
Unlearning Clients, Features and Samples in
Vertical Federated Learning

Ayush K. Varshney*
Umeå University
Umeå, Sweden

ayushkv@cs.umu.se

Konstantinos Vandikas
Ericsson Research, Ericsson

Stockholm, Sweden
konstantinos.vandikas@ericsson.com

Vicenç Torra
Umeå University
Umeå, Sweden

vtorra@cs.umu.se

Abstract
Federated Learning (FL) has emerged as a prominent distributed
learning paradigm that allows multiple users to collaboratively
train a model without sharing their data thus preserving privacy.
Within the scope of privacy preservation, information privacy reg-
ulations such as GDPR entitle users to request the removal (or
unlearning) of their contribution from a service that is hosting
the model. For this purpose, a server hosting an ML model must
be able to unlearn certain information in cases such as copyright
infringement or security issues that can make the model vulnerable
or impact the performance of a service based on that model. While
most unlearning approaches in FL focus on Horizontal Federated
Learning (HFL), where clients share the feature space and the global
model, Vertical Federated Learning (VFL) has received less atten-
tion from the research community. VFL involves clients (passive
parties) sharing the sample space among them while not having ac-
cess to the labels. In this paper, we explore unlearning in VFL from
three perspectives: unlearning passive parties, unlearning features,
and unlearning samples. To unlearn passive parties and features
we introduce VFU-KD which is based on knowledge distillation
(KD) while to unlearn samples, VFU-GA is introduced which is
based on gradient ascent (GA). To provide evidence of approximate
unlearning, we utilize Membership Inference Attack (MIA) to au-
dit the effectiveness of our unlearning approach. Our experiments
across six tabular datasets and two image datasets demonstrate that
VFU-KD and VFU-GA achieve performance comparable to or better
than both retraining from scratch and the benchmark R2S method
in many cases, with improvements of (0 − 2%). In the remaining
cases, utility scores remain comparable, with a modest utility loss
ranging from 1 − 5%. Unlike existing methods, VFU-KD and VFU-
GA require no communication between active and passive parties
during unlearning. However, they do require the active party to
store the previously communicated embeddings.

Keywords
Federated learning; Unlearning; Vertical federated learning; Audit-
ing; Membership Inference Attack (MIA).

*Corresponding author.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(2), 39–53
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0048

1 Introduction
Machine Learning (ML) models have established themselves as the
prominent artificial intelligence (AI) approach due to their ability to
learn complex patterns from large-scale user data. The huge amount
of data used to train these models is often sensitive in nature. To safe
guard the information and privacy of the users, information privacy
regulations such as GDPR, and CCPA have been proposed. These
regulations allow users the right to be forgotten, i.e., to remove
their data and its influence from the ML model.

Removing the influence of the data or Unlearning the data is a
challenging task. A naive approach is to retrain the model in the ab-
sence of the data to remove. This approach can be time-consuming
and assumes that the original data is available. A more attractive
approach should remove the data and its influence without the need
of retraining from scratch. The objective is to modify the model pa-
rameters of a ML model in such a way that the modified parameters
are the same as those parameters of a model that would have been
retrained from scratch with an original dataset deprived of the data
to be forgotten or unlearned. However, achieving such an objective
can be computationally expensive. An approach proposed by Bour-
toule et al. [3] divides the dataset into shards, retraining only the
shard containing the data to be removed upon receiving an unlearn-
ing request. While this method minimizes the scope of retraining, it
may struggle to capture complex relationships across shards and be-
comes computationally expensive for frequent unlearning requests.
To address such challenges, Ginart et al. [9] introduced the concept
of approximate unlearning, where model parameters are adjusted
to closely approximate those of a retrained model, reducing the
need for full retraining. This concept has since been extended in
several studies. For instance, Halimi et al. [12] propose updating
the model using gradient ascent on the data to be forgotten. Wu
et al. [35] leverage knowledge distillation for unlearning specific
samples, while Tarun et al. [29] refine model parameters through
modified fine-tuning for efficient unlearning.

The majority of existing approaches in machine unlearning op-
erate under the assumption that the original dataset, or the specific
data points to be removed, are readily available, refer [39] for more
information. These methods typically rely on access to the dataset
for performing the unlearning process, which involves directly
manipulating or retraining the model on the modified data. This
assumption simplifies the unlearning task but may not be prac-
tical or feasible in many real-world scenarios where data access
is restricted due to privacy concerns, regulatory requirements, or
logistical constraints.

In a distributed paradigm like Federated Learning (FL) [25],
clients collaboratively train a ML model without sharing their data.
They only communicate the model weights to a server, which in

39

https://orcid.org/0000-0002-8073-6784
https://orcid.org/0000-0001-6925-0954
https://orcid.org/0000-0002-0368-8037
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0048

Proceedings on Privacy Enhancing Technologies 2025(2) Varshney et al.

turn aggregate the weights from clients to create a global model.
This continues for several rounds to learn complex relationships
between client data. Based on the nature of the data distributed
among clients FL is further classified into three types, horizontal,
vertical and transfer FL [27]. In HFL, clients share the same feature
space, but the samples and their distributions differ across each
client. This type is suitable for a large number of heterogeneous
devices in a complex network. However, its application in collabo-
ration between companies or institutions is practically restricted
due to its limited ability to handle different feature space. In VFL,
clients share the same sample space but have different feature space,
with only the server having access to the labels. This setup enables
institutions with distinct feature spaces to collaborate on training
ML models while ensuring the privacy of their raw data. Notably,
data alignment is required in VFL before training. To achieve this,
clients utilize private set intersection (PSI) [7] to identify the com-
mon sample space while preserving data privacy. For further details
on PSI and its drawbacks, refer to Wu et al.[36]. With Federated
Transfer Learning (FTL), the server leverages knowledge from one
domain to another, facilitating collaborative training of ML mod-
els across different domains. FTL enables knowledge transfer and
model training even when clients have different feature spaces and
sample distributions.

Unlearning in FL has its own unique challenges. In each com-
munication round in FL, the client contribution is aggregated and
communicated to the rest of the clients. The server does not have
access to the client data. The role of the unlearner depends on the
unlearning query. For example, Wang et al. [31] highlights that
when a client request to unlearn the server acts as the unlearner,
and is responsible for adjusting the parameter of the global model;
when a client request to unlearn a portion of their data, the client
themselves are the unlearner and update their local model param-
eters. Jiang et al. [15] remove the contributions from the client
iteratively based on its historical data, Zhu et al. [41] unlearn the
model by averaging the model updates from the remaining clients
while optimizing distillation loss between the original model and
unlearned model, Li et al. [18] propose a gradient ascent based ap-
proach to unlearn a client weight, Wu et al. [35] utilize Knowledge
Distillation (KD) for federated unlearning and many more such
methods. Majority of the unlearning literature in FL has focused on
HFL. In HFL, the model architecture remains the same, therefore
the server can store historical updates from the clients and pro-
duce a calibrated unlearned model for approximate unlearning [20].
However, the model architecture in VFL may change depending on
the type of unlearning required. As a result, existing unlearning
approaches designed for HFL cannot be directly applied to VFL
without significant modifications.

In VFL, each training round involves communicating embeddings
from clients (passive parties) to the server (active party), making
the training process communication intensive. Consequently, any
unlearning approach that necessitates even a few additional train-
ing rounds between the active and passive parties is undesirable
due to the communication overhead it imposes. Also, the model
architecture of the active party depends on the embeddings from
the passive parties i.e., removing the embeddings of a passive party
reduces the size of the input layer in the active model. Here as well,
the unlearner can be different based on the unlearning request.

The literature for unlearning in VFL is scarce, Deng et al. [6]
propose one of the first unlearning approach in VFL, however it
is restricted to logistic regression. Their approach stores the last
communication round embeddings from each client, and assumes
unlearning request can come only after the completion of training
process, which is not realistic. The learning in FL is continuous in
nature and unlearning request can come during training as well.
Another approach [32] proposes a fast retraining method for VFL
by storing bottom model checkpoints. These bottom model check-
points are used to reinitialize the passive parties. Their approach
proposes fast retraining method which maintains several passive
party models which are used to reinitialize and retrain the passive
models from scratch. Their retraining approach for unlearning in
VFL requires communication between active and passive parties,
which is costly. Additionally, for feature unlearning and passive
party unlearning—i.e., when a passive party wishes to remove cer-
tain features from its local model, and when a passive party needs
to be unlearned from the global model—this often requires reducing
model parameters, which in turn requires retraining from scratch
in the existing literature. Notably, none of the existing approaches
in the VFL unlearning literature address the challenges of feature,
sample, and passive party unlearning simultaneously.

Overall, we find that for passive party unlearning and feature
unlearning, approaches in VFL should be able to deal with the re-
duction in model size. It should not involve any communication be-
tween the active and passive parties. Considering these challenges
in mind, we propose a knowledge distillation based unlearning
approach for VFL which we call Vertical Federated Unlearning with
Knowledge Distillation (VFU-KD). The advantage of unlearning
with KD, is its ability to handle model compression well and it does
not require communication between active and passive parties. We
also extend VFU-KD to propose the first feature unlearning ap-
proach for a passive party in a VFL. For sample unlearning in VFL,
unlearning with KD is an expensive approach as sample unlearning
does not require model compression. On the other hand, gradient
ascent [11] is a popular approach to unlearn samples in central-
ized machine learning. Considering this in mind, we propose a
gradient ascent based unlearning for VFL called Vertical Federated
Unlearning with Gradient Ascent (VFU-GA) which maximize the
loss on the forget set and fine tune the model for few epochs on
the remaining data for approximate unlearning.

Auditing the unlearning algorithm is also crucial to verify that
the unlearning has been done. In the literature, the majority of the
approaches use the drop in accuracy of a backdoor attack [2] as the
sign of unlearning. However, in case of unlearning in VFL, backdoor
attacks can not be used to audit unlearning as once the passive party
embeddings are removed, it is not possible to place the backdoor
in the active model. The data poisoning attack proposed in Deng
et al. [6] considers the availability of labels to the passive party1
which violates the fundamental assumptions in the VFL setting. In
our work, we propose a membership inference attack (MIA) [26],
which does not violate the VFL constraints and can be used to audit
unlearning in VFL.

In summary, we make the following contributions.

1https://github.com/dateaaalive/vfl/blob/main/data_poison_attack.py
40

https://github.com/dateaaalive/vfl/blob/main/data_poison_attack.py

Vertical Federated Unlearning Proceedings on Privacy Enhancing Technologies 2025(2)

Features

Sa
m

pl
es

C
om

m
on

 se
t

Party 1 Party 2 Party 3

L
ab

el
sServer

Embeddings Embeddings

Gradients Gradients

Features

Sa
m

pl
es

Features

Sa
m

pl
es

Figure 1: Vertical federated learning framework

(1) A novel vertical federated unlearning frameworkwith knowl-
edge distillation to unlearn a passive party.

(2) A novel feature unlearning framework for a passive party in
VFL.

(3) A novel sample unlearning framework using gradient ascent
in VFL.

(4) A membership inference attack to audit the unlearning in
VFL.

(5) Empirical analysis on tabular as well as image datasets.
The rest of the paper is organized as follows. Section 2 provides

the necessary background. Section 3 describes our proposed frame-
works. Section 4 gives the experimental analysis. The paper finishes
with conclusion and some future work in Section 5.

2 Background
2.1 Vertical federated learning
The demand for VFL has grown rapidly in recent years [22]. VFL
is a distributed learning paradigm that allows organizations with
distinct feature spaces to collaboratively train ML model while
safeguarding the privacy of their raw data. This approach is partic-
ularly valuable in scenarios where data privacy is critical, such as
in healthcare [38], finance [40], and cross-enterprise collaborations
[23]. In these domains, institutions often possess complementary
datasets but are constrained from sharing them due to regulatory
requirements or competitive concerns. In a typical VFL setup, there
are 𝑁 passive parties (i.e., clients) that own data but lack access
to the labels, and a single active party, typically the server or a
trusted third party, that holds the labels as shown in Fig. 1. This en-
sures that the learning process can leverage distributed data sources
while maintaining strict privacy guarantees. Organizations and in-
stitutions with limited and fragmented datasets constantly seek
data partners to collaboratively train ML models to maximize data
utilization [19]. VFL requires all participants to share sample space
but allows for different feature spaces. This essentially suggests

less number of participants in VFL (Wei et al. [34] suggests 𝑁 < 5),
with two-party VFL as the most common setting. In VFL, the first
step is to perform private set intersection [24] to identify common
sample IDs among participating parties while preserving privacy.
Each passive party can have a local model, referred to as a passive
model. Based on the common set from private set intersection, pas-
sive parties do a forward pass on their local models. The computed
embeddings are communicated to the active party, which concate-
nates the embeddings from the passive parties and then performs
a forward pass on its model, referred to as the active model. The
active party computes the loss and backpropagates the gradients
to the active model and to the respective embeddings. The active
party then communicates the respective gradients to each passive
party. Upon receiving the gradients, passive parties update their
local models. It is important to highlight that this process continues
for each batch and requires several communication rounds between
the active and passive parties for one epoch of training data. Hence,
training in VFL is a communication-intensive algorithm [34].

2.2 Knowledge distillation
KD approaches has been used in the literature for their ability
to transfer knowledge from a bigger teacher model to a smaller
student model [13]. The simple idea of KD is that student model
tries to mimic the output probabilities of the teacher model. Usually,
student model learns from its own loss and its divergence from the
teacher’s logits. For a labeled dataset with 𝑦 as true labels, the loss
function for the student model can be given as follows:

L = (1 − 𝛼)𝐿𝑝𝑟𝑒𝑑 (𝑦,𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡) + 𝐾𝐿_𝐷𝐼𝑉 (𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑦𝑡𝑒𝑎𝑐ℎ𝑒𝑟) (1)

here 𝛼 is used to manage the trade-off between distillation loss
and prediction loss; 𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑦𝑡𝑒𝑎𝑐ℎ𝑒𝑟 are the logits of the student
and teacher models respectively; and 𝐾𝐿_𝐷𝐼𝑉 () is the KL diver-
gence between them. Please refer [10] for a discussion of recent
advancements in the area of KD.

2.3 Gradient ascent
Gradient ascent is the counterpart of gradient descent which is
the typical optimization approach used to train a machine learning
model. In gradient descent, the objective is to minimize the loss
function for a given set of samples, whereas in gradient ascent
(GA), the goal is to maximize the loss function for those samples.
This approach is particularly useful for unlearning, as it allows
for the approximate removal of specific samples by adjusting the
model weights in the direction that maximizes the loss on the
target samples [29], [30]. Let 𝜃 represent the model weight, 𝜂 be the
learning rate and 𝐿 be the loss function, then Gradient Ascent (GA)
iteratively updates the model weights in the following manner.

𝜃𝑡+1 = 𝜃𝑡 + 𝜂
𝛿𝐿

𝛿𝜃𝑡
(2)

2.4 Membership inference attack
MIA enables adversaries to determine whether a particular record
was part of the training set in a ML model. MIA leverages the mem-
orization of ML models i.e, ML models behave differently on the
data seen during training. Consequently by analyzing the model’s

41

Proceedings on Privacy Enhancing Technologies 2025(2) Varshney et al.

response on various inputs, an attacker can infer the presence or
absence of specific data during training.

3 Proposed Work
In this section, we present the details of the proposed unlearning
framework for passive party unlearning, sample unlearning and fea-
ture unlearning in VFL. We also provide the details of MIA used to
audit unlearning in our framework. Unlearning is a crucial capabil-
ity for addressing a variety of issues, including privacy compliance,
security, and adaptability. Existing approaches either violate VFL
constraints or are expensive in terms of communication for pas-
sive party unlearning. None of the approaches (to the best of our
knowledge) focuses on feature unlearning in VFL.

Algorithm 1 shows the generic VFL framework with 𝐾 passive
parties, and 𝐾𝑡ℎ party being the active party as well. Let G() be a
function which takes model parameters 𝜃 , and minibatch 𝑥 as input
and returns the embeddings from the model.

Passive parties have their local models 𝜃1, 𝜃2, ..., 𝜃𝐾 and Θ𝐾 is
the active model. For each batch, passive parties do a forward pass
and communicate their embeddings to the server. Server in turn
trains its local model and forward the gradients with respect to each
embedding (∇𝑡

𝑘
𝐿 = 𝛿𝐿

𝛿𝜃𝑡
𝑘

= 𝛿𝐿

𝛿Θ𝑡
𝐾

× 𝛿Θ𝑡
𝐾

𝛿𝜃𝑡
𝑘

,𝐿 being the loss function) back
to their respective passive party. Algorithm 1 requires parameters
𝜂1, 𝜂2 which needs to be calibrated to have a successful learning.
However this can be eliminated if we assume the loss 𝐿 to be twice
differential and strictly convex, then the parameter update can be
written as:

Θ𝑡+1𝐾 = Θ𝑡𝐾 −H−1
Θ𝑡
𝐾

𝛿𝐿

𝛿Θ𝑡
𝐾

(3)

And for passive parties:

𝜃 𝑡+1
𝑘

= 𝜃 𝑡
𝑘
−H−1

𝜃𝑡
𝑘

∇𝑡
𝑘
𝐿 (4)

whereH is the hessian matrix for each model. [33] suggests com-
puting and storing comes at an additional computational cost of
𝑂 (𝑛𝑝2 + 𝑝3) and 𝑂 (𝑝2) respectively. We have considered both the
approaches i.e., using 𝜂1, 𝜂2 andH−1 for the respective models.

To unlearn a passive party, the active party must remove the
contribution of the target passive party from all of its historical
embeddings, i.e., the active party updates 𝐻 = 𝐻 \ 𝐻𝑢 in all the
training rounds, 𝐻𝑢 being the target passive party. In our work, we
use the KD approach as the unlearning mechanism as it can deal
with model compression, and since the active party already has
the embeddings from the previous rounds, the active party does
not need to have any communication between active and passive
parties.

In our approach, we first randomly initialize a new student model
to eliminate any previous information, and assign the old active
model as the teacher model. The active party updates its student
model based on the historical embeddings from the rest of the
clients. The loss for the student model is the combination of predic-
tion loss and the distillation loss.

𝐿 = 𝛼 ∗ 𝐿𝑑𝑖𝑠𝑡𝑖𝑙 + (1 − 𝛼) ∗ 𝐿𝑝𝑟𝑒𝑑 (5)

The parameter 𝛼 balances the trade-off between prediction loss
(𝐿𝑝𝑟𝑒𝑑) and distillation loss (𝐿𝑑𝑖𝑠𝑡𝑖𝑙). In our case, we have consid-
ered the 𝐾𝐿_𝐷𝐼𝑉 () between as the distillation loss. The output

Algorithm 1: Vertical Federated Learning Algorithm
Input: Passive parties 𝜃1, 𝜃2, ..., 𝜃𝐾 , Active party Θ𝐾 ,

learning rates 𝜂1, 𝜂2
Output: Trained model weights 𝜃1, 𝜃2, ..., 𝜃𝐾 and Θ𝐾

1 Randomly initialize 𝜃1, 𝜃2, ..., 𝜃𝐾 and Θ𝐾 .
2 for 𝑡 = 1, 2, . . . ,𝑇 do
3 Randomly sample a minibatch 𝑥 ∈ D
4 for each party 𝑘 = 1, 2, ..., 𝐾 in parallel do
5 Party 𝑘 does a forward pass and computes

embeddings 𝐻𝑘 = G(𝜃 𝑡
𝑘
, 𝑥)

6 Party 𝑘 sends 𝐻𝑘 to the Active party
7 Active party computes 𝐻 𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝐻1, 𝐻2, ..., 𝐻𝑘)
8 Active party stores 𝐻 𝑡
9 Compute prediction 𝑦 = Θ𝑡

𝐾
(𝐻 𝑡)

10 Compute loss 𝐿 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦,𝑦𝑡𝑟𝑢𝑒)
11 Active party updates Θ𝑡+1

𝐾
= Θ𝑡

𝐾
− 𝜂1 𝛿𝐿

𝛿Θ𝑡
𝐾

12 Active party computes 𝛿𝐿
𝐻𝑘

and sends it to the respective
passive parties

13 for each party 𝑘 = 1, 2, ..., 𝐾 in parallel do

14 Party 𝑘 computes ∇𝑡
𝑘
𝐿 = 𝛿𝐿

𝛿𝜃𝑡
𝑘

= 𝛿𝐿

𝛿Θ𝑡
𝐾

× 𝛿Θ𝑡
𝐾

𝛿𝜃𝑡
𝑘

15 Party 𝑘 updates 𝜃 𝑡+1
𝑘

= 𝜃 𝑡
𝑘
− 𝜂2∇𝑡𝑘𝐿

Algorithm 2: Passive Party Unlearning in VFL
Input: Target passive party 𝜃𝑢 , Active party Θ𝐾 , learning

rate 𝜂1, distillation rate 𝛼 , current epoch 𝑒𝑝
Output: Unlearned Active party model Θ𝐾 , Updated

historical embeddings
1 Randomly initialize Θ𝑠𝑡𝑢𝑑𝑒𝑛𝑡 with input size of 𝐻 \ 𝐻𝑢
2 Assign Θ𝐾 as teacher model Θ𝑡𝑒𝑎𝑐ℎ𝑒𝑟
3 for 𝑡 = 1, 2, . . . , 𝑒𝑝 do
4 Active party reads 𝐻 𝑡
5 Compute teacher prediction 𝑦𝑡𝑒𝑎𝑐ℎ𝑒𝑟 = Θ𝑡𝑒𝑎𝑐ℎ𝑒𝑟 (𝐻 𝑡)
6 Update 𝐻 𝑡 = 𝐻 𝑡 \ 𝐻𝑢 // 𝐻𝑢 is the target party

𝜃𝑢 embeddings

7 Active party removes the old 𝐻 𝑡 and stores the updated
𝐻 𝑡

8 Compute prediction 𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = Θ𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

(𝐻 𝑡)
9 Compute prediction loss

𝐿𝑝𝑟𝑒𝑑 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑦𝑡𝑟𝑢𝑒)
10 Compute distillation loss

𝐿𝑑𝑖𝑠𝑡𝑖𝑙 = 𝐾𝐿_𝐷𝐼𝑉 (𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑦𝑡𝑒𝑎𝑐ℎ𝑒𝑟)
11 Overall loss 𝐿 = 𝛼 ∗ 𝐿𝑑𝑖𝑠𝑡𝑖𝑙 + (1 − 𝛼) ∗ 𝐿𝑝𝑟𝑒𝑑
12 Active party updates Θ𝑡+1

𝑠𝑡𝑢𝑑𝑒𝑛𝑡
= Θ𝑡

𝑠𝑡𝑢𝑑𝑒𝑛𝑡
− 𝜂1 𝛿𝐿

𝛿Θ𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

probabilities of the teacher model is used to guide the training of
the student model, but our approach is not restricted to it, other
distillation functions such as in [10] can also be used. The training
of student model considers stored embedding for each batch and
computes overall loss as defined in eq. 5. This process continues
till the student model converges or till the given number of epochs.

42

Vertical Federated Unlearning Proceedings on Privacy Enhancing Technologies 2025(2)

Algorithm 2 shows the formal algorithm for unlearning a passive
party in VFL setting. Here as well, if the loss is twice differential
and strictly convex the model update can be written as:

Θ𝑡+1
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

= Θ𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

−H−1
Θ𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝛿𝐿

𝛿Θ𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

(6)

Algorithm 3: Feature Unlearning for a Passive Party in
VFL
Input: Target passive party 𝜃𝑢 , target features 𝑓𝑢 ⊂ 𝑓 ,

learning rate 𝜂2, current epoch 𝑒𝑝
Output: Unlearned passive party model 𝜃𝑢

1 Randomly initialize 𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 with input size of 𝑓 \ 𝑓𝑢 // 𝑓

-> feature space of 𝜃𝑢

2 Assign 𝜃𝑢 as teacher model 𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟
3 for 𝑡 = 1, 2, . . . , 𝑒𝑝 do
4 Randomly sample a minibatch 𝑥 ∈ D
5 Compute teacher embedding

𝑒𝑚𝑏𝑡𝑒𝑎𝑐ℎ𝑒𝑟 = 𝐻
𝑡
𝑢 = G(𝜃𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , 𝑥)

6 Compute student embeddings
𝑒𝑚𝑏𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = G(𝜃 𝑡

𝑠𝑡𝑢𝑑𝑒𝑛𝑡
, 𝑥 \ 𝑥𝑢)

7 Compute loss 𝐿 = 𝐾𝐿_𝐷𝐼𝑉 (𝑒𝑚𝑏𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑒𝑚𝑏𝑡𝑒𝑎𝑐ℎ𝑒𝑟)
8 Passive party updates 𝜃 𝑡+1

𝑠𝑡𝑢𝑑𝑒𝑛𝑡
= 𝜃 𝑡

𝑠𝑡𝑢𝑑𝑒𝑛𝑡
− 𝜂2 𝛿𝐿

𝛿𝜃𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

With the ever-changing privacy regulations all over the world,
passive parties must have the ability to remove/unlearn the influ-
ence of controversial features e.g, sensitive features such as gender,
ethnicity are unlikely to be used in training the ML model anymore.
In case of VFL, since passive parties do not have access to the true la-
bels (only their embeddings, say 𝑒𝑚𝑏), computing prediction loss for
the student model is not possible without any communication with
the active party. Our goal is to minimize or not have communication
between active and passive parties for unlearning. Hence, the distil-
lation loss is the overall loss (𝐿 = 𝐾𝐿_𝐷𝐼𝑉 (𝑒𝑚𝑏𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑒𝑚𝑏𝑡𝑒𝑎𝑐ℎ𝑒𝑟))
for the student model in this case. Algorithm 3 presents the formal
feature unlearning algorithm for VFL. Here as well, we randomly
initialize a student model with the input size of new feature space. In
each training round, the student model updates its parameter with
the 𝐾𝐿_𝐷𝐼𝑉 () from its teacher model. And its hessian variation
can be written as:

𝜃 𝑡+1
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

= 𝜃 𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

−H−1
𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝛿𝐿

𝛿𝜃 𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

(7)

Algorithm 3 does not require any additional storage for embeddings
at the passive party as the teacher and student models can compute
the embeddings from the randomly sampled minibatch.

The model parameters in Algorithm 2 and 3 are vectors in
high-dimensional model space. Consider that the teacher model
is in R𝑛 i.e., Θ𝑡

𝑡𝑒𝑎𝑐ℎ𝑒𝑟
∈ R𝑛 and the student model is in R𝑚 i.e.,

Θ𝑡
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

∈ R𝑚,𝑚 < 𝑛. The embedding 𝐻 𝑡 \ 𝐻𝑢 lies in the lower di-
mension manifold of𝐻 𝑡 . Consequently, the posterior 𝑝 (Θ𝑡𝑒𝑎𝑐ℎ𝑒𝑟 |𝐻)
is formed with broader set of features, potentially leading to a
more complex model. Similarly, the posterior 𝑝 (Θ𝑠𝑡𝑢𝑑𝑒𝑛𝑡 |𝐻 \ 𝐻𝑢)
is formed with a reduced set of features, meaning Θ𝑠𝑡𝑢𝑑𝑒𝑛𝑡 would
lose some information compared to the Θ𝑡𝑒𝑎𝑐ℎ𝑒𝑟 model. With each

training epoch, the 𝐾𝐿_𝐷𝐼𝑉 ((𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡 |𝐻 \ 𝐻𝑢) | | (𝑦𝑡𝑒𝑎𝑐ℎ𝑒𝑟 |𝐻)) in-
creases due to the loss of information in Θ𝑠𝑡𝑢𝑑𝑒𝑛𝑡 until the model
converges. The 𝐾𝐿_𝐷𝐼𝑉 ((𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡 |𝐻 \ 𝐻𝑢) | | (𝑦𝑡𝑒𝑎𝑐ℎ𝑒𝑟 |𝐻)) > 0 can
be lower bounded by some 𝛿 , which further can be used to mea-
sure the degree of unlearning. Similarly, for feature unlearning,
the features 𝑓 \ 𝑓𝑢 are in the lower dimension manifold of 𝑓 , and
(𝐾𝐿_𝐷𝐼𝑉 (𝑒𝑚𝑏𝑠𝑡𝑢𝑑𝑒𝑛𝑡 |𝑓 \ 𝑓𝑢) | |𝑒𝑚𝑏𝑡𝑒𝑎𝑐ℎ𝑒𝑟 |𝑓) can be lower bounded
by some 𝛿 𝑓 which can be used to measure the degree of unlearning.

Algorithm 4: Sample Unlearning in VFL
Input: Target batch 𝑖𝑑 corresponding tosamples to unlearn,

Active party Θ𝐾 , learning rate 𝜂1, unlearning rate 𝜆,
unlearning epochs 𝑢𝑒𝑝 , current epoch 𝑒𝑝

Output: Unlearned Active party model Θ𝐾
1 Assign Θ𝐾 as teacher model Θ𝑡𝑒𝑎𝑐ℎ𝑒𝑟
2 for 𝑡 = 𝑒𝑝 − 𝑢𝑒𝑝 , . . . , 𝑒𝑝 do
3 Active party reads 𝐻
4 Find 𝐻𝑢 = 𝐻𝑖𝑑 // 𝐻𝑢 is the embeddings

corresponding to the target samples

5 Update 𝐻 = 𝐻 \ 𝐻𝑢
6 Compute prediction 𝑦𝑟𝑒𝑡𝑎𝑖𝑛 = Θ𝑡

𝐾
(𝐻)

7 Compute prediction 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = Θ𝑡
𝐾
(𝐻𝑢)

8 Compute loss 𝐿𝑟𝑒𝑡𝑎𝑖𝑛 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑟𝑒𝑡𝑎𝑖𝑛, 𝑦𝑡𝑟𝑢𝑒)
9 Compute loss 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑦𝑡𝑟𝑢𝑒)

10 Active party updates Θ𝑡+1
𝐾

= Θ𝑡
𝐾
− 𝜂1 𝛿𝐿𝑟𝑒𝑡𝑎𝑖𝑛𝛿Θ𝑡

𝐾

+ 𝜆 𝛿𝐿𝑡𝑎𝑟𝑔𝑒𝑡
𝛿Θ𝑡
𝐾

Unlearning samples in VFL does not require model compression,
making knowledge distillation KD a computationally expensive
approach for this task, as it involves retraining the model. To make
sample unlearning more efficient, we propose using gradient ascent,
which significantly reduces training time. Our approach approx-
imately unlearns samples by maximizing the model’s loss on the
target set (the samples to be unlearned) while minimizing the loss
on the remaining dataset (the retain set) over a specified number
of epochs. Algorithm 4 presents the formal algorithm for sample
unlearning in VFL. Here, the algorithm requires batch ids corre-
sponding to the samples in target set and the number of unlearning
epochs (𝑢𝑒𝑝). The unlearning epochs determines howmany retrain-
ing rounds will be performed. The active party computes the loss
on both the target and retain sets, updating its model parameters
to maximize the loss on the target set and minimize the loss on
the retain set i.e., if 𝐿𝑟𝑒𝑡𝑎𝑖𝑛 and 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 is the loss on retain set and
target set then the model update can be written as:

Θ𝑡+1𝐾 = Θ𝑡𝐾 − 𝜂1
𝛿𝐿𝑟𝑒𝑡𝑎𝑖𝑛

𝛿Θ𝑡
𝐾

+ 𝜆
𝛿𝐿𝑡𝑎𝑟𝑔𝑒𝑡

𝛿Θ𝑡
𝐾

(8)

When the target set is absent then, the updates simplifies to:

Θ𝑡+1𝐾 = Θ𝑡𝐾 − 𝜂1
𝛿𝐿𝑟𝑒𝑡𝑎𝑖𝑛

𝛿Θ𝑡
𝐾

(9)

The choice of unlearning rate 𝜆 plays a crucial role in determining
the speed of convergence and stability. A poor choice of 𝜆 may
result in the model parameters getting stuck in local optimum. In
comparison with fine-tuning (eq. 9), the model accelerates with

43

Proceedings on Privacy Enhancing Technologies 2025(2) Varshney et al.

ΘH
ΘH＼Hu

class 0 class 1

MIA model

Figure 2: MIA attack model.

𝜆
𝛿𝐿𝑡𝑎𝑟𝑔𝑒𝑡

Θ𝑡
𝐾

to quickly unlearn the updates from target set with Algo-
rithm 4. The choice of 𝜆 and 𝑢𝑒𝑝 can further be used to determine
the rate of unlearning.

3.1 Auditing the unlearning
Auditing the unlearning process in VFL is especially crucial when
institutions with commercial interests are involved. It ensures that
proprietary and sensitive information shared among parties are
thoroughly removed upon request, thus complying with informa-
tion privacy regulations such as GDPR. Effective auditing maintains
the trust of all participating institutions by verifying that data re-
moval processes are complete and accurate, thereby preventing any
residual influence of deleted data on the model’s predictions.

In the literature of unlearning in FL data poisoning [6] and back-
door [35] attacks are the most common ways to verify unlearn-
ing. Specifically, data poisoning attacks involve injecting malicious
data into the training process to manipulate the model’s behavior,
thereby challenging the unlearning system’s ability to completely
remove the influence of such tampered data [6]. On the other hand,
backdoor attacks involve embedding hidden triggers within the
model, which cause it to behave maliciously when encountering
specific inputs, thus providing a rigorous test of whether unlearn-
ing mechanisms can entirely eliminate such hidden backdoors [35].
However, we argue that auditing unlearning with data poisoning at-
tack and backdoor attacks is not suitable in VFL setup. For backdoor
attacks, once the embeddings of the target party are unlearned from
the active model, the target party can not place the backdoor (for
verification) in the new active model. A similar reasoning continues
for data poisoning attack along with the absence of true labels in
passive parties, thus data poisoning attack is also unsuitable to
audit VFL. In our case, we have considered MIA (refer section 2.4)
to audit unlearning in VFL.

For MIA, we have a binary classification model which is trained
on the output probabilities of the active model in the presence (class
1) and absence (class 0) of the target party’s embeddings for few
epochs (see Fig. 2). Once the model is trained, its inference can
be used to audit the unlearning of the target party, i.e., whether
the target party participated in training the active model or not.
Similarly, for auditing sample unlearning, the MIA model is trained

with the output probabilities in the presence (class 1) and absence
(class 0) of the samples to unlearn.

4 Experimental analysis
In this section, we present the experimental analysis of our pro-
posed unlearning framework. As discussed in Section 2.1, the most
common VFL setting typically involves two parties, with a max-
imum of four parties. For this paper, we consider a three-party
VFL setup consisting of 𝑐𝑙𝑖𝑒𝑛𝑡𝐴, 𝑐𝑙𝑖𝑒𝑛𝑡𝐵, and 𝑐𝑙𝑖𝑒𝑛𝑡𝐶 , collaborating
to train a joint VFL model. The training process spans 50 epochs,
with 𝑐𝑙𝑖𝑒𝑛𝑡𝐴 having the flexibility to request unlearning at any
point during the training process. Since, communication in VFL
is communication-intensive, using a larger batch size is preferred
to optimize efficiency [8]. Accordingly, we set the batch size to
512 in our experiments. The learning rate is set to 10−2 for tabu-
lar data and 10−3 for image data for both active and passive par-
ties. Additionally, the distillation parameter which controls the
trade-off between actual loss and distillation loss is set to 0.3. To
demonstrate the effectiveness of our approach in unlearning at any
stage during training, we conduct experiments at various epochs:
[5𝑡ℎ, 15𝑡ℎ, 25𝑡ℎ, 35𝑡ℎ, 45𝑡ℎ]. After confirming the effectiveness and
feasibility of our unlearning method, we fix the unlearning epoch
at the 25𝑡ℎ epoch for further evaluation. Each experiment is then
repeated three times to account for variability and capture uncer-
tainty in the results.

In our experiments, we have considered 6 tabular datasets, namely
Adult, ai4i, hepmass, susy, and wine dataset from UCI repository
[16], poqemon dataset [1] and 2 image dataset CIFAR10 [17] and
STL10 dataset from [5]. For tabular datasets, passive models have
a single hidden layer models with 8 hidden neurons, and active
model is also a single hidden layer model with 32 neurons followed
by an output layer. The features are distributed equally among pas-
sive parties. For example, wine dataset has 12 features, 𝑐𝑙𝑖𝑒𝑛𝑡𝐴 has
first 4, 𝑐𝑙𝑖𝑒𝑛𝑡𝐵 has next 4 and 𝑐𝑙𝑖𝑒𝑛𝑡𝐶 has last 4 features. For image
datasets, clients have resnet-18 model as the passive model, and
the active model is a single hidden layer model with 512 neurons
followed by an output layer. The number of neurons in output layer
for active model depends on the output classes of the datasets, e.g.,
2 for adult, 5 for poqemon, 10 for CIFAR10.

It is important to emphasize that these experimental setups
are not optimized for peak performance. Our primary objective
is to showcase the effects of unlearning on both tabular and im-
age datasets. The parameters were selected arbitrarily and are not
finetuned for optimal results on each dataset. Fine-tuning the ex-
perimental configurations for optimal results on each dataset is
out-of-scope for this work.

4.1 Passive party unlearning
We compare our approach with the gold standard i.e., a retrained
model from scratch and a benchmark R2S fast retraining unlearn-
ing approach [32]. For passive party unlearning, the R2S method is
equivalent to retraining from scratch with smarter optimizer. Specif-
ically, the R2S method switches between RAdam and SGD with
momentum based on the training epoch and the predefined thresh-
old. In our approach, we train the model using the RAdam optimizer
[21]. Fig. 3 shows the training and test loss throughout the learning

44

Vertical Federated Unlearning Proceedings on Privacy Enhancing Technologies 2025(2)

(a) Adult (b) ai4i (c) Hepmass

(d) Poqemon (e) Susy (f) Wine

Figure 3: The training and test loss of VFU-KD compared to the retrained model from scratch and R2S method.

Epoch Adult ai4i Hepmass Poqemon Susy Wine
RfS R2S Ours RfS R2S Ours RfS R2S Ours RfS R2S Ours RfS R2S Ours RfS R2S Ours

5th Ep. 0.65 0.62 0.65 0.87 0.87 0.88 0.83 0.82 0.82 0.94 0.86 0.88 0.78 0.56 0.78 0.98 0.96 0.97
15th Ep. 0.65 0.63 0.64 0.88 0.89 0.89 0.83 0.83 0.82 0.94 0.92 0.91 0.78 0.78 0.78 0.98 0.97 0.98
25th Ep. 0.66 0.63 0.66 0.89 0.89 0.89 0.83 0.81 0.83 0.94 0.91 0.92 0.78 0.78 0.78 0.98 0.97 0.98
35th Ep. 0.64 0.64 0.63 0.87 0.88 0.89 0.83 0.83 0.83 0.94 0.93 0.92 0.78 0.78 0.78 0.98 0.97 0.98
45th Ep. 0.64 0.64 0.63 0.87 0.87 0.83 0.83 0.83 0.82 0.94 0.93 0.93 0.78 0.78 0.78 0.98 0.97 0.98

Table 1: The AUC score comparison of VFU-KD (Ours) with the retrained-from-scratch (RfS) model and the R2S method.

Epoch Adult ai4i Hepmass Poqemon Susy Wine
RfS R2S Ours RfS R2S Ours RfS R2S Ours RfS R2S Ours RfS R2S Ours RfS R2S Ours

5th Ep. 0.77 0.75 0.77 0.88 0.90 0.87 0.83 0.82 0.82 0.75 0.56 0.54 0.78 0.43 0.78 0.99 0.98 0.98
15th Ep. 0.77 0.76 0.77 0.88 0.89 0.87 0.83 0.83 0.82 0.76 0.67 0.70 0.78 0.78 0.78 0.99 0.99 0.99
25th Ep. 0.77 0.75 0.77 0.88 0.88 0.88 0.83 0.81 0.82 0.77 0.60 0.70 0.78 0.78 0.78 0.99 0.98 0.99
35th Ep. 0.76 0.76 0.76 0.88 0.89 0.89 0.83 0.83 0.82 0.77 0.72 0.67 0.79 0.78 0.78 0.99 0.99 0.99
45th Ep. 0.77 0.76 0.76 0.88 0.88 0.87 0.83 0.83 0.82 0.77 0.74 0.72 0.79 0.79 0.78 0.99 0.99 0.99

Table 2: The F1 score comparison of VFU-KD (Ours) with the retrained-from-scratch (RfS) model and the R2S method.

process for the tabular datasets at [5𝑡ℎ, 15𝑡ℎ, 25𝑡ℎ, 35𝑡ℎ, 45𝑡ℎ] epochs
(Ep.). The shading indicates the epoch at which unlearning occurs:

lighter shades represent earlier unlearning epochs (e.g., unlearning
at the 5𝑡ℎ Ep.), while darker shades represent later epochs (e.g.,

45

Proceedings on Privacy Enhancing Technologies 2025(2) Varshney et al.

Dataset 5th Ep. 15th Ep. 25th Ep. 35th Ep. 45th Ep.
Adult 33.4 98.6 164.3 229.2 295.0
ai4i 5.4 16.3 27.2 38.0 48.9

Hepmass 12.6 37.8 63.0 88.2 11.3
Poqemon 7.3 22 36.7 51.4 66.1
Susy 27.2 81.6 136 190.4 244.8
Wine 3.5 10.6 17.6 24.7 31.8

Table 3: The table presents the additional communication
cost in gigabytes (GB) for unlearning with R2S method
against VFU-KD.

Dataset RfS R2S Ours
AUC F1 AUC F1 AUC F1

CIFAR10 0.92 0.70 0.68 0.29 0.92 0.70
STL10 0.89 0.49 0.91 0.52 0.89 0.49

Table 4: The AUC and F1 score comparison of VFU-KD (Ours)
with the retrained-from-scratch (RfS) model and the R2S
method.

unlearning at the 45𝑡ℎ Ep.). Results for retraining from scratch are
depicted with blue lines, the R2S method is shown with green lines,
and our approach is represented with red lines. It can be clearly
seen from Fig. 3 that, after unlearning at each unlearning epoch,
there is a spike in the loss values for all the datasets. The spike can
be attributed to the distillation process inherent in the unlearning
procedure. However, the spike is not significant and the loss curve
is comparable to the benchmark models, i.e., retrained model and
R2S model, in all the cases. The results in Table 1 and Table 2 indi-
cate that, for VFU-KD, the utility score (area under the curve (AUC
score) and F1 score) after unlearning at the 50𝑡ℎ epoch is either
similar to or better than that of retraining from scratch (abbreviated
as RfS, due to limited space) and the R2S method in many cases
(highlighted in bold). In the remaining cases, the utility scores are
comparable, with a utility loss ranging between 1-5%. The observed
improvement in loss values and utility scores may be attributed to
the negative impact of 𝑐𝑙𝑖𝑒𝑛𝑡𝐴 on the training of the active model.
This explanation is further supported by the observation that the
retrained model achieves better scores than the model trained with
all three clients. Notably, our approach is not limited to the use of
the RAdam optimizer; it can be seamlessly integrated with any ad-
vanced optimizer to further enhance performance. However, for the
purpose of benchmarking against state-of-the-art (SOTA) methods,
we specifically compare our approach using the RAdam optimizer
to a retraining strategy based on the R2S optimizer. These bench-
mark include extensive communication with the clients. Table 3
shows significant additional communication cost required while
unlearning, specially at the later epochs. This is also under an as-
sumption that passive parties are willing to collaborate to train
a new model and this also exposes the unlearn party for further
privacy attacks [31].

Fig. 4 shows the training and test loss when the parameters are
updated with 𝐻−1 (refer eq. 3). The results show that the model

0 10 20 30 40 50

Epochs

0.5

0.6

0.7

0.8

lo
ss

Unlearning Training Loss
Retrain Training Loss
Unlearning Test Loss
Retrain Test Loss

(a) Adult

0 10 20 30 40 50

Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

lo
ss

Unlearning Training Loss
Unlearning Test Loss
Retraining Training Loss
Retraining Test Loss

(b) ai4i

0 10 20 30 40 50

Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

lo
ss

Unlearning Training Loss
Unlearning Test Loss
Retraining Training Loss
Retraining Test Loss

(c) Hepmass

0 10 20 30 40 50

Epochs

1.1

1.2

1.3

1.4

1.5

1.6

lo
ss

Unlearning Training Loss
Unlearning Test Loss
Retraining Training Loss
Retraining Test Loss

(d) Poqemon

0 10 20 30 40 50

Epochs

0.50

0.55

0.60

0.65

0.70

0.75

lo
ss

Unlearning Training Loss
Unlearning Test Loss
Retraining Training Loss
Retraining Test Loss

(e) Susy

0 10 20 30 40 50

Epochs

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

Unlearning Training Loss
Unlearning Test Loss
Retraining Training Loss
Retraining Test Loss

(f) Wine

Figure 4: The training (red) and test loss (blue) of VFU-KD
(solid lines) withH−1 compared to the retrained model from
scratch (dotted lines).

0 10 20 30 40 50
Epochs

0

2

4

6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(a) CIFAR10-loss

0 10 20 30 40 50
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(b) STL10-loss

Figure 5: The loss curves of VFU-KD compared to the re-
trained model from scratch and R2S method.

eventually has similar loss values to the benchmark model in most
cases but has very sharp increase in the loss values after unlearning.
From Fig. 3 and 4, we find that the results are better for unlearning
with learning rates than with H−1. Further experiments with H−1

are available in supplementary material.
For comparative analysis on CIFAR10 and STL10 datasets, we

argue that passive parties typically do not have incomplete images
as shown in [32]. We distribute the channels of image to each
client i.e., 𝑐𝑙𝑖𝑒𝑛𝑡𝐴 has red channel of the image, 𝑐𝑙𝑖𝑒𝑛𝑡𝐵 has green
and 𝑐𝑙𝑖𝑒𝑛𝑡𝐶 has blue channel of the image. Fig. 5 depicts the loss

46

Vertical Federated Unlearning Proceedings on Privacy Enhancing Technologies 2025(2)

0 10 20 30 40 50

Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(a) Adult

0 10 20 30 40 50

Epochs

0.3

0.4

0.5

0.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(b) ai4i

0 10 20 30 40 50

Epochs

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(c) Hepmass

0 10 20 30 40 50

Epochs

0.6

0.8

1.0

1.2

1.4

1.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(d) Poqemon

0 10 20 30 40 50

Epochs

0.45

0.50

0.55

0.60

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(e) Susy

0 10 20 30 40 50

Epochs

0.0

0.2

0.4

0.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(f) Wine

Figure 6: The training and test loss of VFU-KD for most
important feature, compared to the retrained model from
scratch and R2S method.

Dataset RfS R2S Ours
AUC F1 AUC F1 AUC F1

Adult 0.82 0.82 0.82 0.82 0.82 0.82
ai4i 0.86 0.87 0.87 0.90 0.86 0.96

Hepmass 0.84 0.84 0.85 0.85 0.84 0.84
Poqemon 0.92 0.78 0.89 0.70 0.89 0.71
Susy 0.79 0.79 0.79 0.79 0.79 0.79
Wine 0.99 0.99 0.99 0.99 0.99 0.99

Table 5: The AUC and F1 score comparison of VFU-KD (Ours)
with the retrained-from-scratch (RfS) model and the R2S
method for unlearning the most important feature.

curves when unlearning occurs at the 25𝑡ℎ epoch. Small spikes in
the loss curves, attributed to the distillation process, are observed
but recover within a few epochs across all cases. Table 4 provides a
comparison of AUC and F1 scores, demonstrating that our method
achieves results equivalent to those obtained through retraining
from scratch. From the results of Fig. 3, and 5, we can say that our
approach, VFU-KD, has benchmark comparable losses and utility
scores across 6 tabular and 2 image datasets.

0 10 20 30 40 50

Epochs

0.4

0.5

0.6

0.7

0.8

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(a) Adult

0 10 20 30 40 50

Epochs

0

2

4

6

8

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(b) ai4i

0 10 20 30 40 50

Epochs

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(c) Hepmass

0 10 20 30 40 50

Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(d) Poqemon

0 10 20 30 40 50

Epochs

0.45

0.50

0.55

0.60

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(e) Susy

0 10 20 30 40 50

Epochs

0.0

0.2

0.4

0.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(f) Wine

Figure 7: The training and test loss of VFU-KD for least impor-
tant feature, compared to the retrained model from scratch
and R2S method.

Dataset RfS R2S Ours
AUC F1 AUC F1 AUC F1

Adult 0.82 0.82 0.80 0.82 0.81 0.82
ai4i 0.86 0.85 0.87 0.85 0.86 0.81

Hepmass 0.84 0.84 0.85 0.85 0.84 0.84
Poqemon 0.92 0.79 0.92 0.79 0.92 0.79
Susy 0.78 0.79 0.79 0.79 0.78 0.79
Wine 0.99 0.99 0.99 0.99 0.99 0.99

Table 6: The AUC and F1 score comparison of VFU-KD (Ours)
with the retrained-from-scratch (RfS) model and the R2S
method for unlearning the least important feature.

4.2 Feature unlearning
Now that we have shown the feasibility and effectiveness of our
approach specially at the later epochs. We fix the unlearning epoch
at 25𝑡ℎ for feature and sample unlearning. For feature unlearning,
we have removed the most important and least important features
from tabular datasets. The importance of the feature is computed
with feature ablation2 (feature importance for all the tabular dataset
is available in supplementary material). Fig. 6 shows the training
2https://captum.ai/api/feature_ablation.html

47

https://captum.ai/api/feature_ablation.html

Proceedings on Privacy Enhancing Technologies 2025(2) Varshney et al.

(a) Adult (b) ai4i

(c) Hepmass (d) Poqemon

(e) Susy (f) Wine

Figure 8: The MIA attack accuracy (y-axis) of VFU-KD.

Dataset RfS R2S Ours
AUC F1 AUC F1 AUC F1

Adult 0.82 0.81 0.81 0.81 0.82 0.82
ai4i 0.91 0.93 0.91 0.93 0.91 0.93

Hepmass 0.86 0.86 0.85 0.85 0.86 0.86
Poqemon 0.92 0.74 0.92 0.72 0.93 0.77
Susy 0.80 0.80 0.80 0.80 0.80 0.80
Wine 0.99 0.99 0.99 0.99 0.99 0.99

Table 7: The AUC and F1 score comparison of VFU-GA (Ours)
with the retrained-from-scratch (RfS) model and the R2S
method for unlearning 5 batches.

and test loss for unlearning the most important feature and Fig. 7
shows the training and test loss for unlearning the least important
feature for all the datasets. Table 5 and Table 6 show the results for
AUC score and F1 score. Here as well, in all the datasets, the loss
values and utility scores of VFU-KD are benchmark comparable,
even better in some cases. Hence, we can say that our approach,
VFU-KD, can effectively unlearn passive party as well as feature(s)
from passive party. Additional feature unlearning experiments such
as unlearning multiple features and most-least important features
from each client, are available in the supplementary material.

0 10 20 30 40 50

Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(a) Adult

0 10 20 30 40 50

Epochs

0.2

0.3

0.4

0.5

0.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(b) ai4i

0 10 20 30 40 50

Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(c) Hepmass

0 10 20 30 40 50

Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(d) Poqemon

0 10 20 30 40 50

Epochs

0.45

0.50

0.55

0.60

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(e) Susy

0 10 20 30 40 50

Epochs

0.0

0.2

0.4

0.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(f) Wine

Figure 9: The training and test loss of VFU-GA (5 batches)
for least important feature, compared to the retrained model
from scratch and R2S method.

4.3 Sample unlearning
For sample unlearning, we removed 5 batches from the active model
for each dataset. The number of gradient ascent steps was set to 5,
chosen arbitrarily. This parameter can be adjusted and increased
based on the unlearning requirements of the application. Fig. 9
shows the comparison of training and test loss curves between
our approach, retrained from scratch method and R2S method and
Table 7 shows the utility scores (F1 and AUC score) when unlearn-
ing happened at 25th epoch. The results show that VFU-GA has
better utility score than retrained model. Notably, in the case of
the Poqemon dataset, VFU-GA demonstrates significantly superior
utility. This improvement can be attributed to the robustness in-
troduced by gradient ascent, as models often become more robust
following gradient ascent. This characteristic of gradient ascent has
been leveraged in previous literature to enhance model robustness,
as seen in studies such as [28] and [37]. Additional experimental
results for unlearning a batch are available in the supplementary
material.

4.4 Auditing VFU-KD
In this section, we evaluate the effectiveness of the unlearning
process using a MIA. As discussed in Section 3.1, we train an MIA
model with the output logits for 10 epochs both in the presence

48

Vertical Federated Unlearning Proceedings on Privacy Enhancing Technologies 2025(2)

(a) Adult

10 25 35 45

Epochs

0.4

0.5

0.6

0.7

A
tta

ck
 A

cc
ur

ac
y

(b) ai4i

10 20 30 40 50

Epochs

0.75

0.80

0.85

0.90

0.95

1.00

At
ta

ck
 A

cc
ur

ac
y

(c) Hepmass

10 25 35 45

Epochs

0.2

0.4

0.6

0.8

A
tta

ck
 A

cc
ur

ac
y

(d) Poqemon

10 20 30 40 50

Epochs

0.94

0.96

0.98

1.00

At
ta

ck
 A

cc
ur

ac
y

(e) Susy

10 25 35 45

Epochs

0.65

0.70

0.75

0.80

0.85

A
tta

ck
 A

cc
ur

ac
y

(f) Wine

Figure 10: The MIA attack accuracy (y-axis) of VFU-GA.

and absence of 𝑐𝑙𝑖𝑒𝑛𝑡𝐴. The MIA model consists of a single hidden
layer comprising 32 neurons. The output layer of the MIA model
is a binary classifier which predicts whether 𝑐𝑙𝑖𝑒𝑛𝑡𝐴 was present
during training or not.

Fig. 8 shows the accuracy of the MIA on the tabular dataset
starting from epoch 10 onwards. The results clearly demonstrate
a significant drop in MIA accuracy at the 25th epoch, thereby in-
dicating the effect of the unlearning process. Similar results were
observed in Fig. 10 on all the datasets for MIA attack accuracy.
However, the drop in accuracy can vary with the impact of samples
unlearned.

4.5 Limitations
Based on our analysis and the results obtained, we highlight the
following limitations of our approach.

(1) Attack Vulnerability: Dishonest or honest-but-curious pas-
sive parties could potentially exploit the spikes caused by
distillation to perform membership inference attacks or gra-
dient based attacks.

(2) Limited Heterogeneity: Similar to many existing works in the
VFL literature, our approach assumes limited data hetero-
geneity and that all passive parties are readily available for
training, with no stragglers.

(3) Unlearning Auditing: For auditing unlearning, we employ a
relatively weak membership inference attack (MIA) model.

Utilizing a stronger model [14], could yield more insightful
results.

(4) Additional Storage: Active party stores the communicated
embeddings. This might be problematic where active and
passive parties are in area which governs different data reg-
ulatory laws.

5 Conclusion and Future work
In this paper, we introduced a framework for unlearning in vertical
federated learning (VFL), focusing on passive party unlearning and
feature unlearning using knowledge distillation, termed VFU-KD,
and sample unlearning using gradient ascent, termed VFU-GA. VFL
is inherently communication intensive. Thus, an effective unlearn-
ing approach should aim to minimize the communication between
the active and passive parties. In VFU-KD, the active party is re-
sponsible for passive party unlearning, while the respective passive
party handles feature unlearning. VFU-KD leverages knowledge
distillation for effective model compression and unlearning. On the
other hand, since sample unlearning does not require model com-
pression, gradient ascent provides a more computationally efficient
option in VFU-GA.

Our approach does not require any communication between
active party and passive party for unlearning. However, it requires
that the active party stores the communicated embeddings. This is
essential in order to not have any communication. We have also
proposed a MIA which can be used to audit unlearning in VFL. We
have compared VFU-KD, VFU-GA with the gold standard unlearn-
ing model i.e., model retrained from scratch and R2S optimization
based faster retraining, on 6 tabular datasets, and 2 image dataset.
The results demonstrate that, with our approach both active and
passive parties can perform unlearning without any significant
utility loss.

In our experiments, we employed a simple binary classifier for
the membership inference attack (MIA). However, leveraging a
more advanced and robust MIA model, such as the one proposed
in [4], could potentially yield more insightful and accurate results.
Exploring this avenue remains a priority for future work. Addition-
ally, investigating the relationship between the distillation-induced
spikes and their susceptibility to membership inference attacks
presents an intriguing research direction. Another interesting direc-
tion for future work is to develop strategies to reduce the storage
overhead for the active party, further enhancing the efficiency and
scalability of the approach.

Acknowledgments
This workwas carried out during an internship at Ericsson Research
and was partially supported by the Wallenberg AI, Autonomous
Systems, and Software Program (WASP), funded by the Knut and Al-
ice Wallenberg Foundation. The computational resources required
for this research were provided by Ericsson and the Berzelius super-
computer provided by National Supercomputer Centre at Linköping
University and the Knut and Alice Wallenberg foundation.

References
[1] Lamine Amour, Souihi Sami, Said Hoceini, and Abdelhamid Mellouk. 2015. Build-

ing a large dataset for model-based QoE prediction in the mobile environment.
49

Proceedings on Privacy Enhancing Technologies 2025(2) Varshney et al.

In Proceedings of the 18th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems. 313–317.

[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In International conference
on artificial intelligence and statistics. PMLR, 2938–2948.

[3] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
141–159.

[4] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and
Florian Tramer. 2022. Membership inference attacks from first principles. In 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 1897–1914.

[5] Adam Coates, Andrew Ng, and Honglak Lee. 2011. An analysis of single-layer
networks in unsupervised feature learning. In Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings, 215–223.

[6] Zihao Deng, Zhaoyang Han, Chuan Ma, Ming Ding, Long Yuan, Chunpeng Ge,
and Zhe Liu. 2023. Vertical federated unlearning on the logistic regression model.
Electronics 12, 14 (2023), 3182.

[7] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection
meets big data: an efficient and scalable protocol. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. 789–800.

[8] Dashan Gao, Sheng Wan, Lixin Fan, Xin Yao, and Qiang Yang. 2024. Complemen-
tary Knowledge Distillation for Robust and Privacy-Preserving Model Serving in
Vertical Federated Learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38. 19832–19839.

[9] Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. 2019. Making
ai forget you: Data deletion in machine learning. Advances in neural information
processing systems 32 (2019).

[10] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129, 6 (2021),
1789–1819.

[11] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. 2021. Amnesiac machine
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
11516–11524.

[12] Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and Nathalie Baracaldo. 2022.
Federated unlearning: How to efficiently erase a client in fl? arXiv preprint
arXiv:2207.05521 (2022).

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[14] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun
Zhang. 2022. Membership inference attacks on machine learning: A survey. ACM
Computing Surveys (CSUR) 54, 11s (2022), 1–37.

[15] Yu Jiang, Jiyuan Shen, Ziyao Liu, Chee Wei Tan, and Kwok-Yan Lam. 2024. To-
wards efficient and certified recovery from poisoning attacks in federated learning.
arXiv preprint arXiv:2401.08216 (2024).

[16] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. 2023. The UCI machine
learning repository. URL https://archive. ics. uci. edu (2023).

[17] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
(2009). https://api.semanticscholar.org/CorpusID:18268744

[18] Guanghao Li, Li Shen, Yan Sun, YueHu, HanHu, andDacheng Tao. 2023. Subspace
based federated unlearning. arXiv preprint arXiv:2302.12448 (2023).

[19] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and
Bingsheng He. 2021. A survey on federated learning systems: Vision, hype and
reality for data privacy and protection. IEEE Transactions on Knowledge and Data
Engineering 35, 4 (2021), 3347–3366.

[20] Gaoyang Liu, Xiaoqiang Ma, Yang Yang, Chen Wang, and Jiangchuan Liu. 2021.
Federaser: Enabling efficient client-level data removal from federated learning
models. In 2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS). IEEE, 1–10.

[21] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. 2019. On the variance of the adaptive learning rate and
beyond. arXiv preprint arXiv:1908.03265 (2019).

[22] Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. 2021. Fate: An
industrial grade platform for collaborative learning with data protection. Journal
of Machine Learning Research 22, 226 (2021), 1–6.

[23] Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye,
Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. 2024. Vertical federated learning:
Concepts, advances, and challenges. IEEE Transactions on Knowledge and Data
Engineering (2024).

[24] Linpeng Lu and Ning Ding. 2020. Multi-party private set intersection in vertical
federated learning. In 2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE, 707–714.

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[26] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE, 739–753.

[27] Prayitno, Chi-Ren Shyu, Karisma Trinanda Putra, Hsing-Chung Chen, Yuan-Yu
Tsai, KSM Tozammel Hossain, Wei Jiang, and Zon-Yin Shae. 2021. A systematic
review of federated learning in the healthcare area: From the perspective of data
properties and applications. Applied Sciences 11, 23 (2021), 11191.

[28] Othmane Sebbouh, Marco Cuturi, and Gabriel Peyré. 2022. Randomized stochastic
gradient descent ascent. In International Conference on Artificial Intelligence and
Statistics. PMLR, 2941–2969.

[29] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli.
2023. Fast yet effective machine unlearning. IEEE Transactions on Neural Networks
and Learning Systems (2023).

[30] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. 2022.
Unrolling sgd: Understanding factors influencing machine unlearning. In 2022
IEEE 7th European Symposium on Security and Privacy (EuroS&P). IEEE, 303–319.

[31] Fei Wang, Baochun Li, and Bo Li. 2023. Federated unlearning and its privacy
threats. IEEE Network (2023), 463–480. https://doi.org/10.1109/MNET.004.2300056

[32] Zichen Wang, Xiangshan Gao, Cong Wang, Peng Cheng, and Jiming Chen. 2024.
Efficient Vertical Federated Unlearning via Fast Retraining. ACM Transactions on
Internet Technology 24, 2 (2024), 1–22.

[33] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck.
2021. Machine unlearning of features and labels. arXiv preprint arXiv:2108.11577
(2021).

[34] Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and
Thilina Ranbaduge. 2022. Vertical federated learning: Challenges, methodologies
and experiments. arXiv preprint arXiv:2202.04309 (2022).

[35] Chen Wu, Sencun Zhu, and Prasenjit Mitra. 2022. Federated unlearning with
knowledge distillation. arXiv preprint arXiv:2201.09441 (2022).

[36] Zhaomin Wu, Junyi Hou, Yiqun Diao, and Bingsheng He. 2024. Federated Trans-
former: Multi-Party Vertical Federated Learning on Practical Fuzzily Linked Data.
arXiv preprint arXiv:2410.17986 (2024).

[37] Dongkeun Yoon, Joel Jang, Sungdong Kim, and Minjoon Seo. 2023. Gradient As-
cent Post-training Enhances Language Model Generalization. In The 61st Annual
Meeting Of The Association For Computational Linguistics.

[38] Chong Yu, Shuaiqi Shen, Shiqiang Wang, Kuan Zhang, and Hai Zhao. 2024.
Communication-Efficient Hybrid Federated Learning for E-Health With Hori-
zontal and Vertical Data Partitioning. IEEE Transactions on Neural Networks and
Learning Systems (2024).

[39] Haibo Zhang, Toru Nakamura, Takamasa Isohara, and Kouichi Sakurai. 2023. A
review on machine unlearning. SN Computer Science 4, 4 (2023), 337.

[40] Fanglan Zheng, Kun Li, Jiang Tian, Xiaojia Xiang, et al. 2020. A vertical federated
learning method for interpretable scorecard and its application in credit scoring.
arXiv preprint arXiv:2009.06218 (2020).

[41] Xiangrong Zhu, Guangyao Li, and Wei Hu. 2023. Heterogeneous federated
knowledge graph embedding learning and unlearning. In Proceedings of the ACM
web conference 2023. 2444–2454.

A Hessian utility score
Fig. 11 shows the F1 and AUC scores for client unlearning with
H−1. Here as well, it is clear from the results that the utility score
eventually converges to the benchmark comparable utility scores
in all the cases except Hepmass and Poqemon dataset. We found
that, we have better results in the presence of a learning rate than
with H−1.

B Additional feature importance results
Fig. 14 highlights the importance of each feature using feature
ablation. Based on this information, the results for most important
and least important feature were given in the main paper.

We have also experimented with removing multiple features
from the same client, most important feature and least important
feature from each clients for wine dataset.

Fig. 12 shows the training and test loss when two most-least im-
portant features were unlearning, and most-least important feature
from each client were unlearning. Similary, Fig. 13 shows the utility
scores for the same. In all the cases, we see that, VFU-KD achieves

50

https://api.semanticscholar.org/CorpusID:18268744
https://doi.org/10.1109/MNET.004.2300056

Vertical Federated Unlearning Proceedings on Privacy Enhancing Technologies 2025(2)

0 10 20 30 40 50

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
til

ity

Unlearning Training auc
Retrain auc
Unlearning Training f1
Retrain f1

(a) Adult

0 10 20 30 40 50

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

U
til

ity

Unlearning Training auc
Retrain auc
Unlearning Training f1
Retraining f1

(b) ai4i

0 10 20 30 40 50

Epochs

0.4

0.5

0.6

0.7

0.8

U
til

ity

Unlearning Training auc
Retrain auc
Unlearning Training f1
Retraining f1

(c) Hepmass

0 10 20 30 40 50

Epochs

0.0

0.2

0.4

0.6

0.8

U
til

ity

Unlearning Training auc
Retrain auc
Unlearning Training f1
Retraining f1

(d) Poqemon

0 10 20 30 40 50

Epochs

0.50

0.55

0.60

0.65

0.70

0.75

U
til

ity

Unlearning Training auc
Retrain auc
Unlearning Training f1
Retraining f1

(e) Susy

0 10 20 30 40 50

Epochs

0.2

0.4

0.6

0.8

1.0

U
til

ity

Unlearning Training auc
Retrain auc
Unlearning Training f1
Retraining f1

(f) Wine

Figure 11: The F1 and AUC scores of VFU-KD with H−1 com-
pared to the retrained model from scratch.

benchmark comparable results, even better than benchmark in
some cases.

C Additional VFU-GA results
Fig. 9 shows the the comparison of training and test loss between
VFU-GA and benchmark model when unlearning 5 batches.

Fig. 15 shows the comparison of training and test loss between
VFU-GA and benchmark model. Here as well, the model performs
better than the benchmark model after unlearning attributed to
the robustness introduced while unlearning. Fig. 16 shows the per-
formance of MIA attack when unlearning 1 batch. We can see the
evidence of unlearning with the drop in accuracy.

(a) Two Most Important Features (b) Two Least Important Features

(c) Most Important Feature from Each
Client

(d) Least Important Feature from Each
Client

Figure 12: The training and test loss values of VFU-KD for
the wine dataset.

(a) Two Most Important Features (b) Two Least Important Features

(c) Most Important Feature from Each
Client

(d) Least Important Feature from Each
Client

Figure 13: The F1 and AUC score of VFU-KD for the wine
dataset.

51

Proceedings on Privacy Enhancing Technologies 2025(2) Varshney et al.

age fnlwgt educational-num capital-gain capital-loss hours-per-week workclass education marital-status occupation relationship race gender native-country

0.3

0.2

0.1

0.0

0.1

0.2

At
tri

bu
tio

ns

Feature importances (feature ablation)

(a) Adult

Air temperature [K] Process temperature [K] Rotational speed [rpm] Torque [Nm] Tool wear [min] Type_H Type_L Type_M
0.0

0.1

0.2

0.3

0.4

At
tri

bu
tio

ns

Feature importances (feature ablation)

(b) ai4i

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 mass

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

At
tri

bu
tio

ns

Feature importances (feature ablation)

(c) Hepmass

(d) Poqemon

lepton 1 pT lepton 1 eta lepton 1 phi lepton 2 pT lepton 2 eta lepton 2 phimissing energy magnitudemissing energy phi MET_rel axial MET M_R M_TR_2 R MT2 S_R M_Delta_R dPhi_r_b cos(theta_r1)

0.0

0.1

0.2

0.3

At
tri

bu
tio

ns

Feature importances (feature ablation)

(e) Susy (f) Wine

Figure 14: The feature importance plot. Each bar, from left to right, represents the features in order from the first to the last
column of the respective dataset.

0 10 20 30 40 50

Epochs

0.40

0.45

0.50

0.55

0.60

0.65

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(a) Adult

0 10 20 30 40 50

Epochs

0.3

0.4

0.5

0.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(b) ai4i

0 10 20 30 40 50

Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(c) Hepmass

0 10 20 30 40 50

Epochs

0.6

0.8

1.0

1.2

1.4

1.6

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(d) Poqemon

0 10 20 30 40 50

Epochs

0.45

0.50

0.55

0.60

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(e) Susy

0 10 20 30 40 50

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

lo
ss

Ours Train Loss
Retrain Train Loss
R2S train loss
Ours Test Loss
Retrain Test Loss
R2S Test Loss

(f) Wine

Figure 15: The training and test loss of VFU-GA (1 batch) for
least important feature, compared to the retrained model
from scratch and R2S method.

Dataset RfS R2S Ours
AUC F1 AUC F1 AUC F1

Adult 0.81 0.78 0.80 0.80 0.81 0.78
ai4i 0.91 0.93 0.91 0.93 0.91 0.93

Hepmass 0.86 0.86 0.86 0.86 0.86 0.86
Poqemon 0.93 0.75 0.93 0.76 0.93 0.76
Susy 0.80 0.80 0.80 0.80 0.80 0.80
Wine 0.99 0.99 0.99 0.99 0.99 0.99

Table 8: The AUC and F1 score comparison of VFU-GA (Ours)
with the retrained-from-scratch (RfS) model and the R2S
method for unlearning 1 batches.

52

Vertical Federated Unlearning Proceedings on Privacy Enhancing Technologies 2025(2)

(a) Adult (b) ai4i

10 20 30 40 50

Epochs

0.80

0.85

0.90

0.95

1.00

At
ta

ck
 A

cc
ur

ac
y

(c) Hepmass

10 25 35 45

Epochs

0.0

0.2

0.4

0.6

A
tta

ck
 A

cc
ur

ac
y

(d) Poqemon

10 20 30 40 50

Epochs

0.90

0.92

0.94

0.96

0.98

At
ta

ck
 A

cc
ur

ac
y

(e) Susy

10 25 35 45

Epochs

0.5

0.6

0.7

0.8

A
tta

ck
 A

cc
ur

ac
y

(f) Wine

Figure 16: The MIA attack accuracy (y-axis) of VFU-GA (1
batch).

53

	Abstract
	1 Introduction
	2 Background
	2.1 Vertical federated learning
	2.2 Knowledge distillation
	2.3 Gradient ascent
	2.4 Membership inference attack

	3 Proposed Work
	3.1 Auditing the unlearning

	4 Experimental analysis
	4.1 Passive party unlearning
	4.2 Feature unlearning
	4.3 Sample unlearning
	4.4 Auditing VFU-KD
	4.5 Limitations

	5 Conclusion and Future work
	Acknowledgments
	References
	A Hessian utility score
	B Additional feature importance results
	C Additional VFU-GA results

