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Abstract

Geo-obfuscation serves as a location privacy protection mechanism

(LPPM), enabling mobile users to share obfuscated locations with

servers, rather than their exact locations. This method can protect

users’ location privacy when data breaches occur on the server

side since the obfuscation process is irreversible. To reduce the

utility loss caused by data obfuscation, linear programming (LP) is

widely employed, which, however, might su�er from a polynomial

explosion of decision variables, rendering it impractical in large-

scale geo-obfuscation applications.

In this paper, we propose a new LPPM, called Locally Relevant

Geo-obfuscation (LR-Geo), to optimize geo-obfuscation using LP

in a time-e�cient manner. This is achieved by con�ning the geo-

obfuscation calculation for each user exclusively to the locally rele-

vant (LR) locations to the user’s actual location. Given the potential

risk of LR locations disclosing a user’s actual whereabouts, we en-

able users to compute the LP coe�cients locally and upload them

only to the server, rather than the LR locations. The server then

solves the LP problem based on the received coe�cients. Further-

more, we re�ne the LP framework by incorporating an exponential

obfuscation mechanism to guarantee the indistinguishability of ob-

fuscation distribution across multiple users. Based on the constraint

structure of the LP formulation, we apply Benders’ decomposition

to further enhance computational e�ciency. Our theoretical anal-

ysis con�rms that, despite the geo-obfuscation being calculated

independently for each user, it still meets geo-indistinguishability

constraints across multiple users with high probability. Finally, the

experimental results based on a real-world dataset demonstrate

that LR-Geo outperforms existing geo-obfuscation methods in com-

putational time, data utility, and privacy preservation.
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1 Introduction

Among a variety of location privacy protection mechanisms (LPPMs),

geo-obfuscation has become the preferred paradigm for protecting

individual location privacy against server-side data breaches [1].

Geo-obfuscation allows mobile users to report obfuscated locations
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instead of their exact locations to servers in location-based services

(LBS). As the obfuscation process is irreversible [2], users’ exact

locations are well-protected even if the obfuscated locations are

disclosed to attackers. This is achieved by satisfying certain pri-

vacy criteria, such as geo-indistinguishability (Geo-Ind) [3], which

requires that, for any two locations geographically close, the proba-

bility distribution of their obfuscated locations should be su�ciently

close so that it is di�cult for an attacker to distinguish the two

locations based on their obfuscated representations.

Although geo-obfuscation provides a strong privacy guarantee

for users’ locations, the location errors introduced by obfuscation

can negatively impact the quality of LBS. Many recent e�orts [1, 4–

14] aim to address the quality issue caused by geo-obfuscation using

linear programming (LP) [15], of which the objective is to minimize

the utility loss with the privacy criterion like Geo-Ind guaranteed.

For the sake of computational tractability, the LP-based methods

typically discretize the location �eld into a �nite set of discrete

locations. Its decision variables, represented as an obfuscation ma-

trix, determine the probability distributions of obfuscated locations

given each possible real location.

Due to the intricate complexity of LP, generating the obfuscation

matrix directly on users’ mobile devices is not feasible. Instead, the

matrix is calculated by a server, which optimizes the matrix before

it is downloaded by the mobile devices [6]. Given that the server

lacks knowledge of users’ precise locations, the server typically

considers every location within the target area when calculating

the matrix, regardless of whether it is currently occupied by a user.

After downloading the matrix, each user selects the speci�c row

of the matrix that matches their actual location to determine the

probability distribution of the obfuscated locations. Consequently,

the LP formulation of the obfuscation matrix involves  2 decision

variables, where  denotes the number of discrete locations within

the target region. This results in a signi�cant challenge in accom-

modating a large array of locations. For instance, the inclusion

of thousands of distinct locations within a modestly sized town

escalates the number of decision variables into the millions [11]. As

compared in Table 3 in Section 6 (Related Work), most current LP-

based works limit the number of discrete locations  to up to 100.

Motivations. The traditional LP-based geo-obfuscation methods

(e.g., [6, 11]) have a high computation overhead since the LP is

formulated completely by the server side, which requires account-

ing for all locations within the target region. However, from an

individual user’s perspective, they engage only with the speci�c

row that matches their actual location. Although this single row

cannot be generated in isolation as it is linked to some other rows by

“Geo-Ind”, such constraints are only enforced between the nearby
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locations [3]. This indicates that, if the LP can be formulated locally

by each user, they only need to consider “locally relevant” loca-

tions so that the computational cost can be signi�cantly reduced.

In practical terms, when a user chooses an obfuscated location, the

relevance of how another user 100 kilometers away selects their

obfuscated location due to the Geo-Ind constraints is minimal.

Motivated by the above observation, this paper introduces a new

geo-obfuscation paradigm, termed Locally Relevant Geo-obfuscation

(LR-Geo) locations. The core idea of LR-Geo is to allow each user to

formulate the LP by themselves by focusing exclusively on their

Locally Relevant (LR), thereby streamlining the process of generat-

ing obfuscation matrices. Nevertheless, the development of LR-Geo

presents several distinct challenges:

Challenge 1: How to determine the LR location set? First, it is

important to note that even a location far from a user’s location can

have an indirect impact on the user’s obfuscation distribution since

the distant location can have higher relevance to other locations

closer to the user by the Geo-Ind constraints. Considering such a

“multi-hop” in�uence of Geo-Ind is hard to circumvent while pursu-

ing the globally optimal solution, our approach focuses on striking a

balance between optimizing the obfuscation matrix and enhancing

computational e�ciency, achieved by selecting an appropriate LR

location set.

Speci�cally, we introduce a Geo-Ind graph to describe the Geo-

Ind constraints between each nearby location pair, which also en-

ables us to quantify the “multi-hop” impact of Geo-Ind constraints

through the path distance between nodes in the graph (see Theo-

rem 3.1). Using the Geo-Ind graph, we determine the LR location

set for each user as the collection of locations whose path distance

from the user’s actual location does not surpass a prede�ned thresh-

old. Following this, we formulate the LP of LR-Geo for each user to

focus exclusively on their selected LR location set.

Challenge 2: How to calculate LR-Geo? Despite having a rel-

atively smaller LP size, the calculation of LR-Geo still needs to

be migrated to the server since (i) the computational demands

of LR-Geo remain relatively high for mobile devices, and (ii) LR-

Geo’s LP formulation involves assessing data utility for downstream

decision-making, a task typically handled by the server rather than

individual users [6]. However, each user needs to keep the LR loca-

tion set hidden from the server, as these locations could potentially

disclose the user’s actual location. As a workaround, we enable

each user to locally compute the coe�cients of the LP formulation

with server assistance and then upload these coe�cients to the

server. We demonstrate that the uploaded coe�cients can be used

by the server to solve the LP problems but cannot be reversed to

unveil the LR location of the user (by examples in Section 4.7 and

experimental results in Fig. 13 in Section 5).

Challenge 3:How to guaranteeGeo-Ind acrossmultiple users?

Given that each user conceals their LR location set from the server,

formulating Geo-Ind constraints across users in LP becomes an-

other challenge for the server. To address this, we enable the server

to apply exponential distribution constraints on a selected subset of

obfuscated locations for each user. We demonstrate that adhering to

these constraints ensures that the chosen obfuscated locations meet

Geo-Ind constraints across users even though their obfuscation is

calculated in an independent manner (see Theorem 4.4). Moreover,

our experimental �ndings in Fig. 11 indicate that while unselected

obfuscated locations do not theoretically guarantee Geo-Ind, they

still possess a high probability (e.g. 99.81% on average) of meeting

Geo-Ind constraints in practice. Additionally, by integrating the

exponential mechanism with LP, the constraint matrix of LR-Geo

follows a ladder block structure, making the problem well-suited to

Benders’ decomposition, which further improves the computation

e�ciency of solving LR-Geo.

Experimental results. Lastly, in our experiment, we assessed LR-

Geo’s performance by simulating its application to road map data

sourced from Rome, Italy [16]. The results revealed that LR-Geo

e�ciently generates obfuscation matrices within 100 seconds for

cases involving up to 1500 locations in the target area. This marks

a substantial enhancement over existing LP-based geo-obfuscation

techniques (as listed in Table 3), which can only handle up to 100

locations. Furthermore, our experimental results show that LR-

Geo’s obfuscation matrix not only adheres closely to the theoretical

lower bound of expected cost, as established in Theorem 4.7 and

Theorem 4.6, but also outperforms contemporary benchmarks

[3, 11, 17] in terms of time e�ciency and cost-e�ectiveness.

Contributions. In summary, the contributions of this paper are

summarized as follows:

1. We introduce LR-Geo, a new geo-obfuscation approach that sig-

ni�cantly reduces the computational overhead of geo-obfuscation

while maintaining a high level of optimality.

2. We develop a remote computing framework that allows for the

o�oading of LR-Geo computations to a server while preserving

the privacy of each user’s LR location set.

3. To achieve Geo-Ind across multiple users’ obfuscation matrices,

we integrate exponential distribution constraints within the LP

computational framework. Given LR-Geo’s constraint structure,

we apply Benders’ decomposition to enhance computational time

e�ciency.

4. Our experimental results demonstrate that LR-Geo not only ap-

proximates optimal solutions with considerably lower computa-

tional costs but also outperforms existing state-of-the-art methods

in time e�ciency and cost-e�ectiveness.

The rest of the paper is organized as follows: The next section

provides the preliminaries of geo-obfuscation. Section 3 describes

the motivation and Section 4 designs the algorithm. Section 5 eval-

uates the algorithm’s performance. Section 6 presents the related

work and Section 7 makes a conclusion.

2 Preliminary

In this section, we introduce the preliminary knowledge of geo-

obfuscation, including its framework in LBS in Section 2.1, its

privacy criteria Geo-Ind in Section 2.2, and the LP formulation in

Section 2.3. The main notations used throughout this paper can

be found in Table 4 in Section A in Appendix.

2.1 Geo-Obfuscation in LBS

We consider an LBS system composed of a server and a set of users,

where users need to report their locations to the server to receive

the desired services. Like [3, 6, 9, 18], we assume that the server

is not malicious, but it might su�er from a passive attack where

attackers can eavesdrop on the users’ reported locations breached by

the server. In this case, users can hide their exact locations from the

server using geo-obfuscation mechanisms [6].
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In general, a geo-obfuscation mechanism can be represented as

a probabilistic function, of which the input and the output are the

user’s real location and obfuscated location, respectively. For the

sake of computational tractability, many existing works like [6, 9,

11, 19, 20] approximate the users’ location �eld to a discrete location

set V = {E1, ..., Eć }. In this case, the obfuscation function can be

represented as a stochastic obfuscation matrix Z = {Iğ,ġ }ć×ć , where

each Iğ,ġ denotes the probability of taking Eġ as the obfuscated

location given the actual location Eğ .

Besides hiding the users’ actual location, the obfuscation matrix

Z is designed to minimize the utility loss (or cost) caused by geo-

obfuscation. As an example, in this paper, we focus on a category

of LBS where a mobile user needs to physically travel to a speci�ed

destination to receive service (e.g., hotel/restaurant recommenda-

tions [21]) or implement a task (e.g., spatial crowdsourcing [22, 23]).

Typically, these LBS types strive to minimize travel expenses for

users. Accordingly, we de�ne the cost resulting from geo-obfuscation

as the distortion between the estimated travel distances (using ob-

fuscated locations) and the actual travel distances incurred by users.

Note that our approach in this paper can be readily adapted in other

LBS applications as long as the explicit relationship between cost

and location obfuscation can be established.

To calculate the traveling costs, global LBS information such

as tra�c conditions and destination distribution is needed. Since

global information is hard to maintain by individuals, many existing

works like [1, 6, 7, 10, 11] let the server manage the computation of

the obfuscation matrix. Speci�cally, before reporting the location

to the server, each privacy-aware user downloads the obfuscation

matrix Z from the server. Given the current location Eğ , the user

�nds the corresponding row zğ = [Iğ,1, ..., Iğ,ć ] in the obfuscation

matrix, based on which the user then randomly selects an obfus-

cated location to report. In what follows, we call zğ the obfuscation

vector of the location Eğ .

2.2 Geo-Indistinguishability

Although the server takes charge of generating the obfuscation

matrix, the users’ exact locations are still hidden from the server

since the obfuscated locations are selected in a probabilistic manner

[6]. In particular, the obfuscation matrix Z is designed to satisfy the

privacy criterion Geo-Ind, indicating that even if an attacker has

obtained the users’ reported (obfuscated) location and Z from the

server, it is still hard for the attacker to distinguish the users’ exact

locations from the nearby locations.

We use 3Ĭğ ,ĬĠ to denote the Haversine distance (the angular dis-

tance on the surface of a sphere) between Eğ and E Ġ . Given a thresh-

old W > 0, we call two locations Eğ and E Ġ “neighboring locations” if

their distance 3Ĭğ ,ĬĠ f W . Geo-Ind is formally de�ned in Def. 2.1 [3]:

De�nition 2.1. (Geo-Ind) An obfuscation matrix Z satis�es (n,W)-

Geo-Ind if, for each pair of neighboring locations Eğ , E Ġ ∈ V with

3Ĭğ ,ĬĠ f W , the following constraints are satis�ed

Iğ,ġ − 4
ĊĚĬğ ,ĬĠ I Ġ,ġ f 0, ∀Eġ ∈ V, (1)

i.e., the probability distributions of the obfuscated locations of Eğ and

E Ġ are su�ciently close. Here, n is called the privacy budget. Higher n

implies a lower privacy level.

In what follows, we use E =
{

(Eğ , E Ġ ) ∈ V2 |3Ĭğ ,ĬĠ f W
}

to denote

the set of neighboring locations inV .

Note that the existing works like [6, 9, 11] do not require Geo-Ind

to be satis�ed only between locations that are within a distance

smaller thanW . Here, we considerW as it forms amore general model,

i.e., W =∞ when W is not included in De�nition 2.1. In practical, the

choice ofW depends on the user’s privacy requirements, de�ning the

range within which the user’s location should be indistinguishable.

For example, if a student wants to obscure their location within a

campus, selecting W to cover the entire campus would be su�cient.

2.3 LP Problem Formulation

Constraints. In addition to satisfying Geo-Ind in Equ. (1), for every

real location Eğ , the total probability of its obfuscated locations

should be equal to 1:
∑ć
ġ=1 Iğ,ġ = 1, ∀Eğ ∈ V (probability unit measure). (2)

Objective function. Given the target location EĢ , the real location

Eğ , and the obfuscated location Eġ , we de�ne the cost of LBS as the

discrepancy between the estimated travel cost tcĬğ ,ĬĢ and the actual

travel cost tcĬġ ,ĬĢ to reach EĢ

XĬğ ,Ĭġ ,ĬĢ =
�

�tcĬğ ,ĬĢ − tcĬġ ,ĬĢ
�

� . (3)

We assume that the server has the prior distribution of the target

locations q = [@1, ..., @ć ], where @Ģ (; = 1, ...,  ) denotes the proba-

bility that a target’s location is at EĢ . The objective is to minimize

the expected cost caused by the obfuscation matrix Z:

L (Z) =
∑ć
ğ=1 ?ğ

∑ć
ġ=1

∑ć
Ģ=1 @ĢXĬğ ,Ĭġ ,ĬĢ Iğ,ġ =

∑ć
ğ=1 cğz

¦
ğ , (4)

where ?ġ (: = 1, ...,  ) denotes the prior probability that a user’s

real location is at Eġ , cğ =
[

2Ĭğ ,Ĭ1 , ..., 2Ĭğ ,Ĭć
]

denote the cost (cost)

coe�cients of zğ in the objective function, and each 2Ĭğ ,Ĭġ is given

by

2Ĭğ ,Ĭġ = ?ğ
∑ć
Ģ=1 @ĢXĬğ ,Ĭġ ,ĬĢ (8 = 1, ...,  ) . (5)

In related works such as [3, 18], utility loss is typically de�ned as

the distance between original and obfuscated locations. However,

this metric does not fully capture the utility loss in many vehicle-

based applications, as they fail to consider the constraints imposed

by vehicle mobility [11]. Therefore, in this paper, we de�ne utility

loss based on downstream decision-making in data processing.

Speci�cally, in our experiments, we focus on spatial crowdsourcing,

where utility loss of Z is measured by the expected estimation error

in travel cost caused by Z.

Problem formulation. To satisfy the constraints of Geo-Ind (Equ.

(1)) and the probability unit measure (Equ. (2)), and minimize L (Z)

(Equ. (4)), the problem of LR obfuscation matrix generation (OMG)

can be formulated as the following LP problem:

min L (Z) =
∑ć
ğ=1 cğz

¦
ğ (6)

s.t. Equ. (1)(2) are satis�ed. (7)

3 Motivations and Observations

Although the OMG problem outlined in Equ. (6)(7) can be solved

using classical LP algorithms such as the simplex method [15], it

is hampered by high computational costs. The time complexity of

an LP problem depends on the number of decision variables and

the number of linear constraints [15]. In OMG, the decision matrix
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3Ĭğ ,Ĭ̂ğ and 3Ĭġ ,Ĭ̂ġ , denoted by Xmax (e.g. Xmax = 28.28 in Fig. 8(a)),

based on the distribution of V̂ . In this case, the server can derive

that the matched V value is in the interval [2̂Ĭğ ,Ĭġ − Xmax, 2̂Ĭğ ,Ĭġ +

Xmax] = [171.72, 228.28] ( 3©), which might cover other V values in

the cost reference table, like 205m and 182m in Fig. 8(a). In this case,

the attacker cannot identify which V is the true Vğ,ġ in the interval,

and the more V values fall in the interval, the more di�cult for the

attacker to �nd the true Vğ,ġ .

Fig. 8(b) gives another example of how many V values can possi-

bly match an estimated cost coe�cient using the real world map

information (more details can be found in our experiment in Section

5). In this example, the server creates a cost reference table cover-

ing 900 locations in V̂ by a grid map with each cell size equal to

100m. The maximum distance from a location in Nģ and Oģ to its

nearest location in V̂ is 70.7m. Given an estimated cost coe�cient

2̂ý = 400m, its corresponding Vý is in the interval [400m−70.7m,

400m+70.7m], where 114 V values fall in this interval. On average,

each cost coe�cient is matched by 102.98 rows of the cost reference

table. The more comprehensive experimental results can be found

in Fig. 13 in Section 5.

5 Performance Evaluation

In this section, we conduct a simulation using real-world map

information to evaluate the performance of LR-Geo in terms of

computation e�ciency, privacy, and cost, with the comparison

of several benchmarks [3, 11, 17]. Speci�cally, we focus on the

application of vehicular spatial crowdsourcing [11], such as Uber

like platform [27], where vehicles need to physically travel to a

disignated location to complete the task1.

We �rst introduce the settings of the experiment in Section 5.1,

and then evaluate the performance of di�erent geo-obfuscation

methods in Section 5.2 and Section 5.3.

5.1 Settings
5.1.1 Dataset. We selected the city “Rome, Italy” as the target

region (the bounding area with coordinate (;0C = 41.66, ;>= =

12.24) as the south-west corner, and coordinate (;0C = 42.10, ;>= =

12.81) as the north-east corner). Similar to existing works [1, 6, 9],

we approximate the location �eld by partitioning the entire target

region into a 40 × 40 grid. Each grid cell represents a discrete

location within the location set, and the distances between cells are

calculated based on the travel distance between the centers of the

cells. To calculate the travel distances, we retrieve the road map

information of Rome, including both the node set and edge set,

using OpenStreetMap [23]. We compute the shortest path distances

between cell centers on the road map using Dijkstra’s algorithm

[24]. Additionally, we assume a uniform distribution of targets.

5.1.2 Benchmarks. We compare LR-Geo with the following bench-

marks, which are all based on Geo-Ind:

(1) LP-based geo-obfuscation (labeled as “LP”) [11]: LP considers the

network-constrained mobility features of the vehicles and employs

LP formulated in Equ. (6)(7) to minimize the expected cost.

(2) Laplacian noise (labeled as “Laplace”) [3]: Laplace adds a polar

Laplacian noise q to the real location, i.e., Eğ + q and approximate

it by the closest location Eġ = argminĬ∈V 3Ĭ,Ĭğ+č .

1The MATLAB source code of LR-Geo is available at: https://github.com/chenxiunt/
LocalRelevant_Geo-Obfuscation

(3) Exponential mechanism (labeled as “ExpMech”) [3]: In ExpMech,

the probability distribution of the obfuscated location of each real

location Eğ follows a polar Laplace distribution Iğ,ġ ∝ 4−ĊęĬğ ,Ĭġ /2.

(4) “ConstOPTMech” or “ConstOPT” [17]: Like our approach, Con-

stOPT applies the exponential distribution constraint for a subset

of the obfuscation probabilities and uses LP for the optimization of

the remaining obfuscation probabilities, to balance the utility and

scalability of the data perturbation method.

(5) “LR-Geo-F” : In addition to the four benchmarks mentioned

above, we also consider LR-Geo with the neighbor threshold W set

to an in�nite value. In this case, the Geo-Ind Graph is fully con-

nected, which aligns with existing works such as [6, 9, 11], which do

not require Geo-Ind to be satis�ed only between locations that are

within a distance smaller thanW . We use "LR-Geo-F" to label LR-Geo

with W =∞, where "F" stands for "fully connected Geo-Ind Graph".

5.1.3 Metrics. We measure the following metrics to evaluate the

performance of our method and the benchmarks:

(i) Computation time, which is de�ned as the amount of time

to calculate an obfuscation matrix. The experiments are per-

formed by a desktop with 13th Gen Intel Core i7 processor,

16 cores. We used the Matlab LP toolbox linprog, with the

algorithm “dual-simplex” [28] to solve LP.

(ii) Expected cost L(Z): L(Z) is de�ned in Equ. (4), meaning the

expected estimation error of traveling cost caused by Z.

(iii) Geo-Ind violation (GV) ratio, which is de�ned as the ratio:

# of (Iğ,ġ , I Ġ,ġ ) violating Geo-Ind in Equ. (1)

# of (Iğ,ġ , I Ġ,ġ ) that should satisfy Geo-Ind in Equ. (1)
. (34)

The GV ratio re�ects how the derived obfuscation matrix

can achieve Geo-Ind. In the following experiment, by default,

we set n by 10.0km−1, the cell size of the cost reference table

by 0.1km, the LR distance threshold � by 20km.

5.2 Computation E�ciency

5.2.1 Comparison with the benchmarks. Table 1 compares the com-

putational times for LR-Geo against four benchmark methods,

where the number of locations  equals 100, 200, 300, and 400,

respectively. The table reveals that while LR-Geo has higher

computational time compared to Laplace and ExpMech, it

signi�cantly outperforms both LP and ConstOPT in terms

of e�ciency.

Speci�cally, at  = 200, LR-Geo demonstrates a remarkable re-

duction in computation time, showing a decrease of 99.51% and

98.12% compared to LP and ConstOPT, respectively. For both LP and

ConstOPT, computation times exceed the 1800-second threshold

when  g 300. This enhanced e�ciency of LR-Geo is due to its

strategic approach of con�ning the set of locations under consid-

eration to LR locations only. Conversely, the alternative LP-based

methods evaluate every location within the targeted area, resulting

in substantial computational overhead.

Additionally, the computation time of LR-Geo is 87.71% lower

than that of LR-Geo-F, as LR-Geo-F imposes Geo-Ind constraints

for all pairs of locations, not just those with a distance smaller than

W . This leads to a higher number of linear constraints in the LP

formulation and, consequently, greater computational overhead.

Nevertheless, the computation time of LR-Geo-F is still 99.26% and

97.18% lower than that of LP and ConstOPT at = 200, respectively.
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Table 1: Computation time (seconds) of di�erent methods.

Mean±1.96× standard deviation.

Problem size

Methods ć = 100 ć = 200 ć = 300 ć = 400

LR-Geo 1.28±1.35 1.42± 0.63 1.34±0.64 1.20±0.85

LR-Geo-F 1.63±1.00 2.14± 0.71 2.42±0.85 3.56±1.07

LP 27.31±10.31 287.50±48.28 g 1800 g 1800

ConstOPT 3.69±1.92 75.88±10.81 g 1800 g 1800

Laplace f0.005 f0.005 f0.005 f0.005

ExpMech f0.005 f0.005 f0.005 f0.005
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Figure 9: Scalability.

In addition, both Laplace and ExpMech can attain lower compu-

tation times compared to LR-Geo. This e�ciency stems from their

methodology of selecting obfuscated locations based on prede�ned

probability distributions - the Laplacian and exponential distri-

butions, respectively - bypassing the need for LP, which in turn

reduces the computation overhead. However, a notable drawback of

these two methods is their inability to accurately estimate the cost

caused by geo-obfuscation. This oversight results in an increased

cost associated with geo-obfuscation, as the chosen obfuscated

locations may lead to high traveling distances to the designated

locations.
5.2.2 Scalability. Table 1 illustrates that the computation time for

all algorithms escalates as the size of the location set  increases.

Notably, even when  reaches 400, the average computation

time for LR-Leo remains at a comparatively low �gure, ap-

proximately 0.8–1.8 seconds.

We expanded our examination of  across a wider spectrum,

from 100 to 1,600, and charted the computation times of LR-Geo in

Fig. 9(a). This �gure reveals that the computation time for LR-Geo

is maintained at the same level with an increase in  , reaching up

to 1.8 seconds. Moreover, Fig. 9(b) presents the computation times

for LR-Geo as the number of users varies from 2 to 10. As expected,

there is a noticeable rise in computation time corresponding to

an increase in the number of users. This trend is attributed to

the framework of Benders’ decomposition (introduced in Section

4.4), where the server is tasked with generating a subproblem for

each user. The increase in the number of subproblems heightens

the probability of encountering at least one subproblem that fails

to achieve optimal convergence swiftly, thereby prolonging the

convergence time.

5.3 Cost Measurement
5.3.1 Comparison with the benchmarks. Table 2 compares the ex-

pected costs incurred by various algorithms for = 100, 200, 300, 400.

It is observed that LR-Geo signi�cantly reduces the expected cost

Table 2: Cost (kilometers) of di�erent methods. Mean±1.96×

standard deviation.

Problem size

Methods ć = 100 ć = 200 ć = 300 ć = 400

LR-Geo 0.36±0.04 0.36±0.07 0.35±0.03 0.37±0.05

LR-Geo-F 0.38±0.03 0.36±0.05 0.38±0.06 0.40±0.05

ConstOPT 0.35±0.03 0.34±0.04 —— ——

LP 0.33±0.02 0.33±0.03 —— ——

Laplace 0.81±0.02 0.78±0.02 0.80±0.06 0.79±0.01

ExpMech 0.67±0.04 0.64±0.07 0.68±0.12 0.70±0.05

Lower bound 0.29±0.08 0.30±0.06 0.31±0.08 0.30±0.05
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Figure 10: Ratio of upper bound and lower bound.

compared to Laplace and ExpMech. Speci�cally, LR-Geo’s expected

cost is, on average, 54.70% and 46.64% lower than that of Laplace

and ExpMech, respectively. This e�ciency is attributed to Laplace

and ExpMech’s reliance on Laplace/Exponential distributions for

selecting obfuscated locations, which fails to accurately re�ect the

mobility constraints of vehicles within the road network, thereby el-

evating the cost. Furthermore, LR-Geo’s cost performance is nearly

on par with ConstOPT’s for  = 100, 200, 300, yet it surpasses LP

in cost at  = 100, 200, 300. Although LP is designed to achieve the

global minimum cost by evaluating all potential locations within the

target area, this approach is negated by its extensive computational

requirements. As indicated in Table 1, LP struggles to compute

obfuscation matrices within the 1800-second limit, highlighting a

critical trade-o� between cost e�ciency and computational feasibil-

ity. Finally, the cost of LR-Geo-F is 5.56% higher than that of LR-Geo

because LR-Geo-F imposes Geo-Ind constraints on all pairs of LR

locations, resulting in a smaller feasible region for the obfuscation

matrix and, consequently, higher utility loss.

5.3.2 Comparison with the theoretical bounds. To assess how close

LR-Geo can achieve the optimal, we calculate a lower bound for

the expected cost by solving the relaxed version of LR-Geo in Equ.

(31)–(32), with the �ndings presented in Table 1. Here, we introduce

the approximation ratio, de�ned as the quotient of the expected cost

derived from LR-Geo over the calculated lower bound. A smaller ap-

proximation ratio indicates a closer proximity of LR-Geo’s solution

to the optimal. The results in the table indicate that, on average, the

approximation ratio for the expected cost of LR-Geo stands

at 1.24, 1.2, 1.13, and 1.23 for = 100, 200, 300, 400, respectively.

It’s important to recognize that LR-Geo does not attain the opti-

mal solution since it operates with a constrained set of locations (LR

locations) rather than the entire location set. Furthermore, LR-Geo

does not utilize exact cost coe�cients; instead, it estimates these

coe�cients using a cost reference table. Thus, it is interesting to

test how the LR-Geo’s approximation ratio is impacted by
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Figure 13: Threat using cost coe�cient matrices.

(i) the selection of the LR locations, determined by the parame-

ter �, i.e., the LR distance threshold, and

(ii) the accuracy of the cost coe�cient estimation, determined

by the cell size of the grid map of the cost reference table.

Fig. 10(a) shows the variation in the approximation ratio of LR-

Geo as � increases from 10km to 50km. As de�ned in Equ. (11),

� in�uences the size of the LR location set Nģ , with a higher �

resulting in a largerNģ . The �gure indicates that the approximation

ratio experiences a more pronounced decrease (averaging 34.72%) as

� is increased from 10km to 20km. However, the decrease becomes

marginal (only 0.79%) when � is further expanded from 20km to

50km. This observation suggests that enhancing � contributes to

the optimality of the obfuscation matrices, yet beyond a certain

threshold (20km in this instance), additional increases in � yield

negligible improvements.

Fig. 10(b) shows the approximation ratio of LR-Geo as the cell

size increases from 0.05km to 0.275km. As expected, the approxima-

tion ratio escalates with the increase in cell size, indicating that �ner

granularity in the location’s representation within the cost refer-

ence table allows LR-Geo to more closely approximate the optimal

solution. Speci�cally, the approximation ratio remains relatively

stable and low for cell sizes up to 0.20km. Beyond this point, partic-

ularly when the cell size surpasses 0.20km, the ratio sees a marked

increase. This trend underscores the importance of maintaining a

cell size at or below 0.20km to optimize cost e�ciency.

5.4 Privacy Measure

In LR-Geo, the computation of obfuscation matrices for each user

is performed independently. While the obfuscation probabilities

that conform to the constraints of the exponential distribution

(in Equ. (19)) meet the Geo-Ind privacy criterion, as substantiated

by Theorem 4.4, the remaining obfuscation probabilities do not

guarantee Geo-Ind privacy. In this part, we examine the GV ratio as

de�ned in Equ. (34). Fig. 11 shows the GV ratios for varying numbers

of users. The �gure reveals that the GV ratio remains exceptionally

low, with a maximum of only 0.13%, demonstrating that, in practice,

the Geo-Ind constraints are exceedingly likely to be met across the

various obfuscation matrices tailored for di�erent users.

Another question is the extent to which obfuscation probabilities

violate the Geo-Ind constraint during these violations. If a pair of

obfuscation probabilities, Iğ,ġ and I Ġ,ġ , fails to satisfy the Geo-Ind

constraint—i.e., Iğ,ġ > 4
ĊĚĬğ ,ĬĠ I Ġ,ġ—we de�ne their ’Geo-Ind error

(GVE)’ as: GVE(Iğ,ġ , I Ġ,ġ ) = Iğ,ġ − 4
ĊĚĬğ ,ĬĠ I Ġ,ġ . (35)

A smaller GVE(Iğ,ġ , I Ġ,ġ ) indicates that the Geo-Ind constraint be-

tween Iğ,ġ and I Ġ,ġ is violated to a lesser extent.

Using this de�nition, we measured the Geo-Ind error for all Geo-

Ind violations as the number of users increased from 2 to 10. Figure

12 illustrates the distribution of these errors. The results show that

the Geo-Ind error reaches up to 0.021 across all experiments, and

this error tends to increase as the number of users grows. This is

because Geo-Ind violations occur between users, and as the user

count rises, the number of potential Geo-Ind violations increases,

resulting in a greater likelihood of larger Geo-Ind errors.

Finally, we investigate the potential risk associated with the

upload of cost matrices, a concern discussed in Section 4.7. We

simulate a scenario where a user uploads 100 cost matrices. We

analyze, for each cost coe�cient, the number of rows in the cost

reference table that can be mapped to that coe�cient. Intuitively, a

greater number of rows mapped to a speci�c uploaded coe�cient

suggests a broader range of potential real and obfuscated location

pairs, thereby diminishing the risk of LR location set disclosure

(noting that the real location is within the LR location set). Fig. 13

displays the number of rows mapped to the uploaded cost coe�-

cients for various grid cell sizes. As anticipated, the quantity of rows

corresponding to a given coe�cient increases with the increase of

the cell size, indicating an increase in ambiguity and a reduced risk

of location inference. The �gure also underscores the di�culty of

deducing the real location from the uploaded cost coe�cient, as,

on average, each coe�cient is matched by 102.98 rows, providing a

signi�cant degree of location privacy.

6 Related Works

The study of location privacy began nearly two decades ago with

Gruteser and Grunwald’s pioneering work [33], where they in-

troduced the concept of location :-anonymity. This idea has since

evolved to include ;-diversity, which ensures a user’s location is

indistinguishable from ; − 1 other locations [1]. However, the ;-

diversity model simpli�es the threat landscape by assuming all

alternative locations are equally probable as the user’s actual lo-

cation from an attacker’s perspective. This assumption renders it

susceptible to a range of sophisticated inference attacks [1, 3, 11].

In recent years, Andrés et al. [3] introduced a more applicable

privacy criterion, Geo-Ind, grounded in the established concept of

di�erential privacy (DP). Following this work, a large body of lo-

cation obfuscation strategies have been proposed, e.g., [1, 4–14].

Andrés et al., in their seminal work, not only proposed the Geo-Ind

concept but also devised a method for achieving it by perturbing the

actual location using a polar Laplacian distribution. Furthermore,

as geo-obfuscation naturally introduces errors in the reported loca-

tions, thereby impacting the quality of LBS, a critical challenge ad-

dressed by several studies involves balancing the trade-o� between

service quality and privacy. For instance, within the constraints

of Geo-Ind, Bordenabe et al. [9] �rst developed an optimization

framework for geo-obfuscation aimed at minimizing individual

user costs. Chatzikokolakis et al. [30] introduced "privacy mass"
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Table 3: Comparison of major related works ("PN" means "privacy notion". "W" means "whether W is considered", "EIE" means

"expected inference error", In the column "Location set size", "—" means “There is no limit to the size”).

Features
Obfuscation methods Lap. Exp. LP Ā ć Privacy notion Utility loss de�nition

CCS 2012 [18] ✓ 30 EIE Expected & max distance between real and reported locations
CCS 2013 [3] ✓ ✓ — Geo-Ind Expected distance between real and reported locations
CCS 2014 [9] ✓ 50 Geo-Ind Expected distance between real and reported locations

PETS 2015 (Privacy game) [29] ✓ 300 EIE & DP Expected utility cost (depends on applications)
PETS 2015 (Elastic metric) [30] ✓ — Geo-Ind (generalized) Expected distance between real and reported locations

ICDM 2016 [14] ✓ 57 DP Expected residual standard error
WWW 2017 [6] ✓ 16 Geo-Ind Expected travel distance
NDSS 2017 [1] ✓ 50 EIE & Geo-Ind Expected distance between real and reported locations
CCS 2017 [31] ✓ 25 EIE & Conditional entropy Average & worst-case quality loss (depends on applications)
PETS 2017 [32] ✓ ✓ — Geo-Ind Expected quality loss (depends on applications)
TMC 2020 [11] ✓ 300–400 Geo-Ind Expected di�erence between real and estimated travel distance
PETS 2020 [4] ✓ — Geo-Ind Expected distance between real and reported locations

SIGSPATIAL 2022 [12] 100 Geo-Ind Expected di�erence between real and estimated travel distance
UAI 2022 [17] ✓ ✓ 400 Metric DP Expected utility cost (depends on applications)
EDBT 2023 [19] ✓ 70 Geo-Ind Expected distance between real and reported locations
EDBT 2024 [20] ✓ 300–400 Geo-Ind Expected distance between real and reported locations

Our work ✓ ✓ ✓ 1,600 Geo-Ind Expected distance between real and reported locations

for points of interest, determining the Geo-Ind privacy budget n for

a location based on the local characteristics of each area. Wang et

al. [6] addressed the collective cost incurred by users, proposing a

privacy-preserving target assignment algorithm to reduce the total

travel expense. Chatzikokolakis et al. [32] introduced a Bayesian

remapping procedure to enhance the utility of geo-obfuscation,

which can be applied to both in�nite and �nite location domains.

The majority of existing works in geo-obfuscation employ an

LP framework, which generally necessitates$ ( |V|2) decision vari-

ables and $ ( |V||E |) linear constraints [9, 34], making the LP ap-

proach computationally intensive and challenging to implement

on a large-scale LBS. Table 3 compares the related geo-obfuscation

methods in di�erent categories, including Laplacian noise (“Lap.”),

the exponential mechanism (“Exp.”), and LP-based methods (“LP”).

As the table indicates, the computational complexity of LP restricts

most geo-obfuscation studies to handling at most 100 discrete loca-

tions. However, recent advancements [10, 11] have expanded the

capability of processing secret datasets to approximately 300 records

by leveraging Dantzig-Wolfe decomposition and column generation

techniques. These studies primarily target LP models with Geo-Ind

constraints applied across all pairs of secret records, facilitating the

initialization process for column generation but are less applicable

to broader geo-obfuscation challenges that only necessitate con-

straints for adjacent locations. Other innovative approaches, such

as [17], combine LP with the exponential mechanism to improve

scalability, though this may lead to compromises in solution opti-

mality. Given the time-sensitive natures of many LBS applications,

existing geo-obfuscation methodologies are constrained to either

low spatial resolution over large areas (for instance, [1] focuses on

city-scale regions, discretizing the location �eld into a grid where

each cell measures 766m by 766m), or to high resolution within

smaller areas (as in [11], which examines a small town with location

points sampled every 500 square meters).

Compared to those existing works, LR-Geo introduced in this

paper substantially lowers computational costs while maintaining

a degree of optimality. This advancement facilitates the application

of geo-obfuscation in large-scale LBS applications, enabling more

accurate representations of locations.

7 Conclusions

We proposed to reduce the computation cost of the geo-obfuscation

calculation by shrinking its range to a set of more relevant locations.

Considering that the reduced geo-obfuscation range can possibly

disclose the user’s real location, we designed a remote computing

strategy to migrate the geo-obfuscation calculation to the server

without disclosing the location set covered by geo-obfuscation.

The experimental results have demonstrated the superiority of our

method in terms of privacy, service quality, and time e�ciency,

with the comparison of the selected benchmarks.

We envision several promising directions to continue this re-

search. Firstly, this paper focuses on locations that are evenly dis-

tributed. In the next phase, we will consider cases where the loca-

tions are not necessarily evenly distributed. Since varying location

densities lead to di�erent distance matrices, which may inadver-

tently reveal information about a user’s actual location, we will

conduct a formal analysis of the potential information leakage

caused by these distance matrices. Secondly, our current work con-

siders a homogeneous mobility model, where a single cost reference

table graph is su�cient to describe users’ traveling costs. In reality,

the users might be heterogeneous, e.g., a mixture of pedestrians

and vehicles, and even a single user’s mobility can possibly switch

between di�erent models. Then, how to model the mobility features

of heterogeneous users using multiple cost reference table graphs is

another problem to address. Finally, leveraging reinforcement learn-

ing (RL) could accelerate BD convergence by treating cut selection

in Stage 2 as a parameterized stochastic policy. A trained RL model

can identify an optimal sequence of cuts, eliminating the need for

re-training with each new problem instance.
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Appendix

A Math Notations

Table 4: Main notations and their descriptions

Symbol Description

V The discrete location set V = {Ĭ1, ..., Ĭġ }

G The Geo-Ind graph G = (V, E) , where V and E are the

location set and the edge set of G

ĚĬğ ,ĬĠ The Haversine distance between Ĭğ and ĬĠ
Z The obfuscation matrix Z

İğ,ġ The probability of selecting Ĭġ as the obfuscated location

given the real location Ĭğ
zğ The obfuscation vector of Ĭğ , i.e., zğ = [İğ,1, ..., İğ,ć ]

C (Ĭ, Ĩ ) The circle centered at Ĭ with radius Ĩ

Īę (Ĭ,ī ) The travel cost from location Ĭ to location ī

ęĬğ ,Ĭġ The cost coe�cient of İğ,ġ in OMG

Nģ The LR location set of Ĭğ
Oģ The obfuscated location set of Nģ
V̂ The discrete location set covered by cost reference table

G̃ The cost reference table graph G̃ =

(
V̂, Ê

)
, where V̂ and

Ê are the location set and the edge set of G̃

ÿğ,ġ The expectation of the cost estimation error taken over

all possible destination locations

Ċ The privacy budget of Geo-Ind

Ā The neighbor threshold

� The LR distance threshold

A.1 Detailed Notations in Benders’
Decomposition

• The coe�cient matrices
[
AGeoI

Nģ
,BGeoI

Nģ

]
includes the Geo-Ind

constraints between the obfuscation vectors of the locations

in Nģ :

[
AGeoI

Nģ
,BGeoI

Nģ

]

=



. . . · · · · · · · · · . .
.

· · · 1 · · · −ě
ĊĚĬğ ,ĬĠ · · ·

· · · −ě
ĊĚĬğ ,ĬĠ · · · 1 · · ·

. .
.

· · · · · · · · ·
. . .



}
∀Ĭğ , ĬĠ ∈ Nģ
s.t. ĚĬğ ,ĬĠ f Ā

•
[
Aunit

Nģ
,Bunit

Nģ

]
includes |Nģ | rows, where each row corre-

sponds to the unit measure constraint of the obfuscation

vector zğ of location Eğ ∈ Nģ .

• bGeoI
Nģ

is an all-zeros vector, which corresponds to the right-

hand side coe�cients of the constraint matrix
[
AGeoI

Nģ
,BGeoI

Nģ

]

in the LP formulation.

• bunit
Nģ

is an all-ones vector, which corresponds to the right-

hand side coe�cients of the constraint matrix
[
Aunit

Nģ
,Bunit

Nģ

]

in the LP formulation.

B Omitted Proofs

B.1 Proof of Theorem 3.1

Proof. We let {Eğ , EĢ1 , EĢ2 , ..., EĢĤ−1 , EĢĤ , E Ġ } represent the sequence

of locations in the shortest path between Eğ and E Ġ . Therefore,

�Ĭğ ,ĬĠ = 3Ĭğ ,ĬĢ1
+

Ĥ−1∑

ģ=1

3ĬĢģ ,ĬĢģ+1
+ 3ĬĢĤ ,ĬĠ .

Since each pair of adjacent locations is geo-indistinguishable, for

each Eġ ∈ V , we have

Iğ,ġ

IĢ1,ġ
f 4

ĊĚĬğ ,ĬĢ1 , (36)

IĢģ ,ġ

IĢģ+1 , :
f 4

ĊĚĬĢģ ,ĬĢģ+1 (< = 1, ..., = − 1), (37)

IĢĤ ,ġ

I Ġ,ġ
f 4

ĊĚĬĢĤ ,ĬĠ , (38)

from which we can derive that

Iğ,ġ

I Ġ,ġ
=

Iğ,ġ

IĢ1,ġ

Ĥ−1∏

ģ=1

IĢģ ,ġ

IĢģ+1 , :

IĢĤ ,ġ

I Ġ,ġ
(39)

f 4
ĊĚĬğ ,ĬĢ1

Ĥ−1∏

ģ=1

4
ĊĚĬĢģ ,ĬĢģ+1 4

ĊĚĬĢĤ ,ĬĠ (40)

= 4
Ċ
(
ĚĬğ ,ĬĢ1

+
∑Ĥ−1
ģ=1 ĚĬĢģ ,ĬĢģ+1

+ĚĬĢĤ ,ĬĠ

)

(41)

= 4
ĊĀĬğ ,ĬĠ . (42)

The proof is completed. □

B.2 Proof of Proposition 4.3

Proof. First, since the Haversine distance between Eģ and E Ġ
should be no larger than their path distance in the Geo-Ind graph,

i.e.,

3Ĭģ ,ĬĠ f �Ĭģ ,ĬĠ . (43)

According to the de�nition of LR location set in Equ. (11), ∀E Ġ ∈ Nģ

�Ĭģ ,ĬĠ f �. (44)

Based on Equ. (43) and Equ. (44), we obtain that

3Ĭģ ,ĬĠ f �,∀E Ġ ∈ Nģ . (45)

According to Equ. (12), we have

3Ĭģ ,ĬĠ f Aobf ,∀E Ġ ∈ Oģ . (46)

According to Equ. (45) and Equ. (46), we have

3Ĭģ ,ĬĠ f max{�, Aobf }, ∀E Ġ ∈ Nģ ∪ Oģ . (47)

3Ĭģ ,Ĭė f � because Eė is selected within the LR location set Nģ .

Then, according to the triangle inequality,

3Ĭė ,ĬĠ f 3Ĭģ ,Ĭė + 3Ĭģ ,ĬĠ (48)

f � +max{�, Aobf } (49)

= max{2�, � + Aobf }, (50)

for each E Ġ ∈ Nģ ∪ Oģ , indicating that C(Eė,max{2�, � + Aobf })

covers both Nģ and Oģ . □

19



Proceedings on Privacy Enhancing Technologies 2025(2) Chenxi Qiu, Ruiyao Liu, Primal Pappachan, Anna Squicciarini, and Xinpeng Xie

B.3 Proof of Theorem 4.4

Proof. We prove it by considering the following three cases:

Case 1: Eġ is within the obfuscation range of both Eğ and E Ġ , i.e.,

Eġ ∈ Oğ ∩ OĠ . Then, I
(Ĥ)

ğ,ġ
and I

(ģ)

Ġ,ġ
satisfy the constraint Equ. (22):

I
(Ĥ)

ğ,ġ
= ~ġ4

−
ĊĚĬğ ,Ĭġ

2 , (51)

I
(ģ)

Ġ,ġ
= ~ġ4

−Ċ
ĚĬĠ ,Ĭġ

2 , ∀Eġ (52)

implying that

I
(Ĥ)

ğ,ġ
− I

(ģ)

Ġ,ġ
4
ĊĚĬğ ,ĬĠ

= ~ġ4
−
ĊĚĬğ ,Ĭġ

2 − ~ġ4
−
ĊĚĬĠ ,Ĭġ

2 4
ĊĚĬğ ,ĬĠ

= ~ġ4
−
ĊĚĬğ ,Ĭġ

2 − ~ġ4
−
Ċ (ĚĬĠ ,Ĭġ

−ĚĬğ ,ĬĠ )

2 4
ĊĚĬğ ,ĬĠ

2

f ~ġ4
−
ĊĚĬğ ,Ĭġ

2 − ~ġ4
−
ĊĚĬğ ,Ĭġ

2 4
ĊĚĬğ ,ĬĠ

2 (triangle inequality)

= ~ġ4
−
ĊĚĬğ ,Ĭġ

2 (1 − 4
ĊĚĬğ ,ĬĠ

2 )

f 0 (53)

Case 2: Eġ is outside of the obfuscation range of either Eğ or E Ġ .

Without loss of generality, we consider the case Eġ ∈ Oğ and Eġ ∉ OĠ

(meaning Aobf < 3ĬĠ ,Ĭġ ), indicating that I
(Ĥ)

ğ,ġ
= ~ġ4

−
ĊĚĬğ ,Ĭġ

2 and

I
(ģ)

Ġ,ġ
= ~ġ4

−
ĊĨobf

2 . Therefore,

I
(Ĥ)

ğ,ġ
− I

(ģ)

Ġ,ġ
4
ĊĚĬğ ,ĬĠ

= ~ġ4
−
ĊĚĬğ ,Ĭġ

2 − ~ġ4
−
ĊĨobf

2 4
ĊĚĬğ ,ĬĠ

= ~ġ4
−
ĊĚĬğ ,Ĭġ

2 − ~ġ4
−
Ċ (Ĩobf −ĚĬğ ,ĬĠ )

2 4
ĊĚĬğ ,ĬĠ

2

< ~ġ4
−
ĊĚĬğ ,Ĭġ

2 − ~ġ4
−
Ċ (ĚĬĠ ,Ĭġ

−ĚĬğ ,ĬĠ )

2 4
ĊĚĬğ ,ĬĠ

2 (since Aobf < 3ĬĠ ,Ĭġ )

f ~ġ4
−
ĊĚĬğ ,Ĭġ

2 − ~ġ4
−
ĊĚĬğ ,Ĭġ

2 4
ĊĚĬğ ,ĬĠ

2 (triangle inequality)

= ~ġ4
−
ĊĚĬğ ,Ĭġ

2 (1 − 4
ĊĚĬğ ,ĬĠ

2 )

f 0 (54)

Case 3: Eġ is outside of the obfuscation range of both Eğ and E Ġ , i.e.,

Eġ ∉ Oğ ∪ OĠ . In this case, I
(Ĥ)

ğ,ġ
= I

(ģ)

Ġ,ġ
= ~ġ4

−
ĊĨobf

2 , and it is trivial

to prove that I
(Ĥ)

ğ,ġ
− 4

ĊĚĬğ ,ĬĠ I
(ģ)

Ġ,ġ
f 0, since 4

ĊĚĬğ ,ĬĠ g 1.

The proof is completed. □

B.4 Proof of Proposition 4.5

Proof. (1) First, for each pair of LR locations Eğ and E Ġ , their

(n,W)-Geo-Ind constraints are

Iğ,ġ − 4
ĊĚĬğ ,ĬĠ I Ġ,ġ f 0, ∀Eġ ∈ V, (55)

I Ġ,ġ − 4
ĊĚĬğ ,ĬĠ Iğ,ġ f 0, ∀Eġ ∈ V, (56)

including 2|V| linear constraints.

For any two Users = and<, there are totally ( |NĤ | + |Nģ |) LR

locations, including

(
|NĤ | + |Nģ |

2

)
location pairs. Hence, the

total number of Geo-Ind constraints for User = and User< is

2|V| ×

(
|NĤ | + |Nģ |

2

)
= ( |NĤ | + |Nģ |) ( |NĤ | + |Nģ | − 1) |V|.

Note that withinNĤ (orNģ), the Geo-Ind constraints are satis�ed

between any peer of relevant locations due to the linear constraints

Eq. (). Therefore, the total number of Geo-Ind constraints satis�ed

within NĤ and Nģ is

2|V| ×

(
|NĤ |

2

)
+ 2|V| ×

(
|Nģ |

2

)
(57)

= ( |NĤ |
2 + |Nģ |2 − |NĤ | − |Nģ |) |V| (58)

Now, we consider the Geo-Ind constraints acrossNĤ andNģ . For

each pair of locations Eğ ∈ NĤ and E Ġ ∈ Nģ , the set of obfuscated

locations following the exponential distributions for both Eğ and

E Ġ is Ağ ∩ A Ġ . For any Eġ ∈ Ağ ∩ A Ġ , the constraints in Equ.

(55) are guaranteed (according to Theorem 4.4), including totally

2|Ağ ∩ A Ġ | linear constraints. The total number of constraints

following exponential distributions for all pairs (Eğ , E Ġ ) ∈ NĤ ×Nģ
is

∑
(Ĭğ ,ĬĠ ) ∈NĤ×Nģ

2|Ağ ∩ A Ġ |.

Therefore, we can conclude that for each pair User = and User

<, the Geo-Ind constraint violation ratio is upper bounded by

1−
2
∑

(Ĭğ ,ĬĠ ) ∈NĤ×Nģ
|Ağ ∩ A Ġ | + ( |NĤ |

2 + |Nģ |2 − |NĤ | − |Nģ | ) |V |

( |NĤ | + |Nģ | ) ( |NĤ | + |Nģ | − 1) |V |
.

(59)

The proof is completed.

(2) The total number of Geo-Ind constraints for all the users is

2|V| ×

( ∑ĉ
Ĥ=1 |NĤ |

2

)
=

ĉ∑
Ĥ=1

|NĤ |

(
ĉ∑
Ĥ=1

|NĤ | − 1

)
|V|.

We can obtain the total number of Geo-Ind constraints within

each of N1, ...,Nĉ is

2|V| ×

ĉ∑
Ĥ=1

(
|NĤ |

2

)
= |V|

ĉ∑
Ĥ=1

(
|NĤ |

2 − |NĤ |
)

We can also obtain that the total number of obfuscated locations

achieve Geo-Ind constraints across N1, ...,Nĉ (since they follow

exponential distribution) is

2

ĉ∑
Ĥ=1

ĉ∑
ģ=Ĥ+1

∑
(Ĭğ ,ĬĠ ) ∈NĤ×Nģ

|Ağ ∩ A Ġ |

Finally, we can conclude that Geo-Ind constraint violation ratio

for all the users is upper bounded by

1−
2
∑ĉ

Ĥ=1

∑ĉ
ģ=Ĥ+1

∑
(Ĭğ ,ĬĠ ) ∈NĤ×Nģ

|Ağ ∩ A Ġ | +
∑ĉ

Ĥ=1

(
|NĤ |

2 − |NĤ |
)
|V |∑ĉ

Ĥ=1 |NĤ |
(∑ĉ

Ĥ=1 |NĤ | − 1
)
|V |

.

(60)

The proof is completed. □

B.5 Proof of Theorem 4.6

Proof. Before proving Theorem 4.6, we �rst introduce the fol-

lowing lemma:

Lemma B.1. The actual cost 2Ĭğ ,Ĭġ between location Eğ and Eġ is

upper bounded by the estimated cost 2̂Ĭğ ,Ĭġ . The detailed proof of this

lemma can be found in Section B.6.

Let ẐNģ =

{
Î
(ģ)

ğ,ġ

}
(Ĭğ ,Ĭġ ) ∈Nģ×Oģ

denote the optimal solution of

the CLR-Geo problem in Equ. (20)–(22) using the estimated cost
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matrix ĈNģ ,Oģ (< = 1, ..., "). Then, for each user<, the minimum

expected cost calculated by the CLR-Geo problem is given by

L
(
ẐNģ

)
(61)

=

∑
Ĭğ ∈Nģ

∑
Ĭġ ∈Oģ

2̂Ĭğ ,Ĭġ Î
(ģ)

ğ,ġ
(62)

g
∑

Ĭğ ∈Nģ

∑
Ĭġ ∈Oģ

2Ĭğ ,Ĭġ Î
(ģ)

ğ,ġ
(Lemma B.1) (63)

g
∑

Ĭğ ∈Nģ

∑
Ĭġ ∈Oģ

2Ĭğ ,ĬġI
(ģ)∗

ğ,ġ

︸                        ︷︷                        ︸
the minimum expected cost

(64)

where Z∗
Nģ

=

{
I
(ģ)∗

ğ,ġ

}
(Ĭğ ,Ĭġ ) ∈Nģ×Oģ

denote user<’s optimal ob-

fuscation matrix that achieves the minimum cost. The proof is

completed. □

B.6 Proof of Lemma B.1
According to 2Ĭğ ,Ĭġ ’s de�nition (Equ. (5)),

ęĬğ ,Ĭġ = Ħğ

č∑
Ġ=1

ħ Ġ

���ĚĬğ ,ĬĠ − ĚĬġ ,ĬĠ
���

= Ħğ

∑
ĬĠ ∈Q

′

ħ Ġ

(
ĚĬğ ,ĬĠ − ĚĬġ ,ĬĠ

)
+ Ħğ

∑
ĬĠ ∈Q

′′

ħ Ġ

(
ĚĬġ ,ĬĠ − ĚĬğ ,ĬĠ

)

f Ħğ

∑
ĬĠ ∈Q

′

ħ Ġ

©­­­­­­
«

(
ĚĬ̂ğ ,ĬĠ + ĚĬğ ,Ĭ̂ğ

)
︸              ︷︷              ︸

gĚĬğ ,ĬĠ (triangle inequal.)

−
(
ĚĬ̂ġ ,ĬĠ − ĚĬġ ,Ĭ̂ġ

)
︸                ︷︷                ︸

fĚĬĠ ,Ĭġ (triangle inequal.)

ª®®®®®®
¬

+ Ħğ

∑
ĬĠ ∈Q

′′

ħ Ġ

©­­­­­­«

(
ĚĬ̂ġ ,ĬĠ + ĚĬġ ,Ĭ̂ġ

)
︸                ︷︷                ︸

gĚĬĠ ,Ĭġ (triangle inequal.)

−
(
ĚĬ̂ğ ,ĬĠ − ĚĬğ ,Ĭ̂ğ

)
︸              ︷︷              ︸

fĚĬğ ,ĬĠ (triangle inequal.)

ª®®®®®®
¬

= Ħğ

č∑
Ġ=1

ħ Ġ

���ĚĬ̂ğ ,ĬĠ − ĚĬ̂ġ ,ĬĠ
��� + Ħğ č∑

Ġ=1

ħ Ġ

(
ĚĬğ ,Ĭ̂ğ + ĚĬġ ,Ĭ̂ġ

)

= Ħğÿğ,ġ − Ħğ

(
ĚĬğ ,Ĭ̂ğ + ĚĬġ ,Ĭ̂ġ

)
= ę̂Ĭğ ,Ĭġ . (65)

B.7 Proof of Theorem 4.7

Proof. Before proving Theorem 4.7, we �rst introduce the fol-

lowing lemma:

Lemma B.2. The actual cost 2Ĭğ ,Ĭġ between location Eğ and Eġ is

lower bounded by the estimated cost 2̃Ĭğ ,Ĭġ . The detailed proof of this

lemma can be found in Section B.8.

Let Z̃Nģ =

{
Ĩ
(ģ)

ğ,ġ

}
(Ĭğ ,Ĭġ ) ∈Nģ×Oģ

denote the optimal solution of

the relaxed LR-Geo problem in Equ. (31)–(32) using the estimated

cost matrix C̃Nģ ,Oģ (< = 1, ..., "). Then, for each user <, the

minimum expected cost calculated by the relaxed LR-Geo problem

is given by

L
(
Z̃Nģ

)
(66)

=

∑
Ĭğ ∈Nģ

∑
Ĭġ ∈Oģ

2̃Ĭğ ,Ĭġ Ĩ
(ģ)

ğ,ġ
(67)

f
∑

Ĭğ ∈Nģ

∑
Ĭġ ∈Oģ

2̃Ĭğ ,ĬġI
(ģ)∗

ğ,ġ
(as Z̃Nģ is a relaxed solution of Z∗

Nģ
)

f
∑

Ĭğ ∈Nģ

∑
Ĭġ ∈Oģ

2Ĭğ ,ĬġI
(ģ)∗

ğ,ġ

︸                        ︷︷                        ︸
the minimum expected cost

(Lemma B.1) (68)

where Z∗
Nģ

=

{
I
(ģ)∗

ğ,ġ

}
(Ĭğ ,Ĭġ ) ∈Nģ×Oģ

denote user<’s optimal ob-

fuscation matrix that achieves the minimum cost. The proof is

completed.

B.8 Proof of Lemma B.2
According to 2Ĭğ ,Ĭġ ’s de�nition (Equ. (5)),

ęĬğ ,Ĭġ = Ħğ

č∑
Ġ=1

ħ Ġ

���ĚĬğ ,ĬĠ − ĚĬġ ,ĬĠ
��� g Ħğ č∑

Ġ=1

ħ Ġ

(
ĚĬğ ,ĬĠ − ĚĬġ ,ĬĠ

)

g Ħğ

č∑
Ġ=1

ħ Ġ

©­­­­­­
«

(
ĚĬ̂ğ ,ĬĠ − ĚĬğ ,Ĭ̂ğ

)
︸              ︷︷              ︸

fĚĬğ ,ĬĠ (triangle inequal.)

−
(
ĚĬ̂ġ ,ĬĠ + ĚĬġ ,Ĭ̂ġ

)
︸                ︷︷                ︸

gĚĬĠ ,Ĭġ (triangle inequal.)

ª®®®®®®
¬

= Ħğ

č∑
Ġ=1

ħ Ġ

(
ĚĬ̂ğ ,ĬĠ − ĚĬ̂ġ ,ĬĠ

)
− Ħğ

č∑
Ġ=1

ħ Ġ

(
ĚĬğ ,Ĭ̂ğ + ĚĬġ ,Ĭ̂ġ

)

= Ħğÿğ,ġ − Ħğ

(
ĚĬğ ,Ĭ̂ğ + ĚĬġ ,Ĭ̂ġ

)
= ę̃Ĭğ ,Ĭġ . (69)

□

C Detailed Description of Benders
Decomposition

Benders’ decomposition is composed of two stages,

• Stage 1: AMaster Program (MP) to derive {~1, ..., ~ć },

• Stage 2: A set of subproblems Subģ (< = 1, ..., "), where

each Subģ aims to derive z′
Nģ

.

Stage 1: Master program. The MP derives ~1, ..., ~ć and replaces

each cost c′
Nģ

z′
Nģ

by a single decision variable Fģ , i.e., Fģ =

c′
Nģ

z′
Nģ

. The MP is formulated as the following LP problem

min
∑ć
ġ=1 Uġ~ġ +

∑ĉ
ģ=1Fģ (70)

s.t. H : Cut set of ~1, ..., ~ć ,F1, ...,Fĉ (71)

~ġ g 0, : = 1, ...,  . (72)

where each cut in H is a linear inequality of the decision variables

~1, ..., ~ć ,F1, ...,Fĉ . According to the central LR-Geo formulated

in Equ. (20)–(22), eachFģ is given by

Fģ =min
{
L′

(
ZNģ

)
|Equ. (24) for Nģ is satis�ed

}
. (73)

Since the MP doesn’t know the optimal values of ZNģ , instead of

using Equ. (73), it “guesses” the value ofFģ based the cut set H . In
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the subsequent Stage 2, each Subģ veri�es whether the “guessed”

value of Fģ is feasible and achieves the minimum data cost as

de�ned in Equ. (73); if not, Subģ proposes the addition of a new cut

to be included inH , thereby guiding the MP to re�neFģ during

the next iteration.

In the following, we use
{
~1, ..., ~ć ,F1, ...,Fĉ

}
to represent the

optimal solution of the MP.

Stage 2: Subproblems. After the MP derives its optimal solution{
~1, ..., ~ć ,F1, ...,Fĉ

}
in Stage 1, each Subģ validates whetherFģ

has achieved the minimum data cost,

Fģ =min
{
c′Nģ

z′Nģ

���ANģ z′Nģ
g bNģ − BNģ z′′Nģ

(y)
}
. (74)

of which the dual problem can be formulated as the following LP

problem: max
(
bNģ − BNģ z′′Nģ

(y)
)¦

uNģ (75)

s.t. A¦
Nģ

uNģ f c′Nģ
, uNģ g 0. (76)

There are three cases of the dual problem:

Case 1: The optimal objective value is unbounded: Byweak duality

[15], y does not satisfy ANģ z′
Nģ

g bNģ − BNģ z′′
Nģ

(y) for any

z′
Nģ

g 0. Since the dual problem is unbounded, there exists an

extreme ray ũNģ subject to A¦
Nģ

ũNģ f 0 and(
bNģ − BNģ z′′

Nģ
(y)

)¦
ũNģ > 0. To ensure that ũNģ won’t be

an extreme ray in the next iteration, Subģ suggests a new cut ℎ

(feasibility cut) to the MP:

ℎ :
(
bNģ − BNģ z′′Nģ

(y)
)¦

ũNģ f 0.

Case 2: The optimal objective value is bounded with the solution

uNģ : Byweak duality, the optimal value of the dual problem is equal

to the optimal value of FĢ constrained on the choice of y. In this

case, Subģ checks whetherFģ <

(
bNģ − BNģ z′′

Nģ
(y)

)¦
uNģ . If

yes, then Fģ < min
{
c′
Nģ

z′
Nģ

���ANģ z′
Nģ

g bNģ − BNģ z′′
Nģ

(y)
}
,

meaning that Fģ derived by the MP is lower than the minimum

cost. Therefore, Subģ suggests a new cut

ℎ : Fģ g
(
bNģ − BNģ z′′Nģ

(y)
)¦

uNģ

to the MP to improveFģ in the next iteration.

Case 3: There is no feasible solution: By weak duality, the primal

problem either has no feasible/unbounded solution. The algorithm

terminates.

After adding the new cuts (from all the subproblems) to the cut

set H , the BD moves to the next iteration by recalculating the

MP and obtaining updated
{
~1, ..., ~ć ,F1, ...,Fĉ

}
. As Stage 1 and

Stage 2 are repeated over iterations, the MP collects more cuts from

the subproblems, converging the solution
{
~1, ..., ~ć ,F1, ...,Fĉ

}
to

the optimal.
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