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Abstract

Fully Homomorphic Encryption (FHE) is a cryptographic method
that guarantees the privacy and security of user data during compu-
tation. FHE algorithms can perform unlimited arithmetic computa-
tions directly on encrypted data without decrypting it. Thus, even
when processed by untrusted systems, confidential data is never
exposed. In this work, we develop new techniques for accelerated
encrypted execution and demonstrate the significant performance
advantages of our approach. Our current focus is the Fully Ho-
momorphic Encryption over the Torus (CGGI) scheme, which is a
current state-of-the-art method for evaluating arbitrary functions in
the encrypted domain. CGGI represents a computation as a graph of
homomorphic logic gates and each individual bit of the plaintext is
transformed into a polynomial in the encrypted domain. Arithmetic
on such data becomes very expensive: operations on bits become
operations on entire polynomials. Therefore, evaluating even rel-
atively simple nonlinear functions with the CGGI cryptosystem,
such as a sigmoid, can take thousands of seconds on a single CPU
thread. Using our novel framework for end-to-end accelerated en-
crypted execution calledArctyrEX, developers with no knowledge
of complex FHE libraries can simply describe their computation
as a C program that is evaluated 18× faster on average relative to
the GPU-accelerated Concrete library for multiplication-intensive
benchmarks.
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1 Introduction

Cloud computing allows users to forego the practice of maintaining
costly data centers in house, and provides both computation and
storage capabilities on-demand. However, all user data will neces-
sarily reside on servers owned by the cloud service provider who
could view the uploaded data. Additionally, attackers are increas-
ingly targeting cloud servers because they contain sensitive data
from multiple users [57] [6] [64]. FHE allows users to encrypt data
locally, outsource the ciphertexts to the cloud for oblivious and
meaningful computation, and receive the encrypted processed data
for decryption. This can be used for a wide variety of applications,
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such as privacy-preserving machine learning as a service (MLaaS)
[29] [23] [15] and facial recognition [65] [48].

FHE was realized in 2009 with the advent of the bootstrapping
procedure which allows unlimited computation on ciphertexts [30].
However, early FHE was plagued by both high memory require-
ments and enormous computational overheads, which rendered
it infeasible for adoption. Since its inception, great strides have
been made to reduce these runtime costs: First, new homomor-
phic encryption schemes have been developed with more efficient
bootstrapping constructions, such as DM [27] and CGGI [18]. Ad-
ditionally, various algorithmic and software optimizations, such as
HE-friendly number theoretic transforms (NTT) [25], have yielded
significant speedups in encrypted computation for certain core
operations. Additionally, utilization of the residue number system
(RNS) has been employed to enhance parallelism and avoid large
integer arithmetic [39] [16] [7]. Lastly, CPU-based acceleration
techniques were also adopted, including AVX and FMA extensions
[10]. However, the algorithmic level performance gains have begun
to stagnate and further speedups are coming mostly from hardware
acceleration.

Numerous hardware platforms for FHE computation show pro-
mise, such as GPUs [20, 26], ASICs [47, 56], FPGAs [54], and even
optical processors (OPUs) [67]. In this work, we focus on GPUs,
which have been thoroughly demonstrated to be well-suited to
the primitives underlying encrypted computation with FHE. Most
encrypted operations expose ample parallelism and are computa-
tionally intensive [45]; therefore, FHE applications can leverage the
high degrees of parallelism afforded by these devices. For instance,
a 10 × 10 matrix multiplication in the encrypted domain using the
CGGI cryptosystem in gate bootstrapping mode [18] requires hun-
dreds of millions of large polynomial arithmetic operations and
NTTs. Open-source nuFHE [50] and cuFHE [26] libraries expose
an API akin to an assembly language, requiring programmers to
compose their algorithms as Boolean circuits and their goal was to
maximize the performance of individual homomorphic operations,
as opposed to end-to-end encrypted applications themselves.

In this work, we propose a framework called ArctyrEX (Accel-
erated Encrypted eXecution) demonstrate that GPU-accelerated
FHE can be used to greatly improve the efficiency of realistic and
representative FHE applications, such as neural network inference
and large linear algebra arithmetic. We also introduce automated
scheduling techniques that allow for strong scalability while eval-
uating encrypted algorithms with multiple GPUs. Notably, most
cryptographic details and all hardware acceleration functionalities
are handled automatically by ArctyrEX to minimize the burden on
programmers. Our key contributions can be summarized as follows:
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1 int dot_product(int x[500], int y[500]) {

2 int product = 0;

3 for (int i = 0; i < 500; i++)

4 product = product + x[i] * y[i];

5 return product;

6 }

(a) Dot Product Code

1 void fc_layer(short x[256],

2 short w[7680],

3 short res[30]) {

4 for (int i = 0; i < 30; i++)

5 for (int j = 0; j < 256; j++)

6 res[i] = res[i] + x[j] * w[256 * i + j];

7 }

(b) Fully-Connected Layer Code

(c) Dot Product Performance (d) MNIST Classification Performance

Figure 1: Demonstration Applications: Using our approach, a dot product subroutine runs ≈ 6× faster on a single A100 GPU

and over 42× faster with an NVIDIA DGX A100 relative to an AMD EPYC 7742 baseline (with 256 threads), resulting in an

end-to-end application level speed up of 31× for our demonstration using MNIST classification.

• A custom algorithm to translate high-level code to GPU-
friendly FHE programs that reduces latency by up to 36%,
while also reducing circuit size by up to 40% relative to a
standard synthesis flow;

• A novel scheduling methodology that facilitates efficient
computation across multiple GPUs, which enables encrypted
programs to run 18× faster formultiplication-intensive bench-
marks on 2 GPUs relative to the state-of-the-art Concrete
library [19];

• A new CUDA-accelerated backend for the CGGI cryptosys-
tem that prioritizes fast evaluation of arbitrary algorithms
and outperforms state-of-the-art multi-threaded CPU and
GPU implementations by more than an order of magnitude
for many studied linear algebra benchmarks.

Our proposed framework makes a variety of applications practi-
cal in FHE. As a case in point, Figure 1 showcases the high-level
input code and performance of both a dot product of two large
vectors as well as a fully-connected layer in machine learning ap-
plications. The user of our system simply needs to describe their
computation as a C++ program; no knowledge of complex FHE
libraries is required, except for the desired level of security. For C++
code outlining a dot product of two encrypted vectors of length 500,
our framework automatically generates a highly efficient circuit
consisting of 922308 gates with 128 levels resulting in approximately
one billion combined NTT and inverse NTT invocations.

2 Preliminaries

This section discusses different variants of homomorphic encryp-
tion and provides the motivation for adopting fully homomor-
phic encryption for general-purpose computation. Additionally,
it provides theoretical details regarding the CGGI cryptosystem
employed in this work.

Homomorphic Encryption

All encryption schemes that exhibit homomorphic properties enable
meaningful computation directly on ciphertext data without reveal-
ing the underlying plaintext. The two variants of homomorphic
encryption that support functionally complete sets of operations
include leveled homomorphic encryption (LHE) and FHE. In both
cases, ciphertexts are encoded as tuples of high-degree polynomials
and adding or multiplying ciphertexts takes the form of polyno-
mial addition or multiplication. These polynomials typically range
from degree 210 to 217 and the coefficients are integers modulo
𝑞, which is a product of primes and typically hundreds of bits in
length. In the encrypted domain, addition increases the ciphertext
noise slightly, while multiplication is significantly more noisy. An
unfortunate consequence of this ciphertext noise (which is neces-
sary for security) is that the noise magnitude increases during each
homomorphic arithmetic operation, and eventually the noise will
corrupt the underlying plaintext message and prevent successful
decryption with high probability. LHE can mitigate noise for a fi-
nite number of operations using a modulus switching technique,
with larger encryption parameters allowing higher noise tolerance.
However, larger parameters entail slower computation and higher
memory consumption, limiting scalability for very deep circuits.

FHE solves the scalability issues inherent to LHE and allows for
unbounded, arbitrary computation on encrypted data. First realized
by Gentry in 2009 [30], bootstrapping is a noise mitigation technique
that can be applied an infinite number of times, unlike modulus
switching. In fact, any LHE scheme can be converted to an FHE
scheme with the inclusion of bootstrapping. Nevertheless, the boot-
strapping procedure itself is costly in terms of latency and remains
a key bottleneck of all FHE constructions. Depending on the cryp-
tosystem and chosen parameters, bootstrapping can take anywhere
from several milliseconds [18] to minutes [31]. Therefore, the only
way to achieve feasible FHE for general-purpose computation is to
accelerate and optimize the bootstrapping mechanism.
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A

B
TLWE out = Enc(0) - ct1 - ct2

TRLWE Accum = out ×𝑋 −𝑏

TRLWE temp = 𝑋𝑎[𝑖 ]×Accum - Accum

4 Forward DFTs

TGSW BK𝑖× TRLWE temp

2 Inverse DFTs

KeySwitch (Accum)

+ Repeat
𝑛 times

ct1 ct2

Accum

Figure 2: Encrypted Logic Gate Evaluation: All standard two-

input logic gates begin with a series of linear operations

between the input TLWE ciphertexts, followed by a boot-

strapping procedure (executed by the looped instructions),

and lastly a keyswitching operation. The steps in yellow rep-

resent operations associated with bootstrapping.

The CGGI Cryptosystem

Both the DM [27] and CGGI cryptosystems [18] possess bootstrap-
ping routines that can be evaluated in up to tens of milliseconds
on a CPU using modern open-source implementations such as
Concrete [19] and OpenFHE [3], which is faster than other FHE
cryptosystems. Also, while other schemes encrypt vectors of inte-
gers and floating point numbers, CGGI and DM are typically used
to encrypt individual bits into a single ciphertext. Due to this en-
coding, the core encrypted operations take the form of Boolean
gates, which are more flexible in terms of general computation than
arithmetic operations over integers (e.g., encrypted comparisons
are easily implemented using encrypted bits).

As discussed, to support unlimited computation depths, the FHE
scheme must periodically invoke a bootstrapping operation to reset
the amount of noise in the ciphertext. In the case of CGGI, which
evaluates Boolean gates, bootstrapping must be performed every
gate. As a result, evaluating a single homomorphic gate requires
on the order of 2,000 polynomial multiplications [18], which are
typically accomplished using the Discrete Fourier Transform (DFT).
While this is an efficient algorithm for a single polynomial multi-
plication, even a small application could require billions of DFTs.
For example, the computation graph for a single inner product
of two vectors comprising 16 encrypted 16-bit numbers contains
nearly 25,000 encrypted logic gates. Evaluating this circuit results
in over 75 million invocations of the DFT. DM [27] was the first
cryptosystem to introduce a functional bootstrap that refreshes
noise while simultaneously evaluating a non-linear operation on
the encrypted bits. In fact, this bootstrap is a necessary component
of the computation for logic gates such as NAND.

CGGI improves upon this construction and generalizes it for all
logic gates, including an encrypted MUX that is capable of obliviously
choosing between two encrypted bits dependent on the underlying
value of an encrypted selector bit. For all gates except the inverter,
which is noiseless and linear, the bootstrapping operation comprises

the majority of the gate’s latency [41]. In turn, the core bottleneck of
bootstrapping is the numerous polynomial multiplications between
encrypted secret key components and input ciphertexts. Most FHE
libraries perform these high-degree polynomial multiplications as
element-wisemultiplications in the DFT domain, which is asymptot-
ically faster than textbook polynomial multiplication [14] [24]. Both
the number theoretic transform (NTT) and fast fourier transform
(FFT) can facilitate the forward and inverse domain conversions for
these purposes. However, the NTT is typically preferred over the
FFT as it operates directly over integers. Moreover, FFT requires
additional type conversions between integers and floating point
numbers as FHE ciphertexts contain integer coefficients. As a re-
sult, FFT introduces small computation errors due to its reliance on
floating point arithmetic.

The CGGI cryptosystem employs different types of ciphertexts,
each with different characteristics. The first type, known as TLWE
ciphertexts, serve as the inputs and outputs of each homomorphic
gate evaluation from a user perspective. TLWE ciphertexts are the
smallest type that CGGI uses; at 128 bits of security, they consist
of a single 630-degree polynomial with 32-bit coefficients and an
extra 32-bit scalar term. However, these ciphertexts can not be used
for nonlinear encrypted operations and are incapable of being used
to evaluate a standard encrypted logic gate function (with the triv-
ial NOT gate being the sole exception). Instead, these ciphertexts
need to be transformed to TRLWE ciphertexts (i.e., Ring-LWE over
the torus) that are larger in size. Typically, TRLWE ciphertexts are
composed of a tuple of 1024-degree polynomials with 32-bit coeffi-
cients. The third type is TGSW ciphertexts, which are the largest
and can conceptually be viewed as an array of TRLWE ciphertexts.
The bootstrapping key, which is an encryption of the secret key, is
composed of this type of ciphertexts. Importantly, TGSW cipher-
texts can be multiplied directly with TRLWE ciphertexts, which is
a necessary step of all bootstrapped gate evaluations. Figure 2 gives
a high-level overview of the operations involved in a homomorphic
NAND gate. All bootstrapped gates are evaluated in a similar way
and only differ in the preliminary linear operations (i.e., the top
green box in the figure).

Notably, certain classes of encrypted operations used for general
purpose computation are well-suited for CGGI with binary cipher-
texts, but are non-trivial using other cryptosystems that adopt
multi-bit encodings. For instance, comparison operations, bitwise
manipulations like shifting, and nonlinear functions such as the
ReLU activation function in machine learning applications, can
be computed directly without the need of costly polynomial ap-
proximations [11] [40]. Additionally, the requirement of executing
hundreds of DFT transforms per bootstrap is particularly well-
suited to GPUs due to the parallel nature of FFT and NTT. For these
reasons, the CGGI cryptosystem is a good candidate for achieving
accelerated general purpose computation on GPUs. CGGI can also
support multi-bit encodings and employ a special programmable
bootstrapping mechanism that evaluates univariate functions. How-
ever, only low precision is achievable with realistic parameters [21]
and therefore this approach is better suited for specific applications
rather than for arbitrary computation. Using a radix or CRT de-
composition approach, which breaks up larger bit-width messages
into chunks, univariate functions with larger precision inputs can
be evaluated. However, we note that this approach scales poorly
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with increasing word size and generating larger LUTs is incredibly
expensive [38]. As such, we strictly consider CGGI in gate boot-
strapping mode with binary ciphertexts in this work specifically
for this reason but note that the methodology proposed is readily
extensible to support this scenario.

Threat Model

ArctyrEX generates code and provides an execution environment
for a third-party cloud server to perform computations on encrypted
data. We assume an honest-but-curious computing party, where
the server can be trusted to do the expected computation but is
incentivized to eavesdrop the sensitive user inputs. The server is
aware of the underlying size and type of the data being manipulated
(for example, integer, string, or class), as well as the evaluated
algorithm. If the length of the data needs to be protected for a
given application, we assume this is enforced on the client-side by
introducing fixed input lengths. Our existing backend is based on
the CGGI scheme [18] which reduces its security on the (R)LWE
hard lattice problems.

Further, we assume that the cryptographic keys are generated
by the client and the secret key is not disclosed to another party.
The evaluation key material, composed of the bootstrapping key
and keyswitching key, required for encrypted logic gate evaluation,
is uploaded to the cloud server. Notably, these keys are solely for
facilitating encrypted operations and do not allow the cloud server
to decrypt any input, intermediate, or output data.

Lastly, all benchmarks used to evaluate ArctyrEX assume that
the client owns the input data, which is sensitive and therefore en-
crypted before uploading to the cloud server. For the neural network
inference program, we analyze two variants that differ depending
on which party owns the network weights. In one scenario, the
client provides both the weights and the data to be classified as en-
crypted inputs. In the other case, the cloud owns the model weights
and the client only provides the data to be classified. Additionally,
ArctyrEX does not exhibit functional privacy and the cloud server
has knowledge of the algorithm being executed.

3 System Design for Accelerated Encrypted

Execution

ArctyrEX is an end-to-end framework that allows users to seam-
lessly convert high-level programs written in C++ to a sequence of
GPU-friendly FHE Boolean operations leveraging the CGGI cryp-
tosystem. An overview of the system and a process diagram illus-
trating the flow of data are depicted in Figure 3, illustrating the
capabilities of the frontend, runtime schedule coordination, and
backend operations as well as how these subsystems communicate
and work together. The figure also shows the process of how a
user’s input program is converted to a multi-bit representation (i.e.,
Verilog code that operates over bit arrays) and then to an encrypted
Boolean circuit and finally executed by a multi-GPU system. Our
proposed frontend tackles challenges associated with leveraging
CGGI from a user perspective, such as adapting to the Boolean
circuit model. In this section, we identify desirable circuit charac-
teristics for efficient execution on GPUs and describe key aspects
of synthesis to convert input programs to FHE code for outsourced
computation.

Optimal FHE Circuit Characteristics

One of the challenges for achieving efficient encrypted compu-
tation with the CGGI cryptosystem involves exploiting circuit-level
parallelism at the logic gate level. Essentially, any number of gates
with resolved dependencies (e.g., all input wires have been loaded
with encrypted ciphertexts) can be executed in parallel as they
are entirely independent. For CPU-based systems with a limited
number of cores, this parallelism is sufficient to effectively saturate
the available CPUs without any significant optimizations at the
logic synthesis or application level. However, high-performance
computing systems that leverage hundreds of CPU cores or incorpo-
rate GPUs require much higher degrees of circuit-level parallelism
to achieve high efficiency. For these systems, the characteristics
of the underlying Boolean circuit become much more important,
therefore avoiding sub-optimal configurations is a critical concern.
For example, using the functions in Figure 4, we present the width
of each circuit level for a 10 × 10 matrix multiplication as well as a
logistic regression (LR) inference in Figure 5. The matrix multiplica-
tion benchmark represents ideal circuit characteristics for parallel
execution as the majority of levels are very wide (the largest being
nearly 200,000 gates in width), and the critical path is relatively
short. On the other hand, LR inference has over 500 levels (result-
ing in a much longer critical path) and the width of each level is
considerably shorter than those in the matrix multiplication circuit.
Another type of circuit configuration ill-suited for systems that can
exploit high degrees of parallelism is circuits that adopt cascading.
Cascaded circuits consist of duplicated subcircuits chained together
in a sequential way. These circuits typically have a long critical
path and each level of the circuit is narrow, limiting the number of
gates that can be evaluated in parallel at any given time.

Likewise, not all encrypted gates have the same execution time.
For instance, NOT gates are significantly faster than other gates
because they do not require any bootstrapping, while MUX gates are
approximately twice as expensive as standard gates (like AND and
OR gates). Efficient FHE circuit generation should take into account
these differences in gate efficiency.

Strategies for Developing HLS-Compliant

Programs

In terms of input programs, a strict requirement is that it must be
synthesizable in order to generate a Boolean circuit that can be
evaluated with FHE. Essentially, no dynamic memory constructs
can be used as all data sizes need to be known at compile time to
generate a fixed hardware circuit. Another constraint imposed by
XLS is that standard C++ standard library (STL) functions and con-
structs can not be employed. As a case in point, the sqrt function
defined by the math.h STL header can not be used directly. Instead,
the square root operation can be implemented as a series of shifts
and subtractions [35].

Additionally, the way that an algorithm is expressed can have an
impact on the HLS procedures that map the program to a Boolean
netlist. For complex algorithms that contain several thousand loop
iterations, the synthesis toolchain itself may be unable to success-
fully generate a circuit due to strict constraints on loop unrolling.
In this case, we note that manually unrolling a number of itera-
tions can solve the problem to bypass such constraints. However,
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(a) System Diagram

(b) Process Diagram

Figure 3: System Overview: Our proposed system is composed of three distinct layers that work together to realize an end-to-end

framework for scalable encrypted computation. The frontend converts high-level programs to a logic circuit tuned for FHE. In

turn, this logic circuit is parsed by the middle layer, which executes a coordination algorithm that partitions each level of the

circuit into shares and assigns them to multiple GPUs. The back-end enables outsourcing computationally expensive FHE

operations in each share to the GPUs.

1 void full_gemm(short x[100], short y[100], short res[100]) {

2 for (int i = 0; i < 10; i++) {

3 for (int j = 0; j < 10; j++) {

4 res[10*i + j] = 0;

5 for (int k = 0; k < 10; k++) {

6 res[10*i + j] = res[10*i + j] + x[i*10 + k] * y[k*10 + j];

7 } } } }

1 int lr_inference(int data[4], int weights[4], int bias) {

2 int product = 0;

3 for (int i = 0; i < 4; i++)

4 product = product + data[i] * weights[i];

5 product = product + bias;

6 // Sigmoid: scaled Maclaurin Series to stay in integer domain

7 // s(x) = 40320 + 20160*x - 1680*x^3 + 168*x^5 - 17*x^7

8 int temp = 40320;

9 int squared = product * product;

10 temp += 20160 * product;

11 temp -= squared * product * 1680;

12 squared *= squared;

13 temp += squared * product * 168;

14 squared *= product * product;

15 product = temp - squared * 17;

16 // Client post-processes score by dividing by 80640

17 return product;

18 }

Figure 4: C++ functions for General Matrix to Matrix Mul-

tiplication (GEMM), or matrix multiplication, and Logistic

Regression (LR) Inference.

for very large loops, this technique is quite cumbersome for devel-
opers as the loop body becomes large and redundant, while the
time required for HLS and logic synthesis increases. We observe
that we can overcome this challenge by splitting an algorithm into

Figure 5: Circuit-level parallelism: Visualizing the circuit

topology (i.e., the width of the circuit at all points) of GEMM

versus LR inference shows that GEMM is ideal for parallel

evaluation, while LR is less suitable.

1 int partial_mm(int x[10], int y[10]) {

2 int res = 0;

3 for (int i = 0; i < 10; i++) {

4 res = res + x[i] * y[i];

5 }

6 return res;

7 }

Figure 6: Partial Matrix Multiplication HLS Kernel

multiple HLS functions and invoking them one after the other in
the encrypted application. Figure 6 demonstrates this strategy; the
kernel implements the inner loop of a 10× 10matrix multiplication
and can be invoked multiple times to evaluate the full procedure.
The downside of this approach is that an additional setup cost is
incurred regarding circuit preprocessing and memory allocation,
but we observe that a vast majority of the overall evaluation time
is spent evaluating the circuit homomorphically.

763



Proceedings on Privacy Enhancing Technologies 2025(1) C. Gouert et al.

Synthesizing FHE-friendly Circuits

The conversion process from a C++ program to an equivalent FHE
algorithm can be completed in two distinct steps borrowed from
modern hardware design paradigms: high-level synthesis (HLS)
followed by logic or register transfer level (RTL) synthesis. While
any HLS tool can be used for this purpose, we employ the Google
XLS framework [34], which is a fast and efficient open-source HLS
engine that can be used to rapidly generate synthesizable Verilog
code. This Verilog code serves as an intermediate representation
and describes the circuit functionality, which is then transformed
by a logic synthesis tool to generate the actual Boolean netlist.

We utilize the open-source Yosys Open Synthesis Suite to facil-
itate this process and perform crucial circuit-level optimizations
[63]. However, all existing logic synthesis tools, including Yosys,
are tailored specifically for physical hardware development and
optimize for several constraints that are not relevant to virtual FHE
circuits (such as minimizing area or reducing clock cycle latency).
The most relevant factors for optimal FHE circuit generation are
minimizing the critical path delay, which is luckily a goal shared
with actual hardware development, and prioritizing gates that run
efficiently in the encrypted domain. Similarly to techniques intro-
duced by the Google Transpiler [35], we can configure the logic
synthesis tool to choose FHE-friendly gates by encoding the relative
costs of each gate type as a function of area. For instance, we assign
the multiplexer gate to be twice as big as the standard two-input
gates to reflect the fact that the latency of the MUX is twice as slow
as a standard gate.

Where prior work has adopted generic synthesis scripts for gen-
erating netlists for FHE evaluation [35, 37], our synthesis flow: (1)
reduces the time required to generate the netlist relative to the
Yosys generic synthesis script, and (2) results in more efficient cir-
cuits for FHE. The core optimizations that we utilize with Yosys
include functional and word-size reduction, removing redundant
logic, and omitting unreachable branches in decision trees. Com-
pared to the baseline Google XLS logic optimizations, we observe
a reduction of about 40% in the overall size of the circuit for a dot
product of two vectors with length 500. However, we note that the
Google XLS logic optimizer is more lightweight and can process
the encrypted circuit about twice as fast. We emphasize that this
process is a one-time cost; after the circuit is processed, it can be
executed using an arbitrary number of inputs.

4 Novel Scheduling Algorithm for Scalable

Evaluation

TheArctyrEX runtime library implements our proposed scheduler
that allows homomorphic applications to utilize multiple computing
resources with high scalability.

Strategies for Evaluating FHE Circuits

After the Boolean netlist has been generated by the frontend com-
piler, and before encrypted computation can be carried out, we
need to translate each gate to the encrypted domain. This process
involves traversing the circuit, which is represented as a directed-
acyclic graph (DAG), and mapping each node to the equivalent
CGGI gate function. All wires become ciphertext data, the inputs

are loaded with encryptions provided by the client, while the out-
puts are communicated back to the client for decryption after circuit
evaluation.

The intuitive approach for providing the computing party with
an executable FHE circuit is to simply generate code that invokes
the encrypted gate functions using the underlying backend directly
one after the other. This approach works well for small programs
where performance is not critical, but is ill-suited for non-trivial
programs. For complex programs, the generated FHE code can grow
to millions of lines in length, as each logic gate in the circuit would
require 2-3 lines of code on average.

Our key observation is that it is more efficient to avoid code gen-
eration entirely and incorporate a scheduler that traverses the DAG
and distributes each gate to additional workers that exclusively
run the corresponding FHE logic gate function. In this approach,
gates that are ready to be evaluated can be distributed across a set
of workers to exploit the circuit-level parallelism inherent in all
applications. We remark that a similar methodology is employed by
the Google FHE transpiler [35] and is referred to as interpreter mode.
However, their strategy of distributing gates one at a time is not
feasible when the workers constitute GPUs. Previous GPU-centric
CGGI implementations as well as our proposed implementation
(described in Section 5) can execute one homomorphic logic gate
per streaming multiprocessor (SM) concurrently. In the case of an
NVIDIA A100 GPU, 108 homomorphic logic gates are the least
number required to achieve 100% device utilization at any given
time. Thus, only one SM could be engaged if gates are assigned
one at a time, resulting in extremely inefficient evaluation. Further,
interpreter mode creates new ciphertext objects and allocates more
memory as needed throughout circuit evaluation. While this tech-
nique is suitable for CPU workers, it therefore creates a prohibitive
bottleneck on GPUs as memory allocation and ciphertext transfers
between the host and the device are costly.

ArctyrEX Runtime Library

We propose a novel methodology for efficient evaluation of en-
crypted circuits on both CPU and GPU devices. The host thread
parses the intermediate representation (IR) generated by the fron-
tend, and generates a set of nodes stored using XLS data struc-
tures [34]. Each node contains an opcode, which defines the opera-
tion performed by the circuit gate, and its input operands, which
are pointers to other XLS nodes.

The IR thus defines a sequence of gates which can be processed
sequentially to generate a valid execution of the circuit. In order
to introduce parallelism, we transform this ordered set of XLS
nodes into a vector of circuit gates. In addition to logic gates, we
also create gates which compute encrypted constant values and
augment the frontend IR with gates which copy an input ciphertext
into another one. These copies are used to integrate the retrieval of
encrypted results as part of the circuit itself instead of having to
extract individual ciphertexts after waiting for circuit termination.

To execute the circuit in parallel, we first dispatch all gates into
waves. Each wave must be processed in-order, but all entries of a
wave can be processed concurrently. Algorithm 1 shows the topo-
logical sort algorithm that we use to build the list of waves.

For each entry of the vector of gates, we compute its successors
(gates depending on it), and count its predecessors (gates on which

764



Hardware-Accelerated Encrypted Execution of
General-Purpose Applications Proceedings on Privacy Enhancing Technologies 2025(1)

Algorithm 1: Runtime Library Circuit Preprocessing
Input: 𝑐𝑖𝑟𝑐𝑢𝑖𝑡, 𝑛𝑢𝑚𝑊𝑜𝑟𝑘𝑒𝑟𝑠

Output: 𝑙𝑒𝑣𝑒𝑙𝑠

1 𝑙𝑒𝑣𝑒𝑙𝑠 = new 𝑄𝑢𝑒𝑢𝑒 [𝑐𝑖𝑟𝑐𝑢𝑖𝑡 .𝑑𝑒𝑝𝑡ℎ()]
2 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 = new 𝑄𝑢𝑒𝑢𝑒

3 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 = new 𝐻𝑎𝑠ℎ𝑀𝑎𝑝 < 𝐺𝑎𝑡𝑒, 𝑖𝑛𝑡 >

4 𝑠𝑡𝑒𝑝 = 1
5 𝑚𝑎𝑥𝐺𝑎𝑡𝑒𝑠 = 0
6 for gate in circuit do
7 𝑝𝑒𝑛𝑑𝑖𝑛𝑔[𝑔𝑎𝑡𝑒] = 𝑔𝑎𝑡𝑒.𝑛𝑢𝑚𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠
8 if 𝑔𝑎𝑡𝑒.𝑛𝑢𝑚𝑂𝑝𝑒𝑟𝑎𝑛𝑑𝑠 == 0 then
9 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑔𝑎𝑡𝑒)

10 𝑙𝑒𝑣𝑒𝑙𝑠 [0] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑔𝑎𝑡𝑒)
11 while 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 is not empty do

12 if 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑠𝑖𝑧𝑒 () > 𝑚𝑎𝑥𝐺𝑎𝑡𝑒𝑠 then
13 𝑚𝑎𝑥𝐺𝑎𝑡𝑒𝑠 = 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑠𝑖𝑧𝑒 ()
14 𝑛𝑒𝑥𝑡𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 = new 𝑄𝑢𝑒𝑢𝑒

15 while 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 is not empty do

16 𝐺𝑎𝑡𝑒 𝑛 = 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑓 𝑟𝑜𝑛𝑡 ()
17 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 () for 𝑔𝑎𝑡𝑒 in n.operands do
18 𝑝𝑒𝑛𝑑𝑖𝑛𝑔[𝑔𝑎𝑡𝑒] = 𝑝𝑒𝑛𝑑𝑖𝑛𝑔[𝑔𝑎𝑡𝑒] − 1
19 if 𝑝𝑒𝑛𝑑𝑖𝑛𝑔[𝑔𝑎𝑡𝑒] == 0 then
20 𝑛𝑒𝑥𝑡𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑔𝑎𝑡𝑒)
21 while 𝑛𝑒𝑥𝑡𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 is not empty do

22 𝐺𝑎𝑡𝑒 𝑛 = 𝑛𝑒𝑥𝑡𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑓 𝑟𝑜𝑛𝑡 ()
23 𝑛𝑒𝑥𝑡𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑝𝑜𝑝 ()
24 𝑟𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛)
25 𝑙𝑒𝑣𝑒𝑙𝑠 [𝑠𝑡𝑒𝑝] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛)
26 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 + 1
27 𝑚𝑎𝑥𝑀𝑒𝑚𝑜𝑟𝑦 =𝑚𝑎𝑥𝐺𝑎𝑡𝑒𝑠 ∗ 2 ∗ 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐶𝑡𝑥𝑡)
28 Allocate𝑚𝑎𝑥𝑀𝑒𝑚𝑜𝑟𝑦 bytes
29 return

it depends). To assign gates to different waves, we create a FIFO of
ready gates, which are gates with no remaining dependencies. We
start by adding all gates with no input dependencies into this FIFO.
Until the FIFO is empty, we remove the first entry 𝑛 from the FIFO,
and do the following:

• Assign 𝑛 to the first wave if there are no input dependencies,
or compute the max index of the wave of all predecessors,
and add 𝑛 to the next wave. All predecessors have an index
or 𝑛 would not be in the ready FIFO.

• We decrement the predecessor count of all successors of 𝑛.
Any of these successors reaching a null predecessor count
are put in the ready FIFO.

This algorithm terminates even if the circuit is not connected. As
the IR can be processed sequentially one node after the other, there
cannot be cycles in the circuit and all gates will be given an index.
Since nodes are assigned to waves with indexes that are strictly
greater than their predecessors, all entries in a wave are indepen-
dent and can be processed concurrently, as long as the waves are
processed in order. We thus automatically derived a parallel execu-
tion from the IR, based on the fact that the IR was a valid sequential

execution and used node operands to compute dependencies. This
algorithm has a linear complexity because each node is taken ex-
actly once from the FIFO, and we decrement counters as many times
as there are wires in the circuit. Partitioning the circuit into such
waves provides concurrency which can be exploited to efficiently
use a single GPU device. For multiple processing units, we dispatch
waves over the different devices. A simple solution to dispatch a
wave with 𝑁 gates over 𝐾 devices that consists of splitting it into
roughly 𝑁 /𝐾 gates per device, is illustrated in Figure 7.

𝐴3

𝐵3

𝐴2

𝐵2

𝐴1

𝐵1

𝐴0

𝐵0

𝐴 = 𝐵

𝐴 > 𝐵

𝐴 < 𝐵

𝐴 < 𝐵

𝐴 = 𝐵

𝐴 > 𝐵

Figure 7: Mapping gates to devices: Gates are dispatched in in-

dependent waves, which are split across different processing

units. In this example, we extract 5 waves which are spread

over 3 GPUs that receive a similar workload.

Let us consider a wave with 43875 gates, composed of 2125 AND
gates, 25000 OR gates and 16750 NOT gates. On two devices we could
have 1356, 10465 and 769 gates of type AND, OR and NOT for device 0;
and have 769, 14535 and 6633 gates of these types on device 1. This
represents a total of 21938 gates on device 0, and 21937 on device 1,
but we measured that device 0 and 1 respectively need 2.21 ms and
2.87 ms to process their portion of the wave. This 30% load imbal-
ance is explained by the fact that AND and OR gates take the same
time to process (about 0.19 us per gate), while it also takes 0.19 us
to process 1024 NOT gates, which are non-bootstrapped. Equally
dividing the gates between devices is therefore not a satisfactory
approach, and only results in a 1.7x speedup with two devices.

We could consider the disparities between the different types of
gates to evenly divide the load between the different devices based
on performancemodels, but it would require an extra training phase
per gate type. This may be tedious and not reliable when combin-
ing multiple gates with different compute or memory bandwidth
intensity. In practice, the number of gates is usually large enough
that a simpler but effective solution is to assign the same number of
identical gates on all processing units. In our previous example, this
results in putting 1064 and 1063 AND gates respectively on devices
0 and 1, and putting 12500 OR gates and 8375 NOT gates on both
devices 0 and 1. We then measure 2.54 ms of work on both devices,
with a negligible difference of less than 0.2 us, which corresponds
to a perfect balancing.

For each wave,ArctyrEX implements this strategy using a hash-
table which associates a vector to each of the opcodes encountered
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in the wave. Each entry of the wave is then appended to the list
which corresponds to its opcode. Considering that there are only
8 types of standard logic gates currently supported, and that this
number would not grow significantly, appending an entry roughly
has a constant complexity. This phase therefore also has an overall
linear complexity. In Section 5 we will show that building such
vectors of identical gates makes it straightforward to implement
batched kernels which obtain much higher performance.

In this Section, we have shown howArctyrEX converts the fron-
tend IR into a well-balanced parallel workload. Provided CPUs with
sufficient processing power, nothing prevents us from assigning
them parts of the waves too. This could be done using performance
models based on per-gate performance models, or more simply
based on the respective peak performance of the different types of
processing units. Our methodology is therefore suitable to address
hybrid systems combining CPUs and GPUs.

5 A fully asynchronous cryptographic backend

In the previous Section, we described the circuit as a sequence of
waves subdivided into smaller sets of homogeneous gates to obtain
an efficient load balancing over the processing units. This Section
details our native CUDA implementation of CGGI, and explains
how we execute this workload as efficiently as possible thanks to
a fully asynchronous implementation. We will now refer to these
sets of concurrent homogeneous gates as batched gates.

Memory and Communication Considerations

Since we have covered how gates are batched for distribution to
different processing units, we now describe how we can access data
across the entire system. NVIDIA GPUs have a distinct memory
hierarchy that differs in key ways from traditional CPUs. Inside a
streaming multiprocessor (SM), there is a fast on-chip piece of mem-
ory partitioned between an L2 cache, and a resource called shared
memory. These on-chip memories are much faster than global mem-
ory as they are part of the SM itself. In fact, shared memory latency
is roughly 100x lower than un-cached global memory latency, pro-
vided efficient memory access patterns. Shared memory is allocated
per thread block, so all threads in the block have access to the same
shared memory. In the case of the A100 GPU, the combined capacity
of on-chip memory per SM is 192 kB. Global memory is the largest
memory (40 or 80 GB for the A100) and resides off-chip, making it
the slowest aside from accessing memory on the host [51].

Bootstrapping keys have a relatively large size, more than 100MB
for 128-bits of security. They cannot fit into GPU L2 caches, but are
used for the majority of encrypted gate evaluations. Because of this,
we replicate them in the global memory of all devices so that each
can access the evaluation keys directly. We note that these keys are
constant, and can be accessed concurrently within a device.

Ciphertexts are processed during circuit evaluation, and may
be used simultaneously on different devices, or accessed from the
host. We thus store them in pinned host memory, which is memory
allocated with cudaMallocHost()). Ciphertexts are then cached
into shared memory which is much faster and is located close to the
GPU SMs. These kernels indeed have an extremely high arithmetic
intensity and the PCI-e bandwidth consumption is limited, and the
large amount of concurrency overlaps transfers with computation.
This was verified experimentally by profiling a kernel that processes

1024 gates using the ncu tool. We observed that it only consumed
19.96 MB/s of “system memory” bandwidth, which is orders of
magnitude lower than the available PCI-e bandwidth. Using pinned
host memory to load the input ciphertexts is thus efficient enough,
in spite of its simplicity.

A similar strategy is to use managed memory (also called uni-
fied memory, and allocated using cudaMallocManaged). Contrary
to pinned memory where devices access host memory directly
through the PCI-e bus, managed memory is kept coherent across
the entire machine by the means of paging mechanisms. When a
page fault occurs, the CUDA driver automatically fetches a valid
copy of the page where the fault occurred. Subsequent accesses to
the same page will occur at the speed of the memory embedded on
the device, until the page is evicted from the device.

Both managed memory and pinned host memory incur a sig-
nificant overhead per allocation, so that we do not allocate all
ciphertexts individually, but group these thanks to pooled memory
allocators. This pooling mechanism may introduce false sharing
issues, but effectively amortizes allocation overhead, which remains
noticeable with pinned host memory, but is several orders of mag-
nitude lower than the time required to evaluate the circuit. Memory
pages allocated with managed memory and modified concurrently
by multiple devices may bounce from one device to another, and
have a severe impact on performance.

In practice, we observe similar performance for an encrypted dot
product over 8 GPUs with both strategies. With pinned memory,
circuit evaluation takes 14.8 s, compared to 15.1 s with managed
memory. Allocating 1 GB of pinned host memory however takes
0.4 s, but is negligible with managed memory. Due to the expected
page faults when using managed memory on multiple devices, we
observe some slightly imperfect parallelism, while it is flawless
with pinned memory. ArctyrEX therefore allows user to store
ciphertexts either in host pinned or managed memory, for example
depending on the amount of system memory which can limit the
availability of pinned memory. All experiments presented in the
rest of this paper use pinned host memory.

Coordinating Multiple Devices

A strawman approach to assign tasks to multiple workers involves
having a single producer thread and a set of worker/consumer
threads. When using multiple GPUs, each worker thread consumes
an assigned batch from the producer and outsources the computa-
tion to a dedicated GPU. This approach is simple to implement, but
requires numerous synchronizations between CPU threads, which
negatively impacts scalability by introducing idle periods on the
GPUs when CPU threads fail to provide them computation.

Conversely, a more intuitive method involves utilizing a single
host thread that will submit work asynchronously to different de-
vices. On each device, we create a pool of CUDA streams, so that we
can submit multiple concurrent CUDA kernels on this device. The
execution of a single wave therefore consists of taking each indi-
vidual batched kernel from the wave, selecting a CUDA stream on
the device on which our scheduling algorithm assigned the batched
kernel (e.g., with a round-robin strategy), and submit the kernel
in this CUDA stream. Since waves must be executed in-order, we
need to ensure that the execution of a wave does not start until the
previous wave has been fully processed. A simple approach would
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Algorithm 2: ArctyrEX Dispatch Algorithm
Input: 𝑙𝑒𝑣𝑒𝑙𝑠 , 𝑛𝑢𝑚𝑊𝑜𝑟𝑘𝑒𝑟𝑠

1 𝑛𝑠𝑡𝑒𝑝𝑠 = 𝑏𝑎𝑡𝑐ℎ𝑒𝑑_𝑤𝑎𝑣𝑒𝑠.𝑠𝑖𝑧𝑒 ()
2 for𝑤𝑎𝑣𝑒 in 𝑏𝑎𝑡𝑐ℎ𝑒𝑑_𝑤𝑎𝑣𝑒𝑠 do
3 for 𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 in𝑤𝑎𝑣𝑒.𝑠𝑖𝑧𝑒 () do
4 // Dispatch GPU batches across GPUs
5 𝑑𝑒𝑣_𝑖𝑑 = 𝑏𝑎𝑡𝑐ℎ_𝑖𝑑 % 𝑛𝑢𝑚𝑊𝑜𝑟𝑘𝑒𝑟𝑠 ;
6 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑏𝑎𝑡𝑐ℎ(𝑏𝑎𝑡𝑐ℎ𝑒𝑠 [𝑏𝑎𝑡𝑐ℎ_𝑖𝑑], 𝑑𝑒𝑣_𝑖𝑑);
7 𝑛𝑒𝑒𝑑_𝑠𝑦𝑛𝑐 = (𝑠𝑡𝑒𝑝 == 𝑛𝑠𝑡𝑒𝑝𝑠 − 1);
8 𝑓 𝑒𝑛𝑐𝑒_𝑜𝑛_𝑑𝑒𝑣𝑖𝑐𝑒𝑠 (𝑛𝑒𝑒𝑑_𝑠𝑦𝑛𝑐);

consist of submitting all kernels in a wave on all devices, and then
having the host thread wait for the completion of all work on all
devices. Waiting for computation to complete from the host how-
ever introduces some inefficiency, as devices become idle during
the synchronization phase, until the next phase has been submitted.
Any potential load imbalance or jitter on a device may also reflect
on other devices which could wait longer than expected to get more
work. Instead of blocking devices, we have therefore implemented
a non-blocking synchronization fence primitive which ensures that
the work in a CUDA stream cannot start running until all work
submitted previously in all other streams has been done. These
fences are implemented by the means of CUDA events which are
asynchronously inserted in the CUDA streams. After inserting an
event in each stream, we insert a non blocking CUDA operation
which synchronizes one of our CUDA streams with all of these
events. We then insert another event in that stream, and make
sure all other streams wait for that event. Event insertions and
dependency declarations between an event and a stream can be
performed asynchronously, ahead of time, and therefore do not
require the host thread to block during the execution. These event-
based synchronizations are implemented using hardware features,
which is much more efficient that having the host thread block the
entire device. This ensures that successive waves can be executed in
order, without ever blocking the submission flow of asynchronous
operations, until the very end of the circuit evaluation.

With this distribution methodology (Algorithm 2), we observe a
speedup of approximately 12% over the strawman approach for an
encrypted dot product benchmark executed on an NVIDIA DGX
A100. This may appear to be a moderate improvement, but more
than 99% of the circuit evaluation is spent executing CUDA kernels.
Therefore, we have a close to optimal scheduling strategy over
multiple devices, which is essential for the scalability of ArctyrEX
according to Amdhal’s law. This also indicates that the latency of
result retrieval and synchronizations are almost completely hidden.

Batched Kernels

Due to the relatively small size of TFHE ciphertexts (compared to
other FHE schemes), it is possible to process many FHE gate opera-
tions at the same time on GPUs over a large number of ciphertexts.
Prior works have either launched a separate kernel for every gate
evaluation [26] or allow for “vectorized” gates (such as performing
a bitwise NAND between two 32-bit ciphertext arrays) [50]. Con-
versely, we observe that a better approach for general computation
is to leverage a kernel capable of executing arbitrary numbers of

gates of any supported type. The ArctyrEX backend utilizes a
single kernel for each batch of gates that launches with 𝑁 thread-
blocks of 512 threads each, where 𝑁 indicates the number of gates.
This approach is more performant compared to the cuFHE library
that initiates host-to-device and device-to-host transfers for each
logic gate. This allows each worker in the runtime environment
to launch one kernel for each batch received from the coordina-
tor, avoiding additional kernel launch overheads. Additionally, this
technique also allows the GPU to determine the best utilization
strategy for the SMs, instead of relying on users to distribute gates
on a per SM basis. Grouping gates into homogeneous gates saves
memory bandwidth as we only copy the opcode value once per
batched kernel, and the generated code is more regular and requires
less registers, increasing the occupancy of our CUDA kernels [52].

Designing batched CUDA kernels which do not require blocking
the submitting host thread is also challenging. These kernels indeed
need to access buffers with the description of the work to perform,
such as the location of the input ciphertexts. We therefore adopt a
strategy which consists of assigning such a buffer to each CUDA
stream of our pool, and fills them asynchronously from the host
using a host callback. As a result, our asynchronous batched ker-
nels consist of 1) selecting a CUDA stream on the target device, 2)
submitting a host callback that will update the buffer associated to
this stream, and 3) launching a CUDA kernel in this stream which
will process the batch described using this buffer. Assigning each
CUDA stream a unique buffer requires a limited memory footprint,
and ensures there is no concurrent buffer update. This also avoids
the use of relatively expensive asynchronous allocations around all
asynchronous kernels.

NTT Implementation Details

The performance of CGGI bootstrapping is largely determined by
the DFT used to perform polynomial multiplication. Both nuFHE
[50] and cuFHE [26] use the NTT for this operation, and employ
the same strategy in terms of NTT parameters. We opt to use
these parameters as well, since they provide multiple key optimiza-
tions that reduce the NTT latency. First, we utilize the modulus
𝑄 = 264 − 232 + 1, which simplifies modular reduction and sup-
ports NTTs up to size 232. Lastly, we use the primitive element
𝑔 = 12037493425763644479 that allows most multiplications in the
NTT algorithm to become bitshifts modulo 𝑄 .

6 Experimental Evaluation

We employ a series of benchmarks representing realistic compu-
tational workloads with FHE to demonstrate the efficacy of Arc-
tyrEX, encompassing areas such as privacy-preserving machine
learning, linear algebra applications, and cryptographic bench-
marks. All experiments were run on an NVIDIA DGX A100, which
consists of 8 A100 GPUs and a dual-socket AMD EPYC 7742 CPU
with 64 cores each (a total of 128-cores running 256 threads with si-
multaneous multithreading). We believe that this high-performance
CPU comprises a fair baseline to our CUDA-accelerated framework
running on up to 8 A100 GPUs as it constitutes a commonly used
datacenter CPU for high-performance applications. Additionally,
we compare each benchmark against the state-of-the-art Concrete
library, which also incorporates GPU acceleration capabilities for
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Figure 8: Logistic Regression Inference: We employ 32-bit words for the small approximation (i.e., evaluating four terms of the

Maclaurin series) and a 64-bit wordsize for the large approximation that evaluates six terms of the Maclaurin series to avoid

overflow. We observe a better scaling trend for the higher accuracy LR because it exhibits wider levels.

Figure 9: Neural Network Inference: The encrypted weight variant represents the scenario where the computing party does not

own the model, unlike the variant with plaintext weights. We observe a roughly 2× speedup when plaintext weights are used.

WIDER LEVELS

NARROW LEVELS

Figure 10: Topology of Machine Learning Benchmarks: For LR inference, the large variant uses a more accurate sigmoid

approximation. It is much deeper due to a larger word size and more polynomial terms evaluated. The neural network plaintext

weight variant exhibits a shorter critical path and is composed of much fewer gates overall.

the CGGI cryptosystem. When comparing directly against Con-
crete, we utilize 2 A100 GPUs for both the ArctyrEX and Concrete
backends. Unless otherwise indicated, all benchmarks were run
with parameters corresponding to 128 bits of security based on
the BKZ-beta classical cost model provided by the state-of-the-art
LWE estimator framework [4]. Specifically, for TRLWE ciphertexts
used in bootstrapping, we utilize a ring dimension of 1024 and for
TLWE ciphertexts we utilize a dimension of 630. These are the same
TRLWE/TLWE parameters employed by the TFHE library [18] for
their parameter set corresponding to 128 bits of security.

Encrypted Linear Algebra Benchmarks

Motivated by image processing and machine learning, we bench-
mark ArctyrEX using three tensor multiplication algorithms on
16-bit encrypted data: a dot product of two vectors (length 500), a
matrix-vector multiplication (125-size vector and 125 × 4 matrix),
and a matrix multiplication (10×10matrices). Our detailed analysis
is presented in Appendix A.

In summary, ArctyrEX on one A100 GPU runs 6.1× faster than
on a 256-thread CPU, and 8 A100s run 42.5× faster, following a

linear speedup with more GPUs. Vector addition is 4× faster on
8 GPUs. Concrete can perform vector addition about 35.5× faster
than ArctyrEX, due to its ability to pack multi-bit values in a
single ciphertext and its natively support for addition. Conversely,
ArctyrEX is 29.3× faster than Concrete for vector dot product. For
matrix-vector product, ArctyrEX is 11.6× faster than Concrete
and 14× faster for 10 × 10 matrix multiplication.

Encrypted Machine Learning Applications

One of the most widely explored use-cases for FHE is privacy-
preserving machine learning as a service. We consider two distinct
scenarios: one where the model is owned by the cloud server and
another where the client or a third party owns the ML model. For
the former, the network parameters are kept in plaintext form and
can benefit from faster plaintext-ciphertext operations. Conversely,
when the cloud doesn’t own the model, the network parameters
are encrypted as well as the classification inputs. The majority of
existing works demonstrating ML inference with FHE adopt the
first scenario as it is generally much more efficient [12, 23, 29].
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Our analysis considers two important machine learning proce-
dures for encrypted classification in the form of logistic regression
(LR) inference and neural network (NN) inference. Logistic regres-
sion is a popular algorithm geared for binary classification and con-
sists of a fully-connected layer (a matrix-vector product between
trained weights and input data) as well as a non-linear sigmoid
activation function. For this benchmark, we perform binary classifi-
cation for datasets with four attributes, such as the Iris dataset [28].
The key bottleneck in encrypted LR inference is approximating
the sigmoid function ( 1

1+𝑒−𝑥 ), since it is not possible to evaluate
it directly. Therefore, we employ a polynomial approximation by
evaluating terms of the Maclaurin series. In general, when approxi-
mating nonlinear activation functions, there is a trade-off between
accuracy and computational complexity. We show this trade-off
withArctyrEX through the use of an approximation that evaluates
the first four terms, and one that evaluates the first six. Figure 8
shows diminishing returns when increasing the number of GPUs
due to the large critical path and relatively thin circuit levels of
the benchmark in Figure 10. Using 8 GPUs with the more accurate
sigmoid approximation still outperforms the CPU implementation
with 256 threads by 24.4×. Concrete is approximately 4× faster than
ArctyrEX for the less accurate approximation, owing to its high
efficiency for multiplications with constants and additions. How-
ever, Concrete is unable to support the larger bit-width required for
the more accurate approximation. On the other hand, ArctyrEX
supports arbitrary precision and bit-widths.

Neural networks constitute a more complex benchmark than
logistic regression, which can be viewed as a small single layer
neural network. These ML architectures consist of a series of lin-
ear (i.e., fully-connected and convolutional layers) and non-linear
layers (i.e., activation functions). We employ the same network
architecture used by FHE-DiNN [12] for our evaluations. The net-
work consists of two fully-connected layers with a sign activation
function to classify the MNIST dataset of handwritten digits. While
fully-connected layers are well-suited to HE cryptosystems that
natively support addition and multiplication primitives, the sign
activation function is very well-suited for CGGI, as the encrypted
sign bit can be extracted for free since each individual ciphertext
encodes one bit of information. We consider two variants of this
network that differ in whether or not the network parameters are
encrypted and both achieve an accuracy of 96% for MNIST classifi-
cation. The execution times across both configurations are depicted
in Figure 9 while Figure 10 presents the characteristics of these
workloads. As expected, the variant where the cloud server does
not own the proprietary network (i.e., using encrypted weights)
has approximately 2× higher latency because of the increased num-
ber of ciphertext-ciphertext operations. Relative to Concrete, we
observe that ArctyrEX is two orders of magnitude slower for
the variant with plaintext weights. This is primarily attributed to
the low cost of constant multiplications with Concrete. On the
other hand, ArctyrEX is approximately 17× faster for the variant
with encrypted weights. We remark that both FHE-DiNN and RED-
sec [29] achieve lower overall latencies for high-accuracy MNIST
classification with plaintext weights (1.7 seconds and 3.6 seconds
respectively), but utilize techniques only applicable to neural net-
work inference. For instance, both approaches utilize a modified
bootstrapping technique to evaluate the sign activation function

Table 1: AES-128 Decryption: ArctyrEX performs com-

petitively with state-of-the-art application-specific frame-

works for transciphering with AES. We do not consider key-

scheduling as prior works have opted to omit this step in

favor of sending encryptions of the pre-generated round

keys. All frameworks use parameter sets corresponding to

128 bits of security, with the exception of Gentry et al. [32]

which is configured for approximately 123 bits of security.

Framework Scheme Hand-Tuned Time (s)

ArctyrEX (1xA100) CGGI No 45
ArctyrEX (2xA100) CGGI No 30

Google Transpiler [35] CGGI No 243
HELM [36] CGGI No 86

Concrete (2xA100) [19] CGGI No 9211
Stracovsky et al. [58] CGGI Yes 252
Trama et al. [59] CGGI Yes 28
Wang et al. [61] CGGI Yes 28
Fregata [62] CGGI Yes 9

Gentry et al. [32] BGV Yes 1050
Aharoni et al. (GCM) [2] CKKS Yes 417
Aharoni et al. (CTR) [2] CKKS Yes 99

across multi-bit encodings. Other works aim to maximize infer-
ence throughput with other FHE schemes that allow for batching
and SIMD-style computation. CryptoNets [33] and Faster Cryp-
toNets [23] utilize BFV to classify MNIST in 39 and 250 seconds
respectively. However, both can classify thousands of independent
inputs simultaneously.

We emphasize that the inclusion of these two ML benchmarks
aims to showcase the AI capabilities with CGGI. Other AI-based
demonstrations using alternative FHE schemes, such as CKKS [8,
42–44, 53, 66, 68], are listed in Appendix C.

AES-128 Decryption

At first glance, it seems odd to compute an encryption algorithm
homomorphicallywhen the data is already encrypted. However, this
enables an exciting strategy called transciphering that dramatically
reduces the communication overhead associated with FHE [5, 22].
Instead of sending large HE ciphertexts to the cloud, the client
can send encryptions generated with a traditional block or stream
ciphers that result in little to no data expansion. Then, the cloud
can homomorphically decrypt the received symmetric ciphertext by
evaluating the corresponding decryption algorithm of the chosen
cipher using an homomorphic encryption of the symmetric key.
For the CGGI cryptosystem at 128 bits of security, this strategy can
decrease the communication overhead associated with the client
sending encrypted inputs by a factor of 20000×.1

Our analysis employs the Advanced Encryption Standard (AES)
cipher, which is a ubiquitous block cipher. AES is well-suited to
evaluate CGGI cryptosystems because each round is primarily com-
posed of bitwise operations. In terms of design considerations, we
implement the SubBytes step as a sequence of lookups instead of

1For the default LWE dimension of 630 with 32-bit polynomial coefficients, each
plaintext bit expands to (630 + 1) · 32 bits when encrypted [18, 19].
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computing the S-boxes on the fly; we note that computing the Galois
Field arithmetic, and computing the multiplicative inverse, is more
expensive than performing a lookup that maps an encrypted input
byte to one of 256 precomputed entries. Notably, only the decryp-
tion circuit is needed to perform transciphering as this operation
converts AES ciphertexts to HE ciphertexts.

Table 2: AES-128 Throughput: While AES decryption does

not exhibit enough parallelism to saturate more than two

A100 GPUs, we can use the remaining GPUs to decrypt more

blocks in parallel. Our approach is beneficial for downstream

applications that employ TFHE.

Framework Blocks Scheme

Throughput

(blocks/s)

ArctyrEX (1xA100) 1 CGGI 0.02
ArctyrEX (2xA100) 1 CGGI 0.03
ArctyrEX (4xA100) 2 CGGI 0.07
ArctyrEX (8xA100) 4 CGGI 0.13
Gentry et al. [32] 180 BGV 0.17

Aharoni et al. (GCM) [2] 32768 CKKS 78.6
Aharoni et al. (CTR) [2] 32768 CKKS 331

Table 1 depicts the latency of ArctyrEX for decrypting one
block homomorphically with AES-128 for one and two A100 GPUs.
Additionally, Table 2 shows the throughput achieved with up to 8
A100s. We note that the decryption circuit is not wide enough to
yield any additional benefits for more than two A100 GPUs. Arc-
tyrEX exhibits significantly lower latency relative to the original
implementation of AES with FHE [32], which utilizes the BGV cryp-
tosystem (albeit on a Lenovo X230 laptop with an Intel i5 processor).
Additionally, ArctyrEX outperforms several works based on CGGI
[19, 35, 36, 58]. Both Trama et al. [59] and Wang et al. [61] are
marginally faster, but both are application-specific and employ opti-
mization techniques unique to AES evaluation. Fregata [62] is also
application-specific and can evaluate the AES decryption circuit
homomorphically in approximately 9 seconds on a multi-core CPU.
Notably, Fregata employs a bespoke packing strategy which may
not be amenable to downstream operations. On the other hand, the
ArctyrEX AES evaluation yields 128 output ciphertexts per block,
which is compatible with all downstream gates. Finally, Aharoni
et al. [2] implement GPU-accelerated AES-GCM and AES-CTR de-
cryption with the CKKS cryptosystem on an A100 GPU and achieve
high throughput due to the ability to batch tens of thousands of
blocks simultaneously. We note that the problem of transciphering
with authenticated encryption (e.g., GCM mode), which constitutes
a different decryption algorithm, is an interesting and orthogonal
direction relative to our approach and those employed by the other
works. Nevertheless, ArctyrEX achieves lower latency for a small
number of blocks.
Security and Latency Tradeoffs

All experiments presented previously utilized a security level of 128
bits; however, at the cost of lower security, one can decrease the
polynomial degree and therefore the ciphertext size. This results in
faster HE operations and reduces the overhead of bootstrapping.
For a security level of 110 bits, we utilize an LWE dimension of 512
with a noise rate of 2−15. Overall, we find that the 128-bit parameter

set results in a latency increase of approximately 1.3× for all GPU
configurations for LR inference.

7 Related Works

Prior works can be divided into two categories: FHE compilers for
general-purpose computation and GPU frameworks that reduce
the latency or improve throughput of homomorphic operations.
The former category targets the usability issue inherent in FHE
and explores automatic application-level optimizations to facilitate
efficient execution for the target backend. The ArctyrEX fron-
tend and middle-layer address these challenges as well, and can be
directly compared prior works in this line of research. The latter
category includes works that focus on FHE acceleration using both
software and hardware techniques at the primitive level, and are
also comparable to our proposed backend.

FHE Compilers

The Cingulata framework (formerly Armadillo [13]) allows users
to map C++ code into a sequence of AND and XOR gates. Cingulata
works with binary FHE contexts using the TFHE library (which
implements CGGI) and a custom BFV implementation as its back-
ends. Compared to ArctyrEX, Cingulata only supports single-core
CPU execution for CGGI. The BFV mode is parallelized on CPUs,
but does not support bootstrapping and hence cannot be used for
arbitrary general-purpose computation.

E3 is a C++ library that introduces encrypted data types for
leveraging FHE in general applications [17]. It supports a variety
of backends, including TFHE, Microsoft SEAL, and HElib, encom-
passing all major FHE schemes. Unlike ArctyrEX, E3 uses a direct
mapping to hardcoded FHE functional units and does not offer an
optimizing compiler. It also does not support any GPU-friendly
cryptographic backends and no parallelization is included.

Google’s FHE Transpiler [35] and Romeo [37] leverage logic syn-
thesis and optimizations to generate FHE programs for general com-
putation. However, both works employ generic synthesis scripts
that include optimizations not relevant to encrypted computation.
The FHE Transpiler targets TFHE and the OpenFHE implemen-
tations of the CGGI cryptosystem as backends, and can evaluate
multiple gates in parallel using interpreter mode. However, it does
not support GPUs and its parallelization strategy is not suited for
them, yielding very low device utilization. Likewise, Romeo targets
TFHE and generates an FHE program instead of interpreting it.
This approach, however, does not scale for large programs or HPC
systems as described in Section 4. Conversely, ArctyrEX offers a
novel dispatch strategy and multigate kernels that can efficiently
compute batches of any set of gates.

FHE Acceleration Frameworks

The cuFHE [26] and nuFHE [50] libraries incorporate GPU acceler-
ation of the CGGI cryptosystem. The former is a proof-of-concept
library that implements logic gate evaluations on a single NVIDIA
GPU. However, cuFHE is not configurable (i.e., only supports 80 bits
of security), has non-optimal data transfers and requires frequent
high-cost synchronization between GPU and CPU. Each cuFHE
gate evaluation requires all ciphertext inputs be copied from the
host to the device, and each output is copied back from the device to
the host. This approach is impractical for realistic circuit evaluation,
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Table 3: Comparisons with existing backends for 32-bit arith-

metic operations (taken fromMorshed et al. [46]). Most back-

ends are configured for 80 bits of security, while ArctyrEX

and Narisada et al. [49] configured for 128 bits of security. All

backends run on a single GPU besides the CPU-based TFHE

that runs on a single thread. For the GPU frameworks, a tech-

nology scaling factor was introduced for fair comparisons

(defined as the number of SMs in our A100 GPU divided by

the number of SMs of the target GPU).

Library Add (s) Mult (s)

ArctyrEX 1.70 2.83
Narisada et al. [49] 0.10 2.22
FHE Transpiler [35] 6.53 13.56
Morshed et al. [46] 1.47 25.13

TFHE [18] 7.04 489.93
nuFHE [50] 3.08 137.78
cuFHE [26] 1.50 97.5

REDcuFHE [29] 1.55 99.21

as it yields millions of large ciphertext transfers between the CPU
and GPU. Lastly, not all cuFHE computations are outsourced to the
GPU and the CPU needs to perform certain operations (such as eval-
uating the homomorphic NOT gate). Unfortunately, this defeats the
benefits gained from asynchronous CUDA kernel launches and the
CPU execution must block when it reaches a NOT gate until the GPU
has finished evaluating all prior gates, instead of continuing to do
more meaningful work. Similarly, nuFHE specializes in vectorized
gates; for instance, it can evaluate a bitwise AND operation across
64-bit operands. However, this approach is very restrictive in terms
of circuit evaluations as typically a circuit level is not composed of
one type of gate.

REDcuFHE [29] enhances cuFHE to add multi-bit plaintext sup-
port and multi-GPU support. However, it still suffers from the same
synchronization issues as cuFHE, and puts the burden of schedul-
ing and handling communication between multiple GPUs on the
programmer. ArctyrEX, on the other hand, handles all scheduling
and communication procedures automatically.

Narisada et al. [49] introduce a methodology that relies on a re-
dundant representation encoding of ciphertexts to accelerate large
bit-width arithmetic operations for CGGI through GPU accelera-
tion. As shown in Table 3, this work outperforms ArctyrEX for
32-bit addition and multiplication, but the number of implemented
primitives are limited and bitwise operations are not supported.
Additionally, the authors only provide evaluations for primitives
and do not perform experiments with encrypted applications.

Lastly, Morshed et al. [46] present a GPU implementation of
CGGI that leverages the NVIDIA cuFFT library and incorporates
a set of handwritten circuits such as vector addition and matrix
multiplication. Table 3 demonstrates that ArctyrEX outperforms
[46] by a factor of about 1.5× for a small 32-bit addition and 16×
for 32-bit multiplication (which is a significantly larger circuit). Ad-
ditionally, ArctyrEX evaluates a vector addition with 32 elements
of 32-bit integers 4.1× faster and a 16 × 16 matrix multiplication of
32-bit elements 10.6× faster. We also emphasize that all frameworks
in Table 3, aside from ArctyrEX and the Google FHE Transpiler,
require developers to write their own circuits by hand, as opposed

to automatically generating them. As such, we only evaluate 32-bit
arithmetic operations across all libraries.

A final class includes custom ASICs and FPGA implementations
of FHE to act as a co-processor to speed up the underlying FHE
arithmetic operations. However, many of these designs only sup-
port limited parameter sets [47, 54, 55, 60] and usually target other
cryptosystems that enable approximate computing [1, 56] or com-
putation with modular integers [47]. On the other hand, ArctyrEX
can support arbitrary parameters and implements the CGGI cryp-
tosystem, which is more suitable for general-purpose computation.

8 Conclusion and Future Work

ArctyrEX is an end-to-end framework for encrypted computation
that leverages GPU acceleration and incorporates novel strategies
for executing FHE algorithms efficiently. For workloads such as
neural network inference, we observe a linear speedup with increas-
ing GPUs due to the inherent circuit-level parallelism, our proposed
dispatch paradigm, and the high degree of primitive-level paral-
lelism exploited by our CUDA-accelerated CGGI backend. Likewise,
our evaluation using the AES-128 decryption benchmark shows
that ArctyrEX can achieve faster runtimes compared to other
contemporary frameworks based on CGGI, such as Concrete and
the Goggle Transpiler. Even though hand-tuned frameworks (e.g.,
[59, 61, 62]) can achieve faster performance on specific benchmarks,
our methodology is general-purpose with support for high-level
C++ programs. As a result, our approach provides a more compre-
hensive solution: for example, while individual 32-bit arithmetic
operations are not faster compared to [49], ArctyrEX offers more
capabilities to end users, such as bitwise and comparison operations.

In future work, we plan to expand our frontend to support
schemes beyond CGGI, as different schemes are better suited to
different styles of computation. For instance, computing multipli-
cations with large word sizes in CGGI is inefficient because the
underlying circuit will be very large. Other schemes, like CKKS
and BGV, support encrypting multi-bit values directly and can ac-
complish this multiplication in one primitive operation. Moreover,
these schemes can achieve high throughput by operating on vec-
tors of encrypted values. Indeed, the ArctyrEX frontend can be
adapted for this use-case; after the HLS procedure, we are left with
a high-level Verilog program that employs multi-bit operations
(such as additions, multiplications, and multi-bit multiplexers). In
the current implementation with CGGI, this Verilog is converted
directly to a Boolean circuit through logic synthesis.
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A Basic Linear Algebra Subroutines

The Basic Linear Algebra Subroutines are FHE benchmarks that
form core components of algorithms in a wide variety of fields,
such as image processing and machine learning. We focus on three
distinct tensor multiplication algorithms on 16-bit encrypted data:
a dot product of two vectors of length 500, a matrix-vector multi-
plication between a vector of length 125 and a 125 × 4 matrix, and
a matrix multiplication between two 10× 10 matrices. Additionally,
we include a vector addition between two vectors of length 500;
this benchmark was executed with a larger wordsize than the pre-
vious ones to increase its computational complexity. We compare
a 256-thread CPU execution of these tensor algorithms with our
approach running on up to 8 GPUs.

In Figure 11 and Figure 12, the dark-green bars show running
time, and the light green bars plot the speedup of GPU vs. CPU.
One A100 is 6.1× faster than the CPU reference running on the
256-threaded CPU execution model, and 8 A100s are 42.5× faster.
We show the latency of these circuits for an increasing number of
A100 GPUs and the speedup for all GPU configurations versus a
CPU configuration with 256 threads. Our analysis shows a linear
speedup with more GPUs, as our design exploits the ample circuit-
level parallelism in both synthesis and runtime phases.

Figure 13 shows the linear algebra topologies; vector addition
is more performant as the critical path is 2× shorter and the levels
remain wide. This is reflected in the execution times in Figure 11,
where the vector addition runs nearly 4× faster on 8 GPUs. Addi-
tionally, we observe that Concrete can perform an identical vector
addition in less than a second, with an overall latency reduction of
35.5× relative to ArctyrEX. We remark that this is primarily due to
Concrete’s ability to encode multi-bit values in a single ciphertext
and natively supports addition as a primitive operation. On the
other hand, ArctyrEX needs to utilize a Boolean adder to perform
the equivalent operations. However, for themultiplication-intensive
vector dot product, ArctyrEX is 29.3× faster than Concrete, which
needs to perform costly programmable bootstraps to evaluate multi-
bit multiplication. Both matrix benchmarks have very wide levels
and are well-suited for evaluation on multi-GPU systems. For a
matrix-vector product, ArctyrEX is 11.6× faster than Concrete
and 14× faster for the 10 × 10 matrix multiplication.
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Figure 11: Vector Algebra Benchmarks: All dot products are performed with 16-bit encrypted elements and the vector addition

is performed with 32-bit elements. The speedup bars are relative to the CPU implementation with 256 threads. |𝑣 | indicates the
vector length.

Figure 12: Matrix Algebra Benchmarks: All products use 16-bit encrypted elements. The speedup bars are relative to the CPU

implementation with 256 threads. |𝑣 | indicates the vector length and𝑀 refers to the dimensions of the matrices.

Figure 13: Topology of Linear Algebra Benchmarks: Vector addition is better suited for circuit for encrypted evaluation as it

exhibits wide levels and a short critical path. The matrix-vector product and matrix multiplication benchmarks exhibit ample

parallelism, with matrix multiplication being consistently twice as wide for most levels.

B Transciphering Benchmarks

In line with the AES decryption circuit benchmark presented in
Section 6, other ciphers can be utilized to accomplish transciphering
and thus reduce the overall communication overhead between client
and server. We explore two alternative constructions in the form of
the Simon and Speck sister ciphers developed by the US National
Security Agency [9]. Both are Fiestel ciphers, but Simon targets
efficient hardware performance while Speck was designed with
software in mind.

Table 4: Amortized decryption latency for Speck and Simon

Configuration Speck Round (s) Simon Round (s)

256xCPU 3.61 1.18
1xA100 0.59 0.21
2xA100 0.48 0.12

Table 4 presents the cost per round to evaluate Simon and Speck
per 128-bit block size. Overall, Simon is more efficient than Speck
because it uses strictly bitwise operations, whereas Speck has a
64-bit subtraction in each round that corresponds to a large Boolean
circuit. This is expected as Simon was specifically designed for hard-
ware deployment and therefore synthesizes to a smaller Boolean
circuit.

C AI-Based Demonstrations with FHE

Many recent studies aim to address the challenges of privacy-
preserving neural networks and transformer inference using dif-
ferent FHE schemes. For the former, both HyPHEN [44] and Neu-
Jeans [42] (built on CKKS) can perform ImageNet classification
with ResNet-18 in less than 15 seconds on an A100 GPU. On the
other hand, Kim and Guyot [43] evaluate CIFAR-100 inference with
CKKS in 255 seconds with a single CPU thread. Baruch et al. [8]
propose training strategies tuned for FHE evaluation and perform
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ResNet-18 inference in just under 7.5 minutes with an A100 GPU.
Homomorphic transformer inference is a growing research area as
a result of the popularity of services such as ChatGPT. Zimerman
et al. [68] achieved secure inference over 128 tokens for a BERT-
like transformer architecture in approximately 211 seconds with
an A100 and AMD EPYC 7763 CPU. NEXUS [66] (CKKS-based)
can evaluate BERT-base over 128 tokens in 37 seconds on 4 A100
GPUs and the deeper Llama-3-8B over 8 tokens in nearly 52 sec-
onds. Lastly, BOLT [53] evaluates BERT-base in 91 seconds with
the BFV cryptosystem in a leveled context with 2 c6i.16xlarge

AWS instances.
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