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Abstract
This study investigates the trade-offs between fairness, privacy, and
utility in image classification using machine learning (ML). Recent
research suggests that generalization techniques can improve the
balance between privacy and utility. One focus of this work is
sharpness-aware training (SAT) and its integration with differential
privacy (DP-SAT) to further improve this balance. Additionally, we
examine fairness in both private and non-private learning models
trained on datasets with synthetic and real-world biases. We also
measure the privacy risks involved in these scenarios by performing
membership inference attacks (MIAs) and explore the consequences
of eliminating high-privacy risk samples, termed outliers. Moreover,
we introduce a new metric, named harmonic score, which combines
accuracy, privacy, and fairness into a single measure.

Through empirical analysis using generalization techniques, we
achieve an accuracy of 81.11% under (8, 10−5)-DP on CIFAR-10,
surpassing the 79.5% reported by De et al. (2022). Moreover, our
experiments show that memorization of training samples can begin
before the overfitting point, and generalization techniques do not
guarantee the prevention of this memorization. Our analysis of
synthetic biases shows that generalization techniques can amplify
model bias in both private and non-private models. Additionally,
our results indicate that increased bias in training data leads to re-
duced accuracy, greater vulnerability to privacy attacks, and higher
model bias. We validate these findings with the CelebA dataset,
demonstrating that similar trends persist with real-world attribute
imbalances. Finally, our experiments show that removing outlier
data decreases accuracy and further amplifies model bias.
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1 Introduction
Privacy and fairness are important elements in developing responsi-
ble machine learning (ML) models. Privacy ensures that individual
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data contributions remain confidential and are not identifiable in
the model’s outputs. On the other hand, fairness involves ensuring
that the model’s outputs are unbiased and equitable across various
demographic groups, preventing discrimination and ensuring inclu-
sivity. While significant progress has been made in understanding
and addressing individual trade-offs, such as the balance between
privacy and utility and the balance between fairness and utility,
the interplay between these trade-offs has not been thoroughly
investigated. This gap is particularly evident in image classifica-
tion, where models need to handle complex and diverse data inputs.
Understanding how privacy and fairness affect each other in this
domain is essential for creating ML models that are both secure
and equitable.

Differential privacy (DP) is a gold standard for ensuring privacy
in ML models, offering mathematical guarantees that individual
data entries in aggregated datasets remain protected. Introduced by
Dwork et al. [13], DP works by adding controlled noise to the data,
which masks the contributions of individual entries. This noise
makes identifying any single data point within the dataset difficult,
thus safeguarding personal information. Despite this protection, DP
still preserves the overall patterns in the data, allowing ML models
to be trained effectively. However, this approach also highlights
a significant challenge: the privacy-utility trade-off. Adding more
noise increases privacy but can also reduce the accuracy of the
ML model, thereby lowering its utility. Thus, balancing privacy
and utility is challenging for successfully implementing DP in ML
models.

A set of generalization techniques, including group normaliza-
tion, optimal batch size, weight standardization, augmentation mul-
tiplicity, and parameter averaging, have been shown to significantly
enhance the utility of deep ML models trained using differentially
private stochastic gradient descent (DP-SGD) [8]. However, the im-
pact of a recently proposed generalization technique, differentially
private sharpness-aware training (DP-SAT) [25], which can serve
as an alternative to DP-SGD, has not been thoroughly investigated.
This raises an important question: Q1: Would combining DP-
SAT with the other generalization techniques lead to an even
better utility-privacy trade-off?

Fairness in ML models can be defined as the goal of producing
unbiased and equitable predictions across demographic groups.
However, model bias may occur when systematic errors or preju-
dices arise in predictions, potentially disadvantaging certain groups.
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Research shows that when training data is biased, models trained
on it tend to learn and incorporate these biases into their pre-
dictions [23]. While DP seeks to safeguard individual privacy, its
application can inadvertently compromise fairness in deep MLmod-
els [4, 7, 10, 17, 35]. Recent studies [4, 17] indicate that the noise
introduced by DP measures can disproportionately impact under-
represented groups within a dataset. This leads to a greater decrease
in accuracy for these groups compared to their well-represented
counterparts, thereby generating biased outcomes. However, the
impact of the generalization techniques on fairness is an unexplored
area to our knowledge. These techniques could potentially exac-
erbate model bias in scenarios with and without DP. Q2: Would
the generalization techniques impact ML model fairness in
non-private and private settings?

EvaluatingMLmodels has evolved beyond simply assessing their
utility to include other aspects, such as privacy and fairness. This
needs a multidimensional evaluation framework that integrates
three important aspects: privacy, utility, and fairness. This holistic
evaluation approach requires that models are not only efficient in
their intended tasks but also comply with the principles of privacy
protection and ensuring equitable outcomes across diverse demo-
graphic groups. Thus, this shift requires that evaluation metrics be
capable of simultaneously capturing the nuances of utility, privacy,
and fairness. Q3: How could we integrate utility, privacy, and
fairness in a single metric?

In this paper, we address the above-mentioned research questions
exploring the impact of generalization techniques on the three-
dimensional aspects (i.e., utility, privacy, fairness). Moreover, we
measure privacy risks involved by applying various membership
inference attacks (MIAs) [31, 32] on ML models trained on unbiased
data and data with synthetic and real-world biases. To explore
further, we evaluate the impact of removing outlier samples that are
most susceptible to privacy attacks on utility, privacy, and fairness
in both private and non-private settings.

More specifically, our empirical analysis leads to the following
contributions:

• The generalization techniques suggested by De et al. [8] have
enhanced the balance between accuracy and privacy. We in-
corporate the DP-SAT method, which further improves this
balance. Notably, substituting DP-SGDwith DP-SAT resulted
in achieving a new accuracy of 81.11% under (8, 10−5)-DP us-
ing a 16-layer Wide-ResNet without extra data on CIFAR-10,
improving the previously reported 79.5% by [8] (the accuracy
values are reported over the official test set of CIFAR-10). We
also show the superior performance of DP-SAT compared to
DP-SGD when combined with the generalization techniques
for different privacy parameters and standard image classifi-
cation benchmarks (see Table 4). Furthermore, our analysis
indicates that applying the generalization technique signifi-
cantly enhances model accuracy (see Figure 1a). Specifically,
for private learning (i.e., (8, 10−5)-DP) trained over CIFAR-
10, the accuracy improves by 31.64% (from 49.47 to 81.11). For
CIFAR-100 (using a 28-layer Wide-ResNet model pre-trained
on the ImageNet), the improvement is 42.4% (from 41.4 to

83.8). In non-private learning for CIFAR-10, there is an im-
provement of 21.17% (from 71.13 to 92.3). For CIFAR-100, the
enhancement is 22.07% (from 67.62 to 91.09).

• While prior research and ours demonstrate that generaliza-
tion techniques enhance the privacy-utility balance, their
impact on model bias remains uncharted. To investigate
this, we employ datasets with synthetic bias, such as CIFAR-
10S [36] and CIFAR-100S, and measure bias amplification in
our private and non-private models. Our results reveal that
each generalization technique, as well as their collective ap-
plication, amplifies model bias (see Figure 1b), even though
they improve model accuracy (see Table 5). In particular, in
non-private models trained over CIFAR-10S, the model bias
escalates by a factor of 9 (from 0.01 to 0.09), while in private
models for CIFAR-10S, the model bias increases nearly by a
factor of 4 (from 0.04 to 0.15). This trend of increased model
bias, which is also observable for CIFAR-100S, manifests a
potential compromise in model fairness. Furthermore, our
results reveal that the greater the bias in the training set,
the more drop in accuracy (see Figure 3a and Figure 8a) and
increase in model bias (see Figure 3c and Figure 8c).

• We employ MIAs as a standard tool for assessing the privacy
risks [8, 32] of our ML models while applying the generaliza-
tion techniques. To conduct MIAs, we use the TensorFlow
Privacy library [1], which assesses the privacy risk via the
MIA AUC metric. We show that MIAs that require train-
ing multiple shadow models are more effective in both pri-
vate and non-private learning settings, with biased training
data (see Figure 1c) or without it (see Figure 1d). Moreover,
our findings show a direct link between the level of bias in
the training data and an elevated MIA AUC (see Figure 3b
and Figure 8b). This suggests that training biased data can
make an individual’s presence in the dataset more detectable.
Upon implementing all generalization techniques to achieve
optimal accuracy, the private model (under (8, 10−5)-DP),
trained on the unbiased CIFAR-10 and CIFAR-100, experi-
ences a decrease in MIA AUC by 0.12 and 0.11, respectively
(see Table 2). Conversely, this decline is limited to 0.03 for the
private model trained on the biased CIFAR-10S and CIFAR-
100S (see Table 3). This pattern shows that training with
biased data significantly affects DP’s effectiveness.

• In the absence of a unified metric capable of integrating util-
ity, privacy, and fairness, we take a modest step forward and
introduce Harmonic Score (HS). It simplifies complex evalua-
tions by calculating the harmonic mean of accuracy, privacy
(measured by MIA AUC), and fairness (adjusted by bias).
This score emphasizes balanced performance across these
dimensions, ensuring that poor outcomes in any one aspect
significantly impact the final score. For instance, as described
in Figure 1e, the application of DP reduces the effectiveness
of MIAs, but this comes at the cost of the model’s accuracy
and bias. However, the impact on HS differs across datasets.
For CIFAR-100S, the addition of DP lowers HS, indicating
that the trade-offs in accuracy and fairness outweigh the pri-
vacy gains, leading to a less balanced model. In contrast, for
CIFAR-10, the DP-enabled model achieves a slightly higher
HS, suggesting that the reduction in MIA risk (privacy gain)
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Figure 1: Variations in accuracy, MIA AUC, and model bias for four datasets CIFAR-10, CIFAR-100, CIFAR-10S, and CIFAR-100S
in non-private and private (i.e., (8, 10−5)-DP) learning settings. DP-CIFAR-10/10S/100/100S is used to denote when DP is applied.
(a) illustrates the impact of generalization techniques (i.e., BL: baseline, OBS: optimal batch size, GN: group normalization, WS:
weight standardization, AM: augmentation multiplicity, PA: parameter averaging, SAT: sharpness-aware training) on accuracy
when the training data is unbiased while (b) measures such an impact on model accuracy and bias when training data is biased.
(c) and (d) show MIA AUC of two threshold-based MIAs (i.e., threshold, threshold entropy) and two shadow-based MIAs (MLP:
multilayer perceptron, RF: random forest). (e) compares the HS to represent the balance between accuracy, MIA AUC, and bias.

positively impacts the balance among the three metrics, even
with trade-offs in accuracy and fairness. Furthermore, both a
reduction in the bias of the training data and an increase in
the privacy budget provide a better balance between privacy,
utility, and fairness (see Figure 4 and Figure 8d).

• We extend our analysis to the CelebA dataset [20], which cap-
tures real-world biases, such as how facial attributes correlate
with gender. This analysis confirms the trends observed in
our earlier experiments with CIFAR-10S and CIFAR-100S. In-
corporating generalization techniques in non-private and pri-
vate ( (8, 10−5)-DP) models improves model accuracy while
increasing gender bias in predictions (see Table 7). Addi-
tionally, the results demonstrate that attributes with higher
gender imbalance in the training data experience greater
declines in accuracy (see Figure 7) and elevated MIA AUC
(see Table 7). This validation supports our earlier conclusions
about the complex interactions between accuracy, privacy,
and fairness.

• Carlini et al. [5] show that eliminating the layer of outlier
samples subsequently exposes another layer of samples, pre-
viously considered safe, to the same vulnerability, a phenom-
enon termed the Onion Effect. Our study broadens the work
of Carlini et al. by analyzing models trained with and with-
out DP on both unbiased (CIFAR-10, CIFAR-100) and biased
(CIFAR-10S, CIFAR-100S) datasets, assessingMIA AUC, accu-
racy, bias, and HS, and deepening the investigation into the
Onion Effect through the removal of three layers of outliers.
This removal impacts our findings in several ways. First, it
decreases accuracy regardless of its application to private
or non-private learning (see Figure 5a and Figure 9a). More-
over, it shows a continuous exposure to MIAs (see Figure 5b
and Figure 9b). Additionally, it amplifies model bias in both
non-private and private learning models (see Figure 5c and
Figure 9c). Lastly, it leads to a discordant imbalance among
accuracy, privacy, and bias in non-private learning contexts
(see Figure 6 and Figure 9d).
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2 Background
This section provides an overview of the DP definition and discusses
a succinct overview of the generalization techniques and MIAs to
offer a clearer understanding of their implications in our study.

2.1 Differential Privacy (DP)
DP ensures the privacy of individual contributions in statistical
databases by asserting that removing or adding an individual’s data
does not significantly affect the outcome of any analysis. Introduced
by Dwork et al. [14]:

Definition 2.1. A mechanism 𝑀 satisfies (𝜖, 𝛿)-DP if for all
datasets 𝐷1 and 𝐷2 differing on at most one element, and for all
𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (𝑀), it holds that

𝑃𝑟 [𝑀 (𝐷1) ∈ 𝑆] ≤ exp(𝜖) · 𝑃𝑟 [𝑀 (𝐷2) ∈ 𝑆] + 𝛿.

Here, 𝜖 referred to as the privacy loss, where a smaller value
indicates higher privacy. 𝛿 represents a small probability that the
privacy loss may be exceeded.

DP establishes a framework for developing private ML models,
highlighting the role of DP-SGD as a pivotal technique in this con-
text [2]. In DP-SGD, noise is added to the gradients during each
update step to mask the influence of individual data points, thus
ensuring that the training process remains differentially private.
The effectiveness of DP-SGD relies on the privacy accountant—a
numerical algorithm that calculates precise upper bounds on cumu-
lative privacy loss, which is called privacy budget [2]. The privacy
accountant tracks how privacy loss accumulates over multiple train-
ing iterations, ensuring that the total privacy loss remains within a
specified budget. In our study, we employ the accounting method
for DP-SGD introduced by Mironov et al. [24], which is available in
the TensorFlow Privacy library [1]. De et al. [8] utilize this approach,
combining privacy accounting with meticulous hyper-parameter
optimization to enhance the accuracy of over-parameterized mod-
els. This results in a refined trade-off between privacy and utility,
achieving state-of-the-art outcomes. In the subsequent sections, we
elaborate on the generalization techniques proposed by De et al. [8]
and DP-SAT by Park et al. [25], and detail their implications in our
study.

2.2 Generalization Techniques
Group Normalization (GN). Following recent studies [8, 19, 22],
we replace Batch Normalization (BN) layers by GN layers. This
modification is important because DP-SGD requires independent
gradients evaluated on different training examples. This fails to
include any method that enables communication between training
examples, such as BN. GN, on the other hand, divides the channels
of the hidden activations of a single image into groups and nor-
malizes these activations within each group independently. This
maintains the independence between gradients evaluated on differ-
ent examples. Following De et al. [9], we place the GN layers on
the residual branch of the network to recover the benefits of BN
for training deep networks.

Optimal Batch Size (OBS). Previous studies [3, 8, 11] have
noted that using larger batch size can notably boost the privacy-
utility balance in DP-SGD. On the other hand, in non-private models

using SGD, the batch size is typically smaller (e.g., 8, 16, 32, 64) to
achieve higher accuracy [12, 34].

Weight Standardization (WS). Several studies [18, 27, 28] have
shown that using WS combined with GN can be an effective re-
placement for BN in non-private training, especially when training
with large BS. Adopting the approach of [8], we use this technique
for all convolutional layers to normalize the rows of the weight ma-
trix for each convolution and demonstrate its advantage in private
learning.

Augmentation Multiplicity (AM). As in [8], we use multiple
augmentations for each sample in DP-SGD updates to regain the
advantages of data augmentation in private training, and instead of
calculating a clipped gradient for every augmented image—which
would increase privacy costs—we average the gradients from var-
ious augmentations of a single training sample before gradient
clipping. This method does not impose extra privacy expenses.

Parameter Averaging (PA). The PA technique [26] leverages
the stability of parameters over training iterations to enhancemodel
generalization by averaging parameters across multiple steps. This
approach helps smooth parameter updates, leading to more robust
model performance. The privacy analysis of DP-SGD assumes that
revealing training parameters does not breach privacy; therefore,
PA does not result in additional privacy concerns. Following [8], we
adopt an exponential moving average for PA, which continuously
updates a weighted average of the parameters during training. This
method improves accuracy on both training and validation data
by reducing the variance of parameter updates, providing a stable
optimization path for improved model performance.

Sharpness-Aware Training (SAT). Sharpness-aware minimiza-
tion (SAM) targets flat minima to mitigate the issue of sharp minima
in the loss landscape [16]. This characteristic of sharp minima is
recognized as a limitation of SGD in yielding generalized models,
particularly in the context of over-parameterized models.

Unlike SGD, which computes the gradients of the loss function
relative to the parameters and then guides the parameter updates in
a single descent step, SAM introduces a two-step optimization. This
method initially perturbs the parameters within a certain radius
in the ascent step to evaluate the sensitivity of the loss function (a
measure of the landscape’s sharpness) and subsequently steers the
perturbed parameters toward flatter regions of the loss landscape
in the descent step.

However, SAM’s two-step optimization may negatively impact
the privacy budget and computational time of DP-SAM [12, 25].
Specifically, Park et al. [25] prove that DP-SAM requires twice the
privacy budget than that of DP-SGD and requires more computa-
tional time. This is because DP-SAM employs the training samples
within the same mini-batch twice, i.e., it needs to inject noise into
both the gradients of the current parameters and the perturbed
parameters to ensure the privacy of both ascent and descent steps.
To mitigate this challenge, Park et al. propose DP-SAT, which can
improve performance without additional privacy or computational
burden. Their idea is to reuse the perturbed gradient of the previ-
ous step to steer the direction of updated parameters at the current
step. Our study distinctively examines the impact of generalization
techniques introduced by [8] and the SAT optimizer on the fairness
and accuracy of ML models, with and without DP, addressing a gap
not explored in prior research.
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Table 1: Hyper-parameters for CIFAR-10(S), CIFAR-100(S), and CelebA datasets with and without private learning

Hyper-parameter With DP Without DP
CIFAR-10(S) CIFAR-100(S) CelebA

CIFAR-10(S) CIFAR-100(S) CelebA𝜖 1 2 4 8 1 2 4 8 8
𝛿 10−5 10−5 10−5 10−5 10−5 10−5 10−5 10−5 2.02 × 10−5

Learning rate 2 2 4 4 1 1 1 1 1 0.01 0.01 10−4
Noise multiplier 10 6 4 3 21.1 15.8 12 9.4 6 - - -

GN 16 16 16 16 16 16 16 16 16 1 1 16
OBS 4096 4096 4096 4096 16348 16348 16348 16348 4096 32 64 64
AM 16 16 16 16 16 16 16 16 - 16 16 -

Radius (SAT parameter) 0.05 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03

2.3 Membership Inference Attacks (MIAs)
An MIA targets a built ML model to deduce membership of indi-
vidual training samples. This can have privacy implications, espe-
cially when the training data includes sensitive or personal infor-
mation [30, 31]. MIAs can be conducted using two main strategies
differing in their need for training shadow models.

First, as discussed by Shokri et al. [31], the adversary initially
trains multiple shadow models to simulate the target model, as-
suming that the target model is a black-box API. Then, based on
shadow models’ outputs on their own training and test examples,
the adversary obtains a labeled (member vs non-member) dataset
and finally trains multiple neural network classifiers, one for each
class label, to performMIAs against the target model. This approach
capitalizes on the similarity between the shadow models and the
target model to infer membership.

The second approach, by Salem et al. [30], relies on training one
shadow model to distinguish between member and non-member
data points. This approach is computationally more efficient as it
avoids the overhead of training multiple shadow models.

To conduct MIAs, we use the TensorFlow Privacy library [1] in
which the focus is on MIAs against black-box models, where the
adversary can only observe the model’s output but not its parame-
ters. We employ four different MIAs implemented in this library:
MultiLayered Perceptron (MLP), Random Forest (RF), Threshold,
and Threshold Entropy attacks. The first two options require train-
ing one shadow model; the last two do not require training any
shadow model and leverage statistical measures, such as maximum
confidence score and entropy, applied to the target model’s results.
The Threshold attack uses a simple decision rule based on the con-
fidence score, while the Threshold Entropy attack uses the entropy
of the confidence scores to make membership decisions.

Figure 1c and Figure 1d highlight the superior efficacy of theMLP
attack over the others across models trained on various datasets.
The model trained using DP on CIFAR-100S is an exception, where
the RF attack outperforms others. Consequently, we report MIA
AUC of the MLP attack across all experiments except for the DP-
trained model on CIFAR-100S, where we specifically report MIA
AUC of the RF attack.

3 Methodology and Experimental Setup
This section provides the methodologies and metrics employed in
our experiments. It first discusses our selection and manipulation
of datasets. It then explains the architectural choices and training

settings for ourMLmodels. Additionally, it introduces theMIAAUC
and bias metrics from the literature, which are used for assessing
privacy and fairness. It also describes our HS metric, an approach
that simultaneously evaluates model accuracy, fairness, and privacy.

3.1 Datasets
Our analysis examines bias in both controlled, simplified settings
and more complex, real-world scenarios. In the simplified setting,
we use the CIFAR-10 and CIFAR-100 datasets for training with un-
biased data and introduce bias through their skewed counterparts,
CIFAR-10S [36] and CIFAR-100S.

Synthetic Bias with CIFAR-10S and CIFAR-100S. CIFAR-10S
is created by converting a subset of images to grayscale, maintaining
a 95% to 5% ratio between color and grayscale images per class.
Specifically, five classes are predominantly color (95%), while the
other five are mainly grayscale (95%). Despite this skew at the class
level, the overall distribution between color and grayscale images
remains balanced. For evaluation, we use two test sets: a color-
only version (COLOR) and a grayscale-only version (GRAY), each
assessed independently for the 10-class classification. CIFAR-100S
follows the same structure but extends to the 100 classes of CIFAR-
100. Unless otherwise specified, the bias ratio is set at 95% to 5%,
though we also explore a 75% to 25% ratio to understand the impact
of varying degrees of skewness in the data distribution.

Real-World Bias with CelebA. To extend our analysis to a
realistic setting, we select the CelebA dataset [20], which natu-
rally exhibits imbalances in attribute distribution across genders.
We focus on the Aligned&Cropped subset, which contains images
with 39 facial attributes, allowing us to study how attributes like
"smiling" correlate with gender. Among the attributes, 21 are more
commonly associated with women, while 18 are more frequent in
men, showing an average gender bias of 80.0% when an attribute
is present. We exclude the “Male” attribute and focus on attributes
that have a sufficient number of validation and test images, ulti-
mately analyzing 34 attributes. This dataset allows us to validate
our findings from the controlled setting and assess how models
handle the more nuanced biases that arise in real-world data.

3.2 Metrics
Bias Metric. To measure bias amplification in our models, we
employ two distinct metrics introduced in [36] suited to the nature
of the biased datasets used in our study.
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• Synthetic Bias. In the context of CIFAR-10S and CIFAR-
100S, we use a bias metric that calculates the mean bias in
model predictions across classes:

Bias = 1
|𝐶 |

∑︁
𝑐∈𝐶

(
max(Gr𝑐 ,Col𝑐 )
Gr𝑐 + Col𝑐

− 0.5
)
, (1)

where Gr𝑐 is the number of grayscale test set examples pre-
dicted as class 𝑐 , and Col𝑐 is the same for color. Here, 𝐶 rep-
resents the set of all classes. The test set is evenly distributed
across the domains {Gr, Col}, ensuring that the average accu-
racy directly reflects the model’s learned bias towards one
of the domains in the model’s predictions. This metric helps
identify the extent to which the model’s predictions favor
either grayscale or color images, reflecting how spurious
correlations learned during training influence the model’s
outcomes.

• Real-World Bias. For each attribute in the CelebA dataset,
we calculate model bias to assess how much the model’s
predictions reflect or amplify inherent gender imbalances:

Bias = 𝑃𝑤

𝑃𝑤 + 𝑃𝑚
− 𝑁𝑤

𝑁𝑤 + 𝑁𝑚

, (2)

where 𝑃𝑤 and 𝑃𝑚 are the numbers of positive classifications
for women and men, respectively, and 𝑁𝑤 and 𝑁𝑚 are the
actual counts of images with the attribute present for women
and men. If an attribute is more common among women (e.g.,
"smiling"), a positive value indicates that the model is ampli-
fying the gender imbalance by predicting more women as
having the attribute than the original distribution suggests.
A negative value implies a reduction in bias. This metric
helps assess how the model’s predictions align with or de-
viate from the underlying distribution of attributes across
genders, aiming for more balanced outcomes.

MIA AUC. Following [8, 30, 37], we use the area under the
curve (AUC) metric to measure the effectiveness of MIAs on our
ML models. It represents the area under the receiver operating
characteristic (ROC) curve, which plots the true positive rate against
the false positive rate. High AUC values demonstrate a model’s
vulnerability by showing its ability to distinguish between training
dataset members and non-members, thus revealing susceptibility
to MIAs. In contrast, AUC values around 0.5 imply the model’s
robustness against such attacks.

Harmonic Score (HS). We introduce a scoring metric based
on the harmonic mean to evaluate models in terms of privacy
(measured by MIA AUC), fairness (adjusted by bias), and accuracy.
To ensure all aspects are considered equally, we map values to the
[0, 1] range:

• Bias is measured using Eq. 1, resulting values within the
range [0, 0.5], where 0 represents no bias (perfect fairness)
and 0.5 represents maximum bias. We scale this to [0, 1],
resulting in Biasscaled. We then use 1 − Biasscaled, where val-
ues closer to 1 indicate lower bias, and values closer to 0
represent higher bias.

• AUC for MIA falls in the range [0.5, 1], with 0.5 indicating
random guessing (no successful attack) and 1 representing a
successful attack. We map this to [0, 1], yielding AUCscaled,

and then use 1 − AUCscaled, where values closer to 1 indi-
cate stronger privacy, and values closer to 0 indicate weaker
privacy.

• Accuracy is already in the [0, 1] range, where higher values
indicate better model performance.

The Harmonic Score (HS) is calculated using the following for-
mula:

HS =
3

1
Accuracy + 1

1−AUCscaled
+ 1

1−Biasscaled
(3)

HS is heavily influenced by the lowest value among the three
aspects—accuracy, 1 − Biasscaled, and 1 − AUCscaled—ensuring that
poor performance in one dimension significantly reduces the overall
score. High values for each of these aspects lead to a higher har-
monic mean, indicating balanced and strong performance across all
three dimensions. HS ranges from (0, 1], with higher values (closer
to 1) indicating better overall performance, while lower values
(closer to 0) reflecting poorer performance in at least one aspect.

For example, consider the following two cases:
• Case 1: (accuracy = 0.5, 1 − bias = 0.5, 1 − AUC = 0.5)

HS =
3

1
0.5 +

1
0.5 +

1
0.5

= 0.5

• Case 2: (accuracy = 0.1, 1 − bias = 0.5, 1 − AUC = 0.9)

HS =
3

1
0.1 +

1
0.9 +

1
0.5

≈ 0.136

Both cases have the same arithmetic mean value of 0.5+0.5+0.5
3 =

0.5. However, HS for Case 2 is significantly lower due to its poor
accuracy performance. This illustrates how the harmonic mean is
more sensitive to low-performing aspects, emphasizing the impor-
tance of balanced performance across all three dimensions.

3.3 Implementation Details
We train our deep ML model using the Wide-ResNet (WRN) ar-
chitecture, specifically WRN-16-4 for CIFAR-10(S) and WRN-28-10
for CIFAR-100(S) and CelebA. The baseline model is trained from
scratch on CIFAR-10(S) but pre-trained on ImageNet [29] for CIFAR-
100(S) and CelebA experiments.

We use the parameters relevant to the generalization techniques
and our private and non-private settings, as detailed in Table 1. For
experiments on CIFAR-10 and CIFAR-100 datasets, we follow the
setting for private models as used in [8, 25]. For non-private scenar-
ios, we determined the optimal parameters through experimental
exploration. This included testing various batch sizes (8, 16, 32, 64,
128), setting different learning rates (0.01, 0.1), evaluating multiple
values (1, 2, 4, 8, 16) for GN and AM, and assessing different values
(0.03, 0.04, 0.05) for radius. The CelebA’s training is conducted using
binary cross-entropy loss with logits. We employ early stopping,
as [32], to prevent overfitting in non-private models. We perform
five independent runs with different seeds on each experiment and
report their median, and utilize a server with 8 RTX 4090 GPUs
for the computational requirement. Our implementation is publicly
available at https://anonymous.4open.science/r/PriFa_ML-D04A.
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Table 2: An ablation study on the effect of architectural modifications and changes to the training pipeline for models trained on
CIFAR-10 and CIFAR-100. DP-CIFAR-10 and DP-CIFAR-100 refer to these datasets used in the private setting under (8, 10−5)-DP.
We report model accuracy (acc) and its standard deviation (in gray) on official test sets, and the highest MIA AUC (AUC) among
four attacks belonging to MLP is presented. Additionally, the generalization gap (GGap) is also reported.

DP-CIFAR-10 CIFAR-10 DP-CIFAR-100 CIFAR-100
acc AUC GGap acc AUC GGap acc AUC GGap acc AUC GGap

Baseline 49.47 (1.3) 0.55 3.76 71.13 (0.9) 0.55 1.39 41.4 (1.3) 0.57 18.32 67.62 (0.6) 0.58 11.13
+ GN 54.96 (0.6) 0.55 2.48 76.08 (1.1) 0.55 0.96 48.6 (0.6) 0.56 16.59 73.05 (0.4) 0.59 9.23
+ OBS 73.76 (0.8) 0.55 2.24 83.7 (0.8) 0.54 0.68 69.3 (0.8) 0.55 12.83 81.5 (0.3) 0.64 6.84
+ WS 74.37 (0.6) 0.56 2.17 84.3 (0.6) 0.67 0.63 72.8 (0.6) 0.54 12.31 82.7 (0.3) 0.65 6.46
+ AM 78.14 (0.5) 0.54 2.11 91.58 (0.3) 0.63 0.41 80.7 (0.5) 0.55 11.69 89.4 (0.2) 0.64 5.38
+ PA 79.06 (0.7) 0.53 2.05 91.64 (0.2) 0.63 0.35 83.1 (0.3) 0.55 10.19 90.37 (0.1) 0.66 5.13
+ SAT 81.11 (0.3) 0.53 1.94 92.3 (0.2) 0.65 0.26 83.8 (0.2) 0.56 10.08 91.09 (0.1) 0.66 4.88

4 Experimental Results
In this section, we empirically evaluate the impact of various gen-
eralization techniques on privacy-utility and fairness-utility trade-
offs, as well as their collective effects on privacy, utility, and fairness
in ML models. We systematically integrate these techniques into
the training process and analyze their outcomes across different
datasets and settings. Additionally, we address the Onion Effect,
where removing layers of outlier samples reveals new vulnerabili-
ties, to gain insights into model robustness against privacy attacks.
For a detailed breakdown of each generalization technique’s indi-
vidual effect, please refer to the Supplementary material, Table 8.

4.1 Privacy-Utility Trade-off
We first assess the influence of the generalization techniques on the
privacy-utility trade-off (addressing Q1). For this assessment, we
train our models on CIFAR-10, CIFAR-10S, CIFAR-100, and CIFAR-
100S. We cumulatively integrate each generalization technique into
the SGD training process as proposed by [8], in settings with and
without DP. As the culmination of our technique integration, we
replace SGD with SAT as the final generalization technique in
our sequence. After each integration, we subject the model to the
four listed MIA attacks. This approach allows us to systematically
evaluate the cumulative impact of these techniques and understand
their effect on model accuracy and privacy. We provide a deeper
analysis of how these techniques impact privacy leakage later in
this section. We also compare DP-SGD and DP-SAT for different
privacy budgets and datasets to evaluate their accuracy when both
leverage the generalization techniques.

Table 2 presents the impact of the generalization techniques
on the accuracy, MIA AUC, and generalization gap of private (i.e.,
(8, 10−5)-DP) and non-private models trained on the CIFAR-10 and
CIFAR-100. The generalization gap (GGap) is reported as the differ-
ence between the accuracy on the validation and training sets. We
first discuss the results of models trained over CIFAR-10. Notably, in-
corporating all generalization techniques leads to an accuracy boost
of 31.64% and 21.17% for private and non-private baseline models,
respectively. These substantial increases highlight the effectiveness
of the generalization techniques in enhancing model performance.
Furthermore, this approach experiences a slight decrease in MIA
AUC for the private baseline model but increases MIA AUC by 0.1

for the non-private baseline model. This shows that DP fortifies
the models’ defense against MIAs despite the accuracy gains attrib-
uted to the generalization techniques. OBS and AM are the most
effective techniques for increasing the accuracy of both private
and non-private models. Their significant contributions underscore
their critical role in optimizing model performance. Additionally,
WS significantly increases MIA AUC in the non-private setting.
This increase indicates a trade-off between accuracy improvement
and privacy risk, which needs consideration in model development.
DP-SAT and SAT contribute to a boost of 2.05% and 0.66% in the
accuracy of private and non-private models, respectively. These
results demonstrate the nuanced impact of the SAT method on
model performance. In the context of MIA AUC, DP-SAT does not
impact the private model, and SAT shows a marginal increase of
0.02 in the non-private setting.

In Table 2, we also conduct our experiments on CIFAR-100, in
which applying all generalization techniques notably enhances
model accuracy by 42.7% and 23.47% for the private and non-private
baseline models, respectively. The considerable improvements for
CIFAR-100 further validate the effectiveness of these techniques
across different datasets. This approach increases MIA AUC by 0.08
for the non-private baseline model while exhibitingminimal fluctua-
tion in the private models, underscoring the protective impact of DP
against MIAs in private learning. OBS and AM are the key strategies
for improving accuracy across the private and non-private models.
Their repeated effectiveness across different datasets highlights
their importance in enhancing model utility. OBS also plays a neg-
ative role in elevating MIA AUC in the non-private context. This
negative impact emphasizes the need to balance accuracy improve-
ments with potential privacy risks. Furthermore, both SAT and
DP-SAT increase accuracy by approximately 0.7%. This consistent
improvement with the SAT technique indicates its beneficial role in
refining model accuracy. Finally, upon applying all generalization
techniques to achieve peak accuracy, MIA AUC of the private model
trained on the CIFAR-10 and CIFAR-100 experiences a decrease
of 0.12 and 0.1, respectively, compared to the non-private model
trained on these datasets.

By using the early stopping technique in non-private settings,
we prevent the training process from reaching the point of over-
fitting. In private settings, the limited privacy budget restricts the
number of training iterations, which also helps prevent overfitting.
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Table 3: An ablation study on the effect of architectural modifications and changes to the training pipeline for models trained on
CIFAR-10S and CIFAR-100S. DP-CIFAR-10S and DP-CIFAR-100S refer to these datasets in the private setting under (8, 10−5)-DP,
while CIFAR-100S and CIFAR-10S mention the non-private setting (without DP). We report model accuracy (acc) for Color
(C) and Gray (G) test sets and their standard deviation (in gray), and the highest MIA AUC (AUC) among the four attacks is
reported.

DP-CIFAR-10S CIFAR-10S DP-CIFAR-100S CIFAR-100S
acc (C|G) AUC acc (C|G) AUC acc (C|G) AUC acc (C|G) AUC

Baseline 53.8 (1.8) | 53.6 (1.7) 0.85 67.3 (0.4) | 65.8 0.3) 0.85 19.4 (0.6) | 19.2 (0.6) 0.65 57.9 (0.2) | 57.6 (0.2) 0.76
+ GN 56.3 (0.5) | 56.1 (0.5) 0.85 66.6 (0.2) | 66.8 (0.2) 0.83 23.1 (0.4) | 22.8 (0.4) 0.65 59.7 (0.2) | 58.9 (0.3) 0.75
+ OBS 60.7 (0.3) | 60.5 (0.3) 0.84 69.5 (0.3) | 67.1 (0.3) 0.83 28.4 (0.2) | 28.5 (0.2) 0.66 60.9 (0.1) | 60.5 (0.1) 0.75
+ WS 61.4 (0.6) | 61.1 (0.4) 0.81 71.7 (0.2) | 69.5 (0.5) 0.83 29.8 (0.1) | 30.1 (0.1) 0.65 63.3 (0.1) | 63.1 (0.1) 0.73
+ AM 62.6 (0.2) | 62.6 (0.3) 0.81 75.4 (0.1) | 72.9 (0.2) 0.85 31.6 (0.3) | 31.8 (0.4) 0.65 69.8 (0.3) | 69.5 (0.1) 0.71
+ PA 65.2 (0.1) | 65.1 (0.1) 0.81 84.7 (0.1) | 82.4 (0.1) 0.84 36.5 (0.1) | 36.6 (0.1) 0.68 71.3 (0.1) | 71.2 (0.1) 0.72
+ SAT 65.4 (0.1) | 65.2 (0.2) 0.82 86.8 (0.1) | 85.1 (0.1) 0.85 37.2 (0.1) | 37.3 (0.1) 0.68 72.1 (0.1) | 72.3 (0.2) 0.71

The GGap values reported in Table 2 show that DP-enabled models,
particularly those trained on CIFAR-100, exhibit a higher GGap.
This increase in GGap is due to the noise introduced for privacy,
which impacts accuracy. The application of generalization tech-
niques effectively reduces GGap in both private and non-private
models, though non-private models consistently maintain a lower
GGap.

Table 3 evaluates the impact of the generalization techniques on
the accuracy and MIA AUC of models trained with and without
DP over CIFAR-10S and CIFAR-100S for Color (C) and Gray (G)
test sets shown by C|G. Implementing all generalization techniques
improves the accuracy of the baseline model trained over CIFAR-
10S by almost 11% and 20% for the color and gray datasets in the
private and non-private models, respectively. These improvements
highlight the substantial impact of generalization techniques in
enhancing model performance under both private and non-private
settings. For CIFAR-100S, these accuracy improvements are ap-
proximately 18% and 14% for the private and non-private baseline
models, respectively. The consistent gains across different datasets
emphasize the robustness of these techniques. Incorporating all
generalization techniques into the private baseline model trained on
CIFAR-10S decreases MIA AUC by 0.08. However, these techniques
increase MIA AUC by 0.03 for the private baseline model trained
on CIFAR-100S. MIA AUC changes are marginal in the non-private
model trained on CIFAR-10S but show a decrease of 0.05 in the
non-private model trained on CIFAR-100S.

Moreover, after applying all generalization techniques to achieve
peak accuracy, MIA AUC of the private models trained on CIFAR-
10S and CIFAR-100S experiences a decrease of 0.03 for both datasets
compared to the non-private models trained on these datasets. OBS
and PA are the key techniques in accuracy improvement across
private models trained on CIFAR-10S and CIFAR-100S. Among
others, PA leads to the most accuracy improvement in the non-
private model on CIFAR-10S, while AM does this role for the non-
private model on CIFAR-100S. Furthermore, both SAT and DP-SAT
increase accuracy in private and non-private models.

4.1.1 Detailed Analysis of the Impact of Generalization Techniques
on Privacy Leakage. We now provide a closer examination of the
impact of generalization techniques on privacy leakage (measured

by MIA AUC), specifically for models trained on unbiased datasets
CIFAR-10 and CIFAR-100, as shown in Table 2, and contextualize
these results with previous studies. While Table 2 highlights that
certain generalization techniques can lead to increased MIA AUC,
this outcome aligns with findings in prior research [21, 33], which
indicate that generalization techniques may be less effective in
safeguarding vulnerable samples. Similarly, in the context of large
language models, [6] demonstrates that memorization of vulnerable
samples can occur independently of overfitting. Here, memoriza-
tion is defined following Feldman [15] as unintended retention of
specific samples, where the model’s prediction probability for a
training sample changes significantly if the sample is removed from
the dataset.

In our work, despite using early stopping techniques to prevent
overfitting, we observe evidence of this memorization. We track
MIA AUC throughout the training process, both for private and
non-private models, across baseline models and after incorporating
all generalization techniques. In Figure 2, we track a specific train-
ing sample with a high membership (inference) probability (MP)
throughout the training processes. We observe that this sample is
memorized well before the stopping point indicated by the early
stopping methods. This finding suggests that, even with general-
ization techniques in place, certain samples are memorized early
in the training phase, highlighting that generalization techniques
may leave specific samples more susceptible to privacy risks.

4.1.2 The Comparison of DP-SGD and DP-SAT. Table 4 compares
DP-SGD and DP-SAT for different privacy budgets when both meth-
ods use the generalization techniques of [8]. DP-SAT exhibits supe-
rior classification accuracy consistently compared to DP-SGD in all
scenarios. It shows that the identification of flat minima becomes
notably advantageous.

4.2 Fairness-Utility Trade-off
This sectionmeasures model bias, according to Eq. 1, while applying
generalization techniques in private (i.e., (8, 10−5)-DP) and non-
private models trained on biased datasets CIFAR-10S and CIFAR-
100S. We cumulatively apply each generalization technique into
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(a) Private learning (𝜖 = 8) (b) Non-private learning

Figure 2: The training and test accuracy for four training
processes are depicted for the CIFAR-10 dataset. We track
MIA AUC (AUC) and membership probability (MP) for a spe-
cific training sample (airplane image shown in the upper left
corner of each plot) for a baseline model and after adding
generalization techniques (GT). Early stopping (ES) and over-
fitting (OF) points in the non-private training process are
indicated.

Table 4: The accuracy and standard deviation (in gray) of
models trained on CIFAR-10 and CIFAR-100 using DP-SGD
and DP-SAT.

Datasets Privacy Budget 𝜖
(𝛿 = 10−5) DP-SGD DP-SAT

CIFAR-10

𝜖 = 1 45.13 (0.1) 45.94 (0.1)
𝜖 = 2 60.23 (0.2) 62.59 (0.2)
𝜖 = 4 69.74 (0.4) 72.1 (0.3)
𝜖 = 8 79.06 (0.7) 81.11 (0.3)

CIFAR-100

𝜖 = 1 69.98 (0.3) 71.71 (0.2)
𝜖 = 2 76.17 (0.6) 77.8 (0.4)
𝜖 = 4 79.28 (0.4) 81.83 (0.3)
𝜖 = 8 83.1 (0.3) 83.8 (0.2)

Table 5: Measured bias for models with (8, 10−5)-DP and with-
out DP trained on CIFAR-10S and CIFAR-100S.

CIFAR-10S CIFAR-100S

With DP Wihtout DP With DP Without DP

Baseline 0.04 0.01 0.10 0.11
+ GN 0.06 0.03 0.12 0.12
+ OBS 0.07 0.03 0.15 0.13
+ WS 0.09 0.05 0.19 0.17
+ AM 0.11 0.07 0.23 0.19
+ PA 0.14 0.08 0.26 0.21
+ SAT 0.15 0.09 0.27 0.21

the SGD training process, replace SGD with SAT as the final gener-
alization technique in our sequence, and compute the model bias
after each integration.

Although Table 3 demonstrates that the generalization tech-
niques improve accuracy for models trained on biased datasets
CIFAR-10S and CIFAR-100S, Table 5 shows this improvement is ac-
companied by a significant increase in the models’ bias. Specifically,

in the non-private model trained on CIFAR-10S, the bias metric
has escalated by a factor of 9, from 0.01 to 0.09. For the private
model trained on CIFAR-10S, the bias metric has escalated by a
factor of 3.75, from 0.04 to 0.15. This trend of increasing model bias
is also apparent in CIFAR-100S, with a bias rise by a factor of 2.7 in
the non-private model, from 0.11 to 0.27, and by a factor of 2.6 in
the private model, from 0.10 to 0.26. As it is shown in Table 3, for
CIFAR-10S, AM and WS amplify bias more than other techniques
in the non-private model, while PA is the main contributor to in-
creasing bias in the private context. For CIFAR-100S, both WS and
AM play crucial roles in adjusting bias in non-private and private
models.

4.3 Privacy and Fairness-Utility Trade-offs
This section analyzes the relationship between accuracy, privacy,
and fairness in models trained with and without DP on biased
datasets, CIFAR-10S and CIFAR-100S (addressing Q2). We explore
how this relationship evolves across different privacy budgets
(𝜖 = 1, 2, 4, 8) and dataset bias levels, specifically at 95% and 75%.
Additionally, we investigate how the HS of a model fluctuates under
varying conditions of privacy settings and data bias. By examining
these variables, we aim to provide a comprehensive understanding
of the trade-offs involved in differentially private learning under
various scenarios.

As demonstrated in Table 6, the model bias (computed by Eq. 1)
for the model trained with DP on CIFAR-10S is 0.15, 0.06 higher than
the non-private model. Even though the private model reduces MIA
AUC by a marginal 0.03, it significantly drops the overall accuracy
by approximately 21%. This significant drop in accuracy indicates
a substantial trade-off when implementing DP, highlighting the
challenge of maintaining utility while ensuring privacy. Similarly,
examining the model trained on CIFAR-100S with DP, the bias
metric increased by 0.06 compared to the scenario without DP. This
increase in model bias, although indicative of potential fairness
issues, accompanies a 10% decrease in MIA AUC, suggesting an
improvement in privacy. These findings underscore the intricate
balance that must be navigated between improving privacy and
maintaining model accuracy, particularly in biased datasets. For
CIFAR-10S, the comparison of HSs exhibits how DP, even with
a relatively lenient privacy budget of 𝜖 = 8, disrupts the delicate
balance between accuracy, MIA AUC, and bias. For CIFAR-100S, the
introduction of DP significantly improves privacy and consequently
helps the balance between accuracy, MIA AUC, and bias.

Figure 3a illustrates that an increase in the training data bias
(from 75% to 95%) corresponds to a decrease in accuracy for all 𝜖
values. This can be attributed to the reduced representativeness and
increased skewness of CIFAR10S (95%). When the data is heavily
skewed towards a particular outcome, the added noise dispropor-
tionately impacts the less represented data, making accurate pre-
dictions more challenging. This decrease in accuracy highlights the
adverse effects of training data bias on model performance, further
complicating the privacy-utility trade-off.

Figure 3b demonstrates that higher bias in the training data
increases MIA AUC across all 𝜖 values. This suggests bias boosts
privacy risks by highlighting data patterns that may reveal an
individual’s membership, regardless of the privacy budget value.
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Table 6: Measured accuracy (acc), MIA AUC (AUC), bias, and HS in models trained on CIFAR-10S and CIFAR-100S in both
private and non-private settings.

(8, 10−5)-DP Without DP
acc (C|G) AUC bias HS acc (C|G) AUC bias HS

CIFAR-10S 65.41|65.25 0.82 0.15 0.525 86.8|85.1 0.85 0.09 0.532
CIFAR-100S 37.2|37.3 0.68 0.27 0.618 72.1|72.3 0.71 0.21 0.566

 = 1  = 2  = 4  = 8
Privacy Budgets

0

20

40

60

80

100

A
cc

ur
ac

y

CIFAR-10
DP-CIFAR-10
DP-CIFAR-10S (95%)
DP-CIFAR-10S (75%)

(a)

 = 1  = 2  = 4  = 8
Privacy Budgets

0.5

0.6

0.7

0.8

0.9

1.0

M
IA

 A
U

C

CIFAR-10
DP-CIFAR-10
DP-CIFAR-10S (95%)
DP-CIFAR-10S (75%)

(b)

 = 1  = 2  = 4  = 8
Privacy Budgets

0.0

0.1

0.2

0.3

0.4

0.5

B
ia

s

CIFAR-10S (95%)
DP-CIFAR-10S (95%)
CIFAR-10S (75%)
DP-CIFAR-10S (75%)

(c)

Figure 3: Examined the impact of different privacy budgets (𝜖 = 1, 2, 4, 8) and data bias (95%, 75%) on (a) accuracy, (b) MIA AUC,
(c) bias. DP-CIFAR-10 and DP-CIFAR-10S are used to denote when DP is applied.
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Figure 4: Examined the impact of different privacy budgets
(𝜖 = 1, 2, 4, 8) and data bias (95%, 75%) on HS.

The increased MIA AUC with higher bias indicates that data bias
not only affects utility but also significantly heightens privacy risks,
complicating efforts to protect sensitive information. Figure 3b also
reveals that biased datasets, even at lower privacy budgets, can
still be highly vulnerable to MIAs. Interestingly, the models trained
with DP on the biased CIFAR-10S—regardless of whether the bias
level is set at 95% or 75% — demonstrate more vulnerability to MIAs
than the model trained without DP on the unbiased CIFAR-10. This

suggests that the effectiveness of DP in protecting individual data
points is highly compromised when the training data is biased,
highlighting a significant limitation in current DP methods.

Figure 3c depicts that a boost in the training data bias amplifies
the model bias for all 𝜖 values. Furthermore, despite beginning at a
high value, the bias in model outcome shows a slight reduction as
the epsilon rises. This reduction, albeit small, indicates that increas-
ing the privacy budget can slightly mitigate the exacerbation of
bias, though it does not fully resolve the fairness issues introduced
by biased training data.

Figure 4 demonstrates that increasing privacy budgets and re-
ducing the training data bias result in higher HS, offering a better
balance between accuracy, MIA AUC, and bias. These results sug-
gest that careful adjustment of privacy budgets and efforts to re-
duce (training) data bias are essential for achieving a more balanced
model performance.

Similarly, models trained on CIFAR-100 and CIFAR-100S show
consistent patterns and findings; see the Supplementary material
Figure 8 for clarity.

4.4 Onion Effect Impact
This section explores the Onion Effect [5], a phenomenon where
peeling away a layer of outlier samples that are most vulnerable
to a privacy attack unveils a subsequent layer of samples newly
vulnerable to the same attack. Our investigation extends and dif-
ferentiates from the work of [5] by conducting a broader analysis.
This includes examining models trained without DP not only on
the unbiased CIFAR-10 but also those trained without DP on the
unbiased CIFAR-100 and models trained with and without DP on
the biased CIFAR-10S and CIFAR-100S. We evaluate not only MIA
AUC but also the models’ accuracy when relevant, bias, and HS.
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Figure 5: The impact of removing outliers on model performance (a) accuracy, (b) MIA AUC, and (c) bias trained with and
without DP on CIFAR-10 and CIFAR10S. DP-CIFAR-10 and DP-CIFAR-10S are used to denote when DP is applied.
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Figure 6: HS evaluation on CIFAR-10S and DP-CIFAR-10S
datasets after exclusion of three outlier layers.

By considering these diverse datasets and training scenarios, our
analysis provides a comprehensive view of how the Onion Effect
impacts various aspects of model performance and privacy.

Additionally, we intensify the scrutiny of the Onion Effect by
removing three layers of outliers. In our experiment, outliers are
discerned through their privacy risk scores, computed by the MLP
attack algorithm [1]. The privacy risk score of an input sample for
a target model reflects the posterior probability that the sample is
part of the model’s training data, inferred from themodel’s behavior
in response to that sample [32]. This methodical approach ensures
that the outliers identified are those that the MIA attacks classify
as members with the highest confidence scores.

Our experimental process includes three rounds of data removal,
each eliminating 5,000 samples, equating to a 10% reduction in
the first phase, 11.1% in the second, and 12.5% in the third. After
each removal, we retrain a new model to evaluate model accuracy,
MIA AUC, bias (when relevant), and HS. This iterative removal and
retraining process allows us to observe the cumulative effects of
outlier removal on the model’s performance and privacy metrics.

Figure 5a shows removing outlier layers decreases accuracy, sug-
gesting such removals deprive the model of essential information

for more precise predictions. The decline in accuracy underscores
the critical role that even the most vulnerable samples play in the
overall predictive capability of the model.

Figure 5b illustrates thatMIAAUC stays the same or goes slightly
down in private and non-private models. This describes the Onion
Effect, continuously exposing vulnerable data points as layers of
outliers are peeled away. The persistence of high MIA AUC values
indicates that removing outliers does not mitigate the inherent
vulnerability of the remaining data, confirming the findings of
Carlini et al. [5] even though their attack type differs from ours. A
reason for this effect lies in counterfactual influence [5]: the model’s
behavior toward a target data point can be significantly shaped
by the presence of nearby samples in feature space. When the
most influential outliers are removed, previously stable inliers near
the boundary of the data distribution gain higher counterfactual
influence, effectively becoming the new outliers. This shift increases
the membership inference advantage for these remaining points,
as their prediction behaviors now exhibit heightened sensitivity
to changes in the training set composition, making them more
vulnerable to privacy attacks.

Figure 5c indicates removing outliers may increase bias, likely
because discarding outlier layers lowers accuracy for underrepre-
sented groups, exacerbating bias in the model’s predictions. This
increase in bias reveals a potential trade-off between privacy and
fairness, where efforts to protect privacy might inadvertently harm
model equity.

Finally, Figure 6 shows that outlier removals can be useful in
balancing accuracy, privacy, and fairness, particularly in private
contexts. The improvement in HS values after outlier removal sug-
gests that such interventions may provide a viable solution for
achieving a balanced optimization of these key metrics.

See Supplementary material Figure 9 for CIFAR-100 and CIFAR-
100S results, supporting the above-discussed conclusions.

5 Real-World Setting: Validation with CelebA
Attributes

To validate our findings from synthetic datasets, we use the CelebA
dataset for a real-world evaluation of facial attribute recognition.
Following [36], our evaluation uses mean average precision (mAP)
to measure classification performance, adjusted for gender balance
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Model mAP bias Average AUC
0.5 ≤ skew. ≤ 1 skew. ≥ 0.8

Baseline 74.3 0.011 0.62 0.69
Baseline +
Generalization techniques 77.8 0.019 0.59 0.65

Baseline +
(8, 10−5 )-DP 54.6 0.013 0.54 0.59

Baseline +
Generalization techniques
+ (8, 10−5 )-DP

66.1 0.024 0.53 0.55

Table 7: Performance metrics of various models on attribute
classification on the CelebA test set, including mAP, bias,
and MIA AUC. The Average AUC represents the average MIA
AUC across all attributes, specifying different ranges of skew-
ness.

with a weighted mAP metric: for an attribute present in the images
of 𝑁𝑚 men and 𝑁𝑤 women, we weight positive images of men by
(𝑁𝑚+𝑁𝑤 )
(2𝑁𝑚 ) and positive images of women by (𝑁𝑚+𝑁𝑤 )

(2𝑁𝑤 ) . This adjust-
ment ensures equal consideration of positive samples from men
and women. Additionally, we apply the bias metric, as described in
Eq. 2, to assess how the model’s predictions might amplify existing
gender imbalances. This approach enables us to assess the model’s
ability to handle real-world biases and validate the trends observed
in controlled, synthetic settings.

Table 7 compares performance metrics such as mAP, bias, and
MIA AUC across varying skewness levels for non-private and pri-
vate (i.e., (8, 10−5)-DP) models trained on the CelebA attribute
dataset. Integrating generalization techniques increases the mAP
of both the non-private Baseline model and the private Baseline
+ (8, 10−5)-DP, aligning with the trend observed in Table 3. How-
ever, this integration also amplifies bias in both the non-private
Baseline and private Baseline + (8, 10−5)-DP, consistent with the
trend shown in Table 5. Furthermore, observing higher MIA AUC
values for attributes with greater skewness (≥ 0.8) supports the
conclusion from Figure 3c and Figure 8c that increased training
data bias makes models more susceptible to MIAs.

Figure 7 illustrates the relationship between the skewness level
of various attributes in the CelebA dataset and their correspond-
ing improvement over the baseline model, measured in terms of
Average Precision (AP). The overall trend demonstrates a consis-
tent decline in AP as the skewness level increases. Specifically, for
attributes with a skewness level greater than or equal to 0.8, the
AP decreases by -8.96, suggesting that these attributes are more ad-
versely affected by the model’s bias. This score, for attributes with
a skewness level less than or equal to 0.8, is -7.43, indicating that
attributes with lower skewness experience less negative impact.

6 Conclusion
Our research contributed to the differentially private ML field by
exploring the balance between accuracy and privacy when gen-
eralization techniques are used. We improved model accuracy by
integrating DP-SAT with other methods, such as group normaliza-
tion, optimal batch size, weight standardization, parameter aver-
aging, and augmentation multiplicity. Specifically, we attained a

Figure 7: Per-attribute average precision (AP) deterioration
of the DP-enabled with generalization techniquesmodel over
the Baselinemodel on the CelebA validation set, as a function
of the level of gender imbalance in the attribute. Attributes
with high skewness (such as “bald”) suffer most significantly.

new accuracy milestone of 81.11% under (8, 10−5)-DP on CIFAR-
10, surpassing the previous benchmark [8]. Our analysis demon-
strated the superior performance of DP-SAT compared to DP-SGD
across various privacy parameters and standard image classifica-
tion benchmarks. These advancements underscored the potential
of our approaches to improve the privacy-utility trade-off, signifi-
cantly boosting model accuracy in private and non-private learning
scenarios.

Furthermore, our investigation into the impact of generalization
techniques on model bias showed a trade-off between accuracy and
fairness. While these techniques enhanced accuracy, they also in-
creasedmodel bias, particularly inmodels trained on biased datasets.
A key finding of our study is that the generalization techniques
may not account for the diverse representations in the data. As
these methods optimize for overall accuracy, they may excessively
improve predictions for the well-represented groups, thus widen-
ing the accuracy gap and increasing bias against underrepresented
groups. Another insight of our study is that biased data under-
mines the fairness of models and increases the privacy risks of
MIAs, even in the presence of DP. Biased training data can lead
to skewed model outputs, which adversaries may exploit to infer
membership information about specific individuals in the dataset.
Specifically, we showed that even with early stopping and gener-
alization techniques, certain samples are memorized early in the
training process, indicating that these techniques may leave specific
samples vulnerable to privacy risks. This highlights a limitation in
generalization methods for mitigating privacy concerns. We further
expand our experiments to a real-world setting using the CelebA
attribute dataset, showing that our results consistently align with
real-world attribute imbalances.

Additionally, we introduced the HS metric as a novel tool to eval-
uate the interplay between accuracy, bias, and privacy, providing a
framework for assessingmodel performance. Our findings highlight
that reducing training data bias is instrumental in increasing HS,
thus enhancing the balance of privacy, accuracy, and fairness. Our
study extended the understanding of the Onion Effect, revealing
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that removing layers of outliers consistently affected model accu-
racy, privacy, and bias, further complicating the balance between
these aspects in ML models.

6.1 Limitations and Future Work
Our ablation study investigated the contributions of generalization
techniques when added iteratively in a fixed sequence (GN → OBS
→WS→AM→ PA), as suggested by De et al. [8], with the addition
of SAT as the final step. This approach provided insight into the
cumulative effects of adding these techniques in this specific order.
Additionally, we examined the individual impact of each technique,
as detailed in Table 8. However, our study did not explore the
effects of applying these techniques in alternative sequences or
evaluating all possible sub-combinations (e.g., GN + OBS without
PA). These questions remain directions for future work. Moreover,
the empirical analysis was conducted using specific datasets. Future
research could extend these findings to other domains, data types,
and model architectures. Despite its utility, the HS metric may
simplify the interplay between accuracy, privacy, and fairness. Thus,
developing advanced metrics to capture the nuanced dynamics
between these aspects is important.
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A Supplementary Materials
A.1 Additional analysis of privacy- and

fairness-utility trade-offs
Figure 8 illustrates the impact of various privacy budgets (𝜖 =

1, 2, 4, 8) and levels of data bias (95%, 75%) on performance metrics
(accuracy, MIA AUC, bias, and HS metrics) of models trained with
and without DP on CIFAR-100 and CIFAR-100S datasets. Figure 8a
shows increasing training dataset bias (from 75% to 95%) lowers
accuracy for all 𝜖 values due to less representativeness and more
skewness in CIFAR10S (95%). Heavily skewed data affects minority
or less represented data, complicating accurate predictions. Fig-
ure 8b finds higher dataset bias raises MIA AUC for all 𝜖 values,
indicating increased privacy risks through patterns that may sig-
nal the individual membership, regardless of privacy budget level.
Figure 8c reveals that rising dataset bias levels amplify model bias
across all 𝜖 values, and model bias decreases as 𝜖 increases. Fig-
ure 8d indicates that higher privacy budgets and reduced training
set bias lead to lower HS, enhancing the balance between accuracy,
MIA AUC, and bias.

A.2 Additional analysis of Onion Effect impact
Figure 9 evaluates the effect of outlier layers elimination on the
performance metrics (accuracy, MIA AUC, bias, and HS) of mod-
els trained with (8, 10−5)-DP and without DP on CIFAR-100 and
CIFAR-100S. Figure 9a indicates that removing outlier layers re-
duces accuracy by depriving the model of information needed for
more accurate prediction. Figure 9b shows MIA AUC remains sta-
ble or slightly decreases across models, demonstrating the Onion
Effect. Figure 9c suggests outlier removal might amplify bias, as it
decreases accuracy, particularly for underrepresented groups. Fig-
ure 9d illustrates that removing outliers fails to balance accuracy,
privacy, and bias in both private and non-private learning models.

A.3 Ablation Study on Generalization
Techniques

Table 8 summarizes the effect of generalization techniques indi-
vidually on accuracy, MIA AUC, GGap, and bias for CIFAR-10 and
CIFAR-10S datasets in private and non-private settings. The aver-
age accuracy for the COLOR and GRAY datasets has been reported
for both CIFAR-10S and DP-CIFAR-10S. The key observations from
the table indicate that generalization techniques like OBS and AM
significantly improve model accuracy and reduce GGap across both
DP and non-DP settings. DP settings tend to lower accuracy and
also decrease MIA AUC. Additionally, almost all generalization
techniques lead to a slight increase in bias.
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Figure 8: Examined the impact of different privacy budgets (𝜖 = 1, 2, 4, 8) and data bias (95%, 75%) on (a) accuracy, (b) MIA AUC,
(c) bias and (d) HS. DP-CIFAR-100 and DP-CIFAR-100S are used to denote when DP is applied.

Table 8: An ablation study on the effect of generalization techniques on accuracy (acc), MIA AUC (AUC), GGap, and bias (if
applicable) on CIFAR-10 and CIFAR-10S. DP-CIFAR-10 and DP-CIFAR-10S refer to these datasets used in the private setting
under (8, 10−5)-DP.

DP-CIFAR-10 CIFAR-10 DP-CIFAR-10S CIFAR-10S
acc AUC GGap acc AUC GGap acc AUC GGap bias acc AUC GGap bias

Baseline 49.47 0.55 3.76 71.13 0.55 1.39 53.74 0.85 8.93 0.04 66.25 0.85 4.13 0.01
Baseline + GN 54.96 0.55 2.48 76.08 0.55 1.08 56.28 0.84 7.26 0.06 66.70 0.85 3.86 0.03
Baseline + OBS 68.92 0.56 1.93 78.47 0.57 0.87 58.54 0.84 6.83 0.07 68.39 0.84 3.29 0.03
Baseline + WS 52.42 0.54 2.26 73.19 0.58 1.17 55.62 0.83 7.78 0.05 67.19 0.84 3.56 0.03
Baseline + AM 54.38 0.55 2.41 79.83 0.55 0.54 55.27 0.82 7.62 0.05 70.87 0.85 2.75 0.04
Baseline + PA 50.97 0.54 3.18 72.26 0.55 1.24 57.42 0.83 7.65 0.05 73.84 0.86 1.89 0.05
Baseline + SAT 51.29 0.54 2.28 72.84 0.55 1.13 57.34 0.84 7.38 0.06 69.04 0.82 2.16 0.04
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Figure 9: The impact of removing outliers on model performance (accuracy, MIA AUC, bias, and HS) trained with and without
DP on CIFAR-100 and CIFAR100S. DP-CIFAR-100 and DP-CIFAR-100S are used to denote when DP is applied.
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