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Abstract

Taking part in surveys, experiments, and studies is often compen-
sated by rewards to increase the number of participants and en-
courage attendance. While privacy requirements are usually con-
sidered for participation, privacy aspects of the reward procedure
are mostly ignored. To this end, we introduce PrePaMS, an effi-
cient participation management system that supports prerequisite
checks and participation rewards in a privacy-preserving way. Our
system organizes participations with potential (dis-)qualifying de-
pendencies and enables secure reward payoffs. By leveraging a
set of proven cryptographic primitives and mechanisms such as
anonymous credentials and zero-knowledge proofs, participations
are protected so that service providers and organizers cannot derive
the identity of participants even within the reward process. In this
paper, we have designed and implemented a prototype of PrePaMS
to show its effectiveness and evaluated its performance under real-
istic workloads. PrePaMS covers the information whether subjects
have participated in surveys, experiments, or studies. When com-
bined with other secure solutions for the actual data collection
within these events, PrePaMS can represent a cornerstone for more
privacy-preserving empirical research.
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1 Introduction and Motivation

Surveys are imperative in opinion research, empiric evaluations,
and feedback in corporations and organizations. Experiments and
studies are also essential for most empirical and behavioral sciences,
such as psychology and sociology. In all these fields, the quality of
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findings heavily depends on sufficiently large numbers of partici-
pations and motivated participants. Hence, participation is often
incentivized through corresponding rewards.

Most academic study programs of empirical disciplines require
students to contribute to studies for a certain number of subject
hours. Similarly, successful participation is rewarded by credit
points, often obligatory for graduation [36]. Longitudinal studies
apply repeated observations in order to explore developments over
time. Hence, rewards are often tied to continual survey participa-
tion [37]. Employee surveys provide insights into workplace char-
acteristics and organizational conditions. Here, companies often
provide certain incentives to improve response rates for employee
surveys [5, 35]. Overall, rewarding participations is a common in-
centive strategy in many areas of science, education, and business.

During most experiments, surveys, and studies, data collection
is handled with safeguards to protect the privacy of participants. In
particular, anonymization or pseudonymization of participants’ re-
sponses is required due to research-ethical principles, data manage-
ment guidelines, or compliance reasons. However, anonymization
and pseudonymization mechanisms during a study often interfere
with reward incentives provided after the participation. This issue
becomes particularly evident when participants are required to take
part in a series of studies (e.g., longitudinal studies) or to take part
in a certain number of different studies (e.g., subject hours) to be
eligible for a final reward. Furthermore, the inclusion criteria of a
study can interfere with anonymity, as a disclosed participation by
itself may already reveal some information about the participant.

While there are several commercial solutions (e.g., Sona Sys-
tems [38]) and academic tools (e.g., hroot [8], ORSEE [21]) for
participant management, none of these systems consider extensive
privacy requirements for participations (e.g., hiding participations
from service providers) nor privacy-preserving rewarding processes
(e.g., collecting rewards anonymously while preventing the trans-
fer of rewards between users). This means that participants often
have to trust the organizers and the service to keep identities and
participations secret.

In this paper, we propose a novel privacy-preserving participa-
tion management system that protects the privacy of participants
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by breaking the link between participable tasks and the partici-
pating users while maintaining the possibility of individual, non-
transferable rewards. Apart from the system design with privacy
and security proofs, we complement our contributions with a pro-
totype implementation1 of the system and a publicly available test
instance2 to demonstrate the feasibility.
Our Main Contributions: • We propose PrePaMS, a novel set of
cryptographic protocols to enable participations in studies with
rewards and prerequisites while preserving the privacy of partici-
pants. •We define correctness, privacy, and security properties of
our scheme and prove these properties for our construction. •We
provide an open-source web-based proof of concept implementa-
tion1 to showcase the practicability of our approach. This includes
a publicly hosted test deployment2 where anyone can explore our
system themselves. •We evaluate the performance of our proto-
typical implementation. In this evaluation, we follow the Popper
convention [23] for reproducible evaluations.
Technical Overview: We describe and apply a pairing-based, multi-
show unlinkable anonymous credential scheme, which allows par-
ticipants to authenticate themselves to the organizers. To only
allow a single participation per user and study, we derive partic-
ipation tags from the user’s credential using a verifiable random
function. To model (dis-)qualifiers (i.e., the requirement of (not)
having previously participated in referenced studies), we utilize
non-interactive zero-knowledge proofs (NIZK) where a participant
proves these prerequisites on participation without revealing any
specific link. Participation requirements based on attributes of a
user’s credential (e.g., age, handedness) are also proven using NIZK
proofs. Altogether, this prevents an organizer from linking multi-
ple participations of the same participant while still allowing for
prerequisites and rewards. Participation rewards are issued as blind
signatures, which a participant can re-randomize for a payout re-
quest without revealing which studies they have participated in
to earn the rewards. At the same time, a reward is bound to the
original participant, so it cannot be passed on to another user. Dou-
ble spending is prevented by additionally publishing a verifiable
nullifier of every reward.

2 Requirements for Participation Management

We now illustrate the relevance of participation management as
well as the associated privacy risks using the example of subject
hours in academic study programs with empirical research methods.
We formalize these requirements later in Section 3.

Study programs with empirical methods often mandate a certain
number of subject hours from their students [36] earned through
study participation. These participations serve several purposes—
self-experience for participating students, recruitment of subject
pools for student research projects as well as sampling for actual
research studies [20]. As a concrete example, we consider an under-
grad psychology program in which students are asked to take part
in a certain amount of study participations. The requirements for
the participation management for such subject hours can be fur-
ther divided into study management requirements (SR) and reward

1
Prototype source code: https://github.com/vs-uulm/prepams/tree/pets25.1

2
Public test deployment: https://vs-uulm.github.io/prepams/

management requirements (RR) also shown in Table 1. Study man-
agement requirements refer to administrative and organizational
procedures such as a list of current ongoing studies (SR1), but also
includes the handling of conditions for participations. In turn, re-
ward management requirements targets the tracking of the stu-
dents’ study participations so that the associated credit points can
be eventually rewarded once students reach the required amount
(RR3).

In the past, study management was mainly realized by using
physical bulletin boards or websites listing the studies as well as
arbitrary processes to handle preconditions of individual studies.
Reward management was typically implemented using log sheets
(i.e., participants receive a dated signature or stamp by the study
organizer after participation) or stickers (i.e., participants receive a
sticker or a similar token after participation).

These analog reward approaches work well with RR1: analog

studies, such as lab experiments. However, they lack inherent sup-
port for RR2: digital studies (e.g., online questionnaires, mobile-
sensing studies) and required additional organizational processes
for rewarding (e.g., receiving a printable participation confirmation
to be traded against a signature or sticker). Also, analog reward
approaches often failed to prevent misuse by malicious students.
A common threat to mandatory subject hours is students selling
rewards to their peers or helping their peers out by participating
in a study in their name. This of course contradicts the intended
didactic goals, hence the need for RR5: non-transferable rewards. Fur-
thermore, researchers want to RR4: prevent duplicate participations

of participants in a study, to not skew the gathered data.
Nowadays, most universities have superseded analog approaches

with a web-based participation management systems that cover
both study and reward management and accommodate these miss-
ing features. One of the most prevalent systems is the commercial
SaaS product “Sona” [38], which claims to be used by 1,500 cus-
tomers across 30 countries and more than 23 million registered
users. Sona as well as alternative academic systems [8, 21] intro-
duced additional new features that are not covered by their analog
counterparts: Some studies have prerequisites that participants
have to satisfy in order to be admitted to the study. With web-based
systems, this can be done automatically even before the participa-
tion (e.g., some common characteristics of participants are surveyed
already by the participation management system at registration
time), saving both researchers and participants time and resources.
This includes SR4: attributed-based preconditions, such that only
participants of a certain age are qualified or participants with spe-
cific medical preconditions are disqualified. For some studies SR5:
participation-based preconditions are also necessary, either to ex-
clude participants of a similar experiment or previous iteration to
mitigate biases or to allow for longitudinal studies in which the
same participants take part in a sequence of studies over time. For
lab experiments, participants often have to schedule sessions be-
forehand, which can be simplified by a digital system featuring e.g.,
a calendar-based SR6: session scheduling.

Some systems further enable researchers to query the database
of potential participants when designing a study, to verify if the
participant pool theoretically contains a suitable sample size based
on their planned prerequisites. Similar to preconditions this can be
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divided into SR2: attribute-based prescreening and SR3: participation-
based prescreening or a combination of both.

Protecting the personal data of participants within studies is not
only a research-ethical mandate [17], it is also often grounded in
legal requirements (e.g., GDPR in European countries). Mechanisms
such as pseudonymization, anonymization, and data aggregation
can help mask a participant’s identity within the data set of that
study [19]. Nevertheless, the mere fact that an individual has actu-
ally taken part in a certain study represents some kind of metadata
and can already leak information about that individual. Hence,
privacy requirements (PR) also apply to participation management.

Depending on the prerequisites of a study, this can involve per-
sonal attributes such as ethnicity or a certain native language of
the participant, but also physical (e.g., dexterity, pre-existing dis-
eases) or mental preconditions, such as currently ongoing clinical
treatments, and other rather sensitive characteristics. Furthermore,
participation in a certain study can also imply previous participa-
tions (e.g., longitudinal study designs with multiple measurement
dates) or hint to the non-participation in a former study (e.g., follow-
up studies that disallow participation of subjects from previous
trials). That said, an attacker with knowledge of the sequence of
participations of an individual and contextual information about
the corresponding studies might already be able to create a sensi-
tive profile of a target— completely independent from the actual
(and inaccessible) response data collected in these studies. As many
people involved in the organizational process for studies have po-
tential access to both the participation data (e.g., a research assistant
who is signing the participation confirmations) and the contextual
study information (e.g., inclusion and exclusion criteria listed on
the university-internal study management system), we argue that
this is a realistic threat that cannot be neglected. Given a sequence
of participations of an individual, their known identity can then
be linked to a set of potentially sensitive attributes deduced from
these participations.

A sticker-based analog reward management— if implemented
correctly—provides an inherent privacy level similar to fiat cur-
rency for money. Participants can participate anonymously, so that
organizers are not able to link them to prior participations and
the rewarded stickers are also not linked to the study they were
rewarded for (PR1: anonymous participation). Similarly, when a stu-
dent obtained the mandated subject hours they can exchange a
full set of stickers for their course credit without revealing their
participation history (PR2: anonymous rewarding). Log sheets on the
other hand disclose the full prior participation history during par-
ticipation to all study personal handling the sheet, and also when
eventually handing in the completed sheet to exchange the hours
for the final course credit. The existing digital systems all store the
individual participations in a database, which is depending on the
system accessible to all researchers or just administrators. Even
if limited to just administrators of a system, this central database
is still vulnerable to sensitive data leaks, e.g., through a software
vulnerabilities or insider attacks.

In this paper, we present a cryptographic scheme that provides
the same requirements and security properties as current web-based
participation management systems, while providing similar privacy
guarantees to a sticker-based analog approach. Table 1 shows the
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Figure 1: Simplified system overview. 1. organizers are au-

thorized by the service; 2. organizer publishes tasks; 3. par-

ticipant registers with service; 4. participant participates in

organizer’s task (retrieved either via service or organizer); 5.

after multiple participations, participant requests payout of

rewards from service; 6. after task is concluded, service may

bill organizer for spent funds.

supported features and privacy properties of the discussed analog
approaches and current digital systems compared to our proposed
system PrePaMS.

The listed requirements are based on an analysis of the features
of state-of-the-art participation management systems and com-
mon practices for rewarding. In addition, we double-checked with
contacts from our psychology department that the derived require-
ments are both adequate and exhaustive from their perspective and
experience.

3 Formalization

In this section, we present a formal definition of a privacy-preserving
participation protocol involving three types of parties, of which
two collude: A single participation management service (S), col-
luding with one or multiple study organizers (O), and a number
of participants (P). In general, the protocol enables participants to
participate in various tasks, which are, e.g., studies in the scenario
described above but may be other events with rewards, and to re-
ceive a reward after successful participation without leaking who
participated in which task. Figure 1 shows a simplified overview.

3.1 Threat Model

Our protocol is applicable in the following setting. The Service acts
as a covert entity during participant registration. Similarly, when
a participant requests a payout of virtual credits for real-world re-
wards, it will honestly fulfill this exchange request. In the university
study setting, the rewards may be European Credit Transfer System
(ECTS) credits or fiat currency. However, it may use its available in-
formation to determinewhich tasks a participant has participated in,
gaining confidential information about the participant. It may link
this to the real identity necessary for the payout procedure, which
violates the participant’s privacy. We envision that this service is
run by the accounting department or administration of an institu-
tion because the goals of an accounting department/administration
coincide well with the goals of the service. Regarding participation
privacy, we assume that the Service colludes with the Organizers.

Organizers in our model create and publish studies and offer
participation rewards to participants. Furthermore, organizers may
be malicious in the sense of attacking the privacy of the participants
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Table 1: Functional requirements and privacy properties of common participation management approaches and related systems

compared to our proposed system PrePaMS.

Log Sheets Sticker hroot [8] ORSEE [21] Sona [38] PrePaMS

s
t
u
d
y
m
a
n
a
g
e
m
e
n
t

SR1 listing of studies Ë Ë Ë Ë
SR2 attribute-based prescreening (Ë) Ë Ë (Ë) a
SR3 participation-based prescreening é Ë Ë (é) b
SR4 attribute-based prerequisites Ë Ë Ë Ë
SR5 participation-based prerequisites (Ë) Ë Ë Ë
SR6 session scheduling Ë Ë Ë (é) c

r
e
w
a
r
d
i
n
g

RR1 analog studies Ë Ë Ë Ë Ë Ë
RR2 digital studies é d é d Ë Ë Ë Ë
RR3 rewarding Ë Ë é Ë Ë Ë
RR4 duplicate participation prevention Ë é Ë Ë Ë Ë
RR5 non-transferable rewards Ë é é Ë (Ë) e Ë

p
r
i
v
a
c
y

PR1 anonymous participation é Ë é é é f Ëg

PR2 anonymous rewarding é Ë é é é f Ëg

Remarks:
a) Attribute-based prescreening is currently not implemented, but possible if the service keeps track of which attributes are issued during registration. b) Participation-

based prescreening has intrinsic privacy issues, if centrally maintained. However, an organizer knows the number of participations of their own previous studies and can
use this information for most scenarios. c) Session scheduling does not come with strict privacy requirements and can be implemented, e.g., using the participation tag
as an anonymous identity. d) Rewarding can only be implemented by using additional organizational processes, such as a subsequent conversion of digital participation
confirmations into physical stickers or signatures. e) Although credits in Sona are rewarded to a persistent pseudonym of a user, it is not verified if the pseudonym belongs to
the participant. f) Rewarding and participation uses a persistent pseudonym, which can be linked across studies and sometimes to a participant’s identity. g) PrePaMS also
supports pseudonyms to track participants over subsequent participations for longitudinal studies. The pseudonym remains unlinkable to unrelated studies.

by linking multiple participations or linking a participation to a
participant’s identity. A task or study T is a public, opaque object
with a defined participation reward and optional prerequisites that a
participant has to satisfy when participating. Such prerequisites can
be divided into qualifiers (i.e., other tasks a participant must have
participated in to qualify for this task), disqualifiers (i.e., previous
tasks a participant must not have participated in to qualify for this
task), range constraints (i.e., the value of an attribute associated
with the participants credential must be contained in a specified
range), or set constraints (i.e., an attribute value must be included
in a specified set) a participant must fulfill.

As the Service and Organizers collude, we take advantage to
simplify our formalization by modeling them as a single service S
with a separate public append-only bulletin board BB.

Participants want to participate in tasks to earn rewards in the
form of virtual credits while protecting their privacy. Participants
can also be malicious by attempting to participate in a study they
do not qualify for, participating twice, receiving payment for a task
without participating, or attempting to request payouts without
earning virtual credits first. Another problem is fraud between par-
ticipants, selling credits to other users. It is a general limitation that
users may perform a task poorly, e.g., in user studies where partici-
pants enter bogus data that needs to be sanitized by statistical tests,
which we consider out of scope. De-anonymization attempts via
network information and metadata are also considered out of scope.
We assume participants conceal their identity when interacting
with other parties through an anonymous network, such as Tor, or
similar means.

3.2 Syntax

In the following, we provide a definition of five probabilistic poly-
nomial time algorithms and interactive protocols (Setup,KeyGenS,
ΠRegister,ΠParticipate,ΠPayout) that comprise a participation manage-
ment protocol. In case of invalid inputs or failures in interaction, all
algorithms have the option to abort. Our notation for lists with a
specific order is [. . . ] to which another list is concatenated or an el-
ement is appended by ∥. For lists, we use, e.g.,𝐴[:𝑛] := [𝐴1, . . . , 𝐴𝑛]
to indicate slices and subscript to index, e.g., 𝐴1 for the first ele-
ment. For tuples 𝑇 := (𝑎, 𝑏, 𝑐) we use 𝑇 .𝑎 for a named element of
the tuple. For an integer 𝑛, we define the sequence [𝑛] := [1, . . . , 𝑛].
We denote a negligible polynomial in 𝜆 as negl(𝜆). We use assert in
algorithms to check a condition and abort if it evaluates to false.
Table 2 in the appendix summarizes the variable names.
Setup(1𝜆,𝑚, 𝑛) → p: takes the security parameter 1𝜆 , the number
of attributes𝑚 ∈ N of a participant and the maximum number of
payouts 𝑛 ∈ N. It outputs the public parameters p.
KeyGenS () → (skS, pkS): outputs the key-pair (skS, pkS) used by
the service and organizers. pkS is distributed to everyone for cre-
dential verification. This means all subsequent algorithms have an

implicit (p, pkS) input, where p includes𝑚,𝑛.

ΠRegister⟨P(un, attr), S(skS)⟩ → (cred, un): is an interactive proto-
col between P and S where a participant P, identified by a unique
username un and attributes attr, receives a secret credential cred
for later participation in tasks. The service uses its secret key skS
to sign the credential and gets the username to prevent duplicate
registration, and verifiers the attributes.
ΠParticipate⟨P(cred,BB, T), S(skS)⟩ → tx: is an interactive protocol
between P and Swhich allows Pwith credential cred to participate
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in a task T from an Organizer. The eligibility of P to participate
is dependent on all previous participations by all participants
described as the list of reward transactions BB := [tx𝑖 ] |BB |𝑖=1 on the
bulletin board. This protocol returns a reward transaction tx to
both parties that is appended to the bulletin board BB← BB∥tx.
A tx includes the performed task T ∈ T from a task domain,
defined as a tuple T := (𝑣, 𝛿 ⊂ T, 𝛿 ⊂ T, constr,Δ) with a reward
𝑣 , qualifiers 𝛿 , disqualifiers 𝛿 , attribute constraints constr, and an
opaque task description Δ ∈ {0, 1}∗, e.g., a title, external link, and
a verbose description.
ΠPayout⟨P(cred, un,BB, 𝑣, {tx𝑖 }𝑘𝑖=1), S()⟩ → ({N𝑖 }𝑛𝑖=1, 𝑣, un): is an in-
teractive protocol to allow a participant P with cred, belonging to
username un, to request a payout of earned rewards from a list of
𝑘 ≤ 𝑛 reward transactions [tx𝑖 ]𝑘𝑖=1 ⊂ BB with amount 𝑣 from S. It
returns payout records, also called nullifiers, N𝑖 which are added
to the public set NUL maintained by the service and the paid out
value 𝑣 to user un.
For our correctness and security definitions, we require the follow-
ing four auxiliary algorithms.
Receive(cred,BB,NUL) → (𝑠, 𝑅): returns the total amount 𝑠 owned
by cred and the list of reward transactions 𝑅 = [tx𝑖 ] |𝑅 |𝑖=0 which are
present in the bulletin board BB and which have not yet been paid
out with a record in NUL.
ChkCred(cred, pkS) → {0, 1}: returns 1 if the credential cred is
valid under the service’s public key pkS.
ChkPart(cred, tx) → {0, 1}: returns 1 if the credential cred was
used for the participation which resulted in the transaction tx.
ChkQual(cred,BB, T) → {0, 1}: returns 1 if the participant satis-
fies all prerequisites of T given the previous participations regis-
tered in BBwhich is a time ordered list of tx. Meaning a participant
has neither participated in any disqualifier of T nor in the task
itself, but has participated in all qualifiers of T, and fulfills the
attribute constraints.

Definition 3.1 (Correctness). A participation workflow is cor-

rect if the following conditions apply. For any 𝜆 ∈ N, any p ←
Setup(1𝜆) and any of the services’ generated key pairs (skS, pkS) ←
KeyGenS (), it then holds that:
Honest Registration: For any previously non-registered partici-
pant identified by username un and any attributes attr, it holds that
(cred, un) ← ΠRegister⟨P(un, attr), S(skS)⟩ implies
ChkCred(cred, pkS) = 1
Honest Participation: With any valid, signed credential cred (i.e.,
ChkCred(cred, pkS) = 1), a participant who fulfills the prerequi-
sites of a task T at any state BB (i.e., ChkQual(cred,BB, T) = 1),
successfully participates in T with tx← ΠParticipate⟨P(cred,BB, T),
S(skS)⟩ such that Receive(cred, [tx], ∅).𝑣 = T.𝑣 .
Honest Payout: A participant with cred, given 𝑠, 𝑅 ← Receive(
cred,BB,NUL) can get a payout of an amount 𝑣 ∈ {0, . . . , 𝑠} with
(NUL′, 𝑣) ← ΠPayout⟨P(cred, un,BB,NUL, 𝑣, 𝑅), S()⟩ such that
Receive(cred,BB,NUL ∪ NUL′) .𝑠 ≤ 𝑠 − 𝑣 .

We define the security of our scheme with four game-based secu-
rity definitions. They all follow the logic that an adversary interacts
with a game and tries to win, breaking a security property. The
interaction either happens through oracles, where the adversary is
instructing honest parts of the game, or a challenge to the game. For

our construction, we later prove, that the existence of a probabilistic
polynomial time algorithm to win the game is negligible.

3.3 Oracles

Before defining our game-based security and privacy properties of
the scheme, we require oracles for the adversary to interact with.
Our adversaries are allowed to call all oracles in a mixed order for
a polynomial number of times in 𝜆. This allows the adversary to
instruct honest participants to perform an action without access to
their secret state. The oracles presented in Figure 2 operate as one
or both parties of the interactive protocols ΠRegister, ΠParticipate, and
ΠPayout which gives a total of nine possibilities. To highlight the
adversary controlling the other party, we denote the input of this
party as a part of the stateful adversary (e.g., AP for an adversary-
controlled participant). The oracles controlling both parties of the
protocols are required to allow the participant adversary to observe
honest interactions and their public effects. This is important for,
e.g., replay attacks. The service oracles accept any participant adver-
sary defined tasks. Some oracles perform bookkeeping operations
maintaining two lists of oracle controlled users 𝔘𝑒 with 𝑒 ∈ {0, 1}.
The epoch 𝑒 is required for the service oracles to separate users
into two subsets. The oracle-provided service is thereby able to
track new registrations. For each username, 𝔘𝑒un maintains a tuple
of (cred,NUL): their credential cred and spent coin nullifiers NUL
from payout interactions. The oracles also track two total amounts
of rewards 𝔗𝑒 depending on when the participation was rewarded.
OPParticipate and OPPayout is parametrized with a lock set 𝐿 of
usernames that ban them from specific interactions after a chal-
lenge from the adversary. This is required to prevent the users from
being trivially deanonymized depending on qualifying for tasks or
access to rewards. However, it does not weaken the adversary, as a
winning adversary could have prepared the situation beforehand
and use it in the challenge. Additionally, the participant adversaries
get an oracle Ostate to access the public state BB,NUL.

3.4 Participation Security

Our first property is participation security, which ensures that par-
ticipants can only participate in studies for which they qualify
(checked by ChkQual). We capture this property by defining a se-
curity game with oracles from above. The game PartSec below sets
up the service with a generic organizer and then allows the adver-
sary A oracle access to register users and participate with them
in studies. The oracle OSRegister only checks that each username
is registered once and OSParticipate tracks every participation by
appending the reward transaction to the list BB. The adversary also
has the power to observe honest users interacting with the service
through ORegister and OParticipate. There is only one epoch 𝑒 = 0.
For completeness the adversary also has access to payout oracles,
however they do not help in any way. We note that a single generic
organizer in this scenario has equivalent power as multiple ones.
They all perform the same verification and may be controlled by a
single entity.

The adversary is then challenged to present a credential cred
which at any point in the list of participations successfully partici-
pated by having a reward transaction matching the credential but
was not allowed to do so due to missing qualifications.

636



PrePaMS : Privacy-Preserving Participant Management System Proceedings on Privacy Enhancing Technologies 2025(1)

OSRegisterskS,𝑒 (un, attr,AP):
Assert un ∉ 𝔘0 ∧ un ∉ 𝔘1

run service side of ΠRegister ⟨AP, S(skS ) ⟩
𝔘𝑒
un ← (⊥, ∅)

OSParticipateskS,𝑒 (AP):
run service side of tx← ΠParticipate ⟨AP, S(skS ) ⟩
BB← BB∥tx
𝔗𝑒 ← 𝔗𝑒 + tx.T.𝑣
OSPayout(AP):
run S side of NUL′, 𝑣, un← ΠPayout ⟨AP, S( ) ⟩
if un ∈ 𝔘0

then

𝔗0 ← 𝔗0 − 𝑣
else if un ∈ 𝔘1

then

𝔗1 ← 𝔗1 − 𝑣
NUL← NUL ∪ NUL′

ORegisterskS (un, attr):
Assert un ∉ 𝔘0 ∧ un ∉ 𝔘1

run cred← ΠRegister ⟨P(un, attr, pkS ), S(skS ) ⟩
𝔘0
un ← (cred, ∅)

OParticipateskS (T, un):
run tx← ΠParticipate ⟨P(𝔘0

un .cred,BB, T), S(skS ) ⟩
BB← BB∥tx
OPayout(un,BB, 𝑣):
(cred,NUL′ ) ← 𝔘0

un .cred
𝑎, 𝑅 ← Receive(cred,BB,NUL ∪ NUL′ )
run NUL′′, 𝑣, un← ΠPayout ⟨P(cred,BB,NUL, 𝑣, 𝑅), S( ) ⟩
𝔘0
un .NUL← 𝔘0

un .NUL ∪ NUL′′
NUL← NUL ∪ NUL′′
Ostate():
return BB,NUL

OPRegister(un, attr, pkS,AS):
Assert un ∉ 𝔘0 ∧ un ∉ 𝔘1

run P side of cred← ΠRegister ⟨P(un, attr, pkS ),AS ⟩
𝔘0
un ← (cred, ∅)

OPParticipate𝐿 (BB, T, un,AS):
if un ∈ 𝐿 then

Assert ∀𝑢 ∈ 𝐿 : ChkQual(𝔘0
𝑢 .cred,BB, T) = 1

Assert ChkQual(𝔘0
un .cred,BB, T) = 1

run P side of tx← ΠParticipate ⟨P(𝔘0
un .cred,BB, T),AS ⟩

OPPayout𝐿 (un,BB, 𝑣,AS):
if un ∈ 𝐿 then

Assert ∀𝑢 ∈ 𝐿 : Receive(𝔘0
𝑢 .cred,BB,NUL) .𝑎 ≥ 𝑣

cred← 𝔘0
un .cred

𝑎, 𝑅 ← Receive(cred,BB,NUL ∪𝔘0
un .NUL)

run P of NUL′, 𝑣, un← ΠPayout ⟨P(cred,BB,NUL, 𝑣, 𝑅),AS ⟩
𝔘0
un .NUL← 𝔘0

un .NUL ∪ NUL′

PartSec(1𝜆):
p← Setup(1𝜆 )
𝔘0 ← ∅,𝔗0 ← 0,BB← [],NUL← ∅
skS, pkS ← KeyGenS (p)
O := {OSRegisterskS,0, OSParticipateskS,0,
OSPayout, ORegisterskS , OParticipateskS ,
OPayout, Ostate}
cred← AO (p, pkS )
Assert ChkCred(cred, pkS ) = 1
for 𝑡 ∈ [ |BB | ] do

if ChkQual(cred,BB[:𝑡 ],BB𝑡 .T) = 0
∧ ChkPart(cred,BB𝑡 ) = 1 then

return win

Balance(1𝜆):
p← Setup(1𝜆 )
𝔘0 ← ∅,𝔘1 ← ∅,𝔗0 ← 0,𝔗1 ← 0,BB← [],NUL← ∅
skS, pkS ← KeyGenS (p)
O (𝑒 ) := {OSRegisterskS,𝑒 , OSParticipateskS,𝑒 ,
OSPayout, ORegisterskS , OParticipateskS ,
OPayout, Ostate}
aux← AO(0)0 (p, pkS )
if 𝔗0 < 0 then return win

AO(1)1 (p, pkS, aux)
if 𝔗1 < 0 ∨ 𝔗0 + 𝔗1 < 0 then return win

PartPriv𝑏 (1𝜆):
p← Setup(1𝜆 )
𝔘0 ← ∅,𝔗0 ← 0,BB← [],NUL← ∅
O(𝐿) := {OPRegister, OPParticipate𝐿 , OPPayout𝐿 }
(BB′, un0, un1, T,AS, aux) ← A

O(∅)
0 (p)

Assert BB ⊆ BB′
Assert ∀𝑖 ∈ {0, 1} : ChkQual(𝔘0

un𝑖 .cred,BB
′, T) = 1

run P side of tx← ΠParticipate ⟨P(𝔘0
un𝑏

.cred,BB′, T),AS ⟩

𝑏′ ← AO({un0,un1})
1 (p, tx, aux)

if 𝑏 = 𝑏′ then return win

Figure 2: Oracles with Security and Privacy Games.

Definition 3.2 (Participation Security). A participation scheme is
secure if for all 𝜆 ∈ N, all ppt adversaries A and the game PartSec
in Figure 2 it holds that: Pr[PartSec(1𝜆) = win] ≤ negl(𝜆)

3.5 Balance

In addition to assuring participation security, we require that par-
ticipants can only claim as much rewards as they have rightfully
earned. This balance property is captured in the Balance game.
Similarly to PartSec, a service and organizer is set up and the adver-
sary has oracle access to register users, participate in studies, and
request a payout through OSPayout. The adversary may observe
honest interactions through the oracles controlling both parties.
The anonymous nature of the participations requires special atten-
tion to prevent users from sharing rewards. All credentials main-
tained by the adversary are shared and are used by the adversary to
participate and get rewards. Together with the fact that the oracle
cannot keep track of balances of anonymous participants, we split
the adversarial actions into two epochs. During both, the adversary
can register users, participate with them, and get payouts as well as
observe fully honest users in their actions. In epoch 0, all adversari-
ally registered users are tracked in 𝔘0 and the total reward in 𝔗0.
If the adversary manages to get more paid out than was rewarded
(𝔗0 < 0) it already wins. This prevents, e.g. stealing funds from
honest users. In addtion, the adversary gets a second chance to win,
if they are able to move coins between participants.

To test that, the game switches the epoch to 𝑒 = 1 and now
registers all new users in 𝔘1 and all rewards are tracked in 𝔗1.
As the participation is anonymous, this means that also rewards

to participations from users in 𝔘0 are still tracked by 𝔗1. If, after
the interaction, more is paid out than was rewarded in epoch 1
(𝔗1 < 0) the adversary wins. The identity of the users is revealed
at payout, which allows subtracting from the matching 𝔗𝑒 to when
this user was registered. The adversaryA1, getting secret state from
𝐴0 through aux, also wins if the sum of both epochs is negative
(𝔗0 + 𝔗1 < 0). It is possible to have 𝔗0 < 0 in the following
scenario: During epoch 0, the adversary registers un but does not
participate in any task (𝔗0 = 0). Then in epoch 1, the adversary
asks un to participate in a study with reward 𝑣 (𝔗1 = 𝑣). Then un
should get a payout of 𝑣 . As un ∈ 𝔘0, the deduction is from 𝔗0, i.e.
𝔗0 = −𝑣,𝔗1 = 𝑣 . Their sum is still non negative. This property also
captures phishing attacks for rewards of users, which cannot be
paid out by the person who stole the credential. To win our game,
the adversary must find a way to get a credential paid out to a “new”
username which was earned by an “old” participation.

Definition 3.3 (Balance). A participation scheme is balanced,
if for all 𝜆 ∈ N and all ppt adversaries (A0,A1), it holds that
Pr[Balance(1𝜆) = win] ≤ negl(𝜆) with Balance from Figure 2.

3.6 Participation Privacy

Next to the security properties protecting the service frommalicious
users, we define the privacy property which protects the users’
anonymity from a malicious service. The participation privacy
assures that as the service and the organizers collude they are still
unable to track a user from the registration with their real identity
to participations or link between participations or to payouts. In our
game-based definition, the adversary controls the service and the
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organizers. It is given oracle access to register participants andmake
them participate in a given study without access to their secret state
(cred). The adversary has no use of the double secret oracles (e.g.
OParticipate) as all participants may be malicious. In the second
invocation of the adversary (connected by aux), they have limited
access to OPParticipate and OPPayout for the users un0 and un1.
This prevents trivial cases to get 𝑏′ from the participants’ possibility
to qualify for a study or access to the reward. Together with the
Balance property, no rewards can be shared between the users to
discriminate. As usernames are unique, we use them to identify
the users. Once the adversary prepared the users, it provides a
bulletin board BB′ (which is a superset of oracle participations, as
otherwise it is easy to make the same user participate twice) and a
Task T to fulfill by one of the two users un0 or un1. Both users need
to have valid credentials registered by the OPRegister oracle and
fulfill the prerequisites (ChkQual(cred,BB, T) = 1) to participate.
This ensures that the adversary gets no advantage from an aborted
participation. The game proceeds to participate with the credential
of the user specified by the bit 𝑏. The interactive adversary A1,
with access to restricted oracles, needs to efficiently distinguish
between the 𝑏 = 0 and 𝑏 = 1 game.

Definition 3.4 (Participation Privacy). A participation scheme
has private participations, if for all 𝜆 ∈ N and all ppt adversaries
(A0,A1) and the game PartPriv defined in Figure 2, it holds that
| Pr[PartPriv0 (1𝜆) = win] − Pr[PartPriv1 (1𝜆) = win] | ≤ negl(𝜆).

Remark: If a series of tasks are part of a longitudinal study, a
possible requirement is to link participants over a longer period of
time. This is modeled as weak participation privacy, where the orga-
nizer can link a previous participation to the current one. However,
anonymity regarding any other task is still maintained.

Corollary 3.5 (Fixed Participant State). From the syntax of

our formalization, it is visible that the participants get a credential

through the ΠRegister protocol, and thereafter, the credential cred is

never updated. Such a property is desirable as users can back up their

credential after registration and then in case of a recovery derive all

secret state from this credential in combination with public informa-

tion. One allowed exception is the need for users to store previously

disclosed payout nullifiers NUL′. This can be circumvented if the

service maintains a public append only log of NUL.

The validation of our formalization with regards to the log sheets
and stickers is deferred to Section B.

4 PrePaMS

In this section we present our protocol PrePaMS, which realizes
a privacy-preserving participant management with the properties
defined above.

We present the complete construction of the PrePaMS scheme
in Figure 3. It utilizes multiple building blocks, which are described
in detail in Section C: • a partially blind signature scheme PBS = (
Setup,KeyGen,Blind, Sign,Unblind,Verify)with randomness space
RPBS and an efficient NIZK for LPBS to show correct blinding. Blind
allows a user to blind a secret message, which is then Sign-ed
with the signer only knowing part of the message. The user then
Unblind-s the result and is able to prove a valid signature with
Verify. As we need this building block twice, we instantiate two,

domain-separated, versions called PBSC and PBSR, • a labeled
verifiable random function VRF = (Setup,KeyGen, Eval) where
KeyGen generates a public private key pair and Eval takes a la-
bel from the domain of tasks T in addition to the secret key from
𝜑VRF and outputs a deterministic, uniformly random, verifiable
tag, • zero-knowledge non-interactive arguments of knowledge
NIZK[L] = (Setup, Prove,Verify, Sim) to prove various NP lan-
guages L, • a key derivation function KDF : 𝜑VRF × T→ S × RPBS,
which takes a secret key from 𝜑VRF and a task from T to determin-
istically generate a nullifier and a PBS blinding randomness.

We explicitly indicate exchanged messages in the construction
of interactive protocols with blocking send and recv calls.

Given these building blocks, we present an overview of how we
combine them: To register participants, we use the PBSC scheme
to blind-sign a secret key of the VRF and the users attributes attr,
one of which is the user’s identity un. The PBSC signature is the
credential and for each participation the participant has to create
a VRF tag 𝜏 for a specific task T and prove correctness with a
NIZK. Along with the participation, the participant sends a partially
blinded coin to the organizer using PBSR.Blind. The coin consists
of the identity un and a nullifierN , sometimes called serial number.
Once the task is fulfilled, the organizer together with the service
signs coin with PBSR.Sign and adds the amount of reward the task
provides T.𝑣 to get the coin, resulting in 𝑟 and creates a reward
transaction tx := (T, 𝑟 , 𝜏) which is appended to the service’s public
log BB. On payout, the participant reveals the nullifiers N𝑖 and
identity un and generates a NIZK which proves they are correct
and the earned reward is greater than the payout. Double spending
is prevented by the service which only accepts a nullifier once.
Balance per user is assured by only paying out the amount to the
identity of the coins. Due to the re-randomization of the coin, it
cannot link it to the transaction where it was issued.

4.1 Detailed Protocol Description

To achieve payout privacy, the participant must not disclose their
number of participations. To hide the real number of participations,
we assume a system parameter 𝑛 denoting the maximum number
of tasks to get paid out in one payout. The Setup takes a security
parameter 1𝜆 , the number of attributes𝑚, which is increased by
one to accommodate the identity, and maximum input size for pay-
outs 𝑛. It initializes all building blocks and databases UN,BB,NUL,
and outputs a set of public parameters p. After the initial setup
and key generation of the service, participants can register (c.f.,
ΠParticipate) to retrieve an anonymous credential cred. For this they
run VRF.KeyGen to pick a random secret key sk for later use in the
verifiable random function, blind it with randomness 𝜌 ∈ RPBSC

with sk being the blinded message and attr (including un) the public
part, using the partially blind signature scheme PBSC.Blind. They
send the blinded key 𝛼 with their identity un and an argument
of knowledge 𝜋 of a correct blinding (LPBSC) to the service. The
service verifies this argumentNIZK[LPBSC] .Verify(𝜋, (𝛼, attr)) = 1
and if it holds, the attributes are correct and the identity has not
been registered yet (i.e., un ∉ UN where UN is a set of registered
users), it continues to sign the blinded seed 𝛼 using its secret key
skS. The identity un is added to the set of registered users UN and
the signature 𝜎 ′ is send back to the participant, who is then able
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General Algorithms

Setup(1𝜆,𝑚, 𝑛)
UN← ∅,BB← [],NUL← ∅
pVRF ← VRF.Setup(1𝜆 )
pKDF ← KDF.Setup(1𝜆 )
pPBSC ← PBSC.Setup(1𝜆 , 1,𝑚 + 1)
pPBSR ← PBSR.Setup(1𝜆 , 2, 1)
pParticipate ← NIZK[LParticipate ] .Setup(1𝜆 )
pPayout ← NIZK[LPayout ] .Setup(1𝜆 )
p := (𝑛, pVRF, pKDF, pPBSC, pPBSR, pParticipate, pPayout )
return p

ChkCred(cred, pkS)
(sk, attr′, un′, 𝜎 ) ← cred
return PBSC.Verify(pkS,C, sk, attr′ ∥un′, 𝜎 )

ChkPart(cred, tx)
return tx.𝜏 = VRF.Eval(cred.sk, tx.T)

ChkQual(cred,BB, T)
𝜏 ← VRF.Eval(cred.sk, T)
𝑄 ← {VRF.Eval(cred.sk, T.𝛿 𝑖 ) } |T.𝛿 |𝑖=1
𝐷 ← {VRF.Eval(cred.sk, T.𝛿𝑖 ) } |T.𝛿 |𝑖=1
𝑋 := {BB𝑖 .𝜏 } |𝑇𝑋 |

𝑖=1 ⊲ set of rewarded tags in BB
Assert 𝜏 ∉ 𝑋 ⊲ already participated in T
Assert𝑋 ∩𝑄 =𝑄 ⊲ qualifier not satisfied
Assert𝑋 ∩𝐷 = ∅ ⊲ participated in disqualifier
Assert Satisfy(cred.attr, T.constr) = 1 ⊲ attributes fulfill
constraints

Receive(cred,BB,NUL)
𝑎 ← 0, 𝑅 ← ∅
for all tx ∈ BB do

if ChkPart(cred, tx) = 1 then

(N, 𝜌 ) ← KDF(cred.𝑠𝑘, tx.T)
if PBSR.Verify(pkS,R, (N, cred.un), (tx.T.𝑣), tx.𝑟 ) =

1 then

if N ∉ NUL then

𝑎 ← 𝑎 + tx.T.𝑣
𝑅 ← 𝑅 ∪ {tx}

return (𝑎, 𝑅)

Service Algorithms
KeyGenS ()
(skS,C, pkS,C ) ← PBSC.KeyGen( )
(skS,R, pkS,R ) ← PBSR.KeyGen( )
skS ← (skS,C, skS,R )
pkS ← (pkS,C, pkS,R )
return (skS, pkS )

ΠRegister,S (skS)
(un, attr, 𝛼, 𝜋 ) ← recv
Assert NIZK[LPBSC ] .Verify(𝜋, (𝛼 ) ) = 1
Assert un ∉ UN
Assert attr correct
𝜎 ′ ← PBSC.Sign(skS,C, 𝛼, attr∥un)
UN← UN ∪ {un}
send(𝜎 ′ )

ΠParticipate,S (skS)
(𝜋, T, 𝜏, 𝑟 ′ ) ← recv.P
stmt := (pkS,BB, T, 𝜏, 𝑟 ′ )
Assert NIZK[LParticipate ] .Verify(𝜋, stmt) = 1
𝑟 ← PBSR.Sign(skS,R, 𝑟 ′, (T.𝑣) )
BB← BB∥ (T, 𝑟 , 𝜏 )

ΠPayout,S (BB, skS)
({𝑟 ′

𝑖
, 𝜋 ′

𝑖
}𝑛
𝑖=1 ) ← recv

for all 𝑖 ∈ 𝑛 do ⊲ sign padding coins
Assert NIZK[LPBSR ] .Verify(𝜋 ′𝑖 , 𝑟

′
𝑖
) = 1

𝑣𝑖 ← 0
𝑟 ′′
𝑖
← PBSR.Sign(skS,R, 𝑟 ′𝑖 , (𝑣𝑖 ) )

send({𝑟 ′′
𝑖
}𝑛
𝑖=1 )

(𝜋, {N𝑖 }𝑛𝑖=1, un, 𝑣) ← recv
Assert

NIZK[LPayout ] .Verify(𝜋, ({N𝑖 }𝑛𝑖=1, un, 𝑣) ) = 1
Assert NUL ∩ {N𝑖 }𝑛𝑖=1 = ∅
NUL← NUL ∪ {N𝑖 }𝑛𝑖=1
offline payment of amount 𝑣 to un

Participant Algorithms
ΠRegister,P (un, attr, pkS)
sk← VRF.KeyGen( )
𝜌 $← RPBSC
𝛼 ← PBSC.Blind( (sk), 𝜌 )
stmt := (𝛼 )
wit := (sk, 𝜌 )
𝜋 ← NIZK[LPBSC ] .Prove(stmt,wit)
send(un, attr, 𝛼, 𝜋 ) ⊲ with external auth token
𝜎 ′ ← recv
𝜎 ← PBSC.Unblind(pkS,C, 𝜌, 𝜎 ′ )
cred := (sk, attr, un, 𝜎 )
return cred

ΠParticipate,P (cred,BB, T)
𝜏 ← VRF.Eval(cred.sk, T)
(N, 𝜌 ) ← KDF(cred.sk, T)
𝑟 ′ ← PBSR.Blind( (N, cred.un), 𝜌 )
stmt := (pkS,BB, T, 𝜏, 𝑟 ′ )
wit := (cred,N, 𝜌 )
𝜋 ← NIZK[LParticipate ] .Prove(stmt,wit)
send(𝜋, T, 𝜏, 𝑟 ′ )

ΠPayout,P (cred,BB,NUL, 𝑣, {tx𝑖 }𝑘𝑖=1)
Assert 𝑘 ≤ 𝑛
Assert Receive(cred, [tx𝑖 ]𝑘𝑖=1,NUL) .𝑣 ≥ 𝑣
for all 𝑖 ∈ [𝑛] do ⊲ prepare padding tx
(N𝑖 , 𝜌𝑖 ) $← RKDF
𝑟 ′
𝑖
← PBSR.Blind( (N𝑖 , cred.un), 𝜌𝑖 )

𝜋 ′
𝑖
← NIZK[LPBSR ] .Prove( (𝑟 ′𝑖 ), (N𝑖 , cred.un, 𝜌𝑖 ) )

send({ (𝑟 ′
𝑖
, 𝜋 ′

𝑖
) }𝑛

𝑖=1, )
({𝑟 ′′

𝑖
}𝑛
𝑖=1 ) ← recv

for all 𝑖 ∈ [𝑛] do ⊲ prepare spendable tx
if 𝑖 ∈ [𝑘 ] then
(N𝑖 , 𝜌𝑖 ) ← KDF(cred.𝑠𝑘, tx𝑖 .T)
𝑟𝑖 ← PBSR.Unblind(pkS,R, 𝜌𝑖 , tx𝑖 .𝑟 )
𝑣𝑖 ← tx𝑖 .T.𝑣

else

𝑟𝑖 ← PBSR.Unblind(pkS,R, 𝜌𝑖 , 𝑟 ′′𝑖 )
𝑣𝑖 ← 0

stmt := ({N𝑖 }𝑛𝑖=1, cred.un, 𝑣)
wit := ({𝑟𝑖 , 𝑣𝑖 }𝑛𝑖=1 )
𝜋 ← NIZK[LPayout ] .Prove(stmt,wit)
send(𝜋, {N𝑖 }𝑛𝑖=1, cred.un, 𝑣)

Figure 3: The PrePaMS Construction.

to unblind the signature with PBSC.Unblind and store it as part
of its secret credential cred. The validity of the credential cred is
checked by using PBSC.Verify.

On participation, the participant P provides a NIZK of a valid
credential cred that is eligible to participate in the chosen task
T. For this construction, the argument shows four properties (c.f.,
ChkQual): (1) P has not yet participated in T, (2) cred satisfies the
attributes required by T, (3) P has participated in all qualifier of T,
(4) P has not yet participated in any disqualifier of T. In our concrete
instantiation, we decided to support range (from lower 𝑙 to upper
𝑢) and set constraints (in 𝑉 ), such that attributes attr satisfy a set
of constr defined as:

Satisfy(attr, constr) =∧
𝑐𝑖 ∈constr

{
attr𝑗 ∈ [𝑙, 𝑢] if (𝑙, 𝑢, 𝑗) ← 𝑐𝑖

attr𝑗 ∈ 𝑉 if (𝑉 , 𝑗) ← 𝑐𝑖

To track previous participations, we utilize a verifiable random
function VRF to derive a participation tag 𝜏 for the label of a task,
while allowing a participant to prove the correctness of the tag via
the service’s signature on the VRF seed. This combination of anony-
mous credentials and verifiable random functions was previously
proposed by Hohenberger et al. [22] in their ANONIZE scheme.

Similar to ANONIZE, a participant re-randomizes their signature
and then provides a zero knowledge proof that the participation
tag 𝜏 corresponding to the task T is computed correctly. Verifying
that the participant has not yet participated in T is as simple as a
lookup that the tag 𝜏 is not part of any reward transaction in BB.

While ANONIZE only allows participation predicates based on
attributes of the credential, we additionally enable qualifiers and
disqualifiers based on previous participations by computing the
relevant tags for all qualifiers and disqualifiers. To not link this
participation to any previous or future participations that include
these tags, we construct further NIZKs to satisfy the qualifiers,
disqualifiers and attribute constraints without revealing the corre-
sponding tags and attributes. For a qualifier we derive the respective
tag under the required task and show that it is derived using the
same seed as 𝜏 and that there exists a reward transaction in BB that
stored this tag. Essentially, providing a ring-signature on the set
of referenced tags for this task. For disqualifiers, a random, secret
value is picked that is used to randomize the set of referenced tags
of the disqualifying task in BB. We use a homomorphic randomiza-
tion and show the correctness of the randomization in the NIZK.
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The participant then computes their own tag for the disqualifying
task, again showing that the same secret key is used, and applies
the same randomization as for the set of disqualifying tags. The
randomized set and the participant’s own tag is then included in
the argument to allow a verifier to check that it is not included,
without linking a future participation in the disqualifying task to
the current participation. For an attribute constraint, we prove that
an intermediate blinding commitment holds the same attributes as
the signed credential and then use a range or set membership bul-
letproof to show that a given attribute satisfies the constraint. The
NIZK shows knowledge of a valid credential being used to gener-
ate a valid participation and shows fulfillment of all preconditions:
LParticipate :=


(
pkS,BB, T, 𝜏, 𝑟

′) | ∃(cred,N , 𝜌) :
𝑟 ′ = PBS.Blind((N , cred.un), 𝜌) ∧ ChkCred(cred, pkS) = 1
∧ ChkPart(cred, (𝑇, ·, 𝜏)) = 1 ∧ ChkQual(cred,BB, T) = 1


To be able to later claim a reward, the participant derives a nullifier
N and a blinding factor 𝜌 for this participation based on their secret
key cred.sk and the task T. The participant uses PBSR to blind N
and un to 𝑟 ′ and sends the blinded coin 𝑟 ′ together with their partic-
ipation tag 𝜏 and a NIZK of LParticipate to the organizer of this task.
The organizer then verifies the argument NIZK[LLParticipate ] .Verify
and if successful signs the coin of reward 𝑣 using the service’s secret
key skS. In the implementation, we provide organizers access to the
service signing key through an API which also keeps track of billing
the organizers. The reward transaction tx includes the participation
tag 𝜏 , the signed coin 𝑟 , and the task T (i.e., tx := (T, 𝑟 , 𝜏)).

After participating in one or more tasks, a participant can re-
quest a payout of earned rewards using ΠPayout. In this process,
the participant has to disclose their identity un to receive payment
outside the system. Anonymous payouts would make the balance
property invalid, as rewards could be shared between participants.
In order to not link their identity to previous participations, the
reward transactions in BB that the participant wants to spend are
kept private. A NIZK of LPayout proves knowledge of correct nul-
lifiers N𝑖 and identity un for the coins 𝑟𝑖 of reward transactions
tx𝑖 , with rewards 𝑣𝑖 that sum up to greater or equal to the payout
amount 𝑣 . This is required because a unique reward value could
otherwise be used to link participations to payouts. The identity
un has to be the same in all coins and equal to the payout recipient.
To also keep the number of transactions that are spent private, the
participant is expected to pad the spent coins with up to 𝑛 fake
coins 𝑟1, . . . , 𝑟𝑛 with a fixed reward of zero, a random nullifier N𝑖
and their identity un. The participant generates the new coins 𝑟 ′𝑖 ,
blinds them, and sends them to the service along with a proof 𝜋 ′𝑖 of
LPBSR to show they have zero value. The service verifies the proofs
𝜋 ′𝑖 , signs these coins with PBSR.Sign, and sends them back. The
padding is necessary because the proof size |𝜋 | is proportional to
the number of rewards paid out. If the participant wants to use less
than 𝑛 inputs, the remaining inputs are from the padded coins.

To prevent users from getting one reward paid out multiple
times, the nullifier N is published to the service. The deterministic
nullifier is detectable if the same coin is used twice. Again, showing

§ CLIENT
(Vue.js SPA)

 SERVICE
(Node.js + Express)

⋔ SHARED LIBRARY
(Rust + bls12-381  WebAssembly)

uses uses

HTTP-based API
(potentially via Tor)

Figure 4: Graphical overview of the prototype architecture.

the correctness of the coins is performed with a NIZK. LPayout :={ (
{N𝑖 }𝑛𝑖=1, un, 𝑣

)
| ∃({(𝑟𝑖 , 𝑣𝑖 )}𝑛𝑖=1) :

∀𝑖 ∈ [𝑛] : PBSR.Verify(pkS, (N𝑖 , un), 𝑣𝑖 , 𝑟𝑖 ) = 1 ∧∑𝑛
𝑖=1 𝑣𝑖 ≥ 𝑣

}
The service verifies the argument of knowledge 𝜋 and checks that
none of the nullifier have been recorded before in NUL and all
identites match. Finally, it issues the payment outside of the system
and adds the new nullifiers N to the database NUL← NUL ∪ N .
The detailed constructions for the NIZKs are presented in Section D.
The analysis of security and privacy properties of the construction
is presented in Section D.3.

5 Prototype

After showing that our scheme is cryptographically secure, we
demonstrate the practicality of our approachwith a proof of concept
implementation. Our motivation for this prototype is to provide a
realistic deployment for the use case of managing psychological
study participations at a university, as introduced in Section 2.
Hence, we implemented our PrePaMS system using modern web
technologies (see Figure 5) to enable usage by participants on a
variety of devices including mobile devices without the need to
install a native application.

5.1 Implementation

Although modern browsers natively support some high-level cryp-
tographic operations using the Web Cryptography API [43], this
is insufficient for pairing-based cryptography or zero-knowledge
proofs. While this cryptography could be implemented purely in
JavaScript, we opted to implement the cryptographic components of
our PrePaMS scheme in Rust and compile it to WebAssembly. This
results in better performance and type safety, in contrast to a pure
JavaScript implementation, additionally following the paradigm
of a small auditable cryptography core. We chose the BLS12-381
pairing-friendly elliptic curve that is, for example, used by the
privacy-focused cryptocurrency Zcash with an estimated security
level of 123 Bit [42]. The main client-side application is imple-
mented as a single page application using the Vue.js framework,
and the service application is built with Node.js and the Express
web application framework. This allows client and service to share
the same WebAssembly library for cryptographic operations. The
prototype architecture is shown in Figure 4.

For the proof of concept, we implemented a basic authentica-
tion system that accepts any username that is not yet registered.
In a production deployment, this is meant to be replaced by an
institutional authentication provider (e.g., through OAuth, SAML).
Using the Fixed Participant State (Theorem 3.5), we can derive the
secret keys from a user’s password, which is never shared with
the service. This allows users to reconstruct any private local state
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when switching devices without the need to store sensitive user
state in a central database (e.g., the service).

In online-only studies, such as web-based surveys, the messages
of the ΠParticipate protocol are easily submitted directly from the
browser to the organizer-managed survey system. However, in-
person studies enable more complex setups and human interaction
with the participant. For this, we allow participation requests to
be uploaded to the service in encrypted form. The corresponding
secret to open the encrypted participation is then given to the
organizer out of band (e.g., presenting a QR code during an offline
lab experiment, c.f.,, Figure 5).

After the initial registration, participants are not required to
have an authenticated session with the service. Instead, the blindly-
signed VRF secret key is used as an anonymous credential to au-
thenticate participations and payouts. This theoretically achieves
the desired privacy guarantees. However, in practice, the service
may use side channel information to obtain additional information
about the participants. To not disclose the specific studies a partici-
pant is interested in, we use the private information retrieval [14]
pattern when accessing study details by requesting all public data
or a random subset from the service. Metadata, such as the client IP
address of users interacting with the system, is accumulated by the
service operator and potentially used to de-anonymize participants.
As addressed in Section 3, this is mitigated by utilizing anonymous
communication technologies such as Tor.

Even though all private state of users is recoverable from public
information, a local cache is beneficial for performance reasons.
This sensitive user state is only stored by the user’s browser and
not shared with the service. To further protect the state, it is lo-
cally encrypted with the user’s password. If a user is inactive for
some time, the unencrypted state is discarded, and the user will be
prompted for their password. This is particularly useful when users
access the service from shared devices, such as a computer lab on
campus, and may forget to log out afterward.

During registration, a recovery QR code is generated, allowing
users to restore their account in case they forget their password.
In the future, the authentication and recovery process could be
further improved using Web Authentication Credentials [24], also
commonly known as Passkeys. This API enables credential gen-
eration and synchronization based on established authentication
patterns, such as a device’s biometric capabilities. At the time of
writing, the API does not allow the export of key material for se-
curity reasons and can not be used to derive suitable key material
for PrePaMS. But, for example, the proposed pseudo-random func-
tion extension [24, § 10.1.4.], could potentially be used to derive
PrePaMS credentials.

In our prototype, the service also provides a partially trusted
bulletin board with append-only semantics. In practice, the service
could be operated by an institution’s accounting department or
comparable entity. Alternatively, an append-only transparency log
system, similar to certificate transparency [27], can strengthen
these guarantees.

In total, we implemented the PrePaMS client in 2356 lines of
JavaScript code, the service in 569 lines of JavaScript code, perform-
ing little business logic but mostly storing and serving data, and
the shared crypto library in 4240 lines of Rust code. Client-side
entities and the service backend are decoupled and interact via an

HTTP-based API. The prototype implementation of PrePaMS is
available under an open-source license1. Additionally, we deployed
a live test instance that is publicly available2.

5.2 Performance Evaluation

With our performance evaluation, we assess twomain aspects of our
scheme and the associated proof of concept implementation: (i) the
computational impact of prerequisite complexity on performance
and (ii) processing times when users interact with the system under
realistic conditions. For the first aspect, we conducted a set of
microbenchmarks to explore the influence of each parameter on the
performance of the protocols. The results of thesemicrobenchmarks
matched the expectations based on the amount of curve operations
(c.f., Section E). For the second aspect, we run benchmarks within
an actual browser using a WebAssembly compilation of our library.

We have released all evaluation artifacts3 under an open-source
license, following the Popper convention [23] for reproducibility.
This features an automated, docker-based setup that executes the
experiments in a remote-controlled headless browser using Pup-
peteer4. The evaluation was conducted on a desktop computer with
an Intel Core i7-7700 (quad-core with SMT; 3.60 GHz) CPU and
32 GB RAM, running Ubuntu 22.04 LTS (GNU/Linux 5.4.0) with a
headless Chrome 108. Additionally, we included a semi-automated
build of the evaluation5 to be used on any device featuring a mod-
ern browser. We used this artifact to evaluate the performance on
different end-user devices, more precisely, an Android smartphone
(Pixel 6 w/ Android 14 and Chrome 121) and an Apple tablet (3rd
Gen iPad Pro 11” w/ iPadOS 17.2 and Safari 172).

To put our system under load, we created a parametric work-
load generator. The generator outputs a chronological sequence of
valid interactions with the system (i.e., registrations, participations,
payouts) that can be replayed for reproducible evaluation runs. We
defined suitable defaults and ranges for each parameter (i.e., distri-
butions for each condition type) based on previous joint projects
with psychology researchers to develop well-grounded workloads.
The replay phase is preceded by an initialization phase to bootstrap
a set amount of studies with randomized preconditions.

5.2.1 Computational Impact of Prerequisite Complexity. In this
evaluation, we wanted to assess the usage of varying amounts of
different prerequisites in studies. We wanted to check whether the
computational costs are reasonable enough to put our approach
into practice.
Workload.We generated a corresponding series of workloads for
each type of prerequisite (i.e., qualifier, disqualifier, attribute range
constraint, set constraint). Each series contains a single study with
a progressive increase in prerequisites, reaching a maximum of
10 per type. For qualifier and disqualifier workloads, we created
additional studies necessary to reflect the dependencies of the target
study. 𝑁 = 100 random participants that satisfy the specified range
and set constraints are created. If necessary, every participant first
participates in all 𝑛 qualifiers, or a set of 𝑛 dummy participants
participates in all 𝑛 disqualifiers. Every participant then participates
in the target study, recording the time it takes for the operation.

3
Evaluation artifacts: https://github.com/vs-uulm/prepams/pets25.1/main/evaluation

4https://github.com/puppeteer/puppeteer
5
Browser benchmark suite: https://vs-uulm.github.io/prepams/eval/
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Figure 5: The system shows an overview of active studies, where a participant may participate in, and an overview of the

participant’s wallet with the option to request a payout of previously earned rewards. When participating in an offline study,

the participant has to bring along the participation QR code, which can be scanned by the study organizer to confirm the

participation and transfer the rewards without gaining additional information about the participant. For web-based studies, the

participation data is directly sent to the organizer’s survey system using an HTTP POST request. A public demo deployment is

available
2
to interactively explore the prototype.

Before execution of the workload, a set of 50 additional partic-
ipants follow the same steps—as warm-up and to fill the bulletin
board. Any measurements of this warm-up phase are discarded.
Results. The results (see Figure 6) indicate a mostly linear scaling
with an increasing number of (dis-)qualifiers with an exponential
offset in irregular intervals.

𝑞

𝑑

𝑟

𝑠

0.0s

10.0s

20.0s

30.0s

0 1 2 3 4 5 6 7 8 9

ΠParticipate

Figure 6: Plot of measured median execution times in sec-

onds of the participation protocol based on a synthetic work-

load with either qualifier (×, 𝑞), disqualifier (+, 𝑑), range con-
straints (⋄, 𝑟 ), or set constraints (▽, 𝑠) varied from 𝑛 ∈ [0..10]
and all other parameters pinned to 0.

Discussion. This step-wise increase in computation time can be ac-
counted for by the vector width of the inner product proof being
padded to the next power of two. Each prerequisite type requires
a different amount of group elements to be encoded in the inner
product proof, yielding a different scaling behavior. Quantitative
empirical studies require a minimum sample size to achieve sta-
tistically significant results. However, combining numerous pre-
requisites can make it difficult to recruit enough participants and
thus impossible to achieve these sample sizes. For this reason, the
number of prerequisites for psychological studies is usually in the
lower single-digit range, which is also the cardinality our evalua-
tion is grounded on. The results indicate that the scheme is also
applicable for studies with non-trivial requirements that include
multiple prerequisites.

5.2.2 Performance of User Operations under Realistic Conditions. In
the second evaluation, we assessed the performance to be expected
when users interact with our system. More precisely, we measured
the execution times of three crucial operations (i.e., register, partic-
ipate, and payout) based on actual user devices.

Workload.We synthesized a workload that matches our running ex-
ample based on an analysis of real studies and their typical require-
ments. We limited the number of preconditions, i.e., (dis-)qualifier
and attribute constraints, for a given study to at most 10 per type.

For the evaluation, we generated a workload with 𝑁 = 1, 000 par-
ticipants,𝑀 = 1, 000 participations, and𝑂 = 100 payout operations.
Before execution, an additional set of 𝑁 = 200 participants are
registered and perform𝑀 = 200 participations and 𝑂 = 20 payouts
to fill the bulletin board and as a warm-up. Again, all warm-up
measurements are discarded.

The resulting measurements provide an indication of the real-
world performance of our scheme. In addition, other parameters can
be easily explored with the open-source prototype and automated
parametrized evaluation workflow.
Results. The execution times of the register, participate, and payout
procedures are depicted in Figure 7. All participant measurements
were executed separately using three different types of end-user
devices (i.e.,§ desktop, " tablet, and  smartphone).

Across devices the mean execution time of the registration pro-
cedure was 71.5𝑚𝑠 (𝜎 = 28.6𝑚𝑠). The cost of the participation
procedures highly depends on the number of prerequisites of the
respective study. For our workload, this resulted in a mean partic-
ipation time of 624.0𝑚𝑠 (𝜎 = 529.0𝑚𝑠) with a mean proof size of
7.1𝑘𝐵 (𝜎 = 2.6𝑘𝐵). The execution time of the payout protocol is con-
stant, depending only on the fixed number of maximum inputs, in
our case, 10 study rewards. This resulted in a mean execution time
of 8.4𝑠 (𝜎 = 5.2𝑠) with a mean payload size of 18.8𝑘𝐵 (𝜎 = 4.1𝐵).

The average execution times on the service side for registration
was 48.1𝑚𝑠 (𝜎 = 4.25𝑚𝑠), rewards issuance took an average of
26.0𝑚𝑠 (𝜎 = 2.84𝑚𝑠), and payout validation was performed in 1.4𝑠
(𝜎 = 61.3𝑚𝑠) on average.
Discussion. The results indicate that the registration and most par-
ticipation procedures are in the range of the typically accepted
application response times of 100𝑚𝑠 to 1𝑠 [34]. Depending on the
number of prerequisites some participation proofs may take up to
4.1𝑠 to compute. However, we argue that this is still very acceptable
in practice because the time-consuming procedures are limited to
less frequent user interactions. The payout operation shows the
highest execution times due to its costly NIZK. Nevertheless, it is
the least frequently issued operation in the system (e.g., once in
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Figure 7: Combined violin/jitter plots of measured execution

times (in seconds) of our PrePaMS proof of concept imple-

mentation based on a synthetic workload with 𝑁 = 1, 000
participants, 𝑀 = 1, 000 participations, and 𝑂 = 100 payouts.

The individual protocols are segmented by the role of the

executing party (P: Participant, O: Organizer, S Service) and

partially replicated across different device types (i.e.,§ desk-

top, " tablet, and  smartphone).

a lifetime for a student account when claiming credits for subject
hours), which makes an average of 14.8 seconds on smartphones
a justifiable time. Additionally, progress bars are displayed dur-
ing the expensive operations to indicate progress and bridge the
waiting time. The execution time of the participation procedures
scales with the amount of referenced (dis-)qualifiers. However, this
is inherently bounded by the lifespan of a study.

The execution time of the service side is generally faster than
the client-side. Participations, as the most commonly invoked op-
eration, take only 26.0𝑚𝑠 (𝜎 = 2.84𝑚𝑠), which would enable 38.46
requests per second to the service with a single thread. Depending
on the amount of users active in the systems, a multi-core CPU can
be leveraged to process multiple participations simultaneously. In
terms of our running example, this should allow a moderately sized
university to offer this service to all students with a single server
using commodity hardware.

5.3 Prototype Limitations

While our PrePaMS system enables privacy-enhanced participation
management with rewards, we are aware of the following technical
limitations of our web-based prototype.

Web applications have the benefit of being easily accessible with-
out any prior installation and are supported in a wide variety of
devices. However, they introduce additional attack vectors that
local applications are not susceptible to. The client-side applica-
tion logic— including critical code of cryptographic protocols— is
fetched from the platform provider. Although transport layer secu-
rity prevents other parties from modifying this code, this layer of

protection does not prevent a rogue service provider from including
a backdoor in the client-side code. Theoretically, the client appli-
cation can be hosted separately from the service, allowing it to be
hosted by a somewhat trusted external party. For example, a public
GitHub repository with a continuous deployment on GitHub pages
could mitigate some attacks. WAIT [31] showcases an alternative
approach to verify web applications against a public transparency
log, similar to certificate transparency [27]. Applying such an ap-
proach could mitigate more targeted attacks and enable detection
of attacks by the platform provider.

As noted before, a service provider can also use available meta-
data, such as the client IP address of users, to potentially track
and de-anonymize participants. When a participant is accessing
the service via the institution’s own network infrastructure, this
metadata may already link the participant’s identity (e.g., WiFi net-
work with RADIUS-based authentication). This can be addressed
using anonymous communication technologies, such as Tor. In
certain circumstances, trusting a network operator might also be
enough, especially when legal regulations like GDPR mandate data
protection compliance.

6 Related Work

ANONIZE [22] is an anonymous survey system where a survey
organizer can invite a set of participants to a survey based on their
identity. Participation in a survey does not reveal their identity,
and only permitted participants are accepted. PrePaMS builds on
the combination of partially blind signatures and verifiable ran-
dom functions used in ANONIZE and extends it with support
for a privacy-preserving reward procedure and dynamic prerequi-
sites/exclusion criteria dependent on previous participations.

ZebraLancer [29] and zkCrowd [48] are anonymous crowd-sens-
ing systems utilizing smart contracts on a blockchain to exchange
crowd-sourced data with rewards. These works are motivated by
similar requirements as PrePaMS, i.e., to survey data in exchange
for rewards. However, both systems only focus on rewards and do
not support prerequisites and exclusion criteria of other surveys.

BLAC [39], EPID [9], PEREA [40], and FAUST [28] are anony-
mous credential schemes with blocklists where access to a service
can be revoked for misbehaving users while maintaining privacy.
PE(AR)2 [47], BLACR [3], PERM [2], EXBLACR [41], [32], and [15]
extend the binary exclusion of the previous systems by a reputation-
based scoring where only users with score greater than a defined
threshold gain access to the service. DAC [18] and DBLACR [46] ex-
tend this with a decentralized registration. FARB [44] andArbra [45]
are centralized systems which allowmore complex thresholds based
on scores in different categories. Although these systems may be
adapted to support dependencies on previous participations, they
do not support the exclusion criteria supported by PrePaMS.

CLARC [7] was built for reviewing services after a verified pur-
chase. It is based on anonymous credentials, which include signed
attributes. Users can prove to service providers which attributes
they hold (or a complex combination), allowing for flexible access
control structures. The user gets a single-show token to rate the
service if used correctly. Any double use to sway the opinion will
make the reviews linkable through the equal token.
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Untraceable Payments by David Chaum [12] introduced a pay-
ment scheme, also based on blind signatures, in which a central
bank issues and accepts electronic coins. Users can receive coins and
transfer them to merchants, who can then withdraw received coins
from the bank without the bank learning the previous owner’s iden-
tity. The bank can check for double-spending during withdrawal by
comparing the coin to a list of spent coins. Electronic cash [13] and
follow-up works [6, 11] introduced offline double-spending pro-
tection, where a merchant can accept payments without involving
the bank. The scheme guarantees that this payment will either be
honored by the bank or that the identity of the double spender will
be revealed. This does not fit well with our participation protocol
because the roles are reversed. Suppose an organizer double-spends
a coin to two participants. In that case, the later payout operation
will reveal the identity of the double-spender (i.e., the other par-
ticipant or the organizer) and hence reveal the link between the
participant and the study, which violates our privacy properties.

In summary, we acknowledge that there are multiple previous
contributions solving adjacent or generalized problems, but all
miss some functionality or trade performance for generality un-
necessesary for our requirements. Our PrePaMS construction took
inspiration from many of them.

7 Conclusion

In this paper, we have introduced PrePaMS, a privacy-preserving
participation management system that also takes rewarding into
account. We derived the requirements and features of such a system
based on an analysis of existing systems as well as the involved par-
ties, their motivations, and potential attackers. It supports analog
and digital studies with single participations or follow up studies
with pseudonymous participants. We then specified correctness,
security, and anonymity properties for PrePaMS. Furthermore, we
proposed a concrete instantiation of our PrePaMS scheme using
the partially blind signature scheme by [22] and an anonymous pay-
ment system, which provably provides the security and anonymity
properties of our formalization.

We implemented a proof-of-concept prototype1 of PrePaMS
and deployed a publicly available demo installation2. In our tech-
nical evaluation, we measured the performance impact of process-
ing overhead and cryptographic operations and showed that the
PrePaMS instantiation provides reasonable performance results.

We consider the current PrePaMS implementation a core build-
ing block for privacy-preserving participation management sys-
tems that could be extended and adapted for specific use cases.
The credential management process can be simplified using pro-
posed extensions of theWebAuthentication API [24], utilizing FIDO
Passkeys or other already available hardware authentication tokens.
For instance, smart cards are widely available in many relevant sce-
narios— e.g., student identity cards at universities or employee
identity cards in companies— and could be further incorporated
into the system design as a source of key material.

PrePaMS only protects the participation privacy, but it does
not take into account the actual study and the corresponding sub-
ject data (e.g., survey responses in an online study). Orthogonal
solutions exist that target privacy-enhanced processes for data col-
lection and analysis in empirical research, e.g., by extending the

methodological practice of pre-registered studies with trusted com-
puting concepts [30] or by enabling statistical analyses without
revealing participant data to researchers using secure multiparty
computation [26]. Integrating PrePaMS for participation manage-
ment with a privacy-enhancing study platform facilitates the devel-
opment of a comprehensive privacy-preserving study management
system that covers the entire process of conducting quantitative em-
pirical research studies while rewarding participants and upholding
complete data privacy.
Outlook. One drawback of the presented implementation is that
participants have to trust the organizer to pay after legitimate par-
ticipation. Participants may contact the service provider and use
the transcript of the interaction with an organizer to dispute the
transaction, which harms their privacy. Contingent payments [33],
where an organizer has to commit the transaction before retriev-
ing the full response of a participant, could address this issue. For
example, a two-phase protocol where a participant first commits a
chunked encryption of their response, followed by opening a single
uniformly random chunk to show the validity of their submission.
If the decryption looks good, they proceed with the financial ex-
change so that spending the reward reveals the encryption keys
to the organizer. However, this approach only works for online
submissions and not necessarily for offline lab experiments. Never-
theless, here, a participant still has the option to not leave without
a signature on the reward transaction.

Overall, PrePaMS contributes to making the scientific process
more privacy friendly while maintaining all features and properties
that scientists and study participants are used to in today’s practice.
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Table 2: Variable names and usage.

un participant identifier
pkS service public key
attr attributes of a participant, e.g. age
cred anonymous credential
tx reward transaction
BB bulletin board, list of tx
T task from domain T
nul reward nullifier
N set of nullifiers
𝛿 set of qualifiers
𝛿 set of disqualifiers
𝔘 set of users managed by the oracles
𝔗 bookkeeping of amount held by adversary
aux channel for interactive adversary
UN set of service registered usernames

[47] Kin Ying Yu, Tsz Hon Yuen, Sherman S. M. Chow, Siu Ming Yiu, and Lucas C. K.
Hui. 2012. PE(AR)2: Privacy-Enhanced Anonymous Authentication with Repu-
tation and Revocation. In Computer Security – ESORICS 2012, Sara Foresti, Moti
Yung, and Fabio Martinelli (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
679–696. https://doi.org/10.1007/978-3-642-33167-1_39

[48] Saide Zhu, Zhipeng Cai, Huafu Hu, Yingshu Li, and Wei Li. 2020. zkCrowd:
A Hybrid Blockchain-Based Crowdsourcing Platform. IEEE Transactions on

Industrial Informatics 16, 6 (2020), 4196–4205. https://doi.org/10.1109/TII.2019.
2941735

A Notation

In the following, we present a concrete group-level instantiation
of our scheme components. Let 𝔾 and 𝔾2 be paring-friendly cyclic
groups of prime order 𝑞 with generators 𝑔, 𝑔2 where the discrete log
assumption holds. Let 𝔾𝑇 be a cyclic group of prime order 𝑞 with
an efficient bilinear non-degenerate mapping 𝑒 : 𝔾 × 𝔾2 → 𝔾𝑇 ,
with generator 𝑔𝑇 := 𝑒 (𝑔,𝑔2). For our construction Setup produces
a description of a Barreto, Lynn, Scott curve[4]. We follow the
common multiplicative notation for group operations (e.g., 𝑥,𝑦 ∈
𝔾 : 𝑥 · 𝑦 and 𝑎 ∈ Z𝑞, 𝑥 ∈ 𝔾 : 𝑥𝑎). Let ⟨®𝑎, ®𝑏⟩ = ∑𝑛

𝑖=1 𝑎𝑖 · 𝑏𝑖 denote
the inner product of two vectors 𝑎, 𝑏 ∈ Z𝑛𝑞 . For a vector of group
elements ®𝑥 and a vector of scalars ®𝑥 we denote the element wise
exponentiation as ®𝑎◦®𝑥 = (𝑎𝑥1

1 , 𝑎
𝑥2
2 , . . . , 𝑎

𝑥𝑛
𝑛 ). The sum of all elements

of a vector is abbreviated as
∑ ®𝑎 =

∑
𝑎∈ ®𝑎 𝑎, analogously the product

of all elements of a vector is denoted as
∏ ®𝑎.

There exists a cryptographic hash function id : T → Z𝑞 that
maps tasks to a unqiue scalar. We also refer to the output of this
function as the identifier of a study. Further, there exist crypto-
graphic hash functions 𝐻1 : X → Z𝑞 , 𝐻2 : X → RPBS that map
arbitraty length inputs X to scalars in the respective domains.

Table 2 provides an overview of variables used in our formaliza-
tion and construction.

B Model Validation

To show that our formalization captures the rewarding and privacy
properties of existing systems, we show that log sheets and stickers
are partial instantiations of our model. These two decentralized
systems are the only interesting, as the ones with a central database
simply rely on a trusted server.

The log sheet system relies on unforgeable and unclonable (man-
ual) signatures and uses the following construction:
Setup(1𝜆,𝑚, 𝑛) → p: Create a sheet design with space for 𝑚 at-
tributes and 𝑛 lines for signatures. This is p
KeyGenS () → (skS, pkS): Create an unforgeable signature (skS)
and publish how it looks like (pkS).
ΠRegister⟨P(un, attr), S(skS)⟩ → (cred, un): The participant identi-
fies themselves (un) and receive a log sheet (cred) from the service
with with their attributes attr filled in and signed with skS. The
service keeps track of the identity.
ΠParticipate⟨P(cred,BB, T), S(skS)⟩ → tx: The participant shows the
log sheet cred to the organizer who uses the previous signatures on
cred to check the qualifications and upon successful participation
of T signs the sheet too (tx is a line on the sheet).
ΠPayout⟨P(cred, un,BB, 𝑣, {tx𝑖 }𝑘𝑖=1), S()⟩ → ({N𝑖 }𝑛𝑖=1, 𝑣, un): The
participant hands the log sheet cred over to the service, who
keeps it and pays out the amount signed by each organizer.
Receive(cred,BB,NUL) → (𝑠, 𝑅): Add all plaintext rewards with
signatures on the log sheet.
ChkCred(cred, pkS) → {0, 1}: The sheet is authentic and has at-
tributes signed with pkS.
ChkPart(cred, tx) → {0, 1}: Check if the log sheet cred has the
signature for tx on it.
ChkQual(cred,BB, T) → {0, 1}: Check for previous participations
based on signatures on the log sheet.
The log sheet only fulfills the PartSec and Balance property, but

obviously not the PartPriv. With unforgeable signatures, PartSec
holds, because the organizers check the qualifications in plaintext
and the participation for a given study requires a signature from
the organizer. Similarly, to break the balance property, signatures
need to be transferred between sheets, which physically cannot be
done without cloning.

Complementary, the sticker based solution ismore privacy friendly.
It assumes unclonable, indistinguishable stickers and fits to our
model as follows with an empty Setup:
KeyGenS () → (skS, pkS): Create an unforgeable sticker design (skS)
and publish how it looks like (pkS).
ΠRegister⟨P(un, attr), S(skS)⟩ → (cred, un): The participant identi-
fies themselves (un) and receive an empty booklet (cred) from the
service.
ΠParticipate⟨P(cred,BB, T), S(skS)⟩ → tx: Upon successful participa-
tion of T, the participant gets a sticker (tx).
ΠPayout⟨P(cred, un,BB, 𝑣, {tx𝑖 }𝑘𝑖=1), S()⟩ → ({N𝑖 }𝑛𝑖=1, 𝑣, un): The
participant hands the booklet with a subset of their stickers over
to the service, who keeps it and pays out the number of stickers.
Receive(cred,BB,NUL) → (𝑠, 𝑅): Count the stickers in cred.
ChkCred,ChkPart and ChkQual are not possible.

Given indistinguishable stickers, the system has PartPriv. In
ΠParticipate, no information is dependent on 𝑏. With unclonable
stickers, Balance is only satisfied up to the first winning condition.
The adversary is unable to copy any sticker and get payed out more
than they earned. The second winning condition is breakable as
the adversary can move stickers between users.
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C Deferred Preliminaries

Here we present definitions of the preliminaries used in our con-
struction.

C.1 Key Derivation Function

We use a key derivation function KDF : 𝜑VRF × T → S × RPBS

which takes a secret key from 𝜑VRF and a task from T to generate
a nullifier N and a PBS blinding randomness. It consists of two
algorithms:
Setup(1𝜆) → p: takes the security parameter 1𝜆 and outputs public

parameters p.
KDF(𝑠, T) → (N , 𝜌): takes a secret 𝑠 ∈ 𝜑VRF together with a task T

and generates a nullifier N and 𝜌 , a PBS blinding randomness.
As concrete instantiation, we use cryptographic hash functions

𝐻1 and 𝐻2, set S = Z𝑞 , and calculate N := 𝐻1 (𝑠 ∥id(T)), 𝜌 :=
𝐻2 (𝑠 ∥id(T)), and output KDF(𝑠, T) := (N , 𝜌).

C.2 VRF scheme

A VRF enables generating unique, deterministic tags for a public
key and a label. It consists of the following three algorithms:
Setup(1𝜆) → p: takes the security parameter 1𝜆 and outputs public

parameters p.
KeyGen() → (sk, pk): generates a public private key pair sk, pk in

the domain 𝜑VRF × ΦVRF with a helper function Pub : 𝜑VRF →
ΦVRF to calculate the corresponding public key to a secret key.

Eval(sk, 𝑥) → 𝜏 : takes a secret key sk and a label 𝑥 ∈ T and outputs
a tag 𝜏 from the domain 𝜒VRF.
The VRF scheme must satisfy the following properties:

Correctness: A honestly generated NIZK with LVRF for a tag 𝜏
and witness sk generated by Eval is valid.

Tag Pseudorandomness: A tag 𝜏 generated by Evalmust only be
predictable for the party knowing the secret key sk and looks
uniformly random to everyone else.

Tag Uniqueness: For a given secret key sk and label 𝑥 , there must
exist one unique, valid tag 𝜏
The detailed definitions of these properties together with a con-

struction is presented in [16] which is summarized as:
Setup(1𝜆): returns (𝑔,𝔾, 𝑞).
KeyGen() → (sk, pk): chooses sk ∈ Z𝑞 , outputs sk, pk := 𝑔sk.

Eval(sk, 𝑥) → 𝜏 : computes and outputs 𝜏 := 𝑔
1

sk+id(𝑥 ) .
In addition, we require an efficient NIZK for the correct evalu-

ation. I.e., the relation LVRF ((pk, 𝜏, 𝑥)∃(sk) : pk = Pub(sk) ∧ 𝜏 =

Eval(sk, 𝑥)). A concrete instantiation of LVRF is adapted from [22].
The prover first picks a random blinding 𝑏 $← Z𝑞 and commits on
𝐸 ← 𝑒 (𝑔, 𝜏)𝑏 . The commitment is sent to the verifier, who then
replies with a challenge 𝑐 $← Z𝑞 . The response is computed as
𝑧 ← 𝑏 + 𝑐 · sk and sent to the verifier. Then the verifier verifies the
proof by checking: 𝐸 · 𝑒 (𝑔,𝑔2)𝑐 · 𝑒 (𝑔, 𝜏)−𝑐𝑥 = 𝑒 (𝑔2, 𝜏)𝑧

C.3 PBS scheme

To issue anonymous credentials with signer defined attributes and
use them in a multi-show unlinkable way, we need a partially blind
signature scheme. This hybrid of a regular digital signature and a
blind signature, splits the message in a part that is visible to the

signer and one that is hidden from the signer. We mostly follow the
ANONIZE [22] definition using six probabilistic polynomial time
algorithms, but generalize the signature to allow more than one
hidden message, and more than one visible message:

PBS = (Setup,KeyGen,Blind, Sign,Verify,Unblind):
Setup(1𝜆,𝑚, 𝑛) → p: takes a security parameter 1𝜆 , the number

of hidden messages 𝑛, the number of visible messages𝑚, and
returns public parameters p.

KeyGen() → (sk, pk): generates a public private key pair to sign
credentials (sk, pk) ∈ 𝜑PBS × ΦPBS.

Blind(𝑆, 𝜌) → 𝛼 : takes hidden message parts 𝑆 ∈ R𝑛PBS and a blind-
ing factor 𝜌 ∈ RPBS, and returns a blinded message 𝛼

Sign(sk, 𝛼, 𝑀) → 𝜎 ′: takes a secret key sk, a blinded message 𝛼 ,
and the public message parts𝑀 ∈ R𝑚PBS and outputs a signature
𝜎 ′.

Unblind(𝜌, 𝜎 ′) → 𝜎 : takes the blinding factor 𝜌 and the blinded
signature 𝜎 ′ and outputs the unblinded version 𝜎 .

Verify(pk, 𝑆, 𝑀, 𝜎) → {0, 1}: takes the public key pk, the secret and
public message parts 𝑆 ,𝑀 , and a signature 𝜎 on it, and outputs
1 if the signature is valid and 0 otherwise.
A PBS scheme satisfies the following three properties:

Correctness: Every honestly blinded, signed, and unblinded sig-
nature verifies.

Partial Blindness: For multiple signatures that use the same pub-
lic message part, a signer cannot link these signatures to the
respective signing sessions.

Unforgeability: An adversary that interacts at most 𝑙 times with
the signer cannot produce more than 𝑙 valid message-signature
pairs.
We utilize the efficient pairing-based partially blind signature

scheme by Hohenberger et al. [22]. We generalized their scheme,
to allow for a fixed set of public and private messages.
Setup(1𝜆,𝑚, 𝑛) → p: sample random group generators ®𝑈 ∈ 𝔾𝑚 ,
®𝑉 ∈ 𝔾𝑛 , ℎ,𝑔 ∈ 𝔾, 𝑔2 ∈ 𝔾2, outputs ( ®𝑈 , ®𝑉 ,ℎ,𝑔, 𝑔2) and sets the
randomness space RPBS := Z𝑞 .

KeyGen(): choose a secret sk ∈ Z𝑞 , compute pk← 𝑒 (𝑔,𝑔2)sk, and
output (sk, pk).

Blind( ®𝑆, 𝜌): compute 𝛼 ←∏ ®𝑉 ◦ ®𝑆 · 𝑔𝜌 and output 𝛼 .
Sign(sk, 𝛼, 𝑀): choose random 𝑤 ∈ Z𝑞 , compute 𝜎1 ← 𝑔sk (𝛼 · ℎ ·∏ ®𝑈 ◦ ®𝑀 )𝑤 , 𝜎2 ← 𝑔𝑤 , 𝜎3 ← 𝑔𝑤2 , and output (𝜎1, 𝜎2, 𝜎3).
Unblind(𝜌, (𝜎1, 𝜎2, 𝜎3)): compute and output

(
𝜎1 · 𝜎−𝜌2 , 𝜎3

)
.

Verify(pk, ®𝑆, ®𝑀, (𝜎1, 𝜎2)): check if pk · 𝑒 (∏ ®𝑉 ◦ ®𝑆 ·∏ ®𝑈 ◦ ®𝑀 · ℎ, 𝜎2) =
𝑒 (𝜎1, 𝑔2) and output 1, 0 otherwise.
Proofs for correctness, partial blindness, and unforgeability in the

case | ®𝑉 | = | ®𝑀 | = 1 are described in [22, (Theorem 11, Thereom 10,
Theorem 12)]. Assuming the hardness of DLP in 𝔾, an instantiation
with | ®𝑉 | = 2 and | ®𝑀 | = 2 is computationally indistinguishable from
an instantiation with | ®𝑉 | = | ®𝑀 | = 1 if no discrete logarithm relation
is known between generators ®𝑉1, ®𝑉2, ®𝑀1, ®𝑀2 (c.f., hiding property of
Pedersen Commitment). Per induction this holds for | ®𝑉 | > 2 and
| ®𝑀 | > 2.

In [22], the authors also describe an efficient Schnorr-based NIZK
LPBS for a correct blinding, and a languageLVerPBS for verifying the
signature without revealing any part of the message. We adapated
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these again for a fixed set of public message parts ®𝑀 and private
messsage parts ®𝑆 :

LPBS :=
{
(𝛼) | ∃( ®𝑆, 𝜌) : 𝛼 =

∏ ®𝑉 ◦ ®𝑆 · 𝑔𝜌 }
The prover first picks blinding factors ®𝐵 $← Z𝑛𝑞 , 𝑏

$← Z𝑞 and
commits to 𝛾 ← ®𝑉 ◦ ®𝐵 · 𝑔𝑏 . The verifier receives 𝛼,𝛾 and responds
with a challenge 𝑐 $← Z𝑞 . The response is computed as:

®𝑌 ←
[
®𝐵𝑖 + 𝑐 · ®𝑆𝑖

]𝑛
𝑖=1

𝑧 ← 𝑏 + 𝑐 · 𝜌

The verifier then verifies
∏ ®𝑉 ◦ ®𝑌 · 𝑔𝑧 = 𝛼𝑐 · 𝛾 .

For the anonymous verification of a signature, we use

LVerPBS :=
{
(pk) | ∃( ®𝑆, ®𝑀,𝜎) : PBS.Verify(pk, ®𝑆, ®𝑀,𝜎) = 1

}
The prover first re-randomizes their signature 𝜎 := (𝜎1, 𝜎2) by

picking a new random 𝑑 $← Z𝑞 and computing:

𝑠1 ← 𝜎1 ·
(∏
®𝑉 ◦ ®𝑆

∏
®𝑈 ◦ ®𝑀 · ℎ

)𝑑
𝑠2 ← 𝜎2 · 𝑔𝑑2

They then picks random values ®𝐵 $← Z𝑚𝑞 and a random group
element 𝐽 $← 𝔾 and compute a commitment as:

𝐸 ← 𝑒 (𝐽 , 𝑔2) · 𝑒 (
∏ ®𝑈 ◦ ®𝐵, 𝑠2)−1

The verifier receives (𝑠2, 𝐸) and responds with a challenge 𝑐 $←
Z𝑞 . The prover computes a response:

®𝑌 ←
[
®𝐵𝑖 + 𝑐 · ®𝑀𝑖

]𝑚
𝑖=1

𝑧 ← 𝑠1
𝑐 · 𝐽

This can be verified by the verifier by checking:

𝐸 · pk𝑐 · 𝑒 (ℎ, 𝑠2)𝑐 = 𝑒 (𝑧, 𝑔2) · 𝑒 (
∏ ®𝑈 ◦ ®𝑌 , 𝑠2)−1

C.4 Non-Interactive Zero-Knowledge Proofs

We use NIZKs with the following three algorithms (Setup, Prove,
Verify) that satisfy simulation-extractable soundness and simulat-
able zero-knowledge. As a construction, we rely on the extended
bulletproofs from [25], but once there is an efficient implementation
of a more efficient proving system, we can easily upgrade to e.g.,
compressed Σ-protocols [1].

Bulletproofs[10] allow a prover to convince a verifier that the
inner product of two commited scalar vectors is equal to a value
with logarithmic communication. Lai et al. [25] further describe
an efficient outer protocol to prove knowledge of bilinear group
arithmetic relations. We use the non-pairing part of [25] which al-
lows proofs for a proving system of the following relationLLRM19 :=

®𝐾 ∈ 𝔾𝑛, {®𝑣 (
′ )
𝑖
∈ Z𝑚𝑞 , cls𝑖 ∈ {𝔪𝔲𝔩, 𝔡𝔦𝔯, 𝔰𝔲𝔪,𝔬𝔫𝔢}, 𝑐𝑖 ∈ Z𝑞}𝑜𝑖=1

∃(®𝑐𝐿, ®𝑐𝑅) ∈ (Z𝑚𝑞 × Z𝑚𝑞 ) :
∏𝑛
𝑖=1 𝐾

®𝑐𝐿,𝑖
𝑖

= 𝐼 := 𝑔0

∧
𝑖∈{1,...,𝑜 } :


⟨®𝑐𝐿, ®𝑣𝑖⟩ = 𝑐𝑖 if cls𝑖 = 𝔡𝔦𝔯

⟨®𝑐𝐿, ®𝑐𝑅 ◦ ®𝑣𝑖⟩ = 𝑐𝑖 if cls𝑖 = 𝔪𝔲𝔩

⟨®𝑐𝐿, ®𝑣𝑖⟩ + ⟨®𝑐𝑅, ®𝑣 ′𝑖 ⟩ = 𝑐𝑖 if cls𝑖 = 𝔰𝔲𝔪

⟨®𝑐𝐿 − ®𝑐𝑅 − ®1𝑚, ®𝑣𝑖⟩ = 𝑐𝑖 if cls𝑖 = 𝔬𝔫𝔢


with 𝑛 ≤𝑚 and a proof size of 5 · |Z𝑞 | + (4+ 2 · ⌈𝑙𝑜𝑔2 ( | ®𝐾 |)⌉) · |𝔾|.

The number of necessary point additions and scalar multiplications
in relation to the length of ®𝐾 is shown in Equations (1) to (4).

|p× | = − 1 + 4 | ®𝐾 | + 2 · ⌈ log2 | ®𝐾 |⌉ + 2⌈ log2 | ®𝐾 | ⌉ (1)

|p+ | = 7 + 4 | ®𝐾 | + 2 · ⌈ log2 | ®𝐾 |⌉ + 26 ·2⌈ log2 | ®𝐾 | ⌉ (2)

|v× | = 12 + 2 | ®𝐾 | + 2 · ⌈ log2 | ®𝐾 |⌉ + 2⌈ log2 | ®𝐾 | ⌉ (3)

|v+ | = 17 + 2 | ®𝐾 | + 2 · ⌈ log2 | ®𝐾 |⌉ + 21 ·2⌈ log2 | ®𝐾 | ⌉ (4)

D NIZKs for our Languages

In this section we provide a concrete construction of the languages
for the PrePaMS scheme on top of the aformentioned preliminaries.

D.1 Participation Proof

On a high-level, the participation proof requires a participant to
convince an organizer that they have a valid, signed credential
cred signed by the service’s public key pkS, provide a correct blind-
ing for a reward bound to the user’s credential, provide a correct
participation tag 𝜏 for task T (both in the tuple tx), and meet the
prerequisites for this task.

LParticipate :=

(
pkS,BB, T, 𝜏, 𝑟

′) | ∃(cred,N , 𝜌) :
𝑟 ′ = PBSR.Blind((N , cred.un), 𝜌)
∧ ChkCred(cred, pkS) = 1
∧ ChkPart(cred, tx) = 1
∧ ChkQual(cred,BB, tx.T) = 1


For an efficient proof, we split this language into three sub lan-

guages: LCheckCredTag for the anonymous credential including the
participation tag,LCheckQual for the prerequisites, andLRewardBlinding
for a correct reward blinding. These proofs are joined in an AND
composition by concatenation and verifying that the tag 𝜏 in both
statements is equal, thereby committing to the same secret key in
both parts due to tag uniqueness. A vector commitment 𝑝 to the
values of the user’s attributes and user identity is used to bind the
values used in LCheckQual to the correct values in cred proven in
LCheckCredTag and to the blinded reward request. It is blinded by a
random 𝑏𝑝

$← Z𝑞 and computed as 𝑝 ← 𝑔𝑏𝑝 ·∏ ®𝑈 ◦attr∥un.
L′Participate :=

(
pkS,BB, T, 𝜏, 𝑟

′, 𝑝
)
| ∃(cred,N , 𝜌, 𝑏𝑝 ) :(

stmt = (pkS, T, 𝜏, 𝑝),wit = (cred, 𝑏𝑝 )
)

∈ LCheckCredTag
∧
(
stmt = (BB, T, 𝜏, 𝑝),wit = (cred, 𝑏𝑝 )

)
∈ LCheckQual
∧
(
stmt = (𝑟 ′, 𝑝),wit = (cred,N , 𝜌, 𝑏𝑝 )

)
∈ LRewardBlinding


Credential and Participation Tag. Participation tags 𝜏 are derived
from the participant’s secret key cred.sk and a task T by computing
𝜏 = VRF.Eval(cred.sk, T). The correctness of the participation tag
is shown by proving that the VRF evaluates to the provided partic-
ipation tag. The validity of the anonymous credential cred.𝜎 can
be expressed as the validity of PBS.Verify. Both participation tag 𝜏
and the commitment 𝑝 are used to bind the statements of the three
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sublanguages. Thereby we formulate:
LCheckCredTag :=

(
pkS, T, 𝜏, 𝑝

)
| ∃(cred, 𝑏𝑝 ) :

𝑝 = 𝑔𝑏𝑝 ·∏ ®𝑈 ◦cred.attr∥cred.un
∧ VRF.Eval(cred.sk, T) = 𝜏
∧ PBSC.Verify(pkS, cred.sk, cred.𝜎) = 1


Concrete NIZKs for the correctness of a VRF output and the

validity of PBS signature have been given in section C. The PBSC
instantiation has a single private message part ®𝑆 = (cred.sk), which
also serves as the seed for the VRF.

L′CheckCredTag :=

(
pkS, T, 𝜏, 𝑝

)
| ∃(cred, 𝑏𝑝 ) :

𝑝 = 𝑔𝑏𝑝 ·∏ ®𝑈 ◦cred.attr∥cred.un
∧(stmt = (pkS, 𝜏, id(T)),wit = (cred.sk)) ∈ LVRF

∧
( stmt = (pkS),
wit = ((cred.sk), cred.attr∥cred.un, cred.𝜎)
(stmt,wit) ∈ LVerPBS

)


An AND-composition of both proofs can be created, by us-
ing the same blinding value for 𝑆1 in LVerPBS and for sk in LVRF.
𝜏 := 𝑔 (sk+id(T) )−1 is the participation tag of a participant with cre-
dential cred (using its secret key cred.sk) for the task Twith unique
identifier id(T). The concatenated protocol is also extended by
an additional vector pedersen commitment to bind it to the other
statements in LParticipate. This results in the following interactive
sigma-style proof. P picks 𝑑 $← Z𝑞 , 𝑎1, 𝑎2

$← Z𝑞 , ®𝐵 $← Z𝑚+1
𝑞 , and a

random group element 𝐽 $← 𝔾 and computes:

𝑠1 ← 𝜎1 · (𝑉 sk
1 ℎ

∏ ®𝑈 ◦attr∥un)𝑑 (re-randomized

𝑠2 ← 𝜎2 · 𝑔𝑑2 signature)

𝐸1 ← 𝑒 (𝐽 , 𝑔2) · 𝑒 (𝑉 𝑎1
1 ·

∏ ®𝑈 ◦ ®𝐵, 𝑠2)−1 (commitment PBS)

𝐸2 ← 𝑒 (𝑔, 𝜏)𝑏 (commitment VRF)

𝐸3 ← 𝑔𝑎2 ·∏ ®𝑈 ◦ ®𝐵 (commitment binding)

The participant sends 𝐸1, 𝐸2, 𝐸3, 𝑝 to the organizer and gets a
challenge 𝑐 $← Z𝑞 back from the organizer. The last message is
computed as follows:

®𝑌 ← [𝐵𝑖 + 𝑐 ·𝑀𝑖 ]𝑚𝑖=1

𝑧1 ← 𝑎1 + 𝑐 · 𝑑 𝑧2 ← 𝑠1
𝑐 · 𝐽 𝑧3 ← 𝑎2 + ·𝑐 · 𝑏𝑝

The statement is verified by the organizer with these three equa-
tions:

𝐸1 · pkS𝑐 · 𝑒 (ℎ, 𝑠2)𝑐 = 𝑒 (𝑧2, 𝑔2) · 𝑒 (
∏ ®𝑈 ◦ ®𝑌 , 𝑠2)−1

𝐸2 · 𝑒 (𝑔,𝑔2)𝑐 · 𝑒 (𝑔, 𝜏)−𝑐 ·id(T) = 𝑒 (𝑔2, 𝜏)𝑧1

𝐸3 · 𝑝𝑐 = 𝑔𝑧3 ·∏ ®𝑈 ◦ ®𝑌
Prerequisites. The second part of the participation proof requires
a participant to show that they qualify for the participation with
ChkQual. In our model this essentially means that they satisfy all
attribute constraints, have previously participated in every qualifier
task, and have not participated in any disqualifier task. LCheckQual

takes all previous transactions BB and iterates over all qualifier

tasks T𝑞 ∈ T.𝛿 and selects the set 𝑄𝜏 as tags from transactions
which contain T𝑞 . Similarly 𝐷𝜏 is specified for all disqualifiers. The
participation tag 𝜏 is used to bind L𝛿 and L𝛿 to the credential used
in LCheckCredTag, whereas the pedersen commitment 𝑝 is used in
LSatisfy.

LCheckQual :=

(BB := [(T𝑖 , ·, 𝜏𝑖 )], T, 𝜏, 𝑝) | ∃(cred, 𝑏𝑝 ) :

∀T𝑞 ∈ T.𝛿 :


𝑄𝜏 := {tx.𝜏 |tx ∈ {tx′ ∈ BB|tx′ .T = T𝑞}}
stmt = (𝑄𝜏, 𝜏, T, T𝑞),
wit = (cred.𝑠𝑘)
(stmt,wit) ∈ L𝛿

∧∀T𝑑 ∈ T.𝛿 :


𝐷𝜏 := {tx.𝜏 |tx ∈ {tx′ ∈ BB|tx′ .T = T𝑑 }}
stmt = (𝐷𝜏, 𝜏, T, T𝑑 ),
wit = (cred.𝑠𝑘)
(stmt,wit) ∈ L𝛿

∧∀𝑐 ∈ T.constr :


stmt = (𝜏, 𝑐, 𝑝),
wit = (cred.attr, cred.𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒,𝑏𝑝 )
(stmt,wit) ∈ LSatisfy


To exploit the repetitive structure, we further divide this proof

into sub languages for a single qualifier task T𝑞 and a single dis-
qualifer task T𝑑 . To bind the conjunction of the proofs for every
(dis-)qualifying task, we use the current task tag 𝜏 which assures
that the participant uses the same credential secret key cred.sk to
calculate the tags correctly. These statements also include the public
set of participation tags (𝑄𝜏 , 𝐷𝜏) from all previous participations
in the (dis-)qualifier.

Qualifier. For a qualifying task T𝑞 , the participant computes their
correct participation tag for this task T𝑞 and shows that VRF.
Eval(cred.sk, T𝑞) is part of the set of qualifying tags 𝑄𝜏 . Addition-
ally, it is necessary to show that the secret key of the participant
cred.sk matches the secret key used to derive the participation tag
𝜏 for the task T where the participant wants to qualify for.
L𝛿 :=

(
𝑄𝜏, 𝜏, T, T𝑞

)
| ∃(sk) :

VRF.Eval(sk, T𝑞) ∈ 𝑄𝜏
∧ VRF.Eval(sk, T) = 𝜏


Using the VRF construction (𝜏 = 𝑔

1
sk+id(T) ), this corresponds to a

ring signature on the set of qualifying tags𝑄𝜏 , where the participant
has the correct sk bound by 𝜏 to equate the discrete logarithm of
element 𝑄𝜏 𝑗 at position 𝑗 .
L′
𝛿

:=
(
𝑄𝜏, 𝜏, T, T𝑞

)
| ∃(sk, 𝑗) :

𝜏 = 𝑔
1

sk+id(T)

∧𝑄𝜏 𝑗 = 𝑔
1

sk+id(T𝑞 )


This language is directly provable in LLMR19.

Disqualifier. For disqualifiers the participant also evaluates the ver-
ifiable random function for the disqualifying task T𝑑 and shows
that the tag VRF.Eval(cred.sk, T𝑑 ) is not in the set of disqualifying
tags 𝐷𝜏 . It is again necessary to to also show that the same secret
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key cred.sk is used to compute the disqualifying tag and the actual
participation tag 𝜏 .

L𝛿 :=
(𝐷𝜏, 𝜏, T, T𝑑 ) | ∃(sk) :
VRF.Eval(sk, T𝑑 ) ∉ 𝐷𝜏
∧ VRF.Eval(sk, T) = 𝜏


This is achieved by choosing a secret blinding factor 𝑟 $← Z𝑞 to

calculate a blinded version of the disqualifying tag 𝑅𝜏 ← 𝜏𝑟 and
the set of equally blinded disqualifying tags (∀𝑖 ∈ {1, . . . , |𝐷𝜏 |} :
𝑅𝐷𝜏𝑖 ← 𝐷𝜏𝑟𝑖 ). Hence, allowing the participant to proof in zero-
knowledge that the challenge set was correctly blinded (i.e., expo-
nentiated with the random factor 𝑟 ), as well as the correct computa-
tion and blinding of the disqualifying tag. The verifier is then able
to check whether the blinded disqualifying tag 𝑅𝜏 is equal to any
blinded tag in the challenge set 𝑅𝐷𝜏 , without learning the partici-
pant’s real tag VRF.Eval(cred.sk, T𝑑 ) for the disqualifying task T𝑑 .
This provides participation privacy for future participations with
the same disqualifying task.

L′
𝛿

:=
(𝐷𝜏, 𝑅𝐷𝜏, 𝑅𝜏, 𝜏, T, T𝑑 ) | ∃(sk, 𝑟 ) :
𝜏 = 𝑔

1
sk+id(T)

∧𝑅𝜏 = 𝑔
𝑟

sk+id(T𝑑 )

∧∀𝑖 ∈ [|𝐷𝜏 |] : 𝑅𝐷𝜏𝑖 = 𝐷𝜏𝑟𝑖


Again this language is provable in the LLMR19 language.

Satisfy. For attribute constraints, we differentiate between range
and element constraints, which we split up into two separate lan-
guages L′Satisfy,rng and L

′
Satisfy,ele. Based on the type of constraint

𝑐 is either composed as 𝑐rng := (𝑙, 𝑢, 𝑖) with lower bound 𝑙 , upper
bound 𝑢, and index 𝑖 of the referenced attribute, or as 𝑐ele = (𝑉 , 𝑖)
with set of allowed element𝑉 and referenced attribute index 𝑖 . Only
the statement of one language can be valid at any time, but for sim-
plicity we denote the choice of sublanguage as a logical or in the
following language. Both languages use the pedersen commitment
𝑝 for showing equality of the attributes used in LCheckCredTag.

LSatisfy :=
(𝜏, 𝑐, 𝑝) | ∃(attr, un, 𝑏𝑝 ) :
(stmt = (𝑐.𝑙, 𝑐 .𝑢, 𝑐 .𝑖, 𝑝),wit = (attr, un, 𝑏𝑝 )) ∈ LSatisfy,rng
∨(stmt = (𝑐.𝑉 , 𝑐.𝑖, 𝑝),wit = (attr, un, 𝑏𝑝 )) ∈ LSatisfy,ele


Range constraints use two binary decompositions to show that

the referenced attribute value attr𝑖 is in the interval of [𝑙, 𝑢]. This
can be expressed as 𝑣𝑙 := attr𝑖 − 𝑙 and 𝑣𝑢 := 𝑢−attr𝑖 being a positive
integers.
L′Satisfy,rng :=

(𝑙, 𝑢, 𝑖, 𝑝) | ∃(attr, un, 𝑏𝑝 ) :
𝑝 = 𝑔𝑏𝑝 ·∏ ®𝑈 ◦attr∥un
∧ 𝑙 + 𝑣𝑙 = attr𝑖 ∧ 𝑣𝑙 ∈ {0, . . . , 2⌈𝑙𝑜𝑔2 |𝑢−𝑙 | ⌉+1 − 1}
∧ 𝑢 = attr𝑖 + 𝑣𝑢 ∧ 𝑣𝑢 ∈ {0, . . . , 2⌈𝑙𝑜𝑔2 |𝑢−𝑙 | ⌉+1 − 1}


Element constraints are essentially a ring signature similar to

qualifier prerequisites, where the participant’s attribute equates the

discrete logarithm of the element in 𝑉 with index 𝑗 .
L′Satisfy,ele :=

(𝑉 , 𝑖, 𝑝) | ∃(attr, un, 𝑏𝑝 , 𝑗) :
𝑝 = 𝑔𝑏𝑝 ·∏ ®𝑈 ◦attr∥un
∧𝑉𝑗 = attr𝑖


Both languages can be expressed in LLMR19 and are bound to
LCheckCredTag using the shared commitment 𝑝 .

Reward Blinding. The correct blinding of a reward key can be shown
as a statement of LPBSR (c.f., Section C). Additionally, the matching
to the vector pedersen 𝑝 is shown by an AND composition using
the same challenge in the final message of the sigma protocol.

LRewardBlinding :=
(𝑟 ′, 𝑝) | ∃(cred,N , 𝜌, 𝑏𝑝 ) :
𝑝 = 𝑔𝑏𝑝 ·∏ ®𝑈 ◦cred.attr∥cred.un
∧ (stmt = (𝑟 ′),wit = ((N , cred.un), 𝜌)) ∈ LPBSR


Efficiency. LCheckCredTag requires a total of 13 + 5𝑚 point additions,
13 + 5𝑚 scalar multiplications, and 3 pairing operations for the
proof and 9 + 2𝑚 additions, 10 + 2𝑚 multiplications, and 6 pairings
for the verification. The proof of LPBSR requires 4 point additions,
6 scalar multiplications, and 0 pairing operations. The verification
requires 3 additions, 4 multiplications, and 0 pairing operations.

The witness length of LCheckQual in LLMR19 is as follows:
10 +𝑚 (binding)

+∑ |𝛿 |
𝑖=0 2 + |𝑄𝜏𝑖 | (qualifier)

+ 4 · |𝛿 | (disqualifier)

+∑ |constr,ele |
𝑖=0 1 + |{𝑒𝑖 }| (element constraints)

+∑ |constr,rng |
𝑖=0 2 · ⌈1 + 𝑙𝑜𝑔2 ( |𝑢𝑖 − 𝑙𝑖 |)⌉ (range constraints)

The necessary operations for the full composition of LParticipate

is strongly dependent on the complexity of the study. For better
comprehensibility, we define 𝜅 (T) as the nuber of group elements
required to encode the prerequisites of a task T:

𝜅 (T) =10 +𝑚 + 2|T.𝛿 | + 4|T.𝛿 | + |T.constr, ele| + 2|T.constr, rng|

+∑ |T.𝛿 |
𝑖=0 |𝑄𝜏𝑖 |

+∑ |T.constr,ele |
𝑖=0 |{𝑒𝑖 }|

+∑ |T.constr,rng |
𝑖=0 ⌈1 + 𝑙𝑜𝑔2 ( |𝑢𝑖 − 𝑙𝑖 |)⌉

Adding the necessary operations of LCheckCredTag, LPBSR, and
LCheckQual in LLMR19, we get the following for proving p and veri-
fying v:
|p× | = 18 + 5𝑚 + 4 𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉+ 2⌈ log2 𝜅 (T) ⌉

|p+ | = 24 + 5𝑚 + 4 𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉+ 26 · 2⌈ log2 𝜅 (T) ⌉

|p𝑒 | = 3

|v× | = 22 + 2𝑚 + 2 𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉+ 2⌈ log2 𝜅 (T) ⌉

|v+ | = 26 + 2𝑚 + 2 𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉+ 21 · 2⌈ log2 𝜅 (T) ⌉

|v𝑒 | = 6
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D.2 Payout Proof

The payout proof allows a participant to prove ownership of up
to 𝑛 reward coins of respective value 𝑣𝑖 that sum up to at least the
payout amount 𝑣 ≤ ∑𝑛

𝑖=0 𝑣𝑖 . Every coin is a PBS signature by the
service with a value 𝑣𝑖 and bound to a nullifierN𝑖 and the username
un of a participant, both hidden from the service when signing. To
prevent double spending, participants have to reveal the nullifierN𝑖
for each spent reward and prove their correctnes. The exact number
of inputs is hidden by padding the input set to a fixed length of 𝑛
inputs. Padding inputs are first requested from the service, similar
to regular participations. The validity of a payout request is shown
with a statement of the following language.
LPayout :=

(
{N𝑖 }𝑛𝑖=1, un, 𝑣

)
| ∃({(𝑟𝑖 , 𝑣𝑖 )}𝑛𝑖=1) :∑𝑛

𝑖=1 𝑣𝑖 ≥ 𝑣
∧ ∀𝑖 ∈ [𝑛] : PBSR.Verify(pkS,R, (N𝑖 , un), (𝑣𝑖 ), 𝑟𝑖 ) = 1


Substituting the concrete instantiation from our building blocks,

we get the language L′Payout. We allow to claim less payout than the
sum of all rewards

∑𝑛
𝑖=1 𝑣𝑖 ≥ 𝑣 which is implemented as a positive

difference 𝑣∗. This helps participants to hide themselves in a larger
anonymity set of e.g., students who all claim the same amount equal
to the required subject hours for their study programme. Again, we
split this language into two sub languages, for an efficient proof. The
composition of the two sub languages is bound by adding separate
pedersen commitments for each input 𝑝𝑖 to the statement each
blinded by random 𝑎𝑖

$← Z𝑞 , computed as 𝑝𝑖 ← 𝑔𝑎𝑖 ·𝑉
N𝑖

1 ·𝑉 un
2 ·𝑈

𝑣𝑖
1 .

L′Payout :=

(
{N𝑖 , 𝑝𝑖 }𝑛𝑖=1, un, 𝑣

)
| ∃({(𝑟𝑖 , 𝑣𝑖 , 𝑎𝑖 )}𝑛𝑖=1) :

stmt = ({N𝑖 , 𝑝𝑖 }𝑛𝑖=1, un, 𝑣),
wit = ({(𝑟𝑖 , 𝑣𝑖 , 𝑎𝑖 )}𝑛𝑖=1),
(stmt,wit) ∈ L′PayoutSum
∧ (stmt,wit) ∈ L′CheckReward


The correctness of the re-randomizations is shown using state-

ments of L′CheckReward. The range proof that that the sum of inputs
and the positive difference 𝑣∗ is equal to the payout value 𝑣 is proven
with a statement of L′PayoutSum using a bit decomposition of 𝑣∗. De-
pending on the average value of rewards, the bit range𝔅 of 𝑣∗ may
be adapted. For reference, in our prototype we selected a range of
𝔅 = 8, to match our use case of subject hours in an empirical study
programme, where typically one payout of 30 hours equals one
ECTS.
L′PayoutSum :=

(
{N𝑖 , 𝑝𝑖 }𝑛𝑖=1, un, 𝑣

)
| ∃({(𝑟𝑖 , 𝑣𝑖 , 𝑎𝑖 )}𝑛𝑖=1) :

∀𝑖 ∈ [𝑛] : 𝑝𝑖 = pkS,R
𝑎𝑖 ·𝑉 N𝑖1 ·𝑉 un

2 ·𝑈
𝑣𝑖
1

∧ ∑𝑛
𝑖=1 𝑣𝑖 = 𝑣 + 𝑣∗ ∧ 𝑣∗ ∈ {0, . . . , 2𝔅 − 1}


The language L′PayoutSum is directly representable in LLMR19.

L′CheckReward can be expressed as multiple iterations of LVerPBS

bound to L′PayoutSum using individual pedersen commitments.
L′CheckReward :=

(
{N𝑖 , 𝑝𝑖 }𝑛𝑖=1, un, 𝑣

)
| ∃({(𝑟𝑖 , 𝑣𝑖 , 𝑎𝑖 )}𝑛𝑖=1) :

∀𝑖 ∈ [𝑛] :


stmt = (pkS,R),
wit = ((N𝑖 , un), (𝑣𝑖 ), 𝑟𝑖 )
(stmt,wit) ∈ LVerPBS

∧ 𝑝𝑖 = pkS,R
𝑎𝑖 ·𝑉 N𝑖1 ·𝑉 un

2 ·𝑈
𝑣𝑖
1


For better comprehensibility, we denote the set of generators

of PBSR (𝑉1,𝑉2,𝑈1) as ®𝔊, and the set of coin messages (un,N𝑖 , 𝑣𝑖 )
as ®𝔐𝑖 . The input signatures are first re-randomized with random
𝑑𝑖 ∈ Z𝑞 resulting in:

𝑟𝑖 = 𝜎𝑖,1 · (
∏ ®𝔊◦ ®𝔐𝑖 · ℎ)𝑑𝑖 𝑠𝑖 = 𝜎𝑖,2 · 𝑔𝑑,𝑖2

The participant creates a committment for each input by picking
random values ®𝐵𝑖 $← Z3

𝑞 , 𝑎𝑖
$← Z𝑞 , 𝑏𝑖 $← Z𝑞 , and a random group

element 𝐽𝑖 $← 𝔾, and computing:
𝐸𝑖 ← 𝑒 (𝐽𝑖 , 𝑔2) · 𝑒 (

∏ ®𝔊◦ ®𝐵𝑖 , ®𝑠𝑖 )−1 (commitment PBS)

𝐹𝑖 ← 𝑔𝑎𝑖 ·∏ ®𝔊◦ ®𝐵𝑖 (commitment binding)

𝑝𝑖 ← 𝑔𝑏𝑖 ·∏ ®𝔊◦ ®𝔐𝑖 (binding)

The participant sends ®𝑠, ®𝐸, ®𝐹, ®𝑝 to the service and gets a challenge
𝑐 $← Z𝑞 back. The response is computed as follows:

𝑌𝑖 ←
[
𝐵𝑖 𝑗 + 𝑐 · ®𝔐𝑖 𝑗

]3

𝑗=1
𝑧𝐸𝑖 = 𝑟𝑖

𝑐 · 𝐽𝑖 𝑧𝐹 𝑖 = 𝐹𝑖
𝑐 · 𝑏𝑖

The statements are verified by the service by checking:

𝐸𝑖 · pkS𝑐 · 𝑒 (ℎ, 𝑠𝑖 )𝑐 = 𝑒 (𝑧2, 𝑔2) · 𝑒 (
∏ ®𝔊◦ ®𝑌𝑖 , 𝑠2)−1

𝑝𝑖
𝑐 + 𝐹𝑖 = 𝑔𝑧𝐹 𝑖 ·∏ ®𝔊◦ ®𝑌𝑖

Efficiency. The 𝑛 iterations of L′CheckReward each require the par-
ticipant to perform 19 point additions, 16 scalar multiplications,
and 2 pairing operations. The verification requires 11 additions,
11 multiplications, and 3 pairing operations. L′PayoutSum has an en-
coded witness length of |𝔅| + 5 · 𝑛, hence requiring the following
operations to compute:
|p× | =− 1 +4𝔅 + 20𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 2⌈ log2 (𝔅+5𝑛) ⌉

|p+ | =7 +4𝔅 + 20𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 26 · 2⌈ log2 (𝔅+5𝑛) ⌉

|p𝑒 | = 2𝑛

|v× | =12 +2𝔅 + 10𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 2⌈ log2 (𝔅+5𝑛) ⌉

|v+ | =17 +2𝔅 + 10𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 21 · 2⌈ log2 (𝔅+5𝑛) ⌉

|v𝑒 | = 3𝑛

Using the example parameters used for our prototype (𝔅 =

8, 𝑛 = 10), the full LPayout proof can be computed in 2105 point
additions, 531 multiplications, and 20 pairing operations. The veri-
fication requires 1599 additions, 314 multiplications, and 30 pairing
operations.

D.3 Analysis

By inspection, our PrePaMS construction is correct according to
Theorem 3.1.
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Theorem D.1 (Participation Security). Given an unforgeable

PBSC scheme, a deterministic VRF, and a simulation-extractable

(SE) NIZK, PrePaMS satisfies the participation security defined in

Theorem 3.2.

Proof. We require that a credential cred is binding to a spe-
cific secret key. This holds because of the unforgeability of the
PBS scheme. Additionally, a tag must be binding in the sense, that
only a unique pair of key and task result in this tag. Our deter-
ministic VRF scheme satisfies this. We now show that the win-
ning condition of PartSec has a negligible probability: Every re-
ward transaction tx in the list of transactions BB is valid because
organizers validate each participation NIZK in OSParticipate or
OParticipate and only append to BB if valid. The valid participa-
tion thereby implies a valid NIZK for the language LParticipate. By
the extractability of the NIZK, there exists an efficient extractor
EParticipate which extracts the witness cred from 𝜋 for the winning tx
(ChkPart(cred,BB𝑡 ) = 1 ∧ ChkQual(cred,BB[:𝑡],BB𝑡 .𝑇 ) = 0). Ac-
cording to the language, cred satisfies at leastChkPart(cred, tx) = 1
and ChkQual(cred,BB, 𝜏) = 1. The ChkQual predicate together
with the binding tag assures that the participant has not partici-
pated in the same task before. As BB in the statement is exactly
BB[:𝑛] containing all previous participations up to this point, the
winning probability of the adversary is reduced to the negligible
probability of forging a SE NIZK without knowledge of a witness
cred.sk. Thereby PrePaMS has participation security. □

Theorem D.2 (Balance). Given an unforgeable PBSC and PBSR
scheme, simulation-extractable (SE) NIZKs and participation security

(Def 3.2), PrePaMS is balanced according to Theorem 3.3.

Proof. In the first epoch, the adversary is tasked to get a higher
payout from the service as they earned through their participations.
The system requires every reward transaction tx used for the payout
to be in the list of valid transactionsBB. Given participation security,
the organizers only blind-sign a reward coin and add it to the
BB with the correct amount for the completed task. All rewards
to the adversary are also maintained by the oracle in state 𝔗0.
Therefore the only option to increase the adversary’s balance is to
steal from honest users or attack the payout protocol. Every payout
inOSPayout includes a valid proof 𝜋 for the languageLPayout. With
the NIZK extractor EPayout, we extract a valid witness {(𝑟𝑖 , 𝑣𝑖 )}𝑛𝑖=1.
These are the coins 𝑟𝑖 with a valid PBSR signature and the blinded
identity un and nullifier N𝑖 , preventing repeated spending of the
same key. The identifier prevents spending of rewards by someone
else. Any change of the identity, nullifier or value by a participant
would break the unforgeability of the PBSR signature. The extracted
rewards 𝑣𝑖 to be paid out are larger than the payout amount 𝑣 .
Preventing double spending and the greater or equal constraint on
the amount leaves the adversary a negligible advantage to breaking
the balance property by attacking the building blocks.

In the second epoch, the adversary has full access to old creden-
tials and their rewards. Again, as EPayout extracts the identity at
payout, only payouts accumulated in 𝔗1 can be paid out to users
in 𝔘1, staying non-negative. The ideneity in every coin is binding
due to the unforgeability of PBSC and LParticipate. □

Theorem D.3 (Participation Privacy). Given blinding partially
blind PBSC and PBSR schemes, a pseudo-random verifiable random

function VRF, simulatable NIZKs and Balance, PrePaMS satisfies the

participation privacy defined in Theorem 3.4.

Proof. We show the participation privacy through a series of
hybrids changing the experiment from 𝑏 = 0 to 𝑏 = 1.
Hyb1: The first hybrid is equal to PartPriv0 (𝜆). The information
dependent on 𝑏 is the communication in ΠParticipate, i.e. (𝜋0, T0, 𝜏0,

𝑟0), but T0 = T1 = T is equal for both 𝑏. The oracles after the
challenge only perform actions, if they were possible by both un0
and un1, thereby being independnt of 𝑏.
Hyb2: This hybrid uses the existence of the NIZK simulator to
generate 𝜋0 as 𝜋Sim which is indistinguishable from the real proof
and does not need a witness.
Hyb3: As the proof 𝜋Sim is now simulated, this hybrid uses the
credential cred1 to generate a 𝜏1. The hybrid is indistinguishable
by the pseudorandomness of the VRF.
Hyb4: This hybrid replaces the 𝑟0 with 𝑟1 as both are blinding and
indistinguishable.
Hyb5: With the information about 𝑏 available to the adversary
being (𝜋Sim, 𝜏1, 𝑟1), it remains to change the simulated NIZK to a
real one again, using cred1 as witness. This is indistinguishable due
to the simulatability of NIZKs.
Hyb5 is equal to PartPriv1 (𝜆), concluding that the adversary has a
negligible advantage of breaking the participation privacy. □

E Efficiency

We summarize the efficiency of the concrete instantiation of our
scheme in Table 3.
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Table 3: Effiency of the concrete instantiation of the PrePaMS protocol. × indicates the number of scalar multiplications, + the

number of group element additions, 𝑒 the number of pairing operations, and |.| the communication size defined as multiples of

group elements sizes (|𝔾|, |𝔾2 |, |𝔾𝑇 |) and scalars (|Z𝑞 |).

Computation Efficiency
× + 𝑒

ΠRegister,P 9 +𝑚 7 +𝑚 2
ΠRegister,S 8 + 3𝑚 4 +𝑚

ΠParticipate,P 18 + 5𝑚 + 4𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉ + 2⌈ log2 𝜅 (T) ⌉ 24 + 5𝑚 + 4𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉ + 26 · 2⌈ log2 𝜅 (T) ⌉ 3
ΠParticipate,S 22 + 2𝑚 + 2𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉ + 2⌈ log2 𝜅 (T) ⌉ 26 + 2𝑚 + 2𝜅 (T) + 2 · ⌈ log2 𝜅 (T)⌉ + 21 · 2⌈ log2 𝜅 (T) ⌉ 6

ΠPayout,P −1 + 4𝔅 + 20𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 2⌈ log2 (𝔅+5𝑛) ⌉ 7 + 4𝔅 + 20𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 26 · 2⌈ log2 (𝔅+5𝑛) ⌉ 2𝑛
ΠPayout,S 12 + 2𝔅 + 10𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 2⌈ log2 (𝔅+5𝑛) ⌉ 17 + 2𝔅 + 10𝑛 + 2 · ⌈ log2 (𝔅 + 5𝑛)⌉ + 21 · 2⌈ log2 (𝔅+5𝑛) ⌉ 3𝑛

Communication Size
·|Z𝑞 | ·|𝔾| ·|𝔾2 | ·|𝔾𝑇 |

ΠRegister,P (2 +𝑚) 2
ΠRegister,S 2 1

ΠParticipate,P

(
15 +𝑚 + |T.𝛿 | + 2|T.𝛿 |
+ 3|T.constr, ele| +∑𝑐∈ |T.constr,rng | |𝑐.𝑉 |

) (
12 + 2𝑚 + 2⌈𝑙𝑜𝑔2 ( | ®𝐾 |)⌉ +

∑ |T.𝛿 |
𝑖=0 |𝑄𝜏𝑖 |

+∑ |T.𝛿 |
𝑖=0 (1 + 2|𝐷𝜏𝑖 |)

)
1 2

ΠParticipate,S

ΠPayout,P 6 + 𝑛 4 + 2𝑛 + 2⌈𝑙𝑜𝑔2 (𝔅 + 5𝑛)⌉ 𝑛 𝑛

ΠPayout,S
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