
AnoFel: Supporting Anonymity for Privacy-Preserving Federated
Learning

Ghada Almashaqbeh

University of Connecticut

Storrs, Connecticut, USA

ghada@uconn.edu

Zahra Ghodsi

Purdue University

West Lafayette, Indiana, USA

zahra@purdue.edu

Abstract
Federated learning enables users to collaboratively train a machine

learning model over their private datasets. Secure aggregation pro-

tocols are employed to mitigate information leakage about the

local datasets from user-submitted model updates. This setup, how-

ever, still leaks the user participation in training, which can also

be sensitive. Protecting user anonymity is even more challenging

in dynamic environments where users may (re)join or leave the

training process at any point of time.

This paper introduces AnoFel, the first framework to support

private and anonymous dynamic participation in federated learning

(FL).AnoFel leverages several cryptographic primitives, the concept

of anonymity sets, differential privacy, and a public bulletin board

to support anonymous user registration, as well as unlinkable and

confidential model update submission. Our system allows dynamic

participation, where users can join or leave at any time without

needing any recovery protocol or interaction. To assess security, we

formalize a notion for privacy and anonymity in FL, and formally

prove thatAnoFel satisfies this notion. To the best of our knowledge,
our system is the first solution with provable anonymity guarantees.

To assess efficiency, we provide a concrete implementation of

AnoFel, and conduct experiments showing its ability to support

learning applications scaling to a large number of clients. For a

TinyImageNet classification task with 512 clients, the client setup

to join is less than 3 sec, and the client runtime for each training

iteration takes a total of 8 sec, where the added overhead of AnoFel
is 46% of the total runtime. We also compare our system with prior

work and demonstrate its practicality.AnoFel client runtime is up to

5× faster than Truex et al. [73], despite the added anonymity guar-

antee and dynamic user joining in AnoFel. Compared to Bonawitz

et al. [16], AnoFel is only 2× slower for added support for privacy

in output, dynamic user joining, and anonymity.

Keywords
Anonymity, private federated learning, dynamic participation

1 Introduction
Privacy-preserving machine learning is a critical problem that has

received huge interest from both academia and industry. Many cru-

cial applications involve training ML models over highly sensitive

user data, such asmedical screening [35], credit risk assessment [33],

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(2), 88–106
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0051

or autonomous vehicles [21]. Enabling such applications requires

ML frameworks that preserve the privacy of users’ datasets.

Federated learning (FL) aims to achieve this goal by offering a

decentralized paradigm for model training. Participants, or clients,

train the model locally over their datasets, and then share only the

local gradients with the model owner, or the server. After aggregat-

ing updates from all clients, the server shares the updated model

with these clients to start a new training iteration. This iterative

process continues until the model converges.

However, individualmodel updates leak information about clients’

private datasets [58, 63], and therefore aggregation should be done

in a secure way: a server only sees the aggregated value rather than

individual contributions from each client. A large body of work

emerged building cryptographic protocols for secure aggregation

to support private federated learning, e.g., [10, 16, 69, 71, 73, 79].

Anonymous client participation. A related question to preserv-

ing data privacy in federated learning is preserving client partici-

pation anonymity. That is, protecting client identity and breaking

linkability with any information that could be deduced from train-

ing. Anonymity is critical for training models over sensitive data

related to, e.g., user health, financial information, or other sensi-

tive attributes such as ethnicity or sexual orientation. The mere

knowledge that a user has participated in a training task could leak

that they suffer from a particular disease or that they belong to a

protected population group. Such leakage invades privacy, and may

discourage participation.

As an example application, consider the users of smart watches or

wearable fitness trackers. Roughly one-in-five U.S. adults say they

regularly use such health monitoring devices [74], with researchers

already using data from these apps for health research [76]. How-

ever, a majority of Americans surveyed either oppose sharing data

from fitness trackers with medical researchers, or are unsure if such

data sharing is an acceptable practice [74]. Using data from fitness

trackers can help researchers monitor sleep in patients with neu-

rocognitive disorders [8], or study the differences in cardiovascular

health in sexual minority adults [19]. Participation in such studies

however, reveals very sensitive information about users which they

might not be willing to disclose. In this case, protecting the privacy

of data (as is done in prior secure aggregation protocols) is not suf-

ficient and does not hide the fact that a user participated in a study.

This issue adds to already existing concerns among clients about

the use of data, and might discourage user participation. Therefore,

preserving participation anonymity is essential in such scenarios

to ensure comprehensive user privacy.

Existing frameworks for private federated learning either don’t

support client participation anonymity, or suffer from security

88

https://orcid.org/0000-0002-4175-8542
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0051

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

issues. Secure aggregation protocols [10, 16] require full identifi-

cation of clients, through a public key infrastructure (PKI) or a

trusted client registration process, to prevent Sybil attacks and

impersonation. Even frameworks that deal with semi-honest ad-

versaries [16, 69, 71, 73, 79] assign clients logical identities, where

the mapping between the logical and real identities is known to

the server or a trusted third party. On the other hand, techniques

that anonymize datasets [52, 55, 72, 81] do not support partici-

pation anonymity, but rather hide sensitive information in the

dataset before being used in training. At the same time, existing

solutions for anonymous client participation have several limita-

tions [23, 28, 40, 53, 83]: they either rely on fixed pseudonyms that

are susceptible to traffic analysis attacks, assume a trusted party to

mediate communication so this party is aware of the client partici-

pation behavior, or are vulnerable to man-in-the-middle attacks.

Dynamic settings. Allowing clients to (re)join or leave at any time

is invaluable for training tasks targeting dynamic environments. A

decentralized activity as federated learning may deal with hetero-

geneous settings involving weak clients who may use low-power

devices or have unstable network connectivity. Even it could be the

case that clients simply change their minds and abort the training

protocol after it starts. The ability to support this dynamicity at

low overhead promotes participation, but it is a more challenging

setup for client anonymity.

Most privacy-preserving federated learning solutions do not sup-

port dynamic participation; usually clients must join at the onset of

the training process during the setup phase, and stay until training

concludes. Several solutions support client dropouts (at a relatively

high overhead by employing interactive recovery protocols that re-

veal dropout identities) [16, 71, 73, 79] but not addition, or support

both dropout and addition but at the expense of a constrained setup

that places a cap on the number of clients who can participate [78].

To the best of our knowledge, supporting anonymity in a dynamic

environment has been absent from the current state of the art.

An open question. Therefore, we ask the following question: can
we achieve private federated learning that supports users’ anonymity
in both static and dynamic settings?

1.1 Our Contributions
In this paper, we answer this question in the affirmative and present

AnoFel, a system that fulfills the requirements above (Table 1).
1
In

particular, we make the following contributions.

Formal security notion and analysis. Our goal is to build a

provably-secure system, which requires a well-defined notion for-

mally outlining the security and privacy guarantees that must be

achieved. Towards this goal, we define a notion for private and

anonymous federated learning (PAFL) that encompasses three prop-

erties: correctness, anonymity, and dataset privacy. Then, we for-

mally prove the security of AnoFel based on this notion. To the

best of our knowledge, we are the first to provide such formal

definition covering anonymity, and the first to build a provably-

secure client anonymity solution for private federated learning.

We believe that our PAFL definition is of independent interest as

1
The work [79] optimizes the efficiency of [16] using the same architecture, thus it

inherits the same features of [16] summarized in the table.

FL Protocol

Privacy in

Computation

Privacy in

Output

Dynamic

Dropout

Dynamic

Joining

Participation

Anonymity

Ryffel et al. [69] ! % % % %

Bonawitz et al. [16] ! % ! % %

Truex et al. [73] ! ! ! % %

Xu et al. [78] ! ! ! !∗ %

AnoFel (this work) ! ! ! ! !

Table 1: Comparison of FL protocols (representative works
shown). Privacy in computation refers to protecting individ-
ual updates, whereas privacy in output refers to preventing
privacy leakage from the output of aggregation (e.g., mem-
bership attacks). ∗ Max number of clients is fixed at setup.

it is general enough to be used by other private and anonymous

federated learning protocols.

System design.We instantiate AnoFel using several cryptographic
primitives and privacy techniques to achieve participation anony-

mity for both static and dynamic settings. We observe that achiev-

ing full user participation anonymity requires protection not only

during the training phase, but also during the registration phase

when clients sign up for the training task. As such, our systems

involves (1) an anonymous registration process guaranteeing that

only legitimate clients with honestly-generated datasets can partic-

ipate, and (2) an unlinkable model update submission that cannot

be traced back to the originating client. We rely on anonymity sets

and zero-knowledge proofs to achieve this, where a client proves

owning a legitimate dataset (during registration), and being one of

the registered clients (during model update submission), without

revealing anything about their identity or registration information.

To support dynamic user participation and secure aggregation

of model updates, our system employs threshold homomorphic

encryption. Our insight is to split the roles of a model owner from

the aggregators, and use a committee of aggregators to distrib-

ute trust. Aggregators receive encrypted model parameter updates

(gradients) from users, and at the end of a training iteration, they

(homomorphically) add these ciphertexts to produce a ciphertext of

the aggregation. Afterwards, the aggregators decrypt the result al-

lowing the model owner to access the aggregated plaintext updates

so that a new training iteration can be started. This configuration

of AnoFel removes clients’ involvement in the aggregation or de-

cryption processes, and hence allows them to (re)join and leave

training at any time without interrupting system operation. Fur-

thermore, AnoFel employs a bulletin board to provide a persistent

log accessible to all parties and facilitate indirect communication

between them to reduce interaction. Another advantage of AnoFel,
due to the use of the bulletin board, is that all clients receive the

same initial model for any iteration, which addresses privacy at-

tacks resulting from distributing different initial model parameters

to clients [66]. To the best of our knowledge, AnoFel is the only
private federated learning system that enjoys this advantage.

We observe that model (or training output) related attacks, such

as membership, inference, and model inversion attacks, could com-

promise participation anonymity especially if the revealed data

sample is known to belong to a particular client. To mitigate this

issue, we employ differential privacy (DP). Unlike existing solutions

which usually employ local DP at the client level, AnoFel employs

DP at the aggregation level (without compromising privacy). In

particular, clients perform local training and submit their encrypted

89

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

model updates that will be aggregated (by the aggregator commit-

tee) at the end of the iteration. However, before decrypting the

aggregated updates, each aggregator will sample a noise value, en-

crypt it, and share it with the rest of the committee. We use ideas

from [73] to reduce the noise amount from each aggregator by a

factor of encryption threshold as we will describe later. All noise

values are then added to the aggregated updates (using homomor-

phic add), after which decryption can take place. Our DP approach

has several advantages; it supports dynamic settings and reduces

the impact on accuracy. That is, regardless of the number of par-

ticipating clients in an iteration, the appropriate noise level that

satisfies the privacy leakage guarantees obtained by DP is always

being added during the aggregation stage.

Implementation and evaluation. To show practicality, we im-

plement AnoFel and empirically evaluate its performance cover-

ing different federated learning tasks. We demonstrate scalability

of our system by testing scenarios that involve large numbers of

clients and contemporary models—the benchmarked architectures

are the largest studied in privacy-preserving federated learning

literature [25, 54, 71, 73]. We show that AnoFel, with its supported

features, incurs a reasonable added cost in runtime.

In a network of 16 clients, the client setup needed in AnoFel to
join the training task takes less than 2 sec, and each training itera-

tion for MNIST, CIFAR10, and TinyImageNet classification takes

the client a total of 1.7, 3.1, and 7.8 sec, where the added overhead

of AnoFel is 65%, 59%, and 48% of total runtime (including local

training time) respectively. Compared to Truex et al. [73], AnoFel
client runtime is up to 1.3×, 3.5×, and 5× faster across on MNIST,

CIFAR10, and TinyImageNet benchmarks respectively. Despite the

added anonymity guarantee in AnoFel and supporting dynamic

participation, our system outperforms Truex et al. in client runtime

due to employing DP at the aggregation level and implementing

optimizations for parallelized client computation.

Bonawitz et al. [16] is only faster by 1.3× on MNIST, 1.8× on

CIFAR10, and 2× on TinyImageNet for 512 clients due to client

runtime growing quadratically with the number of clients, whereas

AnoFel grows logarithmically. Additionally, their framework does

not provide privacy in output, dynamic user joining, or participation

anonymity.

Furthermore, we evaluate the accuracy of models trained with

AnoFel for a range of number of clients and data distribution set-

tings (IID and non-IID) and show that, compared to a non-DP

baseline, the accuracy drop due to DP for the MNIST dataset is

between 0.05% − 0.22%, for CIFAR10 is between 0.79% − 3.68%, and
for TinyImageNet is between 8.11% − 12.27%.

2 A Security Notion for Private and Anonymous
Federated Learning

In this section, we define a formal security notion for a private and

anonymous federated learning scheme (PAFL). This notion, and its

correctness and security properties, are inspired by [18, 31, 45, 70].

Notation. We use 𝜆 to denote the security parameter, 𝛼 to denote

correctness (or accuracy) loss parameter,𝛾 to denote the privacy loss

(or leakage) advantage of the adversary (𝛼 and𝛾 are parameters tied

to any non-cryptographic privacy technique used in the scheme, if

any), negl(·) to denote negligible functions, and boldface letters to

represent vectors. The variable state represents the system state,

which include the data recorded on the bulletin board (these posted

by all parties, and the public parameters of the system building

blocks). The notation 𝒜𝒪
means that an entity, in this case the

adversary𝒜, has an oracle access to𝒪. Lastly,

$←− denotes drawn at

random, and PPT is a shorthand for probabilistic polynomial time.

Definition 1 ((𝛼,𝛾)-PAFL Scheme). Let Π be a protocol between
a server 𝑆 , set of aggregators𝒜𝒢, and a set of clients 𝒞 such that each
client cl𝑖 ∈ 𝒞 holds a private dataset 𝐷𝑖 . Let M be the initial model
that 𝑆 wants to train,MΠ be the trained model produced by Π, and
M𝑎𝑐𝑡𝑢𝑎𝑙 be the model produced by training M over the datasets in
the clear (the datasets of the participating clients). Π is a private and
anonymous federated learning (PAFL) scheme, parameterized by 𝛼
and 𝛾 , if it satisfies the following properties for everyM:

• 𝛼-Correctness: The model trained by Π achieves an error
bound 𝛼 with high probability compared to the actual model.
That is, for 𝛼 ≥ 0 and an error function Er, with high proba-
bility we have Er(M𝑎𝑐𝑡𝑢𝑎𝑙 ,MΠ) ≤ 𝛼 .
• Anonymity: Any PPT adversary𝒜 has a negligible advantage
in winning the anonymity game AnonGame. Formally, for a
security parameter 𝜆, there exists a negligible function negl
such that 𝒜 wins AnonGame with probability at most 1

2
+

negl(𝜆), where the probability is taken over all the randomness
used by 𝒜 and Π.
• 𝛾-Dataset Privacy: Any PPT adversary 𝒜 has a negligible
additional advantage over 𝛾 in winning the dataset indis-
tinguishability game DINDGame. Formally, for a security
parameter 𝜆 and 𝛾 ≥ 0, there exists a negligible function
negl such that 𝒜 wins DINDGame with probability at most
1

2
+ 𝛾 + negl(𝜆), where the probability is taken over all ran-

domness used by 𝒜 and Π.

Intuitively, a PAFL scheme is one that is correct and provides

anonymity and dataset privacy for clients. Ideally, correctness guar-

antees that the outcome of a PAFL scheme (i.e., the final trained

model) is identical to what will be produced by a training scheme

that gets full access to the clients’ datasets. Anonymity means that

no one can tell whether a client has registered or participated in

any training iteration. In other words, submitted model updates,

or any other information a client uses for registration, cannot be

traced back to this client. Dataset privacy means that no additional

information will be leaked about the private datasets of honest

clients beyond any prior knowledge the adversary has.

To make our definition more general, we account for the use

of non-cryptographic privacy techniques, such as differential pri-

vacy, that may result in accuracy and privacy loss. We do that by

parameterizing our notion with 𝛼 and 𝛾 that stand for correctness

(or accuracy loss) and indistinguishability (or privacy loss) param-

eters, respectively. Having 𝛼 = 𝛾 = 0 reduces to the ideal case in

which M𝑎𝑐𝑡𝑢𝑎𝑙 =MΠ , and an adversary has negligible advantage in

breaking anonymity and dataset privacy. The bounds for 𝛼 and 𝛾

are derived based on the non-cryptographic privacy techniques em-

ployed in the system. Furthermore, our notion accounts for dynamic

client participation where not all clients may participate in every

single training iteration. Thus, correctness is defined overM𝑎𝑐𝑡𝑢𝑎𝑙

andMΠ with respect to the same client participation pattern.

90

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

We define two security games to capture anonymity and dataset

privacy, denoted as AnonGame and DINDGame, respectively, and
the interfaces offered by a PAFL scheme. The goal is to protect the

client’s anonymity and privacy such that no one can tell whether

the client was involved in the training task, or reveal anything

about their dataset. To capture that, we assume 𝒜 controls 𝑆 and

any subset of clients and aggregators given the conditions specified

by the security games; that is, at least two clients in the system

are honest, and the aggregator committee 𝒜𝒢 can have at most

𝑡 − 1 corrupted members, where 𝑡 is the threshold required to

correctly reveal the aggregated updates. All parties receive the

security parameter 𝜆, and are given oracle access to 𝒪PAFL. 𝒪PAFL

maintains the state of the system, including the set of registered

clients and aggregators, and any additional information recorded

on the board. 𝒪PAFL supports the following query types:
2

• (setup, 1𝜆): takes the security parameter as input and sets up

the system accordingly—creating the bulletin board, the pub-

lic parameters needed by all parties/cryptographic building

blocks, and the bounds/parameters needed by any additional

non-cryptographic privacy techniques employed in the sys-

tem. This command can be invoked only once.

• (register, 𝑝, aux): registers party 𝑝 that could be a client or an

aggregator committee. The field aux specifies the party type

and its input: if 𝑝 is a client, then auxwill include its certified
dataset and the certification information, while if 𝑝 is an

aggregator committee, auxwill include, e.g., the committee’s

public key. This command can be invoked anytime and as

many times as desired.

• (train, cl, aux): instructs a (registered) client cl to train the

model using its dataset and submit the model updates. The

field aux defines the dataset that belongs to cl (the exact

information is based on Π). This command can be invoked

anytime and as many times as desired.

• (access): returns the updated model (after aggregating all

submitted individual model updates received in an iteration).

For any iteration, this command can be invoked only once

and only at the end of that iteration.

• (corrupt, 𝑝, aux): allows 𝒜 to corrupt party 𝑝 that could be

a client or an aggregator. If 𝑝 is a client, then aux will be the
registration information of this client (e.g., in AnoFel, it is
the dataset commitment as we will see later), while if 𝑝 is

an aggregator, aux will be the public key of that party. This

command can be invoked at anytime allowing 𝒜 to corrupt

up to 𝑡 − 1 members in 𝒜𝒢, and up to |𝒞 | − 2 clients.
Note that the notation cl only represents the type of a party to

be a client, it does not contain its real identity.

Accordingly, the AnonGame proceeds as follows:
(1) 𝑏

$←− {0, 1}
(2) state← (setup, 1𝜆)
(3) (cl0, aux0, cl1, aux1) ← 𝒜𝒪PAFL (1𝜆, state)
(4) (train, cl𝑏 , aux𝑏)
(5) 𝒜 continues to have access to 𝒪PAFL

(6) At the end, 𝒜 outputs 𝑏′, if 𝑏′ = 𝑏 and:

(a) both cl0 and cl1 are honest,

2
Note that aux is only a holder of auxiliary information that is parsed differently

across queries (and across security games); it does not have a fixed meaning.

(b) and there are at least two honest clients participated in

every training iteration, and that these clients remained

honest until the end of the game,

then return 1 (meaning that 𝒜 won the AnonGame), other-
wise, return 0.

Note that 𝒜 has access to the current state of the system at

anytime, and can see the updated bulletin board after the execution

of any command. Also,𝒜 can access the updatedmodel at the end of

any iteration, and like everyone in the system, it can see all messages

sent from the parties to the board (since all will be published on

the board). However, if these messages are, e.g., encrypted, all what

𝒜 sees is the ciphertext but not the plaintext, and so on depending

on the actual protocol instantiation. For the chosen clients, aux𝑖
represents their registration information (which does not include

the client identity or its actual dataset 𝐷𝑖).
3

As shown,AnonGame captures the smallest anonymity set𝑢 = 2,

which implies the case 𝑢 > 2 in which there are 𝑢 clients and

the adversary tries to figure out which client among this set has

participated in training. That is, for 𝑢 = 2, the guarantee is that 𝒜
has negligible probability over a random guess success probability

(i.e., 1/2) to win. Having a larger anonymity set will not help 𝒜
since the random guess success probability will become smaller (i.e.,

1/𝑢) and still 𝒜’s additional advantage is negligible.
4
Furthermore,

since 𝒜 can choose any two clients for the challenge, AnonGame
also captures anonymity and unlinkability of registration. That is,

although𝒜 picks any client registration information (namely, aux𝑖)
from the board, not winning the anonymity game means that 𝒜
cannot link the registration information to the client identity or

model update submission. If the registration information can be

linked to a model update submission, then 𝒜 can always win.

AnonGame game includes several conditions to rule out trivial

adversary wins. The two clients that 𝒜 selects must be honest,

otherwise, if any is corrupt, it will be trivial to tell which client was

chosen. Furthermore, since aggregating model updates is simply

computing the summation of these updates, if only cl𝑏 participates

in the iteration during which the challenge command is executed,

it might be trivial for𝒜 to win (same for any other iteration if only

one honest client participates). This is because 𝒜 can access the

updated model at the end of that iteration and can extract cl𝑏 ’s
individual updates. Thus, we add the condition that there must

be at least two honest clients participated in any iteration, and

these have to remain honest until the end of the game. Also, the

aggregator committee 𝒜𝒢 can have at most 𝑡 − 1 corrupt parties,
which is included in𝒜’s capabilities as defined in the corrupt query
stated earlier. Otherwise, if 𝒜 controls 𝑡 members, it can access

individual model updates at anytime, which may allow deducing

information about the chosen client.
5

The DINDGame proceeds as follows:

(1) 𝑏
$←− {0, 1}

(2) state← (setup, 1𝜆)
(3) (𝐷0, aux0, 𝐷1, aux1) ← 𝒜𝒪PAFL (1𝜆, state)

3
If the adversary knows the dataset and identity of a client, then it knows that this

client is part of the population, i.e., this client suffers from illness, for example; there

is no point of hiding whether that client participated in training.

4
Similar observation applies to DINDGame (which we define next).

5
For correctness, we have |𝒜𝒢 | ≥ 2𝑡 − 1 to guarantee that the aggregator committee

has at least 𝑡 honest members to allow revealing the aggregated updates correctly.

91

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

(4) (register, cl, (𝐷𝑏 , aux)), (train, cl, aux)
(5) 𝒜 continues to have access to 𝒪PAFL

(6) 𝒜 outputs 𝑏′, if 𝑏′ = 𝑏, and:

(a) cl is honest,
(b) and there is at least two honest clients participated in

every training iteration, and that these clients remained

honest until the end of the game,

then return 1 (meaning that 𝒜 won the DINDGame), other-
wise return 0.

This game follows the outline of AnonGame, but with a different
construction of the challenge command to reflect dataset privacy.

In particular, 𝒜 chooses two valid datasets (the field aux𝑖 contains
all information required to verify validity). The challenger chooses

one of these datasets at random (based on the bit 𝑏), queries 𝒪PAFL

to register a client using this dataset, and then instructs this client

to train the model using the dataset 𝐷𝑏 . Note that aux in line 4

is the registration information of the client constructed based on

the Π scheme. 𝒜 continues to interact with the system, and can

access the updated model at the end of any iteration. 𝒜 wins the

game if it guesses correctly which of the datasets was chosen in the

challenge where as before, conditions are added to rule out trivial

adversary wins. Being unable to guess after seeing the outcome of

the challenge train command, and even after accessing the aggre-

gated model updates, means that a PAFL schemes does not reveal

anything about the underlying datasets.

Note that the definition of DINDGame covers defending against
membership inference attacks. That is, in the game 𝒜 chooses two

datasets 𝐷0 and 𝐷1 among which the challenger will choose one
at random and use it to register a client cl that will participate in
training (so 𝒜 does not know whether 𝐷0 or 𝐷1 was selected). 𝒜
can access the trained model via 𝒪PAFL (using the query access) at
the end of each iteration (including the last iteration when train-

ing concludes). Thus, in a protocol that does not protect against

membership inference attacks, 𝒜 can simply take data points from

𝐷0 and 𝐷1, and after accessing the trained model, it can perform

a membership attack and figure out which dataset has been se-

lected for training, thus always wins the game. On the other hand,

a protocol that defends against membership attacks (like AnoFel),
this strategy will not succeed (up to the privacy guarantees of the

employed techniques) and will not help 𝒜 in wining DINDGame.

Remark 1. Our PAFL notion can be further generalized to have
only the model owner 𝑆 , i.e., no aggregators, so this party is the one
who aggregates the individual model updates as well. Moreover, if
preserving model privacy is required, then our notion can be extended
with an additional property to reflect that. Since model privacy is
outside the scope of this work, we did not include this property to keep
the definition simple.

Remark 2. It should be noted that our definition of anonymity
(and so our scheme that satisfies this notion) does not leak negative
information (i.e., a client has not participated in training). Both par-
ticipation and the absence of participation are protected, i.e., identities
of those who participate or do not participate are not revealed.

Remark 3. We remark that anonymity at the network layer level
(i.e., defending against leakage resulting from monitoring network
traffic) is out of scope. In this work, we focus on anonymity at the

application layer, which without it (even if we have anonymity at
the network layer) client participation anonymity cannot be achieved.
When employing a solution for network layer anonymity, all honest
clients must use it during training (including the two clients selected
in AnonGame). For example, say an anonymous communication
protocol is used, a client participating in a training round will use this
protocol to send her registration information and model updates, and
a client who is not participating must mimic a similar behavior by
sending dummy traffic. This is needed to avoid giving the adversary
any advantage in the game based on absence of communication.
Of course, employing such techniques would require modifying the
protocol to, e.g., exclude dummy updates from aggregation so they will
not invalidate the training output, and this exclusion must be done in
a private way. We leave the integration of AnoFel with network layer
anonymity solutions as a future work.

3 Building Blocks
In this section, we provide a brief background on the building blocks

employed in AnoFel, covering all cryptographic primitives that we

use and the technique of differential privacy.

Commitments. Cryptographic commitments allow a party to com-

mit to a secret value she owns such that this commitment can be

opened later. A commitment scheme consists of three PPT algo-

rithms: Setup, Commit, andOpen. On input the security parameter

𝜆, Setup generates a set of public parameters pp. To commit to

a value 𝑥 , the committer invokes Commit with inputs pp, 𝑥 , and
randomness 𝑟 to obtain a commitment 𝑐 . Open(pp, 𝑐) opens a com-

mitment by simply revealing 𝑥 and 𝑟 . Anyone can verify correctness

of opening by computing 𝑐′ = Commit(pp, 𝑥, 𝑟) and check if 𝑐 = 𝑐′.
A secure commitment scheme must satisfy: hiding, so that a

commitment 𝑐 does not reveal any information about 𝑥 beyond any

pre-knowledge the adversary has, and binding, so a commitment 𝑐

to 𝑥 cannot be opened to another value 𝑥 ′ ≠ 𝑥 (formal definitions

can be found in [37]). These security properties enable a party to

commit to their inputs (i.e., private datasets in our case), and publish

the commitment publicly without exposing the private data.

Threshold homomorphic encryption. Homomorphic encryp-

tion allows computing over encrypted inputs and producing en-

crypted outputs. Such operations include homomorphic addition

and multiplication. That is, let 𝑐𝑡1 be a ciphertext of 𝑥1, and 𝑐𝑡2 be a

ciphertext of 𝑥2, then 𝑐𝑡1 + 𝑐𝑡2 produces a ciphertext of 𝑥1 + 𝑥2, and
𝑐𝑡1 ·𝑐𝑡2 produces a ciphertext of 𝑥1 ·𝑥2 (the exact implementation of

the homomorphic ‘+’ and ‘·’ vary based on the encryption scheme).

Some encryption schemes support only one of these operations,

e.g., Paillier scheme [65] is only additively homomorphic. Support-

ing both addition and multiplication leads to fully homomorphic

encryption [17, 61]. Since we focus on secure aggregation of model

updates, we require only additive homomorphism.

A homomorphic encryption scheme is composed of three PPT al-

gorithms: KeyGen that generates encryption/decryption keys (and

any other public parameters pp), Encrypt that encrypts an input 𝑥

to produce a ciphertext 𝑐𝑡 , and Decrypt that decrypts a ciphertext
𝑐𝑡 to get the plaintext 𝑥 . Correctness states that Decrypt produces
the original plaintext for any valid ciphertext produced by Encrypt,
and that the homomorphic operations produce a correct cipher-

text of the correct result. Security is based on the regular security

92

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

notion for encryption (i.e., semantic security), where we require

indistinguishability against chosen-plaintext attacker (CPA).

The threshold capability is about who can decrypt the ciphertext.

To distribute trust, instead of having the decryption key known

to a single party, this key is shared among 𝑛 parties. Thus, each

of these parties can produce a partially decrypted ciphertext upon

calling Decrypt, and constructing the plaintext requires at least 𝑡

parties to decrypt. As such, in a threshold homomorphic encryption

scheme, KeyGen will produce one public key (for encryption) and

𝑛 shares of the secret key (for decryption), such that each party will

obtain only her share (and will not see any of the others’ shares).

In AnoFel, we use the threshold Paillier encryption scheme [27].

Zero-knowledge proofs. A (non-interactive) zero-knowledge

proof (ZKP) system allows a prover, who owns a private witness 𝜔

for a statement 𝑥 in language ℒ, to convince a verifier that 𝑥 is true

without revealing anything about 𝜔 . A ZKP scheme is composed of

three PPT algorithms: Setup, Prove, and Verify. On input a security

parameter 𝜆 and a description of ℒ, Setup generates public param-

eters pp. To prove that 𝑥 ∈ ℒ, the prover invokes Prove over pp,
𝑥 , and a witness 𝜔 for 𝑥 to obtain a proof 𝜋 . To verify this proof,

the verifier invokes Verify over pp, 𝑥 , and 𝜋 , and accepts only if

Verify outputs 1. In general, all conditions needed to satisfy the

NP relation of ℒ are represented as a circuit. A valid proof will

be generated upon providing valid inputs that satisfy this circuit.

Some of these inputs could be public—which the verifier will use in

the verification process, while others are private—which constitute

the witness 𝜔 that only the prover knows.

A secure ZKP system must satisfy completeness, soundness, and

zero-knowledge. Completeness states that a proof generated in an

honest way will be accepted by the verifier. Soundness ensures that

if a verifier accepts a proof for a statement 𝑥 then the prover knows

a witness 𝜔 for 𝑥 , i.e., the prover cannot convince the verifier with

false statements. Finally, zero-knowledge ensures that a proof 𝜋

does not reveal anything about the witness 𝜔 . Many ZKP systems

add a succinctness property, meaning that the proof size is constant

and verification time is linear in the input size and independent

of the circuit size representing the NP relation. These are called

zero-knowledge succinct non-interactive argument of knowledge

(zk-SNARKs). Formal definitions of ZKP systems can be found

in [15, 37]. In AnoFel, we use the proof system proposed in [38].

Differential privacy. Differential privacy (DP) is a technique usu-

ally used in federated learning to address training output-related

attacks. Examples include membership and inference attacks, in

which knowing a data point and the trained model enables an at-

tacker to tell if this data point was used in training the model. DP

guarantees that the inclusion of a single instance in the training

datasets causes a statistically insignificant change to the training

algorithm output (i.e., the trained model). Formally, DP is defined

as follows [30] (where 𝜖 > 0 and 0 < 𝛿 < 1):

Definition 2 (Differential Privacy). A randomized mecha-
nism 𝒦 provides (𝜖, 𝛿)-differential privacy, if for any two datasets 𝐷0

and 𝐷1 that differ in a single entry, and for all 𝑅 ⊆ 𝑅𝑎𝑛𝑔𝑒 (𝒦), we
have: Pr[𝒦(𝐷0) ∈ 𝑅] ≤ 𝑒𝜖 Pr[𝒦(𝐷1) ∈ 𝑅] + 𝛿 .

We adopt the Guassian DPmechanism as described in [75], but at

the aggregator level rather than at the client level, and we apply an

optimization for the secure aggregation setting inspired by [45, 73].

That is, each aggregator in the committee𝒜𝒢 samples a noise from

a Gaussian distribution𝒩 (0, 𝜎2) divided by the threshold 𝑡 . Then,

after aggregation and before decryption, each aggregator adds the

generated (encrypted) noise value to the aggregated updates. Thus,

after decryption, the resulted aggregation contains the required

noise level that satisfies the desired DP privacy guarantee.

During training, each client cl𝑖 clips their model gradients 𝒈𝑖 to
ensure that ∥ 𝒈𝑖 ∥< 𝐶 , where𝐶 is a clipping threshold for bounding

the norm of gradients. Client cl𝑖 then sets sensitivity 𝑆 𝑓 = 2𝐶/|𝐷𝑖 |
where 𝐷𝑖 is the 𝑖−th client’s dataset, assuming gradients are shared

after one epoch of local training. The noise scale is set as 𝜎 ≥
𝑐𝑇𝑆 𝑓 /𝜖 where 𝑐 ≥

√︁
2 ln (1.25/𝛿) and𝑇 indicates exposures of local

parameters (number of epochs or iterations), and satisfies (𝜖, 𝛿)-DP
for 𝜖 < 1 [7, 30, 75].

The parameters of DP determines the accuracy bound for the

trained model, and the success probability of the adversary in terms

of the bounded privacy leaks. As for the error bound 𝛼 , the Gauss-

ian mechanism satisfies an absolute error bound 𝛼 ≤ 𝑂 (𝑅
√︁
log𝑘),

where 𝑘 is the number of queries and 𝑅 := 𝑆 𝑓
√︁
𝑘 log 1/𝛿/𝜖 [26, 29]

(a query here indicates one training round, so 𝑘 is the number of

training iterations, and 𝑆 𝑓 is the query sensitivity, which is the

sensitivity of the training function). The privacy leakage, or the

adversary advantage 𝛾 for any strategy it may follow, also depends

on the chosen values for 𝛿 and 𝜖 . Several works analyzed such

bounds, for example, the work in [43] computed a bound for the

success probability in membership attacks when employing DP, and

in [64] DP bounds were computed for various adversary instances.

Hence, 𝛾 resembles the union bound of the success probability of

the attacker regardless of its strategy.

In describing our design, we use DP in a blackboxmanner. That is,

an aggregator in 𝒜𝒢 invokes a function called DP.noise to sample

the appropriate noise value. This makes our design modular as any

secure DP mechanism, other than the one we employ, can be used.

4 AnoFel Design
AnoFel relies on four core ideas to achieve its goals: certification

of clients’ datasets to prevent impersonation, anonymity sets to

support anonymous registration and model training, a designated

aggregator committee to prevent accessing the individual model

updates submitted by the clients, and a public bulletin board to

facilitate indirect communication and logging. In this section, we

present the design of AnoFel showing the concrete techniques be-
hind each of these ideas and how they interact with each other.

4.1 System Model
As shown in Figure 1, for any learning task there is a model owner

𝑆 , a model aggregator set (or committee) 𝒜𝒢 of size 𝑛 (we use a

committee instead of a single aggregator to distribute trust and

avoid single point of failure in the system), and a set of clients 𝒞 who

want to participate in this learning task. During a training iteration,

𝒞 will train the initial model locally over their private datasets

and publish encrypted updates. 𝑆 has to wait until the iteration is

finished, after which 𝒜𝒢 will aggregate the updates and grant 𝑆

access to the aggregated value. AnoFel can support any aggregation

method based on summation or averaging (e.g., FedSGD [22] and

93

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

Figure 1: AnoFel system architecture. All steps (except 1.a -
1.c, and 2) will be repeated for each training iteration.

FedAVG [57]) given that the number of participants is public. All

parties have access to a public bulletin board (that is instantiated in a

decentralized way), allowing them to post and retrieve information

about the training process. There could be several learning tasks

going on in the system, each with its own 𝑆 ,𝒜𝒢, and 𝒞, and all are

using the same bulletin board.
6
In the rest of this section, we focus

on one learning task to explain our protocol; several learning tasks

will separately run the same protocol between the involved parties.

4.2 Threat Model
We assume a secure and immutable public bulletin board available

to all parties, so it is an append-only, publicly-accessible log that ac-

cepts only authenticated information that complies with predefined

correctness rules.
7

We adopt the following adversary model (we deal with PPT
adversaries). For clients, we assume them to be malicious during

registration (a malicious party may behave arbitrarily), while we as-

sume these clients to be semi-honest during training (a semi-honest

party follows the protocol but may try to collect any additional in-

formation while executing the protocol). Thus, during registration,

a client with an invalid (or poisoned) dataset may try to register,

while during training, registered clients will use their valid (regis-

tered) datasets in training and submit valid updates. We assume the

server 𝑆 to be malicious, so it may try to impersonate clients in the

registration phase, collude with a subset of the aggregators and/or

clients during the training phase, or manipulate the model posted at

the beginning of each iteration. For 𝒜𝒢, which is also semi-honest,

we require its size 𝑛 ≥ 2𝑡 − 1, and we assume that at maximum 𝑡 − 1
6
In fact, it could be the case that the same parties are involved in several learning

tasks, but they track each of these separately.

7
This is instantiated in a decentralized way using a blockchain with miners verifying

correctness (more details can be found in Appendix A).

members in 𝒜𝒢 can be corrupt, where 𝑡 is the threshold required

for valid decryption. Lastly, we work in the random oracle model

where hash functions are modeled as random oracles.

4.3 SystemWorkflow
AnoFel achieves anonymity and privacy by combining a set of

cryptographic primitives, such as threshold homomorphic encryp-

tion and zero-knowledge proofs (ZKPs), differential privacy (DP),

and a public bulletin board. The latter is used to facilitate indirect

communication between the parties and to create anonymity sets

to disguise the participants. Our techniques of combining ZKPs

and anonymity sets are inspired by recent advances in private and

anonymous cryptocurrencies [18, 31, 70].

Each clientmust register before participation (step 1.b in Figure 1)

by publishing on the board a commitment to the master public key

and the dataset this client owns (commitments are never opened

and don’t leak any information). Similarly, the aggregators 𝒜𝒢
must register by posting their public key on the board (step 1.c in

Figure 1), which will be used by the clients to encrypt their model

updates. The encrypted updates will be accompanied with a ZKP

attesting that a client is a legitimate and registered data owner, but

without revealing the public key or the dataset commitment of this

client. Thus, anonymity is preserved against everyone (the server,

aggregators, other clients, and any other party).

As shown in Figure 1 (steps 1.d and 3), at the beginning of each

training iteration, the server publishes the initial model parame-

ters on the bulletin board, which are retrieved by the clients to be

used in the local training. The use of this immutable public board

avoids direct communication between the server and clients; direct

interaction would compromise anonymity. Moreover, it addresses

privacy attacks resulting from distributing different initial model

parameters to clients (this type of attacks has been recently demon-

strated in [66]). In fact, to the best of our knowledge, AnoFel is the
only private federated learning system that enjoys this advantage.

To prevent Sybil and data poisoning attacks, each dataset must

be certified by its source, e.g., a hospital or a police station, and in

the case of smart devices, by the manufacturer or the controller

that collects authenticated data collected from these devices. Since

exposing the certifier reveals the dataset type and impacts privacy,

AnoFel creates an anonymity set for the certifiers by having all

their public keys posted on the bulletin board (step 1.a in Figure 1).

Thus, during registration, a client will provide a ZKP that its hidden

(committed) dataset is signed by one of the certifiers, i.e., so this

signature is valid under one of the registered certifiers’ public keys,

but without specifying which one.

Furthermore, we use DP to protect against training output-

related attacks that may compromise anonymity. That is, if the

adversary knows a data sample that belongs to a particular client,

attacks such as membership attacks may reveal if this sample has

been used in training, thus revealing that a client has participated.

In DP, a noise value is added to the submitted encrypted updates

before decryption. We do that at the aggregation phase without

involving the clients. In particular, at the end of each iteration, each

aggregator aggregates the submitted encrypted updates, then it en-

crypts a noise value (chosen based on the DP parameters employed)

and combines it with the aggregated updates (using homomorphic

94

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

Figure 2: Client setup—anonymous registration process.

add). After that, each aggregator partially decrypts the resulted

ciphertext and sends it to 𝑆 . This approach supports dynamic client

participation and reduces impacts on training accuracy; regardless

of the number of clients participating in an iteration, the proper

amount of noise is being added during the aggregation phase.
8

Accordingly,AnoFel proceeds in three phases: setup, model train-

ing, and model access, as we discuss below.

4.3.1 Setup. The system setup includes creating the public bul-

letin board, generating all public parameters needed by the crypto-

graphic primitives used, and configuring the DP parameters based

on the desired accuracy and privacy levels. Then, the certifiers,

aggregators, and each client run the setup process as follows.

Certifiers. Each certifier posts its public key on the board. Let

𝒫𝒦𝐶 be the set of all certifiers’ public keys.

Aggregators. 𝒜𝒢 run the setup of the threshold homomorphic

encryption scheme, and generate a public key and shares of the

secret key. They post the public key on the board, while each party

keeps its secret key share. Note that a PKI is needed to ensure the

real identities of the certifiers, aggregators, and model owner. Thus,

posting the public key of any of these entities on the board requires

a certificate (from a certificate authority in the PKI) to prove that

indeed the party owns this key.

Clients. The client setup is more involved compared to the previous

entities. This is a natural result of supporting anonymity. As shown

in Figure 2, which is the detailed version of step 1.b in Figure 1, each

client cl𝑖 ∈ 𝒞, with a dataset𝐷𝑖 and a master keypair (msk𝑖 ,mpk𝑖),9
obtains a certificate 𝜎𝑖 from its certifier. The certificate 𝜎𝑖 could be

simply the certifier’s signature over H(𝐷𝑖) ∥ mpk𝑖 , where H is a

collision resistant hash function. Then, cl𝑖 commits to its dataset

𝐷𝑖 (without revealing anything about it) as follows:

8
Letting clients add noise to the updates before encryption impact accuracy since the

aggregated updates will include excessive noise. Truex et al. [73] divide the noise scale

by the number of clients so that, after aggregation, the desired noise level is satisfied.

However, this approach does not work for dynamic setting as it requires fixing the

number of clients at the onset of an iteration. If a client drops out, or is corrupt so 𝑆

knows its added noise, the actual noise value will be smaller than desired.

9
Clients need a PKI for their mpk𝑖 , so a certifier can check that a client owns the

presentedmpk𝑖 . However, to preserve anonymity, these keys are hidden in the training

process, and a certifier cannot link an encrypted model update to the owner’smpk𝑖 .

• Compute a commitment to 𝐷𝑖 and mpk𝑖 as (salt is a fresh
random string in {0, 1}𝜆): comm𝑖 = H(H(𝐷𝑖) ∥ mpk𝑖 ∥ salt).
• Generate a fresh digital signature keypair (pk𝑠𝑖𝑔, sk𝑠𝑖𝑔), then
compute 𝑎 = H(pk𝑠𝑖𝑔) and tag = PRFmsk𝑖 (𝑎), where PRF
is a pseudorandom function and tag serves as an authen-

tication tag over the fresh key to bind it to the client’s

master keypair. Similar to [70], we instantiate the PRF as

PRFmsk𝑖 (𝑎) = H(msk𝑖 ∥ 𝑎).
• Generate a ZKP 𝜋 to prove that the dataset is legit and owned

by cl𝑖 . In particular, this ZKP attests to the following state-

ment (again without revealing anything about any of the pri-

vate data that the client owns): given a commitment comm𝑖 ,

a signature verification key pk𝑠𝑖𝑔 , a tag tag, and a bulletin

board state index sid, client cl𝑖 knows a dataset 𝐷𝑖 , random-

ness salt, master keypair (mpk𝑖 ,msk𝑖), a certifier’s key pk𝑐 ,
a certificate 𝜎𝑖 issued by this certifier over 𝐷𝑖 andmpk𝑖 , and
a signing key sk𝑠𝑖𝑔 , such that:

(1) H(𝐷𝑖), mpk𝑖 , and salt are a valid opening for comm𝑖 , i.e.,

comm𝑖 = H(H(𝐷𝑖) ∥ mpk𝑖 ∥ salt).10
(2) 𝜎𝑖 has been generated using pk𝑐 over H(𝐷𝑖) ∥ mpk𝑖 , and

that pk𝑐 ∈ 𝒫𝒦𝐶 with respect to the set 𝒫𝒦𝐶 registered

on the board at state with index sid.
(3) The client ownsmpk𝑖 , i.e., she knows themsk𝑖 correspond-

ing to mpk𝑖 .
(4) The tag over the fresh pk𝑠𝑖𝑔 is valid, i.e., compute 𝑎 =

H(pk𝑠𝑖𝑔) and check that tag = PRFmsk𝑖 (𝑎).
• Sign the proof and comm𝑖 : set𝑚 = (comm𝑖 , tag, pk𝑠𝑖𝑔, 𝜋, sid)
and use sk𝑠𝑖𝑔 to sign𝑚 to obtain signature 𝜎cl𝑖 .

• Post (𝑚,𝜎cl𝑖) on the bulletin board.

As for verifying the third condition, i.e., the client knows msk𝑖 ,
it is simply done by computing the public key based on the input

msk𝑖 and checking that it is equal to mpk𝑖 . Although mpk𝑖 is not
recorded explicitly on the bulletin board, it is bound to the client

since it is part of the dataset commitment comm𝑖 certified by 𝜎𝑖 .

10
The commitment opening is a private input the client uses to generate the proof

(and same applies to the training phase as we will see shortly). This opening is never

revealed to the public; the board records only comm𝑖 and a ZKP on its well-formedness

that does not leak anything about the private data used in the proof generation.

95

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

Figure 3: Model training—anonymous model update submission (HE is homomorphic encryption).

To allow efficient proof generation with respect to the anony-

mity set 𝒫𝒦𝐶 , a Merkle tree is used to aggregate the key set 𝒫𝒦𝐶

as shown in Figure 2. Proving that a key pk𝑐 ∈ 𝒫𝒦𝐶 is done by

showing a proof of inclusion (PoI) of that key in the tree. In other

words, the circuit underlying the ZKP generation takes a member-

ship path of the key and the tree root and verifies the correctness

of that path. Thus, the cost will be logarithmic in the set size. The

tree can be computed by the validators maintaining the board, with

the root published on the board to allow anyone to use it when

verifying the ZKP.

Note that a ZKP is generated with respect to a specific state of

the anonymity set 𝒫𝒦𝐶 . This state is the root of the Merkle tree

of this set, which changes when a new certifier joins the system.

Such change will invalidate all pending ZKPs, and thus, invalidate

all pending client registrations tied to the older state. To mitigate

this, a client should specify the state index sid based on which the

ZKP (and hence, the Merkle tree) was generated. So if the board is

a series of blocks as in Figure 2, sid is the block index containing

the root used in the proof.

All the conditions that must be proved by a ZKP are modeled

as an arithmetic circuit. The client has to present valid inputs that

satisfy this circuit in order to generate a valid ZKP. Only registration

with valid ZKPs are accepted, where 𝒞ℳ𝐶𝐿 denotes the set of all

valid clients’ commitments. Registration integrity is preserved due

to the use of a secure digital signature scheme: if an adversary

tampers with any of the information that a client submits—comm𝑖 ,

tag, pk𝑠𝑖𝑔 , 𝜋 , or sid—this will invalidate the signature 𝜎cl and will

lead to rejecting the registration.

Note that clients can perform the setup at anytime, and once their

registration information is posted on the board, they can participate

in the model training immediately. Thus, AnoFel allows clients to
join at anytime during the training process, and each client can

perform the setup phase on their own.

4.3.2 Model Training. At the beginning of each training iteration,

𝑆 posts the initial model parameters on the bulletin board (step 1.d

in Figure 1). Each client cl𝑖 retrieves them and trains the model

locally over her dataset (step 3 and 4 in Figure 1, respectively).

Then cl𝑖 shares the model updates privately and anonymously

without revealing anything about her private dataset or identity,

and without being linked back to this client’s dataset commitment.

Client cl𝑖 does that as follows (see Figure 3, which is the detailed

version of step 5 in Figure 1):

• Encrypt the model updates under𝒜𝒢’s public key. This will
produce a ciphertext 𝑐 .

• Generate a fresh digital signature keypair (pk𝑠𝑖𝑔, sk𝑠𝑖𝑔). Com-

pute 𝑎 = H(pk𝑠𝑖𝑔) and tag = PRFmsk𝑖 (𝑎).
• Produce a ZKP 𝜋 (with respect to the current state of the

board at index sid) attesting that: cl𝑖 is a legitimate owner

of a dataset, and that the fresh digital signature key was

generated correctly. Thus, this ZKP proves the following

statement: given a signature key pk𝑠𝑖𝑔 , and a tag tag, cl𝑖
knows the opening of some commitment comm ∈ 𝒞ℳ𝐶𝐿

(this proves legitimacy), and that tagwas computed correctly

over pk𝑠𝑖𝑔 as before.
11

• To preserve integrity, sign the proof, the ciphertext, and the

auxiliary information. That is, set𝑚 = (𝑐, tag, pk𝑠𝑖𝑔, sid, 𝜋)
and sign𝑚 using sk𝑠𝑖𝑔 to produce a signature 𝜎cl𝑖 .

• Post (𝑚,𝜎cl𝑖) on the bulletin board.

We use the Merkle tree technique to aggregate the commitment

anonymity set 𝒞ℳ𝐶𝐿 . A client provides a PoI of its commitment

in the Merkle tree computed over 𝒞ℳ𝐶𝐿 with respect to a specific

state indexed by sid. The latter is needed since clients can join at

anytime, so 𝒞ℳ𝐶𝐿 and its Merkle tree might change over time.

Accordingly, AnoFel naturally supports dynamic client partici-

pation. As mentioned before, a client who wants to join can do that

immediately after finishing the setup.While (registered) clients who

do not wish to participate in a training iteration simply do not send

any updates. AnoFel does not need a recovery protocol to handle

additions/dropouts since the setup of a client does not impact the

setup of the system, 𝒜𝒢, or other clients. Also, the model updates

submitted by any client do not impact the updates submitted by

others. Moreover, any information needed to perform the setup is

already on the board, so no interaction with other parties is needed.

11
Although we assume semi-honest clients during training, we still need the ZKP above

to preserve integrity and ensure that only registered clients can participate. That is, a

malicious adversary may impersonate a client during training (without registering),

and may alter the submitted updates and sign them using her own pk𝑠𝑖𝑔 (thus we

need to prove that pk𝑠𝑖𝑔 is honestly generated by a registered client).

96

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

Furthermore, submitting model updates is done in one shot; a client

posts (𝑚,𝜎cl𝑖) on the board. Since we use non-interactive ZKPs,

𝒜𝒢, and any other party, can verify the proof on their own.

4.3.3 Model Access. At the beginning of each training iteration,

each member in 𝒜𝒢 samples a noise value by invoking DP.noise
divided by 𝑡 , encrypts it under the public key of 𝒜𝒢 and posts

the noise ciphertext on the board. At the end of the iteration, each

member in𝒜𝒢 retrieves all client updates—those that are encrypted

under 𝒜𝒢’s public key—from the board, and aggregate them using

homomorphic add (steps 6 and 7 in Figure 1, respectively). Further-

more, each member retrieves the 𝑛 encrypted noise values and add

them to the aggregated encrypted updates (again, using homomor-

phic add). After that, each member decrypts the resulting ciphertext

using its secret key share, producing a partial decryption that is

sent to 𝑆 (step 8 in Figure 1). Once 𝑆 receives at least 𝑡 responses,

it will be able to construct the plaintext of the aggregated model

updates and start a new training iteration.

Signaling the end of a training iteration relies on the board, where

adding a future block with a specific index will signal the end. Thus,

the system setup will determine the block index of when training

starts, and the duration of each iteration (in terms of number of

blocks). Since all parties have access to the board, they will be able

to know when each iteration is over. Another approach is to simply

have 𝑆 post a message on the board to signal the iteration end.

Although AnoFel is a system for federated learning that involves

several parties, it is not considered an interactive protocol. These

parties do not communicate directly with each other—the bulletin

board mediates this communication. When sending any message,

the sender will post it on the bulletin board, and the intended

recipient(s) will retrieve the message content from the board.

Remark 4. A malicious server may post an incorrectly updated
model for a new training iteration. AnoFel can address this case; since
the initial model is posted on the board, we can let the aggregators
post the partially decrypted aggregated updates for each iteration on
the board, so that clients can construct the plaintext of the aggregated
updates to verify/produce the new model.

4.4 Extensions
We discuss extensions to our system design to support stronger

adversary model (malicious and semi-malicious ones) on both the

client and aggregator side, how to instantiate the public bulletin

board in a fully decentralized way, and how to optimize its storage

cost. Due to space limitation, we discuss these in Appendix A.

4.5 Security of AnoFel
AnoFel realizes a correct and secure PAFL scheme based on Defini-

tion 1. In Appendix B, we formally prove the following theorem:

Theorem 1. The construction of AnoFel as described in Section 4
is a correct and secure PAFL scheme (cf. Definition 1).

5 Performance Evaluation
In this section, we provide details on the implementation and per-

formance evaluation of AnoFel, and benchmarks to measure its

overhead compared to prior work.

Setup Training

Clients Prove (s) Verify (ms) Prove (s) Verify (ms)

16 1.96 ± 0.009 4.86 ± 0.014 0.80 ± 0.003 4.90 ± 0.042

32 2.01 ± 0.002 4.85 ± 0.019 0.86 ± 0.003 4.88 ± 0.008

64 2.09 ± 0.008 4.89 ± 0.038 0.96 ± 0.002 4.82 ± 0.028

128 2.15 ± 0.008 4.84 ± 0.035 1.04 ± 0.004 4.82 ± 0.036

256 2.21 ± 0.014 4.91 ± 0.024 1.14 ± 0.012 4.94 ± 0.062

512 2.27 ± 0.006 4.86 ± 0.020 1.25 ± 0.005 4.85 ± 0.009

Table 2: zk-SNARKs runtime for client setup and training.

5.1 Implementation
For hash functions, we use the Pedersen hash function [42], with

an alternative implementation using Baby-Jubjub elliptic curve [11]

and 4-bit windows [1], which requires less constraints per bit than

the original implementation. For threshold additive-homomorphic

encryption, we use the threshold version of Paillier encryption

scheme [27] based on [5]. For digital signatures, we use EdDSA [12]

over Baby-Jubjub elliptic curve based on [2]. For zero-knowledge

proofs (ZKPs), we use Groth16 zk-SNARKS [38] implemented in

libsnark [4]. We use PyTorch [67] to incorporate differential privacy,

and implement the FedSGD [22] algorithm for federated learning.
12

Dataset andModels.We evaluate the performance ofAnoFel us-
ing three federated learning tasks. Our first benchmark is LeNet5 [51]

architecture with 61.7K parameters trained on the MNIST [50]

dataset. Our second benchmark is ResNet20 [41] architecture with

273K parameters trained over the CIFAR10 [49] dataset. Our third

benchmark is SqueezeNet [39] with 832K parameters trained over

TinyImageNet [80] dataset. This benchmark is the largest studied

in private federated learning literature [25, 54, 73]. Since batch

normalization is not compatible with DP [82], we replace all batch

normalization layers with group normalization [77] in ResNet20

and SqueezeNet with negligible effect on accuracy.

Configuration. For our runtime experiments, we consider a

network of𝑁 = {16, 32, 64, 128, 256, 512} clients, and one committee

consisting of 3 aggregators. Runtimes are benchmarked on an AMD

Ryzen 5995WX CPU with 512GB of memory assuming 64 threads,

and themean of 5 runs and standard deviations are reported for each

experiment. We present micro-benchmarks of AnoFel components

as well as end-to-end benchmarks for a training iteration. We also

evaluate AnoFel accuracy under IID and non-IID dataset settings.

For IID, each user’s data is sampled uniformly from the dataset.

For non-IID, we use Dirichlet distribution with parameter 𝛼 = 1

following the implementation in [60?]. The DP parameters are set

as 𝜖 = 0.9, 𝛿 = 10
−5
, and norm clipping threshold 𝐶 = 1 for MNIST

and 𝐶 = 2 for CIFAR10 and TinyImageNet benchmarks.
13

5.2 Results
Runtime Overhead. Table 2 shows the performance of ZKP for

clients setup and training circuits. The prove and verify runtimes

are reported for different numbers of clients participating in the

12
We focus on the computational cost of privacy/anonymity guarantees rather than

communication delays incurred by the board, so the board was simulated on the

machine used in our benchmarks. In Appendix A, we discuss potential board instanti-

ations, and provide overhead costs quoted from the literature to give a sense of the

board communication delays.

13
We will open source our code upon acceptance of the paper.

97

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

16 32 64 128 256 512
Number of Clients

0

100

200

300

400

500

Ag
gr

eg
at

or
 R

un
tim

e
(s

)

TinyImageNet
CIFAR10
MNIST

Figure 4: Aggregator computation time for a training itera-
tion for MNIST on LeNet5, CIFAR10 on ResNet20, and Tiny-
ImageNet on SqueezeNet.

MNIST CIFAR10 TinyImageNet0
5

10
15
20
25
30

Ag
gr

eg
at

or
 R

un
tim

e
(s

)

Param Decryption
Encrypted DP Noise Addition
Encrypted Param Aggregation

Figure 5: Breakdown of aggregator runtime for each training
iteration for MNIST on LeNet5, CIFAR10 on ResNet20, and
TinyImageNet on SqueezeNet.

learning task. The size of proof is a constant 1019 bits. The setup

prove overhead is a one-time cost for clients, and the training prove

overhead is incurred for each training iteration. As the results

suggest, the prover runtime for both setup and training increase sub-

linearly with the number of clients (due to the use of Merkle trees

for anonymity sets as described in Section 4.3), remaining under

2.3 sec for all experiments. The verifier runtime remains constant

under 5 msec. Later we will show that ZKP cost is a fraction of the

total cost and adds little overhead to the overall runtime.

Next, we show results for an end-to-end training iteration. Fig-

ure 4 shows aggregators’ runtime during training for different

numbers of clients. Aggregators aggregate the ciphertexts of the

client updates using homomorphic addition. Then, they sample

noise, encrypt it, and add it to the aggregated updates, followed

by a partial decryption after which the result is sent to the model

owner. Figure 5 depicts the breakdown of aggregators’ runtime

for 16 clients. The cost of encrypting noise and final decryption

depend only on the size of the model, while the cost of cipher-

text aggregation depend on model size and number of clients. The

aggregator runtime for MNIST, CIFAR10, and TinyImageNet bench-

marks ranges from 2.4s to 38.5s, 9.8s to 151.4s, and 29.8s to 504.3s,

respectively, for the reported number of clients.

The client’s runtime during a training round includes the cost of

local model training, model update encryption, and a ZKP genera-

tion. The cost of encrypting model updates depends only on the size

of the model, whereas the ZKP depends on the number of clients

and grows logarithmically (again, due to anonymity set Merkle

tree). Figure 6 presents the client runtime with detailed breakdown

MNIST CIFAR10 TinyImageNet0

2

4

6

8

Cl
ie

nt
 R

un
tim

e
(s

) ZK Proof
Param Encryption
Local Model Training

Figure 6: Breakdown of client runtime for each training it-
eration for MNIST on LeNet5, CIFAR10 on ResNet20, and
TinyImageNet on SqueezeNet.

for a training iteration with 𝑁 = 16 clients. The cost of generating

keypairs, signatures, and hash computations are negligible, thus

omitted from the plot. Local model training cost is measured for

a training epoch over
𝐷
𝑁

images (where 𝐷 is dataset size and 𝑁 is

number of clients assuming IID distribution) on an NVIDIA RTX

A6000 GPU, taking 0.59, 1.26, and 4.01 sec for MNIST, CIFAR10, and

TinyImageNet benchmarks, respectively. The remaining protocol

costs (encryption and ZKP) are measured using the CPU described

in configuration. The overhead of ZKP are 48%, 25%, and 10% of

total runtime, and for encryption they are 17%, 34%, and 38%, for

MNIST, CIFAR10 and TinyImageNet benchmarks, respectively.
14

Communication Overhead. The communication overhead of the

parties during setup and training phases are as follows.

Clients: Client 𝑖’s setup involves the certifier’s signature (96 B),

and posting𝑚 = (comm𝑖 , tag, pk𝑠𝑖𝑔, 𝜋, sid) and its signature (360 B).
Each training iteration involves obtaining model parameters (121

KB, 527 KB, and 1.6 MB of 16-bit updates for LeNet5, ResNet20, and

SqueezeNet, respectively) and posting𝑚 = (c, 𝐴𝐺pk, tag, pk𝑠𝑖𝑔, sid, 𝜋)
and its signature (9.2 MB, 41 MB, and 124 MB for LeNet5, ResNet20,

and SqueezeNet, respectively).

Aggregators: During setup, aggregators post their (signed) public
key (160 B). We refer to the size of encrypted model updates as ℭ,

which equals to 9.2 MB, 41 MB, and 124 MB for LeNet5, ResNet20,

and SqueezeNet, respectively. Aggregators sample and post en-

crypted DP noise (same size as encrypted updates ℭ) to the board.

In each training iteration, aggregators retrieve encrypted updates

submitted by clients (ℭ per client), and 𝑛 (aggregator committee

size, where 𝑛 = 3 in our implementation) encrypted DP noise val-

ues (total size 𝑛 · ℭ). After homomorphic addition, each aggregator

sends a partial decryption (of size ℭ) to the model owner.

Model Owner : During each training iteration, model owner posts

themodel updates (121 KB, 534 KB, and 1.6MB for Lenet5, ResNet20,

and SqueezeNet, respectively), and obtains partial ciphertexts from

aggregators (9.2 MB, 41 MB, and 124 MB for LeNet5, ResNet20, and

SqueezeNet, respectively).

14
The effect of dynamic participation can also be observed from our experiments.

Clients perform the setup independently, and during training, only the ZKP depends

on the number of clients. Figure 7 shows the effect of varying this number on client

runtime. For aggregators, dynamicity impacts only the update aggregation step (since

the number of ciphertexts to be added changes). That impact is depicted in Figure 4,

showing the varying cost of aggregation with different numbers of clients.

98

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

16 32 64 128 256 512
Number of Clients

0.0

0.5

1.0

1.5

Cl
ie

nt
 O

ve
rh

ea
d

(s
)

Truex et al.
AnoFel
Bonawitz et al.

(a)

16 32 64 128 256 512
Number of Clients

0

2

4

6

Cl
ie

nt
 O

ve
rh

ea
d

(s
)

Truex et al.
AnoFel
Bonawitz et al.

(b)

16 32 64 128 256 512
Number of Clients

0

5

10

15

20

Cl
ie

nt
 O

ve
rh

ea
d

(s
)

Truex et al.
AnoFel
Bonawitz et al.

(c)

Figure 7: Comparing client computation time for one training round of AnoFel, Truex et al. [73], and Bonawitz et al. [16] for (a)
MNIST on LeNet5, (b) CIFAR10 on ResNet20, and (c) TinyImageNet on SqueezeNet.

Comparison to Baseline.To better understand the performance of

AnoFel, we provide comparison to priorwork on privacy-preserving

federated learning. We don’t know of any other framework that

provides anonymity guarantees similar to AnoFel, and therefore we
chose two recent systems for privacy-preserving federated learn-

ing, namely, Truex et al. [73] and Bonawitz et al. [16]. Truex et al.

present a non-interactive protocol utilizing threshold homomorphic

encryption for secure aggregation, and Bonawitz et al. develop an

interactive protocol based on masking client updates.
15

We benchmarked the client runtime for a training iteration in

Bonawitz et al. protocol based on implementation found in [3] with

fixes to allow more than 40 clients, and Truex et al. protocol using

the implementation found in [6] for different number of clients.

The results are shown in Figure 7. To simplify comparison, we only

plot the overhead of each system, dropping the local model training

cost which is the same for all frameworks.

When compared to Truex et al., AnoFel client runtime is up to

1.3×, 3.5×, and 5× faster on MNIST, CIFAR10, and TinyImageNet

benchmarks, respectively. It is worth noting that Truex et al. client

runtime is independent of the number of clients (model parameter

encryption and DP noise addition depend only on the size of the

model), whereas inAnoFel it grows logarithmicallywith the number

of clients as can be observed in Figure 7. Nevertheless, in terms of

client runtime, AnoFel outperforms Truex et al. for the ranges of

the number of clients benchmarked. The reason for this speedup is

two fold. First, the DP noise generation and addition in Truex et

al. happens on the client side, whereas in AnoFel noise generation
and (encrypted) addition is performed by the aggregator committee.

Second, AnoFel implements optimizations in the parallel parameter

encryption to reduce the context in processes, resulting in up to

1.8× reduction in encryption runtime compared to the parallel

implementation in Truex et al.

Bonawitz et al. performs secure aggregation using an efficient

protocol based on secret sharing. Compared to Bonawitz et al. proto-

col, AnoFel is at most 15×, 44×, and 62× slower onMNIST, CIFAR10,

and TinyImageNet, respectively. However, the runtime gap between

Bonawitz et al. and AnoFel reduces with larger numbers of clients.

This is because the protocol of Bonawitz et al. requires clients to

15
As shown in Table 1, Xu et al [78] is the closest to our work in terms of supported

features (but it does not support anonymity). However, we were not able to find their

implementation source code for evaluation. Furthermore, their protocol requires a

trusted third party for decrypting aggregation results. Due to differing assumptions, it

is challenging to provide a fair comparison between Xu and AnoFel/other work.

generate pairwise masks between each other, thus making the client

runtime grow quadratically with the number of clients. On the other

hand, the client runtime in AnoFel grows only logarithmically with

the number of clients as discussed before. For 512 participating

clients, AnoFel is only slower by 1.3× on MNIST, 1.8× on CIFAR10,

and 2× on TinyImageNet. Our results demonstrate the scalability of

our framework; the cost of the additional features including partici-

pation anonymity and support for dynamic settings (not supported

by prior work) is relatively low especially in large-scale scenarios.

Model Accuracy.We evaluate the model test accuracy in AnoFel
incorporating DP and compare to a non-DP baseline (performing

vanilla federated learning) in Figure 8. We assume number of clients

𝑁 = 256 and non-IID data distribution. Accuracy evaluations for

IID data and a range of number of clients is included in Appendix C.

As shown in Figure 8, AnoFel achieves 98.99%, 85.18%, and 32.90%

test accuracy on MNIST, CIFAR10, and TinyImageNet datasets,

respectively. For the three datasets, the non-DP accuracy are 99.21%,

88.86%, and 44.05%, respectively. Across all benchmarks and client

sizes (as depicted in Figure 9 in Appendix C), the accuracy drop

due to DP for the MNIST dataset is between 0.05% − 0.22%, for

CIFAR10 is between 0.79%−3.68%, and for TinyImageNet is between

8.11%− 12.27%. We note that Truex et al. accuracy matches AnoFel,
whereas Bonawitz et al. has the same accuracy as the non-DP

baseline. Specifically, we use a similar noise scaling idea as in Truex

et al. (with the only difference being that in AnoFel noise is added
at the aggregator level instead of the client level). Bonawitz et al.

does not address membership attacks, hence, does not employ DP.

6 Related Work
Private federated learning. Bonawitz et al. [16] introduced one

of the earliest schemes on private federated learning. Their scheme

handles client dropouts (but not addition) using an interactive

protocol, and does not support anonymity; each client is known

by a logical identity, which in the malicious setting is tied to a

public key (through a PKI) to prevent impersonation. A followup

work [10] optimized the overhead of [16] in the semi-malicious

model—the server is only trusted to handle client registration. This

also violates anonymity since the server has full knowledge of the

clients. The works [44, 71, 79] also targeted the efficiency of [16],

and all inherit its interactivity issues and lack of anonymity.

Truex et al. [73] use homomorphic encryption (HE) and differen-

tial privacy to achieve secure aggregation. HE simplifies handling

99

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

(a) (b) (c)

Figure 8: Accuracy of AnoFel per epoch compared with a non-DP baseline for non-IID data for (a) MNIST on LeNet5, (b) CIFAR10
on ResNet20, and (c) TinyImageNet on SqueezeNet.

dropouts, since a user’s update is independent of others’, but not

addition as all users must be known during the setup phase to get

shares of the decryption key. The proposed scheme relies on clients

to decrypt the aggregated updates—which introduces excessive de-

lays, and requires the server to know all clients and communicate

with them directly—thus violating anonymity. Xu et al. [78] avoid

the distributed decryption process, and allows for user additions

(up to a maximum cap per iteration). However, this comes at the

expense of introducing a trusted party to run the system setup

and help in decrypting the aggregated model after knowing who

participated in each iteration. Ryffel et al. [69] employ function

secret sharing and assume a fixed client participation, with a (semi-

honest) server that knows all clients and communicates with them

directly. Thus, client anonymity is not supported. Mo et al. [59]

use a trusted execution environment to achieve privacy. Beside not

supporting anonymity, trusting a hardware is problematic due to

the possibility of side-channel attacks. (An extensive survey on

secure aggregation in federated learning can be found in [56].)

AnoFel addresses the limitations of prior work: it supports client

anonymity, and does not involve them in the aggregation process—

thus reducing overhead, and it supports dynamic participation

without needing a recovery protocol or any trusted party. This is in

addition to addressing recent attacks resulting from disseminating

different initial models to clients.

Another line of prior work handles malicious clients during train-

ing using zero-knowledge proofs, based on norm checks [9, 54]

and rank-based statistics [34]. We view these frameworks as com-

plementary to our work in the sense that AnoFel can be similarly

extended to support malicious clients during training.

Anonymity and Federated Learning. Several techniques were
proposed to anonymize the dataset before being used in training,

such as 𝑘-anonymity [24, 72], 𝑙-diversity [55], and 𝑡-closeness [52].

These techniques are considered complementary to AnoFel: they
allow anonymizing a dataset, and our system guarantees client’s

anonymity in the sense that no one will know if this client partici-

pated or which updates they have submitted.

The works [23, 28, 40, 53, 83] target the same anonymity no-

tion as in AnoFel. Domingo et al. [28] utilize probabilistic multi-

hop routes for model update submission, with the clients known

by fixed pseudonyms instead of their real identities. However,

such fixed pseudonyms provide only pseudoanonymity; several

studies showed how network and traffic analysis can link these

pseudonyms back to their real identities [13, 48, 68]. Also, their

anonymity guarantees is based on assuming that clients do not

collude with the model owner, a strong assumption that AnoFel
avoids. Li et al. [53] use interactive ZKPs to achieve client anony-

mity when submitting model updates. Their approach suffers from

several security and technical issues: First, any party can generate a

secret key and pass the proof challenge, not necessarily the intended

client. Second, the proposed protocol requires some parameters to

be made public, but no details on how to do this in an anonymous

way. Third, no discussion on how to preserve message integrity,

making the protocol vulnerable to man-in-the-middle attacks.

The scheme in [40] works at the physical layer; it randomly sam-

ples a subset of clients’ updates and aggregates their signals before

submitting them to the server. This protocol assumes clients are

trusted, and does not discuss how to preserve integrity of the com-

municated updates. Zhao et al. [83] introduce a trust assumption

to achieve anonymity; a trusted proxy server mediates communi-

cation between clients and model owner. While Zhou et al. [84],

in addition to assuming a trusted key generation center, require

clients to interact with each other to establish a group key used

for authenticating the submitted updates and supports only static

settings. Lastly, Chen et al. [23] use a modified version of Tor to

preserve anonymity; users authenticate each other and then negoti-

ate symmetric keys to use for encryption. However, the negotiation

and authentication processes are interactive, and the model owner

records all clients’ (chosen) identities, thus anonymity is not guaran-

teed under these fixed identities. As a result, none of these systems

supports anonymity in a provably secure way as AnoFel does.

7 Conclusion
In this paper, we presented AnoFel, the first provably secure frame-

work for private and anonymous user participation in federated

learning. AnoFel utilizes a public bulletin board, various crypto-

graphic primitives, and differential privacy to support secure ag-

gregation of model updates and client anonymity in both static and

dynamic settings. We introduced the first formal security notion

for private federated learning covering client anonymity, and we

proved the privacy/anonymity guarantees of AnoFel based on this

notion. We also demonstrated the efficiency and viability of AnoFel
through a concrete implementation and extensive benchmarks cov-

ering large scale scenarios and comparisons to prior work.

100

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

Acknowledgments
The work of G.A. is supported by UConn’s OVPR Research Excel-

lence Program Award and in part by NSF Grant No. CNS-2226932.

References
[1] 2022. 4-bit Window Pedersen Hash On The Baby Jubjub Elliptic Curve. https:

//iden3-docs.readthedocs.io/en/latest/_downloads/4b929e0f96aef77b75bb5cfc0

f832151/Pedersen-Hash.pdf

[2] 2022. EdDSA For Baby Jubjub Elliptic Curve with MiMC-7 Hash. https://iden3-

docs.readthedocs.io/en/latest/_downloads/a04267077fb3fdbf2b608e014706e004/

Ed-DSA.pdf

[3] 2022. Google protocol implementation. https://github.com/corentingiraud/fede

rated-learning-secure-aggregation

[4] 2022. libsnark Library. https://github.com/scipr-lab/libsnark

[5] 2022. Paillier scheme implementation. https://github.com/meandmymind/hybri

d-approach-to-ppfl

[6] 2022. Truex et al. protocol implementation. https://github.com/lainisourgod/hy

brid-approach-to-ppfl

[7] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[8] Manan Ahuja, Shailee Siddhpuria, Christina Reppas-Rindlisbacher, Eric Wong,

Jessica Gormley, Justin Lee, and Christopher Patterson. 2022. Sleep monitoring

challenges in patients with neurocognitive disorders: A cross-sectional analysis

of missing data from activity trackers. Health Science Reports (2022).
[9] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana

Raykova, and Cathie Yun. 2023. {ACORN}: Input Validation for Secure Aggrega-

tion. In 32nd USENIX Security Symposium (USENIX Security 23). 4805–4822.
[10] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and

Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic

overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1253–1269.

[11] Marta Bellés-Muñoz, Barry Whitehat, Jordi Baylina, Vanesa Daza, and Jose Luis

Muñoz-Tapia. 2021. Twisted Edwards Elliptic Curves for Zero-Knowledge Cir-

cuits. Mathematics 9, 23 (2021), 3022.
[12] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

2012. High-speed high-security signatures. Journal of cryptographic engineering
2, 2 (2012), 77–89.

[13] Alex Biryukov and Sergei Tikhomirov. 2019. Deanonymization and linkability of

cryptocurrency transactions based on network analysis. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 172–184.

[14] Ari Biswas and Graham Cormode. 2022. Verifiable Differential Privacy For When

The Curious Become Dishonest. arXiv preprint arXiv:2208.09011 (2022).
[15] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Ostrovsky.

2013. Succinct non-interactive arguments via linear interactive proofs. In Theory
of Cryptography Conference. Springer, 315–333.

[16] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[17] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)

fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014), 1–36.

[18] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:

Towards privacy in a smart contract world. In International Conference on Finan-
cial Cryptography and Data Security. Springer, 423–443.

[19] Billy A Caceres, Yashika Sharma, Rohith Ravindranath, Ipek Ensari, Nicole

Rosendale, Danny Doan, and Carl G Streed. 2023. Differences in Ideal Car-

diovascular Health Between Sexual Minority and Heterosexual Adults. JAMA
cardiology (2023), 335–346.

[20] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In

OsDI, Vol. 99. 173–186.
[21] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:

Learning affordance for direct perception in autonomous driving. In Proceedings
of the IEEE international conference on computer vision. 2722–2730.

[22] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.

2016. Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981
(2016).

[23] Yijin Chen, Ye Su, Mingyue Zhang, Haoye Chai, Yunkai Wei, and Shui Yu. 2022.

FedTor: An Anonymous Framework of Federated Learning in Internet of Things.

IEEE Internet of Things Journal (2022).

[24] Olivia Choudhury, Aris Gkoulalas-Divanis, Theodoros Salonidis, Issa Sylla,

Yoonyoung Park, Grace Hsu, and Amar Das. 2020. Anonymizing data for privacy-

preserving federated learning. arXiv preprint arXiv:2002.09096 (2020).
[25] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der Maaten.

2021. EIFFeL: Ensuring Integrity for Federated Learning. arXiv preprint
arXiv:2112.12727 (2021).

[26] Yuval Dagan and Gil Kur. 2022. A bounded-noise mechanism for differential

privacy. In Conference on Learning Theory. PMLR, 625–661.

[27] Ivan Damgård and Mads Jurik. 2001. A generalisation, a simplification and

some applications of Paillier’s probabilistic public-key system. In International
workshop on public key cryptography. Springer, 119–136.

[28] Josep Domingo-Ferrer, Alberto Blanco-Justicia, Jesús Manjón, and David Sánchez.

2021. Secure and Privacy-Preserving Federated Learning via Co-Utility. IEEE
Internet of Things Journal (2021).

[29] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In

Advances in Cryptology-EUROCRYPT 2006: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28-June 1, 2006. Proceedings 25. Springer, 486–503.

[30] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[31] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. 2019.

Quisquis: A new design for anonymous cryptocurrencies. In International Con-
ference on the Theory and Application of Cryptology and Information Security.
Springer, 649–678.

[32]]frl Federated Rank Learning [n. d.]. https://github.com/SPIN-UMass/FRL

[33] Jorge Galindo and Pablo Tamayo. 2000. Credit risk assessment using statisti-

cal and machine learning: basic methodology and risk modeling applications.

Computational Economics 15, 1 (2000), 107–143.
[34] Zahra Ghodsi, Mojan Javaheripi, Nojan Sheybani, Xinqiao Zhang, Ke Huang, and

Farinaz Koushanfar. 2023. zPROBE: Zero Peek Robustness Checks for Federated

Learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 4860–4870.

[35] Maryellen L Giger. 2018. Machine learning in medical imaging. Journal of the
American College of Radiology 15, 3 (2018), 512–520.

[36] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th symposium on operating systems principles. 51–68.
[37] Oded Goldreich. 2007. Foundations of cryptography: volume 1, basic tools. Cam-

bridge university press.

[38] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

Annual international conference on the theory and applications of cryptographic
techniques. Springer, 305–326.

[39] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights

and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

[40] Burak Hasırcıoğlu and Deniz Gündüz. 2021. Private wireless federated learn-

ing with anonymous over-the-air computation. In ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
5195–5199.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[42] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2020. Zcash

protocol specification. GitHub: San Francisco, CA, USA (2020).

[43] Thomas Humphries, Simon Oya, Lindsey Tulloch, Matthew Rafuse, Ian Goldberg,

Urs Hengartner, and Florian Kerschbaum. 2020. Investigating membership in-

ference attacks under data dependencies. arXiv preprint arXiv:2010.12112 (2020),
2.

[44] Swanand Kadhe, Nived Rajaraman, OOzan Koyluoglu, and Kannan Ramchandran.

2020. Fastsecagg: Scalable secure aggregation for privacy-preserving federated

learning. arXiv preprint arXiv:2009.11248 (2020).
[45] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed discrete gauss-

ian mechanism for federated learning with secure aggregation. In International
Conference on Machine Learning. PMLR, 5201–5212.

[46] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. 2016. Enhancing bitcoin security and performance with

strong consistency via collective signing. In Usenix Security.
[47] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger

via sharding. In 2018 IEEE symposium on security and privacy (SP). IEEE, 583–598.
[48] Philip Koshy, Diana Koshy, and Patrick McDaniel. 2014. An analysis of anonymity

in bitcoin using p2p network traffic. In International Conference on Financial
Cryptography and Data Security. Springer, 469–485.

[49] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2010. Cifar-10 (canadian

institute for advanced research). URL http://www. cs. toronto. edu/kriz/cifar. html
5 (2010).

101

https://iden3-docs.readthedocs.io/en/latest/_downloads/4b929e0f96aef77b75bb5cfc0f832151/Pedersen-Hash.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/4b929e0f96aef77b75bb5cfc0f832151/Pedersen-Hash.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/4b929e0f96aef77b75bb5cfc0f832151/Pedersen-Hash.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/a04267077fb3fdbf2b608e014706e004/Ed-DSA.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/a04267077fb3fdbf2b608e014706e004/Ed-DSA.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/a04267077fb3fdbf2b608e014706e004/Ed-DSA.pdf
https://github.com/corentingiraud/federated-learning-secure-aggregation
https://github.com/corentingiraud/federated-learning-secure-aggregation
https://github.com/scipr-lab/libsnark
https://github.com/meandmymind/hybrid-approach-to-ppfl
https://github.com/meandmymind/hybrid-approach-to-ppfl
https://github.com/lainisourgod/hybrid-approach-to-ppfl
https://github.com/lainisourgod/hybrid-approach-to-ppfl
https://github.com/SPIN-UMass/FRL

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

[50] Yann LeCun. 1998. The MNIST database of handwritten digits.

http://yann.lecun.com/exdb/mnist/ (1998).
[51] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[52] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 2007. t-closeness:

Privacy beyond k-anonymity and l-diversity. In 2007 IEEE 23rd international
conference on data engineering. IEEE, 106–115.

[53] Yijing Li, Xiaofeng Tao, Xuefei Zhang, Junjie Liu, and Jin Xu. 2022. Privacy-

preserved federated learning for autonomous driving. IEEE Transactions on
Intelligent Transportation Systems (2022).

[54] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küchler, and Anwar

Hithnawi. 2023. RoFL: Robustness of Secure Federated Learning. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 453–476.

[55] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrish-

nan Venkitasubramaniam. 2007. l-diversity: Privacy beyond k-anonymity. ACM
Transactions on Knowledge Discovery from Data (TKDD) 1, 1 (2007), 3–es.

[56] Mohamad Mansouri, Melek Önen, Wafa Ben Jaballah, and Mauro Conti. 2023.

Sok: Secure aggregation based on cryptographic schemes for federated learning.

Proceedings on Privacy Enhancing Technologies (2023).
[57] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics. PMLR,

1273–1282.

[58] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 691–706.

[59] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and

Nicolas Kourtellis. 2021. PPFL: privacy-preserving federated learning with trusted

execution environments. In Proceedings of the 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services. 94–108.

[60] Hamid Mozaffari, Virat Shejwalkar, and Amir Houmansadr. 2023. Every Vote

Counts: Ranking-Based Training of Federated Learning to Resist Poisoning At-

tacks. In 32nd USENIX Security Symposium (USENIX Security 23).
[61] Pratyay Mukherjee and Daniel Wichs. 2016. Two round multiparty computa-

tion via multi-key FHE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 735–763.

[62] Arjun Narayan, Ariel Feldman, Antonis Papadimitriou, and Andreas Haeberlen.

2015. Verifiable differential privacy. In Proceedings of the Tenth European Confer-
ence on Computer Systems. 1–14.

[63] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy

analysis of deep learning: Passive and active white-box inference attacks against

centralized and federated learning. In 2019 IEEE symposium on security and privacy
(SP). IEEE, 739–753.

[64] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papernot, and Nicholas

Carlin. 2021. Adversary instantiation: Lower bounds for differentially private

machine learning. In 2021 IEEE Symposium on security and privacy (SP). IEEE,
866–882.

[65] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-

uosity classes. In International conference on the theory and applications of crypto-
graphic techniques. Springer, 223–238.

[66] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. 2021. Eluding Secure

Aggregation in Federated Learning via Model Inconsistency. arXiv preprint
arXiv:2111.07380 (2021).

[67] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[68] Fergal Reid and Martin Harrigan. 2013. An analysis of anonymity in the bitcoin

system. In Security and privacy in social networks. Springer, 197–223.
[69] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2020. Ariann:

Low-interaction privacy-preserving deep learning via function secret sharing.

arXiv preprint arXiv:2006.04593 (2020).
[70] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous

payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE,
459–474.

[71] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2021. Turbo-aggregate:

Breaking the quadratic aggregation barrier in secure federated learning. IEEE
Journal on Selected Areas in Information Theory 2, 1 (2021), 479–489.

[72] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05
(2002), 557–570.

[73] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui

Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving federated

learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security. 1–11.

[74] Emily Vogels. 2020. About one-in-five Americans use a smart watch or fitness

tracker. https://www.pewresearch.org/short-reads/2020/01/09/about-one-in-

five-americans-use-a-smart-watch-or-fitness-tracker/.

[75] KangWei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin,

Tony QS Quek, and H Vincent Poor. 2020. Federated learning with differential

privacy: Algorithms and performance analysis. IEEE Transactions on Information
Forensics and Security 15 (2020), 3454–3469.

[76] Nicole Wetsman. 2019. Data from health apps offers opportunities and obstacles

to researchers. https://www.theverge.com/2019/7/3/20681254/data-health-apps-

clue-period-tracking-sleep-fitness-research.

[77] Yuxin Wu and Kaiming He. 2018. Group normalization. In Proceedings of the
European conference on computer vision (ECCV). 3–19.

[78] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar, and Heiko Ludwig. 2019.

Hybridalpha: An efficient approach for privacy-preserving federated learning.

In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security.
13–23.

[79] Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li, Qian Yu, and Salman

Avestimehr. 2021. LightSecAgg: Rethinking Secure Aggregation in Federated

Learning. arXiv preprint arXiv:2109.14236 (2021).
[80] Leon Yao and John Miller. 2015. Tiny imagenet classification with convolutional

neural networks. CS 231N 2, 5 (2015), 8.

[81] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. 2018. Privacy

risk in machine learning: Analyzing the connection to overfitting. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF). IEEE, 268–282.

[82] Da Yu, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. 2021. Do not let privacy

overbill utility: Gradient embedding perturbation for private learning. arXiv
preprint arXiv:2102.12677 (2021).

[83] Bin Zhao, Kai Fan, Kan Yang, Zilong Wang, Hui Li, and Yintang Yang. 2021.

Anonymous and privacy-preserving federated learning with industrial big data.

IEEE Transactions on Industrial Informatics 17, 9 (2021), 6314–6323.
[84] Tianqi Zhou, Jian Shen, Pandi Vijayakumar, Md Zakirul Alam Bhuiyan, and

Audithan Sivaraman. 2023. Anonymous Authentication Scheme for Federated

Learning. In IEEE INFOCOM 2023-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 1–6.

A Extensions
Addressing a stronger adversary model—training side. AnoFel
assumes semi-honest clients in the training phase. Therefore, miti-

gating threats of using a legitimate (registered and certified) dataset

in a training activity of totally different type—e.g., use medical

data to train a model concerned with vehicles, are out of scope.

We can make our adversary model stronger by considering a semi-

malicious client who may attempt this attack. This can be done by

requiring the certifier to add a dataset type dt to the dataset cer-

tificate, and having the client prove that a dataset with the correct

type has been used in training. Each training activity will have a

designated type dt, and a certifier will check that a dataset 𝐷𝑖 is

indeed of type dt (so it can be used to train any model of type dt)
before signing H(𝐷𝑖) ∥mpk𝑖 ∥ dt. Also, the ZKP circuit a client uses

in training must check that𝒜𝒢 (that will receive a ciphertext of the

model updates) is managing a training activity with an identical dt.
Otherwise, a valid proof cannot be generated.

Addressing malicious clients during training, i.e., these who may

deviate arbitrarily from the protocol, can be done using ZKPs (as

discussed in Section 6). In a generic way, this involves requiring

a submitted model update to be accompanied with a ZKP proof

on well-formedness, meaning that the registered dataset and the

actual initial model parameters were used and training was done

correctly. Extending AnoFel to support that while preserving its

efficiency level is part of our future work.

Addressing a stronger adversary model—aggregation side. An
extra layer of precaution can be added to our system design to

strengthen client participation anonymity. In particular, we want to

protect against an adversary who may know that certain encrypted

updates have been submitted by a certain client (without knowing

102

https://www.pewresearch.org/short-reads/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.pewresearch.org/short-reads/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/
https://www.theverge.com/2019/7/3/20681254/data-health-apps-clue-period-tracking-sleep-fitness-research
https://www.theverge.com/2019/7/3/20681254/data-health-apps-clue-period-tracking-sleep-fitness-research

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

any information about the dataset itself). Since the updates are

encrypted under 𝒜𝒢’s public key, the adversary might be able to

determine the dataset type based on the training activity type that

𝒜𝒢 is managing.
16
This will invade privacy, e.g., reveal that a client

suffers from a particular disease merely based on the dataset or

training task type. Thus, we need a technique to hide which training

activity model updates are submitted to.

We can address this case by creating an anonymity set for the

aggregators. That is, the system will have several ongoing training

activities, each of which with its own 𝒜𝒢 committee. When sub-

mitting a model update, the client will choose a set of aggregator

committees 𝐴𝐺 = {𝒜𝒢1, . . . ,𝒜𝒢𝑢 } including the target 𝒜𝒢 who

is managing the training activity the client is interested in.
17
The

client then shuffles 𝐴𝐺 to avoid any ordering attacks (e.g., if the

target 𝒜𝒢 is always placed first, this reveals the target training

activity). After that, it encrypts the updates under the public keys

of this set—encrypt the actual updates for the target 𝒜𝒢 while

encrypt 0 for the rest. This will produce c; a vector of 𝑢 cipher-

texts. Consequently, even if it is revealed that a client has submitted

model updates, this will not expose the target training activity.

Another case is related to the aggregators themselves; now we

consider semi-honest aggregators, thus they will correctly aggre-

gate the updates, generate a noise value that respects the desired

DP parameters, and produce valid partial decryptions of the cipher-

text of the aggregated updates. Malicious aggregators may deviate

arbitrarily. For example, those who are colluding with the server

may produce zero noise value, or disclose the generated noise to

the server, which will impact the DP privacy guarantees. Also, mali-

cious aggregators may target the server itself by not aggregating the

updates correctly, or even produce invalid partial decryptions. This

leaves the server the with dilemma of which 𝑡 partial decryptions

should be used to obtain valid aggregated updates.

Addressing malicious aggregators can be done in a generic way

using ZKPs. Encrypted noise values will have a ZKP attesting to

their correctness, and same for partial decryptions. We leave this

direction as part of our future work, which also includes investi-

gating the use of verifiable DP solutions [14, 62] in the context of

anonymous and private federated learning.

Instantiating the bulletin board. The concrete instantiation of

the board impacts runtime. The board mediates communication

between parties and must validate all information postings be-

fore accepting them. To speed up this process, the board can be

formed as a sequence of blocks of information maintained by a

committee of validators to distribute trust (similar to a permis-

sioned blockchain) or using a permissionless blockchain with an

honest majority assumption on the miners/validators. For fast pro-

cessing, confirmation, and block finality, we recommend the use

of a consensus protocol utilizing variants of practical Byzantine

fault tolerant (PBFT) [20] as in, e.g., [36, 46, 47]. That is, for each

epoch, a committee will manage the board; it proposes the next

block of information to be added to the board (based on the mes-

sages received from clients, the server, and the aggregators). The

16
Information about the training task could be public knowledge, and even if it is

secret, the adversary can collude with any member of𝒜𝒢 and obtain this information.

17
A client will have a fixed 𝐴𝐺 . Changing 𝐴𝐺 between iterations must be done

carefully; for a new𝐴𝐺 ′ , if𝐴𝐺 ∩𝐴𝐺 ′ =𝒜𝒢, it would be trivial to tell which training

activity a client is part of.

committee members would agree on the block by signing it. Once

a majority of votes is collected, the block is considered final and

added to the board. The validity/correctness rules of the board are

derived from the federated learning protocol itself; so in AnoFel, for
example, there will be format checking, ZKP verification, and signa-

ture verification. Thus, many building blocks, functionalities, and

optimizations from existing blockchain paradigms can be utilized.

Reducing storage costs of the bulletin board. ML models may

involve thousands of parameters. The server needs to post the

initial values of these parameters on the board for each training

iteration. Also, a client posts the (encrypted) updated version of

all these parameters on the board. This is a large storage cost that

may create a scalability problem. To address this issue, we can

employ the scalability solutions currently used by the blockchain

community; for example, store the (ciphertext of) model parameters

on a decentralized storage network, and post only the hash of

them on the board (with a pointer to where the actual data is

stored). Furthermore, once the data is used, i.e., a training iteration

concluded, initial model, noise values posted by aggregators, and

all client updates can be discarded, which reduces the storage cost

significantly. Note that the initial model parameters and encrypted

noise values are posted by the server and aggregators, respectively,

who are not anonymous. While the encrypted updates are posted by

clients, and thus, an anonymous off-chain storage must be used (like

an anonymous sidechain) to avoid compromising their anonymity.

To get a sense of the communication cost added due to the use

of a bulletin board instantiated as a blockchain, we report overhead

numbers from state-of-the-art literature on PBFT-based blockchain

architecture. We also assume an optimized storage solution, e.g., the

one above where a hash (of size 32 bytes and any additional bytes

for metadata based on the board protocol) of a submitted update

is posted on the board that points to the actual update stored on a

storage network or a sidechain. Verifying updates before posting

them on the board in AnoFel is dominated by verifying the ZKP,

which as shown in Table 2, takes around 4.7 ms per proof. Running

the PBFT agreement, as reported in Figure 10 in [47], for a consensus

group of size 256 and data size of 1 MB, ByzCoinX takes up to 15 sec

to conclude block consensus. Thus, from the client view, it will take

around 15 sec for their submitted updates to appear on the board

(in addition to communication link delays that are on the order

of 100 ms to send these updates to the board validators). Take the

numbers of client runtime for TinyimageNet (the heaviest dataset)

from Figure 6, a client would need around 8 sec to finish training

and preparing the encrypted updates alongwith needed ZKP.While,

based on Figure 5, on the aggregator side, it needs around 30 sec

to finish aggregation and decryption of the aggregated updates (in

addition to the time needed to retrieve the encrypted updates from

the storage network) also for TinyimageNet. Also, it would need

another 15 sec to conclude consensus to publish the new updated

model by the model owner on the board before a new iteration can

start. Thus, while accounting for the consensus and communication

delays, a training iteration would need around 70 sec.

Indeed, consensus time can be further optimized when using a

permissioned setting which allows for a smaller number of permis-

sioned validators to run consensus. As shown in Figure 10 in [47],

when having 8 validators, the consensus latency drops to around 2

103

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

sec (not to mention removing any additional cost needed to select

validator committee at random for each new epoch). In a setting like

FL, we favor a permissioned board setup to optimize performance.

B Proof of Theorem 1
To prove Theorem 1, we have to prove that AnoFel does not violate
the error bound on training correctness, and that no PPT adversary

can win the security games defined in Section 2 for anonymity and

dataset privacy with a probability larger than the defined success

bounds of these games.

Intuitively, AnoFel satisfies these properties by relying on the

correctness and security of the underlying cryptographic primi-

tives, and the bounds on accuracy and privacy loss offered by DP.

The use of a secure ZKP system guarantees: completeness (a valid

proof generated by a client will be accepted by the bulletin board

validators and the aggregators 𝒜𝒢), soundness (a client that does
not own a certified dataset cannot register, and a client that does

not belong to the registered set cannot generate valid proofs during

training), and zero knowledge (so the proof does not reveal any-

thing about the master public key of the client or her dataset, and

cannot be linked back to the client registration information).

Furthermore, the use of a semantically secure threshold homo-

morphic encryption scheme guarantees that the ciphertexts of the

model updates do not reveal anything about the underlying (plain-

text) updates, and homomorphic add will produce a valid result of

the sum of these updates. The use of a secure commitment scheme

guarantees that a commitment posted by a client cl𝑖 hides the

dataset 𝐷𝑖 and binds this client to 𝐷𝑖 . The security of the digital

signature scheme and the PKI guarantee that a malicious adversary

cannot forge a certificate for a corrupted dataset, and that a man-

in-the-middle attacker cannot manipulate any of the messages that

a client, aggregator, or a server send. Also, under the assumption

that at least 𝑡 members of 𝒜𝒢 are honest, it is guaranteed that 𝑆

will not have access to the individual updates submitted by clients.

Moreover, the use of a (𝜖, 𝛿)-differential privacy leads to an

error (or loss in accuracy) bound 𝛼 as detailed in Section 3, as

well as bounds to the adversary success in distinguishing a model

trained with dataset 𝐷 from a model trained with a dataset 𝐷 ′ ≠ 𝐷 .

The parameter 𝜖 control this indistinguishability level, and the

parameter 𝛿 makes it easier to satisfy DP by allowing a small failure

in the privacy guarantees. Thus, the bound 𝛾 will depend on the

values of 𝜖 and 𝛿 , thus covering the success probability in violating

privacy regardless of the strategy that an attacker uses.
18

Formally, the proof of Theorem 1 requires proving three lemmas

showing that AnoFel is correct, anonymous, and supports dataset

privacy. For correctness, note that AnoFel does not impact train-

ing correctness and accuracy. So if a non-cryptographic defense

mechanism is employed, and this mechanism provides a trade-off

18
We note that deriving an exact formula for 𝛾 in terms of 𝜖 and 𝛿 is outside the

scope of this work. Several works derived bounds for DP-based privacy guarantees as

discussed in Section 3, and so 𝛾 will be the union bound of the success probabilities of

all possible strategies. An alternative approach is to consider the success probability

in the DINDGame in terms of a multiplicative term, 𝑒𝜖 , and an additive term 𝛿 over

0.5 (i.e., winning the game by just making a random guess), in a similar way to how

DP guarantee is defined in Definition 2. However, we keep the definition general, by

considering the additive term 𝛾 , so it can be used with any PAFL scheme including

these that may use different non-cryptographic privacy techniques other than DP.

with respect to accuracy (as in DP), AnoFel will not impact that

trade-off.

Lemma 1. AnoFel satisfies the correctness property as defined in
Definition 1.

Proof. Correctness follows by the correctness of the homomor-

phic encryption scheme and the security of the digital signature

scheme, as well as the accuracy level provided by DP. A semi-honest

client in the training phase will perform training as required and

encrypt the updates and post them on the board. Since AnoFel uses
an existential unforgeable digital signature scheme, a malicious

attacker 𝒜 cannot modify the ciphertext of the updates without

invalidating the signature, and 𝒜 cannot forge a valid signature

over a modified ciphertext. Thus, it is guaranteed that all accepted

model update ciphertexts are the ones produced by the client.

Also, since AnoFel uses a correct (and secure) homomorphic en-

cryption scheme, the homomorphic addition of the ciphertexts will

produce a ciphertext of the sum of the actual updates (along with

the noise level required by DP). By the correctness of the decryp-

tion algorithm, after decrypting the sum ciphertext, the server will

obtain the correct value of the aggregated updates in each training

iteration. This trained model differs from the actual one by the

error bounds 𝛼 obtained from DP, thus satisfying 𝛼-correctness.

This completes the proof. □

For anonymity, as an extra step, a technique can be used to pre-

process the dataset to remove sensitive attributes from the dataset.

Thus, any attack against anonymity that assumes that the 𝒜 got a

hold on datapoint, without knowing the identity of owner client,

will be ineffective (note if the attacker gets a hold on a client dataset

and he knows the client identity, then he already compromised

privacy of that client). The definition of our anonymity property

does not assume the adversary knows the dataset or identity of the

clients involved in the challenge.
19

Lemma 2. AnoFel satisfies the anonymity property as defined in
Definition 1.

Proof. Under the assumption that at least one honest client

(other than the honest cl in the game) has submitted updates during

the challenge training iteration (as described in the game definition

earlier), accessing the aggregated model updates at the end of any

iteration will not provide 𝒜 with any non-negligible advantage in

winning the game. Thus, the proof is reduced to showing that all

actions introduced by AnoFel preserve anonymity. We prove that

using a similar proof technique to the one in [31], where we show a

series of hybrids starting with an AnonGame with 𝑏 = 0 (Hybrid
0
),

and finishing with an AnonGame game with 𝑏 = 1 (Hybrid
7
). By

showing that all these hybrids are indistinguishable, this proves

that 𝒜 cannot tell which client was chosen for the challenge train
command in AnonGame. Now, we proceed with a sequence of

hybrid games as follows:

Hybrid
0
: The game AnonGame with 𝑏 = 0.

Hybrid
1
: Same as Hybrid

0
, but we replace the zero-knowledge

proofs with simulated ones, i.e., we invoke the zero-knowledge

19
Even if we allow that, we can define 𝛾 -anonymity property where the attacker wins

with probability bounded by 𝛾 inherited from DP.

104

AnoFel: Supporting Anonymity for Privacy-Preserving Federated Learning Proceedings on Privacy Enhancing Technologies 2025(2)

property simulator for each of the register and train queries, and

we replace the actual proofs in the output of these queries with sim-

ulated ones. The hybridsHybrid
0
andHybrid

1
are indistinguishable

by the zero-knowledge property of the ZKP system that AnoFel
uses. That is, if 𝒜 can distinguish them, then we can build another

adversary 𝒜′ that can break the zero-knowledge property of the

ZKP system, which is a contradiction.

Hybrid
2
: Same as Hybrid

1
, but we replace (cl0, aux0, cl1, aux1) with

fresh output (cl′
0
, aux′

0
, cl′

1
, aux′

1
). That is, we choose fresh datasets

and register two fresh clients using them. So if setup created a state

with 𝑛 clients, any register query for any of the 𝑛 clients other than

cl0 and cl1 will proceed as in Hybrid
1
. However, if it is for cl0 or cl1,

we replace them with cl′
0
or cl′

1
and proceed.

Hybrid
1
andHybrid

2
are indistinguishable by the zero-knowledge

property of the ZKP system and the hiding property of the commit-

ment scheme that AnoFel uses (which implies that client registra-

tion is indistinguishable). That is, if𝒜 can distinguish them, thenwe

can build two adversaries: 𝒜′ that can break the zero-knowledge

property of the ZKP system, and 𝒜′′ that can break the hiding

property of the commitment scheme, which is a contradiction.

Hybrid
3
: Same as Hybrid

2
, but we replace the output of training

any of (cl0, aux0, cl1, aux1) with fresh output produced by training

(cl′
0
, aux′

0
, cl′

1
, aux′

1
). As above, if setup created a state with 𝑛 client

registrations, any train query for any of the 𝑛 clients other than cl0
and cl1 will proceed as in Hybrid

2
. However, if the train query is

for cl0 or cl1, we replace them with training output based on the

fresh datasets owned by cl′
0
or cl′

1
and proceed.

Hybrid
2
and Hybrid

3
are indistinguishable by the zero knowl-

edge property of the ZKP system and the semantic security of the

homomorphic encryption scheme used in AnoFel (which implies

that training is indistinguishable). If 𝒜 can distinguish them, then

we can build two adversaries:𝒜′ that can break the zero-knowledge
property of the ZKP system, and 𝒜′′ that can break the semantic

security of the encryption scheme, which is a contradiction.

Hybrid
4
: Same asHybrid

3
, but with 𝑏 = 1. The hybridsHybrid

3
and

Hybrid
4
are indistinguishable by the indistinguishability of model

training as described above.

Hybrid
5
: Same as Hybrid

4
, but with (cl0, aux0, cl1, aux1) used in

training as in the original game. So this is Hybrid
3
with 𝑏 = 1. The

hybrids Hybrid
4
and Hybrid

5
are indistinguishable by the indistin-

guishability argument of hybrids Hybrid
3
and Hybrid

2
.

Hybrid
6
: Same as Hybrid

5
, but with (cl0, aux0, cl1, aux1) used in

registration as in the original game. So this is Hybrid
2
with 𝑏 =

1. The hybrids Hybrid
5
and Hybrid

6
are indistinguishable by the

indistinguishability argument of hybrids Hybrid
2
and Hybrid

1
.

Hybrid
7
: Same as Hybrid

6
, but with real ZKPs instead of the sim-

ulated ones. So this is the original AnonGame with 𝑏 = 1. The

hybrids Hybrid
6
and Hybrid

7
are indistinguishable by the indistin-

guishability argument of hybrids Hybrid
1
and Hybrid

0
.

This shows that AnonGame with 𝑏 = 0 is indistinguishable from

AnonGame with 𝑏 = 1, which completes the proof. □

As for dataset privacy, the use of DP will allow 𝒜 to win the

dataset privacy game with advantage 𝛾 since he selects the datasets

involved in the challenge (e.g.,𝒜 can perform a membership attack

against the trained model using datapoints form the datasets he

chose). Thus, our proofs proceeds in two stages: first, we show

that the cryptographic primitives used in AnoFel do not provide

𝒜 with any non-negligible advantage, and second, by the security

guarantees of DP, this attacker has an advantage bounded by 𝛾

based on DP privacy guarantees with respect to the output (i.e., the

trained model).

Lemma 3. AnoFel satisfies the dataset privacy property as defined
in Definition 1.

Proof. In DINDGame, adversary 𝒜 chooses two datasets 𝐷0

and 𝐷1. The challenger picks one of them at random, registers a

client with the chosen dataset, and invokes the train command for

that client.𝒜 gets to see the output of the registration and training

commands, which are the messages and signatures that a client

sends in the setup and training phases of AnoFel.
In order to win the DINDGame,𝒜 can attack the registration or

the training processes. That is, for the former𝒜 tries to reveal which

dataset is hidden in the posted commitment or obtain information

about the witness underlying the submitted proof, which contains

the dataset 𝐷𝑏 in this case. While for the latter, 𝒜 may try to infer

any information about the plaintext of the model updates ciphertext.

Note that attacking the ZKP to reveal any information about the

commitment that was used, and then attacking that commitment,

reduces to the same case of attacking the registration process.

Attacking registration means attempting to break the hiding

property of the commitment and the zero-knowledge property of

the ZKP. Since AnoFel uses a secure commitment scheme, the for-

mer will succeed with negligible probability negl
1
(𝜆). Also, since

AnoFel uses a secure ZKP system, the latter will succeed with neg-

ligible probability negl
2
(𝜆). Attacking the training process means

attempting to break the semantic security of the encryption scheme.

Since AnoFel uses a semantically secure encryption scheme, such

an attack will succeed with negligible probability negl
3
(𝜆).

Accordingly,𝒜’s advantage by the cryptographic primitives that

we use is negl
1
(𝜆) + negl

3
(𝜆) + negl

3
(𝜆) = negl(𝜆).

Now,𝒜 can query the oracle𝒪PAFL to access the updated model

and perform any training output-related attacks, e.g., membership

or inference attacks. That is, 𝒜 knows both datasets and query the

model over various datapoints, or perform any other strategy, to

distinguish which dataset was used in training. The success of this

strategy is bounded by the privacy loss 𝛾 obtained by DP.

Thus, the probability that 𝒜 wins in the DINDGame is
1

2
+

negl(𝜆) + 𝛾 , which completes the proof. □

Proof of Theorem 1. Follows by Lemmas 1, 2, and 3.

C Accuracy Evaluation
We evaluate the model test accuracy in AnoFel incorporating DP
and compare to a non-DP baseline in Figure 9. We present evalua-

tions for number of clients 𝑁 = {16, 64, 256}, IID and non-IID data

for MNIST, CIFAR10, and TinyImageNet benchmarks. Across all

data distributions and client sizes, the accuracy drop due to DP for

theMNIST dataset is between 0.05%−0.22%, for CIFAR10 is between
0.79% − 3.68%, and for TinyImageNet is between 8.11% − 12.27%.

105

Proceedings on Privacy Enhancing Technologies 2025(2) Almashaqbeh et al.

0 10 20 30 40 50
Epoch

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(a) MNIST, N=16, iid

0 10 20 30 40 50
Epoch

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(b) MNIST, N=64, iid

0 10 20 30 40 50
Epoch

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(c) MNIST, N=256, iid

0 10 20 30 40 50
Epoch

0
20
40
60
80

100

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(d) MNIST, N=16, non-iid

0 10 20 30 40 50
Epoch

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(e) MNIST, N=64, non-iid

0 10 20 30 40 50
Epoch

20
40
60
80

100

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(f) MNIST, N=256, non-iid

0 50 100 150 200
Epoch

20
40
60
80

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(g) CIFAR10, N=16, iid

0 50 100 150 200
Epoch

20
40
60
80

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(h) CIFAR10, N=64, iid

0 50 100 150 200
Epoch

20
40
60
80

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(i) CIFAR10, N=256, iid

0 50 100 150 200
Epoch

20
40
60
80

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(j) CIFAR10, N=16, non-iid

0 50 100 150 200
Epoch

20
40
60
80

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(k) CIFAR10, N=64, non-iid

0 50 100 150 200
Epoch

20
40
60
80

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(l) CIFAR10, N=256, non-iid

0 50 100 150 200
Epoch

0
10
20
30
40
50

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(m) TinyImageNet, N=16, iid

0 50 100 150 200
Epoch

0
10
20
30
40

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(n) TinyImageNet, N=64, iid

0 50 100 150 200
Epoch

0
10
20
30
40

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(o) TinyImageNet, N=256, iid

0 50 100 150 200
Epoch

0
10
20
30
40

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(p) TinyImageNet, N=16, non-iid

0 50 100 150 200
Epoch

0
10
20
30
40

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(q) TinyImageNet, N=64, non-iid

0 50 100 150 200
Epoch

0
10
20
30
40

Ac
cu

ra
cy

 (%
)

non-DP
(= 0.9, = 10 5)-DP

(r) TinyImageNet, N=256, non-iid

Figure 9: Accuracy of AnoFel per epoch compared with a non-DP baseline for MNIST, CIFAR10, and TinyImageNet.

106

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 A Security Notion for Private and Anonymous Federated Learning
	3 Building Blocks
	4 AnoFel Design
	4.1 System Model
	4.2 Threat Model
	4.3 System Workflow
	4.4 Extensions
	4.5 Security of AnoFel

	5 Performance Evaluation
	5.1 Implementation
	5.2 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Extensions
	B Proof of Theorem 1
	C Accuracy Evaluation

