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Abstract
Advanced mix net designs use a combination of loop cover traffic
and fixed cascades to detect when active adversaries delay or drop
messages. In this paper, we propose the Last Hop Attack, a new
attack algorithm that takes advantage of the fact that users send
loop cover, i.e., messages sent to themselves over the same mix
nodes that they also use to communicate with others. We use estab-
lished privacy definitions based on indistinguishability games and
prove that our algorithm can break strong anonymity notions. Our
research shows that the Last Hop Attack breaks Sender Receiver
Pair Unlinkability for any Anonymous Communication Network
that utilizes loop cover traffic, fixed cascades, and no additional
cover traffic. We furthermore conclude that the notions of Sender
Message Unlinkability, Receiver Message Unlinkability (and Un-
observability), and Both Side Unlinkability (and Unobservability)
are unachievable in this setting. To the best of our knowledge, this
impossibility result is the first to show that loop cover traffic can
threaten anonymity. It allows us to conclude that mix nets that
utilize loop cover traffic and fixed cascades must deploy additional
cover traffic to achieve strong anonymity.

Keywords
Anonymous Communication, Loop Cover Traffic

1 Introduction
In an increasingly digitized world, the need for anonymous com-
munication has become essential, offering individuals the freedom
to express themselves without fear of repercussion or surveillance.
Researchers and developers have spent decades creating and an-
alyzing Anonymous Communication Networks (ACNs) to meet
these anonymity requirements. The first advances [8, 10, 30] of
these ACNs offered strong privacy protection. Still, they were de-
signed to exchange single messages and did not offer enough in-
teractivity once the internet was used for browsing. This led to
low-latency ACNs and their most prominent representative Tor [17].
Low-latency ACNs offer the performance required for interactive
internet usage but cannot sufficiently protect against strong adver-
saries. This problem is tackled by the latest generation of ACNs,
including Loopix [32] and Nym [15]. They use loop cover traffic [11]
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and continuous time mixing [9, 25] to achieve strong privacy no-
tions and low latency, even against powerful adversaries. In an
effort to even protect against active adversaries, Miranda [28] and
SMRT [35] combine loop cover traffic with fixed cascades. The
advantage of using loop messages is that the user knows exactly
when each of these messages should return, so missing or delayed
loop cover messages indicate an attack. Sending these loop cover
messages over the same cascade as the real messages ensures that
whenever an adversary delays or drops a message, they potentially
tamper with a loop cover message, which will be noticed.

In this paper, we show that the combination of loop-cover traffic
and fixed cascades introduces an attack vector. The main idea of this
attack vector stems from a fundamental observation: Fixed cascades
ensure that all messages from a given user are routed through the
same mixes. Consequently, all messages originating from user 𝐴
leave the network at the last mix in this cascade, i.e., their Last Hop.
This includes any loop messages sent by 𝐴, which also leave the
network at their Last Hop. Even if no other user communicates
with 𝐴, they still send messages to themselves, which they receive
back from their Last Hop. An adversary can deduce that if user 𝐴
receives messages exclusively from a single mix, that mix must be
their Last Hop. Furthermore, since all messages traverse the same
cascade and therefore the same Last Hop, the adversary can also
infer the Receiver Anonymity Set of 𝐴, which comprises all users
who receive messages from this Last Hop.

We will extend this idea and prove that strong privacy notions
cannot be achieved with ACNs that utilize loop cover traffic, fixed
cascades, and no additional cover traffic. In the remainder of the
paper, we refer to ACNs that have these properties as fixed-loop
ACNs. We use the framework of Kuhn et al. [26] to prove this
result. In their framework, privacy notions are defined based on
indistinguishability games. These games are played within the
setting of a specific ACN design. In order to break a privacy notion,
the adversary has to distinguish between two scenarios. If they are
able to win this indistinguishability game with a high probability,
the privacy notion is not achievable.

We analyze the privacy notion of Sender Receiver Pair Unlinka-
bility [26] (SR)L. The notion describes whether an adversary can
learn which sender communicates with which receiver. Therefore,
we create scenarios where the senders and receivers of messages
differ, but everything else is identical. Additionally, we construct a
deliberately simple ACN model, the fixed-loop ACN, which com-
plies with our three main assumptions (i. e., loop cover traffic, fixed
cascades, and no additional cover traffic). We then present an attack
algorithm against fixed-loop ACNs that is able to differentiate the
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two scenarios with high probability. We calculate this probabil-
ity by identifying events that enable the adversary to determine a
scenario with certainty. We then show that the adversary is able
to observe these distinguishing events significantly often, which
allows us to conclude that an attack algorithm exists that is able
to win the (SR)L indistinguishability game on fixed-loop ACNs
with a high probability. Hence, the notion of Sender Receiver Pair
Unlinkability is unachievable for any fixed-loop ACN.

We prove that a global passive adversary is able to break Sender
Receiver Pair Unlinkability for any fixed-loop ACN. We argue that
even a partially global adversary, who can observe a subset of the
mixes, is able to break this notion. Furthermore, we conclude that
the notions of Sender Message Unlinkability, Receiver Message Un-
linkability (and Unobservability), and Both Side Unlinkability (and
Unobservability) are not achievable either.

Lastly, we show that our result is not only relevant for theoretical
considerations, but also affects real mix net designs, especially
SMRT and Miranda, which build on loop cover traffic and fixed
cascades to detect active adversaries. This allows us to apply our
impossibility result and conclude that those can only provide Sender
Receiver Pair Unlinkability when utilizing cover traffic.

Our main contributions can be summarized as follows:

• We introduce the Last Hop Attack and show that it signifi-
cantly diminishes the Receiver Anonymity Set of a user in
the context of Miranda. This effect is amplified when the
adversary is able to monitor the user for an extended period,
potentially reaching a critical level (Section 2)

• Weproceed by generalizing and formalizing our assumptions
within an ACN model (Section 3) and outlining our attack
strategy (Section 4)

• We demonstrate that our attack algorithm achieves a signif-
icant advantage against this ACN model and thereby pos-
sesses a valid attack strategy (Section 5)

• We present a novel impossibility result by proving that there
cannot be an ACN that provides Sender Receiver-Pair Un-
linkability and utilizes fixed cascades, loop cover traffic, and
no additional cover traffic (Section 6)

• We deduce that the impossibility result extents to the notions
of Sender Message Unlinkability, Receiver Message Unlink-
ability (and Unobservability), and Both Side Unlinkability
(and Unobservability) are not achievable (Section 6)

• We analyze the real-world impact of the Last Hop Attack by
discussing assumptions and consequences of our impossibil-
ity result (Section 7)

We also provide a brief discussion of related work in Section 8
before concluding our paper in Section 9.

2 The Last Hop Attack
In this section, we introduce the Last Hop Attack. We analyze
the mix net Miranda from the perspective of an adversary. We
describe Miranda and its threat model. Furthermore, we sketch the
attack idea with an example. Afterward, we calculate the expected
anonymity set size and, finally, estimate how the anonymity set
shrinks over time.

2.1 Miranda
Miranda’s [28] main goal is to defend against active adversaries.
They assume an adversary that can observe the whole network
(global passive adversary) and, at the same time, delay or drop
messages at a subset of corrupted mixes (partially active adversary).
We show that exactly the mechanism that protects against active
attacks enables passive attacks.

Miranda uses the concept of mix nodes. Mix nodes collect mul-
tiple messages and shuffle them in order to make it more difficult
to link incoming and outgoing messages. Since a single mix, of
course, knows the relation between incoming and outgoing mes-
sages, multiple mix nodes are chained to form a so-called cascade.
Each message now passes each mix node of the cascade. At fixed
intervals, so-called epochs, the directory authorities publish a set of
all currently available cascades. The users pick a cascade from this
list at random and use it for the whole epoch.

Layered encryption is used to prevent an obvious correlation
between incoming and outgoing packets. The sender encrypts the
message, and each mix removes one layer of encryption, thereby
changing the packet’s binary pattern. The last layer of encryption
is removed by the recipient, which is then able to read the cleartext.
To this end, Miranda uses the Sphinx [3] packet format and ensures
that messages are of constant length. This ensures that themessages
are indistinguishable from each other at any stage in the network.

These techniques are commonly used and aim to protect against a
(global) passive adversary. In order to detect active attacks, Miranda
applies loop messages. As the name indicates, these messages are
sent by users through the mix net back to themselves. Hence, the
user knows exactly when each of these messages should return.
If one loop cover message is missing or delayed, this indicates an
active attack. Due to the fixed cascade, loop cover messages and
real messages are sent over the same cascade. The packet format
ensures that loop cover and real messages are indistinguishable.
Thereby, whenever the adversary delays or drops a message, there
is a chance they hit a loop cover message, for which the users can
detect any delay or absence.

2.2 Threat Model
Miranda aims to achieve strong anonymity against a powerful
adversary. The authors assume a global observer who is able to
eavesdrop on all traffic that is exchanged in the network as well
as the sending rate of users. Additionally, the adversary is able to
corrupt mixes as long as the majority of mixes are honest. The
adversary is able to observe the internal states and keys of all
corrupted nodes. Furthermore, Miranda allows an arbitrary number
of users to be malicious, as long as there exist 2𝜔 honest users,
where𝜔 is enough to ensure that any first-mix in a cascade receives
a "sufficient" number of messages to ensure reasonable anonymity.
While the adversary is able to drop and delay packets on corrupted
mixes, they are not able to drop packets between honest parties
and can delay them only for a limited period. The goal is to hide
the correspondence between senders and receivers of messages in
the network. They aim to provide the same protection as an "ideal
mix," i.e., a single mix node, which is known to be honest.
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Figure 1: The Last Hop Attack.

2.3 The Attack Idea
Assume there is an activist leader, Alice, living in a totalitarian
regime. She has a daily newsletter, which she sends to other activists:
Bob and Charlie. They useMiranda to protect themselves. To protect
herself, Alice keeps her identity secret so nobody can sendmessages
to her. Nevertheless, the regime already identified her but is much
more interested in the people she communicates with. They want
to find the other activists she is sending messages to; in anonymity
terms, her Receiver Anonymity Set.

We take the position of the adversary with the capabilities de-
fined inMiranda’s threatmodel: a global passive adversary. Figure 1
illustrates the network from the perspective of the adversary and
highlights the Last Hop Attack. They observe the communication
between the mixes and users but not the content of the messages.
From this perspective, the adversary can identify the Last Hop of
Alice and, thereby, her Receiver Anonymity Set. They can do this
with the help of three observations. First, Alice sends all of her
messages through her chosen cascade. Thus, all her messages pass
through the same mixes and leave at the same Last Hop. Second,
if all her messages leave at the same Last Hop, this Last Hop also
sends her loop cover messages back to her. The adversary does
not know which cascade Alice has chosen, but they can observe
that exactly one mix is sending messages to Alice (blue arrow),
which then has to be her Last Hop. Third, since it is her Last Hop,
the adversary can conclude that all other messages Alice sends are
routed through this Last Hop, and thereby, her Receiver Anonymity
Set consists of all users who received messages from this mix.

2.4 Expected Anonymity Set Size
We aim to estimate Alice’s Receiver Anonymity Set by determining
the number of users who receive messages during a single epoch
from a specific Last Hop. First, we calculate the number of users
who select the same Last Hop as Alice. For this initial estimation,
we assume that users choose their Last Hops uniformly from the set
of all mixes. Consequently, the expected number of users selecting
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Figure 2: Size of the Receiver Anonymity Set, depending on
the number of observed epochs and the number of users with
| M | = 1, 000, 𝑥 = 5 and |𝐴| = 1.

a particular Last Hop depends solely on the total number of active
users in the network, denoted as | U |, and the number of mixes,
denoted as | M |. Thus, the expected number of users per Last Hop
is | U |

| M | . Next, we need to consider the number of communication
partners. This factor significantly influences the anonymity set.
If users do not actively send messages, only their cover traffic
contributes to the anonymity set. If they send in addition to their
cover traffic to 𝑥 other users, these are then also included in the
anonymity set. Note that this approach might overestimate the
anonymity set. If user X and user Y send messages to the same user
Z, Z will be counted twice. Therefore, this calculation should be
considered as an upper bound for the Receiver Anonymity Set. We
refer to the number of users Alice actually communicates with as
|𝐴| and compute Alice’s expected Receiver Anonymity Set.

𝑅𝐴𝑆 =
| U |
| M | · (𝑥 + 1) + |𝐴|

First, it is important to note that observing the Last Hop is suffi-
cient to determine the Receiver Anonymity Set. This is not the case
for other ACNs. For instance, determining the Receiver Anonymity
Set in the Tor network requires tracing the cascade and consider-
ing all potential paths the message may have taken. Additionally,
since monitoring the Last Hop is enough to identify the Receiver
Anonymity Set, other network parameters, such as path length, do
not affect the attack.

When considering the parameters of the formula, the Receiver
Anonymity Set of a user depends on the number of other active
users, the number of mixes in the network, and the number of
communication partners. We can observe that increasing numbers
of users and communication partners increases the anonymity set,
while more mixes and, thereby, more potential Last Hops decrease
the anonymity set.

2.5 Multiple Epochs
In certain situations, the adversary may be able to correlate their
observations across multiple epochs. This is feasible because, within
each time period, the adversary can ascertain Alice’s Last Hop and,
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consequently, her Receiver Anonymity Set. We consider our pre-
vious example to illustrate this. Here Alice sent a daily newsletter.
If this is known by the adversary, they are able to intersect the
anonymity sets of multiple epochs and narrow down the potential
receivers. Given that her subscribers receive a message from her
every day, other users can only contribute to the anonymity set if
they also receive messages from the respective Last Hop that Alice
has chosen in all considered epochs.

There are three possibilities for a user of the initial anonymity
set 𝑅𝐴𝑆 to remain in the anonymity set. They choose the same Last
Hop as Alice, one of their communication partners chooses the
same Last Hop as Alice, or they receive a message from Alice (|A|).
Thereby if they do not receive a message from Alice, they or one of
their communication partners need to choose the same Last Hop as
Alice in every epoch in order to contribute to the anonymity set. We
start with the initial set and then multiply this by the probability
that these users remain in the anonymity set. This allows us to
model the expected anonymity set size after |𝐸 | epochs. Here 𝑥 is
again the number of users a user sends messages to and |𝐴| the
number of users Alice sends messages to.

𝑅
|𝐸 |
𝐴𝑆 =

1
| M | · | U | ·(𝑥 + 1) ·

(
1 −

(
1 − 1

| M |
) (𝑥+1) ) |𝐸 |

+ |𝐴|

Figure 2 illustrates the expected anonymity set size on the y-axis
(in log scale) depending on the number of observed epochs (x-axis)
for a different number of users | U | (bars). We assume a network
with 1,000 mixes. Additionally, we need to make assumptions about
the traffic of other users. We assume that each user sends messages
to five other users (𝑥 = 5), which we presume is realistic. However,
as long as 𝑥 remains small (𝑥 < 100), we can observe similar effects
since then the anonymity sets scales linear with the size of 𝑥 . Finally,
we assume that Alice communicates with one other user. If the ad-
versary observes only one epoch, an increased number of users has
a significant effect on the anonymity set. However, this advantage
diminishes rapidly if the adversary can correlate multiple epochs.
While some of the anonymity set sizes after two epochs may be
considered large enough. The expected anonymity set after three
epochs is in all cases, close to 1; the number of users to whom Alice
actually sends messages. Even with 1 million concurrent users, the
expected anonymity set after three epochs is 1.2.

2.6 Multiple Potential Last Hops
In this example, we assumed Alice does not receive messages from
other users. Therefore, we want to briefly cover the adversary’s
strategy if Alice receives messages from multiple mixes. In this
case, it is not clear which of the mixes sent to Alice is her Last Hop.
Therefore, the anonymity set encompasses all users who receive
messages from the same mixes as Alice. So if Alice receives mes-
sages from mix 𝑀1 and 𝑀3, all users who receive messages from
𝑀1 or𝑀3 might have received a message from Alice.

3 Formalizing the Attack
After outlining the potential of the attack, we proceed with an
in-depth analysis using a formal framework [26]. This allows us
to clearly define our assumptions and to prove our results for an
abstract model that can be applied to different ACNs. Additionally,
the framework enables us to precisely measure the strength of the

adversary and derive clear boundaries; even in the style of differ-
ential privacy [19] (see Appendix B). It also provides hierarchical
relations between the privacy notions, allowing us to break one of
the weakest notions and thereby demonstrate that most of the other
notions are also not attainable. As the framework assumes a very
strong adversary model, we limit the capabilities of this adversary
to ensure that our results are applicable to real-world scenarios.

3.1 The Fixed-Loop ACN Model
We consider a general ACN with three defining properties: fixed
cascades, loop cover traffic, and no additional cover traffic.

We say a cascade is a sequence of mixes a user uses to forward
their message through the network. We use the term fixed cascade
to define that a client uses the same sequence of mix nodes for all
of their messages. They might change their selection in a regular
interval, which we refer to as epoch [2, 15].

We consider all messages as cover traffic that are sent with the
goal of obfuscation and do not contain any information users want
to exchange with each other. In particular, this can be messages that
are sent to randomly selected other users or mix nodes and then
dropped at reception. This includes the mechanism that Loopix [32]
uses between providers and users and any other messages that
are used for obfuscation without delivering information. However,
communications from other clients that might naturally populate
the network are not considered cover traffic.

We say loop cover traffic [11, 32] for all messages a user sends
over the chosen cascade to themselves to detect active adversaries.

This model allows us to define our three main assumptions:
𝐴1 : Fixed cascades for the duration of an epoch
𝐴2 : Every user sends at least one loop message per epoch
𝐴3 : No cover traffic, except loop cover traffic

In the following, when referring to this setting, we denote it as fixed-
loop ACN and accordingly, imply the respective set of assumptions.

Since we assume fixed cascades, we also need to consider the cas-
cade selection, i. e., which nodes are included in a specific cascade.
For our calculations, we assume a uniform cascade selection, where
the probability of being selected in a cascade and their position
are equal for all nodes. We discuss and relax this assumption in
Subsection 7.1. Additionally, we demonstrate in Appendix C that
our attack is also feasible with a bandwidth-based cascade selection,
where nodes are selected based on the bandwidth they provide. For
now, we make the following additional assumption:

𝐴4 : Nodes and their position in the cascade are drawn uniformly
at random from all nodes, and users select their cascade
uniformly at random

3.2 The Game
The framework of Kuhn et al. [26] defines indistinguishability
games to prove whether a given privacy notion is achievable for a
given ACN. Instead of measuring anonymity sets, the anonymity
provided by an ACN is measured in how difficult it is for the adver-
sary to differentiate two almost identical scenarios. The probability
of distinguishing the scenarios is measured as advantage. If the
adversary is able to achieve a non-negligible advantage in the game
of a given notion, the adversary must have a valid strategy, and
thereby, the privacy notion is not achievable.
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Table 1: Communication batches for Mix Sender Receiver
along the lines of Kuhn et al. [26]

Instance Scenario

𝑏 = 0 𝑏 = 1
𝑎 = 0 𝑢0 −→ 𝑢𝐴 𝑢0 −→ 𝑢𝐵

𝑢1 −→ 𝑢𝐵 𝑢1 −→ 𝑢𝐴

𝑎 = 1 𝑢1 −→ 𝑢𝐵 𝑢1 −→ 𝑢𝐴
𝑢0 −→ 𝑢𝐴 𝑢0 −→ 𝑢𝐵

These games consist of a challenger, an ACN model, and an
adversary. The adversary is the only real player. They win the
game if they can differentiate two scenarios. A scenario defines
the communication happening, i.e., which user sends messages to
which other user. The adversary can freely choose the two scenarios.
However, the chosen scenarios have to comply with certain rules.
For example, sending a message in both scenarios, as otherwise, it
might be possible to win the gamewithout any actual capabilities. In
this paper, we focus on the notion of Sender Receiver Unlinkability.
It describes if an adversary is able to identify which sender sent a
message to which receiver.

We chose this notion for two reasons. First, it is the notion
Miranda identifies as their security goal - they want to hide the
correspondence between senders and recipients of the messages.
Second, it is one of the weakest notions defined in the framework,
and therefore, proving that it is not achievable demonstrates that
most other notions are also not achievable. The framework of Kuhn
et al. [26] already analyses which properties the scenarios have to
provide to achieve this notion. Therefore, we refer the interested
reader to their definition and continue with the construction.

The adversary selects four users 𝑢0, 𝑢1, 𝑢𝐴, and 𝑢𝐵 at random.
They send two identical messages in each scenario. In scenario𝑏 = 0,
they are sent from 𝑢0 to 𝑢𝐴 and from 𝑢1 to 𝑢𝐵 . In scenario 𝑏 = 1,
from 𝑢0 to 𝑢𝐵 and from 𝑢1 to 𝑢𝐴. To comply with the rules, the
adversary has to provide two instances for each scenario. In the
first scenario, 𝑢0 sends first; in the second scenario, 𝑢1 sends first.1
See Table 1 for a summary of the scenario-instance combinations.
This choice of scenarios and instances complies with the definition
ofMix Sender Receiver 𝑀𝑆𝑅 , 𝐸𝑆𝑅 , and �♦ from [26] and thereby fulfills
the requirements that allow us to analyze Sender Receiver Pair
Unlinkability (SR)L. We can now use the constructed scenarios to
play the indistinguishability game. First, the challenger randomly
selects the instance bit 𝑎 and the challenge bit𝑏. Then, the adversary
sends a query to the challenger. This query contains the constructed
two scenarios with two instances each. The challenger checks if
the query conforms with the chosen notion. If they comply, the
challenger selects scenario 𝑏 and instance 𝑎 and simulates it on the
given ACN. The output of this simulation is then returned to the
adversary. Finally, the adversary has to submit a guess 𝑔 for the
scenario bit 𝑏. The adversary wins if 𝑔 = 𝑏.

1See Section 4 of Kuhn et al. for details on why this is necessary.

3.3 The Advantage
We can measure the strength of the adversary by calculating the
probability of 𝑔 = 𝑏 given 𝑏 with:

Pr(𝑔 = 𝑏) = 1
2 Pr(𝑔 = 1|𝑏 = 1) + 1

2 Pr(𝑔 = 0|𝑏 = 0)
Note that the adversary canwin, in expectation, half of the games

by simply guessing. So, to measure the strength of the adversary, we
want to analyze how much better they can do than simply guessing.
We call this the advantage of the adversary 𝛼 .

Intuitively, we can calculate the advantage by considering the
adversary’s success probability minus the probability of simple
guessing 1

2 . This leaves us with a range of [0; 1
2 ], which we can

normalize to the more intuitive range of [0; 1] by multiplying by
two. An advantage of zero represents that the best the adversary
can do is guessing. An advantage of one indicates that the adversary
has a strategy that enables them to win the game every time. We
use the definition of Kuhn et al.:2

𝛼 = | Pr(𝑔 = 0|𝑏 = 0) − Pr(𝑔 = 0|𝑏 = 1) |
Based on the advantage, we can now define whether a privacy

notion is achievable. If the adversary can win the game with a prob-
ability higher than simple guessing, they must have a valid strategy,
and the notion is not achievable. Note that this is identical to the
adversary having a non-negligible advantage. An ACN achieves a
notion if no probabilistic polynomial time algorithm (PPT) achieves
a negligible advantage in the indistinguishability game.3

3.4 Restricting the Adversary
The chosen framework analyzes a worst-case scenario in which
the adversary can control all communication in the network as
long as it complies with the rules of a given notion. Note that for
our chosen notion, this would mean that only 𝑢0 and 𝑢1 sending
messages through an otherwise empty network would be a valid
scenario. While this might be interesting for theoretical analysis,
achieving even the weakest notion, (SR)L, would be challenging
for any practical ACN.

In order to analyze a more realistic setting, we restrict the capa-
bilities of the adversary and allow all users to send arbitrarily many
messages to all other users. The only communication under the
adversary’s control are the messages sent and received by the chal-
lenge users. We require them to only send the messages defined by
the notion of Sender Receiver Pair Unlinkability, as defined above,
and the loop cover messages induced by the protocol. Additionally,
we restrict that no other user sends messages to them.

𝐴5 : The only users sending to the challenge users are the chal-
lenge users themselves.

This restricts the communication of the four users targeted by the
adversary. Note, if we would not exclude the challenge users, "ulti-
mate anonymity" can be achieved with a simple protocol, where
each user sends in every round one message to each other user [22].

2We can show that (𝑃 (𝑔 = 𝑏 ) − 0.5) · 2 = ( 1
2 · 𝑃 (1 |1) + 1

2 · 𝑃 (0 |0) − 0.5) · 2 =
𝑃 (1 |1) − 𝑃 (0 |0) − 1 = 1 − 𝑃 (0 |1) + 𝑃 (0 |0) − 1 = 𝑃 (0 |1) + 𝑃 (0 |0) . Note this is
not entirely identical. In Kuhn’s definition, an algorithm that always guesses wrong
also has an advantage of 1. This makes sense, given an algorithm that always guesses
wrong, it is trivial to build an algorithm that always guesses right.
3See Kuhn et al. for the formal definition.
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Figure 3: Fixed cascade of user 𝑢0 (in b = 0).

Since a user’s privacy should not depend on the number of ex-
changed messages or the number of communication partners, it is
valid to assume the worst case.

4 The Attack Strategy
The adversary’s strategy is based on the idea of distinguishing
events. If the adversary witnesses one of these events, they are able
to identify the scenario with certainty. We first give an example of
such an event. Then, identify multiple other events and combine
them into an attack algorithm.

4.1 Distinguishing Events
We identify distinguishing events in the setting described above.
This implies that the simulated scenario-instance combination is
one of the four provided by the adversary, and the ACN on which
the game is played complies with our assumptions.

None of the scenarios contains a message to 𝑢0 and we excluded
cover traffic (𝐴3) as well as messages from other users to 𝑢0 (𝐴5)
in our ACN model, thereby the only way 𝑢0 receives a message
is if they sent a loop cover message. Thus, only one user sends
to 𝑢0, which is 𝑢0 itself. Since we assumed fixed cascades, all loop
cover messages of a user take the same path. Therefore, only one
mix sends to 𝑢0; the Last Hop in its cascade. See Figure 3 for an
illustration. We refer to the first mix in a user’s cascade as 𝑀1
and the last mix as 𝑀𝐿 . We know from our assumptions that 𝑢0
sends loop cover traffic. Furthermore, we know from the provided
scenarios that 𝑢0 sends a real message to either 𝑢𝐴 or 𝑢𝐵 . We know
that the real message and the loop cover message use the same
cascade since we assumed fixed cascades in our ACN model. We
have already noticed that there is only one way for 𝑢0 to receive
messages, and those are loop messages. Consequently, only one
Last Hop sends to 𝑢0 and this same Last Hop must also have sent
the challenge message to either 𝑢𝐴 or 𝑢𝐵 .

With these observations in mind, consider a mix 𝑀 with the
following communication relations. 𝑀 sends a message to 𝑢0, and
it sends a message to 𝑢𝐴 . It does not send a message to 𝑢𝐵 . The mix
sent a message to 𝑢0; therefore, we know it is the Last Hop in the
cascade chosen by𝑢0 (𝑀 =𝑀𝐿). Additionally, we know that it must
have forwarded the challenge message. Either to 𝑢𝐴 or 𝑢𝐵 . We also
observed that𝑀 did not send a message to 𝑢𝐵 , so 𝑢0 must have sent
the message to 𝑢𝐴 , which reveals to the adversary that they are in
scenario 𝑏 = 0. Note that the existence and observability of this
distinguishing event depends only on the Last Hops of the challenge
users. We analyze the outgoing messages to the challenge users. As
long as the challenge users do not send or receive messages from
other users it is irrelevant how many other users chose the same
Last Hop and how many messages they might send.

Figure 4: Visual representation of the distinguishing events.

4.2 Further Distinguishing Events
We established that the adversary can detect the scenario 𝑏 = 0 if
the Last Hop of user 𝑢0 sends only to 𝑢𝐴 and not to 𝑢𝐵 . With the
same idea, they can detect scenario 𝑏 = 1 if a mix sends messages
to 𝑢0, 𝑢𝐵 but not to 𝑢𝐴 . Since it sends to 𝑢0, it has to be the Last Hop
in the cascade chosen by𝑢0, which has also forwarded the challenge
message. Since the mix did not send any message to𝑢𝐴 , it must have
sent it to 𝑢𝐵 , which ensures the adversary that the scenario is 𝑏 = 1.
Analogously, the adversary can analyze the Last Hop of user 𝑢1.
If 𝑢1’s Last Hop sends only to 𝑢𝐴 , they can identify scenario 𝑏 = 1,
and if it sends only to 𝑢𝐵 , they can recognize scenario 𝑏 = 0. See
Figure 4 for a visualization of all four cases.

4.3 The Algorithm
The attack algorithm is based on the distinguishing events described
above. It considers all corrupted mixes, and if a distinguishing event
is observed on one of them, it can determine the scenario with
certainty. If it cannot identify the scenario on any of the corrupted
mixes, it will just guess the scenario.4

Note that in this setting, the adversary only has information
about the mixes they can observe. We refer to the set of corrupted
mixes as Ψ and to the observation of these mixes as 𝑂Ψ.

5 Calculating the Advantage
In the framework of Kuhn et al., a privacy notion is not achievable
when an attack algorithm can win the indistinguishability game
of the chosen notion on the chosen ACN with a non-negligible
advantage. We already presented two scenarios that comply with
the Sender Receiver Pair Unlinkability notion and a general ACN
that is only defined by our three assumptions of fixed cascades, loop
cover traffic, and the fact that it sends no additional cover traffic.

In the following, we show that the adversary’s advantage is
non-negligible, which eventually leads to our impossibility result.
We showed in the previous section that the adversary is able to
determine the scenario correctly when it observes a distinguishing
event. It is therefore enough to show that the probability of the
adversary witnessing a distinguishing event is non-negligible.

Therefore, we divide the possible user behavior into five disjoint
sets, the user behaviors. Based on these sets, we calculate the number
4We could improve this result, for example, with [23]. Based on the observed data, they
guess which scenario is more likely. Although it provides better results, it makes the
analysis more complex, so we do not use it at this point and merely point out that our
results should be interpreted as lower bounds.
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Algorithm 1 Algorithm for the Last Hop Attack
Require: 𝑂Ψ {The output the challenger computed}
1: for𝑚 ∈ Ψ do
2: if m −→ u0 ∧m −→ uA ∧m ̸−→ uB then
3: return 0
4: end if
5: if m −→ u0 ∧m −→ uB ∧m ̸−→ uA then
6: return 1
7: end if
8: if m −→ u1 ∧m −→ uA ∧m ̸−→ uB then
9: return 1
10: end if
11: if m −→ u1 ∧𝑚 ∈ m −→ uB ∧m ̸−→ uA then
12: return 0
13: end if
14: end for
15: return UniformlyRandom([0,1])

Figure 5: Representation of
𝑢0 and 𝑢1 choosing the same
Last Hop.

Figure 6: Representation of
𝑢0 and 𝑢𝐵 choosing the same
Last Hop.

of distinguishing events for each of the five behaviors and the prob-
ability of each of them happening. Finally, we use these results to
calculate the adversary’s probability of observing a distinguishing
event and show that this is equivalent to the advantage.

5.1 User Behavior
We already noticed that the only mixes where the adversary can
observe our defined distinguishing events are the Last Hops of 𝑢0
and 𝑢1. Note that even if the adversary can control the scenarios,
they cannot control the users’ behavior. Therefore, they do not
knowwhich user selects which cascade. However, cascade selection
affects the existence of distinguishing events. Consider Figure 5. If
user𝑢0 and𝑢1 select the same Last Hop𝑀 , this Last Hop sends loop
cover messages to 𝑢0 and 𝑢1, as well as real messages to 𝑢𝐴 and 𝑢𝐵 .
This observation is identical for both scenarios 𝑏 = 0 and 𝑏 = 1.
Therefore, the adversary cannot distinguish the scenarios.

But even if 𝑢0 and 𝑢1 choose different Last Hops, it is not guar-
anteed that a distinguishing event is observable on their Last Hops.
Consider Figure 6. Assume scenario 𝑏 = 0, 𝑢0 sends a real message
to 𝑢𝐴 . If 𝑢𝐵 selects a cascade that uses the same Last Hop as 𝑢0, this
Last Hop sends messages to𝑢0,𝑢𝐴 , and𝑢𝐵 . Therefore, the adversary
is not able to observe a distinguishing event there. We can make
an analogous argument for 𝑢1.

After introducing these three cases, we divide all possible cascade
selections that a user could make into five categories. We call them
user behaviors, which we illustrate in Figure 7. The upper row
refers to the Last Hop chosen by 𝑢0 and the lower row refers to
the Last Hop chosen by 𝑢1. The columns describe the different user

Table 2: Notation Used to Describe User Behavior

Notation Description

L(𝑥,𝑦) User 𝑥 and User 𝑦 chose the same Last Hop
L(𝑥,𝑦) User 𝑥 and User 𝑦 chose different Last Hops
𝑆𝑖 A predicate indicating that Situation 𝑖 has occurred
𝐷𝑆∗ Number of Last Hops on which the adversary could

witness a distinguishable event given situation 𝑆𝑖
has occurred

behaviors that we want to consider. We indicate the absence of a
distinguishing event by a black circle and use a blue circle when a
distinguishing event is observable.

In the first user behavior (𝐵1),𝑢0 and𝑢1 chose different Last Hops.
Additionally, 𝑢𝐴 chose a Last Hop different from 𝑢1 and 𝑢𝐵 chose
a Last Hop different from 𝑢0. Consequently, two distinguishing
events are observable, one on the Last Hop of 𝑢0 and one on the
Last Hop of 𝑢1. In user behaviors 𝐵2 and 𝐵3, both users 𝑢0 and 𝑢1
choose different Last Hops. However, in 𝐵2, user 𝑢𝐴 chooses the
same Last Hop as user 𝑢1 and in 𝐵3, user 𝑢𝐵 chooses the same Last
Hop as 𝑢0. This implies that only one distinguishing event can
be observed in both of these cases. In 𝐵4, users 𝑢0 and 𝑢1 choose
different Last Hops, but 𝑢𝐵 chooses the same Last Hop as 𝑢0 and 𝑢𝐴
chooses the same Last Hop as 𝑢1. As a result, no distinguishing
event can be observed in this case. Similarly, in 𝐵5, where 𝑢0 and 𝑢1
chose the same Last Hop, no distinguishing event can be observed.

In scenario 𝑏 = 1, we can make similar observations for user
behavior 𝐵1 to 𝐵5. In this scenario, 𝑢0 sends a challenge message
to 𝑢𝐵 , and 𝑢1 sends its challenge message to 𝑢𝐴 . Therefore, we can
observe a distinguishing event on the Last Hop of 𝑢0 if 𝑢0 selects a
Last Hop that differs from both𝑢1 and𝑢𝐴 . Similarly, we can observe
a distinguishing event on the Last Hop of 𝑢1 if it chooses a Last
Hop that differs from both 𝑢0 and 𝑢𝐵 .

Before formalizing these user behaviors, we introduce additional
notation to maintain readability during this section. We use L(𝑥,𝑦)
to indicate that 𝑥 and 𝑦 chose the same Last Hop and L(𝑥,𝑦) to
indicate that 𝑥 and 𝑦 chose different Last Hops. Additionally, we
use 𝐵𝑖 to refer to a specific user behavior and 𝐷𝐵𝑖 to refer to the
number of distinguishable events the user behavior 𝐵𝑖 enables.With
this notation, we can now define the situations:

𝐵1 = L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴) 𝐷𝐵1 = 2

𝐵2 = L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴) 𝐷𝐵2 = 1

𝐵3 = L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴) 𝐷𝐵3 = 1

𝐵4 = L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴) 𝐷𝐵4 = 0
𝐵5 = L(0, 1) 𝐷𝐵5 = 0

We defined the user behaviors and determined the number of
distinguishing events that occur in each of them. To calculate the
advantage, we first determine the probability of an adversary wit-
nessing a distinguishing event in each user behavior and then the
probability of each of these user behaviors happening. We can
calculate the total probability of the adversary witnessing a distin-
guishing event with these probabilities.
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Figure 7: User behavior for 𝑏 = 0.

5.2 Conditional Probability of Observing
Distinguishing Events

Since the adversary in our model observes only a subset of the
mixes, it is not guaranteed that they witness every distinguishing
event that occurs. We, therefore, are interested in the probability
of an adversary witnessing a distinguishing event based on the
number of corrupted mixes they can observe.

The probability of the adversary witnessing a distinguishing
event depends on the number of mixes the adversary has cor-
rupted | Ψ | and the total number of mixes | M |. We model this
as drawing | Ψ | of the | M | mixes without replacement. Depending
on the user behavior, there are 𝐷𝐵𝑖 : 𝑖 ∈ [1, 5] successful draws,
in which the adversary draws a distinguishing mix. We can use
the hypergeometric distribution [34] to calculate the probability of
drawing a distinguishing mix based on user behavior.

Pr(𝑥 = 𝑘 |𝐵𝑖 ) =

(
𝐷𝐵𝑖
𝑘

) (
| M | −𝐷𝐵𝑖
| Ψ | −𝑘

)
(
| M |
| Ψ |

)

We can calculate the probability of drawing no distinguishing mix
in behavior 𝑖 with 𝑘 = 0 Consequently, the probability of drawing
at least one distinguishing mix is:

Pr(𝑥 ≥ 1|𝐵𝑖 ) = 1 −

(
| M | −𝐷𝐵𝑖

| Ψ |

)
(
| M |
| Ψ |

) (1)

5.3 Probability of the User Behavior
We calculate the probability of the user behaviors with a probability
tree, which is depicted in Figure 8. Firstly, this enables us to directly
deduce the probabilities of the different sets Pr(𝐵𝑖 ). Secondly, it
shows that our defined user behaviors are disjoint, and that their
union is complete. In order to calculate the probabilities of the
branches, we assume that users select their cascades uniformly
at random. Note that this assumption is not strictly necessary5.
Consequently, a user’s probability of selecting a specific Last Hop
is 1

| M | . With this assumption, we can determine the probability
of the defined user behaviors. Thereby, the probability of a user
selecting a specific mix as their Last Hop is 1

| M | and the probability

5See Section 7 for a discussion of the assumptions and Appendix C, where we calculate
the probabilities for a bandwidth-weighted cascade selection.

of two users selecting the same Last Hop is 1
| M | . We can read off

the probabilities from the probability tree:

Pr(𝐵1) = Pr(L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴)) =
(
1 − 1

| M |

)3

Pr(𝐵2) = Pr(L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴)) =
(
1 − 1

| M |

)2
· 1
| M |

Pr(𝐵3) = Pr(L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴)) =
(
1 − 1

| M |

)2
· 1
| M |

Pr(𝐵4) = Pr(L(0, 1) ∧ L(𝑏, 𝐵) ∧ L(1 − 𝑏,𝐴)) =
(
1 − 1

| M |

)
·
(

1
| M |

)2

Pr(𝐵5) = Pr(L(0, 1)) = 1
| M |

5.4 Total Probability of Observing
Distinguishing Events

With the probability of a certain user behavior Pr(𝐵𝑖 ) and the proba-
bility that the adversary observes a distinguishing event depending
on the user behavior, we can calculate the total probability of an
adversary witnessing a distinguishing event Pr(D𝑝 ):

Pr(D𝑝 ) =
5∑︁

𝑖=1
Pr(𝑥 ≥ 1|𝐵𝑖 ) · Pr(𝐵𝑖 )

This sum can be dissolved, and we can insert the probabilities
for corrupting at least one distinguishing Last Hop (Equation 1):

Pr(D𝑝 ) =
©­­­­
«
1 −

(
| M | −2
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®
¬
· Pr(𝐵1) +

©­­­­
«
1 −

(
| M | −1
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®
¬
· Pr(𝐵2)

+
©­­­­
«
1 −

(
| M | −1
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®
¬
· Pr(𝐵3) +

©­­­­
«
1 −

(
| M | −0
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®
¬
· Pr(𝐵4)

+
©­­­­
«
1 −

(
| M | −0
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®
¬
· Pr(𝐵5)
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L(0, 1)

L(0, 1)

L(0, 1) ∧ L(0, 𝐵)

L(0, 1) ∧ L(0, 𝐵) ∧ L(1, 𝐴)

L(0, 1) ∧ L(0, 𝐵) ∧ L(1, 𝐴)

L(0, 1) ∧ L(0, 𝐵)

L(0, 1) ∧ L(0, 𝐵) ∧ L(1, 𝐴)
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1
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1
| M |

1| M |

1
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1 −
1
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1
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1 − 1
| M |

Figure 8: Probability tree for 𝐵1 to 𝐵5.

Since 𝐵4 and 𝐵5 have no and 𝐵2 and 𝐵3 have the same amount of
distinguishing events, the equation can be simplified to:

Pr(D𝑝 ) =
©­­­«
1 −

(
| M | −2
| Ψ |

)
(
| M |
| Ψ |

) ª®®®¬
· Pr(𝐵1) +

©­­­«
1 −

(
| M | −1
| Ψ |

)
(
| M |
| Ψ |

) ª®®®¬
· (Pr(𝐵2) + Pr(𝐵3))

Finally, we can insert the previously calculated probabilities.

Pr(D𝑝 ) =
©­­­­«
1 −

(
| M | −2
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®¬
·
(
1 − 1

| M |

)3

+
©­­­­«
1 −

(
| M | −1
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®¬
· 2 ·

(
1 − 1

| M |

)2
· 1
| M |

(2)

Equation 2 allows us to calculate the probability of an adversary
witnessing a distinguishing event based on the amount of corrupted
mixes | Ψ | and the number of total mixes | M |.

5.5 The Advantage
The previous formula calculates the probability of the adversary wit-
nessing a distinguishing event. We will show that this is equivalent
to the adversary’s advantage. The advantage is defined as:

𝛼 = | Pr(𝑔 = 0|𝑏 = 0) − Pr(𝑔 = 0|𝑏 = 1) |
We consider Pr(𝑔 = 0|𝑏 = 0) first. We already argued that the
adversary’s guesses are always correct when they witness a distin-
guishing event. Additionally, we specified that they toss a coin if
they cannot observe a distinguishing event.

Pr(𝑔 = 0|𝑏 = 0) = Pr(D𝑝 ) · 1 + (1 − Pr(D𝑝 )) · 1
2

We can argue similarly for Pr(𝑔 = 0|𝑏 = 1). When they witness a
distinguishing event, they will never guess 𝑏 = 0; if they do not,
they toss a coin.

Pr(𝑔 = 0|𝑏 = 1) = Pr(D𝑝 ) · 0 + (1 − Pr(D𝑝 )) · 1
2

With these two probabilities, we can calculate the advantage:

𝛼 =| Pr(𝑔 = 0|𝑏 = 0) − Pr(𝑔 = 0|𝑏 = 1) |

=Pr(D𝑝 ) · 1 + (
1 − Pr(D𝑝 )

) · 1
2

− (Pr(D𝑝 ) · 0 +
(
1 − Pr(D𝑝 )) · 1

2

)

=Pr(D𝑝 ) + (1 − Pr(D𝑝 )) · 1
2 − (1 − Pr(D𝑝 )) · 1

2
=Pr(D𝑝 )

=

©­­­­«
1 −

(
| M | −2
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®¬
·
(
(1 − 1

| M |

)3

+
©­­­­«
1 −

(
| M | −1
| Ψ |

)
(
| M |
| Ψ |

)
ª®®®®¬
· 2 ·

(
1 − 1

| M |

)2
· 1
| M |

(3)

We can conclude that the adversary’s advantage is Pr(D𝑝 ).

6 The Impossibility Result
So far, we defined an abstract ACN that complies with our three
main assumptions of loop cover traffic, fixed cascades, and no addi-
tional cover traffic as well as two scenarios that comply with the
rules of the Sender Receiver Pair Unlinkability privacy notion. We
presented an attack algorithm based on distinguishing events that
is able to differentiate the two scenarios with a high probability.

In order to break the notion of Sender Receiver Pair Unlinkability,
we need to show that the adversary’s advantage is non-negligible.
Breaking the Sender Receiver Pair Unlinkability leads eventually
to the impossibility result.

We evaluate the adversary’s advantage by analyzing Equation 2.
It depends on two variables: the total number of mixes | M | and
the number of corrupt mixes | Ψ |. We present results for some pa-
rameters but encourage calculating different combinations. Please
feel free to experiment with the code we provide in Appendix A.
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Figure 9: Advantage of the adversary depending on the num-
ber of corrupted nodes for | M | = 1, 000.

In Figure 9, we depict the number of corrupted nodes on the
x-axis and the adversary’s advantage on the y-axis. The results
show that even if the adversary observes only a single node of the
1,000 nodes in total, they can already gain an advantage of ≈ 0.002.
For ten observed nodes, the adversary’s advantage rises to ≈ 0.02.

In Figure 10, we depict the adversary’s advantage (y-axis) in
comparison to the relative share of corrupted nodes (x-axis). A
relative share of zero corrupted nodes yields an entirely trustworthy
network. Accordingly, a relative share of one yields a network
where the adversary can observe every node, which corresponds to
a global passive adversary. When the adversary is able to observe
a tenth of the nodes, their advantage is ≈ 0.19. Considering the
global passive adversary, the advantage converges to ≈ 0.999.

From our results, we can certainly conclude that the adversary’s
advantage is non-negligible for the global passive adversary. For
weaker adversaries, we argue that the adversary’s advantage is
still non-negligible. We leave the decision at which exact point the
adversary’s advantage can be considered no longer negligible to the
reader. Please note, however, that for prolonged observation periods
(i. e., multiple epochs), an adversary can accumulate its advantage.
The embedding of epochs in the protocol and, thereby, the natural
repetition of the game is a valuable setting for the adversary. Every
epoch is a new chance for the adversary to observe a distinguishing
event and to deanonymize users. The geometric distribution enables
us to compute the number of attempts until the first success. For
example, with an advantage of 0.0199, the expected number of
attempts until we observe a distinguishing event is ≈ 50. With an
advantage of 0.19, the expected number of attempts the adversary
needs to observe, is ≈ 5. Hence, we argue that our results are valid
for both, a global as well as partially global passive adversary. In
both cases, an adversary can achieve a non-negligible advantage in
the Sender Receiver Pair Unlinkability game.

We conclude that the notion of (SR)L (Sender Receiver Pair Un-
linkability) is not achievable for any fixed-loop ACN that utilizes
loop cover traffic, fixed cascades, and sends no additional cover
traffic. We can apply the hierarchy results from Kuhn et al. and
conclude that it also does not achieve the Sender Message Unlinka-
bility, Receiver Message Unlinkability (and Unobservability), and
Both Side Unlinkability (and Unobservability) notions.
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Figure 10: Advantage of the adversary depending on the pro-
portion of the corrupted nodes.

7 Real World Impact
We proved that a global passive adversary can break the privacy
notion Sender Receiver Pair Unlinkability for any ACN that meets
our three main assumptions. Additionally, we have reasoned that
partially global adversaries can gain a non-negligible advantage.
In this section, we evaluate the real-world impact of this finding.
Firstly, we scrutinize the assumptions that led to the impossibility
result. Secondly, we examine the impact on both existing and future
ACNs. Finally, we will discuss potential strategies to mitigate the
attack. We investigate the effects of adjusting the ACN parameters
and consider weakening the three main assumptions: fixed cascades,
loop cover traffic, and cover traffic.

7.1 Assumptions
The impossibility result is based on three main assumptions (𝐴1,
𝐴2, and 𝐴3) and two additional assumptions (𝐴4 and 𝐴5). In the
following, we demonstrate that a uniform cascade selection (𝐴4) is
not strictly necessary for our result. Furthermore, we argue that
any ACN should ensure anonymity even if two users communicate
exclusively with each other (𝐴5). Finally, for the sake of complete-
ness, we want to clarify that the Last Hop Attack is only applicable
to ACNs that choose more than one Last Hop. We consider this to
be negligible since any scalable ACN chooses more than one node
to send messages to users. We therefore argue that our impossibility
result mainly yields from the assumptions 𝐴1, 𝐴2, and 𝐴3.

7.1.1 Main Assumptions (𝐴1–𝐴3). Firstly, note that our main as-
sumptions: 𝐴1: fixed cascades for the duration of an epoch [17],
𝐴2: loop cover traffic [2, 11, 15, 32, 33], and 𝐴3: no additional cover
traffic [17], are common characteristics of ACNs. Furthermore, com-
bining these assumptions has also been proposed [28, 35]. These
assumptions are abstract and do not specify the details of the ACN,
making them widely applicable. We define the epoch but do not
assume anything about its duration or the number of epochs. Addi-
tionally, we do not assume anything about the length of the cascade
or the type of mixing applied. We only use the fact that a mes-
sage is sent from a specific mix; thereby, it holds for pool, time,
stop-and-go, and even ideal mixing.

7.1.2 Cascade Selection (𝐴4). In order to calculate the adversary’s
advantage, we need to assume a form of cascade selection. So far,
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we assumed a uniform cascade selection (𝐴4). We now show that no
scalable cascade selection can achieve a lower advantage than the
uniform cascade selection. This allows us to conclude that𝐴4 is not
a necessary assumption for our impossibility result. We therefore
introduce a definition of scalability, which depends on themaximum
fraction of users that can choose the samemix as Last Hop. Based on
this definition, we show that the uniform cascade selection achieves
the minimal advantage for every given scalability and is, thereby,
optimal. This allows us to conclude that all ACNs ensuring a given
scalability have at least the same advantage as the uniform cascade
selection against a global passive adversary.

We define scalability 𝑆 (𝑥), where 𝑥 can be chosen depending on
the scalability and anonymity requirements of the ACN, as follows:
𝑆 (𝑥): A fraction of at most 1

𝑥 users chose the same mix as their
Last Hop

We already know from Section 5.1 that the cascade selection can
prevent distinguishing events, which happens if the challenge users
choose the same Last Hop. For 𝑥 = 1, a trivial and optimal strat-
egy against the Last Hop Attack is to ensure that all users pick
the same Last Hop. Thus, the adversary is unable to observe any
distinguishing event, which leaves them with an advantage of zero.

For 𝑥 = 2, every mix can, at most, serve for half of the users
as Last Hop. Note that the best strategy in this setting is two Last
Hops where each serves as the Last Hop for half of the users. Using
more Last Hops would decrease the chances that users choose the
same Last Hop and thereby increase the adversary’s advantage.

We can generalize this observation: In order to minimize the
advantage, we want to maximize the number of users that choose
the same Last Hop. We can do this by ensuring that each Last
Hop serves the maximum number of users they are allowed to,
i. e., 𝑆 (𝑥) = 1

𝑥 . A uniform cascade selection over 𝑥 Last Hops does
exactly this; it ensures that 1

𝑥 users choose the same Last Hop. We
can thereby conclude that a uniform cascade selection with 𝑥 Last
Hops is optimal in regard to scalability.

In Figure 11, we show the advantage of a global passive adversary
for a uniform cascade selection in relation to varying values of 𝑥 . We
can see that the attacker can achieve an advantage of 0.375 for 𝑥 = 2.
The result shows that even in a network where each mix is allowed
to serve as Last Hop for half of the user base, the advantage is
already non-negligible against a global passive adversary. When
scaling further, e. g., 𝑥 = 10, where each mix is allowed to serve
at most a tenth of the users as Last Hop, the adversary reaches an
advantage of ≈ 0.89.

We conclude that every scalable cascade selection can, at best,
achieve the same advantage against a global passive adversary as
the uniform cascade selection. This allows us to conclude that 𝐴4
is not a necessary assumption for our impossibility result.

7.1.3 Restricting the Communication of the Challenge Users (𝐴5). In
Section 3.4 , we restricted the capabilities of the adversary in order
to analyze a realistic setting. We allowed all users to send arbitrary
messages to each other and restricted only the communication of
the four challenge users. For these specific users, the adversary dic-
tates the messages they send and to whom. It is crucial to emphasize
that the adversary only controls the content of these messages; the
users continue to operate according to the ACN. Consequently, the
adversary cannot influence the user behavior, e.g., the choice of
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Figure 11: Advantage of a global passive adversary depending
on the maximum fraction of users, a single mix can serve as
Last Hop.

mixes, the timing of message transmissions, or the volume of loop
cover traffic.

We argue that this is a valid and realistic assumption. An ACN
should ensure anonymity for all users, irrespective of the messages
exchanged or the number of communication partners involved.
Therefore, the setting in which two users communicate exclusively
with each other represents a realistic worst-case situation where
anonymity should still be preserved.

Finally, note that without this restriction, it would be trivial to
achieve strong anonymity. Allowing unrestricted communication
between users enables each user to send a message to all other users
in every round, achieving ultimate anonymity [22], which may not
accurately reflect the anonymity an ACN provides in reality.

7.2 Consequences for ACN Designs
7.2.1 Miranda and SMRT. Since SMRT [35] is based onMiranda [28],
their threat models are nearly identical. Both aim to achieve strong
anonymity against a powerful adversary and assume a global ob-
server eavesdropping on all network traffic and knowing the user’s
sending rates. While Miranda assumes that the adversary is, in
addition, able to corrupt mixes as long as the majority of mixes are
honest, SMRT assumes that the adversary is either globally passive
or able to corrupt mixes. Additionally, there are slight differences
in the definitions regarding the number of corrupted clients. In
SMRT, the majority of clients need to be honest, while in Miranda,
an arbitrary number of clients can be malicious, as long as there are
2𝜔 honest clients, where𝜔 is enough to ensure that any first-mix in
a cascade receives a "sufficient" number of messages to ensure rea-
sonable anonymity. Both ACNs assume the adversary can drop and
delay packets on corrupted mixes, with the exclusion that they can-
not drop packets between honest parties and can delay them only
for a limited period. Both try to hide the correspondence between
senders and receivers of a message. Additionally, Miranda specifies
that they aim to provide the same protection as an "ideal mix", i.e., a
single mix node that is known to be honest. Both the SMRT and Mi-
randa satisfy all assumptions of the Last Hop Attack. They employ
fixed cascades and loop cover traffic to detect if an active adversary
is targeting their messages. Using loop cover messages allows them
to precisely determine when each message should return. Moreover,
by routing all messages over the same cascade, they ensure that if
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an adversary delays a message, there is a chance that this message
is a loop cover message and the attack is noticed. This approach
fulfills the three main assumptions of the Last Hop Attack. They
use the same cascade (𝐴1) for loop cover messages messages (𝐴2)
and real messages. Additionally, they do not specify any additional
cover traffic (𝐴3). This allows us to conclude that SMRT and Mi-
randa are vulnerable to the Last Hop Attack. Their main design
decisions focus on mitigating active attacks. Therefore, it is fair to
assume that they did not describe the protocols in detail to prevent
passive attacks. Nevertheless, the use of loop cover messages and
fixed cascades in their design implies that real-world deployments
of these networks require additional cover traffic.

7.2.2 NewMix Net Designs. The same argument can be made when
designing new mix nets. Since the choice of fixed cascades and loop
cover traffic is usually a very conscious decision, we think that a
useful implication is that when an ACN utilizes fixed cascades and
loop cover traffic, it is also required to use additional cover traffic.

Tor uses fixed cascades for its circuits. When we consider the use
of loop cover traffic in Tor, for example, to detect active attacks, we
can directly apply the result and conclude that this is only viable if
we also deploy additional cover traffic. Note, that this impossibility
result applies only when loop cover messages and the real messages
are sent over the same fixed cascade. For example, LoopTor [33]
sends loop cover traffic, but over a separate cascade, in order to
obtain unobservability. Since this design uses two different cascades,
it is not vulnerable to the Last Hop Attack.

7.3 Counter Measures
This section describes possible ways tomitigate the Last HopAttack.
First, we consider the effect of changing the common parameters
of ACNs. Afterward, we follow the natural way of escaping an
impossibility result: relaxing one of the assumptions.

Note that simply changing the parameters of the ACN will not
decrease the adversary’s advantage. Consider the following param-
eters: number of users, user traffic, delay, and length of the cascade.
The number of users does not affect the proposed attack; the only
factor that matters is the selection of the Last Hop of the four chal-
lenge users (𝑢0, 𝑢1, 𝑢𝐴, 𝑢𝐵). Therefore, even with a large user base,
the chances of the adversary succeeding remain the same as long
as none of them sends to the challenge users. Similarly, the amount
of user traffic, the delay (time spent at each hop), and the cascade
length do not impact the attack’s success rate.

We argue that increasing the number of mixes has no relevant
effect on the Last Hop Attack as long as the ratio of corrupted Last
Hops remains unchanged. Since the attack only uses the last mix in
a cascade, adding mixes that do not serve as Last Hop has no effect
on the attack. However, increasing the number of Last Hops lowers
the probability that users choose the same Last Hop and thereby
minimally increases the advantage of the adversary when the ratio
of corrupted nodes remains unchanged. We can see this effect in
Figure 10. The blue line in the graph shows the advantage in a
network with 1,000 mixes, while the triangles represent a network
with 100,000 mixes. We can observe that the triangles are either on
the line or only slightly above it. This allows us to conclude that
simply increasing the number of mixes does not mitigate the Last
Hop Attack, as long as the share of corrupted nodes stays the same.

Relaxing one of the assumptions is a natural way of approach-
ing an impossibility result. Since we assume loop cover messages,
and fixed cascades and that there is no additional cover traffic,
eliminating one of these constraints will mitigate the attack.

7.3.1 Loop Cover Traffic. The usage of loop cover traffic has proven
a valuable tool in the design of mix nets [2, 11, 15, 32]. We assume
that most system designers who deliberately included loop cover
traffic are unwilling to sacrifice it to prevent the Last Hop Attack.
Therefore we focus on relaxing the remaining assumptions.

7.3.2 Fixed Cascades. There is an ongoing discussion about the
layout of mix nets [7, 16, 18], and whether fixed cascades offer an
advantage. While this attack might not be strong enough to decide
it definitely, it might be another argument against the usage of fixed
cascades, at least in combination with loop cover traffic.

7.3.3 Drop Cover Traffic. As loop cover traffic and fixed cascades
are usually deliberate design choices, we focus on the effect of
additional cover traffic on the Last Hop Attack. Rather than deter-
mining the amount of cover traffic required to render the advantage
negligible, we focus on the demands this cover traffic must meet.
We expect that even a basic form of drop cover traffic, where users
send fake messages to random other users that are dropped at re-
ception and indistinguishable from real messages, is an efficient
countermeasure against the Last Hop Attack.

This indistinguishability is both essential and difficult to achieve.
If the adversary can tell the difference between loop cover traffic and
drop cover traffic, they can still use the loop cover traffic to identify
the Last Hops of 𝑢0 and 𝑢1 and then only lose if both Last Hops
send a message to both challenge message receivers 𝑢𝐴 and 𝑢𝐵 . An
analogous argument can be made if the adversary can distinguish
the real traffic from the drop cover traffic. An adversary might be
able to make such a distinction if the amounts of loop cover, drop
cover, and real traffic differ too much. However, sending (roughly)
equal amounts of cover and real traffic induces high overhead.
Especially since the amount of cover traffic needed to protect all
users must be based on the user who sends the most messages.
Additionally, anonymity now depends on the cover traffic sent
by other users. The set of Last Hops an adversary considers for a
particular user 𝑢 depends on the number of cover messages other
users send to 𝑢 over other Last Hops. Only if the amount of cover
traffic is indistinguishable from the real amount, this Last Hop will
be included in the set of possible Last Hops, thereby increasing the
anonymity of the users.

This is very abstract since we did not specify amechanism. There-
fore, we illustrate this general problem in a more specific example
without claiming generality. A user decides that, for their purpose,
an amount ofL loop messages suffices. If this value is public knowl-
edge, we can conclude that it is known by the adversary. It might
be challenging for the other users to ensure that all Last Hops send
exactly L messages to 𝑢. But even if they are able to do this, they
still do not knowwhich Last Hop was chosen by𝑢. So, the adversary
can still identify the Last Hop, as it is the only one sending 2 · L
messages to 𝑢. There are techniques to hamper this correlation, for
example, by not specifying a specific amount of loop messages but
a range. Also, the approach of sending according to a memoryless
distribution as Loopix [32] reduces the correlation opportunities of
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the adversary, but note that this problem still exists as long as the
anonymity of a user relies on the cover traffic sent by other users.

Note that we considered up until this point only drop cover
traffic, we did not consider other kinds of cover traffic that might
be more effective. For example, the provider mechanism utilized in
Loopix [32]. The queries and responses can be considered as cover
traffic. A complete study of the effectiveness of different types of
cover traffic would exceed the scope of this paper and will remain
as future work.

8 Related Work
There is a body of research in the field of anonymous communica-
tion who focuses on exploring the theoretical limits of ACNs. Over
the last few decades, several significant discoveries in this area have
influenced our understanding of ACNs. The use of indistinguisha-
bility frameworks to establish boundaries and impossibility results
has become increasingly popular. The first framework based on
indistinguishability was introduced by Hevia and Micciancio [24]
which defines multiple anonymity notions and relationships be-
tween them. They also present general techniques to transform
protocols that achieve weak notions into ones that achieve stronger
notions by using cover traffic. Additionally, they demonstrate that
this approach is optimal in terms of message traffic.

Gelernter and Herzberg [22] proposed a framework that deter-
mines the level of anonymity achievable in a practical scenario using
a top-down approach. They define a strong notion of anonymity,
the ultimate anonymity, which requires sender anonymity and
unobservability against a global passive adversary that also con-
trols a number of corrupted participants, including destinations. To
achieve this level of anonymity, they propose a protocol that has
a high overhead. However, they justify this overhead by proving
that any protocol that achieves ultimate anonymity also has a high
overhead. They also discuss possible relaxations that require less
overhead and analyze them.

One well-known bound in anonymous communication is the
Anonymity Trilemma [13, 14]. It is based on the AnoA frame-
work [4], which defines its notions based on indistinguishability
games. The trilemma considers three primary objectives in anony-
mous communication: strong anonymity, low latency, and low band-
width. The authors prove that it is only possible to achieve two
of these goals at the same time for the most practical ACNs. The
authors begin by outlining an adversary strategy. Using this strat-
egy as a basis, they then derive an invariant that must be satisfied
by any ACN looking to provide anonymity against this adversary.
They then proceed to define an ideal protocol that is most effective
in terms of this invariant. Finally, the authors calculate the prob-
ability of the adversary’s success against their ideal protocol and,
based on this, establish the limits for bandwidth and latency.

The mentioned results are noteworthy as they allow us to vali-
date how close the potential mix net designs are to the theoretical
boundaries. However, it might be challenging to apply these results
when devising strategies to enhance ACNs. The Last Hop Attack
is comparatively less general as it concentrates on specific char-
acteristics of an ACN, such as loop cover traffic, cover traffic, and
fixed cascades. This, in turn, makes it easier to apply the outcome
to the real world. It allows us, for example, to conclude that ACNs

that utilize loop cover traffic and fixed cascades need to deploy
additional cover traffic in order to achieve strong privacy notions.

It is worth noting that there exist several research works that
delve into specific aspects of ACNs. Oya et al. [31] conducted a
study on the limits of cover traffic with respect to anonymity. There
are also several papers that analyze the anonymity of onion rout-
ing [1, 5, 6, 20, 21, 27, 29], or stop-and-go-mixes [12] under certain
assumptions. While these analyses ensure trust in a particular ACN,
comparing them is challenging, and it is even more difficult to use
the results when creating new ACNs.

Our impossibility result is due to its general ACN definition
applicable to a large number of ACNs, yet still general enough to
be applied to the next generations of ACNs.

To date, existing literature has primarily highlighted the positive
aspects of loop cover traffic, as demonstrated in studies such as [11,
15, 32], to our knowledge, it is the first attack targeting loop cover
traffic, and thereby a first step in identifying potential limitations
or vulnerabilities associated with this feature.

9 Conclusion
We introduced the Last Hop Attack, which is a novel attack vec-
tor against the anonymity of fixed-loop ACNs. We observed that
when an ACN sends loop cover traffic over fixed cascades, the Last
Hop in each cascade sends a message to the source and destination.
Based on this observation, we identified distinguishing events and
presented an attack algorithm. We calculated the success proba-
bility of this algorithm and discovered that the advantage quickly
becomes significant, even for partially global passive adversaries.
Therefore, we concluded that the privacy notion of Sender Receiver
Pair Unlinkability is impossible to achieve for any ACN that ful-
fills our three main assumptions: loop cover traffic, fixed cascades,
and no additional cover traffic is used. We used the hierarchical
results from Kuhn et al. to apply our impossibility result and further
conclude that Sender Message Unlinkability, Receiver Message Un-
linkability (and Unobservability), and Both Side Unlinkability (and
Unobservability) are also not achievable. On the positive side of an
impossibility result, its system model immediately suggests miti-
gation strategies. We accordingly discussed ways to mitigate the
Last Hop Attack in general and the difficulties of implementing
cover traffic in particular. Finally, we assert that our findings are
relevant in practice by applying them to the mix net designs SMRT
and Miranda. We concluded that these mix nets have to deploy
cover traffic in order to provide strong anonymity.
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A Artifacts and Code
In order to ensure easy reproducibility of our results, we provide
the code that we created for this paper. You can find the calcu-
lations we used for Figures 2, 9, 10, 11, 12, and 13 on GitHub:
https://github.com/Ti-ger/Last_Hop_Attack.

As well as our WolframAlpha queries in the following.
WolframAlpha query to calculate the adversary’s advantage:

N =1000;c = 1;
(1 - binomial(N-2 ,c)/binomial(N ,c))
* (1 - 1/N)^3
+ (1 - binomial(N-1,c)/binomial(N ,c))
* 2 * (1 - 1/N)^2 * 1/N

WolframAlpha query to calculate the adversary’s advantage in the
bandwidth analysis:

x = 0.02, k = 10; 2 * x - 4 * x^2 * 1/k
+ 2 *x^3 *(1/k)^2 - x*(x *(k-1)/k)
* (1 - x*(1/k)) * (1 - (x * (1/k)))

B Differential Private Bounds
The framework of Kuhn et al. [26] enables the definition of bounds
in the form of differential privacy.

Pr(𝑔 = 0|𝑏 = 0) ≤ 𝑒𝜀 · Pr(𝑔 = 0|𝑏 = 1) + 𝛿

Here, we can insert the previous (Section 5.5) results.

Pr(D𝑝 ) · 1 + (1 − Pr(D𝑝 )) · 1
2 ≤ 𝑒𝜀 · (1 − Pr(D𝑝 )) · 1

2 + 𝛿
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In order to calculate bounds for fixed delta values, for example,
𝛿 = 0, this can be transformed to:

𝛿 ≥ Pr(D𝑝 )
(
𝑒𝜀

2 + 1
2

)
− 𝑒𝜀

2 + 1
2

With these equations, we can calculate the achievable bounds in
the metric of differential privacy for a given ACN.

C Bandwidth-based Cascade Selection
In our paper, we considered a uniform selection of the mixes in the
cascade (𝐴4) as well as a uniform selection of corrupted mixes. In
the following, we sketch that the Last Hop Attack is also viable
when other types of cascade selection are used. We first consider
the cascade selection with bandwidth weights. Here, clients select
the nodes for their cascade based on the node’s bandwidth capacity.
This technique is commonly used, for example, in Tor [17]. We
denote the total bandwidth available in the network Bt and the
fraction of this bandwidth that is controlled by the adversary BA,
i. e., their attack budget. In general, the adversary can freely choose
how much bandwidth each of their mixes provides. We, however,
assume for simplicity that the attack budget is uniformly distributed
on all corrupted nodes. We denote the number of corrupted nodes
with 𝑘 , Note that the optimal strategy for the adversary is to spread
the bandwidth on as many nodes as possible to prevent collisions.
In order to calculate realistic results, we will limit the maximum
number of corrupted nodes by 𝑘 .

We denote the Last Hop of a user 𝑢 as 𝐿𝑢 and the corrupted
nodes by the adversary as 𝑐𝑥 with 𝑥 ∈ [1, 𝑘]. We previously argued
that the only two Last Hops that can witness distinguishing events
are the Last Hops of users 𝑢0 and 𝑢1. For the following explanation,
we will focus on user 𝑢0 in scenario 𝑏 = 0 and then continue with
the general case.

Based on our assumption, we can easily determine the probability
of user 𝑢0 choosing one of the corrupted Last Hops by calculating:

Pr(𝐿𝑢0 =𝐶𝑥 ) = BA
Bt

with 𝑥 ∈ [1, 𝑘]

We also argued that distinguishing events can be denied based
on the cascade selection. This would be the case for user 𝑢0 in 𝑏 = 0
when 𝑢0 and 𝑢1 chose the same Last Hop or when 𝑢0 and 𝑢𝐵 chose
the same Last Hop.

We can calculate these probabilities for 𝑥 ∈ [1, 𝑘] as follows:

Pr(𝐿𝑢0 =𝐶𝑥 ∧ 𝐿𝑢1 =𝐶𝑥 ) = Pr(𝐿𝑢0 =𝐶𝑥 ∧ 𝐿𝑢𝐵 =𝐶𝑥 )

=
BA
Bt

· 1
𝑘
· BA
Bt

· 1
𝑘
· 𝑘 =

(BA
Bt

)2
· 1
𝑘
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Figure 12: Advantage of the adversary depending on the pro-
portion of the corrupted bandwidth for different k.

We can now calculate the probability of witnessing a distinguish-
ing event on the Last Hop of user 𝑢0 as

Pr(D𝐿𝑢0 ) =Pr(𝐿𝑢0 =𝐶𝑥 )
− Pr(𝐿𝑢0 =𝐶𝑥 ∧ 𝐿𝑢1 =𝐶𝑥 )
− Pr(𝐿𝑢0 =𝐶𝑥 ∧ 𝐿𝑢𝐵 =𝐶𝑥 )
+ Pr(𝐿𝑢0 =𝐶𝑥 ∧ 𝐿𝑢𝐵 =𝐶𝑥 ∧ 𝐿𝑢0 =𝐶𝑥 ∧ 𝐿𝑢1 =𝐶𝑥 )

=
BA
Bt

−
(BA
Bt

)2
· 1
𝑘
−
(BA
Bt

)2
· 1
𝑘
+
(BA
Bt

)3
·
(

1
𝑘

)2

=
BA
Bt

− 2 ·
(BA
Bt

)2
· 1
𝑘
+
(BA
Bt

)3
·
(

1
𝑘

)2

We can calculate this probability analogously for user 𝑢1 in sce-
nario 𝑏 = 0:

Pr(D𝐿𝑢1 ) =Pr(𝐿𝑢1 =𝐶𝑥 )
− Pr(𝐿𝑢1 =𝐶𝑥 ∧ 𝐿𝑢0 =𝐶𝑥 )
− Pr(𝐿𝑢1 =𝐶𝑥 ∧ 𝐿𝑢𝐴 =𝐶𝑥 )
+ Pr(𝐿𝑢1 =𝐶𝑥 ∧ 𝐿𝑢𝐴 =𝐶𝑥 ∧ 𝐿𝑢1 =𝐶𝑥 ∧ 𝐿𝑢0 =𝐶𝑥 )

=
BA
Bt

− 2 ·
(BA
Bt

)2
· 1
𝑘
+
(BA
Bt

)3
·
(

1
𝑘

)2

This enables us to calculate the probability of a distinguishing
event:
Pr(D) =Pr(D𝐿𝑢0 ) + Pr(D𝐿𝑢1 ) − Pr(D𝐿𝑢0 ∧ D𝐿𝑢0 )

=
BA
Bt

− 2 ·
( BA
Bt

)2
· 1
𝑘
+
( BA
Bt

)3
·
(

1
𝑘

)2

+ BA
Bt

− 2 ·
( BA
Bt

)2
· 1
𝑘
+
( BA
Bt

)3
·
(

1
𝑘

)2

− Pr(𝐿𝑢0 =𝐶𝑥 ) · Pr(𝐿𝑢1 =𝐶𝑦 , 𝑥 ≠ 𝑦) · Pr(𝐿𝑢𝐵 ≠ 𝐶𝑥 ) · Pr(𝐿𝑢𝐴 ≠ 𝐶𝑦 )

=2 · BA
Bt

− 4 ·
( BA
Bt

)2
· 1
𝑘
+ 2 ·

( BA
Bt

)3
·
(

1
𝑘

)2

− BA
Bt

· ( BA
Bt

· 𝑘 − 1
𝑘

) · (1 − BA
Bt

· 1
𝑘
) · (1 − BA

Bt
· 1
𝑘
)

=2 · BA
Bt

− 4 ·
( BA
Bt

)2
· 1
𝑘
+ 2 ·

( BA
Bt

)3
·
(

1
𝑘

)2

−
( BA
Bt

)2
· 𝑘 − 1

𝑘
·
(
1 − BA

Bt
· 1
𝑘

)2
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Figure 13: Advantage of the adversary for uniform and
bandwidth-based cascade selection.

In the graph shown in Figure 12, the advantage of an adversary
(y-axis) is plotted against the proportion of corrupted nodes (x-axis)
for different values of 𝑘 (10, 100, and 1,000). The specific queries
used for this analysis can be found in Appendix A.

The graph shows that if an adversary controls 20 percent of the
total bandwidth distributed over ten mixes, they already have an
advantage of ≈ 0.35. For a global passive adversary with 100 mixes,
the advantage is close to one (≈ 0.9899) and for 1,000 mixes, the
advantage is even higher (≈ 0.9989).

Using the presented formula, we can calculate the advantage of
an adversary who can only observe ten mixes with a total band-
width of one percent as ≈ 0.0199.

We already introduced formulas for the uniform cascade selec-
tion in Section 5.3 In Figure 13, we compare the advantages of both
mechanisms.

The x-axis depicts the amount of bandwidth observable by the
adversary, and the y-axis their advantage. The (blue) solid line indi-
cates the advantage when considering a uniform cascade selection
in a network with 1,000 nodes in total. The (black) triangles depict
the advantage for a bandwidth-based cascade selection, where the
adversary can observe 100 nodes. We can see that both techniques
are vulnerable once the adversary is able to observe a sufficient
proportion of the network.
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