Privacy Settings of Third-Party Libraries in Android Apps:
A Study of Facebook SDKs

David Rodriguez

ETSI Telecomunicacidn, Universidad Politécnica de Madrid

Madrid, Spain
david.rtorrado@upm.es

Jose M. Del Alamo

ETSI Telecomunicacion, Universidad Politécnica de Madrid

Madrid, Spain
jm.delalamo@upm.es

Abstract

Previous studies have demonstrated that privacy issues in mobile
apps often stem from the integration of third-party libraries (TPLs).
To shed light on factors that contribute to these issues, we inves-
tigate the privacy-related configuration choices available to and
made by Android app developers who incorporate the Facebook
Android SDK and Facebook Audience Network SDK in their apps.
We compile these Facebook SDKs’ privacy-related settings and their
defaults. Employing a multi-method approach that integrates static
and dynamic analysis, we analyze more than 6,000 popular apps
to determine whether the apps incorporate Facebook SDKs and, if
so, whether and how developers modify settings. Finally, we assess
how these settings align with the privacy practices that developers
disclose in the apps’ privacy labels and policies.

We observe widespread inconsistencies between practices and
disclosures in popular apps. These inconsistencies often stem from
privacy settings, including a substantial number of cases in which
apps retain default settings over alternatives that offer greater pri-
vacy. We observe fewer possible compliance issues in potentially
child-directed apps, but issues persist even in these apps. We discuss
remediation strategies that SDK and TPL providers could employ
to help developers, particularly developers with fewer resources
who rely heavily on SDKs. Our recommendations include aligning
default privacy settings with data minimization principles and other
conservative practices and making privacy-related SDK informa-
tion both easier to find and harder to miss.

Keywords

Third-party libraries, software development kits, privacy settings,
Facebook SDK, Android applications, dynamic analysis, default
settings, compliance analysis, privacy labels, privacy policies

1 Introduction

Mobile applications are integral to modern life, from how we com-
municate with others and entertain ourselves to how we manage
tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(2), 173-187

© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0056

This work is licensed under the Creative Commons Attribu-

173

Joseph A. Calandrino
Washington, D.C., USA
jealandr@alumni.princeton.edu

Norman Sadeh
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
sadeh@cs.cmu.edu

our health and finances. Today, mobile app developers rely heavily
on software development kits (SDKs). SDKs comprise a collection of
software tools and programs, and they routinely incorporate third-
party libraries (TPLs) into apps. SDKs help developers produce
sophisticated apps rapidly and efficiently. They can do anything
from assisting developers in building, deploying, and managing
apps to facilitating targeted advertising, social media logins, and
much more. Despite the benefits of SDKs, their use in mobile apps
has raised concerns regarding privacy.

SDK providers often offer developers free or subsidized services
in exchange for collecting and utilizing user data across all apps
that use their SDKs [63]. Given their market share and business
practices, the data available to the parties behind some widely used
SDKs may be significant [63]. The integration of TPLs into Android
apps—whether via SDKs or not—introduces a well-documented
array of privacy concerns [1, 37, 38, 59, 66, 68, 82]. These libraries
can access user data ranging from location to personal commu-
nications, potentially without explicit user consent [2] or even
developer awareness [11]. Beyond jeopardizing user privacy, this
access places app developers at risk of failing to comply with their
privacy promises and laws like GDPR or CCPA, which may cre-
ate obligations from data minimization to consumer controls on
personal information [31, 51].

While privacy concerns regarding TPLs may be well known, a
gap exists in understanding the impact of TPL privacy settings and
their defaults on the privacy of apps. Even if a TPL offers develop-
ers extensive privacy-related settings options, prior work suggests
that defaults tend to favor functionality over privacy, encouraging
practices that may be unnecessary or opaque [14]. Furthermore, de-
velopers may be reluctant to change default settings for TPLs [59].
If developers fail to choose appropriate privacy-related TPL set-
tings, apps may not adhere to the developers’ privacy promises
and obligations, and users may lack knowledge of and control over
apps’ privacy practices. Addressing these issues requires a deeper
investigation into how developers interact with privacy-related
TPL settings, ideally contextualized by developers’ privacy commit-
ments and obligations.

We consider the privacy-related settings and defaults provided
by Facebook (Meta) SDKs for Android, specifically the Facebook An-
droid SDK [19] and Facebook Audience Network SDK [18]. These
SDKs offer valuable case studies due to their widespread use and
configurable privacy settings, which can significantly influence app

https://orcid.org/0000-0002-0911-4608
https://orcid.org/
https://orcid.org/0000-0002-6513-0303
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0056

Proceedings on Privacy Enhancing Technologies 2025(2)

Rodriguez et al.

Table 1: Analyzed Facebook SDKs and their modules.

SDK name Module (SDK) name Maven artifact ID? Description

Facebook Android SDK Facebook Core SDK facebook-core Provides analytics and functionality for other SDK modules.
Facebook Login SDK facebook-login Allows users to authenticate using Facebook credentials.
Facebook Share SDK facebook-share Enables sharing from an app on Facebook.
Facebook Messenger SDK facebook-messenger Integrates Facebook Messenger functionality.
Facebook App Links SDK facebook-applinks Supports links into other apps (Android deep links).
Facebook Marketing SDK facebook-marketing Facilitates integration of Facebook marketing capabilities.

Audience Network SDK -

audience-network-sdk

Enables advertising and audience monetization.

Maven is a project management system that works with a public repository to integrate Android SDKs. We omit groupld prefix (com. facebook . android) from artifact IDs.

privacy practices. Our study focuses on whether and how develop-
ers modify these settings. Understanding how developers interact
with privacy settings, particularly defaults, is crucial to addressing
privacy concerns that TLPs and SDKs raise. Our research employs a
combination of static and dynamic analysis, with both approaches
providing complementary insights and robust validation of devel-
opers’ privacy settings choices. We also examine how developers’
choices align with apps’ stated privacy practices, which can not
only uncover discrepancies but also suggest failures of developers
to appreciate available choices and implications.

Our analysis reveals that a large proportion of apps retain default
SDK privacy-related settings over privacy-enhancing alternative
settings. We also identified potential compliance issues in privacy
labels and policies when compared with actual app behavior, and
many of the concerns are associated with privacy-related SDK set-
tings and their defaults. These findings offer valuable insights into
privacy-relevant choices that app developers make when utiliz-
ing SDKs, with potential implications for developers, providers of
TPLs/SDKs, and policymakers.

Contributions. This study examines the privacy settings avail-
able to and made by app developers integrating the Facebook An-
droid SDK and Facebook Audience Network SDK. We employ static
and dynamic analysis on more than 6,000 Android apps. Key con-
tributions include:

(1) Compilation and Detailed Examination of SDK Privacy Set-
tings: We document and explain the privacy-related settings
available in both Facebook SDKs along with their defaults,
highlighting their privacy impact.

(2) Static Analysis: This analysis assesses Facebook SDK integra-
tion in apps, and it compiles and offers insights into certain
developer choices regarding privacy-related settings.

(3) Dynamic Analysis: We develop new methods that validate

and expand on our static analysis. These methods utilize run-

time details to confirm SDK integration, determine SDK ver-
sion, and analyze or confirm privacy-related settings choices.

Our findings suggest that static analysis alone may not offer

a complete picture.

Compliance Analysis: We examine apps’ privacy labels and

policies, identifying potential discrepancies between declared

and apparent privacy practices stemming from SDK use. This
analysis highlights possible compliance issues and offers
hints of underlying causes.

©)

174

The remainder of this paper is organized as follows. Section 2 in-
troduces the two Facebook SDKs and their privacy-related settings.
Section 3 reviews related work. Section 4 describes our research ap-
proach. Section 5 presents findings from our analysis of more than
6,000 apps, discussing SDK integration, privacy-related settings
modifications, and compliance issues observed. Section 6 contex-
tualizes our findings with existing developer studies and explores
mitigation strategies, and Section 7 addresses the study’s limitations.
Section 8 concludes and outlines future research directions.

2 Facebook SDKs

We focus on two Facebook SDKs for Android, the Facebook An-
droid SDK and the Audience Network SDK, that are among the
most popular social and ad network SDKs in the Android ecosys-
tem [7]. Both SDKs bundle TPLs with apps and provide config-
urable privacy-related settings that developers can modify through
an app’s Android Manifest file, app code, or the Meta Developers
Platform [57], a centralized developer hub that includes features
for managing apps and configuring Facebook SDKs. As Section 4
discusses, our analysis can infer modifications that developers make
to these settings via these three methods.

2.1 Facebook Android SDK

The Facebook Android SDK (or “Facebook SDK for Android”) offers
an extensive range of functionality, including user authentication
via Facebook login and content sharing on the platform. This SDK
employs a modular architecture that enables developers to integrate
specific features independently [28]. All modules rely on essential
functionality from the required Facebook Core SDK (or simply Core
SDK), discussed below, but developers can otherwise incorporate
each module into apps as desired [28, 32]. Table 1 provides an
overview of the SDK and its modules.

The Facebook Core SDK module manages privacy-related set-
tings for all modules, providing an array of such settings. These
settings have been available in their current form since version
4.34.0 (June 2018) [64]. We compiled privacy-related settings and
confirmed the default value for each via both Meta’s official doc-
umentation [24] and manual examination of the Facebook Core
SDK’s source code [32]. We provide details on each setting below
(and in Table 2). Although Meta’s documentation mentions possi-
bilities like delaying data collection “to obtain user consent or fulfill
legal obligations” [20], the default for each privacy-related setting

Privacy Settings of Third-Party Libraries in Android Apps

Proceedings on Privacy Enhancing Technologies 2025(2)

Table 2: Privacy-related settings available in the analyzed Facebook SDKs.

SDK Setting Definition Default Available Since
Version (Date)
Facebook Android SDK AutoLogAppEvents Enables collection of events and other data for Enabled 4.34.0
user interaction and engagement tracking. (June 20138)
Autolnit Controls automatic initialization of the Facebook Enabled 4.34.0
Android SDK upon app launch. (June 2018)
AdvertiserIDCollection Allows collection of Advertising Identifier (AdID) Enabled 4.34.0
for personalized advertising. (June 2018)
LimitEventAndDataUsage Restricts logged events from being used for Disabled 4.34.0
purposes other than analytics or conversions. (June 20138)
Audience Network SDK DataProcessingOptions Allows constraints on Facebook’s use and Disabled 5.5.0
sharing of user data. (August 2019)
MixedAudience Adjusts data collection and use to assist Disabled 5.6.0
compliance with children’s privacy laws. (October 2019)

notably is the option that immediately facilitates or minimizes
restrictions on data collection, use, and sharing.

AutoLogAppEvents. Determines whether the SDK collects and
logs user interactions, events, and other data, such as app down-
loads, in-app purchases, ad interactions, email address, name, phone
number, physical address details (city, state/province, zip/postal
code, and country), gender, and date of birth. Collection and log-
ging is enabled by default. Developers can change this setting via
the app’s Manifest, code instructions, or the Meta Developers Plat-
form [57].1

Autolnit. Controls the automatic initialization of the SDK upon
app launch. This setting is enabled by default, which allows the
SDK to start functioning immediately and collect data for analytics
without additional initialization code. According to Meta’s docu-
mentation, developers can disable this setting via the app’s Manifest.
Although the SDK can be re-enabled through code instructions, it
is unclear whether this method also allows for disabling the SDK.

AdvertiserIDCollection. Governs the collection of Android’s Ad-
vertising Identifier (also known as AAID, GAID, or AdID; we use
AdID alone for consistency). This identifier is generally used by
SDKs to track user activity across apps and deliver personalized
advertising [74]. The collection of AdID is enabled by default but
can be disabled through the Manifest or via code instructions.

LimitEventAndDataUsage. Can restrict whether logged user in-
teractions and events sent to Facebook are used for purposes beyond
analytics and conversions. These restrictions are disabled by default,
but when enabled, the data collected will not be used for targeted
advertising or detailed marketing profiling [26]. This setting is
stored on the device and persists across app launches. Unlike other
settings, this one is not detailed in Meta’s official documentation,
but we identified it in the SDK code. This setting can be changed
via code instructions.

The automatic logging of events can also be managed through the Events Man-
ager [58], a tool within Meta’s Business Suite [56] that allows for monitoring, analyzing,
and managing events tracked by the SDK.

175

2.2 Facebook Audience Network SDK

Facebook’s Audience Network SDK [21] is for advertising and mon-
etization, providing tools for integrating Facebook ads into apps.
We compiled privacy-related settings for this SDK from the official
documentation’s section on best practices [22, 23].

DataProcessingOptions. Allows developers to specify how Face-
book should handle user data. This setting is also known as Limited
Data Use (LDU). By default, data usage is not limited, but devel-
opers can change this setting to restrict data processing based on
user location or Meta’s geolocation. These restrictions support com-
pliance with U.S. state privacy regulations [22] by limiting data
use for personalized ads, sharing with third parties, and data re-
tention duration. This setting can be modified only through code
instructions.

MixedAudience. Helps developers manage apps used by both chil-
dren and adults, facilitating compliance with the Children’s Online
Privacy Protection Act (COPPA) in the U.S. [23]. This setting is dis-
abled by default, but when enabled, the SDK adjusts data collection
practices to limit personal data collection from children and restrict
data use for targeted advertising. The setting can be modified only
via code instructions or the Meta Developers Platform.

3 Related Work

The incorporation of SDKs and TPLs into mobile apps can create
substantial privacy and compliance risks. Previous research has
identified risk stemming from the inheritance framework of An-
droid permissions: all libraries in an app can use the permissions
granted to the app [68, 70, 77]. SDKs that enable app monetiza-
tion through advertising frequently collect personal data to deliver
ads based on targeted audiences. Such data collection may lack
transparency [27, 84] and could violate privacy regulations such as
GDPR, CPPA, and COPPA, especially in apps targeting children [1].

Additionally, developers face challenges understanding the im-
plications of SDK integration in their apps, which can lead to un-
intentional data leaks and further exacerbate risk [1, 84, 85]. The
widespread adoption of SDKs and TPLs creates risks that many
apps transmit personal data without proper user consent [13, 38].

Proceedings on Privacy Enhancing Technologies 2025(2)

Malicious Android libraries may even target SDKs and TPLs from
other vendors in the same app to extract user data, since third-party
components of apps are not isolated from each other [75].

To assess the real-world privacy impact of TPLs and SDKs in the
mobile ecosystem, detecting their presence in apps and analyzing
their behavior can be useful. TPL detection techniques and tools
can be categorized based on their operational principles. Detection
techniques based on package structure analyze the organizational
hierarchy of code packages, utilizing predefined patterns to identify
the presence of TPLs [55]. Class-dependency analysis evaluates the
interdependencies among classes to detect modular components
indicative of TPLs [53]. Control flow graph (CFG) and opcode anal-
ysis techniques trace control flow and low-level code structure,
looking for library-specific patterns that facilitate identification of
TPLs [78]. Signature-based detection utilizes a database of known
TPL signatures, matching code segments to signatures to detect
libraries [79]. Heuristic and machine learning tools leverage algo-
rithms to recognize code patterns and adapt based on data [16].

Zhan et al. [80] reviewed tools available for identifying TPLs in
Android apps. Their empirical study compared these tools based on
various characteristics, including effectiveness, accuracy of version
identification, resilience to code obfuscation, and ease of use. In
this study, LibScout [10] outperformed other tools in terms of effec-
tiveness and accurate TPL detection, albeit with higher processing
times. Consequently, we leverage LibScout in our study to help
identify TPLs.

Various prior approaches evaluate the behavior of Android apps.
These approaches can generally be categorized as static and dy-
namic analysis techniques. Static analysis involves examining app
code and other material without executing apps. FlowDroid [8],
IccTA [52], and Amandroid [76] are widely used static analysis
tools. Dynamic taint analysis and network traffic analysis are com-
mon dynamic analysis approaches. Dynamic taint analysis involves
tracking the flow of data through an app during execution to iden-
tify app behavior and data uses [44, 69]. Network traffic analysis
typically employs traffic interception tools such as Mitmproxy to
obtain HTTP(S) communication, decrypt as necessary, and identify
(potentially concerning) transmitted data [36, 47, 50, 66, 83].

Some prior work has sought to determine whether TPLs are
responsible for particular app behavior and data practices. Hao et
al. [37] dynamically instrumented APIs and inspected their call
stack to assess whether a TPL is causing data leaks. Other related
work relies on the same conceptual approach and uses different
tools like Frida to inspect stack traces for API calls of interest [39,
66, 68]. One component of our analysis applies a similar approach
to analyze the integration of SDKs in apps, including details of the
SDKs’ privacy-related settings.

Existing literature has linked SDK configurations with privacy
leaks [27] and urged developer caution when using SDKs [81]. Sur-
veys and interviews with developers reveal a reluctance to modify
default settings for advertising SDKs [59]. Default settings can facili-
tate extensive data collection, potentially undermining user consent
and putting privacy compliance at risk [12].

Closer to our work, Kollnig et al. [50] explored changes to TPLs’
default privacy settings by Android and iOS developers. Their static
analysis focused only on the inspection of the apps’ Manifest files.
They conclude that modifications are infrequent, risking violation of

176

Rodriguez et al.

the GDPR’s data minimization principle. Our research extends this
inquiry with a deep examination of two prominent SDKs’ settings,
defaults, and options alongside developer choices and app privacy
disclosures. We complement static analysis with dynamic analysis.
This approach allows us to monitor for changes made outside of an
app’s Manifest file, including changes at runtime.

We also consider the possibility that SDK settings result in mis-
matches between app behavior and an app’s privacy policy or label.
Prior studies have documented potential discrepancies (and asso-
ciated risks) between these privacy disclosures and app practices,
considering diverse issues including repercussions of SDK inte-
gration [12, 30, 50, 66, 84]. These discrepancies may undermine
transparency-oriented marketplace policies, user trust, and compli-
ance with formal privacy policies [46].

4 Research Method

We combined state-of-the-art static, dynamic, and compliance anal-
ysis techniques into an analysis platform that sheds light on devel-
oper choices regarding the Facebook Android SDK and Facebook
Audience Network SDK’s privacy-related settings. Our static and
dynamic analyses are complementary, with dynamic analysis val-
idating and expanding on observations from static analysis. We
analyzed app code, execution behavior, communications, and meta-
data. Our compliance analysis compares findings from the static
and dynamic analyses with developers’ representations in privacy
labels and privacy policies. To facilitate analysis of a large volume
of apps, we segmented the analysis tasks (as well as the download-
ing and storing of apps) into Docker modules and used RabbitMQ
asynchronous queries to coordinate the modules (see Figure 1).

This analysis provides a detailed view of developer practices
surrounding the Facebook SDKs’ privacy-related settings, identifies
risks, and yields insights into how developers approach the settings.
The following sections describe our analysis platform.

4.1 Download and Storage

Our download module uses an unofficial Google Play Store API [33]
to fetch apps (APKs) and metadata, such as download statistics and
privacy policy URLs. Multiple “workers” operate simultaneously
and independently. Each simulates a real device connection through
an individual Google account. This multi-worker approach allows
us to parallelize the downloading of terabytes of app data, achieving
a peak download speed of six apps per minute (approximately
360MB per minute) using three workers. The module also uses
Selenium to download privacy policies and extracts privacy labels
from apps.

Our storage module acts as a centralized API server, storing and
efficiently serving APKs, privacy policies, and privacy labels to
other components of the analysis platform. This centralized storage
works well, meeting the high-throughput demands of our platform.

4.2 Static Analysis

Our static analysis approach is designed to determine the presence
of the Facebook SDKs in an Android app and collect evidence of how
developers configure certain privacy-related settings. Illustrated in
Figure 1, the static analysis pipeline is structured into two principal
phases: SDK presence identification and settings analysis. This

Privacy Settings of Third-Party Libraries in Android Apps

Proceedings on Privacy Enhancing Technologies 2025(2)

Static Analysis
SDK identification Settings Analysis
Q— LibScout OO . “
SDK
identification Decompile Settings Module
App Check settings Analysis
&> Docker container
& Dynamic Analysis
Download Storage - Q APK file
C_play.google.com Mitmproxy Logs
[31 Q - . 5 Compliance .
m] i Frida f/_) . Anal sis RabbitMQ message
Netstat == g .
(<] ’.‘}?} Background process
Disclosure Analysis Privacy labels
Privacy Labels /}) — Y
F=@=] g =|@= = ii Privacy Practices :=-@ Privacy policy
=|A= ="
=| Privacy Policies Data Extraction £|B_.|J.I.
= =
——M —

Figure 1: Architecture of our analysis platform.

component’s modular design facilitates parallel execution across
multiple machines.

SDK Identification. To identify SDKs in apps, our static analy-
sis pipeline relies on LibScout [10]. LibScout uses TPL profiles to
recognize SDKs in Android apps and is robust to code obfuscation
like identifier renaming and API hiding [80]. LibScout constructs
detailed profiles based on the class hierarchy and method signatures
extracted from an SDK’s compiled .jar or .aar files.

LibScout comes with default profile data for the general Facebook
Android SDK, but developers may choose to include or exclude
modules of this SDK (see Section 2.1). Therefore, we seek to identify
the required Facebook Core SDK submodule, and we also must
identify the Audience Network SDK. To address this, we developed
scripts to crawl relevant SDKs available in the Maven repository
and automate LibScout profile generation.?

To handle the raw unstructured logs that LibScout outputs, we
wrote a parsing script that uses predefined text-processing rules.
Our module logs each relevant SDK identified.

Settings Analysis. If the prior phase suggests an app contains a
relevant SDK, the analysis focuses on evidence of privacy-related
SDK settings in the app’s Manifest file. We use Apktool [6] to ex-
tract and reconstruct the Manifest file from an app’s compiled APK
without data loss. Given the Manifest file, we analyze the XML ele-
ments and attributes to locate any assignment of relevant settings
that developers can modify via this file: Facebook Android SDK’s
AutoLogAppEvents,AutoInit,and AdvertiserIDCollection set-
tings. This analysis reveals modifications as well as instances where
default settings are explicitly or implicitly unchanged.

2While we considered a similar approach to identify versions of SDKs, we were
concerned about reliability given the sometimes-small code differences between
versions. The scripts to crawl TPLs and generate LibScout profiles are available at
https://github.com/DavidRodriguezTorrado/PrivacySDKSettingsAnalyzer

177

4.3 Dynamic Analysis

Our dynamic analysis validates, extends, and occasionally offers a
different perspective from static analysis. We examine apps’ run-
time behavior and monitor traffic. The analysis allows us to verify
the integration of Facebook SDKs and learn versions. It also reveals
adjustments to privacy-related Facebook SDK settings via meth-
ods beyond an app’s Manifest file alone, including code and Meta
Developers Platform. In addition, we capture app communication
and assess whether transmissions stem from a Facebook SDK. The
combination of static and dynamic analysis provides a nuanced
view of developer configuration choices and actual SDK usage.

Our dynamic analysis module utilizes five Redmi 10 devices run-
ning Android API 30 (Android 11) physically located and running
in Spain. This allows parallelization and mitigates potential bot-
tlenecks. Devices are equipped with active Frida servers for app
instrumentation.

Installation and Execution. After the download module acquires
an app, a RabbitMQ message initiates dynamic analysis. The app
is installed on a Redmi 10 device, and background applications are
halted. The app undergoes a 120-second idle phase with no user
interaction followed by a 180-second interactive phase with pseudo-
random events triggered via Android Monkey. Following analysis
of an app, we restore the device configuration to its initial state.

SDK and Version Identification. To identify Facebook SDK integra-
tion and version, we manually inspected the code of both Facebook
SDKs and identified methods (primarily getters) that reveal the SDK
version and configuration values. Frida, a dynamic instrumenta-
tion toolkit, allows real-time interaction with and manipulation
of processes running in user space. Frida enables monitoring and
interception of all methods and calls during execution. Through
injected JavaScript, we dynamically triggered the SDK-identifying
methods, allowing us to capture the actual SDK version. This com-
plements LibScout’s SDK identification—ensuring the reliability of
both identification methods—and reveals SDK version.

https://github.com/DavidRodriguezTorrado/PrivacySDKSettingsAnalyzer

Proceedings on Privacy Enhancing Technologies 2025(2)

Settings Analysis. We use Frida to monitor privacy-related Face-
book SDK settings.® Our use of Frida to infer SDK behavior and
configuration changes at runtime extends our static analysis of
Manifest files. All settings in Table 2 have setter methods, allowing
developers to modify the settings at runtime. All of the Facebook
Android SDK settings also provide getter methods for retrieving
current values.

After confirming the presence of Facebook SDKs, we continu-
ously check for SDK initialization every second to avoid triggering
it prematurely by accessing the privacy settings. Once initializa-
tion is detected, we query the getters every five seconds to capture
initial values and track any subsequent changes. During Frida exe-
cution, we also intercept the setters, recording both previous and
new values to track configuration changes.

Network Traffic Monitoring. During both the idle and interactive
execution phases, we monitor network traffic using Mitmproxy and
Frida. Mitmproxy intercepts HT TP traffic from the app and decrypts
encrypted (HTTPS) traffic. We use Netstat to identify open ports on
the mobile device, ensuring that connections are exclusively made
by the app under analysis. Our Frida scripts manipulate certificate
validation to bypass certificate pinning and ensure Mitmproxy can
decrypt HTTPS traffic. Frida also helps us trace the source of net-
work communications. Our scripts intercept calls to networking
methods (e.g., sockets) and log contextual information, such as
the specific port used and the stack trace. This allows us to iden-
tify the code triggering the communication, including whether the
code is in a third-party library. Leveraging work by Rodriguez et
al. [66], we cross-reference this data with Mitmproxy logs to asso-
ciate communication content with the source app and libraries. This
approach enables us to determine what data is being transmitted by
the applications and which SDKSs are responsible for transmission.

4.4 Disclosure and Compliance Analysis

We compare evidence of apps’ practices from our static and dynamic
analysis against developers’ declared practices in apps’ privacy la-
bels and privacy policies. This comparison can expose potential
mismatches stemming from privacy-relevant Facebook SDK set-
tings and can hint at underlying causes.

Privacy Labels. In 2022, Google implemented privacy labels [48,
49] as an accessible format for users to learn of apps’ privacy prac-
tices [40]. Before the adoption of privacy labels by major app stores,
privacy policies were the primary method for informing users about
these practices.

Meta offers guidance regarding practices that developers should
disclose on privacy labels for apps that integrate the Facebook
SDKs [29]. That guidance depends on the specific SDK and the
custom events configured within the SDKs. For example, develop-
ers can modify automatic event logging (via AutoLogAppEvents)
to limit collection of user data (see Section 2.1). Both the Face-
book Android SDK and the Audience Network SDK collect device
identifiers; however, it is not explicitly stated how adjusting SDK

3The Frida script used to detect Facebook SDK integration and monitor
privacy-related settings is available at https://github.com/DavidRodriguezTorrado/
PrivacySDKSettingsAnalyzer.

178

Rodriguez et al.

settings (e.g., AdvertisingIDCollection) should impact privacy
label disclosures.

We checked if AdID collection is declared in privacy labels and if
AdID is collected and transmitted by apps. If an app integrates the
Facebook Core SDK and the AdvertisingIDCollection setting
is either unmodified or enabled, the privacy label should declare
the collection of AdID. Additionally, we analyzed network traffic
to verify whether the AdID is transmitted by the Facebook SDKs
and cross-referenced these findings with the corresponding pri-
vacy labels to assess the alignment between actual practices and
disclosures.

Privacy Policies. Privacy policies have traditionally been the pri-
mary means of informing users of Android apps’ privacy practices.
Google mandates that all apps have a privacy policy, which must be
accessible from both the Play Store listing and the app itself [42]. We
seek to assess whether app behavior aligns with practices declared
in privacy policies and to identify discrepancies stemming from
integrated Facebook SDKs. We also note apparent inconsistencies
between privacy labels and privacy policies.

Because privacy policies are written in natural language, extrac-
tion of relevant information is challenging. To address this, we
leverage an existing LLM-based privacy policy analysis tool [67].
This tool leverages ChatGPT with a carefully designed prompt that
integrates advanced prompting techniques, iterative refinements,
and context retention strategies to detect privacy practices. The
method demonstrates high accuracy in identifying statements re-
lated to the collection of the AdID identifier, achieving an F1-score
between 0.984 and 1.0 across two datasets of privacy policies anno-
tated by legal experts. This allows for an automated approach that
facilitates analysis of privacy policy disclosures at the large scale of
our study and enables focused manual verification of more critical

findings.

5 Results

To evaluate whether and how developers modify privacy-related
settings of Facebook SDKs in Android apps, we compiled a set of
popular apps from AndroZoo [3], a regularly updated repository
containing metadata for over four-million apps. We focused on apps
with metadata collected in 2023 or later to ensure the timeliness of
our analysis and the availability of apps in the Google Play Store.
We analyzed apps in order of popularity, ultimately downloading
8,848 apps to send through our analysis pipeline (see Figure 1). All
analyzed apps had more than one-million downloads. During static
or dynamic analysis, some apps experienced issues, ranging from
LibScout processing errors to app installation and communication
problems. Installation issues may stem from factors like the rooted
device environment used for dynamic analysis, and execution er-
rors when using tools like Mitmproxy or Frida also affected app
analysis. We ultimately successfully processed 6,203 apps. To en-
sure a snapshot of practices at roughly a single point of time, we
downloaded and analyzed all apps in April and May 2024.

5.1 Facebook SDKs Integration

We used both static and dynamic analysis to identify Facebook
SDKs in apps. This choice allowed for cross-verification. LibScout
and our Frida-based method agreed on the presence or absence of

https://github.com/DavidRodriguezTorrado/PrivacySDKSettingsAnalyzer
https://github.com/DavidRodriguezTorrado/PrivacySDKSettingsAnalyzer

Privacy Settings of Third-Party Libraries in Android Apps

350 Number of Apps

Number of Apps

@
oo 2> I

umousun]

SDK Version

(a) Distribution of Facebook Core SDK versions. Versions prior to
7.0.0 (May 2020) are aggregated.

Number of Apps

Number of Apps

o 8
OSBI
OLLQl
OZLQ.
LSLQI
ool
ool
OLLQ.

00 9>I
091’9

()
0Z9|
1'Z9
0e9
09
0'99|
L99|

3
>
o

umouun
[(]L'Ql

SDK Version

(b) Distribution of Audience Network SDK versions. Versions prior
to 6.0.0 (September 2020) are aggregated.

Figure 2: Distribution of Facebook SDK versions.

the Facebook Core SDK and Audience Network SDK in 97.45% of
the apps analyzed. As a precaution, we excluded 158 apps where
the methods disagreed, leaving 6,045 apps.

The Facebook Core SDK, which manages privacy settings for the
Facebook Android SDK and its components, was integrated into
1,693 apps (28.00%). The Audience Network SDK was found in 2,897
apps (47.92%). Additionally, 1,345 apps (22.25%) integrate both the
Facebook Core SDK and the Audience Network SDK, while 3,245
apps (53.68%) integrate at least one of these SDKs.

We relied on our Frida-based version identification technique
for version identification. While this method faced challenges due
to potential changes in the location or accessibility of version-
indicating methods, those challenges affected only a small number
of apps (four for the Facebook Core SDK and one for the Audience
Network SDK).

Figure 2 illustrates the distribution of versions of the Facebook
Core SDK and the Audience Network SDK within our sample. The
Facebook Core SDK exhibits a broader version distribution, with
many developers retaining earlier versions. We did not observe
any clear relationship between the Facebook Core SDK version and
app popularity in our data. Conversely, the Audience Network SDK
trends towards more recent versions being widely adopted. Our
most observed version (6.16.0) matches the most deployed version
according to the Google Play SDK Index [61].

Based on Google Play Store app categories, Facebook SDKs are
particularly popular in gaming apps in our dataset. For instance,
the Facebook Audience Network SDK is integrated into 85.7% of

179

Proceedings on Privacy Enhancing Technologies 2025(2)

‘Arcade’ apps, 85.5% of ‘Word’ apps, and 82.7% of ‘Puzzle’ apps.
Similarly, the Facebook Core SDK is present in 83.3% of ‘Casino’
apps, 67.7% of ‘Strategy’ apps, and 66.7% of ‘Role Playing’ apps.
Beyond gaming, categories like ‘Music’ (38.3% Core SDK, 72.3%
Audience Network SDK) and ‘Shopping’ (35.5% Core SDK) also have
significant integration rates. Conversely, Facebook SDK integration
rates are lower for ‘Medical’ apps (15.4% Core SDK, 7.7% Audience
Network SDK) and ‘Educational’ apps (7.4% for both SDKs).

5.2 Privacy-Related Settings Configuration

Our analysis indicates that some developers actively modify Face-
book SDK privacy-related settings, which may suggest some level
of awareness of these options. However, our observations also re-
veal instances where settings are configured in ways that do not
result in meaningful changes, which could reflect complexities or
challenges in navigating the available options and understanding
their implications.

AutoLogAppEvents (Facebook Android SDK). A substantial por-
tion of the apps (1,409, 83.23%) that integrate the Facebook Core
SDK explicitly set a value for the automatic event logging option
in the Manifest file. However, nearly two-thirds of these apps (939)
explicitly assigned the default value (enabled) to the setting, and
only one-third of the apps explicitly disabled this feature. The re-
maining 284 apps (16.77%) did not set any value, thus retaining the
default (enabled).

In turn, our dynamic analysis revealed that 1,226 apps (72.42%)
had automatic event logging enabled at runtime. In five apps, dis-
crepancies between static and dynamic analyses were observed,
likely due to adjustments made via the Meta Developers Platform,
which allows for SDK configuration.*

Furthermore, we detected scarce runtime changes to this con-
figuration attribute via code instructions (i.e., setter methods). We
noted 32 apps enabling the setting when it was already enabled,
three apps disabling it when it was already disabled, and one app
disabling it when it was previously enabled. The repeated overrid-
ing of values without effecting changes could imply that developers
face difficulties or ambiguities in understanding the impact of these
configurations at runtime, as noted in prior studies on SDK docu-
mentation and configuration challenges [71, 72]. Section 6 further
explores these issues.

Autolnit (Facebook Android SDK). The documented method to
prevent the automatic initialization of the Facebook Android SDK
is to disable it in the Manifest file [5], but this setting can also be
altered in the app code. Our analysis revealed that 186 apps (10.99%)
employed the Manifest approach to disable auto-initialization. Al-
though this setting is enabled by default, 66 apps explicitly enabled
it via the Manifest.

During dynamic analysis, we used Frida to check the SDK initial-
ization status at one-second intervals. We found that in 194 apps,
the SDK did not initialize at app startup. This suggests that eight

“Note that a direct comparison between the numbers obtained from static and dynamic
analyses is not feasible due to differences in the coverage of each method. While static
analysis includes all analyzed apps, dynamic analysis is limited to apps that can be
executed successfully during the analysis process. Consequently, some apps included
in the static analysis could not be dynamically analyzed, resulting in a mismatch in
the datasets.

Proceedings on Privacy Enhancing Technologies 2025(2)

Rodriguez et al.

Table 3: Summary of analyzed Facebook SDKs’ privacy settings. The third column is the percentage of apps that did not
explicitly assign a value to the setting (default or otherwise) via the Manifest or in code. The fourth column is the percentage
of apps that enabled a privacy-enhanced configuration, determined by cross-referencing changes observed in the Manifest,
getters, and setters. For reasons we discuss in Section 5.2, we exclude MixedAudience.

SDK Setting No value explicitly assigned (%) Privacy-enhanced configuration (%)
Facebook Core AutoLogAppEvents 24.75% 17.90%
Facebook Core Autolnit 84.64% 11.46%
Facebook Core AdvertiserIDCollection 31.25% 6.79%
Facebook Core LimitEventAndDataUsage 100% 0%
Audience Network DataProcessingOptions (LDU) 99.76% 0.14%

apps employed alternative methods to delay initialization beyond
the Manifest settings. Additionally, we observed three instances
where the AutoInit configuration was changed from False to
True at runtime, thereby initiating the SDK. According to the offi-
cial documentation, this setting is intended to allow developers to
obtain user consent before SDK initialization. However, we did not
assess whether these apps implemented such consent mechanisms.
Conversely, one app stopped the SDK by changing its configuration
from True to False at runtime, and 38 set but did not change the
previous (True) value.

AdvertiserIDCollection (Facebook Android SDK). A large number
of apps (1,082, 63.91%) explicitly chose a value for this setting, but
most (958) enabled it, which is the default configuration. Conversely,
only 124 apps disabled this setting explicitly through the Manifest
file.

Our dynamic analysis revealed that 1,406 apps (83.05%) had this
setting enabled at runtime, while only 115 apps (6.79%) had it dis-
abled. The remaining apps could not be executed due to errors
encountered during the dynamic analysis execution. Notably, five
apps appeared to modify this setting at runtime but did not alter the
actual state; three remained enabled, and two remained disabled.
Only two apps effectively changed the state of this setting: one
enabling and one disabling it.

The discrepancy in the number of apps with this setting dis-
abled between the static and dynamic analyses is primarily due to
the fact that some apps could not be successfully executed during
the dynamic analysis. However, in two specific apps, the values
observed in the static and dynamic analyses did not align. This
difference is likely because Frida may not have captured config-
uration changes that occurred very early in the app’s execution.
However, our multi-method approach, combining Manifest inspec-
tion with real-time monitoring via getters, mitigates this issue. By
retrieving the actual runtime value of settings through getters at
regular intervals, we ensure that even early programmatic changes
are eventually captured, providing a comprehensive view of the
app’s true configuration.

LimitEventAndDataUsage (Facebook Android SDK). This setting
can be modified only via code using a provided setter method. This
option is disabled by default (thus not limiting usage of collected
data). We did not observe any apps modifying this setting, poten-
tially because Meta’s official documentation for developers does not
discuss it. Consequently, when retrieving the value of this attribute

180

using its corresponding getter, we observed that all apps had it
disabled (set to False).

DataProcessingOptions (Audience Network SDK). As detailed in
Section 2.2, this setting allows developers to modify data process-
ing to comply with U.S. state privacy regulations by adjusting the
Limited Data Usage (LDU) option.

We discovered seven apps that explicitly disabled LDU mode
(maintaining the default setting), and only four apps enabled it.
Given that 2,897 apps integrate this SDK, the configuration rate
for this privacy-preserving option is notably low at 0.14%. It is
important to note, however, that this setting is designed specifi-
cally for compliance with U.S. regulations, and our experiment was
conducted on apps available in Spain. The versions of these apps
in other regions, particularly the U.S., could differ in this respect,
potentially affecting the observed results.

MixedAudience (Audience Network SDK). We did not observe any
apps setting this option. We did observe changes in previous tests
we ran when developing our infrastructure. This option can be
configured through the Meta Developer Portal and has no getter
for us to monitor. Therefore, the lack of evidence does not establish
that developers are not assigning a value, but only that they are
not doing so via the Manifest or in code.

Summary. Our analysis shows varying levels of developer mod-
ification of Facebook SDK privacy settings. While some settings,
such as AutoLogAppEvents, had their default values overridden in
17.90% of apps, Limi tEventAndDataUsage was not modified in any
app. As shown in Table 3, many apps retained the default configu-
rations, with 88.54% leaving AutoInit unchanged. The percentage
of apps opting for privacy-enhanced configurations remains low
across most settings, such as AdvertiserIDCollection, where
only 6.79% of apps disabled the default data collection setting.

5.3 Data Transfers

General Traffic Analysis. During the dynamic analysis phase,
we successfully intercepted 80,449 unique connections from 4,959
apps, with 3,589 of these apps transmitting a range of user data.
Our traffic inspection revealed several key trends in data transmis-
sion practices. Device model and AdID were the most frequently
transferred types of personal data, with 29,784 and 17,332 transfers,
respectively, suggesting a focus on advertising and device-specific

Privacy Settings of Third-Party Libraries in Android Apps

optimizations. Conversely, other data such as email addresses had
significantly lower transfer frequencies.

Location data transfer, though less frequent, was notable in apps
requiring location-based services. Specifically, coarse device loca-
tion data appeared in 372 transfers, while precise location data was
present in 264 transfers. WiFi-related data, including router identi-
fiers such as BSSID and MAC address, was also documented, indicat-
ing that some apps collect detailed network connection information,
potentially for geolocation services and network optimization.

Our analysis revealed large disparities in the percentage of apps
transmitting user data across different categories. For instance, only
16.66% (54) of the apps in the Educational category transmitted user
data. In contrast, 90.32% (93) of the apps in the Shopping category
sent user data.

Utilizing the IPInfo service [15, 45], our dynamic analysis geolo-
cated the IP addresses of the servers to which data was transmitted.
Most of the traffic, which originated in Spain, was directed to servers
located within the same country. The United States, Russia, and
Singapore emerged as the second, fourth, and fifth most frequent
destinations, respectively, underscoring significant cross-border
data flows, particularly to non-EU countries. Data was transmitted
to servers in a total of 40 countries, including geographically distant
nations such as Oman, Malaysia, South Africa, Taiwan, Japan, and
South Korea.

Facebook SDK Traffic Analysis. Cross-referencing Mitmproxy
and Frida logs enabled us to extract stack traces from 86.46% of
the connections that contained known user data, helping us to
pinpoint the responsible libraries. Among these, Facebook SDKs
were identified as one of the top sources of off-device personal data
transmission, with 917 connections containing personal data across
518 apps, ranking second after Google’s libraries and surpassing
Unity3d.

Among all data types transferred by Facebook’s SDKs, AdID was
the most prevalent (54.03%), followed by device model (45.89%) and
the WiFi router’s BSSID (0.08%), as illustrated in Figure 3. Both the
Facebook Core SDK and Audience Network SDK transmitted AdID
and device model data, but BSSID transmission was observed exclu-
sively in apps integrating the Facebook Core SDK. While we cannot
determine exactly how Facebook uses this data, it could be em-
ployed for purposes such as profiling users, delivering personalized
ads, and measuring ad performance.

Facebook’s SDKs appear to transmit fewer types of data com-
pared to other top SDKs. This difference could be due to our limita-
tions in detecting certain data types within network connections
(e.g., navigation and shopping history, which the Audience Network
SDK’s official documentation suggests are collected). Despite these
limitations, the data that is transmitted is consistent with a business
model that heavily relies on user data for advertising and analytics.

Geographic analysis of data transfers shows concentration of
data flows within the EU, potentially due to GDPR regulations. The
majority of the data sent by the Facebook SDKs is directed to servers
located in Spain (99.58%)—the location of our test devices—and a
smaller fraction goes to Portugal (0.42%). The fact that most con-
nections remained within the country of origin suggests a localized
approach to data handling.

181

Proceedings on Privacy Enhancing Technologies 2025(2)

Switzerland —
Ttaly—

Wlrivcerint

— Device_location
— Device_locatigpad®ise

com.google.android

com.google.android.gms

7
/

$

| I .

Weuene

— Router_Wifi-MAC

lmm google g
=
Wl com flurry g — Router Wifl_85SI5)

z — Router_Wifi8S8Tb_Close
. com:adjust.sdk Google_Ad_ID
== comistartapp

== com.fyber

Figure 3: Personal data flows from the top ten third-party
libraries to various countries. Facebook SDKSs’ transfers are
highlighted in blue.

5.4 Disclosure Analysis

This section focuses on analyzing compliance by examining the
handling of the AdID in apps that integrate the Facebook Core
SDK, which regulates the automatic collection of this data through
the AdvertiserIDCollection privacy setting. Our approach cor-
relates three elements: the AdvertiserIDCollection setting in
the SDK, the actual transmission of the AdID over the network
observed through dynamic analysis, and the disclosures related to
device identifiers found in privacy labels and policies. This analysis
allows us to identify potential discrepancies and compliance issues
specifically related to the collection and transmission of the AdID.

Privacy Label Analysis. We assess the congruence between the
declared behaviors in privacy labels and apps’ actual data collection
practices regarding the AdID. The Google Play Store mandates that
apps’ privacy labels declare off-device data transmission, including
by SDKs: “This includes user data transmitted off device from your
app by libraries and/or SDKs used in your app, irrespective of whether
data is transmitted to you or a third-party server” [40]. Facebook
instructs developers to disclose the collection of “Device or other
IDs” when integrating their SDKs [29].

For apps integrating the Facebook Core SDK, we collected devel-
oper choices for the AdvertiserIDCollection setting in the app’s
Manifest file. We also examined evidence of the setting’s value from
our dynamic analysis. Given those details, we scrutinized privacy
labels to identify discrepancies regarding AdID collection practices
and to draw insights.

For analytical clarity, we define three distinct sets within our
study: L, S, and D, corresponding to labels in Google Play Store,
Static analysis, and Dynamic analysis, respectively:

e L comprises privacy labels I, for each app a, where [, =
1 signifies a label indicating AdID collection, and I, = 0
otherwise. Thus, L(a) represents the label of app a.

Proceedings on Privacy Enhancing Technologies 2025(2)

o S is the set of apps assessed via static analysis, with a func-
tion M : S — {-1,0, 1} mapping each app s based on the
Manifest’s AdID setting: enabled (1), unchanged (0), or dis-
abled (-1). Hence, M(a) represents the AdID setting value of
app a in the Manifest.

e D represents apps evaluated through dynamic analysis, with
afunction C : D — {0, 1} determining the operational status
of AdID collection: enabled (1) or disabled (0). Therefore,
C(a) represents the runtime value of AdID collection setting
for app a.

Each app a belongs to the set A = L NS N D, as comprising
apps that successfully underwent static and dynamic analysis and
where the status of the AdvertiserIDCollection setting for the
Facebook Core SDK was ascertainable.

We define fuci(L(a), M(a),C(a)) and faci(L(a), M(a),C(a)), re-
lated to the compliance status of each app a, where f = 0 denotes
potential non-compliance. For brevity, we omit the explicit refer-
ence to each app a in subsequent expressions, using the simplified
notation ficr(L, M, C) and faci(L, M, C):

(1) Function fyci(L, M, C): This function flags instances of po-
tentially unaware non-compliance (fuci(L, M, C) = 0), where
a developer leaves the default AdID collection setting, which
allows collection, despite not declaring this collection in the
privacy label. It is defined as:

0 fL=0AM=0AC=1
foer(L, M, C) _{ 1 otherwise

This condition may indicate a developer’s lack of awareness
of the Facebook Android SDK’s practices and settings.

(2) Function faci(L, M, C): This function identifies cases of
non-compliance (faci(L, M, C) = 0) where we have evidence
of a developer choice to enable AdID collection—explicitly
choosing a setting option in the Manifest file—without dis-
closure in the privacy label. It is defined as:

0 fL=0AM=1AC=1

fac(L, M, C) :{ 1 otherwise

The proportions of apps exhibiting potentially unaware and
aware non-compliance are calculated as:

(1) Portion of Potentially Unaware Compliance Issues
(Pucr): The fraction of apps where the developer did not
explicitly change the default AdvertiserIDCollection set-
ting in the Manifest that present a potential compliance issue.
NAdID default represents the total number of apps where we
observed no evidence that the setting was changed in the
Manifest file or at runtime.

Yiaea fua(L, M, C)
N s ®
AdID default

Among apps that did not alter the default data collection
configuration (518 in total), 155 failed to report that AdID
was collected. This accounts for 29.25% of the apps in this
group (Pycr), suggesting that developers are potentially not
compliant, and possibly unaware of it.

(2) Portion of Potentially Aware Compliance Issues (Pacr):
The fraction of apps where developers explicitly assigned

Pycr =

182

Rodriguez et al.

AdvertiserIDCollection to True in the Manifest that pre-
sent a potential compliance issue. NadD explicitly enabled refers
to the total number of apps where the developers explicitly
enabled collection.

Pr = Yaea faci(L, M, C)
ACL = o

Zucanclt)
AdID explicitly enabled

For 865 apps, we observed that developers enabled collection
of AdID explicitly by setting AdvertiserIDCollection to
True in the app’s Manifest, and this matches the setting we
observed in our dynamic analysis of the app. Of these apps,
240 did not disclose this collection in their privacy labels.
This equates to Pacy = 27.75%.

These figures highlight a substantial potential compliance is-
sue: 399 out of 1,388 apps (28.75%) have AdvertiserIDCollection
enabled—whether explicitly set or left as the default—but fail to
disclose this in their privacy labels. When considering all 1,693
apps that integrate the Facebook Core SDK, this non-disclosure
rate accounts for 23.57% of all apps. Furthermore, 9.16% of all Core
SDK-integrating apps and 38.85% of potentially non-compliant apps
have compliance issues that may stem from default settings.

Privacy Policy Analysis. We extended our compliance verification
to privacy policies, employing the method described in Section 4.4.
This method evaluates whether privacy policies disclose the collec-
tion of both device IDs and IP addresses together, as these two data
types were annotated together in the ground truth dataset used for
validation. In contrast, privacy labels treat device IDs and IP ad-
dresses as distinct categories, making a direct comparison between
privacy policies and labels challenging. Despite these differences in
how data types are categorized, our methodology effectively identi-
fies discrepancies in compliance. Specifically, our analysis examined
instances where privacy policies did not declare the collection of
identifiers or IP addresses while app settings explicitly enabled
AdID collection via the Manifest. Our findings reveal that 30 of
the 865 apps (3.47%) that enabled the AdvertiserIDCollection in
the Manifest did not declare this practice in their privacy policies.
Moreover, through our network traffic analysis, we observed that
half of these apps (15) transmitted the AdID over the network.

Additionally, we investigated the apps where developers did not
attempt to configure the AdvertiserIDCollection setting. Out of
518 such apps, we successfully analyzed the privacy policies of 374
apps, finding that 28 apps (7.49%) failed to declare AdID collection.
Across all 1,388 apps with AdID collection enabled—either by de-
fault or explicitly—we analyzed 1,037 privacy policies and identified
58 apps (5.59%) that did not disclose AdID collection. The remaining
privacy policies could not be retrieved or were inaccessible via the
URLs provided in the Google Play Store.

Labels and Policies Comparison. Due to the differing data types
covered under privacy labels and policies, direct comparison is
challenging. However, inconsistencies are clear when privacy labels
declare the collection of device and other IDs which are absent from
the corresponding privacy policies. Our examination identified 445
privacy policies that explicitly stated no collection of device IDs
or IP addresses, yet 182 corresponding privacy labels indicated
otherwise. Out of the 445 apps whose privacy policies stated no

Privacy Settings of Third-Party Libraries in Android Apps

collection of such data, we observed 120 (26.97%) apps sending the
AdID over the network. These discrepancies affirm the findings of
previous studies, underscoring persistent misalignments between
declared privacy labels, policies [46], and app behavior.

5.5 Children’s Apps Analysis

Apps that may be used by children represent a particularly sensitive
subset of the app ecosystem. Frameworks such as the Pan European
Game Information (PEGI) [60] system in Europe and the Entertain-
ment Software Rating Board (ESRB) [9] in the United States provide
widely adopted age-appropriateness ratings for games and apps,
which are used by major platforms like the Google Play Store [35].

For apps to be listed in Google Play’s family category, the “Google
Play Families Policy” [41] sets comprehensive guidelines on app
content and data practices, including restrictions on transmitting
sensitive personal information. The policy also mandates only ad-
vertising SDKs certified under the Families Self-Certified Ads SDK
Program [34]. The Audience Network SDK is not certified at the
time of writing.

We consider apps that meet all of the following three criteria: 1)
have a “PEGI 3” rating (least stringent), 2) are “Teacher Approved”
on Google Play, and 3) have committed to the “Play Families Policy”
Our evaluation of 73 apps that met these criteria did not uncover
issues related to the integration of Facebook SDKs: we did not ob-
serve any evaluated apps that integrated the Audience Network
SDK, transmitted the AdID or device locations, or had observed
inaccuracies in privacy labels. However, we identified four apps
that integrated the Facebook Core SDK. Of these, two had the set-
tings AutoLogAppEventsEnabled and AdvertiserIDCollection
enabled, one had these settings disabled, and for one app, this in-
formation could not be retrieved through dynamic analysis. While
the integration of the Facebook Core SDK itself may not violate the
Play Families Policy, enabling these settings could conflict with the
data minimization principles mandated by COPPA and GDPR.

We conducted a broader analysis on 779 apps that declared ad-
herence to the Play Families Policy, without considering additional
criteria such as PEGI ratings or the Teacher Approved badge. This
analysis revealed several potential compliance issues: three apps
were found to transmit the AdID, possibly violating policy restric-
tions on transmitting sensitive data for children or users of un-
known age. Of these, one app did not disclose this data collection
in its privacy label, and the other two failed to declare it in their
privacy policies. Additionally, six apps integrated the Audience
Network SDK, which may not be permitted under the Play Families
policy. Seventeen apps integrated the Facebook Core SDK, with
11 of these having the AutoLogAppEventsEnabled setting enabled
and 10 having the AdvertiserIDCollection setting enabled.

Previous research has consistently highlighted significant COPPA
compliance concerns for potentially child-directed apps. Studies
found that over half of the analyzed Android apps targeting children
potentially violated COPPA due to data collection practices and the
lack of consent mechanisms [50, 65]. Compliance challenges were
also observed within Google’s family categories, including apps in
the “Designed for Families” program, a precursor to the current
Play Families Policy where similar privacy violations were identi-
fied [84]. A contributor to these violations was the integration of

183

Proceedings on Privacy Enhancing Technologies 2025(2)

third-party SDKs, some of which were explicitly prohibited in child-
directed apps due to their data handling practices [65]. Furthermore,
non-compliance was often linked to developers’ insufficient knowl-
edge and misconfiguration of privacy settings within SDKs [4, 50],
issues that align with the findings of our analysis.

Our findings indicate reduced integration of Facebook SDKs in
both the more restrictive subset of 73 apps and the broader set of
779 apps. This suggests potentially improved privacy practices for
apps matching the criteria for these groups, particularly regard-
ing the use of third-party SDKs. However, it remains speculative
whether this reduction can be attributed solely to policies such
as the Play Families Policy. Other factors, including heightened
scrutiny, regulatory pressures, and evolving industry standards,
likely contribute to these results. Furthermore, significant possible
gaps persist in compliance with COPPA and GDPR, particularly in
the configuration of privacy settings.

6 Discussion

This section draws on qualitative studies of developers to explore
their perspectives on third-party SDK and library integration, high-
lighting developer motivations, configuration practices, awareness
of privacy implications, and challenges faced in managing privacy
compliance. Our analysis primarily focuses on the privacy practices
of mobile apps and integrated third-party libraries. An understand-
ing of developers’ perspectives and challenges provides crucial
context for interpreting our findings. We discuss these perspectives
and challenges before turning to mitigation approaches.

6.1 Developers’ Perspectives and Challenges

SDK Selection. In an ecosystem dominated by free applications,
developers often view advertising providers as a "necessary evil"
essential for sustaining their business [25]. Research suggests that
developers’ choice of ad networks, typically integrated into apps via
SDKs, is influenced by recommendations from colleagues, informa-
tion obtained from forums, and trust in large organizations such as
Google’s AdMob [59]. Additionally, some developers explicitly re-
port relying on major organizations under the assumption that such
entities inherently comply with legal standards, further reducing
their concerns about privacy risks [4]. These findings align with our
observations, as nearly half (47.92%) of the top-downloaded apps
integrate Facebook’s Audience Network SDK, reflecting a strong
preference for established ad networks.

Challenges in SDK Integration. Despite their reliance on these
SDKs, developers frequently encounter significant challenges dur-
ing the integration process. A key frustration stems from the frag-
mented and inconsistent nature of privacy-related documentation
provided by SDK vendors. This documentation is often written in
dense legal language, scattered across multiple sources, or presented
with inconsistent terminology and formatting, making it difficult
for developers to find and correctly implement essential privacy
configurations [43, 72]. Our examination of Meta’s documentation
highlighted this challenge: privacy-related guidance was often scat-
tered and not centralized. Critical information, such as privacy label
disclosures for Facebook SDKs in Android apps, was frequently
buried in sources like blog posts [29]. This decentralization creates

Proceedings on Privacy Enhancing Technologies 2025(2)

difficulties for developers in understanding and correctly configur-
ing SDKs, particularly for managing privacy settings and accurately
disclosing privacy practices. The AutoLogAppEvents setting, which
affects whether apps automatically send data to Meta, illustrates
this issue: we had difficulty determining the exact types of data
transmitted, and uncertainty further complicates developers’ efforts
to provide clear and accurate privacy disclosures.

Privacy Settings in SDKs. Many developers are unaware of the
privacy settings provided by third-party SDKs, leading to incorrect
configurations and potential compliance issues [4]. Compounding
these challenges, ad networks frequently configure their SDKs with
privacy-unfriendly default settings that maximize data collection
and targeted advertising [59], as supported by our examination of
Facebook’s SDKs. These defaults, often specified in documentation
and sample code, may implicitly encourage developers, particularly
those lacking in-depth privacy knowledge, to adopt configurations
that expand data collection, such as personalized ads or broad data-
sharing permissions [72]. Developers have expressed a reluctance
to modify default settings, which could contribute to practices that
may conflict with users’ privacy expectations [59], especially given
issues surrounding documentation clarity and accessibility.

Privacy Compliance Challenges. The complexity and opacity of
third-party SDKs and libraries pose further challenges in terms
of privacy compliance. Developers frequently report difficulties in
understanding the full extent of data collection practices by these
libraries, as their behavior is often unpredictable or insufficiently
documented [11, 25, 71]. This lack of transparency complicates de-
velopers’ efforts to manage privacy settings effectively and comply
with legal frameworks such as GDPR, COPPA, and CCPA [4]. The
knowledge gap regarding the operation of these SDKs also impacts
developers’ ability to disclose app behaviors accurately in privacy
policies, potentially leading to non-compliance. Smaller develop-
ment teams or independent developers, in particular, often lack
the technical expertise or resources to manage privacy compliance
effectively, relying instead on external services, legal templates, or
app store guidance [4, 62]. Additionally, the delegation of privacy
responsibilities to legal or specialized teams, rather than integrat-
ing privacy considerations throughout the development process,
further exacerbates compliance challenges [43].

The challenges developers face in complying with privacy re-
quirements when integrating third-party SDKs and libraries are
widespread and multifaceted. Studies by Li et al. [54] and Tahaei
et al. [73] show that developers perceive privacy compliance as
burdensome, offering minimal personal benefit. This leads many
developers to adopt a reactive approach, responding primarily to
external pressures, such as operating system updates or app store
policies, rather than proactively integrating privacy considerations
from the outset [54]. This reactive mindset is further complicated
by the need to balance functionality with stringent privacy require-
ments, a struggle that frequently arises when developers draft or
update privacy policies [73].

Developers’ Approaches to Privacy Management. A significant
contributor to this reactive stance is the lack of robust tools and
reliable support systems for implementing privacy-preserving mea-
sures. Developers often rely on fragmented and informal resources,

184

Rodriguez et al.

which exacerbates inconsistencies in compliance efforts [43, 72].
Horstmann et al. [43] emphasize the absence of standardized proce-
dures for verifying privacy implementations, drawing parallels to
the more structured guidance found in the security domain. The call
for practical, accessible guidelines is echoed by Ekambaranathan
et al. [25] and Balebako et al. [11], who argue that current data
protection frameworks and SDK documentation are insufficiently
clear, leaving developers without the necessary support to make
informed decisions.

Moreover, developers’ limited engagement in technical testing
of SDKs further complicates privacy compliance. Alomar et al. [4]
highlight that only a small fraction of developers actively test data
collection practices to ensure they align with legal standards, re-
vealing a critical gap in proactive privacy management. This gap
reflects a fragmented accountability structure, with developers po-
tentially caught between legal obligations and inadequate tools
or guidance. Collectively, these findings underscore a fragmented
accountability structure and a significant need for enhanced doc-
umentation, comprehensive tools, and better-integrated support
systems to empower developers.

6.2 Mitigation Approaches

The prior section discusses research that suggests developer re-
luctance to change settings, challenges in doing so, and broader
compliance difficulties. In combination with that research, our re-
sults offer additional evidence that SDK privacy-related settings
and their defaults may be contributing to real-world privacy issues.
While developers are responsible for their apps, interventions by
third-party SDK providers and others may reduce the likelihood of
these issues.

One straightforward mitigation strategy is for SDK providers to
take a privacy-by-design approach and choose more cautious de-
fault privacy-related settings. The trade-offs of this choice depend
on the potential privacy harms, benefits of the different settings
options to various parties, and developer appreciation of and will-
ingness to change privacy-related settings. While the appropriate
choice may depend on the circumstances, we note that arguments
that developers can easily switch to more conservative privacy set-
tings might also suggest that developers could easily switch from
more conservative defaults to alternatives.

Given the numerous challenges identified in integrating and
managing third-party SDKs, addressing gaps in documentation
and support mechanisms could also offer meaningful benefits. SDK
providers should strive not only to make information related to the
privacy and data protection aspects of SDK integration easy to find
but also to make critical information hard to miss. Evaluation of
the efficacy of SDK provider documentation, guidance, and other
support mechanisms with respect to privacy-related settings could
suggest further areas for improvement.

Marketplaces also could assist. Beyond implementing privacy
compliance mechanisms and checks that address SDK settings risks,
marketplaces could mandate that providers consolidate SDK pri-
vacy information. The Google Play SDK Index [61] aggregates
information about popular SDKs, including versions and required
permissions. The index offers a link to each SDK’s privacy details,
but these links are sometimes missing or outdated. With privacy

Privacy Settings of Third-Party Libraries in Android Apps

manifests [17] in the App Store, Apple offers a more direct solution
by mandating that SDKs and apps include detailed files outlining
their privacy practices. Unlike more fragile links, Apple proposes in-
tegrating privacy manifests directly into the SDK’s metadata. This
approach provides a centralized and structured format, making
it easier for developers to understand what data is collected and
shared. The approach also increases the potential for automated
compliance assessment.

While Apple’s manifests in particular could potentially make
privacy information more readily accessible, they do not guarantee
full transparency or accuracy. These manifests rely on the SDK
providers to self-report data practices. Additionally, neither Apple
nor Google’s approach fully prevents developers from overlook-
ing critical privacy information, highlighting a need for enhanced
warnings or guidance to ensure developers recognize and disclose
necessary privacy details in their labels and policies. Future work
could empirically evaluate the effectiveness of Apple and Google’s
approaches in fostering compliance.

7 Limitations

Construct Validity. Our analysis leverages the AndroZoo dataset,
which aggregates a comprehensive collection of apps from various
sources and is consistently updated over time. AndroZoo collects
APK files primarily from the Google Play Store and other third-
party marketplaces using automated crawlers. These APKs are
selected based on their availability at the time of crawling, without
specific criteria for functionality or popularity. This non-selective
approach ensures a broad range of apps are archived, but it may
not perfectly reflect the current distribution in the Google Play
Store. To ensure relevance, we focused on apps with high download
numbers, enabling us to analyze privacy practices in apps with
significant user bases. While this approach might not capture the
full diversity of the Play Store, it allows us to derive meaningful
insights from widely used apps.

Internal Validity. Our study confronts challenges to internal va-
lidity mainly due to potential obfuscation in the apps analyzed,
which could obscure SDK behaviors and impact result accuracy.
To mitigate this, we utilized LibScout, known for its resilience to
obfuscation. Additionally, our methods based on Frida have been
validated against LibScout, demonstrating comparable performance
in detecting Facebook SDKs. This consistency increases confidence
in our analytical approach and the reliability of our findings.

Our Frida-based methods aim to retrieve values representing
privacy-related settings, which can be altered by various means.
We conducted a rigorous manual review of the Facebook Core SDK
source code to ensure that the variable’s value that we retrieve re-
flects any alterations via the Manifest, code, or the Meta Developers
Platform. Although we cannot explicitly inspect changes through
the Meta Developers Platform, we can infer them from misalign-
ment between static and dynamic analyses. This gives us greater
confidence in these results over simply observing settings in the
Manifest file.

Code injection with Frida during dynamic analysis is initiated
in spawn mode, ensuring that the app is launched with Frida at-
tached, which helps minimize the possibility of unobserved be-
havior. While rare instances exist where Frida may not capture

185

Proceedings on Privacy Enhancing Technologies 2025(2)

a setter at runtime, we mitigate this by cross-referencing multi-
ple sources of information: the initial Manifest configuration, the
attribute’s value at startup retrieved via getters as available, and
continuous retrieval of these values every five seconds during the
app’s execution. This multi-faceted approach allows us to maintain
a comprehensive understanding of the app’s privacy settings and
minimizes the likelihood of undetected configuration changes.

External Validity. Our study focuses on two popular Facebook
SDKs in relatively popular Android apps. Our findings may not
generalize to other SDKs, apps, and mobile platforms. Nevertheless,
the study yields insights into developer practices when integrating
two of the most popular SDKs into apps with many downloads.

8 Conclusions

We conducted a detailed examination of privacy-related settings
in Android apps that use two popular Facebook SDKs. Our dy-
namic analysis, which evaluates SDKs’ actual runtime configuration
values, exposed discrepancies between settings choices declared
statically in a Manifest file and settings values in practice. Rely-
ing solely on Manifest analysis would lead to inaccurate estimates
of apps modifying privacy-related settings, as key configurations
like AutoLogAppEvents and AdvertiserIDCollection can also
be changed through code. Furthermore, the Audience Network
SDK’s settings and the LimitEventAndDataUsage setting cannot
be modified via the Manifest, meaning they would go entirely unde-
tected without additional analysis. By accessing getters, we deter-
mined actual runtime values, and by capturing setters, we identified
changes made during app execution—insights that Manifest analy-
sis alone would miss.

Our findings indicate that developers often fail to accurately
reflect SDK-related practices in privacy disclosures—potentially
driven in part by default settings—leading to discrepancies between
declared and actual practices. One option to address this is for
SDK providers to choose more conservative default SDK settings
choices. SDK providers should also ensure that documentation,
guidance, and tools effectively help developers configure privacy-
related settings appropriately. App marketplaces can aggregate SDK
privacy details and guidelines, ensuring easier access to accurate
information. Additionally, marketplaces could implement privacy
compliance mechanisms and checks that address SDK settings risks.

Future work could extend this study by including a broader selec-
tion of Android apps and exploring additional popular SDKs. The
current study focuses on two Facebook SDKs, and analyzing other
SDKs would provide insights not only into the privacy practices and
behaviors of the SDKs but also into how developers configure and
manage the privacy settings of these SDKs. Expanding to a more
diverse set of apps would allow us to explore how different types
of apps integrate and utilize SDKs, offering a more comprehensive
view of app developer privacy management practices.

Acknowledgments

The work of Jose M. Del Alamo was partially supported by the
CEDAR project, funded by the Horizon Europe research program
(2021-2027) under grant agreement no. 101135577, and the work
of David Rodriguez was partially supported by the PRESECREL
project, funded by the Plan Estatal de Investigacion Cientifica y

Proceedings on Privacy Enhancing Technologies 2025(2)

Técnica y de Innovacioén 2017-2020 (Ministerio de Ciencia e Investi-
gacién (Spain) - MCIN/AEI/10.13039/501100011033) under Grant
agreement PID20211245020B-C43. This research has also been
partially supported by the National Science Foundation under its
Secure and Trustworthy Computing (SaTC) Program (grant CNS-
1914486). The authors would like to thank U.S. Federal Trade Com-
mission staff for feedback regarding this research.

References

(1]

(2]

—
—

[12]

[13]

[14

[15

[16]

[17]

A. Akash, S. Chithra, P. Vasuki, T. Shanmughapriya, and N. M. MG. 2022. Towards
Privacy for Android Mobile Applications. In 2022 International Conference on
Futuristic Technologies (INCOFT). IEEE, 1-8.

Ar Akash, S Chithra, P Vasuki, T Shanmughapriya, and Nivas Muthu MG. 2022.
Towards Privacy for Android Mobile Applications. In 2022 International Confer-
ence on Futuristic Technologies (INCOFT). IEEE, 1-8.

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468-471. https://doi.org/
10.1145/2901739.2903508

Noura Alomar and Serge Egelman. 2022. Developers Say the Darnedest Things:
Privacy Compliance Processes Followed by Developers of Child-Directed Apps. ,
250-273 pages. https://doi.org/10.56553/popets-2022-0108

Android Developers. 2024. App manifest overview. https://developer.android.
com/guide/topics/manifest/manifest-intro. Accessed: 03 October 2024.
Apktool. n.d.. Apktool Official Website. Retrieved May 31, 2024 from https:
//apktool.org/

AppBrain. 2024. The list of top Ad networks for Android. https://www.appbrain.
com/stats/libraries/ad-networks

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, and P. McDaniel. 2014.
Flowdroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. ACM SIGPLAN Notices 49, 6 (2014), 259-269.
Entertainment Software Association. n.d.. Entertainment Software Rating Board.
Retrieved May 31, 2024 from https://www.esrb.org/

M. Backes, S. Bugiel, and E. Derr. 2016. Reliable Third-Party Library Detection in
Android and Its Security Applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. 356-367.

Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason Hong, and Lorrie Faith Cranor.
2014. The Privacy and Security Behaviors of Smartphone App Developers. In
Workshop on Usable Security. Citeseer, Internet Society, 1-10. https://doi.org/10.
14722/usec.2014.23006

Y. Chen, M. Zha, N. Zhang, D. Xu, Q. Zhao, X. Feng, K. Yuan, F. Suya, Y. Tian,
K. Chen, X. Wang, and W. Zou. 2019. Demystifying Hidden Privacy Settings
in Mobile Apps. In 2019 IEEE Symposium on Security and Privacy (SP). 570-586.
https://doi.org/10.1109/SP.2019.00054

H. Cheng, G. Hu, J. Liu, Z. Kang, C. Pan, and Z. Zhang. 2022. Detecting Third-
Party Libraries for Privacy Leakage in Packed Android Applications. In 2022
China Automation Congress (CAC). IEEE, 5053-5058.

Hichang Cho, Sungjong Roh, and Byungho Park. 2019. Of promoting networking
and protecting privacy: effects of defaults and regulatory focus on social media
users’ preference settings. Computers in Human Behavior 101 (2019), 1-13.
Miguel Cozar, David Rodriguez, Jose M. Del Alamo, and Danny Guaman. 2022. Re-
liability of IP Geolocation Services for Assessing the Compliance of International
Data Transfers. In 2022 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW). 181-185. https://doi.org/10.1109/EuroSPW55150.2022.00024
H. Cui, G. Meng, Y. Li, Y. Li, Y. Zhang, J. Sun, D. Zhu, and W. Wang. 2022. Lib-
Hunter: An Unsupervised Approach for Third-Party Library Detection without
Prior Knowledge. In 2022 IEEE Symposium on Computers and Communications
(ISCC). 1-7.

Apple Developer Documentation. n.d.. Adding Privacy Manifests. Retrieved
May 31, 2024 from https://developer.apple.com/documentation/bundleresources/
privacy_manifest_files/adding_a_privacy_manifest_to_your_app_or_third-
party_sdk

Meta Developer Documentation. n.d.. Audience Network SDK for Android.
Retrieved May 30, 2024 from https://developers.facebook.com/docs/audience-
network/setting-up/platform- setup/android/add-sdk

Meta Developer Documentation. n.d.. Facebook SDK for Android. Retrieved
May 30, 2024 from https://developers.facebook.com/docs/android/

Meta Developer Documentation. n.d.. Meta App Events. Retrieved Retrieved
May 30, 2024 from https://developers.facebook.com/docs/app-events/getting-
started-app-events-android/

Meta Developer Documentation. n.d.. Meta Audience Network for Android.
Retrieved Retrieved May 30, 2024 from https://developers.facebook.com/docs/
audience-network/setting-up/platform-setup/android/add-sdk

186

[22

[23

[24]

[25

[26

[27

[28

[29]

(30]

(31

&
2

[38

(39]

[40

[41

[42

"~
&

(44

Rodriguez et al.

Meta Developer Documentation. n.d.. Meta Data Processing Options for US
Users. Retrieved Retrieved May 30, 2024 from https://developers.facebook.com/
docs/audience-network/optimization/best-practices/data- processing-options
Meta Developer Documentation. n.d.. Mixed Audience & COPPA. Retrieved
Retrieved May 30, 2024 from https://developers.facebook.com/docs/audience-
network/optimization/best-practices/coppa

Meta Developer Documentation. n.d.. Official Documentation.
Retrieved May 30, 2024 from https://developers.facebook.com/docs/
Anirudh Ekambaranathan, Jun Zhao, and Max Van Kleek. 2021. “Money makes
the world go around”: Identifying Barriers to Better Privacy in Children’s Apps
From Developers’ Perspectives. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 46, 15 pages. https:
//doi.org/10.1145/3411764.3445599

Inc. Facebook. 2024. Facebook SDK for Android - Class FacebookSdk. https:
//developers.facebook.com/docs/reference/android/current/class/FacebookSdk/
Accessed: 2024-09-22.

A. Feal, J. Gamba,]J. Tapiador, P. Wijesekera, J. Reardon, S. Egelman, and N.
Vallina-Rodriguez. 2021. Don’t Accept Candy from Strangers: An Analysis of
Third-Party Mobile SDKs. In Data Protection and Privacy: Data Protection and
Artificial Intelligence. Vol. 13. 1.

Meta for Developers Blog. 2017. Optimizing and Improving the Android SDK.
Retrieved Retrieved May 30, 2024 from https://developers.facebook.com/blog/
post/2017/09/26/android-sdk-optimization/

Retrieved

Meta for Developers Blog. n.d.. Resources for Completing App
Store Data Practice Questionnaires for Apps That Include the Face-
book or Audience Network SDK. Retrieved May 31, 2024 from

https://developers.facebook.com/blog/post/2022/07/18/resources-for-
completing-app- store-data-practice-questionnaires-apps-facebook-or-
audience-network-sdk/

Jack Gardner, Yuanyuan Feng, Kayla Reiman, Zhi Lin, Akshath Jain, and Norman
Sadeh. 2022. Helping Mobile Application Developers Create Accurate Privacy
Labels. In 2022 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). 212-230. https://doi.org/10.1109/EuroSPW55150.2022.00028
GDPR 2016. Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data (General Data
Protection Regulation). https://eur-lex.europa.eu/eli/reg/2016/679/0j Accessed:
2024-09-22.

GitHub. n.d.. Facebook Android SDK. Retrieved Retrieved May 30, 2024 from
https://github.com/facebook/facebook-android-sdk

GitHub. n.d.. Google Play Unofficial Python API. Retrieved May 31, 2024 from
https://github.com/marty0678/googleplay-api/

Google Play Console Help. 2024. Participate in the Families Self-Certified Ads SDK
Program. https://support.google.com/googleplay/android-developer/answer/
12955712 Accessed: 2024-09-22.

Google Play Help. 2024. Apps and Games Content Ratings on Google Play.
https://support.google.com/googleplay/answer/6209544 Accessed: 2024-09-22.
D. S. Guaman, D. Rodriguez, J. M. del Alamo, and J. Such. 2023. Automated GDPR
Compliance Assessment for Cross-Border Personal Data Transfers in Android
Applications. Computers & Security 130 (2023), 103262.

X. Hao, D. Ma, and H. Liang. 2022. Detection and Privacy Leakage Analysis of
Third-Party Libraries in Android Apps. In International Conference on Security
and Privacy in Communication Systems. Cham: Springer Nature Switzerland,
569-587.

Y. He, X. Yang, B. Hu, and W. Wang. 2019. Dynamic Privacy Leakage Analysis of
Android Third-Party Libraries. Journal of Information Security and Applications
46 (2019), 259-270. https://doi.org/10.1016/j.jisa.2019.03.014

Y. He, X. Yang, B. Hu, and W. Wang. 2019. Dynamic Privacy Leakage Analysis of
Android Third-Party Libraries. Journal of Information Security and Applications
46 (2019), 259-270. https://doi.org/10.1016/].jisa.2019.03.014

Google Play Console Help. n.d.. Data Safety Section. Retrieved May 31,
2024 from https://support.google.com/googleplay/android-developer/answer/
10787469?hl=en

Google Play Console Help. n.d.. Google Play Families Policies. Retrieved May
31, 2024 from https://support.google.com/googleplay/android-developer/answer/
9893335?hl=en

Google Play Console Help. n.d.. User Data. Retrieved May 31,
2024 from https://support.google.com/googleplay/android-developer/answer/
10144311?visit_id=638525050145726100- 2464963387 &rd=1

Stefan Albert Horstmann, Samuel Domiks, Marco Gutfleisch, Mindy Tran,
Yasemin Acar, Veelasha Moonsamy, and Alena Naiakshina. 2024. “Those things
are written by lawyers, and programmers are reading that” Mapping the Commu-
nication Gap Between Software Developers and Privacy Experts. , 151-170 pages.
https://doi.org/10.56553/popets-2024-0010

H. Inayoshi, S. Kakei, and S. Saito. 2022. Plug and Analyze: Usable Dynamic Taint
Tracker for Android Apps. In 2022 IEEE 22nd International Working Conference
on Source Code Analysis and Manipulation (SCAM). 24-34.

https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.56553/popets-2022-0108
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://apktool.org/
https://apktool.org/
https://www.appbrain.com/stats/libraries/ad-networks
https://www.appbrain.com/stats/libraries/ad-networks
https://www.esrb.org/
https://doi.org/10.14722/usec.2014.23006
https://doi.org/10.14722/usec.2014.23006
https://doi.org/10.1109/SP.2019.00054
https://doi.org/10.1109/EuroSPW55150.2022.00024
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files/adding_a_privacy_manifest_to_your_app_or_third-party_sdk
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files/adding_a_privacy_manifest_to_your_app_or_third-party_sdk
https://developer.apple.com/documentation/bundleresources/privacy_manifest_files/adding_a_privacy_manifest_to_your_app_or_third-party_sdk
https://developers.facebook.com/docs/audience-network/setting-up/platform-setup/android/add-sdk
https://developers.facebook.com/docs/audience-network/setting-up/platform-setup/android/add-sdk
https://developers.facebook.com/docs/android/
https://developers.facebook.com/docs/app-events/getting-started-app-events-android/
https://developers.facebook.com/docs/app-events/getting-started-app-events-android/
https://developers.facebook.com/docs/audience-network/setting-up/platform-setup/android/add-sdk
https://developers.facebook.com/docs/audience-network/setting-up/platform-setup/android/add-sdk
https://developers.facebook.com/docs/audience-network/optimization/best-practices/data-processing-options
https://developers.facebook.com/docs/audience-network/optimization/best-practices/data-processing-options
https://developers.facebook.com/docs/audience-network/optimization/best-practices/coppa
https://developers.facebook.com/docs/audience-network/optimization/best-practices/coppa
https://developers.facebook.com/docs/
https://doi.org/10.1145/3411764.3445599
https://doi.org/10.1145/3411764.3445599
https://developers.facebook.com/docs/reference/android/current/class/FacebookSdk/
https://developers.facebook.com/docs/reference/android/current/class/FacebookSdk/
https://developers.facebook.com/blog/post/2017/09/26/android-sdk-optimization/
https://developers.facebook.com/blog/post/2017/09/26/android-sdk-optimization/
https://developers.facebook.com/blog/post/2022/07/18/resources-for-completing-app-store-data-practice-questionnaires-apps-facebook-or-audience-network-sdk/
https://developers.facebook.com/blog/post/2022/07/18/resources-for-completing-app-store-data-practice-questionnaires-apps-facebook-or-audience-network-sdk/
https://developers.facebook.com/blog/post/2022/07/18/resources-for-completing-app-store-data-practice-questionnaires-apps-facebook-or-audience-network-sdk/
https://doi.org/10.1109/EuroSPW55150.2022.00028
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://github.com/facebook/facebook-android-sdk
https://github.com/marty0678/googleplay-api/
https://support.google.com/googleplay/android-developer/answer/12955712
https://support.google.com/googleplay/android-developer/answer/12955712
https://support.google.com/googleplay/answer/6209544
https://doi.org/10.1016/j.jisa.2019.03.014
https://doi.org/10.1016/j.jisa.2019.03.014
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/10787469?hl=en
https://support.google.com/googleplay/android-developer/answer/9893335?hl=en
https://support.google.com/googleplay/android-developer/answer/9893335?hl=en
https://support.google.com/googleplay/android-developer/answer/10144311?visit_id=638525050145726100-2464963387&rd=1
https://support.google.com/googleplay/android-developer/answer/10144311?visit_id=638525050145726100-2464963387&rd=1
https://doi.org/10.56553/popets-2024-0010

Privacy Settings of Third-Party Libraries in Android Apps

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56

[57]

[58

[59]

[60]

[61

[62]

[63]

[64]

[65]

[66]

[67

IPinfo. n.d.. IPinfo Official Website. Retrieved May 31, 2024 from https://ipinfo.io/
Akshath Jain, David Rodriguez, Jose M. Del Alamo, and Norman Sadeh. 2023.
ATLAS: Automatically Detecting Discrepancies Between Privacy Policies and Pri-
vacy Labels. In 2023 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). 94-107. https://doi.org/10.1109/EuroSPW59978.2023.00016

Q. Jia, L. Zhou, H. Li, R. Yang, S. Du, and H. Zhu. 2019. Who Leaks My Privacy: To-
wards Automatic and Association Detection with GDPR Compliance. In Wireless
Algorithms, Systems, and Applications: 14th International Conference, WASA 2019,
Honolulu, HI, USA, June 24-26, 2019, Proceedings, Vol. 14. Springer International
Publishing, 137-148.

Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W. Reeder.
2009. A "nutrition label" for privacy. In Proceedings of the 5th Symposium on Usable
Privacy and Security (Mountain View, California, USA) (SOUPS "09). Association
for Computing Machinery, New York, NY, USA, Article 4, 12 pages. https:
//doi.org/10.1145/1572532.1572538

Patrick Gage Kelley, Lorrie Faith Cranor, and Norman Sadeh. 2013. Privacy as
part of the app decision-making process. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Paris, France) (CHI '13). Association for
Computing Machinery, New York, NY, USA, 3393-3402. https://doi.org/10.1145/
2470654.2466466

Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max Van Kleek, and Nigel
Shadbolt. 2022. Are iPhones Really Better for Privacy? A Comparative Study of
i0S and Android Apps. Proceedings on Privacy Enhancing Technologies 2022, 2
(2022), 6-24. https://doi.org/10.2478/POPETS-2022-0033

California State Legislature. 2018. California Consumer Privacy Act of
2018. https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=
CIV&division=3.&title=1.81.5.&part=4.&chapter=55.&article= Accessed: 2024-
09-22.

L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, and P. McDaniel.
2015. Iccta: Detecting Inter-Component Privacy Leaks in Android Apps. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
280-291.

M. Li, P. Wang, W. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo. 2020. Large-
Scale Third-Party Library Detection in Android Markets. IEEE Transactions on
Software Engineering 46, 9 (2020), 981-1003.

Tianshi Li, Elizabeth Louie, Laura Dabbish, and Jason I. Hong. 2021. How De-
velopers Talk About Personal Data and What It Means for User Privacy: A Case
Study of a Developer Forum on Reddit. Proc. ACM Hum.-Comput. Interact. 4,
CSCW3, Article 220 (jan 2021), 28 pages. https://doi.org/10.1145/3432919
Z.Ma, H. Wang, Y. Guo, and X. Chen. 2016. LibRadar: Fast and Accurate Detection
of Third-Party Libraries in Android Apps. In 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C). 653-656.

Inc. Meta Platforms. n.d.. Meta Business Suite. Retrieved Retrieved Oct 2, 2024
from https://business.facebook.com/

Inc. Meta Platforms. n.d.. Meta Developers Platform. Retrieved Retrieved May
30, 2024 from https://developers.facebook.com/apps

Inc. Meta Platforms. n.d.. Meta Events Manager. Retrieved Retrieved Oct 2, 2024
from https://www.facebook.com/events_manager2/

Abraham H. Mhaidli, Yixin Zou, and Florian Schaub. 2019. "We Can’t Live Without
Them!" App Developers’ Adoption of Ad Networks and Their Considerations of
Consumer Risks. In Fifteenth Symposium on Usable Privacy and Security (SOUPS
2019). USENIX Association, Santa Clara, CA, 225-244. https://www.usenix.org/
conference/soups2019/presentation/mhaidli

PEGL n.d.. Pan European Game Information. Retrieved May 31, 2024 from
https://pegi.info/

Google Play. n.d.. Google Play SDK Index.
https://play.google.com/sdks

Maxwell Prybylo, Sara Haghighi, Sai Teja Peddinti, and Sepideh Ghanavati.
2024. Evaluating Privacy Perceptions, Experience, and Behavior of Software
Development Teams. In Twentieth Symposium on Usable Privacy and Secu-
rity (SOUPS 2024). USENIX Association, Philadelphia, PA, 101-120. https:
//www.usenix.org/conference/soups2024/presentation/prybylo

Retrieved May 31, 2024 from

Jennifer Pybus and Mark Coté. 2024. Super SDKs: Tracking personal data

and platform monopolies in the mobile. Big Data & Society 11, 1 (2024),
20539517241231270.

Maven Repository. n.d.. Facebook Core SDK. Retrieved Retrieved May 30, 2024
from https://mvnrepository.com/artifact/com.facebook.android/facebook-core
Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas
Razaghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. 2018. “Won’t
somebody think of the children?” Examining COPPA compliance at scale. Pro-
ceedings on Privacy Enhancing Technologies 2018, 3 (April 2018), 63-83. https:
//doi.org/10.1515/popets-2018-0021

D. Rodriguez, J. M. Del Alamo, C. Fernandez-Aller, and N. Sadeh. 2024. Sharing is
Not Always Caring: Delving Into Personal Data Transfer Compliance in Android
Apps. IEEE Access 12 (2024), 5256-5269. https://doi.org/10.1109/ACCESS.2024.
3349425

David Rodriguez, Ian Yang, Jose M. Del Alamo, and Norman Sadeh. 2024. Large
language models: a new approach for privacy policy analysis at scale. Computing

Proceedings on Privacy Enhancing Technologies 2025(2)

106 (Aug 2024), 3879-3903. https://doi.org/10.1007/s00607-024-01331-9

C. Schindler, M. Atas, T. Strametz, J. Feiner, and R. Hofer. 2022. Privacy Leak
Identification in Third-Party Android Libraries. In 2022 Seventh International
Conference on Mobile and Secure Services (MobiSecServ). IEEE, 1-6. https://doi.
0rg/10.1109/MobiSecServ50855.2022.9727217

J. Schiitte, A. Kuechler, and D. Titze. 2017. Practical Application-Level Dynamic
Taint Analysis of Android Apps. In 2017 IEEE Trustcom/BigDataSE/ICESS. 17-24.

[70] J. Seo, D. Kim, D. Cho, L. Shin, and T. Kim. 2016. FLEXDROID: Enforcing In-App

Privilege Separation in Android. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). Internet Society, San Diego, CA, USA, 1-15.
https://doi.org/10.14722/ndss.2016.23485

Mohammad Tahaei, Ruba Abu-Salma, and Awais Rashid. 2023. Stuck in the
Permissions With You: Developer & End-User Perspectives on App Permissions
& Their Privacy Ramifications. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (Hamburg, Germany) (CHI °23). Association
for Computing Machinery, New York, NY, USA, Article 168, 24 pages. https:
//doi.org/10.1145/3544548.3581060

Mohammad Tahaei and Kami Vaniea. 2021. “Developers Are Responsible”: What
Ad Networks Tell Developers About Privacy. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
EA °21). Association for Computing Machinery, New York, NY, USA, Article 253,
11 pages. https://doi.org/10.1145/3411763.3451805

Mohammad Tahaei, Kami Vaniea, and Naomi Saphra. 2020. Understanding
Privacy-Related Questions on Stack Overflow. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
’20). Association for Computing Machinery, New York, NY, USA, 1-14. https:
//doi.org/10.1145/3313831.3376768

Eeva Terkki, Ashwin Rao, and Sasu Tarkoma. 2016. Investigating User Profiling
and Privacy Leaks in Mobile Ad Networks. Tiny Trans. Comput. Sci. 4 (2016).
https://api.semanticscholar.org/CorpusID:41901100

[75] J. Wang, Y. Xiao, X. Wang, Y. Nan, L. Xing, X. Liao, and Y. Zhang. 2021. Under-

standing Malicious Cross-Library Data Harvesting on Android. In 30th USENIX
Security Symposium (USENIX Security 21). 4133-4150.

F. Wei, S. Roy, X. Ou, and Robby. 2018. Amandroid: A Precise and General Inter-
Component Data Flow Analysis Framework for Security Vetting of Android Apps.
ACM Transactions on Privacy and Security (TOPS) 21, 3 (2018), 1-32.

[77] J. Zhan, Q. Zhou, X. Gu, Y. Wang, and Y. Niu. 2017. Splitting Third-Party Li-

braries’ Privileges from Android Apps. In Information Security and Privacy: 22nd
Australasian Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017,
Proceedings, Part II. Springer International Publishing, 80-94.

X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu. 2021. ATVHunter:
Reliable Version Detection of Third-Party Libraries for Vulnerability Identifica-
tion in Android Applications. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 1695-1707.

X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, and Y. Liu. 2020.
Automated Third-Party Library Detection for Android Applications: Are We
There Yet?. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 919-930.

X. Zhan, T. Liu, Y. Liu, Y. Liu, L. Li, H. Wang, and X. Luo. 2021. A Systematic
Assessment on Android Third-Party Library Detection Tools. IEEE Transactions
on Software Engineering 48, 11 (2021), 4249-4273.

X. Zhang, X. Wang, R. Slavin, T. Breaux, and J. Niu. 2020. How Does Misconfigu-
ration of Analytic Services Compromise Mobile Privacy?. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 1572-1583.
Kaifa Zhao, Xian Zhan, Le Yu, Shiyao Zhou, Hao Zhou, Xiapu Luo, Haoyu Wang,
and Yepang Liu. 2023. Demystifying Privacy Policy of Third-Party Libraries
in Mobile Apps. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 1583-1595. https://doi.org/10.1109/ICSE48619.2023.00137
Y. Zhou. 2021. An Automated Pipeline for Privacy Leak Analysis of Android
Applications. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1048-1050. https://doi.org/10.1109/ASE51524.2021.
9678875

Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichander, Ziqi
Wang, Joel Reidenberg, N. Cameron Russell, and Norman Sadeh. 2019. MAPS:
Scaling Privacy Compliance Analysis to a Million Apps. Proceedings on Privacy
Enhancing Technologies 2019, 3 (2019), 66—86. https://doi.org/10.2478/popets-
2019-0037

S. Zimmeck, S. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson, N. Sadeh, S.
Bellovin, and J. Reidenberg. 2017. Automated Analysis of Privacy Requirements
for Mobile Apps. In 24th Network & Distributed System Security Symposium (NDSS
2017). 286-296. https://doi.org/10.14722/ndss.2017.23034

https://ipinfo.io/
https://doi.org/10.1109/EuroSPW59978.2023.00016
https://doi.org/10.1145/1572532.1572538
https://doi.org/10.1145/1572532.1572538
https://doi.org/10.1145/2470654.2466466
https://doi.org/10.1145/2470654.2466466
https://doi.org/10.2478/POPETS-2022-0033
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=CIV&division=3.&title=1.81.5.&part=4.&chapter=55.&article=
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=CIV&division=3.&title=1.81.5.&part=4.&chapter=55.&article=
https://doi.org/10.1145/3432919
https://business.facebook.com/
https://developers.facebook.com/apps
https://www.facebook.com/events_manager2/
https://www.usenix.org/conference/soups2019/presentation/mhaidli
https://www.usenix.org/conference/soups2019/presentation/mhaidli
https://pegi.info/
https://play.google.com/sdks
https://www.usenix.org/conference/soups2024/presentation/prybylo
https://www.usenix.org/conference/soups2024/presentation/prybylo
https://mvnrepository.com/artifact/com.facebook.android/facebook-core
https://doi.org/10.1515/popets-2018-0021
https://doi.org/10.1515/popets-2018-0021
https://doi.org/10.1109/ACCESS.2024.3349425
https://doi.org/10.1109/ACCESS.2024.3349425
https://doi.org/10.1007/s00607-024-01331-9
https://doi.org/10.1109/MobiSecServ50855.2022.9727217
https://doi.org/10.1109/MobiSecServ50855.2022.9727217
https://doi.org/10.14722/ndss.2016.23485
https://doi.org/10.1145/3544548.3581060
https://doi.org/10.1145/3544548.3581060
https://doi.org/10.1145/3411763.3451805
https://doi.org/10.1145/3313831.3376768
https://doi.org/10.1145/3313831.3376768
https://api.semanticscholar.org/CorpusID:41901100
https://doi.org/10.1109/ICSE48619.2023.00137
https://doi.org/10.1109/ASE51524.2021.9678875
https://doi.org/10.1109/ASE51524.2021.9678875
https://doi.org/10.2478/popets-2019-0037
https://doi.org/10.2478/popets-2019-0037
https://doi.org/10.14722/ndss.2017.23034

	Abstract
	1 Introduction
	2 Facebook SDKs
	2.1 Facebook Android SDK
	2.2 Facebook Audience Network SDK

	3 Related Work
	4 Research Method
	4.1 Download and Storage
	4.2 Static Analysis
	4.3 Dynamic Analysis
	4.4 Disclosure and Compliance Analysis

	5 Results
	5.1 Facebook SDKs Integration
	5.2 Privacy-Related Settings Configuration
	5.3 Data Transfers
	5.4 Disclosure Analysis
	5.5 Children's Apps Analysis

	6 Discussion
	6.1 Developers' Perspectives and Challenges
	6.2 Mitigation Approaches

	7 Limitations
	8 Conclusions
	Acknowledgments
	References

