𝑛𝑖=1
are initialized to the perturbed gradients in the

first step. In each global iteration, DP-Scaffold requires clients and

server to exchange the parameter and control variable information,

making the communication cost 2 × 𝑑 . Additionally, it only uses

the first-order information for model update.

In the non-FL setting, Mehta et al. [34] proposed the DP-FC

method which involves pre-multiplying the noisy full batch mean

gradients with the inverse of a shifted noisy feature covariance

matrix. We present federated versions of DP-FedFC in Algorithms 5

and 6. DP-FedFC gives a strong baseline however it requires server

aggregating the global noisy feature covariancematrix from clients
1
.

On the other hand, clients running DP-FedNew compute primal

variables only with their local Hessians. Finally, we consider a dis-

tributed version of DP-GD (coined DP-FedGD) as another first-order

baseline method because it has the same privacy and communica-

tion cost as DP-FedNew. Record- and user-level DP versions of the

method are depicted in Algorithms 7 and 8 of the Appendix.

Differences to the Experimental Setting of [36]. DP-Scaffold is

also applicable to non-convex problems and [36] consider training

a 2-layer neural network from scratch for various classification

experiments. We consider training only a single linear layer due

to our focus on convex problems. For a fair comparison with DP-

FedNew, we consider full batch variants for all baselines, i.e., all

clients participate in each round. This means none of the methods

benefit from privacy amplification due to client and record subsam-

pling. Similar to DP-Scaffold, both DP-FedNew and DP-FedFC can

be modified to performmultiple local client-side updates with client

or record sampling. However, an exploration of these variants is

left for future work.

IID Datasets. In our transfer learning experiments, we finetune the

last layer on CIFAR10 [26], EMNIST [13], and FashionMnist [43].

Towards this purpose, we extract features of sizes 64 and 2048

from the last layers of pre-trained Resnet models listed in Table 2.

Additionally, we train binary classification models from scratch on

the enhanced Adult dataset from LIBSVM [6] repository.

Non-IID Datasets. We pick two non-IID classification datasets

used in [36]. The first one is a synthetic dataset with feature di-

mension 𝑑𝑥 = 60 drawn from a generative model proposed in [27]

which allows us to adjust heterogeneity between local distributions

1
Global noisy feature covariance matrix aggregation costs one or more communication

rounds. In the user-level DP variant, server needs the second round to share the

aggregated noisy covariance matrix back with the clients, making the cost 2𝑑2

𝑥 +𝑑 ·𝑇 .

However, in record-level DP version, this second round can be saved by pushing the

preconditioning to server.
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Table 1: Dataset and model description.

datasets CIFAR10 FashionMNIST EMNIST synthetic Federated EMNIST Adult

classes 10 10 10 10 47 2

𝑁 50k 60k 240k 50k 90240 24800

|𝐷𝑖 | (for Section 6.2 and 6.3)
50𝑘
500

= 100
60𝑘
500

= 120
240𝑘
500

= 480
50𝑘
500

= 100
90240

47
≈ 1920

24800

500
≈ 50

test dataset size 10k 10k 10k 10k 22560 6200

distribution IID IID IID non-IID non-IID IID

trained from scratch No No No Yes Yes Yes

layer sizes

64 × 10,

2048 × 10

64 × 10,

2048 × 10

64 × 10,

2048 × 10

60 × 5 100 × 47 123 × 2

Table 2: Method for extracting IID features.

Linear

layer size

64 × 10 2048 × 10

Pretraining

architecture

ResNet44 ResNet50

Pretraining

weights

CIFAR100 Imagenet

Table 3: Our proposed methods DP-FedNew (Algorithm 1
and 3) and DP-FedNew-FC have both O(𝑑) communication
and use second-order information about the loss functions.
Neither of the baseline methods DP-Scaffold (Algorithm 3),
DP-FedGD (Algorithm 7 and 8) and DP-FedFC (Algorithm 5
and 6) do not have both of these properties. Here 𝑑, 𝑑𝑥 denote
the dimension of the model and features. 𝑇 is the number of
training iterations.

method comm. cost

uses 2nd order

info.

performs

local

updates

DP-FedNew 𝑑 ×𝑇 yes no

DP-FedNew-FC 𝑑 ×𝑇 yes no

DP-FedFC 𝑑2

𝑥 + 𝑑 ×𝑇 yes no

DP-Scaffold 2𝑑 ×𝑇 no yes

DP-FedGD 𝑑 ×𝑇 no no

with hyperparameters 𝛼 ≥ 0 and 𝛽 ≥ 0. Higher values of 𝛼, 𝛽 in-

dicate more heterogeneity. As in the experiments of [36], we fix

𝛼 = 5 and 𝛽 = 5 which gives the most heterogeneous setting of [36].

The second dataset is the balanced version of EMNIST [12], with

47 classes (digits and letters). We consider the extreme scenario in

which the training dataset is divided among 47 clients, with each

client holding all records of exactly one class. Following [36], we

call this dataset Federated EMNIST. With principal component anal-

ysis, we reduce the original dimensionality to 100. For experiments

in Section 6.2 and 6.3, training data is divided among 500 clients

such that each client has roughly an equal sized dataset. The dataset

sizes are mentioned in Table 1.

Tasks. In experiments on IID data, we train the linear layers of size

64 × 10 and 2048 × 10. For reasons of space, all figures for experi-

ments with layers of size 2048 × 10 are moved to the Appendix. We

minimize the cross-entropy loss in all experiments. In each plot, we

show the average test performance of the model obtained after per-

forming a hyperparameter search for each method. Test accuracies

are averaged across 5 independent runs. The best hyperparameters

are selected based on the average test accuracy of the last 20 epochs.

The hyperparameter grids used for the hyperparameter tuning are

specified in Table 7.

Implementation.We generate the non-IID datasets using the code

released with the DP-Scaffold paper [36]. The extreme distribution

for the Federated EMNIST dataset can be obtained by setting the

similarity hyperparameter to 0 in their script. We implement our

training simulations with PyTorch 2.0 and rely on vmap calls for

speeding up our per-example gradient and Hessian computations.

For scalability, we tune the hyperparameters with Ray Tune [28]

on a dedicated multi-GPU cluster.

Privacy Accounting. For each value of 𝜀, we obtain the lowest 𝜎

through a binary search on the expression given by Lemma 2 in the

Appendix. Due to M number of local updates, we account for𝑇 ·𝑀
steps for DP-Scaffold instead of T steps. We do not consider the

privacy cost of tuning towards the final DP guarantee for simplicity.

We fix 𝛿 to
1

𝑁
, where 𝑁 is the total number of data points, in all

experiments.

Remark 9. As mentioned in Section 6.1, DP-FedFC is a strong base-
line due to its higher communication complexity. For a fair evaluation
and readability, we move the experiments comparing the epoch wise
accuracy DP-FedFC to Section J.

6.2 Experiments on IID Datasets
For Figure 1, we train linear layers of size 64 × 10 (image datasets)

and 123 × 2 (Adult dataset) for each method, and compare the

performance of DP-FedNew, DP-Scaffold, and DP-FedGD. We tune

only the learning rate 𝜂 for DP-FedGD, and additionally tune the

number of local steps M for DP-Scaffold, constants Δ𝐻 , 𝛼 , and 𝜌

for DP-FedNew. Figure 1 plots the mean test accuracy for the best

model obtained after hyperparameter tuning for all methods at

several epochs. Thanks to Hessian information, we observe that

typically DP-FedNew converges the fastest for all datasets and for

all 𝜖 levels. DP-Scaffold struggles specially at low 𝜀 regimes, due to

much higher value of 𝜎 compared to DP-FedGD and DP-FedNew.

In some cases however, it slightly outperforms DP-FedGD at higher

𝜀 values benefiting from the local steps.
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To verify the impact of increased learning capacity and better

features, Figure 5 in the Appendix shows the same quantities, but for

layer sizes 2048× 10. We cannot compute the per-example Hessians

because of our computational limitations. Therefore, we use this

figure as an opportunity to demonstrate the benefits of a variant

where we carry out a Hessian approximation (DP-FedNew-FC)

which is discussed in Section 4.3. The main observation across the

board is that the overall accuracies at higher 𝜀’s are higher compared

to Figure 1. In this case, the accuracy gap between DP-FedGD and

DP-FedNew-FC shrinks, infact the curves overlap at lower 𝜀’s. For

EMNIST and FashionMNIST, DP-FedNew provides similar final

accuracies as DP-FedGD, but at much lower 𝜀 (e.g. 𝜀 = 0.5 vs. 8).

DP-FedNew-FC still dominates the high utility regimes, and has the

fastest convergence. In both figures, DP-Scaffold initially suffers

from a slow start issue, and is generally outperformed by DP-FedGD

at lower 𝜀. Note that the slow start behavior has also been observed

in [36] plots. Figure 3 shows comparisons for user-level DP, and

it only support the previous observations. To comply user-DP, we

clip and perturb the difference between previous global parameter

𝜃𝑘−1
and the final local model 𝑦𝑀𝑖 , which is a standard [44] way to

make FedAVG user-DP. Full exploration of other variants is outside

the current scope.

6.3 Non-IID Datasets
For experiments on non-IID data, we train the models from scratch.

DP-Scaffold involves client performing multiple local updates. Simi-

larly, DP-FedNew requires the inverse Hessian and gradient product

for local primal variable computation. DP-Scaffold tries to correct

the client model drifts with control variables. Although DP-FedNew

has not been tailor made for heterogeneous datasets, we observe

that the objective function 3.1 includes the term | |𝑦 − 𝑦𝑘−1 | |2
2
by

design, owing to the use of augmented Lagrangian multipliers. This

quadratic penalty aims to resist the deviations in local and global

primal variables. We note that similar terms can also be found in

other non-private first-order optimizers (e.g. FedProx [27]) designed

for data-heterogeneous FL. Figures 2 and 6 (in Appendix) compare

all three solutions on Federated EMNIST and synthetic datasets for

record- and client-level DP. Note that in DP-FedGD, client’s role is

to only transmit the perturbed gradients to server. Computing gra-

dients and taking their mean is a permutation invariant operation,

and remains unaffected by changes in the client data distribution.

With the quadratic penalty and Hessian information, we can see

in Figure 2a that DP-FedNew-FC performs at par with DP-FedGD

for low 𝜀’s and outperforms it for higher 𝜀 even when each client

Figure 1: IID data: Record-level results for DP-FedNew (DP-
FN in plots), DP-FedGD (DP-FGD in plots), and DP-Scaffold.
For each 𝜖, we plot the test accuracies of the best model ob-
tained after hyperparameter tuning. Themodel size forAdult
dataset is 123 × 2. For other datasets, it is 64 × 10. Check Fig-
ures 9 and 10 for comparison with DP-FedFC.
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(a) Federated EMNIST

(b) Synthetic data

Figure 2: Non-IID data: Record-level results for DP-FedNew
(DP-FN in plots) and DP-FedGD (DP-FGD in plots). For each 𝜖,
we plot the average test accuracies of the best model obtained
after hyperparameter tuning. The model sizes are 100 × 47

and 60 × 10. Check Figure 6

has a dataset for a single label. We have similar results for the

synthetic dataset in Figure 2, with DP-FedNew loosing to DP-FedGD

by small margins for low 𝜀’s. However, curves nearly overlap for

higher 𝜀.

In Figure 6, we use 𝜀 ≥ 1 to ensure the stability of all methods.

In Figure 6a, DP-FedGD suffers from slow convergence, possibly

caused by the bias injected during clipping and coarser nature of

guarantee. To limit the contribution of each user, we also tried

another variant in which per-example gradients are clipped, but

did not observe a huge performance gain. We did not inpsect this

issue further because neither DP-FedNew nor DP-Scaffold have an

explicit bias-aware clipping mechanism. Bias correction is a topic of

separate discussion. We note that DP-Fed(S)GD performs poorly on

this dataset, even in [36] for non-convex problems. Despite twice

the communication cost, DP-Scaffold continues to be inferior to

DP-FedNew for all 𝜀’s except 𝜀 = 10, probably due to lack of second-

order information. Similar remarks can be made about Figure 6b in

Appendix.

6.4 Impact of Varying Local Dataset Sizes
We have fixed |𝐷𝑖 | = 500 in previous experiments. Now we would

like to check the performance consistency of all methods across

the client dataset sizes. We also compare with DP-FedFC in this

Section. The size of 𝐷𝑖 reduces with increase in 𝑛. However, the

product 𝑛 × |𝐷𝑖 | remains the same. The reduction in |𝐷𝑖 | increases
the sensitivity bound for DP-FedNew, which in turn increases the

amount of noise to be injected into primal variables. Moreover,

higher dissimilarity among local primal variables caused by smaller

(and potentially imbalanced) datasets can also effectively increase

the squared penalty term in the objective function 3.1, leading to

reduced model performance. Similarly, for smaller datasets, client

models after taking the local steps in DP-Scaffold are likely to

experience higher drifts since each client’s data is less likely to be

a representation of the overall data distribution.

Tables 4 and 5 compare the mean accuracy at 70th epoch for

the best model obtained after hyperparameter tuning for several

𝜀’s and different number of clients for IID FashionMNIST dataset

and non-IID Federated EMNIST. This time, we also include DP-

FedFC. For Federated EMNIST, each client holds data of atmost 2

classes. We tune the learning rate 𝜂 and two clipping constants

𝐶𝑐 ,𝐶𝑔 for DP-FedFC. Section G in the Appendix includes tables for

FashionMNIST, CIFAR10, Adult, and EMNIST datasets.

For DP-FedNew, DP-FedNew-FC, DP-FedFC, and DP-Scaffold,

we observe the expected accuracy reduction as we increase 𝑛 for

𝜀 = 0.1. DP-FedGD remains relatively unaffected by the variations

in the dataset sizes, possibly because client’s job is to only share

the perturbed gradients with server, and the number of gradient

evaluations stay the same. However, accuracies for DP-SCAFFOLD

are still much worse than both DP-FedNew and DP-FedNew-FC

even at 𝜀 = 10. The main conclusion for FashionMNIST is that

DP-FedNew or DP-FedNew-FC generally are the most accurate

methods for 𝜀 < 0.7, but get outperformed by DP-FedFC for 𝜀 ≥ 0.7.

For non-IID Federated EMNIST on the other hand, DP-FedNew-

FC excels even for larger 𝜀’s. DP-FedFC’s inferior run on non-IID

data can be explained by the fact that heterogeneity induced in the

data division or data generation process also changes the shape

of the local covariance matrices. The sum of (noisy) local feature

covariance matrices aggregated at server could differ a lot from

the actual global covariance matrix. We compare user-level DP-

FedNew and DP-FedFC in Appendix Figure 8. The summary is that

DP-FedNew is overall the most accurate method for user-level DP.

DP-FedFC’s higher accuracy for record-level DP comes at in-

creased communication cost (under secure aggregation), which is

𝑑2

𝑥 + 𝑑 · 𝑇 for 𝑇 training steps. At this communication cost, DP-

FedNew (and DP-FedNew-FC) can perform
𝑑𝑥 ×𝑑𝑥

𝑑
=

𝑑𝑥 ×𝑑𝑥
𝑑𝑥 ×𝑐 = ⌈𝑑𝑥

𝑐
⌉

additional steps if required. The factor ⌈𝑑𝑥
𝑐
⌉ can be large when

𝑑𝑥 ≫ 𝑐 . For example, while training a model of size 2048 × 10

(Tables 9, 10, and 11), the number of bits required to transmit a co-

variance matrix of size 2048 × 2048 is sufficient for DP-FedNew-FC

to perform 205 global steps. We remind that DP-FedNew-FC only

uses the local covariance matrices for primal variable computations.

6.5 Effect of Damping Local Hessians in
DP-FedNew

Local primal variable computation requires adding a damping factor

𝛾 = 𝛼 + 𝜌 to each Hessian 𝐻𝑖 in Equation 3.2. Our sensitivity result

in Lemma 3 is also conditioned on the assumption 𝛾 >
Δ𝐻
|𝐷𝑖 | .
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Figure 3: IID data: User-level results for DP-FedNew (DP-
FN in plots), DP-Scaffold, and DP-FedGD (DP-FGD in plots).
For each 𝜖, we plot the test accuracies of the best model ob-
tained after hyperparameter tuning. Themodel size forAdult
dataset is 123 × 2. For other datasets, it is 64 × 10. Check Fig-
ures 7 and 8 for comparison with DP-FedFC.

Specifically, we use the fact that adding 𝛾 > 0 to a positive

semidefinite matrix 𝐻𝑖 increases its eigen values by at least 𝛾 . The

value of regularizer 𝛼 is typically small, however 𝜌 , which controls

the influence of primal/dual variables from previous iteration in

the current one can be quite high. If 𝜌 is much larger compared

to the largest eigen value of clipped 𝐻𝑘
𝑖 , the factor 𝛾 dictates the

magnitudes of the spectrum of 𝐻𝑘
𝑖 + (𝛼 + 𝜌)𝐼𝑑 . This effect can

deteroriate the second-order information present in the clipped

and damped Hessian. To be able to attribute DP-FedNew’s strong

experimental success to the Hessian information, the condition

𝛾 >
Δ𝐻
|𝐷𝑖 | should be satisfied even for moderately low values of 𝜌 .

Table 6 assesses how DP-FedNew responds to changes in 𝜌 and 𝛾

for various dataset sizes for 𝜀 = 1 for FashionMNIST. For several n’s

we show the accuracies of the top-3 most accurate models at various

epochs along with their mean maximum eigenvalues. The columns

for each 𝑛 are sorted according to the accuracy in the 70th epoch.

For FashionMNIST, we observe that the most frequent 𝜌 value is

1, and 𝛼 < 1. Table 12 in Appendix reports the same quantities for

EMNIST. For EMNIST, the best 𝜌 is 1, and best 𝛼 ’s are once again

less than 1. This supports the hypothesis that DP-FedNew is not

too sensitive to the choice of 𝜌 , and the prerequisite 𝛾 >
Δ𝐻
|𝐷𝑖 | can

be satisfied easily.

6.6 Computation vs. Communication Cost
Figure 4 compares the mean total time taken for all client and server-

side computations when a training global model for 70 epochs. Note

that DP-Scaffold’s runtimes vary a lot across 𝜀’s because we also

tune the number of local steps. Due to costly Hessian computations,

DP-FedNew’s run time scales up more quickly than the first-order

alternatives with the local dataset size. Therefore, for stress testing,

we divide IID datasets among only 50 clients compared to 500 ear-

lier so that each client has 10X more records. While DP-FedNew

is computationally the most expensive method, we check in the

first two plots that it achieves the final accuracy of DP-FedGD and

DP-Scaffold in less than
1

4
th of its total run time, and before the

15th epoch. This means that we can save both privacy budget and

communication by running DP-FedNew for a much lower number

of epochs. The highlight of Figure 4 is the DP-FedNew-FC method,

which attains accuracy comparable to DP-FedNew within a small

fraction of its run time, making it a viable alternative to DP-FedNew

when Hessians computations are infeasible. Each user in this case

can pre-compute and cache the local covariance matrix.

7 Concluding Remarks
We have proposed the first DP FL optimization method with model-

sized communication overhead that uses the curvature information

via the feature covariance matrix or via the Hessian matrix of the

loss function. Our approach nicely complements an orthogonal line

of research dedicated to the development of resource efficient DP

primitives for secure aggregation.

For convex classification problems, our experiments show that

we can achieve better privacy-utility tradeoffs by incorporating

second-order information into optimizer than the first order coun-

terparts. DP-FedNewton outperforms the first-order alternatives

nearly all 𝜀’s on iid datasets; and specially in high accuracy regimes

even for challenging non-iid data distributions due to inbuilt drift
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resistance. While DP-FedNew is computationally more expensive,

we can save on both communication and privacy budget compared

to the competition by running it for much lower number of epochs.

When Hessians cannot be computed, their computation and mem-

ory wise cheaper approximation can also exhibit better privacy-

utility tradeoffs than the alternatives. DP-FedNew also appears to

be the least fluctuating method, even for low 𝜀’s.

The main limitation of DP-fedNew is the memory cost required

for holding the per-example Hessians, which arises due to our

assumption of the bounded matrix norm in the sensitivity analysis.

It may be possible to relax this assumption by appropriately clipping

the features. We can then use PyTorch/Jax utilities (e.g., [1, 40])

to efficiently compute inverse Hessian gradient products without

explicitly computing the Hessians or their inverses.

Ability to sample clients and records is another practical func-

tionality that DP-Fednew is missing. Here various subsampling

amplification results could be considered to lower per iteration

privacy cost. Another interesting avenue of future work is to check

if the proposed method can be extended for non-convex tasks, such

as training a neural network with multiple layers.

Figure 4: Timing plots: Record-level results for DP-FedNew
(DP-FN in plots), DP-FedNew-FC (DP-FN-FC in plots), DP-
FedGD (DP-FGD in plots), and DP-Scaffold. The X axis shows
the mean computational time required for training a global
model for 70 epochs. For readability, only some of the points
are annotated with the epoch number. For each 𝜖, we plot the
test accuracies of the best model obtained after hyperparam-
eter tuning.
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Table 4: Effect of varying the local dataset size. The numbers in the 𝜀 columns report the mean test accuracy after the final
70th epoch for the best model trained on IID FashionMNIST dataset obtained after tuning the hyperparameters mentioned in
Table 7. The layer sizes are 64 × 10. Note that DP-FedFC achieves higher accuracy at the cost of higher communication.

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.5 𝜖 = 0.7 𝜖 = 1 𝜖 = 2 𝜖 = 3 𝜖 = 8 𝜖 = 10

n |𝐷𝑖 | method

20 3000 DP-FedNew 0.638 0.676 0.683 0.684 0.686 0.690 0.692 0.710 0.713

DP-FedNew-FC 0.643 0.678 0.676 0.683 0.683 0.687 0.683 0.685 0.688

DP-Scaffold 0.497 0.519 0.471 0.541 0.592 0.531 0.527 0.515 0.510

DP-FedFC 0.645 0.672 0.675 0.704 0.715 0.724 0.724 0.736 0.739

DP-FedGD 0.555 0.565 0.569 0.575 0.568 0.563 0.567 0.566 0.568

50 1200 DP-FedNew 0.643 0.679 0.683 0.687 0.689 0.689 0.690 0.708 0.714

DP-FedNew-FC 0.642 0.670 0.684 0.684 0.682 0.686 0.685 0.685 0.685

DP-Scaffold 0.427 0.543 0.570 0.586 0.601 0.603 0.611 0.611 0.611

DP-FedFC 0.635 0.668 0.671 0.704 0.717 0.724 0.725 0.739 0.739

DP-FedGD 0.561 0.571 0.572 0.571 0.572 0.575 0.571 0.569 0.568

100 600 DP-FedNew 0.608 0.675 0.686 0.686 0.687 0.691 0.691 0.710 0.713

DP-FedNew-FC 0.604 0.673 0.678 0.684 0.687 0.681 0.684 0.683 0.687

DP-Scaffold 0.346 0.494 0.549 0.575 0.595 0.605 0.607 0.615 0.615

DP-FedFC 0.638 0.667 0.672 0.704 0.716 0.723 0.725 0.739 0.738

DP-FedGD 0.561 0.569 0.574 0.578 0.578 0.569 0.577 0.572 0.569

250 240 DP-FedNew 0.601 0.679 0.683 0.687 0.687 0.690 0.691 0.708 0.716

DP-FedNew-FC 0.583 0.678 0.681 0.681 0.686 0.682 0.684 0.684 0.685

DP-Scaffold 0.340 0.452 0.451 0.511 0.483 0.493 0.482 0.513 0.492

DP-FedFC 0.641 0.667 0.675 0.705 0.717 0.723 0.725 0.735 0.739

DP-FedGD 0.574 0.568 0.577 0.575 0.576 0.572 0.568 0.569 0.569

500 120 DP-FedNew 0.575 0.654 0.682 0.688 0.688 0.690 0.691 0.708 0.713

DP-FedNew-FC 0.574 0.651 0.681 0.687 0.687 0.686 0.687 0.683 0.688

DP-Scaffold 0.331 0.418 0.464 0.470 0.531 0.585 0.597 0.607 0.606

DP-FedFC 0.634 0.667 0.672 0.705 0.716 0.723 0.725 0.739 0.740

DP-FedGD 0.560 0.571 0.572 0.569 0.568 0.578 0.579 0.574 0.575
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Table 5: Effect of varying the local dataset size. The numbers in the 𝜀 columns report the mean test accuracy after the final 70th
epoch for the best model trained on non-IID Federated EMNIST dataset obtained after tuning the hyperparameters mentioned
in Table 7. The layer sizes are 100 × 47. Note that DP-FedFC achieves higher accuracy at the cost of higher communication.

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.5 𝜖 = 0.7 𝜖 = 1 𝜖 = 2 𝜖 = 3 𝜖 = 8 𝜖 = 10

n |𝐷𝑖 | method

47 1920 DP-FedNew-FC 0.390 0.489 0.527 0.556 0.582 0.613 0.622 0.628 0.629

DP-Scaffold 0.135 0.270 0.329 0.375 0.416 0.483 0.512 0.552 0.558

DP-FedFC 0.390 0.489 0.527 0.550 0.569 0.545 0.567 0.574 0.595

DP-FedGD 0.389 0.488 0.524 0.545 0.533 0.565 0.564 0.576 0.569

100 893 DP-FedNew-FC 0.383 0.481 0.548 0.552 0.584 0.610 0.619 0.626 0.627

DP-Scaffold 0.085 0.217 0.281 0.322 0.361 0.439 0.469 0.493 0.492

DP-FedFC 0.382 0.491 0.521 0.548 0.565 0.560 0.559 0.585 0.580

DP-FedGD 0.383 0.482 0.519 0.541 0.558 0.562 0.562 0.574 0.564

250 359 DP-FedNew-FC 0.376 0.491 0.533 0.557 0.582 0.614 0.621 0.628 0.631

DP-Scaffold 0.067 0.148 0.207 0.256 0.293 0.347 0.365 0.372 0.370

DP-FedFC 0.384 0.481 0.526 0.555 0.566 0.577 0.560 0.550 0.587

DP-FedGD 0.385 0.484 0.525 0.545 0.553 0.557 0.550 0.548 0.544

500 179 DP-FedNew-FC 0.384 0.462 0.539 0.568 0.593 0.620 0.631 0.639 0.649

DP-Scaffold 0.053 0.122 0.157 0.192 0.205 0.234 0.243 0.253 0.249

DP-FedFC 0.401 0.495 0.539 0.561 0.575 0.584 0.587 0.550 0.669

DP-FedGD 0.391 0.498 0.534 0.547 0.555 0.573 0.558 0.609 0.558

1000 89 DP-FedNew-FC 0.377 0.456 0.497 0.542 0.584 0.615 0.626 0.631 0.633

DP-Scaffold 0.044 0.078 0.097 0.107 0.115 0.120 0.124 0.126 0.128

DP-FedFC 0.390 0.485 0.526 0.553 0.571 0.573 0.573 0.542 0.570

DP-FedGD 0.389 0.487 0.530 0.548 0.555 0.581 0.596 0.573 0.566

Table 6: Effect of 𝜌 and 𝛼 while varying the local dataset sizes. The numbers in the columns {1, 10, 30, 50, 70} report the mean test
accuracies in the correspond epochs for the top-3 most accurate models trained on IID FashionMNIST dataset for 𝜀 = 1. The
layer size is 64 × 10. The value in the columns ¯𝜆

𝑗
𝑚𝑎𝑥 is computed by averging the maximum eigen value of local Hessians from

all clients at epoch 𝑗 . We tune the hyperparameters 𝛼 = {0.01, 0.1, 1}, and 𝜌 = {0.01, 0.1, 1, 10, 100}. 𝜂 =𝐶1 =𝐶2 = Δ𝐻 = 1.

1 10 30 50 70
¯𝜆1

𝑚𝑎𝑥
¯𝜆10

𝑚𝑎𝑥
¯𝜆30

𝑚𝑎𝑥
¯𝜆50

𝑚𝑎𝑥
¯𝜆70

𝑚𝑎𝑥

n |𝐷𝑖 | 𝜂 𝜌 𝛼

20 3000 1 1 0.01 0.138 0.484 0.632 0.665 0.680 0.584 0.304 0.206 0.176 0.172

0.10 0.104 0.446 0.621 0.649 0.664 0.663 0.323 0.225 0.215 0.209

0.1 0.10 0.118 0.511 0.631 0.649 0.657 0.605 0.406 0.220 0.219 0.221

50 1200 1 1 0.01 0.162 0.518 0.634 0.663 0.679 0.345 0.290 0.207 0.174 0.173

0.10 0.193 0.496 0.627 0.650 0.663 0.345 0.286 0.227 0.215 0.211

0.1 0.10 0.234 0.502 0.624 0.644 0.659 0.676 0.381 0.237 0.227 0.214

100 600 1 1 0.01 0.137 0.477 0.633 0.665 0.679 0.632 0.301 0.210 0.179 0.174

0.10 0.162 0.473 0.620 0.645 0.660 0.599 0.306 0.229 0.218 0.213

0.1 0.10 0.115 0.535 0.615 0.645 0.652 0.595 0.330 0.235 0.227 0.227

500 120 1 1 0.01 0.116 0.463 0.633 0.663 0.678 0.621 0.321 0.227 0.195 0.186

0.10 0.093 0.502 0.625 0.650 0.665 0.568 0.318 0.248 0.236 0.231

0.1 0.10 0.148 0.530 0.626 0.650 0.657 0.504 0.308 0.250 0.242 0.235
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A Detailed Description of DP-Scaffold,
DP-FedFC, and DP-FedGD Algorithms

Algorithm 3 Record-level full-batch DP-Scaffold (based on the

DP-Scaffold method of [36])

1: Input: dataset 𝐷 = {𝐷𝑖 }𝑛𝑖=1
, noise level 𝜎 , clipping constant 𝐶 ,

training length 𝑇 , number of local steps 𝑀 , local and global

learning rates 𝜂𝑙 and 𝜂𝑔 , initial 𝑐
0

𝑖 .

2: for iteration 𝑘 = 1, . . . ,𝑇 do
3: Server: Send (𝜃𝑘−1, 𝑐𝑘−1) to all users.

4: for user 𝑖 = 1, . . . , 𝑛 do
5: Initialize model: 𝑦0

𝑖 = 𝜃𝑘−1
.

6: for local step𝑚 = 1, . . . , 𝑀 do
7: Clients: Add DP noise to local gradients:

𝑔𝑚𝑖 = 1

|𝐷𝑖 |
∑

𝑥∈𝐷𝑖
clip𝐶

(
∇𝑓 (𝑥, 𝜃𝑚)

)
+ 2𝐶
|𝐷𝑖 |N(0, 𝜎

2)
8: 𝑦𝑚𝑖 = 𝑦𝑚−1

𝑖 − 𝜂𝑙 (𝑔𝑚𝑖 − 𝑐𝑘−1

𝑖 + 𝑐𝑘−1)
9: end for
10: Update user control variables:

𝑐𝑘𝑖 = 𝑐𝑘−1

𝑖 − 𝑐𝑘−1 + (𝜃
𝑘−1−𝑦𝑀

𝑖
)

𝑀𝜂𝑙

11: (Δ𝑦𝑘𝑖 ,Δ𝑐𝑘𝑖 ) = (𝑦𝑀𝑖 − 𝜃𝑘−1, 𝑐𝑘𝑖 − 𝑐𝑘−1

𝑖 )
12: Share (Δ𝑦𝑘𝑖 ,Δ𝑐𝑘𝑖 ) with server.

𝑐𝑘𝑖 = 𝑐𝑘𝑖
13: end for
14: Server: (Δ𝜃𝑘 ,Δ𝑐𝑘 ) = 1

𝑛

∑𝑛
𝑖=1
(Δ𝑦𝑘𝑖 ,Δ𝑐𝑘𝑖 )

15: Server: Global model update, 𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑔Δ𝜃𝑘 .
16: Server: Update global control variable, 𝑐𝑘 = 𝑐𝑘−1 + Δ𝑐𝑘 .
17: end for

Algorithm 4 User-level full-batch DP-Scaffold (based on the DP-

Scaffold method of [36])

1: Input: dataset 𝐷 = {𝐷𝑖 }𝑛𝑖=1
, noise level 𝜎 , clipping constant 𝐶 ,

training length 𝑇 , number of local steps 𝑀 , local and global

learning rates 𝜂𝑙 and 𝜂𝑔 , initial 𝑐
0

𝑖 .

2: for iteration 𝑘 = 1, . . . ,𝑇 do
3: Server: Send (𝜃𝑘−1, 𝑐𝑘−1) to all users.

4: for user 𝑖 = 1, . . . , 𝑛 do
5: Initialize model: 𝑦0

𝑖 = 𝜃𝑘−1
.

6: for local step𝑚 = 1, . . . , 𝑀 do
7: Clients: Add DP noise to local gradients:

𝑔𝑚𝑖 = 1

|𝐷𝑖 |
∑

𝑥∈𝐷𝑖
∇𝑓 (𝑥, 𝜃𝑚)

8: 𝑦𝑚𝑖 = 𝑦𝑚−1

𝑖 − 𝜂𝑙 (𝑔𝑚𝑖 − 𝑐𝑘−1

𝑖 + 𝑐𝑘−1)
9: end for
10:

˜𝜁𝑖 = clip𝐶 (𝜃𝑘−1 − 𝑦𝑀𝑖 ) + N (0,
𝐶2𝜎2𝐼𝑑

𝑛
)

11: Update user control variables:

𝑐𝑘𝑖 = 𝑐𝑘−1

𝑖 − 𝑐𝑘−1 +
˜𝜁𝑖

𝑀𝜂𝑙

12: (Δ𝑦𝑘𝑖 ,Δ𝑐𝑘𝑖 ) = (− ˜𝜁𝑖 , 𝑐
𝑘
𝑖 − 𝑐𝑘−1

𝑖 )
13: Share (Δ𝑦𝑘𝑖 ,Δ𝑐𝑘𝑖 ) with server.

𝑐𝑘𝑖 = 𝑐𝑘𝑖
14: end for
15: Server: (Δ𝜃𝑘 ,Δ𝑐𝑘 ) = 1

𝑛

∑𝑛
𝑖=1
(Δ𝑦𝑘𝑖 ,Δ𝑐𝑘𝑖 )

16: Server: Global model update, 𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑔Δ𝜃𝑘 .
17: Server: Update global control variable, 𝑐𝑘 = 𝑐𝑘−1 + Δ𝑐𝑘 .
18: end for
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Algorithm 5 Record-level DP-FedFC Algorithm (based on the DP-

FC method of [34])

1: Input: dataset 𝐷 = {𝐷𝑖 }𝑛𝑖=1
, noise levels 𝜎𝑐 , 𝜎𝑔 , clipping con-

stants 𝐶𝑐 ,𝐶𝑔 , training length 𝑇 , learning rate 𝜂, regularization

parameter 𝛾 .

2: for user 𝑖 = 1, . . . , 𝑛 do
3: Clip local user inputs: 𝐷𝑖 =[

clip𝐶𝑐
(𝑥1) . . . clip𝐶𝑐

(𝑥 |𝐷𝑖 | )
]
.

4: Compute local noisy feature covariance matrix: C𝑖 = 𝐷𝑖𝐷
𝑇
𝑖 +

𝐸𝑖 , 𝐸𝑖 ∼ N
(
0,

𝐼𝑑 (𝐶2

𝑐𝜎𝑐 )2
𝑛

)
5: Share C𝑖 with server.

6: end for
7: Server aggregates {C𝑖 }𝑛𝑖=1

, computes the global noisy convari-

ance matrix C =

∑𝑛
𝑖
C𝑖

𝑛
+ 𝛾𝐼𝑑 .

8: for iteration 𝑘 = 1, . . . ,𝑇 do
9: for user 𝑖 = 1, . . . , 𝑛 do
10: Clip and perturb local gradients:

𝑢𝑘𝑖 =

∑
𝑥∈𝐷𝑖

clip𝐶𝑔

(
∇𝑓 (𝜃𝑘 , 𝑥)

)
+ 𝐸𝑘𝑖

|𝐷𝑖 |
, 𝐸𝑘𝑖 ∼ N

(
0,
𝐼𝑑 (𝐶𝑔𝜎𝑔)2

𝑛

)
.

11: Share local update 𝑢𝑘𝑖 with server.

12: end for
13: Server aggregates {𝑢𝑘𝑖 }𝑛𝑖=1

, computes the global noisy update

𝑈 𝑘 = C−1 ·
(∑𝑛

𝑖=1
𝑢𝑘
𝑖

𝑛

)
.

14: Update model parameters and share with users:

𝜃𝑘+1 = 𝜃𝑘 − 𝜂 ·𝑈 𝑘 .

15: end for

Algorithm 6 User-level DP-FedFC (based on the DP-FC method

of [34])

1: Input: dataset 𝐷 = {𝐷𝑖 }𝑛𝑖=1
, noise levels 𝜎𝑐 , 𝜎𝑔 , clipping con-

stants 𝐶𝑐 ,𝐶𝑔 , training length 𝑇 , learning rate 𝜂, regularization

parameter 𝛾 .

2: for user 𝑖 = 1, . . . , 𝑛 do
3: Clip local covariance matrices:

˜C𝑖 = clip𝐶𝑐
(𝐷𝑖 .𝐷

𝑇
𝑖 ).

4: Compute local noisy feature covariance matrix: C𝑖 = ˜C𝑖 +
𝐸𝑖 , 𝐸𝑖 ∼ N

(
0,

𝐼𝑑 (𝐶𝑐𝜎𝑐 )2
𝑛

)
5: Share C𝑖 with server.

6: end for
7: Server aggregates {C𝑖 }𝑛𝑖=1

, computes global noisy convariance

matrix C =

∑𝑛
𝑖
C𝑖

𝑛
+ 𝛾𝐼𝑑 , and shares it back with clients.

8: for iteration 𝑘 = 1, . . . ,𝑇 do
9: for user 𝑖 = 1, . . . , 𝑛 do
10: Compute and average local gradients:

𝑔𝑘𝑖 =

∑
𝑥∈𝐷𝑖
∇𝑓 (𝜃𝑘 , 𝑥)
|𝐷𝑖 |

.

11: Clip and perturb local updates multiplied with a precondi-

tioner:

𝑢𝑘𝑖 = clip𝐶𝑔
(C−1 · 𝑔𝑘𝑖

)
+ 𝐸𝑘𝑖 , 𝐸𝑘𝑖 ∼ N

(
0,
𝐼𝑑 (𝐶𝑔𝜎𝑔)2

𝑛

)
.

12: Share noisy update 𝑢𝑘𝑖 with server.

13: end for
14: Server aggregates {𝑢𝑘𝑖 }𝑛𝑖=1

, and computes global noisy update

𝑈 𝑘 =

∑𝑛
𝑖=1

𝑢𝑘
𝑖

𝑛
.

15: Update model parameters and share with users: 𝜃𝑘+1 = 𝜃𝑘 −
𝜂 ·𝑈 𝑘 .

16: end for
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Algorithm 7 Record-level DP-FedGD Algorithm (Distributed Ver-

sion of Full-Batch DP-SGD)

1: Input: dataset 𝐷 = {𝐷𝑖 }𝑛𝑖=1
, noise levels 𝜎𝑔 , clipping constants

𝐶𝑔 , training length 𝑇 , learning rate 𝜂.

2: for iteration 𝑘 = 1, . . . ,𝑇 do
3: for user 𝑖 = 1, . . . , 𝑛 do
4: Clip and perturb the avg. of local gradients:

𝑢𝑘𝑖 =

∑
𝑥∈𝐷𝑖

clip𝐶𝑔

(
∇𝑓 (𝜃𝑘 , 𝑥)

)
+ 𝐸𝑘𝑖

|𝐷𝑖 |
, 𝐸𝑘𝑖 ∼ N

(
0,
𝐼𝑑 (𝐶𝑔𝜎𝑔)2

𝑛

)
.

5: Share 𝑢𝑘𝑖 with server.

6: end for
7: Server aggregates {𝑢𝑘𝑖 }𝑛𝑖=1

, computes the global noisy update

𝑈 𝑘 =

∑𝑛
𝑖=1

𝑢𝑘
𝑖

𝑛
.

8: Update model parameters and share with users:

𝜃𝑘+1 = 𝜃𝑘 − 𝜂 ·𝑈 𝑘 .

9: end for

Algorithm 8 User-level DP-FedGD Algorithm (Distributed Version

of Full-Batch DP-SGD)

1: Input: dataset 𝐷 = {𝐷𝑖 }𝑛𝑖=1
, noise levels 𝜎𝑔 , clipping constants

𝐶𝑔 , training length 𝑇 , learning rate 𝜂.

2: for iteration 𝑘 = 1, . . . ,𝑇 do
3: for user 𝑖 = 1, . . . , 𝑛 do
4: Compute and average local gradients:

𝑔𝑘𝑖 =

∑
𝑥∈𝐷𝑖
∇𝑓 (𝜃𝑘 , 𝑥)
|𝐷𝑖 |

.

5: Clip and perturb local updates:

𝑢𝑘𝑖 = clip𝐶𝑔
(𝑔𝑘𝑖

)
+ 𝐸𝑘𝑖 , 𝐸𝑘𝑖 ∼ N

(
0,
𝐼𝑑 (𝐶𝑔𝜎𝑔)2

𝑛

)
.

6: Share noisy update 𝑢𝑘𝑖 with server.

7: end for
8: Server aggregates {𝑢𝑘𝑖 }𝑛𝑖=1

, and computes global noisy update

𝑈 𝑘 =

∑𝑛
𝑖=1

𝑢𝑘
𝑖

𝑛
.

9: Update model parameters and share with users: 𝜃𝑘+1 = 𝜃𝑘 −
𝜂 ·𝑈 𝑘 .

10: end for
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B Tables of Hyperparameter Grids Used in the
Experiments

Table 7 depicts the hyperparameter grids used for the hyperparam-

eter tuning in the experiments.

C Details on the Privacy Analysis
In this work, we provide an accurate (𝜀, 𝛿)-analysis for our methods

using the hockey-stick divergence. This way, we are able to get

optimal privacy parameters for a given sensitivity analysis of the

data-dependent functions and in particular we obtain lower bounds

than using, e.g., the Rényi differential privacy (RDP) [35] which is

a commonly used alternative.

We next shortly describe the mathematical results needed for

obtaining accurate (𝜀, 𝛿)-DP bounds using the hockey-stick diver-

gence.... The (𝜀, 𝛿)-DP as defined in 1 can be characterized using

the hockey-stick divergence as follows. For 𝛼 > 0 the hockey-stick

divergence 𝐻𝛼 from a distribution 𝑃 to a distribution 𝑄 is defined

as

𝐻𝛼 (𝑃 | |𝑄) =
∫
[𝑃 (𝑡) − 𝛼 ·𝑄 (𝑡)]+ d𝑡,

where for 𝑡 ∈ R, [𝑡]+ = max{0, 𝑡}. Tight (𝜀, 𝛿)-values for a given
mechanism can be obtained using the hockey-stick-divergence:

Lemma 10 (Zhu et al. 45). For a given 𝜀 ≥ 0, tight 𝛿 (𝜀) is given
by the expression

𝛿 (𝜀) = max

𝐷∼𝐷′
𝐻e

𝜀 (M(𝐷) | |M(𝐷 ′)).

Thus, if we can bound the divergence 𝐻e
𝜀 (M(𝐷) | |M(𝐷 ′)) ac-

curately, we also obtain accurate 𝛿 (𝜀)-bounds. To this end we need

to consider so-called dominating pairs of distributions:

Definition 11 (Zhu et al. 45). A pair of distributions (𝑃,𝑄) is
a dominating pair of distributions for mechanismM(𝐷) if for all
neighboring datasets 𝐷 and 𝐷 ′ and for all 𝛼 > 0,

𝐻𝛼 (M(𝐷) | |M(𝐷 ′)) ≤ 𝐻𝛼 (𝑃 | |𝑄).

If the equality holds for all 𝛼 for some 𝐷, 𝐷 ′, then (𝑃,𝑄) is a tightly
dominating pair of distributions.

When analyzing iterative DP-FL training methods, we model

them as adaptive compositions such that the adversary has a view

on the output of all intermediate outputs. This means that we

analyze mechanisms of the form

M (𝑇 ) (𝐷) =
(
M1 (𝐷),M2 (M1 (𝐷), 𝐷), . . . ,

M𝑇 (M1 (𝐷), . . . ,M𝑇−1 (𝐷), 𝐷)
)
.

(C.1)

In the methods we propose, eachM𝑖 , 𝑖 ∈ [𝑇 ], will correspond to a

Gaussian mechanism with a given sensitivity and noise scale.

We get upper bounds for adaptive compositions using the domi-

nating pairs of distributions as follows:

Theorem 12 (Zhu et al. 45). If (𝑃,𝑄) dominatesM and (𝑃 ′, 𝑄 ′)
dominatesM′, then (𝑃 × 𝑃 ′, 𝑄 ×𝑄 ′) dominates the adaptive compo-
sitionM ◦M′.

To convert the hockey-stick divergence from 𝑃 × 𝑃 ′ to 𝑄 ×𝑄 ′
into an efficiently computable form, we consider so called privacy

loss random variables.

Definition 13. Let 𝑃 and 𝑄 be probability density functions. We
define the privacy loss random variable (PRV) 𝜔𝑃/𝑄 as

𝜔𝑃/𝑄 = log

𝑃 (𝑡)
𝑄 (𝑡) , 𝑡 ∼ 𝑃 (𝑡).

PRVs can be utilized for obtaining accurate privacy guarantees

via the following result.

Theorem 14 (Gopi et al. 18). The 𝛿 (𝜀)-bounds can be represented
using the following representation that involves the PRV:

𝐻e
𝜀 (𝑃 | |𝑄) = E

𝑠∼𝜔𝑃/𝑄
[1 − e

𝜀−𝑠 ]+ . (C.2)

Moreover, if 𝜔𝑃/𝑄 is the PRV for the pair of distributions (𝑃,𝑄) and
𝜔𝑃 ′/𝑄′ the PRV for the pair of distributions (𝑃 ′, 𝑄 ′), then the PRV for
the pair of distributions (𝑃 × 𝑃 ′, 𝑄 ×𝑄 ′) is given by 𝜔𝑃/𝑄 + 𝜔𝑃 ′/𝑄′ .

Given a dominating pair of distributions (𝑃,𝑄) for a mechanism

M, 14 is all that is needed for obtaining (𝜀, 𝛿)-bounds forM. In

some cases, such as in the case of the Gaussian mechanism, this

expression leads to analytical bounds Balle and Wang [see, e.g., 4].

In the general case, Fast Fourier Technique-based methods [18, 25]

can be used to numerically evaluate the convolutions appearing

when summing the PRVs and evaluating the expression C.2.

In this work, the methods we propose are based on additive

Gaussian noise and the privacy analysis is equivalent to that of the

Gaussian mechanism.

Hockey-stick divergence between twoGaussians. Let𝑥0, 𝑥1 ∈
R, 𝜎 ≥ 0, and let 𝑃 be the density function of N(𝑥0, 𝜎

2) and 𝑄 the

density function of N(𝑥1, 𝜎
2). Then, the PRV 𝜔𝑃/𝑄 is distributed

as [Lemma 11 by 39]

𝜔𝑃/𝑄 ∼ N
(
(𝑥0 − 𝑥1)2

2𝜎2
,
(𝑥0 − 𝑥1)2

𝜎2

)
. (C.3)

Thus, in particular: 𝐻𝛼 (𝑃 | |𝑄) = 𝐻𝛼 (𝑄 | |𝑃) for all 𝛼 > 0. Plugging

in PLD 𝜔𝑃/𝑄 to the expression (C.2), we find that for all 𝜀 ≥ 0, the

hockey-stick divergence 𝐻e
𝜀 (𝑃 | |𝑄) is given by the expression

𝛿 (𝜀) = Φ

(
−𝜀𝜎
Δ
+ Δ

2𝜎

)
− 𝑒𝜀Φ

(
−𝜀𝜎
Δ
− Δ

2𝜎

)
, (C.4)

where Φ denotes the CDF of the standard univariate Gaussian

distribution and Δ = |𝑥0 − 𝑥1 |. This formula was originally given

by Balle and Wang [4].

IfM is of the formM(𝐷) = 𝑓 (𝐷) + 𝑍 , where 𝑓 : D𝑁 → R𝑑

and 𝑍 ∼ N(0, 𝜎2𝐼𝑑 ), and Δ = max𝐷≃𝐷′ ∥ 𝑓 (𝐷) − 𝑓 (𝐷 ′)∥2 gives the
𝐿2-sensitivity, then for 𝑥0 = 0, 𝑥1 = Δ, (𝑃,𝑄) of the above form gives

a tightly dominating pair of distributions forM [45]. Subsequently,

by Theorem 14,M is (𝜀, 𝛿)-DP for 𝛿 (𝜀) given by (C.4).

It also directly follows from Theorem 14 and the form of the

PRV (C.3) that the PRV for the adaptive composition of 𝑇 Gaussian

mechanisms is given by 𝜔𝑃/𝑄 ∼ N
(
𝑇 ·Δ2

2𝜎2
, 𝑇 ·Δ

2

𝜎2

)
and we obtain the

following expression.

Lemma 15. Consider an adaptive composition of𝑇 Gaussian mech-
anisms, each with 𝐿2-sensitivity Δ and noise scale parameter 𝜎 . The
adaptive composition is (𝜀, 𝛿)-DP for

𝛿 (𝜀) = Φ

(
− 𝜀𝜎
√
𝑇 · Δ

+
√
𝑇 · Δ
2𝜎

)
− 𝑒𝜀Φ

(
− 𝜀𝜎
√
𝑇 · Δ

−
√
𝑇 · Δ
2𝜎

)
.
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Table 7: Hyperparameter grids.

method Hyperparameter alternatives privacy level grid size

DP-FedGD 𝜂 {0.001, 0.01, 0.1, 1, 10} user/record 15

𝐶𝑔 {0.1,1,2} user/record

DP-Scaffold 𝜂𝑙 {0.001, 0.01, 0.1, 1, 10} user/record 30

𝐶 {0.1,1} user/record

M {5,10,20} user/record

𝜂𝑔 1 user/record

DP-FedNew/DP-FedNew-FC 𝛼 {0.01, 0.1, 1} user/record 96

𝜌 {0.01, 0.1, 1, 10} user/record

𝜂 {0.01, 0.1, 1, 10} user/record

𝐶,Δ𝐻 {0.1, 1} user/record

𝐶1,𝐶2 1 record

DP-FedFC 𝜂 {0.001, 0.01, 0.1, 1, 10} user/record 20

𝐶𝑐 {0.1,1} user/record

𝐶𝑔 {0.1,1} user/record

𝛾 0.001 user/record

D Proof of Lemma 3 (Record-Level Sensitivity
Bound)

For the proof of Lemma 3 we first need the following auxiliary

lemma:

Lemma 16. Suppose 𝐴, 𝐵 ∈ R𝑑×𝑑 are positive definite, ∥ · ∥ is a
matrix norm and ∥𝐴 − 𝐵∥∥𝐴−1∥ < 1. Then

∥𝐴−1 − 𝐵−1∥ ≤ ∥𝐴 − 𝐵∥∥𝐴−1∥2
1 − ∥𝐴 − 𝐵∥∥𝐴−1∥ .

Proof. The proof can be found in Section 5.8 of [20] (see also

Lemma C.4 by Ganesh et al. [17]). □

Lemma 17. Let Δ𝑖 be defined as in (3). Let Δ𝐻 be an upper bound
for the norm of 𝐻 , i.e., an upper bound for the norm of data-sample-
wise Hessian. Assume

∥∇2 𝑓 (𝑥, 𝜃𝑘 )∥𝐹 ≤ Δ𝐻 for all 𝑥 ∈ 𝐷𝑖 ,

∥∇𝑓 (𝑥, 𝜃𝑘 )∥2 ≤ 𝐶1 for all 𝑥 ∈ 𝐷𝑖 ,

∥𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1∥ ≤ 𝐶2,

(D.1)

and 𝛾 = 𝛼 + 𝜌 >
Δ𝐻
|𝐷𝑖 | . Then, we have:

∥Δ𝑖 ∥2 ≤
1

𝛾 · |𝐷𝑖 |
·𝐶1 +

Δ𝐻

𝛾2 · |𝐷𝑖 | − 𝛾 · Δ𝐻

·𝐶2,

where |𝐷𝑖 | is the size of the local dataset 𝐷𝑖 .

Proof. For ease of notation, consider the function

𝑓 (𝐷𝑖 , 𝛾, 𝜃 ) = (𝐻𝑘
𝑖 + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝜃 ),

where 𝛾 > 0 is a constant and 𝜃 stands for auxiliary variables. We

need to bound the 2-norm of

Δ𝑖 = 𝑓 (𝐷 ′𝑖 , 𝛾, 𝜃 ) − 𝑓 (𝐷𝑖 , 𝛾, 𝜃 ),

where 𝐷 ′𝑖 = 𝐷𝑖

⋃{𝑥 ′} for some data-element 𝑥 ′. Adding and sub-

tracting (𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝜃 ) to Δ𝑖 , we have:

Δ𝑖 = (𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝑔′ + 𝜃 ) − (𝐻𝑘

𝑖 + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝜃 )

= (𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝑔′ + 𝜃 ) − (𝐻𝑘

𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝜃 )

+ (𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝜃 ) − (𝐻𝑘

𝑖 + 𝛾𝐼 )−1 (𝑔𝑘𝑖 + 𝜃 )

= (𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1𝑔′

+
(
(𝐻𝑘

𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 − (𝐻𝑘
𝑖 + 𝛾𝐼 )−1

)
(𝑔𝑘𝑖 + 𝜃 ).

(D.2)

For the first term on the right-hand side of (D.2) we use the

following fact: if a matrix 𝐴 is positive definite with smallest eigen-

value 𝜆min, then ∥𝐴−1∥ = 𝜆−1

min
. Clearly, since𝐻𝑘

𝑖 and𝐻 ′ are positive

semidefinite, (𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1

is positive definite with smallest

eigenvalue larger than 𝛾 , and we have that

∥(𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1𝑔′∥2 ≤ ∥(𝐻𝑘

𝑖 + 𝐻 ′ + 𝛾𝐼 )−1∥2∥𝑔′∥2

≤ 1

𝛾
∥𝑔′∥2 ≤

1

𝛾
· 𝐶1

|𝐷𝑖 |
.

By Lemma 16 and the assumptions (D.1) we have that

∥
(
(𝐻𝑘

𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 − (𝐻𝑘
𝑖 + 𝛾𝐼 )−1

)
(𝑔𝑘𝑖 + 𝜃 )∥2

≤ ∥(𝐻𝑘
𝑖 + 𝐻 ′ + 𝛾𝐼 )−1 − (𝐻𝑘

𝑖 + 𝛾𝐼 )−1∥2∥𝑔𝑘𝑖 + 𝜃 ∥2

≤
∥𝐻 ′∥𝐹 ∥(𝐻𝑘

𝑖 + 𝐻 ′ + 𝛾𝐼 )−2∥2
1 − ∥(𝐻𝑘

𝑖
+ 𝐻 ′ + 𝛾𝐼 )−1∥2∥𝐻 ′∥𝐹

·𝐶2

≤ ∥𝐻
′∥𝐹 · 𝛾−2

1 − 𝛾−1∥𝐻 ′∥𝐹
·𝐶2

≤
Δ𝐻
|𝐷𝑖 |𝛾

−2

1 − 𝛾−1
Δ𝐻
|𝐷𝑖 |
·𝐶2

=
Δ𝐻

𝛾2 · |𝐷𝑖 | − 𝛾Δ𝐻

·𝐶2 .

□
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E Proof of Lemma 4
Lemma 18. Let 𝑎, 𝑏 ∈ R𝑛 and 𝐶 > 0. If we set

𝜉 =
−2⟨𝑎, 𝑏

∥𝑏 ∥2 ⟩ +
√︃

4⟨𝑎, 𝑏
∥𝑏 ∥2 ⟩

2 + 4(𝐶2 − ∥𝑎∥2
2
)

2∥𝑏∥2
,

we have that

∥𝑎 + 𝜉 · 𝑏∥2 =𝐶.

Proof. Denote by
ˆ𝑏 a unit vector in the direction of 𝑏. Setting

the right-hand side of

∥𝑎 + 𝑏∥2
2
= ∥𝑎∥2

2
+ 2∥𝑏∥2⟨𝑎, ˆ𝑏⟩ + ∥𝑏∥2

2

equal to 𝐶2
and solving the quadratic equation for ∥𝑏∥2, we arrive

at the claim.

□

F Convergence Analysis
F.1 Non-Private Analysis by Elgabli et al. [16]
To make following the DP convergence analysis easier to follow,

we review here the main results of [16] and depict the main story

of their analysis.

Consider the non-private FedNew algorithm, i.e., the variables 𝑦

and 𝜆 are those given by the algorithm described in Section 3.

The convergence analysis of [16] is starts with the following

auxiliary lemma.

Lemma 19. Consider one iteration of FedNew. Assume the per-
example approximations of the Hessian at user 𝑖 , 𝐻𝑘

𝑖 , is positive semi-
definite. Denote the dual residual 𝑠𝑘 := 𝜌 (𝑦𝑘 − 𝑦𝑘−1). We have:

E⟨𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆𝑘,∗, 𝑦𝑘𝑖 − 𝑦𝑘,∗⟩ ≤ −𝛼E∥𝑦𝑘,∗ − 𝑦𝑘𝑖 ∥2 + 𝜎2 · Trace(𝐻𝑘
𝑖 ) .

Next, the inequality given in Lemma 19 is reformulated to obtain

the inequality of Lemma 20 below. This reformulation requires,

however, two additional assumptions. First, it is assumed that for

the function𝑄𝑖 (𝜃,𝑦) = 1

2
𝑦 (∇2 𝑓𝑖 (𝜃 ) +𝛼𝐼 )𝑦 −𝑦𝑇∇𝑓𝑖 (𝜃 ) we have that

∥∇𝑦𝑄𝑖 (𝜃1, 𝑦1) − ∇𝑦𝑄𝑖 (𝜃2, 𝑦2)∥2 ≤ 𝐿𝑞 ∥𝑦1 − 𝑦2∥2 (F.1)

for some constant 𝐿𝑞 > 0. We remark that the condition (F.1) this

is a fairly strong requirement. However, one can easily show that

this holds for the linear regression, for example, since then ∇2 𝑓𝑖 (𝜃 )
independent of 𝜃 for all 𝑖 ∈ [𝑛]. Another requirement for Lemma 20

is that the iterates of FedNew satisfy the inequality

∥𝑦𝑘 − 𝑦𝑘−1∥2 ≤ ∥𝑦𝑘 − 𝑦𝑘,∗∥2 . (F.2)

As we show in detail below in Section F.2, this inequality is satisfied

for large enough values of the regularization parameter 𝜌 .

With these assumption the following technical result is shown

next. This will lead us to formulating a Lyapunov function for the

iteration.

Lemma 20. Assume the conditions (F.1) and (F.2) hold true for all

𝑘 ∈ [𝑇 ]. For any 𝛽 ≤ 𝛼 − 2.5𝜌 − 8𝐿2

𝑞𝑛

𝜌
, the iterates of FedNew satisfy

the inequality

1

𝜌

𝑛∑︁
𝑖=1

∥𝜆𝑘𝑖 − 𝜆
𝑘,∗
𝑖
∥2

2
+ 2𝛽

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥22 + 𝜌𝑛∥𝑦𝑘 − 𝑦𝑘,∗∥22 + 2𝜌𝑛∥𝑦𝑘 − 𝑦𝑘−1∥2
2

≤ 1

𝜌

𝑛∑︁
𝑖=1

∥𝜆𝑘−1

𝑖 − 𝜆𝑘−1,∗
𝑖
∥2

2

+
2𝐿2

𝑞

𝜌

𝑛∑︁
𝑖=1

∥𝑦𝑘−1

𝑖 − 𝑦𝑘−1,∗∥2
2
+

4𝐿2

𝑞𝑛

𝜌
∥𝑦𝑘−1 − 𝑦𝑘−1,∗∥2

2

+ 2𝜌𝑛∥𝑦𝑘−1 − 𝑦𝑘−2∥2
2
.

From Lemma (20) if follows that the Lyapunov function 𝑉𝑘 de-

fined as

𝑉𝑘 :=
1

𝜌

𝑛∑︁
𝑖=1

∥𝜆𝑘𝑖 − 𝜆𝑘,∗∥22 + 2𝛽1

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥22

+ 𝜌𝑛∥𝑦𝑘 − 𝑦𝑘,∗∥2
2
+ 2𝜌𝑛∥𝑦𝑘 − 𝑦𝑘−1∥2

2

(F.3)

satisfies the inequality

𝑉𝑘 ≤ 𝑉𝑘−1 − 𝛽2

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 (F.4)

for some constant 𝛽2 > 0.

The main result of [16] follows from the inequality (F.4). We give

an alternative proof for it, to also motivate the proof of our DP

result.

Theorem 21. As the number of iterations𝑘 →∞, the local ADMM
iterates approach the Newton updates, i.e.,

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 → 0.

Proof. From Lemma 20 it follows that the Luapynov function𝑉𝑘
defined in (F.3) satisfies the inequality (F.4). Since𝑉𝑘 is non-negative

and monotonously decreasing, by the monotone convergence the-

orem it has a limit as 𝑘 → ∞. Thus, 𝛽2

∑𝑛
𝑖=1
∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 → 0 as

𝑘 →∞ from which the claim follows. □

F.2 Assumption Used in Thm. 27
In the proof of Theorem 27 we need to assume that the iterates of

the non-private FedNew algorithm satisfy

∥𝑦𝑘 − 𝑦𝑘−1∥2 ≤ ∥𝑦𝑘 − 𝑦𝑘,∗∥2 . (F.5)

for all 𝑘 ∈ [𝑇 ]. As the following result shows, this in a reasonable

assumption for a large enough 𝜌 .

Lemma 22. There exists 𝜌0 > 0 such that for all 𝜌 ≥ 𝜌0, the
assumption (F.5) holds true.

Proof. Recall that

𝑦𝑘 =
1

𝑛

𝑛∑︁
𝑖=1

𝑦𝑘𝑖

=
1

𝑛

𝑛∑︁
𝑖=1

(𝐻𝑘
𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1 (𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌 · 𝑦𝑘−1) .
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Therefore

𝑦𝑘 − 𝑦𝑘−1 =
1

𝑛

𝑛∑︁
𝑖=1

[
(𝐻𝑘

𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1
(
𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌 · 𝑦𝑘−1

− (𝐻𝑘
𝑖 + 𝛼𝐼 + 𝜌𝐼 )𝑦𝑘−1

) ]
=

1

𝑛

𝑛∑︁
𝑖=1

(𝐻𝑘
𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1

(
𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 − (𝐻𝑘
𝑖 + 𝛼𝐼 )𝑦𝑘−1

)
which shows that ∥𝑦𝑘 −𝑦𝑘−1∥2 → 0 as 𝜌 →∞. On the other hand,

𝑦𝑘 − 𝑦𝑘,∗ = 1

𝑛

𝑛∑︁
𝑖=1

[
(𝐻𝑘

𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1
(
𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌 · 𝑦𝑘−1
)

− (𝐻𝑘
𝑖 + 𝛼𝐼 )

(
𝑔𝑘𝑖 − 𝜆∗𝑖 (𝜃𝑘 )

) ) ]
=

1

𝑛

𝑛∑︁
𝑖=1

[
𝑦𝑘−1 + (𝐻𝑘

𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1·

(
𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 − (𝐻𝑘
𝑖 + 𝛼𝐼 )𝑦𝑘−1

)
− (𝐻𝑘

𝑖 + 𝛼𝐼 )
(
𝑔𝑘𝑖 − 𝜆∗𝑖 (𝜃𝑘 )

) ) ]
.

(F.6)

since

𝑦
𝑘,∗
𝑖

= (𝐻𝑘
𝑖 + 𝛼𝐼 )−1

(
𝑔𝑘𝑖 − 𝜆∗𝑖 (𝜃𝑘 )

)
.

We see from (F.6) that

𝑦𝑘 − 𝑦𝑘,∗ → 1

𝑛

𝑛∑︁
𝑖=1

[
𝑦𝑘−1 − (𝐻𝑘

𝑖 + 𝛼𝐼 )
(
𝑔𝑘𝑖 − 𝜆∗𝑖 (𝜃𝑘 )

) ) ]
as 𝜌 →∞. Thus, □

F.3 First Step of the DP Convergence Analysis:
Proof of Lemma 23

The following result is a stochastic version of [Lemma 1, 16] and

applies for the noisy update rule (5.2).

Lemma 23. Consider one iteration of DP-FedNew. Assume the per-
example approximations of the Hessian at user 𝑖 at iteration 𝑘 , 𝐻𝑘

𝑖 ,
is positive semidefinite. Denote the dual residual 𝑠𝑘 := 𝜌 (𝑦𝑘 − 𝑦𝑘−1).
Assume in the added noise 𝐶 = 1. We have:

E⟨𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆𝑘,∗, 𝑦𝑘𝑖 − 𝑦𝑘,∗⟩ ≤ −𝛼E∥𝑦𝑘,∗ − 𝑦𝑘𝑖 ∥2

+𝐶2 · 𝜎2 · Trace(𝐻𝑘
𝑖 ) + 𝜎2 · (𝛼 + 𝜌) · 𝑑,

where the expectation is taken over the randomness of 𝐸𝑘𝑖 , the noise
added by the user 𝑖 at iteration 𝑘 .

Proof. It follows from the noisy update rule (5.2) that

(𝐻𝑘
𝑖 + 𝛼𝐼 ) (𝑦𝑘𝑖 − 𝐸𝑘𝑖 ) − 𝑔𝑘𝑖 + 𝜆𝑘−1

𝑖 + 𝜌 (𝑦𝑘𝑖 − 𝑦𝑘−1) − 𝜌𝐸𝑘𝑖 = 0. (F.7)

Substituting the update of the dual variable

𝜆𝑘−1

𝑖 = 𝜆𝑘𝑖 − 𝜌 (𝑦𝑘𝑖 − 𝑦𝑘 )

to Eq. (F.7) gives

(𝐻𝑘
𝑖 + 𝛼𝐼 ) (𝑦𝑘𝑖 − 𝐸𝑘𝑖 ) − 𝑔𝑘𝑖 + 𝜆𝑘𝑖 + 𝜌 (𝑦𝑘 − 𝑦𝑘−1) − 𝜌𝐸𝑘𝑖 = 0.

Recall the dual residual 𝑠𝑘 = 𝜌 (𝑦𝑘 − 𝑦𝑘−1). We get

𝜆𝑘𝑖 + 𝑠𝑘 = 𝑔𝑘𝑖 − (𝐻𝑘
𝑖 + 𝛼𝐼 ) (𝑦𝑘𝑖 − 𝐸𝑘𝑖 ) + 𝜌𝐸𝑘𝑖 . (F.8)

Recall that for the optimal values of the primal and dual variables

of the non-DP dual iteration at the global iteration 𝑘 for user 𝑖 , 𝑦∗𝑘𝑖
and 𝜆∗𝑘𝑖 , respectively, we have that

𝜆∗𝑘𝑖 = 𝑔𝑘𝑖 − (𝐻𝑘
𝑖 + 𝛼𝐼 )𝑦∗𝑘𝑖

= 𝑔𝑘𝑖 − (𝐻𝑘
𝑖 + 𝛼𝐼 )𝑦∗𝑘 ,

since 𝑦∗𝑘𝑖 = 𝑦∗𝑘 . Subtracting 𝜆∗𝑘𝑖 from both sides of Eq. (F.8), we

get

𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆∗𝑘 = (𝐻𝑘
𝑖 + 𝛼𝐼 ) (𝐸𝑘𝑖 − 𝑦𝑘𝑖 ) + (𝐻𝑘

𝑖 + 𝛼𝐼 )𝑦∗𝑘 + 𝜌𝐸𝑘𝑖
= (𝐻𝑘

𝑖 + 𝛼𝐼 ) (𝑦∗𝑘 − 𝑦𝑘𝑖 + 𝐸𝑘𝑖 ) + 𝜌𝐸𝑘𝑖 .
(F.9)

where 𝑦∗𝑘 is the converged result of the non-DP dual iteration

at global iteration 𝑘 with Hessian evaluated at 𝜃𝑘 . Taking inner

product of between both sides of Eq. (F.9) and the vector 𝑦𝑘𝑖 − 𝑦∗𝑘 ,
we get

⟨𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆∗𝑘 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

= ⟨(𝐻𝑘
𝑖 + 𝛼𝐼 ) (𝑦∗𝑘 − 𝑦𝑘𝑖 + 𝐸𝑘𝑖 ), 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩ + 𝜌 ⟨𝐸𝑘𝑖 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

= −⟨(𝐻𝑘
𝑖 + 𝛼𝐼 ) (𝑦𝑘𝑖 − 𝑦∗𝑘 ), 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩ + ⟨(𝐻𝑘

𝑖 + 𝛼𝐼 )𝐸𝑘𝑖 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

+ 𝜌 ⟨𝐸𝑘𝑖 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

≤ −𝛼 ∥𝑦∗𝑘 − 𝑦𝑘𝑖 ∥2 + ⟨(𝐻𝑘
𝑖 + 𝛼𝐼 )𝐸𝑘𝑖 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩ + 𝜌 ⟨𝐸𝑘𝑖 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

(F.10)

since 𝐻𝑘
𝑖 is positive semidefinite. Recall:

𝑦𝑘𝑖 = 𝑦𝑘𝑖 + 𝐸𝑘𝑖 ,

where 𝑦𝑘𝑖 denotes the non-perturbed update, i.e.

𝑦𝑘𝑖 = (𝐻𝑘
𝑖 + 𝛼𝐼 + 𝜌𝐼 )−1 (𝑔𝑘𝑖 − 𝜆𝑘−1

𝑖 + 𝜌𝑦𝑘−1) .

Thus, we can write (F.10) as

⟨𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆∗𝑘 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩ ≤ −𝛼 ∥𝑦∗𝑘 − 𝑦𝑘𝑖 ∥2 + ⟨(𝐻𝑘
𝑖 + 𝛼𝐼 )𝐸𝑘𝑖 , 𝑦𝑘𝑖

+ 𝐸𝑘𝑖 − 𝑦∗𝑘 ⟩ + 𝜌 ⟨𝐸𝑘𝑖 , 𝑦∗𝑘 − 𝑦𝑘𝑖 ⟩.
(F.11)

Since E𝑥∼N(0,𝐼𝑑 )𝑥
𝑇𝐴𝑥 = Trace(𝐴) for any square matrix 𝐴 and

since 𝐸𝑘𝑖 ∼ N(0, 𝜎2𝐼𝑑 ), we have

E⟨𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆∗𝑘 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

≤ −𝛼E∥𝑦∗𝑘 − 𝑦𝑘𝑖 ∥2 + E⟨(𝐻𝑘
𝑖 + 𝛼𝐼 )𝐸𝑘𝑖 , 𝐸𝑘𝑖 ⟩ + E⟨(𝐻𝑘

𝑖 + 𝛼𝐼 )𝐸𝑘𝑖 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

+ 𝜌E⟨𝐸𝑘𝑖 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩

= −𝛼E∥𝑦∗𝑘 − 𝑦𝑘𝑖 ∥2 + E⟨(𝐻𝑘
𝑖 + 𝛼𝐼 )𝐸𝑘𝑖 , 𝐸𝑘𝑖 ⟩ + 𝜌E⟨𝐸𝑘𝑖 , 𝑦𝑘𝑖 + 𝐸𝑘𝑖 − 𝑦∗𝑘 ⟩

= −𝛼E∥𝑦∗𝑘 − 𝑦𝑘𝑖 ∥2 + 𝜎2 · Trace(𝐻𝑘
𝑖 + 𝛼𝐼 ) + 𝜌 · 𝑑

= −𝛼 ∥𝑦∗𝑘 − 𝑦𝑘𝑖 ∥2 + 𝜎2 · Trace(𝐻𝑘
𝑖 ) + 𝜎2 · (𝛼 + 𝜌) · 𝑑,

where the expectation is taken over the randomness of 𝐸𝑘𝑖 . □

In case 𝑓 is 𝛽-smooth, we have the following corollary.

Corollary 24. If the loss function 𝑓 is 𝛽-smooth, then

E⟨𝜆𝑘𝑖 + 𝑠𝑘 − 𝜆∗𝑘 , 𝑦𝑘𝑖 − 𝑦∗𝑘 ⟩ ≤ −E𝛼 ∥𝑦∗𝑘 − 𝑦𝑘𝑖 ∥2 + 𝜎2 · (𝛼 + 𝜌 + 𝛽) · 𝑑,

where the expectation is taken over the randomness of the local addi-
tive noise 𝐸𝑘𝑖 .
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Proof. If 𝑓 is 𝛽-smooth, since it is twice differentiable, we have

that ∥𝐻𝑘
𝑖 ∥2 ≤ 𝛽 . Since the trace of a square matrix equals the sum

of its singular values, Trace(𝐻𝑘
𝑖 ) ≤ 𝑑 · 𝛽 and the claim follows from

Lemma 23. □

F.4 Additional Auxiliary Results
In addition to the conditions (F.1), we need the assumption that the

iterates of DP-FedNew satisfy the inequality

E∥𝑦𝑘 − 𝑦𝑘−1∥2
2
≤ E∥𝑦𝑘 − 𝑦𝑘,∗∥2

2
(F.12)

for all 𝑘 ∈ [𝑇 ], where the expectation is taken over the additive

normally distributed noises at iteration 𝑘 . This condition is true

in case the (F.1) for the non-private FedNew is true, since E𝑋 ∥𝑌 +
𝑋 ∥2

2
= ∥𝑌 ∥2

2
+ E∥𝑋 ∥2

2
for all random variables 𝑋 with E𝑋 = 0.

Lemma 25. Assume the conditions (F.1) and (F.12) are satisfied

for all 𝑘 ∈ [𝑇 ]. For any 𝛽 ≤ 𝛼 − 2.5𝜌 − 8𝐿2

𝑞𝑛

𝜌
, the iterates of FedNew

satisfy the inequality

1

𝜌
E

𝑛∑︁
𝑖=1

∥𝜆𝑘𝑖 − 𝜆
𝑘,∗
𝑖
∥2

2
+ 2𝛽E

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥22

+ 𝜌𝑛E∥𝑦𝑘 − 𝑦𝑘,∗∥2
2

+ 2𝜌𝑛E∥𝑦𝑘 − 𝑦𝑘−1∥2
2

≤ 1

𝜌

𝑛∑︁
𝑖=1

∥𝜆𝑘−1

𝑖 − 𝜆𝑘−1,∗
𝑖
∥2

2
+

2𝐿2

𝑞

𝜌

𝑛∑︁
𝑖=1

∥𝑦𝑘−1

𝑖 − 𝑦𝑘−1,∗∥2
2

+
4𝐿2

𝑞𝑛

𝜌
∥𝑦𝑘−1 − 𝑦𝑘−1,∗∥2

2
+ 2𝜌𝑛∥𝑦𝑘−1 − 𝑦𝑘−2∥2

2
+ 𝜎2 · (𝛼 + 𝜌) · 𝑑,

where the expectation is taken over the additive normally distributed
noises at iteration 𝑘 .

The proof of Lemma 20 is obtained by carrying out a lengthy

refactorization to the inequality of Lemma 19 and can be found

in [16]. The proof of Lemma 25 is given by exactly the same refac-

torization applied to the inequality given by 23.

As a result of Lemma 25 we define a Lyapunov function for the

stochastic DP-FedNew iteration and show the following inequality

for it.

Lemma 26. Let the Lyapunov function 𝑉𝑘 be defined as

𝑉𝑘 :=
1

𝜌

𝑛∑︁
𝑖=1

∥𝜆𝑘𝑖 − 𝜆𝑘,∗∥22 + 2𝛽1

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥22

+ 𝜌𝑛∥𝑦𝑘 − 𝑦𝑘,∗∥2
2
+ 2𝜌𝑛∥𝑦𝑘 − 𝑦𝑘−1∥2

2
,

(F.13)

where 𝑦𝑘𝑖 denotes the noisy update (5.2) Denote 𝑉𝑘 = E𝑉𝑘 , where the
expectation is taken over all additive noises up to iteration 𝑘 . Then,
𝑉𝑘 satisfies

𝑉𝑘 ≤ 𝑉𝑘−1 − 𝛽2E
𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 + 𝜎2 · (𝛼 + 𝜌) · 𝑑 (F.14)

for some constant 𝛽2 > 0, where the expectation is taken over the
noise added at iteration 𝑘 .

F.5 Our Main Theorem
Theorem 27. For all 𝑘 ∈ Z, there exists ℓ > 𝑘 such that

∥𝑦ℓ − 𝑦ℓ,∗∥2 ≤ 𝜎2 · (𝛼 + 𝜌) · 𝑑
𝑛𝛽2

. (F.15)

Proof. At a given iteration 𝑘 , either

𝛽2

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 ≤ 𝜎2 · (𝛼 + 𝜌) · 𝑑 (F.16)

which implies the inequality (F.15) for ℓ = 𝑘 (combining with the

inequality

∑𝑛
𝑖=1
∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 ≥ 𝑛∥𝑦𝑘 − 𝑦𝑘,∗∥2), or then

𝛽2

𝑛∑︁
𝑖=1

∥𝑦𝑘𝑖 − 𝑦𝑘,∗∥2 > 𝜎2 · (𝛼 + 𝜌) · 𝑑,

which by the Lemma 26 implies that either𝑉𝑘 converges fromwhich

case the claim follows, or then there is an ℓ > 𝑘 such that (F.16)

holds from which case the claim follows. □

G Additional Tabular Results
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Table 8: Effect of varying the local dataset size. The numbers in the 𝜀 columns report the mean test accuracy after the final 70th
epoch for the best model trained on IID Adult dataset obtained after tuning the hyperparameters. The layer size is 123 × 2. Note
that DP-FedNew-FC attains accuracies comparable to DP-FedFC without aggregating the covariance matrix of size 123 × 123.
DP-FedNew-FC can perform 123

2
≈ 62 additional epochs with the number of bits needed to transmit this covariance matrix.

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.5 𝜖 = 0.7 𝜖 = 1 𝜖 = 2 𝜖 = 3 𝜖 = 8 𝜖 = 10

n |𝐷𝑖 | method

10 2818 DP-FFC 0.824 0.824 0.824 0.825 0.831 0.834 0.834 0.835 0.841

DP-FGD 0.822 0.822 0.822 0.822 0.823 0.822 0.822 0.822 0.822

DP-FN 0.824 0.822 0.824 0.825 0.833 0.825 0.830 0.830 0.832

DP-FN-FC 0.823 0.824 0.828 0.830 0.833 0.831 0.833 0.833 0.834

DP-Scaffold 0.814 0.818 0.818 0.818 0.818 0.818 0.818 0.817 0.818

100 306 DP-FFC 0.823 0.825 0.825 0.824 0.833 0.833 0.833 0.827 0.839

DP-FGD 0.821 0.822 0.823 0.822 0.822 0.822 0.822 0.822 0.822

DP-FN 0.823 0.826 0.812 0.826 0.833 0.825 0.826 0.832 0.832

DP-FN-FC 0.822 0.823 0.825 0.827 0.829 0.834 0.834 0.834 0.834

DP-Scaffold 0.793 0.804 0.815 0.818 0.818 0.819 0.818 0.819 0.818

250 123 DP-FFC 0.823 0.825 0.825 0.826 0.833 0.833 0.834 0.842 0.841

DP-FGD 0.821 0.822 0.822 0.822 0.823 0.822 0.822 0.822 0.822

DP-FN 0.819 0.824 0.819 0.829 0.834 0.824 0.825 0.832 0.833

DP-FN-FC 0.818 0.824 0.826 0.828 0.828 0.831 0.830 0.831 0.830

DP-Scaffold 0.778 0.776 0.776 0.768 0.812 0.818 0.819 0.820 0.822

500 61 DP-FFC 0.820 0.827 0.825 0.825 0.834 0.833 0.833 0.839 0.842

DP-FGD 0.821 0.823 0.822 0.822 0.822 0.822 0.822 0.822 0.822

DP-FN 0.822 0.825 0.827 0.828 0.834 0.825 0.826 0.831 0.833

DP-FN-FC 0.822 0.826 0.828 0.827 0.826 0.830 0.830 0.830 0.830

DP-Scaffold 0.766 0.788 0.798 0.810 0.811 0.821 0.821 0.822 0.822
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Table 9: Effect of varying the local dataset size. The numbers in the 𝜀 columns report the mean test accuracy after the final
70th epoch for the best model trained on IID CIFAR10 dataset obtained after tuning the hyperparameters. The layer size is
2048 × 10. Note that DP-FedNew-FC attains accuracies comparable to DP-FedFC without aggregating the covariance matrix
of size 2048 × 2048. DP-FedNew-FC can perform 2048

10
≈ 204 additional epochs with the number of bits needed to transmit this

covariance matrix.

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.5 𝜖 = 0.7 𝜖 = 1 𝜖 = 2 𝜖 = 3 𝜖 = 8 𝜖 = 10

n |𝐷𝑖 | method

20 2500 DP-FedNew-FC 0.627 0.694 0.715 0.720 0.727 0.736 0.737 0.762 0.771

DP-Scaffold 0.422 0.580 0.634 0.648 0.658 0.669 0.670 0.669 0.669

DP-FedFC 0.627 0.693 0.714 0.727 0.731 0.743 0.748 0.771 0.775

DP-FedGD 0.634 0.691 0.724 0.724 0.730 0.734 0.729 0.735 0.734

50 1000 DP-FedNew-FC 0.624 0.690 0.694 0.714 0.728 0.736 0.738 0.771 0.768

DP-Scaffold 0.337 0.530 0.584 0.611 0.627 0.638 0.637 0.641 0.642

DP-FedFC 0.626 0.692 0.716 0.724 0.732 0.738 0.746 0.771 0.775

DP-FedGD 0.633 0.690 0.716 0.721 0.725 0.728 0.730 0.736 0.736

100 500 DP-FedNew-FC 0.635 0.668 0.698 0.718 0.722 0.735 0.737 0.761 0.767

DP-Scaffold 0.278 0.466 0.535 0.567 0.589 0.606 0.612 0.615 0.615

DP-FedFC 0.629 0.689 0.715 0.725 0.732 0.741 0.750 0.762 0.776

DP-FedGD 0.631 0.692 0.715 0.724 0.730 0.733 0.734 0.737 0.735

250 200 DP-FedNew-FC 0.626 0.665 0.697 0.709 0.719 0.744 0.746 0.764 0.767

DP-Scaffold 0.219 0.372 0.436 0.478 0.501 0.537 0.538 0.544 0.547

DP-FedFC 0.628 0.693 0.715 0.725 0.731 0.740 0.745 0.771 0.773

DP-FedGD 0.635 0.690 0.718 0.721 0.727 0.732 0.733 0.734 0.731

500 100 DP-FedNew-FC 0.637 0.665 0.698 0.708 0.716 0.734 0.747 0.772 0.778

DP-Scaffold 0.176 0.296 0.347 0.379 0.399 0.427 0.425 0.439 0.433

DP-FedFC 0.629 0.692 0.712 0.725 0.733 0.741 0.747 0.772 0.774

DP-FedGD 0.634 0.692 0.712 0.724 0.727 0.729 0.733 0.731 0.731
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Table 10: Effect of varying the local dataset size. The numbers in the 𝜀 columns report the mean test accuracy after the final
70th epoch for the best model trained on IID FashionMNIST dataset obtained after tuning the hyperparameters. The layer size
is 2048 × 10. Note that DP-FedNew-FC attains accuracies comparable to DP-FedFC without aggregating the covariance matrix
of size 2048 × 2048. DP-FedNew-FC can perform 2048

10
≈ 204 additional epochs with the number of bits needed to transmit this

covariance matrix.

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.5 𝜖 = 0.7 𝜖 = 1 𝜖 = 2 𝜖 = 3 𝜖 = 8 𝜖 = 10

n |𝐷𝑖 | method

20 3000 DP-FedNew-FC 0.697 0.760 0.786 0.795 0.793 0.803 0.810 0.837 0.836

DP-Scaffold 0.506 0.675 0.706 0.716 0.724 0.728 0.729 0.731 0.731

DP-FedFC 0.689 0.773 0.788 0.793 0.799 0.821 0.824 0.841 0.843

DP-FedGD 0.696 0.774 0.788 0.794 0.795 0.798 0.799 0.799 0.798

50 1200 DP-FedNew-FC 0.693 0.754 0.776 0.795 0.799 0.799 0.810 0.835 0.841

DP-Scaffold 0.420 0.599 0.631 0.648 0.651 0.655 0.657 0.660 0.659

DP-FedFC 0.689 0.774 0.790 0.794 0.798 0.817 0.822 0.841 0.843

DP-FedGD 0.693 0.775 0.789 0.792 0.797 0.798 0.800 0.799 0.799

100 600 DP-FedNew-FC 0.688 0.755 0.775 0.785 0.804 0.799 0.814 0.834 0.839

DP-Scaffold 0.362 0.529 0.583 0.603 0.604 0.613 0.615 0.612 0.614

DP-FedFC 0.688 0.776 0.790 0.795 0.797 0.818 0.822 0.841 0.843

DP-FedGD 0.690 0.773 0.791 0.794 0.798 0.798 0.800 0.799 0.799

250 240 DP-FedNew-FC 0.691 0.754 0.772 0.780 0.798 0.810 0.810 0.834 0.838

DP-Scaffold 0.289 0.447 0.522 0.542 0.551 0.560 0.555 0.554 0.559

DP-FedFC 0.688 0.772 0.790 0.796 0.797 0.818 0.822 0.841 0.843

DP-FedGD 0.683 0.771 0.789 0.795 0.798 0.798 0.799 0.798 0.799

500 120 DP-FedNew-FC 0.691 0.753 0.773 0.780 0.791 0.805 0.819 0.836 0.836

DP-Scaffold 0.197 0.380 0.433 0.463 0.479 0.502 0.503 0.494 0.507

DP-FedFC 0.690 0.773 0.790 0.795 0.798 0.818 0.823 0.841 0.844

DP-FedGD 0.687 0.772 0.791 0.793 0.796 0.799 0.798 0.800 0.798
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Table 11: Effect of varying the local dataset size. The numbers in the 𝜀 columns report the mean test accuracy after the final
70th epoch for the best model trained on IID EMNIST dataset obtained after tuning the hyperparameters. The layer size is
2048 × 10. Note that DP-FedNew-FC attains accuracies comparable to DP-FedFC without aggregating the covariance matrix
of size 2048 × 2048. DP-FedNew-FC can perform 2048

10
≈ 204 additional epochs with the number of bits needed to transmit this

covariance matrix.

𝜖 = 0.1 𝜖 = 0.3 𝜖 = 0.5 𝜖 = 0.7 𝜖 = 1 𝜖 = 2 𝜖 = 3 𝜖 = 8 𝜖 = 10

n |𝐷𝑖 | method

50 4800 DP-FedNew-FC 0.868 0.893 0.897 0.913 0.925 0.936 0.938 0.940 0.945

DP-Scaffold 0.679 0.807 0.822 0.827 0.830 0.832 0.832 0.832 0.832

DP-FedFC 0.879 0.912 0.931 0.936 0.940 0.945 0.951 0.959 0.959

DP-FedGD 0.878 0.893 0.896 0.894 0.894 0.896 0.894 0.896 0.895

100 2400 DP-FedNew-FC 0.867 0.900 0.897 0.912 0.925 0.936 0.938 0.940 0.940

DP-Scaffold 0.626 0.755 0.772 0.780 0.782 0.785 0.785 0.786 0.785

DP-FedFC 0.880 0.911 0.929 0.936 0.940 0.945 0.951 0.959 0.959

DP-FedGD 0.878 0.893 0.894 0.893 0.894 0.894 0.895 0.894 0.896

250 960 DP-FedNew-FC 0.856 0.894 0.912 0.912 0.925 0.936 0.938 0.940 0.940

DP-Scaffold 0.509 0.663 0.694 0.701 0.703 0.705 0.708 0.705 0.707

DP-FedFC 0.879 0.911 0.930 0.936 0.940 0.945 0.951 0.959 0.959

DP-FedGD 0.878 0.893 0.893 0.895 0.894 0.895 0.894 0.895 0.895

500 480 DP-FedNew-FC 0.854 0.891 0.906 0.917 0.925 0.936 0.938 0.940 0.940

DP-Scaffold 0.431 0.605 0.639 0.651 0.656 0.660 0.664 0.663 0.668

DP-FedFC 0.878 0.910 0.930 0.935 0.940 0.944 0.951 0.959 0.959

DP-FedGD 0.877 0.893 0.893 0.894 0.895 0.896 0.894 0.896 0.894

Table 12: Effect of 𝜌 and 𝛼 while varying the local dataset sizes. The numbers in the columns {1, 10, 30, 50, 70} report the mean
test accuracies in the correspond epochs for the top-3 most accurate models trained on EMNIST dataset for 𝜀 = 1. The layer size
is 64 × 10. The value in the columns ¯𝜆

𝑗
𝑚𝑎𝑥 is computed by averging the maximum eigen value of local Hessians from all clients

at epoch 𝑗 . We tune the hyperparameters 𝛼 = {0.01, 0.1, 1}, and 𝜌 = {0.01, 0.1, 1, 10, 100}. 𝜂 =𝐶1 =𝐶2 = Δ𝐻 = 1.

1 10 30 50 70
¯𝜆1

𝑚𝑎𝑥
¯𝜆10

𝑚𝑎𝑥
¯𝜆30

𝑚𝑎𝑥
¯𝜆50

𝑚𝑎𝑥
¯𝜆70

𝑚𝑎𝑥

n |𝐷𝑖 | 𝜂 𝜌 𝛼

50 4800 1 1 0.001 0.116 0.341 0.484 0.533 0.574 0.369 0.326 0.243 0.219 0.208

0.010 0.148 0.346 0.485 0.533 0.573 0.436 0.370 0.252 0.223 0.216

0.1 0.001 0.213 0.115 0.494 0.549 0.536 0.708 1.018 0.183 0.134 0.128

100 2400 1 0.1 0.010 0.228 0.192 0.405 0.542 0.579 0.723 0.088 0.544 0.200 0.204

1 0.001 0.133 0.360 0.490 0.536 0.577 0.402 0.367 0.249 0.222 0.210

0.010 0.144 0.359 0.490 0.533 0.572 0.389 0.375 0.253 0.226 0.218

250 960 1 1 0.001 0.216 0.327 0.493 0.538 0.575 0.360 0.346 0.252 0.225 0.211

0.010 0.130 0.332 0.488 0.535 0.575 0.367 0.351 0.255 0.228 0.220

0.1 0.100 0.257 0.359 0.436 0.494 0.533 0.846 0.420 0.339 0.314 0.303

500 480 1 1 0.001 0.148 0.372 0.498 0.537 0.576 0.338 0.314 0.255 0.229 0.217

0.010 0.105 0.342 0.484 0.532 0.571 0.373 0.338 0.257 0.234 0.225

0.100 0.187 0.327 0.465 0.501 0.524 0.366 0.339 0.289 0.273 0.264
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H Record-level DP results for layer size
2048 × 10.

(a) CIFAR10

(b) FashionMNIST

(c) Federated EMNIST

Figure 5: IID data: Record-level results for DP-FedNew-FC
(DP-FN-FC in plots), DP-FedGD (DP-FGD in plots), and DP-
Scaffold. For each 𝜖, we plot the test accuracies of the best
model obtained after hyperparameter tuning. Themodel size
is 2048 × 10. Check Figure 10 for comparison with DP-FedFC.

I User-level DP experiments: Non-IID data

(a) Federated EMNIST

(b) Synthetic data

Figure 6: Non-IID data: User-level results for DP-FedNew
(DP-FN in plots) and DP-FedGD (DP-FGD in plots). For each
𝜖, we plot the test accuracies of the best model obtained after
hyperparameter tuning. The model sizes are 100 × 47 and
60 × 10.
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J Comparison with DP-FedFC.

(a) CIFAR10

(b) FashionMNIST

(c) EMNIST

Figure 7: IID data: User-level results for DP-FedNew (DP-
FN), DP-FedFC (DP-FFC in plots). For each 𝜖, we plot the test
accuracies of the best model obtained after hyperparameter
tuning. The model size is 64 × 10.

(a) CIFAR10

(b) FashionMNIST

(c) EMNIST

Figure 8: IID data: User-level results for DP-FedNew-FC (DP-
FN-FC in plots), DP-FedFC (DP-FFC in plots). For each 𝜖, we
plot the test accuracies of the best model obtained after hy-
perparameter tuning. The model size is 2048 × 10.
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(a) CIFAR10

(b) FashionMNIST

(c) EMNIST

Figure 9: IID data: Record-level results for DP-FedNew (DP-
FN in plots), DP-FedFC (DP-FFC in plots). For each 𝜖, we plot
the test accuracies of the best model obtained after hyperpa-
rameter tuning. The model size is 64 × 10.

(a) CIFAR10

(b) FashionMNIST

(c) EMNIST

Figure 10: IID data: Record-level results for DP-FedNew-FC
(DP-FN-FC in plots), DP-FedFC (DP-FFC in plots). For each 𝜖,
we plot the test accuracies of the best model obtained after
hyperparameter tuning. The model size is 2048 × 10.
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