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Abstract
Two parties wish to collaborate on their datasets. However, before

they reveal their datasets to each other, the parties want to have

the guarantee that the collaboration would be fruitful. We look at

this problem from the point of view of machine learning, where

one party is promised an improvement on its prediction model by

incorporating data from the other party. The parties would only

wish to collaborate further if the updated model shows an improve-

ment in accuracy. Before this is ascertained, the two parties would

not want to disclose their models and datasets. In this work, we

construct an interactive protocol for this problem based on the fully

homomorphic encryption scheme over the Torus (TFHE) and label

differential privacy, where the underlying machine learning model

is a neural network. Label differential privacy is used to ensure that

computations are not done entirely in the encrypted domain, which

is a significant bottleneck for neural network training according

to the current state-of-the-art FHE implementations. We formally

prove the security of our scheme assuming honest-but-curious par-

ties, but where one party may not have any expertise in labelling

its initial dataset. Experiments show that we can obtain the output,

i.e., the accuracy of the updated model, with time many orders of

magnitude faster than a protocol using entirely FHE operations.

Keywords
privacy-preserving machine learning, fully homomorphic encryp-

tion, label differential privacy

1 Introduction
Data collaboration, i.e., joining multiple datasets held by different

parties, can be mutually beneficial to all parties involved as the

joint dataset is likely to be more representative of the population

than its constituents. In the real world, parties have little to no

knowledge of each others’ datasets before collaboration. Arguably,

the parties would only collaborate if they had some level of trust in

the quality of data held by other parties. When the parties involved
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are reputable organizations, one may assume their datasets to be of

high quality. However, in many cases, little may be known about

them. In such cases, each party would like some sort of assurance
that their collaboration will indeed be beneficial.

Let us elaborate this scenario with an example. Assume compa-

nies 𝑃1 and 𝑃2 are in the business of developing antivirus products.

Each company holds a dataset of malware programs labelled as a

particular type of malware, e.g., ransomware, spyware and trojan.

This labelling is done by a team of human experts employed by the

company. Since manual labelling is expensive, 𝑃1 uses a machine

learning model to label new malware programs. The performance

of this model can be tested against a smaller holdout dataset of
the latest malware programs labelled by the same experts. How-

ever, due to a number of reasons such as the under-representation

of some of the malware classes in the training dataset or concept
drift [31] between the training dataset and the holdout dataset, the

performance of this model on the holdout dataset begs improve-

ment. Company 𝑃2 offers a solution: by combining 𝑃2’s dataset with

𝑃1’s, the resulting dataset would be more representative and hence

would improve the accuracy of 𝑃1’s model. Before going into the

laborious process of a formal collaborative agreement with 𝑃2, 𝑃1
would like to know whether this claim will indeed be true. On the

other hand, 𝑃2 would not want to hand over its dataset, in particular,

its labels to 𝑃1 before the formal agreement.

Many similar examples to the one outlined above may occur in

real-world data collaboration scenarios. A rather straightforward

solution to this problem can be obtained using fully homomor-

phic encryption (FHE). Party 𝑃2 encrypts the labels of its dataset

using the encryption function of the FHE scheme,
1
and sends its

dataset with encrypted labels to 𝑃1. Party 𝑃1, then combines this

dataset with its own, trains the model and tests its accuracy against

the holdout dataset all using FHE operations. The final output is

then decrypted by party 𝑃2.
2
However, this involves training the

model entirely in the encrypted domain, which even with the state-

of-the-art homomorphic encryption schemes, is computationally

expensive [16, 21, 26, 32, 33].

In this paper, we propose an efficient solution to this problem.

Our main contributions are as follows

1
For reasons discussed in Section 2.2, we only consider the case when the labels are

encrypted, and not the features themselves.

2
We are assuming that decryption is faithful.
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• We combine fully homomorphic encryption over the torus [9]

with label differential privacy [8] to provide an interactive

solution to the problem where parties 𝑃1 and 𝑃2 would like

to train a model on their combined datasets to assess its accu-

racy without learning the resulting model and each other’s

data labels. Ourmain idea is that since the features are known

in the clear, the first forward pass in the backpropagation

algorithm of neural networks can be performed in the clear,

up to the point where we utilize the (encrypted) labels from

party 𝑃2’s dataset. If further computation is done homo-

morphically, then we would endure the same computational

performance bottleneck as previous work. We, therefore, add

(label) differentially private noise to the gradients and de-

crypt them before the backward pass. This ensures that most

steps in the neural network training are done in cleartext,

albeit with differentially private noise, giving us computa-

tional performance improvements over an end-to-end FHE

solution.

• We use label differential privacy in a novel way. More specif-

ically, 𝑃2 can use a specific value of the differentially privacy

parameter 𝜖 such that the accuracy of the model on the joint

datasets lies between the accuracy of 𝑃1’s model and the

accuracy achievable on the joint model if no differential pri-

vacy were to be applied. This provides assurance to 𝑃1 that

the combined dataset will improve accuracy promising fur-

ther improvement if the parties combine their datasets in the

clear via the formal collaborative agreement. Thus, in our

protocol, we need not worry about making the differentially

private model as accurate as the final model, which is in

general a difficult task in differential privacy literature.

• We initiate the study to determine whether it is possible

to improve model accuracy by joining two datasets where

the labels from the second dataset are not labelled with any

domain knowledge. As we show, there are cases in which

the combined dataset may show improvement over the stan-

dalone dataset even without domain knowledge. This prob-

lem has broader applications than our work. Our treatment

is limited to binary classification and the 0-1 loss function.

We leave full exploration of this topic as future work.

• We provide an implementation of our protocol using Zama’s

Concrete library and evaluate our protocol over multiple

datasets. Our results show that our protocol can be imple-

mented faster than an end-to-end FHE solution.

2 Preliminaries and Threat Model
2.1 Notation
We follow the notations introduced in [27]. The datasets come

from the joint domain: D = X × Y, where X denotes the domain

of features, and Y the domain of labels. A dataset 𝐷 is a multi-

set of elements drawn i.i.d. under the joint distribution D over

domain points and labels. We denote by D𝑥 , the marginal distri-

bution of unlabelled domain points. In some cases, a dataset may

be constructed by drawing unlabelled domain points under D𝑥 ,
and then labelled according to some labelling function, which may

not follow the marginal distribution of labels under D, denoted

D𝑦 |𝑥 . In this case, we shall say that the dataset is labelled by the

labelling function to distinguish it from typical datasets. Let A
denote the learning algorithm, e.g., a neural network training al-

gorithm. We denote by𝑀 ← A(𝐷) the model𝑀 returned by the

learning algorithm on dataset 𝐷 . The notation (𝑥,𝑦) ∼ D means

that the sample (𝑥,𝑦) is sampled from the distribution D, and the

notation (𝑥,𝑦) ∼ 𝐷 , where 𝐷 is a dataset means that the sample

(𝑥,𝑦) is sampled uniformly at random from 𝐷 . Given the model

𝑀 , and a sample (𝑥,𝑦) ∼ D, we define a generic loss function

ℓ (𝑀,𝑥,𝑦), which outputs a non-negative real number. For instance,

ℓ (𝑀,𝑥,𝑦) can be the 0-1 loss function, defined as: ℓ (𝑀,𝑥,𝑦) = 1

if 𝑀 (𝑥) ≠ 𝑦, and 0 otherwise. We define the true error of 𝑀 as

𝐿D (𝑀) = E(𝑥,𝑦)∼D [ℓ (𝑀,𝑥,𝑦)]. Notice that for the 0-1 loss func-

tion, this means that 𝐿D (𝑀) = Pr(𝑥,𝑦)∼D [𝑀 (𝑥) ≠ 𝑦]. The empir-

ical error of the model 𝑀 over the dataset 𝐷 having𝑚 elements

(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚) is defined as:

𝐿𝐷 (𝑀) =
1

𝑚

∑︁
𝑖∈[𝑚]

ℓ (𝑀,𝑥𝑖 , 𝑦𝑖 ) (1)

Note that for the 0− 1 loss function 𝐿𝐷 (𝑀) = Pr(𝑥,𝑦)∼𝐷 [𝑀 (𝑥) ≠ 𝑦].

2.2 The Setting

The Scenario. We consider two parties 𝑃1 and 𝑃2. For 𝑖 ∈ {1, 2},
party 𝑃𝑖 ’s dataset is denoted𝐷𝑖 . Each𝐷𝑖 contains points of the form

(x, 𝑦). The parties wish to collaborate on their datasets 𝐷𝑖 . The fea-

tures x are shared in the open; whereas the labels 𝑦 for each x in

𝐷𝑖 are to be kept secret from the other party. This scenario holds in

applications where gathering data (x) may be easy, but labelling is
expensive. For example, malware datasets (binaries of malware pro-

grams) are generally available to antivirus vendors, and often times

features are extracted from these binaries using publicly known fea-

ture extraction techniques, such as the LIEF project [30]. However,

labelling them with appropriate labels requires considerable work

from (human) experts. Other examples include sentiment analysis

on public social media posts, and situations where demographic

information is public (e.g., census data) but income predictability

is private [8]. Lastly, we want to acknowledge that our focus is

on supervised learning. There are works that show unsupervised

learning techniques may improve the model [35] even if the labels

are important in many applications such as malware detection. Our

focus is on the added value of the labels.

The Model. Before the two parties reveal their datasets to each

other, the parties want to have the guarantee that the collaboration

would be valuable. We shall assume that party 𝑃1 already has a

model 𝑀1 trained on data 𝐷1. 𝑃1 also has a labelled holdout data

𝐷hold against which 𝑃1 tests the accuracy of 𝑀1. The goal of the

interaction is to obtain a new model𝑀2 trained on 𝐷1 ∪ 𝐷2.𝑀2’s

accuracy again is tested against 𝐷hold. The collaboration is defined

to be valuable for 𝑃1 if the accuracy of𝑀2 is higher than the accu-

racy of 𝑀1 against 𝐷hold. In this paper, we only study value from
𝑃1’s perspective. We will consider a neural network trained via

stochastic gradient descent as our canonical model.

The Holdout Dataset. As mentioned above, 𝑃1 has a holdout
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dataset 𝐷hold against which the accuracy of the models is evaluated.

This is kept separate from the usual training-testing split of the

dataset 𝐷1. It makes sense to keep the same holdout dataset to

check how the model trained on the augmented/collaborated data

performs. For instance, in many machine learning competitions

teams compete by training their machine learning models on a

publicly available training dataset, but the final ranking of the

models, known as private leaderboard, is done on a hidden test

dataset [4]. This ensures that the models are not overfitted by using

the test dataset as feedback for re-training. We assume that 𝐷hold is

continually updated by adding new samples (e.g., malware never

seen by 𝑃1) labelled by human experts, and is more representative

of the population than 𝐷1. For instance, the holdout dataset reflects

the concept drift [31] better than 𝐷1. If 𝐷2 happens to have the

same concept drift as 𝐷hold, then 𝑀2 (trained on 𝐷1 ∪ 𝐷2) would

have better test accuracy than𝑀1 against 𝐷hold. Alternatively, the

holdout dataset could be more balanced than 𝐷1, e.g., if 𝐷1 has

labels heavily skewed towards one class. Again, in this case, if 𝐷2

is more balanced than 𝐷1, then𝑀2 will show better accuracy. We

argue that it is easy for 𝑃1 to update 𝐷hold than 𝐷1 as the latter

requires more resources due to the difference in size.

2.3 Privacy

Privacy Expectations.We target the following privacy properties:

• Datasets 𝐷1 and 𝐷hold, and model𝑀1 should be hidden from

𝑃2.

• The labels of dataset 𝐷2 should be hidden from 𝑃1.

• Neither 𝑃1 nor 𝑃2 should learn𝑀2, i.e., the model trained on

𝐷1 ∪ 𝐷2.

• Both parties should learn whether 𝐿hold (𝑀2) < 𝐿hold (𝑀1),
where 𝐿hold is the loss evaluated on 𝐷hold (see Eq. (1)).

Threat Model. We assume that the parties involved, 𝑃1 and 𝑃2,

are honest-but-curious. This is a reasonable assumption since once

collaboration is agreed upon, the model trained on clear data should

be able to reproduce any tests to assess the quality of data pre-

agreement. Why then would 𝑃1 not trust the labelling from 𝑃2?

This could be due to the low quality of 𝑃2’s labels, for many reasons.

For example, 𝑃2’s expertise could in reality be below par. In this

case, even though the labelling is done honestly, it may not be of

sufficient quality. Furthermore, 𝑃2 can in fact lie about faithfully

doing its labelling without the fear of being caught. This is due to

the fact that technically there is no means available to 𝑃1 to assess

how 𝑃2’s labels were produced. All 𝑃2 needs to do is to provide the

same labels before and after the collaborative agreement. As long

as labelling is consistent, there is no fear of being caught.

2.4 Background

Feedforward Neural Networks. A fully connected feedforward

neural network is modelled as a graph with a set of vertices (neu-

rons) organised into layers and weighted edges connecting vertices

in adjacent layers. The sets of vertices from each layer form a dis-

joint set. There are at least three layers in a neural network, one

input layer, one or more hidden layers and one output layer. The

number of neurons in the input layer equals the number of features

(dimensions). The number of neurons in the output layer is equal to

the number of classes 𝐾 . The vector of weights w of all the weights

of the edges constitutes the parameters of the network, to be learnt

during training. We let 𝑅 denote the number of weights in the last

layer, i.e., the number of edges connecting to the neurons in the

output layer. For a more detailed description of neural networks,

see [27].

Backward Propagation and Loss. Training a deep neural net-

work involves multiple iterations/epochs of forward and backward

propagation. The input to each neuron is the weighted sum of the

outputs of all neurons connected to it (from the previous layer),

where the weights are associated with the edge connecting to the

current neuron. The output of the neuron is the application of the

activation function on this input. In this paper, we assume the acti-

vation function to be the sigmoid function. Let z =
(
𝑧1, 𝑧2, . . . , 𝑧𝐾

)
denote the output of the last layer of the neural network.We assume

there to be a softmax layer, immediately succeeding this which out-

puts the probability vector p, whose individual components are

given as 𝑝𝑖 = 𝑒
𝑧𝑖 /(∑𝑗 𝑒

𝑧 𝑗 ). Clearly, the sum of these probabilities

is 1. Given the one-hot encoded label y, one can compute the loss

as 𝐿(w) = ∑𝐾
𝑖=1 ℓ (𝑝𝑖 , 𝑦𝑖 ), where ℓ (·, ·) is the loss function. In this

paper, we shall consider it to be the cross-entropy loss given by:

ℓ (𝑝𝑖 , 𝑦𝑖 ) = −
∑𝐾
𝑖=1 𝑦𝑖 ln𝑝𝑖 . Given 𝐿(w), we can calculate its gradient

as:

∇𝐿(w) = 𝜕𝐿

𝜕w
=
𝜕𝐿

𝜕p
𝜕p
𝜕z

𝜕z
𝜕w

This chain rule can be used in the backpropagation algorithm to cal-

culate the gradients to minimise the loss function via stochastic gra-

dient descent (SGD). The calculated gradients will be then used to

update the weights associated with each edge for the forward prop-

agation in the next epoch. For more details of the backpropagation-

based SGD algorithm, see [27].

Label Differential Privacy. Since only the labels of the dataset 𝐷2

are needed to be private, we shall use the notion of label differential

privacy to protect them. Ordinary differential privacy [13] defines

neighbouring datasets as a pair of datasets which differ in one row.

Label differential privacy considers two datasets of the same length

as being neighbours if they differ only in the label of exactly one

row [8]. This is a suitable definition of privacy for many machine

learning applications such as malware labels (as already discussed)

and datasets where demographic information is already public

but some sensitive feature (e.g., income) needs to be protected [8].

Furthermore, for tighter privacy budget analysis we use the notion

of 𝑓 -differential privacy [12], modified for label privacy since it

allows straightforward composition of the Gaussian mechanism

as opposed to the normal definition of differential privacy which

needs to invoke its approximate variant to handle this mechanism.

More formally, two datasets 𝐷1 and 𝐷2 are said to be neighbouring

datasets, if they are of the same size and differ only in at most one

label. Due to lack of space, we present the formal definitions in

Appendix B.

Fully Homomorphic Encryption over the Torus (TFHE). Let T
denote the torus, the set of real numbers modulo 1, i.e., the set [0, 1).
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The torus defines an Abelian group where two elements can be

added modulo 1. The internal product is not defined. However, one

can multiply an integer with a torus element by simply multiplying

them in a usual way and reducing modulo 1. For a positive integer 𝑞,

the discretised torus T𝑞 is defined as the set {0, 1𝑞 , . . . ,
𝑞−1
𝑞
}. Clearly

T𝑞 ⊂ T. Given elements
𝑎
𝑞
, 𝑏
𝑞
∈ T𝑞 , their sum is

𝑐
𝑞
∈ T𝑞 , where

𝑐 ≡ 𝑎 +𝑏 (mod 𝑞). Given an integer 𝑧 ∈ Z and a torus element
𝑎
𝑞
∈

T𝑞 , we define their product 𝑧 · 𝑎𝑞 as
𝑏
𝑞
where 𝑏 ≡ 𝑧𝑎 (mod 𝑞). The

plaintext space is a subgroup of T𝑞 , defined as P = {0, 1
𝑝
, . . . ,

𝑝−1
𝑝
},

for some 𝑝 ≥ 2 such that 𝑝 divides 𝑞.

Let 𝜒 be the normal distribution N(0, 𝜎2) over R. Let 𝑒0 ← 𝜒 .

The noise error 𝑒 ∈ 𝜒 is defined as 𝑒 =
⌊𝑞𝑒0 ⌉
𝑞

. Let 𝑁 be a positive

integer. Let s = (𝑠1, . . . , 𝑠𝑁 ) be a binary vector chosen uniformly

at random (the private key). Given a message 𝑥 ∈ P, the TLWE

encryption of 𝑥 under s is defined as c = (a, 𝑏) ∈ T𝑁+1𝑞 , where a is
a vector of 𝑁 -elements drawn uniformly at random from T𝑞 , and

𝑏 = ⟨s, a⟩ + 𝑥 + 𝑒.
To decrypt c one computes: 𝑥∗ = 𝑏 − ⟨s, a⟩, and returns the nearest

element in P to 𝑥∗. The scheme is secure under the learning with

errors (LWE) problem over the discretized torus [9, 17]:

Definition 1 (TLWE Assumption). Let 𝑞 and 𝑁 ∈ N. Let s =

(𝑠1, . . . , 𝑠𝑁 ) be a binary vector chosen uniformly at random. Let 𝜒

be an error distribution defined above. The learning with errors

over the discretized torus (TLWE) problem is to distinguish samples

chosen according to the following distributions:

D0 = {(a, 𝑏) | a← T𝑁𝑞 , 𝑏 ← T𝑞},
and

D1 = {(a, 𝑏) | a← T𝑁𝑞 , 𝑏 = ⟨s, a⟩ + 𝑒, 𝑒 ← 𝜒},
where except for 𝑒 which is sample according to the distribution 𝜒 ,

the rest are sampled uniformly at random from the respective sets.

Integer Encoding. Before encrypting, we will encode the input as
an integer. This is a requirement in the current version of Zama’s

Concrete TFHE library [36], which we use for our implementation.

Let x ∈ R𝑚 . For a precision level 𝑟 , where 𝑟 is a positive integer,

we will encode x as ⌊𝑟x⌋ = (⌊𝑟𝑥1⌋, . . . , ⌊𝑟𝑥𝑚⌋), before encrypting.
Decoding is done, after decryption, by dividing the encoded vector

by 𝑟 . For instance if 𝑟 = 10, then the real number 3.456 is encoded

as ⌊34.56⌋ = 34. Decoding it yields 3.4.

Parameters. We use the default parameters for TLWE encryption

available through the Concrete library. Under the default setting,
we have 𝑁 = 630, giving us a security level of 128 bits. The param-

eter 𝑞 is set to 64 bits, meaning a torus element can be represented

by 64 bits [17]. Since the plaintext parameter 𝑝 divides 𝑞, we can

assume 𝑝 to be less than 64 bits. The noise parameter 𝜎 is 2
−15

[17].

3 Lack of Domain Knowledge
Before we give a privacy-preserving solution to our problem, we

want to investigate whether the problem has a solution in the clear

domain. More precisely, we seek to find conditions when party

𝑃2, lacking domain knowledge, cannot come up with a dataset

𝐷2 such that 𝐿hold (𝑀2) < 𝐿hold (𝑀1). Here 𝑀2 ← A(𝐷1 ∪ 𝐷2)

and 𝑀1 ← A(𝐷1), and 𝐿hold is as defined in Eq. (1). Although at

first glance the problem appears to be simple, in reality it is quite

involved as multiple scenarios need to be considered. We therefore

only assume binary classification, with the results for the multiclass

setting left for future work. We assume the 0-1 loss function. How

do we define lack of domain knowledge? Since the feature vectors

are public, 𝑃2 can easily obtain a set of raw inputs to obtain the

feature vectors in 𝐷2. Thus, domain knowledge should be captured

in the labels to the feature vectors in 𝐷2. We define lack of domain

knowledge as using a labeling function 𝑔, potentially probabilistic,

which labels any domain point 𝑥 independent of the distribution of

its true label. That is given any 𝑥 ∈ X:

Pr[𝑔(𝑥) = 𝑦′ | D𝑦 |𝑥 ] = Pr[𝑔(𝑥) = 𝑦′], (2)

for all 𝑦′ ∈ Y. Note that this does not mean that the labeling is

necessarily incorrect. We call 𝑔 as defined in Eq. 2 as an oblivious
labeling function. We shall first show that if 𝐷 is labelled by an

oblivious labeling function 𝑔, then 𝑀 as returned by a learning

algorithm A (taking 𝐷 as the input) will have:

E𝑔 [𝐿hold (𝑀)] = 1/2,

provided that𝐷hold is a balanced dataset, where the subscript means

that expectation is taken over the random choices of 𝑔. Having

established the necessity of 𝐷hold to be balanced, we shall then

show that

E𝑔 [𝐿hold (𝑀2)] ≥ 𝐿hold (𝑀1),

where 𝑀2 ← A(𝐷1 ∪ 𝐷2), and 𝑀1 ← A(𝐷1), provided a certain

condition is met. Details follow.

Theorem 1. Let 𝐷hold be a balanced dataset. That is Pr[𝑦 = 1 |
(𝑥,𝑦) ∼ 𝐷hold] = 1

2
, where ∼ denotes uniform random sampling. Let

𝐷 be a dataset labelled by an oblivious labeling function 𝑔. Let A be
a learning algorithm. Let𝑀 ← A(𝐷). Then,

E𝑔 [𝐿hold (𝑀)] = 1/2,

where the expectation is over the random choices of 𝑔.

Proof. See Appendix A □

What happens if 𝐷hold is not balanced? Then, we may get a

loss less than 1/2. To see this, assume that Pr[𝑦 = 1 | (𝑥,𝑦) ∼
𝐷hold] = 𝑞 > 1

2
. Consider the oblivious labelling function 𝑔 which

outputs 1 with probability 𝑞 = 1, i.e., the constant function 𝑔(𝑥) = 1.

Then if𝑀 is the Bayes optimal classifier [27, §3.2.1] for 𝑔, then for

(𝑥,𝑦) ∼ 𝐷hold, we have:

Pr[𝑀 (𝑥) ≠ 𝑦] = Pr[𝑀 (𝑥) = 0 | 𝑦 = 1] Pr[𝑦 = 1]
+ Pr[𝑀 (𝑥) = 1 | 𝑦 = 0] Pr[𝑦 = 0]
= Pr[𝑀 (𝑥) = 1 | 𝑦 = 0] Pr[𝑦 = 0]

= Pr[𝑦 = 0] = 1 − 𝑞 <
1

2

.

Thus, it is crucial to test the model over a balanced dataset.

Theorem 2. Let 𝐷1 be a dataset. Let 𝐷2 be a dataset labelled
according to an oblivious labeling function 𝑔. Let 𝐷hold be a balanced
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𝐷2

𝐷1

𝑥 𝑦

Figure 1: A batch will contain some points from 𝐷1 and some
from 𝐷2. Only the labels from the points in 𝐷2 needs to be
kept private (shaded black) from 𝑃1.

dataset. LetA be a learning algorithm. Let𝑀1 ← A(𝐷1) and𝑀2 ←
A(𝐷1 ∪ 𝐷2). If :

Pr

𝑔,(𝑥,𝑦)∼𝐷hold
[𝑀2 (𝑥) = 0 | 𝑦 = 1] + Pr

𝑔,(𝑥,𝑦)∼𝐷hold
[𝑀2 (𝑥) = 1 | 𝑦 = 0]

≥ Pr

(𝑥,𝑦)∼𝐷hold
[𝑀1 (𝑥) = 0 | 𝑦 = 1] + Pr

(𝑥,𝑦)∼𝐷hold
[𝑀1 (𝑥) = 1 | 𝑦 = 0],

(3)

then

E𝑔 [𝐿hold (𝑀2)] ≥ 𝐿hold (𝑀1),
where the expectation is taken only over random choices of 𝑔, and
(𝑥,𝑦) ∼ 𝐷hold means the sample is chosen uniformly at random from
𝐷hold.

Proof. See Appendix A. □

Concluding, we have:

Theorem 3. Let 𝐷1 be a dataset. Let 𝐷2 be a dataset labelled
according to an oblivious labeling function 𝑔. Let 𝐷hold be a balanced
dataset of size𝑚. Let A be a learning algorithm. Let𝑀1 ← A(𝐷1)
and 𝑀2 ← A(𝐷1 ∪ 𝐷2). Under condition (3) of Theorem 2, for any
𝛿 > 0

Pr

𝑔
[𝐿hold (𝑀1) − 𝐿hold (𝑀2) ≥ 𝛿] ≤ exp(−2𝑚𝛿2),

where the probability is taken over the random choices of 𝑔.

Proof. See Appendix A. □

Exactly when does condition (3) in Theorems 2 and 3 hold? We

postulate and give some experimental evidence that the condition

holds only when 𝐷1 follows the distribution D. On the other hand,

if the labels of 𝐷1 are out of distribution, i.e., one class is more

under-represented compared to the true distribution, the above

condition does not hold. Due to lack of space, details appear in

Appendix A. We acknowledge that we have only touched the tip of

the iceberg when it comes to the full exploration of this problem for

both binary and multi-class setting and leave it as an open problem.

4 Our Solution
4.1 Intuition
Consider the training of the neural network on 𝐷1 ∪ 𝐷2, with

weights w. Using the stochastic gradient descent (SGD) algorithm,

one samples a batch 𝐵, from which we calculate per sample loss

𝐿𝑠 (w), where 𝑠 = (x, y) ∈ 𝐵. Given this, we can compute the

average loss over the batch via:

𝐿𝐵 (w) =
1

|𝐵 |
∑︁
𝑠∈𝐵

𝐿𝑠 (w) =
1

|𝐵 |
∑︁
𝑠∈𝐵
𝑠∈𝐷1

𝐿𝑠 (w) +
1

|𝐵 |
∑︁
𝑠∈𝐵
𝑠∈𝐷2

𝐿𝑠 (w) (4)

As shown in Figure 1, everything in this computation is known to

𝑃1, except for the labels in 𝐷2. Thus, 𝑃1 can compute the gradients

for samples in 𝐷1, but to update the weights, 𝑃1 needs the gradients

for samples from 𝐷2. From Eq. (4), we are interested in computing

the loss through the samples in a batch 𝐵 that belong to the dataset

𝐷2. Overloading notation, we still use 𝐵 to denote the samples

belonging to𝐷2. The algorithm tominimize the loss is the stochastic

gradient descent algorithm using backpropagation. This inolves

calculating the gradient ∇𝐿𝐵 (w). As noted in [34], if we are using

the backpropagation algorithm, we only need to be concerned about

the gradients corresponding to the last layer. Again, to simplify

notation, we denote the vector of weights in the last layer by w.

In Appendix D, we show that the gradient of the loss can be

computed as:

∇𝐿𝐵 (w) =
1

|𝐵 |
∑︁
𝑠∈𝐵

𝐾∑︁
𝑖=1

𝑝𝑖 (𝑠)
𝜕𝑧𝑖 (𝑠)
𝜕w

− 1

|𝐵 |
∑︁
𝑠∈𝐵

𝐾∑︁
𝑖=1

𝑦𝑖 (𝑠)
𝜕𝑧𝑖 (𝑠)
𝜕w

, (5)

where 𝑦𝑖 (𝑠) is the 𝑖th label of the sample 𝑠 , 𝑝𝑖 (𝑠) is the probability
of the 𝑖th label of sample 𝑠 , 𝑧𝑖 (𝑠) is the 𝑖th input to the softmax

function for the sample 𝑠 , and 𝐾 denotes the number of classes. The

LHS term of this equation can be computed by 𝑃1 as this is in the

clear. However, the RHS term requires access to the labels.

If we encrypt the labels, the gradients calculated in Eq. (5) will

be encrypted, using the homomorphic property of the encryption

scheme. This means that the gradient of the batch, as well as the

weight updates will be encrypted. Thus, the entire training pro-

cess after the first forward pass of the first epoch will be in the

encrypted domain. While this presents one solution to our problem,

i.e., obtaining an encrypted trained model, which could then be

decrypted once the two parties wish to collaborate, existing line

of works [16, 21, 26, 32, 33] show that neural network training

entirely in the encrypted domain is highly inefficient. For instance,

a single mini-batch of 60 samples can take anywhere from more

than 30 seconds to several days with dedicated memory ranging

from 16GB to 250GB using functional encryption or homomorphic

encryption [32]. In some of our neural network implementations,

we use a batch size of 128 with 100 epochs, which means that the

time consumed for an end-to-end training entirely in the encrypted

domain would be prohibitive. Our idea is to take advantage of the

fact that the feature vectors are in the clear, and hence it may be

possible to decrypt the labels in each batch so that backpropagation

can be carried out in cleartext, giving us computational advantage

over an all encrypted solution. This is where we employ label differ-

ential privacy. A straightforward way to accomplish this is to let 𝑃2
add differentially private noise to all its labels and simply handover

its noisy dataset to 𝑃1, playing no further part (except for receiving

the accuracy result). However, this is less desirable from the utility

point of view as we argue in detail in Section 6.4. Instead, we add

noise to the gradients in each batch with 𝑃2 interactively adding

noise to the average gradient computed in each epoch, similar to

what is done in [34].
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4.2 Proposed Protocol
Our solution is as follows. Figure 2 shows the higher level overview

of our protocol.

(1) To start, 𝑃2 sends only the encrypted form of its dataset 𝐷2

where each sample is (x, JyKk), where k is 𝑃2’s encryption

key of a homomorphic encryption scheme. In particular, JyKk
is a vector of𝐾 elements, each element of which is encrypted

under k.
(2) For each sample 𝑠 ∈ 𝐵 and 1 ≤ 𝑖 ≤ 𝐾 , 𝑃1 computes

𝜕𝑧𝑖 (𝑠 )
𝜕w .

This results in 𝐾 × |𝐵 | vectors of 𝑅-elements each, where 𝑅

is the number of weights in the last layer.

(3) For each sample 𝑠 ∈ 𝐵 and 1 ≤ 𝑖 ≤ 𝐾 , 𝑃1 does element-

wise homomorphic scalar multiplication:
𝜕𝑧𝑖 (𝑠 )
𝜕w J𝑦𝑖 (𝑠)Kk =

J𝑦𝑖 (𝑠) ⌊𝑟 𝜕𝑧𝑖 (𝑠 )𝜕w ⌋Kk, where 𝑟 is the precision parameter. This

amounts to a total of 𝐾 × |𝐵 | × 𝑅 homomorphic scalar multi-

plications.

(4) 𝑃1 homomorphically adds:∑︁
𝑠∈𝐵

𝐾∑︁
𝑖=1

s
𝑦𝑖 (𝑠)

⌊
𝑟
𝜕𝑧𝑖 (𝑠)
𝜕w

⌋{
k

=

t∑︁
𝑠∈𝐵

𝐾∑︁
𝑖=1

𝑦𝑖 (𝑠)
⌊
𝑟
𝜕𝑧𝑖 (𝑠)
𝜕w

⌋|
k

= J𝑁𝐵 (w)Kk , (6)

which amounts to a total of 𝐾 × |𝐵 | × 𝑅 homomorphic addi-

tions. This results in an 𝑅-element vector encrypted under

k.
(5) 𝑃1 computes the sensitivity of the gradients of the loss func-

tion for the current batch. As shown in Appendix E this is

𝑟Δ𝑆𝐵 (w), where:

Δ𝑆𝐵 (w) =
2

|𝐵 | max

𝑖,𝑠





 𝜕𝑧𝑖 (𝑠)𝜕w






2

, (7)

is the sensitivity of the gradients without encoding.

(6) 𝑃2 computes a Gaussian noise vector of dimension 𝑅, i.e.,

N(0, 𝜎21𝑅), where 𝜎 = 1/𝜖 and 1𝑅 is a vector of 𝑅 1’s. For

each value 𝑠 in the list of allowable values of sensitivity of

size 𝑡 (see below), 𝑃2 updates the noise as 𝑟𝑠N(0, 𝜎21𝑅) =
N(0, (𝑟𝑠𝜎)21𝑅), and sends

q
⌊N (0, (𝑟𝑠𝜎)21𝑅)⌋

y
k to 𝑃1.

(7) 𝑃1 looks up the index of the smallest allowable sensitivity

𝑠 such that Δ𝑆𝐵 (w) ≤ 𝑠 . 𝑃1 then chooses the noise vectorq
⌊N (0, (𝑟𝑠𝜎)21𝑅)⌋

y
k corresponding to this index as sent by

𝑃2.

(8) 𝑃1 “blinds” the encrypted quantity J𝑁𝐵 (w)Kk resulting in

J𝑁𝐵 (w) + 𝝁Kk (see below). 𝑃1 homomorphically adds the

scaled noise vector and sends the following to 𝑃2:

q
𝑁𝐵 (w) + 𝝁 + ⌊N (0, (𝑟𝑠𝜎)21𝑅)⌋

y
k (8)

(9) 𝑃2 decrypts the ciphertext and sends the following to 𝑃1

𝑁𝐵 (w) + 𝝁 + ⌊N (0, (𝑟𝑠𝜎)21𝑅)⌋ (9)

(10) 𝑃1 substracts 𝜇 and obtains 𝑁𝐵 (w) + ⌊N (0, (𝑟𝑠𝜎)21𝑅)⌋. 𝑃1
decodes this by dividing by 𝑟 , plugs this into Equation (5)

and proceeds with backgpropagation in the unencrypted

domain.

𝑃1 𝑃2Initialization

Encrypted labels (S1)

Forward Pass

Compute encrypted

gradients (S2-5)

Encrypted noise list (S6)

Choose noise (S7)

Encrypted noisy blinded gradients (S8)

Decrypted noisy blinded gradients (S9)

Unblind and

decode (S10)

Backward Pass (in the clear)

Figure 2: Higher level overview of our protocol for one epoch
for training the neural network. The quantity S# in brackets
indicates the step number in the protocol.

Remark 1. The parameter 𝑅, i.e., the number of weights in the last
layer is being leaked here. We assume that this quantity, along with
the batch size and the number of epochs are known by party 𝑃2.

Adding a Random Blind. The labels are encrypted under party

𝑃2’s key. Therefore, the computation of the quantity

q
𝑁𝐵 (w) + ⌊N (0, (𝑟𝑠𝜎)21𝑅)⌋

y
k

(without the blind) can be done homomorphically in the encrypted

domain. At some point, this needs to be decrypted. However, de-

crypting this quantity will leak information about the model param-

eters to 𝑃2. That’s why 𝑃1 uses the following construct to “blind”

the plaintext model parameters. Namely, assume that encryption

of a message 𝑥 is done under TLWE. Then before decryption, the

ciphertext will be of the form:

𝑏 = ⟨s, a⟩ + 𝑥 + 𝑒.
𝑃1 samples an element 𝜇 uniformly at random from P and adds it

to 𝑏. This then serves as a one-time pad, as the original message

𝑚 can be any of the 𝑝 possible messages in P. Once the ciphertext
has been decrypted, player 𝑃1 receives 𝑥 + 𝜇, from which 𝜇 can be

subtracted to obtain𝑚.

Allowable Values of Sensitivity. The multiplication in Step 6

works for Gaussian noise because we can multiply a constant times

a Gaussian distribution and still obtain a Gaussian with the scaled

variance. If we encrypt the unit variance Gaussian noise first, then

multiplication by a constant no longer implies a scaled Gaussian

random variable, as the noise needs to be integer encoded before

encryption. See Appendix C. As a result, we only use a predefined

list of 𝑡 values of sensitivity. This incurs a slight utility cost, as

𝑃1 would choose a value of sensitivity which is the smallest value
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greater than or equal to the true sensitivity in Eq. 7. Since 𝑃2 does

not know which of the 𝑡 values are used by 𝑃1, we maintain secrecy

of the actual sensitivity, albeit 𝑃2 now knows that the sensitivity in

each batch can only be one of the 𝑡 allowable values of sensitivity.

For the concrete values used in our protocol, see Section 6.4.

4.3 Alternative Solutions
Several other ways of constructing a protocol for the problem ad-

dressed in this paper are conceivable. However we discarded them

as they had major shortcomings compared to our proposal. One

solution is to have 𝑃2 add differentially private noise to the labels

of 𝐷2, for instance via randomized response, and send them to

𝑃1 playing no further part in the protocol. While computationally

preferable, we address its limitations in terms of accuracy in detail

in Section 6.4. Another solution is for 𝑃2 to train its own model on

its dataset 𝐷2, and then let 𝑃1 query the trained model to check its

consistency with 𝐷hold. The major issue with this approach is that

our scenario is expecting improvement over the combined dataset

𝐷1 ∪ 𝐷2, and individually the datasets 𝐷1 and 𝐷2 may drift from

𝐷hold. Furthermore, it relies on 𝑃2’s expertise in model training.

Another possibility is to simply assess the quality of the combined

dataset through statistical tests. It is not clear what kind of and

how many number of statistical tests would suffice to demonstrate

that the machine learning model trained over the combined dataset

would show improvement, let alone whether these tests can be

efficiently performed in the encrypted domain. Thus, while other

alternatives may exist, we believe that they are unlikely to provide

substantial improvement over our proposal.

5 Privacy and Security Analysis
5.1 Proving Privacy
Fix a batch 𝐵. The quantity 𝑁𝐵 (w) from Eq. 6 is a vector of 𝑅

elements, 𝑅 being the number of weights in the last layer. This

quantity is first encoded into the integer domain (for encryption).

In Appendix E, we show that the sensitivity of the loss function

when no encoding is employed is given by:

∥∇𝐿𝐵′ (w) − ∇𝐿𝐵′′ (w)∥2 ≤
2

|𝐵 | max

𝑖,𝑠





 𝜕𝑧𝑖 (𝑠)𝜕w






2

= Δ𝑆𝐵 (w),

where 𝐵′ and 𝐵′′ are batches in neighbouring datasets 𝐷 ′ and 𝐷 ′′.
We then show that the sensitivity of the loss function when the

partial derivative vector is encoded as




⌊𝑟 𝜕𝑧𝑖 (𝑠 )𝜕w

⌋



2

, as in the quan-

tity 𝑁𝐵 (w), is given as: 𝑟Δ𝑆𝐵 (w). Let 𝑟𝑠 ≥ 𝑟Δ𝑆𝐵 (w), where 𝑠 is
the smallest value in the allowable list of sensitivity values that is

greater than or equal to Δ𝑆𝐵 (w). Then the mechanism

𝑁𝐵 (w) + 𝑟𝑠N(0, 𝜎21𝑅) = 𝑁𝐵 (w) + N (0, (𝑟𝑠𝜎)21𝑅)

is 𝜖-GLDP, where 𝜎 = 1/𝜖 , and 1𝑅 is an 𝑅-element vector each

element of which is 1. To cast this result as an integer, we simply

floor the result:

⌊𝑁𝐵 (w) + N (0, (𝑟𝑠𝜎)21𝑅)⌋ = 𝑁𝐵 (w) + ⌊N (0, (𝑟𝑠𝜎)21𝑅)⌋,

as the noise is already of scale ≈ 𝑟 . The mechanism on the left re-

mains differentially private due to the post-processing property of

Gaussian differential privacy. The expression on the right remains

differentially private due to the fact that 𝑁𝐵 (w) is an integer. In

other words, we can generate noise and truncate it before adding it

to the true value without losing the differential privacy guarantee,

as is done in Steps 7 and 8 of the protocol. Since the batches are

disjoint in each epoch (if not using a random sample), we retain

𝜖-GLDP by invoking parallel composition (Proposition 3). Over 𝑛

epochs the mechanism is

√
𝑛𝜖-GLDP invoking sequential composi-

tion (Proposition 3).

5.2 Proving Security
Due to lack of space, we present the security proof in Appendix F

in the real-ideal paradigm [5, §23.5],[7]. Intuitively, 𝑃1 only learns

the noisy gradients of the batches, whereas 𝑃2 does not learn pa-

rameters of 𝑃1’s model except for batch size |𝐵 |, number of weights

𝑅 in the last layer, the number of epochs 𝑛, and the fact that the sen-

sitivity can only be approximated to one of the 𝑡 allowable values

of sensitivity.

6 Experimental Evaluation
In this section, we evaluate our protocol over several datasets. We

first show that joining two datasets (in cleartext) does indeed im-

prove the accuracy of the model. We then implement our pro-

tocol on Zama’s concrete TFHE library [36], show the training

time and accuracy of the trained model, and the values of the pri-

vacy parameter 𝜖 where the model shows accuracy improvement

over 𝑃1’s dataset but less than the accuracy if the model were to

train without differential privacy. This setting is ideal for 𝑃2 as

this would persuade 𝑃1 to go ahead with the collaboration with-

out revealing the fully improved model. Our code is available at

https://github.com/Ryndalf/Label-Encrypted.

Configurations and Datasets. For all the experiments, we used a

64-bit Ubuntu 22.04.2 LTS with 32G RAM and the 12th Gen Intel(R)

Core(TM) i7-12700 CPU. We did not use GPUs for our experiments

following existing works [16, 21, 26, 32, 33] to keep the compari-

son fair. Table 1 shows the common hyperparameters used in our

experiments. When using different values (e.g., number of neurons

in the hidden layer), we attach them with the experimental results.

Table 2 illustrates the brief statistics (number of records, number of

features, number of classes and number of samples in each class) of

the datasets. All datasets contain (almost) balanced classes, except

for Drebin and Purchase-10, where some labels have about twice

the number of samples than others.

Table 1: Common hyperparameters for all models.

Hyperparameters Configuration

activation function sigmoid

output function softmax

loss function cross entropy

optimiser SGD

𝐿2 regulariser 0.01

6.1 Model Improvement by Joining Datasets
In Section 3, we explored if 𝑃2 does not have domain knowledge,

whether training the model𝑀2 on the dataset 𝐷1 ∪𝐷2 will increase
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Table 2: Datasets statistics.

Dataset #Rec. #Feat. #Classes Class distribution

Iris [19] 150 4 3 Uniform Distribution

Seeds [19] 210 7 3 Uniform Distribution

Wine [19] 178 13 3 (59, 71, 58)

Abrupto [23] 10,000 4 2 Uniform Distribution

Drebin [2] 16,680 3,506 2 (5560, 11120)

CIFAR-10 [20] 60,000 3072 10 Uniform Distribution

CIFAR-100 [20] 60,000 3072 100 Uniform Distribution

Purchase-10 [10] 200,000 594 10
(15107, 17341, 22684, 11722, 12727

22257, 29432, 19919, 33842,14969)

the accuracy of 𝑀2 on 𝐷hold, with 𝐷hold being a balanced dataset.

Here, we are interested in knowing the other side of the coin: if

𝑃2’s dataset 𝐷2 is indeed of better quality, does this result in an

improved performance on 𝑀2? To demonstrate this, we will use

the scenario where 𝐷1 is small and imbalanced, i.e., for one of the

labels, it has under-representative samples. On the other hand, 𝐷2

is larger and more balanced. Intuitively, joining the two should

show substantial improvement in accuracy.

To illustrate the effect, we use Abrupto dataset as a case study.

In particular, we use the first 10, 000 samples from the Abrupto

dataset [23], i.e., the dataset mixed_1010_abrupto, which is a bal-

ance binary dataset. From this dataset, we set aside 200 samples

labelled 0 and 200 samples labelled 1 for 𝐷hold, 96 samples labelled

0, and 864 samples labelled 1 to dataset 𝐷1, and the remaining sam-

ples to dataset 𝐷2. Note that 𝐷2 is considerably larger and more

balanced than dataset 𝐷1. Given these datasets, model𝑀1 is trained

on 𝐷1, and model 𝑀2 on 𝐷1 ∪ 𝐷2, and their accuracies evaluated

over 𝐷hold.

The configuration is the same for the two models except for the

learning rate and batch sizes, which are tailored to account for the

relative size difference between datasets𝐷1 and𝐷1∪𝐷2. With these

settings, we report the average test accuracy (over𝐷hold) of training

each model 10 times. These are shown in Table 3. There is very

little difference in accuracy results in each of these runs. Model𝑀1

achieves an average accuracy of 0.703, whereas model𝑀2 achieves

an accuracy of 0.912. We therefore conclude that augmenting a

small and unbalanced dataset with a large and balanced dataset will

increase the accuracy of the resulting model (as long as the dataset

labels are of good quality as ascertained by the holdout dataset).

However, as argued in Section 3, an imbalanced𝐷1 is risky in the

sense that 𝐷1 ∪ 𝐷2 might show improvement even when 𝑃2 does

not have any domain expertise. Thus, another, more appropriate

scenario is when𝐷1 is smaller in size than𝐷2, but otherwise follows

a similar label distribution as the true distribution. To see this, we

also studied how the ratio of the number of samples of 𝐷1 and of

𝐷2 could impact the accuracy of the trained models 𝑀1 and 𝑀2.

In general, a larger size difference between the two models, 𝐷1

being smaller, shows an improvement in model accuracy. This is

consistent with the results in Section 3. The experimental results

are shown in Appendix G.

6.2 Neural Network Implementation
There are plenty of libraries available for training deep neural net-

works, e.g., PyTorch. Looking at our protocol, we want to be able

Table 3: Accuracy ofModels𝑀1 (hidden neurons: 4, batch size:
128, learning rate: 0.2, epochs: 100) and 𝑀2 (hidden neurons:
4, batch size: 512, learning rate: 0.1, epochs: 100) against The
Holdout Dataset.

Run Model𝑀1 Model𝑀2

1 0.700 0.912

2 0.700 0.915

3 0.712 0.912

4 0.700 0.908

5 0.700 0.915

6 0.700 0.912

7 0.700 0.915

8 0.700 0.908

9 0.718 0.912

10 0.708 0.910

Average 0.704 0.912

to access derivatives of the last layer in order to perform homomor-

phic encryption operations on them (Eq. (5)). However, existing ML

frameworks (e.g., Keras and PyTorch) return all calculated gradi-

ents after backpropagation completes. This means that for every

epoch we need to wait until PyTorch completes backpropagation,

pause it, retrieve all calculated gradients, modify the gradients in

the last layer, and restart the completed backpropagation from the

modified gradients. To save the run-time from these unnecessary

steps, we therefore implement the loss function, activation func-

tions and their derivatives from scratch in Python 3.10 using Numpy
and sklearn based on Eq. (5). To ensure our implementation (from

scratch) ends up with the same learning outcome as the model

implemented by torch.nn (the PyTorch neural network library),

we compare the model parameters and the accuracy of the two

models over the same training (70% of the raw Iris dataset [19]) and

test (30% of the raw Iris dataset [19]) datasets.

Training Outcomes. For the two neural networks (excluding op-

erations such as dropout), if the order in which the datasets are

read, the initialization of the weights, and their parameter config-

urations (learning rate, epochs, etc.) are the same, then their final

trained weights are also the same as can be seen from Table 6 in

Appendix H, where the weights assigned to each layer are exactly

the same in the two implementations up to four decimal places of

accuracy. Additionally, Figure 6 in Appendix H further depicts the

training performance measured by ROC of our model and the Py-

Torch implementation. As can be seen the two are almost identical.

We are therefore convinced that our implementation from scratch

is an accurate representation of the model from PyTorch.

Implementation Time. Table 4 compares the average (of 10 runs)

training time (in seconds) of the model 𝑀2 implemented from

scratch (Model 𝑀2, Plaintext, no DP), and the PyTorch baseline

model (Model 𝑀2 Baseline) on all datasets from Table 2. It is ob-

served that, training time in the plaintext of our implementation

is about 100 to 300 times slower than that of the PyTorch baseline.
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We analysed the source code of our implementation and the Py-

Torch documentation and then concluded three points caused this

observation.

• Due to the need to incorporate Gaussian-distributed noise,

smaller negative numbers may occur, which can lead to data

overflow when the activation function sigmoid is entered.

Therefore our program is designed in such a way that for all

model training, the sigmoid will be adjusted to Eq. (10).

sigmoid(𝑥) =
{

1

1+𝑒−𝑥 , if 𝑥 ≥ 0,
𝑒𝑥

1+𝑒𝑥 , otherwise.

(10)

• PyTorch optimizes low-level implementation for training, i.e.,

dynamic computational graphs, which means the network

behaviour can be changed programmatically at training time

to accelerate the training process.

• We implemented more functions in order to accommodate

the Concrete library [36] even in the plaintext domain. A

main deviation from the general neural network training is

the way we treat the gradients. As discussed in Section 4.1,

we calculate the gradients separately using two pathways

depending on unencrypted (from 𝐷1) vs encrypted labels

(from 𝐷2) as shown in Eq. (5). Hence, in our code, we defined

a separate function for preparing a batch of sample forward

propagation results, which are forced to be divided into two

terms for computation.

Encrypted Domain. Zama’s current Concrete framework for

TFHE [36] mandates decimals to be converted to integers. For our

experiments, we chose a precision level of six decimal places, i.e.,

we use 𝑟 = 10
6
. Additionally, in order to verify that the encryption

operations do not affect the accuracy of our implementation, we

use the Iris dataset for a simple experiment. After setting the same

initialization of weights and the order of reading the datasets, we

train the model from scratch in plaintext and train another model

from scratch on the ciphertext, and compare the trained model

parameters. The weights of the two models were almost identical

up to four decimal places. The exact weights and biases are shown

in Table 7 in Appendix I.

6.3 Protocol Implementation
We use the Concrete framework from Zama [36] to implement the

TFHE components of our protocol. Note that not all the operations

in our protocol require homomorphic operations. The circuit to

compute the protocol operations for one sample is given in Figure 3.

Given a sample 𝑠 of the batch 𝐵, from Eq. (6) in Step 4 of the pro-

tocol, we first need to multiply the derivatives of the inputs to the

softmax function with the encrypted labels. Dropping subscripts

and abbreviating notation, these are shown as 𝑧w and𝑦 respectively

in the figure. For brevity, we skip the integer encoding step, but it

is understood that 𝑧w is multiplied by 𝑟 (the precision parameter),

truncated, and then multiplied with 𝑦 as given by Eq. (6). Next, Step

6 of the protocol samples noise of scale N(0, 𝜎21𝑅), which for a

single entry with Gaussian differential privacy is 𝜂 = N(0, 1/𝜖2).
The noise is then multiplied by the 𝑡 allowable values of sensitivity

and then the truncated noise value is encrypted as in Step 6 of the

protocol. Again to avoid excessive notation, we simply show this

as multiplying 𝜂 by one of the allowable values of sensitivity 𝑟𝑠

(noting 𝑟 being the precision parameter). These quantiities are then

added homomorphically according to Step 8 of the protocol. On

the other side of the circuit, once decrypted, we get the blinded

and differentially private gradients (Eq (9)), which result in the

differentially private gradients after subtracting the blind.

Implementation Notes. As Concrete only accepts integer inputs,
we need to convert the respective inputs to integer equivalents. To

do so, we compute 𝑧w to six decimal places, i.e., we multiply it by

the precision factor 𝑟 = 10
6
, and floor the result. Similarly, we floor

𝑟𝑠 · 𝜂, since the noise is already of scale 𝑟 . Thus, the two quantities

are in effect multiples of 𝑟 = 10
6
. Note that the label 𝑦 is unchanged,

as it is already an integer.

6.4 Plaintext vs Ciphertext Versions of the
Protocol

To ensure that the protocol replicates the scenario of Section 6.1,

we evaluate our protocol against the unencrypted setting. Namely,

we evaluate model𝑀1 on dataset 𝐷1, model𝑀2 on dataset 𝐷1 ∪𝐷2,

both unencrypted and without differential privacy, and model𝑀2

on dataset𝐷1∪𝐷2 computed through our protocol (with encryption

and differential privacy). We use all the datasets from Table 2 to

evaluate this. Furthermore, we retain 3, 506 features from the Drebin

dataset which is a subset of all available features. The feature classes

retained include ‘api_call’, ‘call’, ‘feature’, ‘intent’, ‘permission’,

‘provider’, and ‘real_permission’.

For each dataset and each value of 𝜖 , we report the average (of

10 runs) results. Each time, the dataset is re-partitioned and 30% of

the data is randomly used as 𝐷hold. Due to the different sizes of the

datasets, we divide 𝐷1 and 𝐷2 differently for different datasets:

• For Iris, Seeds and Wine, 𝐷1 is 10% of the total data and 𝐷2

is 60% of the total data.

• For Abrupto, Drebin, CIFAR-10, CIFAR-100 and Purchase-10,

𝐷1 is 1% of the total data and 𝐷2 is 69% of the total data.

Note that we do not artificially induce a skewed distribution of

samples in 𝐷1 for these experiments, as this was done in Section 6.1.

Table 4 shows the results of our experiments. The column 𝜖

contains the overall privacy budget. We use 𝑡 = 100 allowable

values of sensitivity. In all our experiments, we found Δ𝑆𝐵 (w),
i.e., the sensitivity of the gradients without encoding from Eq. (7),

ranged from 0.019 to 0.035. We extended this range to [0, 0.1] and
picked 100 evenly spaced samples as the 𝑡 = 100 allowed values of

sensitivity. For datasets Iris, Seeds and Wine, training our protocol

(𝑀2) is about 10,000 times slower than training the same model in

the clear (𝑀2). However, this time is mainly due to the encryption

of the noise vector with all 𝑡 = 100 allowable values of sensitivity.

The time per epoch and total time consumed in encrypting this

list is shown in the column labelled “𝑡-list time” in the table. The

total time is obtained by multiplying per epoch time by 50, the

total number of epochs. Subtracting this time means that these

three datasets can be trained between 100 to 250 seconds, which

is very reasonable. Note that this list of noisy sensitivities does

not depend on the datasets. Therefore 𝑃2 can precompute these

lists, significantly reducing interactive time. With this speed-up our

implementation is only ≈100 times slower than training in the clear,
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Concrete
𝑧w 𝑧w

clear

𝑦 𝑦
encrypted

𝑟𝑠 · 𝜂 𝑟𝑠 · 𝜂
encrypted

𝜇 𝜇
clear

×

+ 𝑁 (w) + 𝑟𝑠 · 𝜂 + 𝜇
decrypted

𝜇

−

𝑁 (w) + 𝑟𝑠 · 𝜂

DP gradients

Figure 3: Our homomorphic encryption circuit in Zama’s Concrete.

i.e.,𝑀2. The 𝜖 = 100 regime gives little to no privacy. Looking at the

numbers corresponding to those rows, we see that the accuracy of

𝑀2 is almost identical to𝑀2. This shows that our encrypted portion

of the protocol does not incur much accuracy loss. For each dataset,

we also show values of 𝜖 between 0.25 and 0.5, where the accuracy

of𝑀2 lies nicely in between𝑀1 and𝑀2. Thus, this value of 𝜖 can

be used by 𝑃2 such that𝑀2 shows an improvement over𝑀1, yet at

the same time, training over the noiseless data promises even more

improvement.

The appropriate choice of 𝜖 depends on the size of the dataset, as

it is different for the two larger datasets. One is a synthetic dataset

Abrupto and the other one is a real-world Android malware dataset

Drebin. Table 4 also shows the results of these two larger datasets.

In terms of training time, unlike small datasets, there is a significant

difference in their training time. This is due to the large number

of features in the Drebin dataset, which is around 876 times more

than the features in the Abrupto dataset. However, once again, the

majority of the time is consumed in encrypting the noisy 𝑡-list,

which as we mentioned before, can be precomputed. Since these

datasets have multiple batches per epoch, the per epoch time for

the 𝑡-list is also higher. However, subtracting the total time of the

𝑡-lists, the training of these two datasets takes between 2,000 to

11,000 seconds, which is reasonably fast considering the sizes of

these datasets. When 𝜖 = 100, the accuracy of 𝑀2 is almost the

same or even better than that of𝑀2. For Abrupto datasets, at 𝜖 ∈
[0.15, 0.5] we find the spot between the accuracy of model𝑀1 and

𝑀2. On the other hand, with 𝜖 ∈ [0.3, 0.5] we find the spot between
the accuracy of model𝑀1 and𝑀2 based on the Drebin dataset.

Randomized Response-based Protocol. In Section 4.1 we briefly

mentioned that one way to obtain an updated model𝑀2 is for 𝑃2
to apply differentially private noise to the labels of 𝐷2, and then

handover the noisy labelled dataset to 𝑃1. This will then enable

𝑃1 to run the entire neural network training in the clear, giving

significant boost in training time. This can be done by adding noise

to the labels via the randomized response (RR) protocol, given

in [3], which is used in many previous works as well. However, our

experiments show that for a reasonable guarantee of privacy of the

labels, the resulting accuracy through RR is less than the accuracy

of even𝑀1 in most cases. To be more precise, let us detail the RR

protocol for binary labels. For each label, 𝑃2 samples a bit from a

Bernoulli distribution with parameter 𝛾 . If the bit is 0, 𝑃2 keeps the

true label, otherwise, 𝑃2 replaces the label with a random binary

label [3]. Note that the probability that the resulting label is the

true label is 1−𝛾/2. The mechanism is 𝜖-label differentially private

as long as:

1 − 𝛾/2
𝛾/2 ≤ 𝑒𝜖 ⇒ 𝜖 ≥ ln(𝛾/2 − 1) (11)

for all 𝛾 < 1. Setting the value of 𝜖 exactly equal to the quantity on

the right, we see that the probability that the resulting label is the

true label is given by 𝑒𝜖/(𝑒𝜖 + 1). Thus, for instance, if 𝜖 = 1, the

probability of the label being the true label is ≈ 73%, for 𝜖 = ln 3

it is 75%, for 𝜖 = 3 it is ≈ 95%, for 𝜖 = 5 it is ≈ 99.33%, and for

𝜖 = 10 it is ≈ 99.99%. Thus, for reasonable privacy we would like to

choose 𝜖 less than 1, and definitely not close to 10, otherwise, 𝑃2 is

effectively handing over the true labels to 𝑃1.

We trained the model by using the above mentioned RR protocol.

The results are shown in Table 4 under the column labelled 𝑀RR

2
.

As we can see, the accuracy is less than the accuracy of even 𝑀1

for the smaller Iris, Seeds and Wine datasets, only approaching the

accuracy between 𝑀1 and 𝑀2 when 𝜖 is close to 10, but which as

we have argued above is not private enough. For the two larger

datasets, Abrupto and Drebin, 𝜖 = 1 gives better accuracy than𝑀1

while being less than𝑀2. However, we achieve the same using our

protocol for a significantly smaller value of 𝜖 . This is advantageous

because it means that 𝑃1 and 𝑃2 can do multiple collaborations

without exhausting the budget.

Effect of the Number of Classes and Dataset Size on Runtime.
The analogous results on the three larger datasets, CIFAR-10, CIFAR-

100 and Purchase-10 to the ones shown in Table 4 are shown in the

Appendix J due to lack of space, where we evaluate the effect of the

size of the dataset and the number of classes on the runtime.

Communication Overhead. The TLWE ciphertext is defined as

c = (a, 𝑏) ∈ T𝑁+1𝑞 . As mentioned in Section 2.4, we use 𝑁 = 630

and 𝑞 is 64 bits long. This means that the ciphertext is of size:

631 × 64 = 40, 384 bits. Luckily, as shown in [17], a more compact

way to represent c is to first uniformly sample a random seed

𝜃 of 128 bits (the same level of security as the key k), and then

use a cryptographically secure PRNG to evaluate the vectors a←
PRNG(𝜃 ). This ciphertext representation is only 128 + 64 = 192

bits long (adding the bit-lengths of 𝜃 and 𝑏). This reduction applies

only when 𝑃2 generates fresh ciphertexts, as any homomorphic
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Table 4: Training time and accuracy of𝑀1 (dataset 𝐷1),𝑀2 (dataset 𝐷1 ∪𝐷2) in the clear,𝑀2 (dataset 𝐷1 ∪𝐷2) through our protocol,
𝑀

Py
2

(dataset𝐷1∪𝐷2) implemented in PyTorch in the clear, and𝑀RR
2

(dataset𝐷1∪𝐷2) with randomized response (hidden neurons:
20, batch size: 256, learning rate: 0.1, epochs: 50, weight decay: 0.01).

Dataset

𝜖
Model𝑀1

Plaintext, no DP

Model𝑀2

Plaintext, no DP

Model𝑀2

Our protocol

Model𝑀
Py

2

PyTorch baseline

Model𝑀RR

2

Randomized Response

Time (s) Test Acc. Time (s) Test Acc.
𝑡 -list time (s)

per epoch & total
Gap Time (s) Test Acc. Time (s) Test Acc. Test Acc.

Iris

0.1

0.0619 0.7289 0.4244 0.8467

1m11s

≈58m57s

10m55s 0.7733

0.0078 0.8467

0.3711

1 11m13s 0.8511 0.6244

10 10m52s 0.8521 0.8189

100 10m49s 0.8554 0.8311

0.2 11m14s 0.7821 0.3416

0.5 11m11s 0.8422 0.6266

Seeds

0.1

0.0896 0.8079 0.6216 0.8762

1m38s

≈1h21m55s

13m19s 0.6132

0.0084 0.8762

0.3682

1 13m7s 0.8762 0.6873

10 13m24s 0.8719 0.8550

100 12m54s 0.8730 0.8762

0.2 12m35s 0.8111 0.3794

0.5 13m36s 0.8714 0.6174

Wine

0.1

0.1161 0.7981 0.5265 0.9302

01m24s

≈1h10m12s

12m59s 0.7792

0.0105 0.9302

0.4361

1 13m17s 0.9340 0.7981

10 13m5s 0.9396 0.9205

100 12m56s 0.9396 0.9283

0.2 13m2s 0.8905 0.4999

0.5 12m49s 0.9320 0.5168

Abrupto

0.1

0.4212 0.8399 28.3430 0.9077

53m15s

≈1d20h22m38s

4h27m20s 0.7794

0.2687 0.9077

0.6593

1 4h27m5s 0.9028 0.8869

10 4h27m14s 0.9059 0.9004

100 4h27m6s 0.9061 0.9067

0.2 4h27m3s 0.8850 0.7413

0.5 4h27m13s 0.9045 0.8916

Drebin

0.1

8.5758 0.8571 10m28s 0.9470

1h11m55s

≈2d11h56m5s

23h09m8s 0.7010

2.8677 0.9470

0.6053

1 23h09m4s 0.9235 0.9191

10 23h09m20s 0.9462 0.9490

100 23h09m12s 0.9476 0.9489

0.5 23h09m6s 0.8860 0.8741

0.7 23h09m13s 0.9172 0.9023

computations will, in general, not be able to keep track of the

changes to the vectors a. With these calculations, we estimate the

communication cost of our protocol as follows:

• In Step 1 of the protocol, 𝑃2 sends𝑚2 encrypted labels under

key k of its dataset 𝐷2 of size𝑚2. Using the compact repre-

sentation just mentioned, this results in communication cost

of 192𝑚2 bits. We ignore the cost of plaintext features of 𝐷2

being transmitted, as this cost is the same for any protocol,

secure or not.

• In Step 6, 𝑃2 sends the encryption of the 𝑅-element noise vec-

tor for all 𝑡 allowable values of sensitivity. Once again, since

these are fresh encryptions under k, we have communication

cost of 192𝑡𝑅 bits.

• In Step 8, 𝑃1 sends the 𝑅-element encrypted, blinded and

noise added vector to 𝑃2. Since this is obtained through ho-

momorphic operations, we use the non-compact representa-

tion, yielding 40384𝑅 bits of communication cost.

• Lastly, in Step 9 𝑃2 sends the decrypted version of the quan-

tity above. The communication cost is less than 64𝑅 bits, as

this is plaintext space.

Note that Step 6, 8 and 9 need to be repeated for every batch in an

epoch. Let𝑚1,2 be the size of the dataset𝐷1∪𝐷2. Then the number of

times these steps are repeated in each epoch is given by ⌈𝑚1,2/|𝐵 |⌉,
where |𝐵 | is the batch size. Thus the total communication cost for

one epoch is 192𝑚2+ (192𝑡𝑅+40384𝑅+64𝑅) (⌈𝑚1,2/|𝐵 |⌉ = 192𝑚2+
(192𝑡𝑅 + 40448𝑅) (⌈𝑚1,2/|𝐵 |⌉. Over 𝑛 epochs, the communication

cost in bits is thus:

𝐶 =

(
192𝑚2 + (192𝑡 + 40448) 𝑅

⌈
𝑚1,2

|𝐵 |

⌉)
𝑛 (12)

For the datasets in Table 4, we have 𝑅 = 40, since the number of

hidden neurons is 20 (and binary classification), number of epochs

𝑛 = 50, and 𝑡 = 100. The size of 𝐷2, i.e.,𝑚2 is 0.6𝑚 for Iris, Seeds

andWine datasets, and equals 0.69𝑚 for the remaining two datasets

where𝑚 is the total size of the datasets as mentioned in Section 6.4.

For all datasets we have𝑚1,2 = 0.7𝑚. The batch size |𝐵 | = 256. The

communication cost in units of megabytes MB is shown in Table 5.
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By far, the major cost is the 𝑡 encrypted noise values which need

to be sent for each batch in an epoch in case of larger datasets. As

mentioned earlier, these encrypted noise vectors can be generated

well in advance to reduce interactive communication cost, as they

do not use of any data specific parameter. For instance, with pre-

computed noise lists, the communication cost on the Drebin dataset

reduces to 9.54MB per epoch. These times without the encrypted

noise vectors are shown in the last two columns of the table labelled

“no 𝑡-list.” Regardless, we see that communication in each round of

the protocol (each epoch) can be done in a few seconds with typical

broadband speeds.

Table 5: Communication cost in megabytes (MBs) of our pro-
tocol as calculated through Eq. 12 for the five datasets used
in our implementation.

Dataset Size Cost per epoch Total cost Cost per epoch Total cost
𝑚 no 𝑡-list no 𝑡-list

Iris 150 1.16MB 58.22MB 0.20MB 10.22MB

Seeds 210 1.17MB 58.26MB 0.21MB 10.26MB

Wine 178 1.16MB 58.24MB 0.20MB 10.24MB

Abrupto 10,000 32.69MB 1,634.34MB 5.81MB 290.33MB

Drebin 16,680 53.70MB 2,685.16MB 9.54MB 477.16MB

6.5 Discussion – Privacy Budget, Training Time
and Limitations

Setting 𝜖 for Data Collaboration. The value of 𝜖 used depends on
the size of the dataset, with a smaller 𝜖 required for larger datasets.

However, for all the datasets used in the experiment, with 𝜖 in the

range (0.3, 0.5) the accuracy of the model𝑀2 is higher than that of

𝑀1, and lower than that of𝑀2. Thus, party 𝑃2 can set an 𝜖 within

this range, which provides visible benefits for 𝑃1 to proceed with

data collaboration in the clear.

Fast Training of Our Protocol. The training time of our protocol

(Table 4) is many orders of magnitude faster than protocols using

entirely FHE operation reported in [16, 21, 26]. This is a direct re-

sult of keeping the forward and backward propagation in the clear

even though some labels from the training data are encrypted. To

compare the training time of our protocol against an end-to-end

encrypted solution for neural network training, we look at the work

from [16]. They use polynomial approximations for the activation

functions (e.g., sigmoid) to allow homomorphic operations. In one

set of experiments, they train a neural network with one hidden

layer over the Crab dataset, which has 200 rows and two classes.

This dataset is comparable in size and number of classes to the

Iris dataset used by us. They implement the homomorphically en-

crypted training of the neural network using HELib [15]. The time

required for training one batch per epoch is 217 seconds (Table 3a

in [16]). For 50 epochs, and processing all batches in parallel, this

amounts to 10,850 seconds. We note that after each round the ci-

phertext is sent to the client to re-encrypt and send fresh ciphertexts

back to the server in order to reduce noise due to homomorphic

operations. Thus, this time is a crude lower bound on the total

time. In comparison, our protocol takes a total time of around 4,200

seconds for the entire 50 epochs over the comparable Iris dataset

with one hidden layer, and just 150 seconds if the noise lists are

pre-processed. (Table 4). With a more optimised implementation

(say via PyTorch), this time can be reduced even further.

Implementation Limitations and Potential Speedups. The
minimum value of the total budget 𝜖 tested by us is 0.1. This is

because of the limitation of Concrete in handling high precision

real numbers (as they need to be converted into integers). When we

inject differentially private noise using a (very) small 𝜖 , it is highly

likely to be inaccurate as it generate numbers with large absolute

value, leading to the float overflow problem for sigmoid. In addition

to that, our implementation of a neural network is many orders

of magnitude slower than the PyTorch benchmark even though

our accuracy matches that of the PyTorch baseline. If we are able

to access gradients in a batch from the PyTorch implementation,

then we would significantly accelerate the proposed protocol. For

instance, the model 𝑀2 through our implementation takes about

220 magnitudes more time than the baseline𝑀
Py

2
through PyTorch

on the Drebin dataset, i.e., 10 mins 28 seconds versus only 2.8677

seconds (see Table 4). Thus our protocol on this dataset can poten-

tially run in just over 6 mins if run over PyTorch’s implementation

which is significantly lower than the 23 hours taken by current im-

plementation. Furthermore, computing mini-batches in parallel can

further improve computational time especially if run over GPUs.

Lastly, as mentioned above the encrypted values of noise in the

𝑡-list can be pre-computed.

Malicious Parties. Our protocol is only secure in the honest-but-

curious model. In the malicious setitng, many new challenges arise.

A key challenge is to maintain efficiency as several constructs used

by us cannot be used in the malicious setting, e.g., the use of the

random blind. Another issue in the malicious model is that 𝑃1
may lie about how many samples in the current batch are from

𝑃2’s dataset and hence have less noise added to the gradients. We

therefore leave protocol for the malicious setting as future work.

7 Related Work
The closest work to ours is that of Yuan et al [34]. They assume a

scenario where one of the two parties holds the feature vectors and

the labels are secret shared between the two parties. The goal is

to jointly train a neural network on this dataset. At the end of the

protocol, the first party learns the trainedmodel whereas the second

party does not learn anything. Like us, they use label differential

privacy to obtain a more computationally efficient solution. Our

scenario is different in that it enables party 𝑃1 to assess the quality

of the resulting dataset without knowing the model, where 𝑃1 does

not initially trust the labelling from 𝑃2. Another major difference is

that we use FHE instead of secure multiparty computation (SMC) to

train the model [34]. Most importantly, it is unclear whether their

protocol remains differentially private as they also encode the noise

in the group of integers modulo a prime before multiplying with

encoded sensitivity. As mentioned in Section 4.2, this multiplication

no longer means that the resulting Gaussian is appropriately scaled,

resulting in violation of differential privacy. We show this in detail

in Appendix C. It is unclear how their protocol can be modified to
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include pre-computed shares of a list of allowable sensitivity values

as we do to resolve this issue. For instance, one party multiplies

all sensitivities with unit Gaussian noise in the allowable list of

sensitivites. In order to hide the actual noise, the resulting list needs

to be secret shared with the second party. However, the second

party is the one which knows the actual sensitivity. Hence telling

the first party which share to use will reveal the sensitivity of the

gradients.

Apart from Yuan et al [34], several works have investigated

training neural network models entirely in the encrypted domain,

encompassing both features and labels [16, 21, 26, 32, 33]. Hesami-

fard et al [16] propose the CryptoDL framework, which employs

Somewhat Homomorphic Encryption (SWHE) and Leveled Homo-

morphic Encryption (LHE) on approximated activation functions to

facilitate interactive deep neural network training over encrypted

training sets. However, the training time is prolonged even on small

datasets (e.g., on the Crab dataset with dimensions of 200 × 6 cells,
it takes over 200 seconds per epoch/iteration during the training

phase). Furthermore, the omission of details regarding the CPU

clock speed (frequency) and the number of hidden layer neurons

in their experiments renders the reported training time less equi-

table. Nandakumar et al [26] introduce the first fully homomorphic

encryption (FHE)-based stochastic gradient descent technique (FHE-

SGD). As pioneers in this field, FHE-SGD investigates the feasibility

of training a DNN in the fixed-point domain. Nevertheless, it en-

counters substantial training time challenges due to the utilisation

of BGV-lookup-table-based sigmoid activation functions. Lou et

al [21] present the Glyph framework, which expedites training for

deep neural networks by alternation between TFHE (Fast Fully Ho-

momorphic Encryption over the Torus) and BGV [6] cryptosystems.

However, Glyph heavily relies on transfer learning to curtail the re-

quired training epochs/iterations, significantly reducing the overall

training time for neural networks. It should be noted that Glyph’s

applicability is limited in scenarios where a pre-trained teacher

model is unavailable. Xu et al propose CryptoNN [33], which em-

ploys functional encryption for inner-product [1] to achieve secure

matrix computation. However, the realisation of secure computa-

tion in CryptoNN necessitates the presence of a trusted authority

for the generation and distribution of both public and private keys,

a dependency that potentially compromises the security of the ap-

proach. NN-emd [32] extends CryptoNN’s capabilities to support

training a secure DNN over vertically partitioned data distributed

across multiple users.

By far, the major bottleneck of end-to-end homomorphic encryp-

tion or functional encryption approaches to neural network training

is the runtime. For instance, a single mini-batch of 60 samples can

take anywhere from 30 seconds to several days with dedicated

memory [32]. Another option is to use a secure multiparty com-

putation (SMC) approach. In this case, the (joint) dataset can be

secret shared between two parties, and they can jointly train the

model learning only the trained model [24]. However, once again

end-to-end SMC solutions remain costly. For instance, the work

from [24] achieves SMC-based neural network training in 21,000

seconds with a network of 3 layers and 266 neurons. Undoubtedly,

these benchmarks are being surpassed, e.g., [18], however, it is un-

likely that they will achieve the speed achieved by our solution, or

the one from Yuan et al. [34]. One way to improve our work would

be to explore a combination of FHE and SMC.

A related line of work looks at techniques to check the validity

of inputs without revealing them. For instance, one can use zero-

knowledge range proofs [25] to check if an input is within an

allowable range without revealing the input, e.g., age. This has,

for instance, been used in privacy-preserving joint data analysis

schemes such as Drynx [14] and Prio [11] to ensure that attribute

values of datasets are within the allowable range. However, in our

case, we do not assume that the party 𝑃2 submits any label that is out

of range. Instead, the party may not have the domain expertise to

label feature vectors correctly. This cannot be determined through

input validity checking.

8 Conclusion
We have shown how two parties can assess the value of their poten-

tial machine learning collaboration without revealing their models

and respective datasets. With the use of label differential privacy

and fully homomorphic encryption over the torus, we are able to

construct a protocol for this use case which is many orders of mag-

nitude more efficient than an end-to-end homomorphic encryption

solution. Our work can be improved in a number of ways. Due

to several limitations in accessing components in PyTorch’s neu-

ral network implementation and the integer input requirement in

Zama’s Concrete TFHE framework, our implementation is short

of speedups that can potentially be achieved. As a result, we are

also not able to test our protocol on larger datasets (say, 100k or

more rows). Future versions of this framework may remove these

drawbacks. Finally, there could be other ways in which two parties

can check the quality of their datasets. We have opted for the im-

provement in the model as a proxy for determining the quality of

the combined dataset.
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A Proofs of Theorems from Section 3
Proof of Theorem 1

Proof. Let the samples in 𝐷hold be (𝑥𝑖 , 𝑦𝑖 ) for 𝑖 ∈ [𝑚]. Let
1[𝑀 (𝑥𝑖 )≠𝑦𝑖 ] denote the indicator random variable which is 1 if

𝑀 (𝑥𝑖 ) ≠ 𝑦𝑖 for each 𝑖 ∈ [𝑚]. Then through the linearity of ex-

pectation:

E𝑔 [𝐿hold (𝑀)] =
1

𝑚

𝑚∑︁
𝑖=1

E𝑔 [1[𝑀 (𝑥𝑖 )≠𝑦𝑖 ]]

=
1

𝑚

𝑚∑︁
𝑖=1

Pr

𝑔
[𝑀 (𝑥𝑖 ) ≠ 𝑦𝑖 ]

= Pr

𝑔,(𝑥,𝑦)∼𝐷
hold

[𝑀 (𝑥) ≠ 𝑦],

where the subscript 𝑔 indicates that probability is taken over the

randomness in 𝑔. The last result follows from the law of total prob-

ability. Recall that the notation (𝑥,𝑦) ∼ 𝐷hold means the sample

is chosen uniformly at random from 𝐷hold. Dropping subscripts

consider the probability Pr[𝑀 (𝑥) ≠ 𝑦]. We have

Pr[𝑀 (𝑥) ≠ 𝑦] = Pr[𝑀 (𝑥) ≠ 𝑦 | 𝑦 = 1] Pr[𝑦 = 1]
+ Pr[𝑀 (𝑥) ≠ 𝑦 | 𝑦 = 0] Pr[𝑦 = 0]
= Pr[𝑀 (𝑥) = 0 | 𝑦 = 1] Pr[𝑦 = 1]
+ Pr[𝑀 (𝑥) = 1 | 𝑦 = 0] Pr[𝑦 = 0]

Now, the learning algorithm A’s input, i.e., 𝐷 , remains unchanged

whether 𝑦, i.e., the label of 𝑥 in 𝐷hold, is equal to 0 and 1. This is

because 𝐷 is labelled by 𝑔 which is independent of the true label 𝑦

(Eq. 2). Therefore,

Pr[𝑀 (𝑥) = 0 | 𝑦 = 1] = Pr[𝑀 (𝑥) = 0],

and

Pr[𝑀 (𝑥) = 1 | 𝑦 = 0] = Pr[𝑀 (𝑥) = 1] .

We get:

Pr[𝑀 (𝑥) ≠ 𝑦] = Pr[𝑀 (𝑥) = 0] Pr[𝑦 = 1]
+ Pr[𝑀 (𝑥) = 1] Pr[𝑦 = 0]

= Pr[𝑀 (𝑥) = 0] 1
2

+ Pr[𝑀 (𝑥) = 1] 1
2

=
1

2

(Pr[𝑀 (𝑥) = 0] + Pr[𝑀 (𝑥) = 1]) = 1

2

Therefore E[𝐿hold (𝑀)] = Pr𝑔 [𝑀 (𝑥) ≠ 𝑦] = 1

2
, where (𝑥,𝑦) ∼

𝐷hold. □
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Proof of Theorem 2
Proof. Since 𝐷hold is balanced, for (𝑥,𝑦) ∼ 𝐷hold, and following

the proof of Theorem 1, we get

E𝑔 [𝐿hold (𝑀2)] = Pr

𝑔,(𝑥,𝑦)∼𝐷
hold

[𝑀2 (𝑥) ≠ 𝑦]

= Pr

𝑔
[𝑀2 (𝑥) = 0 | 𝑦 = 1] Pr[𝑦 = 1]

+ Pr
𝑔
[𝑀2 (𝑥) = 1 | 𝑦 = 0] Pr[𝑦 = 0]

=
1

2

(Pr
𝑔
[𝑀2 (𝑥) = 0 | 𝑦 = 1]

+ Pr
𝑔
[𝑀2 (𝑥) = 1 | 𝑦 = 0])

≥ 1

2

(Pr[𝑀1 (𝑥) = 0 | 𝑦 = 1]

+ Pr[𝑀1 (𝑥) = 1 | 𝑦 = 0])
= Pr[𝑀1 (𝑥) ≠ 𝑦] = 𝐿hold (𝑀1),

where the inequality follows from condition (3) in the theorem

statement, and we have dropped the subscript (𝑥,𝑦) ∼ 𝐷hold from

the second equality onwards for better readability. □

Proof of Theorem 3
Proof. Let

𝛿 ≤ 𝐿hold (𝑀1)−𝐿hold (𝑀2) = (1−𝐿hold (𝑀2))− (1−𝐿hold (𝑀1)) . (13)

From Theorem 2, we know that

E𝑔 [𝐿hold (𝑀2)] ≥ 𝐿hold (𝑀1)
1 − E𝑔 [𝐿hold (𝑀2)] ≤ 1 − 𝐿hold (𝑀1),

Giving us:

(1 − 𝐿hold (𝑀2)) − (1 − E𝑔 [𝐿hold (𝑀2)])
≥ (1 − 𝐿hold (𝑀2)) − (1 − 𝐿hold (𝑀1)) ≥ 𝛿 (14)

Let us call the first term A1 and the second A2 in the above three-

term inequality. Then

Pr[A1 ≥ 𝛿] ≤ Pr[A2 ≥ 𝛿], (15)

since whenever the event A2 ≥ 𝛿 occurs, the event A1 ≥ 𝛿 is

guaranteed to occur due to Eq. (14). Now, consider

1 − 𝐿hold (𝑀2) = 1 −
∑𝑚
𝑖=1 1[𝑀2 (𝑥𝑖 )≠𝑦𝑖 ]

𝑚

=

∑𝑚
𝑖=1

(
1 − 1[𝑀2 (𝑥𝑖 )≠𝑦𝑖 ]

)
𝑚

, (16)

where 1[𝑀2 (𝑥𝑖 )≠𝑦𝑖 ] is the indicator function which is 1 if the 𝑖th

sample in 𝐷hold, i.e., (𝑥𝑖 , 𝑦𝑖 ) is mislabelled by𝑀2. Consider also:

1 − E𝑔 [𝐿hold (𝑀2)] = 1 −
∑𝑚
𝑖=1 E𝑔 [1[𝑀2 (𝑥𝑖 )≠𝑦𝑖 ]]

𝑚

=

∑𝑚
𝑖=1 E𝑔

[
1 − 1[𝑀2 (𝑥𝑖 )≠𝑦𝑖 ]

]
𝑚

, (17)

Thus, A1 in Eq. (15) includes the sum of𝑚 random variables minus

the sum of expected values of these𝑚 random variables. Each of

these variables are between 0 and 1, being indicator random vari-

ables. Therefore, we can invoke Hoeffding’s inequality to conclude,

combining Eqs 13, 14, 15, 16 and 17 that:

Pr

𝑔
[𝐿hold (𝑀1) − 𝐿hold (𝑀2) ≥ 𝛿]

= Pr

𝑔
[(1 − 𝐿hold (𝑀2)) − (1 − 𝐿hold (𝑀1)) ≥ 𝛿]

≤ Pr

𝑔
[(1 − 𝐿hold (𝑀2)) − (1 − E𝑔 [𝐿hold (𝑀2)])]

≤ exp(−2𝑚𝛿2) .
□

When Does Condition (3) Hold?
The proofs of Theorems 2 and 3 rely on condition (3) to hold. The

condition states that with the model and datasets as defined before,

if (𝑥,𝑦) ∼ 𝐷hold then

Pr

𝑔
[𝑀2 (𝑥) = 0 | 𝑦 = 1] + Pr

𝑔
[𝑀2 (𝑥) = 1 | 𝑦 = 0]

≥ Pr[𝑀1 (𝑥) = 0 | 𝑦 = 1] + Pr[𝑀1 (𝑥) = 1 | 𝑦 = 0],
where the probabilities in the left hand side of the inequality are also

over the random choices of 𝑔. Notice that this does not necessarily

mean that one-sided errors or any particular 𝑔 may be worse off,

i.e., we may have for a particular 𝑔 that Pr[𝑀2 (𝑥) = 0 | 𝑦 = 1] ≤
Pr[𝑀1 (𝑥) = 0 | 𝑦 = 1], since 𝑀2 may assign the label 1 to every

sample.

The condition is not always satisfied. For example, the condition

does not hold if the labels of 𝐷1 are out of distribution. For instance,

assume that almost all samples in 𝐷1 have label 0. Further, assume

that all the errors made by 𝑀1 are on label 1. This is likely to be

the case, as the model is trained overwhelmingly on samples with

label 0. In this case, if 𝐷2 has all samples labeled 1 (i.e., the oblivious

labeling function 𝑔(𝑥) = 1, for all 𝑥 ), then𝑀2 may have decreased

error on samples with label 1, and therefore the overall error will

be reduced.

On the other hand, if𝐷1 follows the original distributionD, then

since 𝐷2 is labelled according to 𝑔, it does not increase A’s infor-

mation about the original conditional distribution D𝑦 |𝑥 . Therefore,
the overall error of𝑀2 on 𝐷hold, which follows the original condi-

tional distributionD𝑦 |𝑥 , can at best be greater than or equal to that

of 𝑀1 on 𝐷hold over all possible random choices of the oblivious

functions 𝑔, as both are outputs of the same learning algorithm A.

We postulate that in this case, the above condition holds.

To test this, we used the purchase dataset
3
clustered into two

classes. We used the first 200,000 samples of the dataset. The dataset

is relatively balanced with slightly more than 65% of the samples

having label 1. We reserved the first 100,000 rows for 𝐷1. The re-

maining 100,000 rows were reserved for 𝐷2 and 𝐷hold. For 𝐷hold, we

took a 20% sample from these 100,000 samples, and discarded sam-

ples so that we have 2,000 samples in𝐷hold with exactly equal distri-

bution of the two labels. Thus, 80,000 samples were reserved for 𝐷2.

We trained the Random Forest (RF) classifier from scikit-learn
with default settings on 𝐷1, and tested the accuracy on 𝐷hold. The

average accuracy over 100 runs was ≈ 0.90. We then restricted 𝐷1

3
See https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data.
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to the first 2,000 samples to simulate lack of samples. We trained

the RF classifier again on the updated 𝐷1, and obtained average

accuracy of ≈ 0.87. Thus, there is a gap in the two accuracies, and

hence room for improvement. We also trained the RF classifier on

𝐷2. For a realistic scenario, we took 𝐷2 to be the first 2,000, 3,000

and 5,000 samples (from the total of 80,000 available samples). This

is a realistic setting as increasing the size of the combined dataset is

likely to increase accuracy. The average accuracy of the RF classifier

on 𝐷2 alone was ≈ 0.89, and on 𝐷1 ∪ 𝐷2 was ≈ 0.89, both over 100

runs. Thus, the collaboration results in a better model if the two

datasets are joined.

Now to check if Theorem 3 holds, we chose 𝛿 = 0.01 and 𝛿 = 0.02,

and selected different (balanced) sizes of𝐷hold upto a maximum size

of 2,000. The oblivious labeling function 𝑔𝑞 was chosen such that it

assigns the label 1 to a given sample with probability 1 − 𝑞, and 0

otherwise, where 𝑞 ∈ {0, 0.1, 0.2, . . . , 1}. This constitutes a subset
of all possible oblivious labeling functions. With these parameters,

for each size of 𝐷hold in the above set, and for each value of 𝑞,

we trained the RF classifier on 𝐷1 ∪ 𝐷 ′2 where 𝐷 ′2 had the same

samples (features) as 𝐷2, except that the labels were labeled by 𝑔𝑞 .

We checked if the resulting accuracy was greater than that obtained

from the model trained on 𝐷1 plus 𝛿 . This process was repeated

100 times for each configuration, and the average number of times

the resulting accuracy was greater than this quantity was noted as

the estimated probability of Theorem 3.

Figure 4 shows the results of this experiment. For each size of

𝐷hold, we pick the highest probability against all possible values of

𝑞 in 𝑔𝑞 . As we can see, the empirical probabilities are lower than

the estimated bound from Theorem 3. Furthermore, with increasing

size of 𝐷 ′
2
, the estimated probabilities are significantly less than

the theoretical bound. Thus, in this case the theorem holds. A

comprehensive analysis of when the condition holds and whether

it is true for other classifiers and datasets requires significant effort.

We leave it as an interesting open question.

B Differential Privacy Background
The 𝑓 -differential privacy framework is based on the hypothesis

testing interpretation of differential privacy. Given the output of the

mechanism A, the goal is to distinguish between two competing

hypotheses: the underlying data set being 𝐷1 or 𝐷2. Let 𝑄1 and 𝑄2

denote the probability distributions of A(𝐷1) and A(𝐷2), respec-
tively. Given any rejection rule 0 ≤ 𝜙 ≤ 1, the type-I and type-II

errors are defined as follows [12]: 𝛼𝜙 = E𝑄1
[𝜙] and 𝛽𝜙 = 1−E𝑄2

[𝜙].
Definition 2 (Trade-off function [12]). For any two probability

distributions 𝑄1 and 𝑄2 on the same space, the trade-off function
𝑇 (𝑄1, 𝑄2) : [0, 1] → [0, 1] is defined by

𝑇 (𝑄1, 𝑄2) (𝛼) = inf{𝛽𝜙 : 𝛼𝜙 ≤ 𝛼}
for all 𝛼 ∈ [0, 1], where the infimum is taken over all (measurable)

rejection rules.

A trade-off function gives the minimum achievable type-II error

at any given level of type-I error. For a function to be a trade-off

function, it must satisfy the following conditions.

Proposition 1 ([12]). A function 𝑓 : [0, 1] → [0, 1] is a trade-off
function if and only if 𝑓 is convex, continuous and non-increasing,
and 𝑓 (𝑥) ≤ 1 − 𝑥 for all 𝑥 ∈ [0, 1].

Abusing notation, let A(𝐷) denote the distribution of a mecha-

nismA when given a data set 𝐷 as input. We now give a definition

of 𝑓 -label differential privacy based on the definition of ordinary

𝑓 -differential privacy:

Definition 3 (𝑓 -Label Differential Privacy [12]). Let 𝑓 be a trade-

off function. A mechanism A is said to be 𝑓 -label differentially
private if 𝑇 (A(𝐷1),A(𝐷2)) ≥ 𝑓 for all neighbouring data sets 𝐷1

and 𝐷2.

Note that the only change here from 𝑓 -differential privacy as

defined in [12] is how we define neighbouring datasets. In our case

neighbouring datasets differ only in the label of at most one sample.

We now give a concrete 𝑓 -label differentially private mechanism.

Proposition 2 (𝜖-Gaussian Label Differential Privacy [12]).

The mechanism 𝑞(𝐷) + N (0,Δ𝑞2/𝜖2) is 𝜖-GLDP where Δ𝑞 is the
sensitivity of the function 𝑞 over any pairs of neighbouring (in label)
datasets 𝐷1 and 𝐷2.

The notion of 𝜖-GLDP satisfies both sequential and parallel com-

position.

Proposition 3 (Seqential and Parallel Composition). The
composition of 𝑛-fold sequential 𝜖𝑖 -GLDP mechanisms is√︃

𝜖2
1
+ · · · + 𝜖2𝑛-GLDP

[12]. Let a sequence of 𝑛 mechanismsA𝑖 each be 𝜖𝑖 -GLDP. Let D𝑖 be
disjoint subsets of the data domain D. The joint mechanism defined
as the sequence of A𝑖 (𝐷 ∩ D𝑖 ) (given also the output of the previous
𝑖 − 1 mechanisms) is max{𝜖1, . . . , 𝜖𝑛}-GLDP [29].

Lastly, 𝑓 -differential privacy is also immune to post process-

ing [12]. That is, applying a randomised map with an arbitrary

range to the output of an 𝑓 -label differentially private algorithm

maintains 𝑓 -label differential privacy.

C Differential Privacy Violation with Integer
Encoded Gaussian Noise

In this section, we show that multiplying encoded sensitivity with

encoded noise violates differential privacy. This is the main reason

why we need the list of allowable sensitivities. This vulnerability

also exists in the work from Yuan et al [34]. For ease of exposition,

consider the one dimensional case, which can be straighforwardly

extended to higher dimensions. Suppose we have a function ℓ (𝑥)
whose sensitivity is 𝑠 over neighbouring datasets. We therefore

add Gaussian noise 𝑠N(0, 𝜎2) = N(0, (𝑠𝜎)2) to ℓ (𝑥) to make it

differentially private, where for completeness assume that 𝜎 = 1/𝜖 .
However, in our case, and also in [34], the sensitivity and the noise

are computed by two different parties. We therefore first need

to encrypt them and then homomorphically multiply. Encryption

implies that these quantities need to be integer encoded. But in

general the encoded versions do not satisfy the above relation, i.e.,

⌊𝑟𝑠⌋ · ⌊N (0, 𝜎2)⌋ ≠ ⌊𝑟𝑠N(0, 𝜎)2⌋ = ⌊N (0, (𝑟𝑠𝜎)2)⌋,
where 𝑟 is the precision used in encoding. For instance, consider

𝑟 = 10
6, 𝑠 = 1.2, and N(0, 𝜎2) = 1.1. Then

⌊N (0, (𝑟𝑠𝜎)2)⌋ = ⌊𝑟𝑠N(0, 𝜎2)⌋ = ⌊106 × 1.2 × 1.1⌋ = 1.32 × 106,
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Figure 4: The number of times 𝐿hold (𝑀2) ≤ 𝐿hold (𝑀1) + 𝛿 , where𝑀1 is trained on 𝐷1 and𝑀2 on 𝐷1 ∪ 𝐷 ′2, and 𝐷 ′2 labelled through
an oblivious function. The size of 𝐷 ′

2
in the leftmost image is 2,000, for the middle image it is 3,000 and for the rightmost image

it is 5,000. The empirical probabilities are far below the theoretical bound from Theorem 3 as the size of 𝐷 ′
2
grows.

whereas

⌊𝑟𝑠⌋ · ⌊N (0, 𝜎2)⌋ = ⌊106 × 1.2⌋ · ⌊1.1⌋ = 1.2 × 106 .

Note that the authors in [34] mention that to integer encode their

scheme one can use the encoding scheme used in [33], which is

the same as ours. The fact that the encoded noise does not follow

the said property means that the resulting mechanism is no longer

differentially private. To see this, again for simplicity consider one

dimension and further assume that we have one sample in the batch

and the sensitivity is 𝑠 = 2, and therefore 𝑟𝑠 = 2𝑟 . Then the encoded

noise is a multiple of 2𝑟 , regardless of the actual noise value and

the derivative of the loss function. Now, if the initial label is 𝑦 = 0,

the quantity with noise remains a multiple of 2𝑟 . However, if the

label is 𝑦 = 1, then the quantity with noise is 𝑟 plus a multiple of

2𝑟 . Thus after unblinding (step 10), 𝑃1 will be able to determine the

label as it knows the sensitivity.
4
This reasoning can be extended

to the entire mini-batch by assuming the neighbouring datasets to

only differ in the label 𝑦.

D Computing Gradients via the Chain Rule
From Equation (4), we are interested in computing the loss through

the samples in a batch 𝐵 that belong to the dataset 𝐷2. Overloading

notation, we still use 𝐵 to denote the samples belonging to 𝐷2. The

algorithm used to minimizing the loss is the stochastic gradient de-

scent algorithm using backpropagation. This inolves calculating the

gradient ∇𝐿𝐵 (w). As noted in [34], if we are using the backpropa-

gation algorithm, we only need to be concerned about the gradients

corresponding to the last layer. Again, to simplify notation, we

denote the vector of weights in the last layer by w.

Let 𝑠 = (x, y) be a sample in the batch 𝐵. Let𝐾 denote the number

of classes. We assume that y is one-hot encoded, meaning that only

one of its element is 1, and the rest are zero. We denote the index of

this element by 𝑐 (which of course is different for different samples).

The output from the neural network is the softmax output p of size

4
In Protocol 2 from Yuan et al. [34], Alice will be able to determine the label as she

computed the sensitivity. Note that in their protocol it is the quantity 𝑝 − 𝑦 which

is encoded, where 𝑝 is the predicted confidence (probability) associated with label 𝑦.

The reasoning holds by assume 𝑝 = 1 for the input sample.

𝐾 , where:

𝑝𝑖 =
𝑒𝑧𝑖∑
𝑗 𝑒
𝑧 𝑗
,

where z = (𝑧1, . . . , 𝑧𝐾 ) is the output before the softmax layer. Con-

sider the cross-entropy loss. Under this loss, we have:

𝐿𝑠 (w) = −
𝐾∑︁
𝑖=1

𝑦𝑖 ln𝑝𝑖 = − ln𝑝𝑐 , (18)

since y is one-hot encoded. Now, we have:

∇𝐿𝐵 (w) =
1

|𝐵 |
∑︁
𝑠∈𝐵
∇𝐿𝑠 (w) (19)

Let us, therefore, focus on the gradient of per-sample loss. By

the chain rule, we have:

∇𝐿𝑠 (w) =
𝜕𝐿

𝜕w
=
𝜕𝐿

𝜕z
𝜕z
𝜕w

(20)

Consider the 𝑖th element of
𝜕𝐿
𝜕z :

𝜕𝐿

𝜕𝑧𝑖
=

𝜕

𝜕𝑧𝑖
(− ln𝑝𝑐 ) = −

1

𝑝𝑐

𝜕𝑝𝑐

𝜕𝑧𝑖
. (21)

Solving for the case when 𝑖 = 𝑐 , the above becomes 𝑝𝑐 − 1, whereas
for the case 𝑖 ≠ 𝑐 , we get 𝑝𝑖 . In both cases, we get:

𝜕𝐿

𝜕𝑧𝑖
= 𝑝𝑖 − 1𝑐 (𝑖) = 𝑝𝑖 − 𝑦𝑖

Plugging this into Equation (20), we get:

∇𝐿𝑠 (w) =
𝐾∑︁
𝑖=1

(𝑝𝑖 − 1𝑐 (𝑖))
𝜕𝑧𝑖

𝜕w
(22)

Plugging this into Equation (19), we get:

∇𝐿𝐵 (w) =
1

|𝐵 |
∑︁
𝑠∈𝐵

𝐾∑︁
𝑖=1

(𝑝𝑖 (𝑠) − 1𝑐 (𝑠 ) (𝑖))
𝜕𝑧𝑖 (𝑠)
𝜕w

=
1

|𝐵 |
∑︁
𝑠∈𝐵

𝐾∑︁
𝑖=1

𝑝𝑖 (𝑠)
𝜕𝑧𝑖 (𝑠)
𝜕w

− 1

|𝐵 |
∑︁
𝑠∈𝐵

𝐾∑︁
𝑖=1

1𝑐 (𝑠 ) (𝑖)
𝜕𝑧𝑖 (𝑠)
𝜕w

, (23)
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where 𝑐 (𝑠), 𝑝𝑖 (𝑠) and 𝑧𝑖 (𝑠) denote the fact that these quantities

depend on the sample 𝑠 .

E Sensitivity of the Gradient of the Loss
Function

We now compute the ℓ2-sensitivity of the loss function. Let 𝐷 ′ and
𝐷 ′′ be neighbouring datasets, where all but one of the samples have

the labels changed to another label. Let 𝑠′ and 𝑠′′ represent the
differing samples. Let 𝐵′ and 𝐵′′ be the batches drawn in the two

datasets. Note that |𝐵′ | = |𝐵′′ | and we denote this by |𝐵 |. Then, the
ℓ2-sensitivity of the loss function, when no encoding is employed,

is:

∥∇𝐿𝐵′ (w) − ∇𝐿𝐵′′ (w)∥2

=
1

|𝐵 |






∑︁
𝑠∈𝐵′
∇𝐿𝑠 (w) −

∑︁
𝑠∈𝐵′′
∇𝐿𝑠 (w)







2

=
1

|𝐵 | ∥∇𝐿𝑠
′ (w) − ∇𝐿𝑠′′ (w)∥2

=
1

|𝐵 |






 𝐾∑︁
𝑖=1

(𝑝𝑖 − 1𝑐 (𝑠′ ) (𝑖))
𝜕𝑧𝑖

𝜕w

−
𝐾∑︁
𝑖=1

(𝑝𝑖 − 1𝑐 (𝑠′′ ) (𝑖))
𝜕𝑧𝑖

𝜕w







2

=
1

|𝐵 |






 𝐾∑︁
𝑖=1

(1𝑐 (𝑠′′ ) (𝑖) − 1𝑐 (𝑠′ ) (𝑖))
𝜕𝑧𝑖

𝜕w







2

≤ 1

|𝐵 |

𝐾∑︁
𝑖=1





(1𝑐 (𝑠′′ ) (𝑖) − 1𝑐 (𝑠′ ) (𝑖)) 𝜕𝑧𝑖𝜕w 




2

=
1

|𝐵 |

𝐾∑︁
𝑖=1

��1𝑐 (𝑠′′ ) (𝑖) − 1𝑐 (𝑠′ ) (𝑖)�� 



 𝜕𝑧𝑖𝜕w 




2

≤ 1

|𝐵 |

(
𝐾∑︁
𝑖=1

��1𝑐 (𝑠′′ ) (𝑖) − 1𝑐 (𝑠′ ) (𝑖)��) max

𝑖





 𝜕𝑧𝑖𝜕w 




2

=
2

|𝐵 | max

𝑖





 𝜕𝑧𝑖𝜕w 




2

And over all possible choice of samples 𝑠 in the batch, we get

that

∥∇𝐿𝐵′ (w) − ∇𝐿𝐵′′ (w)∥2 ≤
2

|𝐵 | max

𝑖,𝑠





 𝜕𝑧𝑖 (𝑠)𝜕w






2

= Δ𝑆𝐵 (w), (24)

where 𝑧𝑖 (𝑠) is the 𝑖th coordinate of the vector z in the sample 𝑠 .

Now, in Step 4 of our protocol the partial derivative vector
𝜕𝑧𝑖 (𝑠 )
𝜕w

from Eq. 23 is encoded as: ⌊
𝑟
𝜕𝑧𝑖 (𝑠)
𝜕w

⌋
.

Plugging this instead of the partial derivative vector in Eq. 23, we

see that the expression remains the same except that now the partial

derivative vector has been changed. Therefore, from Eq. 24, we get:

∥∇�̃�𝐵′ (w) − ∇�̃�𝐵′′ (w)∥2 ≤
2

|𝐵 | max

𝑖,𝑠





⌊𝑟 𝜕𝑧𝑖 (𝑠)𝜕w

⌋




2

,

where �̃� represents the loss function using the encoded partial

derivative vector. Next we use the following proposition:

Proposition 4. Let x ∈ R𝑚 and 𝑟 be a positive integer. Then

∥⌊𝑟x⌋∥2 ≤ 𝑟 ∥x∥2 .

Proof. We have

∥⌊𝑟x⌋∥2 =

√√
𝑚∑︁
𝑖=1

(⌊𝑟𝑥𝑖⌋)2

≤

√√
𝑚∑︁
𝑖=1

(𝑟𝑥𝑖 )2 = 𝑟

√√
𝑚∑︁
𝑖=1

(𝑥𝑖 )2 = 𝑟 ∥x∥2 .

□

Let us denote the vector
𝜕𝑧𝑖 (𝑠 )
𝜕w which maximizes




⌊𝑟 𝜕𝑧𝑖 (𝑠 )𝜕w

⌋



2

as

z. Then, in light of the above proposition and Eq. 24:

∥∇�̃�𝐵′ (w) − ∇�̃�𝐵′′ (w)∥2 ≤
2

|𝐵 | max

𝑖,𝑠





⌊𝑟 𝜕𝑧𝑖 (𝑠)𝜕w

⌋




2

=
2

|𝐵 | ∥ ⌊𝑟z⌋∥2

≤ 2

|𝐵 | 𝑟 ∥z∥2

≤ 2

|𝐵 | 𝑟 max

𝑖,𝑠





 𝜕𝑧𝑖 (𝑠)𝜕w






2

= 𝑟Δ𝑆𝐵 (w) (25)

F Proving Security
We will prove security in the real-ideal paradigm [5, §23.5],[7].

Under this framework, we need to consider how we can define

ideal functionality for 𝑃2. More specifically, 𝑃2 applies differentially

private (DP) noise at places in the protocol. One way around this

is to assume that the ideal functionality applies DP noise to the

labels of 𝑃2’s dataset at the start, and uses these noisy labels to train

the dataset. However, this may cause issues with the amount of

DP noise added in the ideal world vs the real world. To get around

this, we assume that the ideal functionality does the same as what

happens in the real-world, i.e., in each batch, the ideal functionality

adds noise according to the sensitivity of the batch. We can then

argue that the random variables representing the output in both

settings will be similarly distributed. We assume 𝑅, the number

of weights in the last layer, |𝐵 |, the batch size, and the number of

epochs to be publicly known.

The ideal world. In the ideal setting, the simulator S replaces the

real-world adversary B. The ideal functionality F for our problem

is defined as follows. The environment Z hands the following

inputs to the ideal functionality F :
• 𝑃1’s inputs: dataset𝐷1, hold-out set𝐷hold, learning algorithm

A, 𝐿hold (𝑀1), where𝑀1 ← A(𝐷1), and the features of the

dataset𝐷2, i.e., without the labels, which is the input to party

𝑃1.

• 𝑃2’s input: dataset 𝐷2.

• Leaked parameters of𝑀1: the parameters 𝑅, i.e., the number

of weights in the last layer, batch size |𝐵 |, and the number

of epochs 𝑛.
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• System parameters: the privacy parameter 𝜖 , and the list of 𝑡

allowable sensitivities to the ideal functionality F .
The ideal functionality F then proceeds as follows:

• F first sets 𝐷 ← 𝐷1 ∪ 𝐷2.

• For each epoch, it samples a random batch 𝐵 of size |𝐵 | from
𝐷 . If 𝐵 does not contain any sample from 𝐷2, it proceeds

with backpropagation, after which it moves to the next epoch.

Else it proceeds as follows.

• It computes the sensitivity of the gradients of the loss func-

tion for the current batch.

• It then looks up the smallest value 𝑠 in the list of allowable

sensitivity values which is greater than or equal to the com-

puted sensitivity, and generates DP-noise 𝑟𝑠N(0, 𝜎21𝑅), and
adds it to the quantity 𝑁𝐵 (w) as 𝑁𝐵 (w) + ⌊𝑟𝑠N(0, 𝜎21𝑅)⌋ =
𝑁𝐵 (w).
• F then sends the current batch 𝐵 and the quantity 𝑁𝐵 (w)
to 𝑃1. Note that this information is leaked in our protocol to

𝑃1.

• F then decodes the quantity as 𝑁𝐵 (w)/𝑟 and continues with
backpropogation. This is exactly what is done by 𝑃1.

• If this is the last epoch, the functionality outputs 1 if

𝐿hold (𝑀2) < 𝐿hold (𝑀1),

where𝑀2 is the resulting training model on dataset 𝐷 using

algorithm A.

Note that each party’s input is forwarded directly to the ideal

functionality F (as described above). Thus the simulator S may ask

the ideal functionality for the inputs to and outputs from a corrupt

party. Since we assume the honest-but-curious model, S cannot

modify these values. Further note that the ideal functionality is only

leaking the noisy gradients 𝑁𝐵 (w) per batch 𝐵 to 𝑃1, and nothing

to 𝑃2 (except for the output and the leaked model parameters as

input). In our proof, we shall show that the real world protocol’s

output is statistically indistinguishable from this.

The real world. In the real world, the environmentZ supplies the

inputs (both private and public) to and receives the outputs from

both parties. Any corrupt party immediately reports any message

it receives or any random coins it generates to the environmentZ.

Simulation when 𝑃1 is corrupt. S first obtains the inputs to 𝑃1
directly from the ideal functionality.

• At some point Z will generate a control message which

results in the real-world 𝑃1 receiving the (label) encrypted

dataset 𝐷2 from real-world 𝑃2 (Step 1). To simulate this, S
generates |𝐷2 | fresh samples from the distribution D0 from

Definition 1, and adds one to each row of 𝐷2 as the pur-

ported encrypted label. S reports this encrypted dataset to

Z, just like real-world 𝑃1 would do. After this step the two

encrypted databases (real and simulated) are statistically in-

distinguishable due to the TLWE assumption over the torus

(Definition 1).

• At a later pointZ generates a control message resulting in

𝑃1 receiving 𝑡 encrypted 𝑅-element noise vectors (one for

each allowable value of sensitivity) from 𝑃2 (Step 6). To sim-

ulate this, S again generates 𝑡𝑅 fresh samples from D0, and

reports the 𝑡 encrypted 𝑅-element vectors as the supposed

noise vectors to Z. Notice that, the length of each vector

does not depend on the number of elements in the batch

belonging to 𝐷2, as long as there is at least one. If none are

from 𝐷2, then 𝑃1 will not ask 𝑃2 to send a noise vector. Once

again, at this step the real and simulated outputs are statis-

tically indistinguishable under the TLWE assumption over

the torus.

• Lastly,Z generates a control message resulting in 𝑃1 obtain-

ing the blinded and noise-added 𝑅-element vector 𝑁𝐵 (w)
(Step 9). S queries F to obtain the batch 𝐵 and the quantity

𝑁𝐵 (w). Note that these are sent to 𝑃1 and hence the simula-

tor can ask for these inputs. If the batch 𝐵 does not contain

any sample from𝐷2, S does nothing. Otherwise, it generates

a blind vector 𝝁 (Step 8 of the protocol), by generating fresh

coins to generate 𝑅 elements uniformly at random from P
(the plaintext space). S reports these coins toZ. S reports

𝑁𝐵 (w) + 𝝁 toZ. At this step the real and simulated outputs

are perfectly indistinguishable due to the fact that the blinds

are generated uniformly at random.

• If this is the last epoch, S sends the output returned by F
to 𝑃1, dutifully toZ.

Thus, overall the output of the environment is statistically indis-

tinguishable from the ideal case under the TLWE assumption over

the torus.

Simulation when 𝑃2 is corrupt. The simulation from S is as

follows.

• WhenZ sends the initial input to 𝑃2, S queries F to obtain

this input. At the same time, S generates fresh coins and

uses them to generate the key k for the TLWE scheme. S
reports these coins toZ.

• For generation of Gaussian noise, S generates an 𝑅-element

noise vector using fresh coins as N(0, 𝜎21𝑅). Then for each

𝑠 in the list of allowable sensitivities, S computes

𝑟𝑠N(0, 𝜎21𝑅).

S then encrypts each of these 𝑡 vectors under k as

q
⌊𝑟𝑠N(0, 𝜎21𝑅)⌋

y
k .

S reports these coins to the environment Z (as the real-

world 𝑃2 would do).

• At some pointZ generates a control message resulting in 𝑃2
receiving the encrypted, blinded and noise-added 𝑅-element

vector 𝑁𝐵 (w) (Step 8). S generates 𝑅 elements uniformly at

random from P, and then encrypts the resulting 𝑅-element

vector under k. S hands this toZ as the purported received

vector.

• If this is the last epoch, S sends the output returned by F
to 𝑃2 dutifully toZ.

In this case, in each step, the simulation is perfect. We are us-

ing the fact that the blinds used completely hide the underlying

plaintext.
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G Ratio of the Number of Samples vs Ratio of
Model Accuracy

Figure 5 shows the effect of the size difference between 𝐷1 and 𝐷2

on the accuracy of the model𝑀2 over all datasets used in our work.

Recall that𝑀1 is trained on 𝐷1, and𝑀2 is trained on 𝐷1∪𝐷2. The 𝑥-

axis shows the ratio
|𝐷1 |
|𝐷2 | and the𝑦-axis shows the ratio

𝑀1’s Accuracy

𝑀2’s Accuracy
.

For each dataset, we take 𝐷2 to be one-third of the entire dataset.

The size of 𝐷1 is then varied to be 10%, 20%, . . . , 100% of 𝐷2 by

sampling points from the remaining dataset. 𝐷hold is constructed

to be a balanced dataset and its size remains the same across the

different ratios. Each data point is averaged over 100 runs.

We have two key observations. First, the ratio of model accuracy

being less than one indicates that 𝑀1 has worse accuracy than

𝑀2. Second, the ratio of model accuracy gradually increases and

stabilizes as the size of the two becomes similar. This indicates

that with the size difference considered in our experiments 𝑀2

shows noticeable improvement over 𝑀1 performance. Hence we

conclude that more training data samples result in better training

performance. Note that since the deep neural networks are not

good on CIFAR datasets [22, 28], the test accuracy of models on

CIFAR-10 and CIFAR-100 could not be enhanced by tuning the

dataset size, which is reflected by the two flat curves on the two

CIFAR datasets. There are drops in accuracy in some of the dataset

as we increase the ratio, more prominently in smaller datasets. This

is most probably due to the small number of experimental runs (100

per ratio).

Figure 5: Ratio of Dataset Size vs Ratio of Model Accuracy.

H Neural Network Weights of PyTorch vs Our
Implementation

Learned Parameters. Table 6 below shows the weights and biases

of the neural network trained via our implementation from scratch

versus the PyTorch implementation.

Accuracy. Figure 6 depicts the ROC curve from our model versus

the PyTorch implementation on the Iris dataset. As can be seen,

our model faithfully reproduces the results from PyTorch. We are

Table 6: Weights and biases of of the neural network training
from scratch versus neural netowrk from PyTorch (hidden
neurons: [4,4], batch size: 16, learning rate: 0.1, epochs: 100).

Input layer to hidden layer 1
Type Weights Bias

Ours

−0.4916 −0.6516 1.0534 0.6013 −0.2006
0.298 0.4451 −0.7782 −0.2451 0.119

−0.4741 −0.7003 1.1115 0.4583 −0.2123
0.3005 0.6029 −0.754 −0.6411 0.1407

PyTorch

−0.4916 −0.6516 1.0534 0.6013 −0.2006
0.2980 0.4451 −0.7782 −0.2451 0.119

−0.4741 −0.7003 1.1115 0.4583 −0.2123
0.3005 0.6029 −0.754 −0.6411 0.1407

Hidden layer 1 to hidden layer 2
Type Weights Bias

Ours

−1.4098 0.94 −1.3221 1.0272 0.4485

1.1843 −0.5146 1.0718 −0.9094 −0.2474
−0.8463 0.5649 −1.0814 0.7063 0.2926

1.0468 −0.4571 1.0761 −0.6371 −0.1646

PyTorch

−1.4098 0.94 −1.3221 1.0272 0.4485

1.1843 −0.5146 1.0718 −0.9094 −0.2474
−0.8463 0.5649 −1.0814 0.7063 0.2926

1.0468 −0.4571 1.0761 −0.6371 −0.1646
Hidden layer 2 to output layer

Type Weights Bias

Ours

2.0928 −1.7484 1.3045 −1.6554 -

−0.1631 0.3837 0.1516 0.4605 -

−2.1381 1.5229 −1.2348 1.0557 -

PyTorch

2.0928 −1.7484 1.3045 −1.6554 -

−0.1631 0.3837 0.1516 0.4605 -

−2.1381 1.5229 −1.2348 1.0557 -

therefore convinced that our implementation from scratch is an

accurate representation of the model from PyTorch.

(a) Model from Scratch. (b) PyTorch Model.

Figure 6: ROC Curves of Model from Scratch and PyTorch
Model on The Iris Dataset.

I Neural Network Weights of Our Model in
Plaintext vs Ciphertext

Table 7 shows the weights and biases of our neural network model

when no encryption is involved (plaintext) versus those of themodel
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implemented through Zama’s Concrete, i.e., with homomorphic

opertions.

Table 7: Weights and biases of models trained on the Iris
dataset in plaintext and ciphertext (hidden neurons: 4, batch
size: 16, learning rate: 0.1, epochs: 50).

Input layer to hidden layer 1
Type Weight Bias

Model Trained

on Plaintext

0.6511 0.0704 0.2909 1.0547 −0.3171
0.4029 −0.4721 1.2437 0.6597 0.472

−0.374 0.5 −0.9141 −0.512 0.0603

−0.3569 0.3907 −0.9173 −0.8551 −0.0134

Model Trained

on Ciphertext

0.6511 0.0704 0.2909 1.0546 −0.3171
0.4029 −0.4721 1.2437 0.6597 0.472

−0.374 0.4999 −0.9141 −0.5119 0.0603

−0.3569 0.3907 −0.9173 −0.8551 −0.0135
Hidden layer 1 to output layer

Type Weight Bias

Model Trained

on Plaintext

−1.0483 −1.8553 1.194 1.3057 -

−0.4617 0.8366 0.2772 −0.0569 -

0.9567 0.822 −0.9533 −1.4343 -

Model Trained

on Ciphertext

−1.0483 −1.8553 1.194 1.3057 -

−0.4617 0.8366 0.2772 −0.0569 -

0.9566 0.822 −0.9533 −1.4343 -

J Effect of the Number of Classes and Dataset
Size on Runtime

Table 8 gives the results on the same features as Table 4 but this time

on the three larger datasets CIFAR-10, CIFAR-100 and Purchase-

10. Unfortunately, due to the large total time required to train the

entire datasets, these times are extrapolated from the time taken

in one epoch. The neural network for these datasets is trained

over 70 epochs as the overall accuracy, especially in case of CIFAR-

10 and CIFAR-100 is always low (regardless of encryption and

differential privacy). The accuracy is determined by evaluating

the accuracy when only differentially private noise is added, i.e.,

with no encryption, since in our earlier experiments in Table 4 the

accuracy with and without encryption match. We acknowledge

that the times mentioned in the table are prohibitive. However,

once again, this is largely due to the slower time taken by our

implementation over the PyTorch implementation. On CIFAR-10,

CIFAR-100 and Purchase-10, our implementation is approximately

154, 185, and 71 times slower than that of PyTorch. This means that

if we were able to implement our protocol on PyTorch, even without

the other speedups mentioned in Section 6.5, the protocols would

take just over 4 hours for CIFAR-10, one day and 14 hours for CIFAR-

100, and one day and 2 hours for Purchase-10. These numbers are

substantially better than an end-to-end FHE solution. We also note

that the pre-processing time is very large for these datasets. Thus,

the time and communication complexity can further be improved by

a different noise adding mechanism which allows multiplication of

sensitivity with unit noise without breaking the differential privacy

guarantee. Lastly, we note that the runtime increases with both the

size of the dataset and the number of classes. This is because the

homomorphic operations are linear in the number of classes 𝐾 , as

mentioned in steps (3) and (4) of the protocol.
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Table 8: Extrapolated training time and accuracy of𝑀1 (dataset 𝐷1),𝑀2 (dataset 𝐷1 ∪𝐷2) in the clear,𝑀2 (dataset 𝐷1 ∪𝐷2) through
our protocol,𝑀Py

2
(dataset 𝐷1 ∪ 𝐷2) implemented in PyTorch in the clear, and𝑀RR

2
(dataset 𝐷1 ∪ 𝐷2) with randomized response

(hidden neurons: 128, batch size: 32, learning rate: 0.01, epochs: 70, weight decay: 0.001).

Dataset

𝜖
Model𝑀1

Plaintext, no DP

Model𝑀2

Plaintext, no DP

Model𝑀2

Our protocol

Model𝑀
Py

2

PyTorch baseline

Model𝑀RR

2

Randomized Response

Time (s) Test Acc. Time (s) Test Acc.
𝑡 -list time (s)

per epoch & total
Gap Time (s) Test Acc. Time (s) Test Acc. Test Acc.

CIFAR-10

1

1m48s 0.3032 1h59m27s 0.4752

6d12h37m43s

≈ 456d20h

26d16h 0.1709

46.5314 0.4658

0.1967

10 26d16h 0.2281 0.4610

100 26d16h 0.3168 0.4712

1000 26d16h 0.3544 0.4721

CIFAR-100

1

1m46s 0.0572 2h02m18s 0.2082

69d02h

≈ 4836d01h

294d16h 0.0146

39.5251 0.2084

0.0139

10 294d16h 0.0334 0.2061

100 294d16h 0.0950 0.2084

1000 294d16h 0.1088 0.2084

Purchase-10

1

1m46s 0.911 2h03m32s 0.9742

21d13h

≈ 1510d3h

79d20h 0.5970

01m44s 0.9742

0.8654

10 79d20h 0.8025 0.9684

100 79d20h 0.8912 0.9714

125 79d20h 0.9312 0.9710

1000 79d20h 0.9652 0.9721
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