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Abstract
Internet of Things (IoT) devices are becoming increasingly com-
monplace in numerous public and semi-private settings. Currently,
most such devices lack mechanisms to facilitate their discovery by
casual (nearby) users who are not owners or operators. However,
these users are potentially being sensed, and/or actuated upon, by
these devices, without their knowledge or consent. This naturally
triggers privacy, security, and safety issues.

To address this problem, some recent work explored device trans-
parency in the IoT ecosystem. The intuitive approach is for each
device to periodically and securely broadcast (announce) its pres-
ence and capabilities to all nearby users. While effective, when
no new users are present, this 𝑃𝑢𝑠ℎ-based approach generates a
substantial amount of unnecessary network traffic and needlessly
interferes with normal device operation.

In this work, we construct DB-PAISA which addresses these
issues via a 𝑃𝑢𝑙𝑙-based method, whereby devices reveal their pres-
ence and capabilities only upon explicit user request. Each device
guarantees a secure timely response (even if fully compromised by
malware) based on a small active Root-of-Trust (RoT). DB-PAISA
requires no hardware modifications and is suitable for a range of
current IoT devices. To demonstrate its feasibility and practicality,
we built a fully functional and publicly available prototype. It is im-
plemented atop a commodity MCU (NXP LCP55S69) and operates
in tandem with a smartphone-based app. Using this prototype, we
evaluate energy consumption and other performance factors.

1 Introduction
In recent years, Internet of Things (IoT), embedded, and smart de-
vices have become commonplace in many aspects of everyday life.
We are often surrounded by cameras, sensors, displays, and robotic
appliances in our homes, offices, public spaces, and industrial set-
tings. With rapid advances in AI/ML, 5G, robotics, and automation,
the use of IoT devices is becoming more and more prevalent.

IoT devices feature various sensors and/or actuators. Sensors
collect information about the environment, while actuators control
the environment. Some IoT devices use sensors to collect sensitive
information, e.g., cameras, voice assistants, and motion detectors.
Whereas, actuators on some IoT devices perform safety-critical
tasks, e.g., operate door locks, set off alarms, and control smart ap-
pliances. This is not generally viewed as a problem for owners who
install, deploy, and operate these devices. After all, owners should
be aware of their devices’ locations and functionalities. However,
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the same does not hold for casual users who come within sens-
ing and/or actuation range of IoT devices owned and operated
by others. Such users remain unaware unless nearby devices are
human-perceivable, e.g., visible or audible.

This issue is partly due to lack, or inadequacy, of security features
on commodity IoT devices, which manufacturers often justify with
size, energy, and monetary constraints of the devices. Moreover,
consumers gravitate towards monocultures, as witnessed by the
great popularity of certain devices, such as Ring doorbells, Roomba
vacuum cleaners, and Echo voice assistants. This leads to such mas-
sively popular IoT devices becoming highly attractive attack targets.
Attacks can exploit devices’ software vulnerabilities to exfiltrate
sensed data, report fake sensed data, perform malicious actuation,
or simply zombify devices [3, 8, 10, 21, 23, 73, 89, 104]. To mitigate
these risks, a large body of work focused on constructing small
Roots-of-Trust (RoT-s) for IoT devices. This includes remote attesta-
tion (RA) [28, 33, 42, 87, 98], run-time attestation [2, 24, 36, 39], and
sensor data protection [34, 50, 74]. However, all these techniques
are research proposals; they are largely ignored by manufacturers
who lack compelling incentives to introduce security features to
their products.

Furthermore, most prior work on privacy and security for IoT
ecosystems [7, 35, 41, 92, 105] and a few government IoT guidelines
[30, 37, 38] focus on device owners or operators who are well
aware of device presence and capabilities. As mentioned above, IoT
devices also impact other users within the sensing and/or actuation
range. Ideally, these casual nearby users must be informed of the
device’s presence and capabilities, which would enable users to
make informed decisions.

Another motivation comes from data protection laws, such as
the European General Data Protection Regulation (GDPR) [79]
and California Consumer Privacy Act (CCPA) [69]. They aim to
protect individuals’ personal data and grant them control over data
collection, processing, storing, and sharing. We observe that many
(perhaps most) IoT devices operate in tandem with a cloud-based
digital twin hosted by device manufacturers, software vendors, or
users. In such cases, sensed data is processed and stored on devices
as well as in the cloud. Therefore, logic dictates that IoT devices
should also be subject to the same data protection laws.

Privacy and safety risks are not only apparent in public spaces,
e.g., city streets, event venues, parks, campgrounds, airports, and
beaches. They also occur in semi-private settings, e.g., conference
rooms, hotels, and private rentals, such as Airbnb. In such places,
privacy is expected, yet not guaranteed [5, 94, 106]. Casual visitors
(users) are naturally suspicious of unfamiliar surroundings [60, 109]
partly due to being unaware of nearby IoT devices.
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1.1 Current State of Device Transparency
To address the issues presented above, some recent research ex-
plored a privacy-agile IoT ecosystem based on manufacturer com-
pliance. In particular, PAISA [63] allows users to learn about the
presence and capabilities of nearby devices by listening to periodic
secure announcements by each device using WiFi broadcast. An-
nouncements are guaranteed to be sent in time even if the device is
fully malware-compromised. Also, each announcement includes a
recent attestation token, allowing a recipient user to check whether
the device is trustworthy. PAISA works on commodity devices that
have a Trusted Execution Environment (TEE) (e.g., ARM TrustZone
[15]). It is unsuitable for low-end IoT devices without TEE support.

Another recent work, DIAL [66], requires each device to have
a physically attached NFC tag. The device helps users locate it
by either sounding a buzzer or using an ultra-wideband (UWB)
interface. Upon physically locating a device, the user simply taps a
smartphone on the NFC tag to get device information. Although
DIAL does not require a TEE on each device, it imposes other
requirements on the manufacturer and user, such as mounting an
NFC tag and a buzzer or a UWB interface (rare on commodity IoT
devices) for localization. It also requires physical access to a device
to tap the NFC tag manually.

Both PAISA and DIAL follow the 𝑃𝑢𝑠ℎ model: IoT devices an-
nounce their presence at fixed time intervals. This raises two con-
cerns: (1) unnecessary network traffic, the volume of which can be
high when numerous compliant devices are deployed in a given
space, and (2) interference with normal device operation (in PAISA
only), which is detrimental for devices that perform safety- or time-
critical tasks. Both (1) and (2) are especially problematic when no
new users are around to scan for these announcements. Also, as
discussed above, DIAL’s requirements for NFC-s and buzzers or
UWB interfaces are currently unrealistic for most settings.

Another common application domain is large IoT deployments in
industrial settings. Industrial IoT (𝐼 𝐼𝑜𝑇 ) devices play an increasingly
important role in automation across various industry sectors. Their
numbers surpassed 3.5 billion in 2023, accounting for 25% of total
IoT deployments [95, 96]. According to a recent Ericsson mobility
report [46], the estimated number of connected devices in a typical
smart factory is between 0.5 and 1 per square meter. This implies
potentially millions of devices in a large industrial installation, e.g.,
a warehouse, port, or factory [100].

In such large 𝐼 𝐼𝑜𝑇 systems, the owner/operator needs to main-
tain and keep track of all deployed devices. Unlike public and semi-
public settings with casual users, the owner knows the identities
and types of deployed 𝐼 𝐼𝑜𝑇 devices. However, they might not know
which devices are reachable, operational, or malware-compromised.
They might also not know device locations since many industrial
settings involve moving components. An intuitive approach is to
use existing infrastructure to probe devices. For example, special-
ized software for managing merchandise or IoT devices associated
with tagging information (e.g., barcode or NFC) can be used for
inventory management [16, 68, 99, 107]. However, these techniques
do not provide either reliable current software state or current loca-
tion of moving devices.

Figure 1: IoT Device Layout

1.2 Overview and Contributions
In this paper, we construct (1) DB-PAISA, an efficient privacy-
compliant IoT technique geared for (semi-)public environments,
and (2) IM-PAISA: Inventory Management-PAISA, geared for 𝐼 𝐼𝑜𝑇
settings, described in Appendix A. Both techniques are 𝑃𝑢𝑙𝑙-based,
meaning that a user (or an owner in IM-PAISA) issues an explicit
request to learn about nearby devices. This obviates the need to
generate and broadcast device announcements continuously. As a
consequence, it reduces network load and interference with nor-
mal device functionality, especially when no new users are nearby.
This additional communication step of sending a discovery request
changes the adversary model, which results in new security chal-
lenges, discussed later in the paper.

DB-PAISA has two primary components: (1) a user device that
sends a request and processes responses, and (2) compliant IoT de-
vices that ensure a response containing software status and capabil-
ities upon request. A manufacturer specifies the device information
that can be released by its IoT devices.

Unlike relevant prior work [7, 34, 35], DB-PAISA requires no
hardware modifications for low-end devices and relies on a popular
TEE (ARMTrustZone [13]) to prioritize its tasks over other software.
Also, DB-PAISA imposes no special requirements on user devices,
except that IoT and user devices should support the same network
interface, e.g., WiFi or Bluetooth.

Contributions of this work are three-fold:
• DB-PAISA, a pull-based IoT device discovery frameworkwith
low bandwidth overhead and no interference with normal
device operation whenever no new users are present.

• A comparison of bandwidth, energy, and runtime overheads
between PAISA’s 𝑃𝑢𝑠ℎ and DB-PAISA’s 𝑃𝑢𝑙𝑙 models.

• A full prototype of DB-PAISA comprised of: (a) an IoT device
with ARM TrustZone-M and Bluetooth extended advertise-
ments, and (b) an Android app that requests, scans, processes,
and displays IoT device information. The implementation is
publicly available at [67].

2 Background
2.1 Targeted IoT Devices
In general, we consider constrained IoT devices geared for executing
simple tasks and deployed on a large scale, e.g., smart bulbs, locks,
speakers, plugs, and alarms. Given tight resource budgets, they
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typically rely on microcontroller units (MCUs) with no memory
virtualization. Many of such MCUs have ARM Cortex-M [14] or
RISC-V cores [82]. Our focus is on devices equipped with relatively
simple TEEs, such as TrustZone-M. Note that we explicitly rule out
low-end MCUs with no hardware security features.

As shown in Figure 1, a typical IoT device contains an MCU and
multiple peripherals. The MCU includes a core processor(s), main
memory, and memory bus, forming a System-on-a-Chip (SoC). Its
primary memory is typically partitioned into: (1) program memory
(e.g., flash), where software is installed, (2) data memory (RAM),
which the software uses for its stack and heap, and (3) read-only
memory (ROM), where the bootloader and tiny immutable software
are placed during provisioning. Such an MCU also hosts peripher-
als, including a timer, General-Purpose Input/Output (GPIO), and
Universal Asynchronous Receiver/Transmitter (UART).

The MCU interfaces with various special-purpose sensors and
actuators through such peripherals. Common sensors are exempli-
fied by microphones, GPS units, cameras, gyroscopes, as well as
touch and motion detectors. Whereas, speakers, door locks, buzzers,
sprinklers, as well as light and power switches, are examples of
actuators.
Scope of Targeted IoT Device Types: For certain personal IoT de-
vices, there is no need to inform nearby users of their presence since
doing so can compromise their owners’ privacy. This involves med-
ical devices, e.g., blood pressure monitors, insulin pumps, catheters,
or pacemakers. Clearly, neither PAISA nor DB-PAISA is applicable
to such devices. Delineating the exact boundaries between devices’
presence of which should (or should not) be released (or be discov-
erable) is beyond the scope of this paper.

2.2 Network
IoT devices are connected to the Internet and/or other devices ei-
ther directly or through intermediate entities, e.g., hubs or routers.
To support this, a typical IoT device features at least one network
interface (e.g., WiFi, Bluetooth, Cellular, Ethernet, or Zigbee). WiFi
and Cellular provide wireless Internet connectivity at relatively
high speeds, while Bluetooth and Zigbee are geared towards lower-
speed, shorter-range communication with neighboring devices. In
this work, we focus on WiFi and Bluetooth since they are common-
place on both smartphones and IoT devices [11].
WiFi 802.11n (aka WiFi 4) [59] has a range of ≤ 75m indoors
and ≤ 250m outdoors [1]. The latest WiFi standards (e.g., WiFi
6) achieve multi-gigabit speeds, making it ideal for bandwidth-
intensive activities.
Bluetooth 5 [19] operates on a relatively shorter range, typically
≤ 40 meters indoors [26] and its data transfer speed peaks at
≈ 2Mbps. Since Bluetooth 4.0, Bluetooth devices have started
supporting Bluetooth Low Energy (BLE). BLE is optimized for low
power consumption, making it well-suited for resource-constrained
IoT devices. Bluetooth Classic is utilized for connection-oriented
data transfer, such as audio streaming. Whereas, BLE is widely used
in beaconing applications (e.g., asset tracking, proximity marketing,
and indoor navigation) for its power efficiency.

2.3 Trusted Execution Environment (TEE)
A TEE is a secure and isolated environment within a computer
system, typically implemented as a hardware-based component. It
provides a secure area for the execution of sensitive operations (e.g.,
cryptographic processing or handling of sensitive data) without
interference or compromise from other software, operating systems,
and hypervisors.

ARM TrustZone, one of the most prominent commercial TEE-
s, divides the system into two separate execution environments:
Secure world and Normal (non-secure) world. Non-secure applica-
tions and interrupts cannot access computing resources, such as
memory and peripherals, that are configured as secure. Within the
ARM TrustZone framework, TrustZone-A (TZ-A) and TrustZone-M
(TZ-M) refer to two specific implementations tailored for differ-
ent types of processors; TZ-A is designed for high-performance
application processors (e.g., smartphones), while TZ-M is tailored
for low-power, resource-constrained MCUs commonly used in IoT
devices. Although core security goals are the same for both TZ-A
and TZ-M, techniques used to achieve these goals differ.

Unlike TZ-A, TZ-M is memory map-based. Memory areas and
other critical resources marked as secure can only be accessed when
the core is running in a secure state. Peripherals can also be desig-
nated as secure, which makes them exclusively accessible through
and controlled by secure code. Besides two security regions (Secure
world/Normal world), TZ-M introduces a non-secure callable (NSC)
region. The NSC region allows secure functions to be safely called
from non-secure code, exposing certain secure functions to Normal
world without compromising overall system security.

2.4 Remote Attestation (RA)
RA is a security technique for verifying integrity and trustworthi-
ness of software state on a remote entity. It allows a trusted server
(verifier – Vrf) to securely determine whether a remote device
(prover – Prv) is running the expected software. As shown in Fig-
ure 2(a), RA is typically realized as a challenge-response protocol:

(1) Vrf initiates RA by sending a request with a unique chal-
lenge (Chal) to Prv.

(2) Prv generates an unforgeable attestation report, which in-
cludes an authenticated integrity check over its software and
Chal, and returns it toVrf.

(3) Vrf verifies the attestation report and determines Prv’s
current state.

Figure 2(b) shows a variation of the above protocol, referred to as
non-interactive RA [9]. In the variant, Prv autonomously decides
when to trigger RA and locally generates a unique and timely RA
report with Chal. This obviates the need forVrf to initiate the RA
process. Also, since Prv knows the (hash of) benign software that it
is supposed to execute, it can generate its ownRA reports indicating
whether or not it is indeed running the expected software. This way,
Vrf no longer needs to know the expected software configuration
for each Prv.
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(a) Interactive (Traditional) RA (b) Non-Interactive and Self-Initiated RA

Figure 2: Different Types of RA

3 Design Overview
3.1 DB-PAISA Protocol Overview
DB-PAISA involves two main entities: an IoT device (Idev) and a user
device (Udev). Idev is equipped with a TEE and deployed in public
or semi-private settings. Udev can be any personal device with
sufficient computing resources, such as a smartphone, smartwatch,
or AR device. Also, a device manufacturer (Mfr) serves a minor (yet
trusted) role in creating and maintaining accurate and up-to-date
information for its Idev-s.

Similar to prior work, all messages exchanged between Idev and
Udev are broadcasted without any prior security associations or
channel/session establishment. As mentioned earlier, in the 𝑃𝑢𝑠ℎ
model of PAISA [63] and DIAL [66], Idev periodically announces
itself, and Udev (if present) receives and processes such information
from nearby devices. Conversely, inDB-PAISA, the user initiates the
process via an app on Udev. Udev broadcasts a discovery request and
waits. Upon receiving a request, Idev generates a response. Figure 3
depicts an overview of 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 models. Unlike PAISA, which
needs a time synchronization phase,DB-PAISA has only two phases:
Registration and Runtime.
Registration Phase takes place during the manufacturing of Idev.
Mfr installs software and provisions secrets for the underlying
public key algorithm (i.e., Idev key-pair) as well as some metadata.
Runtime Phase has three steps: Request, Response, and Reception.
Once completing the boot sequence, Idev keeps listening for requests
while performing normal operations. In Request step, Udev broad-
casts a request (Msgreq) to solicit device information from nearby
Idev-s and waits. Upon receiving Msgreq, Idev generates and returns
a response (Msgresp) in Response step. Next, Udev processes and
verifies Msgresp in Reception step, and displays Idev information to
the user. A detailed description of this protocol is in Section 4.

3.2 Adversary Model
An adversary (Adv) can access all memory regions (e.g., flash and
RAM), except for the TCB (defined in Section 4.1) and its data within

the TEE. Outside the TCB, any Idev components and peripherals,
including timers, network interfaces, sensors, and actuators, are
subject to compromise. Communication between Idev-s and Udev-s
is subject to eavesdropping and manipulation by Adv following
the Dolev-Yao model [40]. Additionally, Registration phase is con-
sidered to be secure. Mfr is trusted to accurately provision IoT
devices and safeguard their secrets. Similarly, DB-PAISA app on
Udev is considered trustworthy. Though it maintains no secrets,
it is assumed to correctly generate formatted requests as well as
accurately process and display information to the user.
Denial-of-Service (DoS): Adv can exploit vulnerabilities in non-
TCB software to introduce malware, and then attempt to exhaust
Idev’s computing resources, e.g., cores, memory, and peripherals.
Through such malware, it can also occupy (squat on) non-TCB-
controlled peripherals from inside the device. Also, it can swamp
peripherals from the outside, e.g., via excessive network traffic
or fake request flooding, which is possible since requests are not
authenticated. Sections 3.4 and 7.2 describe how DB-PAISA fully
mitigates malware-based, and partially defends against network-
based, attacks.
Replay Attacks: Adv can reply with stale, yet valid, responses to
Udev. Replay attacks on Idev are not a serious concern due to lack of
authentication for Msgreq. Replays of stale Msgreq-s are a special
case of request flooding mentioned above.
Wormhole Attacks: DB-PAISA does not defend against worm-
hole attacks [57]. In such attacks, Adv tunnels both Msgreq and
its corresponding Msgresp to/from a remote1 Idev, thus fooling a
Udev into believing that a far-away Idev is nearby. Well-known prior
techniques [6, 22, 62, 65] can address wormhole attacks. However,
mounting a wormhole attack in DB-PAISA is strictly harder than
in PAISA, since Adv must tunnel bothMsgreq andMsgresp, while
only the latter suffices in PAISA.
Runtime Attacks: Similar to PAISA, DB-PAISA detects software
modifications via periodicRA. However, runtime attacks (e.g., control-
flow and non-control-data) are out of scope. Prior research [2, 25,

1Here, “remote” means: beyond one-hop range of a Udev .
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(a) PAISA 𝑃𝑢𝑠ℎ Model Overview (b) DB-PAISA 𝑃𝑢𝑙𝑙 Model Overview

Figure 3: 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 Models Overview

32, 36, 39, 97] has proposed various mitigation techniques, such
as control-flow attestation (CFA) and control-flow integrity (CFI).
Unfortunately, these techniques are resource-intensive and thus
usually impractical for lower-end IoT devices.
Physical Attacks: DB-PAISA protects against non-invasive physi-
cal attacks, e.g., reprogramming Idev using a legal interface, such
as JTAG. However, DB-PAISA does not protect against physically
invasive attacks, such as hardware faults, ROM manipulation, or
secret extraction via side-channels [108]. For defenses against these
attacks, we refer to [80].
Non-compliant (Hidden) Devices:We do not consider attacks
whereby Adv gains physical access to an environment and surrep-
titiously deploys non-compliant malicious devices. For this purpose,
we refer to some recent research on detecting and localizing hidden
devices via specialized hardware [70, 81, 85, 93] and network traffic
analysis [88, 90].
Co-existence with Other Secure Applications: In single-enclave
TEEs (e.g., ARMTrustZone), all secure resources are shared by all se-
cure applications. Consequently, a compromised secure application
can access DB-PAISA secrets or mount a DoS attack by squatting
on the network interface, which is part of DB-PAISA TCB. As in
PAISA, we assume that all secure applications are free of vulnera-
bilities. Although this issue can be addressed by TEEs that support
multiple enclaves (e.g., Intel SGX [61], ARM CCA [12]), such TEEs
are generally unavailable on IoT devices targeted by DB-PAISA.

3.3 Requirements
Recall that DB-PAISA aims to facilitate efficient and guaranteed
timely responses on Idev-s upon requests from nearby Udev-s. In
terms of performance and functionality, DB-PAISAmust satisfy the
following properties:

• Low latency:Msgreq reception andMsgresp generation time
on Idev must be minimal. DB-PAISA implementation should
have a minimal impact on Idev’s normal operation.

• Low bandwidth: DB-PAISA messages (Msgreq and Msgresp)
must consume minimal bandwidth.

• Scalability: Idev should be able to handle multiple Msgreq-s
and respond in time.

• Casualness: As in PAISA, no prior security association be-
tween Udev-s and Idev-s should be assumed, and secure ses-
sions/handshakes between them must not be required.

To mitigate attacks defined in Section 3.2, DB-PAISA must provide:

• Unforgeability: Udev must verify that Msgresp comes from
a genuine DB-PAISA-enabled Idev, i.e., Adv cannot forge
Msgresp.

• Timeliness: Udev must receiveMsgresp containing Idev infor-
mation in a timely fashion.

• Freshness:Msgresp must be fresh and reflect the recent soft-
ware state of Idev.

3.4 DoS Attacks
We now consider DoS attacks on Udev and Idev.

A network-based Adv can mount DoS attacks by flooding Udev
with fakeMsgresp-s. This forces Udev to verify numerous (invalid)
signatures, clearly wasting resources. DB-PAISA offers no defense
against such attacks, due to the casual nature of the Idev-Udev rela-
tionship. Also, this may not be a critical issue on higher-end Udev.

As discussed in Section 3.2, there are two types of DoS attacks
on Idev: (1) an internal malware-based Adv who keeps the CPU
and/or network peripherals busy, and (2) a network-based Adv
who floods Idev with frivolousMsgreq-s and thereby depletes com-
puting resources with expensive cryptographic operations needed
for Msgresp generation. Similar to PAISA, (1) is mitigated by config-
uring the TEE such that a network peripheral is placed under the
exclusive control of the TCB. Consequently, Msgreq reception and
Msgresp generation tasks have the highest priority.

Dealing with (2) is more challenging. Since Msgreq-s are not
authenticated, a flood of fake Msgreq-s can simply exhaust Idev
resources. The same can occur in a non-hostile scenario when
a flurry of valid requests from multiple benign users (e.g., in a
suddenly crowded space) overwhelms Idev.

To mitigate Msgreq flooding (whether hostile or not), DB-PAISA
uses a lazy-response technique whereby Idev collectsMsgreq-s for a
certain fixed time and responds to all of them with a singleMsgresp.
Specifically, Idev maintains a pool of nonces (up to a certain maxi-
mum number) fromMsgreq-s. At the end of the period or when the
nonce pool reaches its capacity, Idev signs a collective Msgresp con-
taining all pooled nonces. Each Udev with an outstanding Msgreq
checks whether the received Msgresp contains its nonce. This ap-
proach allows Idev to pace its compute-intensive cryptographic
operations. Details are in Section 4.

We acknowledge that pooling nonces from Msgreq-s does not
fully address Msgreq flooding: Adv can simply flood Idev at a high
enough speed, causing Idev to generate signedMsgresp-s at an un-
sustainable rate. One remedial measure is to adopt random deletion
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– a relatively effective countermeasure to the well-known TCP SYN-
flooding attack [84]. Furthermore, nonce pooling delays Msgresp
generation, making Udev-s wait longer. To address this issue, an
alternative approach (albeit with a slightly different setting) is dis-
cussed in Section 7.2.

4 DB-PAISA Design
Recall that DB-PAISA has two phases: Registration and Runtime, as
shown in Figure 3(b).

4.1 Registration Phase
In this phase,Mfr provisions each Idev with device software (𝑆𝑊𝑑𝑒𝑣 ),
DB-PAISA trusted software (𝑆𝑊DB−PAISA), cryptographic keys, and
other metadata. Also, the timer and network peripherals are config-
ured as secure via the TEE. Finally,Mfr configures the attestation
interval (TAtt) and the lazy-response delay (TGen) according to each
Idev use case. Their use is described in Section 4.2.
Software:Normal functionality of Idev is managed by 𝑆𝑊𝑑𝑒𝑣 , which
resides in and executes from the non-secure memory region. Mean-
while, 𝑆𝑊DB−PAISA is installed in the secure region.
Cryptographic Keys: There is a public/private key-pair for Idev
(𝑝𝑘IoT, 𝑠𝑘IoT). The latter is used to sign Msgresp. This key pair is
generated inside the TEE. 𝑝𝑘IoT is shared with Mfr, while 𝑠𝑘IoT
never leaves the TEE. 𝑝𝑘Mfr is assumed to be trusted, e.g., via a
public key infrastructure (PKI) dealing with all 𝑝𝑘Mfr-s.
Device Manifest (ManifestIoT) is the information about Idev, gen-
erated and maintained by Mfr. It must include Mfr certificate
(CertMfr) and Idev certificate (CertIoT) signed by CertMfr. The ex-
act contents of ManifestIoT are up to the individualMfr. However,
some fields are mandatory: 𝑝𝑘IoT, certificates, type/model of Idev,
sensors/actuators it hosts, etc. Note thatManifestIoT is not placed
into Idev; it is hosted by Mfr at a URL, URLMan.

Once Udev obtains ManifestIoT, it uses CertMfr to authenticate
it, and extracts 𝑝𝑘IoT from CertIoT. ManifestIoT might contain other
device information, e.g., purposes of its sensors/actuators, the spec-
ification link, 𝑆𝑊𝑑𝑒𝑣 version, and coarse-degree deployment geo-
graphical location, e.g., country, state, or city.2

URL (URLMan):ManifestIoT size can be large since it depends on
Mfr and type/model of Idev. Thus, we cannot expect it to fit into
one Msgresp. Therefore, ManifestIoT is indirectly accessible at a
shortened URL, called URLMan, contained in eachMsgresp. URLMan

is a shortened version ofURLManFull , created using a URL shortening
service, such as Bitly[18] or TinyURL[101], for making it short and
of constant size.
Metadata: The following parameters are stored in the secure mem-
ory region of Idev: (1) URLMan, (2) 𝐻𝑆𝑊𝑑𝑒𝑣

– hash of 𝑆𝑊𝑑𝑒𝑣 , (3) TAtt–
inter-attestation time parameter, (4) TGen–Msgresp generation in-
terval, and (5) |PoolN |Max– maximum size of the nonce pool.
TCB: Cryptographic keys, 𝑆𝑊DB−PAISA, and all aforementioned
metadata (stored in the secure memory region) are considered to be
within the TCB, along with the timer and network interface, which
are configured as secure peripherals.

2This coarse location information can aid in (partially) mitigating wormhole
attacks.

Figure 4: DB-PAISA State Machine on Idev

4.2 Runtime Phase
Runtime phase composed of three steps: Request, Response, and
Reception.

4.2.1 DB-PAISA Trusted Software (𝑆𝑊DB−PAISA) on Idev. As shown
in Figure 4, Idev has four states in Response step:Wait, Att, Rcv,
and Gen. Att is a periodic state independent of others: its periodic-
ity is governed by TAtt.
(a) Wait: After its boot sequence completes, Idev runs 𝑆𝑊𝑑𝑒𝑣 while
listening for Msgreq-s on the network interface. Depending on the
condition below, it transitions to other states:

• Every TAtt: Idev periodically attests 𝑆𝑊𝑑𝑒𝑣 via a secure timer
set off every TAtt. When the timer expires, Idev proceeds to
Att.

• Msgreq received: Once Idev identifies an incoming packet as
a Msgreq (via DB-PAISA protocol identifier – 𝐼𝐷DB−PAISA, in
a header field), it transitions to Rcv.

• After TGen: It proceeds to Gen.
(b) Att: Idev computes a hash over 𝑆𝑊𝑑𝑒𝑣 and compares it to𝐻𝑆𝑊𝑑𝑒𝑣

.
If they do not match, the 1-bit Attresult flag is set to Fail and to
Success otherwise. Next, Idev securely records its current timer
value (timeLAtt ) and returns to Wait.

An intuitive alternative to timer-based attestation is to perform
attestation upon eachMsgreq. The attestation itself consumes far
less time/energy than signingMsgresp Ḣowever, for a low-end Idev
that performs safety-critical tasks, decoupling attestation from dis-
covery can be more appealing.
(c) Rcv: As discussed in Section 3.4, DB-PAISA uses a flexible lazy-
response strategy to amortize signature costs and mitigate potential
DoS attacks via Msgreq flooding. In this state, Idev maintains PoolN,
composed of nonces extracted fromMsgreq-s.

• Idev initially transitions to this state when it receives the first
Msgreq. It extracts the nonce fromMsgreq, Nusr, and places
it into a (initially empty) nonce pool PoolN. It then sets a
secure timer to TGen and returns to Wait. Note that the
timer for TGen is only set when the firstMsgreq comes in.

• If PoolN is not empty, Idev extracts the nonce and adds it
to PoolN. Once PoolN reaches |PoolN |Max, Idev transitions to
Gen. Otherwise, it returns to Wait.
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• If it has been transitioned from Gen (i.e., Msgreq arrives
while generating Msgresp), Idev extracts the nonce and adds
it to a temporary list – PoolNTmp , and returns to Gen.

Although |PoolN |Max is a configurable parameter, it is physically
upper-bounded by the amount of space available inMsgresp, which
depends on the network interface and the underlying wireless
medium. This is further discussed in Section 5.4.

Note that if |PoolN |Max is set to 1, a separate Msgresp is gener-
ated for each Msgreq. Also, |PoolN |Max should not be set over the
physical upper bound because it leads to all Msgreq-s ignored until
the currentMsgresp is completely handled. This can result in a false
sense of privacy, frustrating users to erroneously think there are
no Idev-s around.
(d) Gen: Idev computes attestation time (timeAtt) as:

timeAtt = timeIoT − timeLAtt

where timeIoT is the current timer value. Then, it generatesAttreport :=
[Attresult, timeAtt], signs the message Sigresp := SIG(Ndev | |PoolN
| |URLMan | |Attreport), and createsMsgresp := [Ndev, PoolN,URLMan,

Attreport, Sigresp]. SIG is a signing operation and Ndev, generated by
Idev, is added to randomizeMsgresp. Next, Idev assigns PoolNTmp to
PoolN, resets PoolNTmp to be empty, and broadcasts Msgresp. Note
that if an influx of Msgreq-s (i.e., # of Msgreq-s > 2∗|PoolN |Max) is
received within TGen, |PoolNTmp | exceeds |PoolN |Max. Then, the first
block (of length |PoolN |Max) of Nusr-s from PoolNTmp is moved to
PoolN after the current Msgresp is sent out. The remaining Nusr-s
in PoolNTmp are in turn handled similarly when Gen is triggered.
Finally, it goes to the next state with the below conditions:

• If |PoolNTmp | < |PoolN |Max, it transitions to Wait.
• Otherwise, it re-enters Gen to process a newMsgresp with
next Nusr-s.

If anyMsgreq-s are received in this state, it goes to Rcv to handle
them.

4.2.2 DB-PAISA App on Udev. There are two steps: Request &
Reception.
Request: Udev initiates device discovery by broadcasting a Msgreq
that contains a uniqueNusr and 𝐼𝐷DB−PAISA. It thenwaits forMsgresp-
s for a time period set as part of the DB-PAISA app configuration.
Reception: Upon reception ofMsgresp, Udev parses it and checks
for the presence of Nusr. If not found, Msgresp is discarded. Next,
Udev fetchesManifestIoT from URLMan. It then retrieves 𝑝𝑘Mfr from
CertMfr and verifies the signature ofManifestIoT using 𝑝𝑘Mfr. Suc-
cessful verification implies that bothManifestIoT and 𝑝𝑘IoT are trust-
worthy. Finally, Udev verifies Sigresp with 𝑝𝑘IoT and displays the
details to the user.

5 Implementation
This section describesDB-PAISA implementation details. All source
code is available at [67].

5.1 Implementation Setup
Idev is implemented on an NXP LPC55S69-EVK [76] board. It fea-
tures an ARM Cortex-M33 processor with ARM TrustZone-M (TZ-
M), running at 150 MHz with 640 KB flash and 320 KB SRAM. Due

Figure 5: Implementation Setup
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(n: # of requests within TGen, and n ≥ 1)

to lack of a built-in network module, we use an ESP32-C3-DevKitC-
02 board [47], connected to the NXP board via UART. As Udev, we
use a Google Pixel 6 Pro Android smartphone [51] with eight het-
erogeneous cores running at ≤ 2.8 GHz. Figure 5 shows the overall
experimental setup.
Secure Peripherals: We configure UART4 and CTIMER2 as se-
cure, granting 𝑆𝑊DB−PAISA exclusive control over the network and
timer peripheral. UART4 and CTIMER2 are configured with the
highest priority values (0 and 1, respectively) to ensure timely and
guaranteed reception of Msgreq-s and generation of Msgresp-s. If
𝑆𝑊𝑑𝑒𝑣 needs to access the network peripheral to communicate
with an external entity, it can use UART4 for its normal operation
via 𝑆𝑊DB−PAISA. TAtt is set to 300s and TGen – to 1s on CTIMER2.
Also, CASPER and HASH-AES Crypto Engine peripherals facili-
tate cryptographic operations, i.e., signingMsgresp-s and hashing
(non-secure) memory during attestation.

5.2 Network
Device Discovery:We focus on popular wireless media types:WiFi
and Bluetooth. Each has a network discovery procedure. To initiate
discovery, one typically broadcasts a short (specially formatted)
network discoverymessage. Most fields in this message are reserved
and of fixed size. Thus, using network discoverymessages asMsgreq-
s and Msgresp-s is not trivial.
Msgreq & Msgresp Length: As shown in Figure 6, Msgreq size is
constant – 18 bytes. The minimum size of aMsgresp is 114 bytes for
a single nonce. Since one Msgresp can reply to multiple Msgresp-s

440



DB-PAISA Proceedings on Privacy Enhancing Technologies 2025(2)

(each with its own nonce), we need to encode the total number of
nonces in front of the nonce list. We use one extra leading byte for
this purpose. In general, a network discovery packet must allow
for at least 114 bytes of DB-PAISA-specific data.
Bluetooth vs WiFi: Both WiFi and Bluetooth are common on
many types of IoT devices as well as smartphones, smartwatches
and tablets. To support lightweight connection-less communication
between Idev-s and Udev-s, our DB-PAISA prototype uses Bluetooth
extended advertisements. The rationale for this choice is three-fold:
(1) Bluetooth 5 supports broadcast messages of≤ 1, 650 bytes, while
IEEE 802.11 WiFi can only carry ≤ 255 bytes in a vendor-specific
field of a beacon frame, (2) it is more energy-efficient than WiFi
[11], and (3) its indoor range of ≈ 40m is more appropriate for
DB-PAISA, since Idev-s discovered via WiFi may be irrelevant to a
Udev due to being too far.

5.3 Normal Operation on Idev (𝑆𝑊𝑑𝑒𝑣)
We implemented a temperature sensor application as Idev’s normal
functionality – 𝑆𝑊𝑑𝑒𝑣 . The same application was used to motivate
and evaluate PAISA. It obtains temperature sensor readings on Idev
using LPADC (Low-Power Analog-to-Digital Converter) driver ev-
ery 5s, and sends the data to a remote server. Due to UART4 being
set as secure, 𝑆𝑊𝑑𝑒𝑣 cannot use it directly; it first goes through
𝑆𝑊DB−PAISA, running in Secure world, to send packets. This is im-
plemented using a Non-Secure Callable (NSC) function, which is the
only valid entry point to transition from Normal world to Secure
world in TZ-M, except for secure interrupts. 𝑆𝑊𝑑𝑒𝑣 is implemented
as a simple task on freeRTOS [86], reading the temperature sensor
with 5s delay in a loop.

5.4 DB-PAISA Trusted Software
DB-PAISA includes three trusted applications: (1) secure application
(𝑆𝑊DB−PAISA) running in Secure world on Idev, (2) network stack
connected to Idev via secure UART4, and (3) Android app on Udev.
𝑺𝑾DB−PAISA on Idev: DB-PAISA uses a secure timer in three cases:
(1) triggering an interrupt at TAtt (300s) to perform attestation, (2)
triggering an interrupt at TGen (1s) for the lazy-response mecha-
nism, and (3) computing estimated attestation time. The first two
require the timer interrupt to be triggered at different intervals.
Fortunately, most commercial timers support multiple conditions
triggering the interrupt. Hence, 𝑆𝑊DB−PAISA requires only one ex-
clusive secure timer.

𝑆𝑊DB−PAISA has four software components: UART interrupt ser-
vice routine (ISR), timer ISR, attestation, and Msgresp generation.
Once it boots, Idev continuously listens forMsgreq-s. UART ISR is
triggered whenever Idev receives a packet from the network mod-
ule. It identifiesMsgreq-s by 𝐼𝐷DB−PAISA ("DP-REQ") and prioritizes
handling them. If PoolN is empty, it places Nusr into PoolN and sets
the secure timer to expire after TGen. Otherwise, it adds (appends)
Nusr to PoolN.

As mentioned earlier, two conditions can trigger timer ISR: TAtt

and TGen. This timer ISR checkswhich timer expired. If it is TAtt, ISR
computes SHA256 over non-secure memory (including 𝑆𝑊𝑑𝑒𝑣) and
generates Attresult. Otherwise, if TGen expired, timer ISR initiates
Msgresp generation process, which (1) computes timeAtt, (2) signs

Msgresp contents (Ndev, PoolN, URLMan, and Attreport) using ECDSA
(Pri- me256v1 curve), (3) composes Msgresp, and (4) hands it over
to the network module via UART_WriteBlocking(). Note that, in
order to prioritizeMsgresp generation, the timer interrupt from TAtt

is inactivated when TGen is reached. Also, when PoolN is empty,
the timer interrupt from TGen is not in use, i.e., not set.

When PoolN reaches its capacity (|PoolN |Max), Msgresp genera-
tion is triggered. Msgresp generation can also be triggered by TGen

expiring. UART ISR has the highest priority to receive Msgreq-s
and process Nusr-s, even during Msgresp generation. If UART ISR
receives a new Msgreq while Msgresp is being generated, Nusr from
this newMsgreq is stored in a separate temporary list, PoolNTmp . It
is fed into PoolN after handling the currentMsgresp.

The current minimum nonce length recommended by NIST for
lightweight cryptography [29] is 12 bytes. In Bluetooth 5, a single
Msgresp can contain ≤ 129 nonces, meaning that it can collectively
respond to as many Msgreq-s. This upper bound is based on the
maximum capacity of Bluetooth extended advertisements (1, 650
bytes) and otherMsgresp fields, e.g., 64-byte signature, and 5-byte
Attreport.
NetworkModule: ESP32-C3-DevKitC-02 board features Bluetooth
5, which supports Bluetooth extended advertisements. To send/re-
ceive such broadcast messages (Msgreq,Msgresp), we use the NimBLE
library. Once the boot sequence completes, the network module
initializes and begins scanning forMsgreq-s using ble_gap_disc().
Upon receivingMsgreq, the module forwards it to the main board
(NXP board), using uart_write_bytes(). When the NXP board
replies withMsgresp, the network module broadcasts outMsgresp
to Udev, using ble_gap_ext_ adv_start(). The network module
(re)transmitsMsgresp every 30ms for 300ms to ensure reliable de-
livery. These timing parameters are configurable.
DB − PAISA App on Udev: DB-PAISA app is implemented as an
Android app on Udev, using Android Studio Electric Eel with API
level 33. For a Bluetooth scan and broadcast, the app requires
a few permissions: BLUETOOTH_SCAN, BLUETOOTH_ADVERTISE, and
ACCESS_FINE_LOCATION, which are reflected in ‘AndroidManifest.xml’
file.

The app uses android.bluetooth.le libraries for Bluetooth ex-
tended advertisements. When the user clicks the “Scan Devices” but-
ton, the app broadcastsMsgreq using startAdvertisingSet() and
waits with a scan forMsgresp-s using startScan().Msgresp is iden-
tified by containing 𝐼𝐷DB−PAISA ("DP-RES"). The app parsesMsgresp
and fetches ManifestIoT via URLMan using getInputStream() in
the java.net library. Then, the app verifies signatures inManifestIoT
andMsgresp with 𝑝𝑘Mfr and 𝑝𝑘IoT, using verify() from the java.
security library. Finally, it displays device information details
(from ManifestIoT) and Attreport (from Msgresp) on Udev, as shown
in Figure 5.

6 Evaluation
DB-PAISA security is addressed in Section 6.1. For the sake of a
fair comparison, since PAISA was originally implemented using
WiFi, we adapt it to Bluetooth. We measure runtime overhead on
Idev and Udev across 50 iterations. Response on Idev takes 233ms,
consistent with the time PAISA announcement takes. We use this
value to discuss performance overhead and energy consumption in
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Sections 6.2 and 6.4, respectively. We also empirically measure the
DB-PAISA-imposed performance penalty of 𝑆𝑊𝑑𝑒𝑣 with varying
parameters in Section 6.2. Runtime overhead on Udev and overall
network traffic overhead are evaluated in Sections 6.3 and 6.5.

6.1 Security Analysis
We now consider security guarantees of DB-PAISA against Adv
defined in Section 3.2.
Idev Compromise: TZ-M guarantees that the TCB cannot be ma-
nipulated by Adv. Also, due to the highest priority of UART and
timer interrupts, Idev is guaranteed to perform DB-PAISA tasks (i.e.,
receiving, processing, and replying toMsgreq-s) even with malware
presence in TZ-M Normal world. Furthermore, Attreport contained
in Msgresp reflects the recent state of 𝑆𝑊𝑑𝑒𝑣 which allows Udev-s to
detect compromised Idev-s.
ForgedMsgresp: Adv cannot generate a validMsgresp unless 𝑠𝑘IoT
is leaked or the public key algorithm used for digital signature
computation is broken.
DoS Attacks on Idev can be launched by (1) malware on Idev or
(2) other malicious devices over the network. Since timer ISR and
UART ISR are configured as secure, the former can be addressed
with 𝑆𝑊DB−PAISA’s exclusive control over the network interface.
The latter requires the physical presence of Adv within Bluetooth
range of Idev, making this type of attack harder. This is partially
addressed with the lazy-response approach as discussed in Sections
3.4 and 4.2. Other mitigation techniques are outlined in Section 7.2.
Replay Attacks on Udev: Udev can readily detect replay attacks
by checking whether Nusr from an outstanding Msgreq is included
in corresponding Msgresp. Such Msgresp-s can be simply discarded.
Physical Attacks on Idev: TZ-M offers secure storage to store
secrets and secure boot to thwart non-invasive physical attacks.

6.2 Idev Runtime Overhead
To measure runtime overhead on Idev, we use UBusy to denote CPU
usage for DB-PAISA trusted software (𝑆𝑊DB−PAISA), computed as:
UBusy := timeDB−PAISA

timeNormal+timeDB−PAISA
, where timeNormal is time used for

normal device operation (𝑆𝑊𝑑𝑒𝑣) and timeDB−PAISA is time used by
𝑆𝑊DB−PAISA. For the sake of simplicity, despite the presence of pe-
riodic attestation every TAtt, onlyMsgresp generation overhead is
considered in the experiment because attestation time is almost
negligible (≈ 1ms) compared to its interval (TAtt), which can be
quite long, e.g., 1 hour. Also, the signing operation (231ms out of
233ms) dominatesMsgresp generation. Therefore,Msgresp genera-
tion takes (almost) constant time even with a barrage ofMsgreq-s
within one TGen in our lazy-response design.

In PAISA 𝑃𝑢𝑠ℎ model, UBusy can be represented as: UBusy :=
timeAnn
TAnn

, where timeAnn is time to generate an announcement and
TAnn is inter-announcement interval. Since timeAnn is constant
(≈ 232ms), UBusy is a function of configurable TAnn.

Similarly, in DB-PAISA, UBusy := timeRes
TReq

, where timeRes is time
to perform Response step and TReq is average time between two
consecutiveMsgreq-s. Also, timeRes remains constant, identical to
timeAnn. Thus, UBusy is a function of TReq. In the worst case, when
Idev continuously receivesMsgreq-s, TReq = TGen.

Figure 7: CPU Usage (UBusy) in (DB-)PAISA 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 models
(Worst Case: Continuous Msgreq-s in 𝑃𝑢𝑙𝑙 )

Time (s) 𝑷𝒖𝒍𝒍 (with TReq)
(TAnn/TGen)

𝑷𝒖𝒔𝒉 1 s 5 s 10 s 30 s
1 19.03% 5.58% 1.95% 1.09% 0.41%
2 10.51% 3.80% 1.68% 1.00% 0.40%
3 7.26% 2.88% 1.48% 0.93% 0.39%
4 5.55% 2.33% 1.32% 0.86% 0.38%
5 4.49% 1.95% 1.19% 0.81% 0.37%

Table 1: CPU Usage (UBusy) of 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 in Hotel Scenario
(NoMsgreq for TReq in 𝑃𝑢𝑙𝑙 )

We consider two types of deployment settings for DB-PAISA-
enabled Idev-s: (1) a concert hall, which is crowded (and expected to
have a lot of Msgreq-s) for 8 hours a day, and (2) a hotel, which is
crowded for 16 hours a day. For a fair evaluation, we simply assume
10 Msgreq-s per hour to be received by Idev when the location is
not crowded. Figure 7 shows the runtime overhead comparison
between 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 in the worst case, with different scenarios.
In the concert hall scenario, DB-PAISA reduces UBusy by ≈ 30%,
and in the hotel scenario, it decreases by ≈ 65%.

Runtime overhead can be further reduced if Idev does not con-
sistently receiveMsgreq-s during the crowded time block (TReq >

TGen). This can occur if users are already informed about nearby
devices (no new users are around) or if Msgreq-s are clustered at
specific times. As shown in Table 1, in the hotel setting, UBusy in
DB-PAISA is significantly reduced compared to the 𝑃𝑢𝑠ℎ model.
If Idev receivesMsgreq every 10s, DB-PAISA UBusy decreases by at
least 70% compared to 𝑃𝑢𝑠ℎ.
NOTE1: On single-core IoT devices (with TZ-M), only Secure world
or Normal world can run at any given time. Therefore, DB-PAISA
execution blocks normal functionality of 𝑆𝑊𝑑𝑒𝑣 running in Normal
world. While this is not an issue on multi-core devices, DB-PAISA
execution still incurs certain runtime overhead, including the rela-
tively expensive signing operation.
NOTE2: Listening forMsgreq-s does not interfere with normal device
functionality, since the network modem is typically separate from
the primary CPU core(s). However, if 𝑆𝑊𝑑𝑒𝑣 attempts to send any
packets while DB-PAISA is running, 𝑆𝑊𝑑𝑒𝑣 will hang until DB-
PAISA execution completes. Similarly, if an external entity (e.g., a
server or a digital twin) attempts to communicate with 𝑆𝑊𝑑𝑒𝑣 while
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DB-PAISA is running, its packets might be dropped and would need
to be retransmitted.
Empirical Evaluation: Runtime overhead incurred by DB-PAISA
execution (and interruption of 𝑆𝑊𝑑𝑒𝑣) is measured by comparing
the runtime of a task with and without DB-PAISA. This experi-
ment is conducted with the sample application, temperature sensor
software. Furthermore, DB-PAISA invocation (and therefore nor-
mal operation interruption) depends on variables, such as TReq
and TGen. We also measure how changing these parameters, and
thus the frequency of DB-PAISA invocation, impacts the runtime
of 𝑆𝑊𝑑𝑒𝑣 .

For a fair comparison with PAISA, we first evaluate runtime
overhead without the lazy-response mechanism (i.e., TGen = 0).
Recall that 𝑆𝑊𝑑𝑒𝑣 , a temperature sensor software, reads temperature
data and sends it to the server every 5s. We measure DB-PAISA
overhead added to this task. Table 2 details the runtime overhead
for varying TReq-s.

In DB-PAISA, if Idev receives aMsgreq every 1s (i.e., TReq = 1s),
𝑆𝑊𝑑𝑒𝑣 would suffer from a significant delay of 2.13s (42.55%), on
average. This is mainly because 𝑆𝑊DB−PAISA executes 5 times, on
average, during 𝑆𝑊𝑑𝑒𝑣 ’s interval of 5s. Each 𝑆𝑊DB−PAISA execution
consumes ≈ 233ms while stopping SysTick, which is used as
the timer in freeRTOS. In other words, tasks in Normal world are
unaware of 𝑆𝑊DB−PAISA execution in Secure world, leading to de-
layed execution of Normal world tasks. Unsurprisingly, as TReq
grows (i.e., infrequentMsgreq-s from users), the overhead on 𝑆𝑊𝑑𝑒𝑣

sharply decreases. For example, 𝑆𝑊𝑑𝑒𝑣 overhead is 0.56s (11.13%)
when TReq = 3s, and 0.22s (4.43%) when TReq = 7s.

Note that TReq inDB-PAISA is equivalent to TAnn in PAISAwhen
TGen = 0. For both, PAISA’s Annoucnement and DB-PAISA’s Gen
procedures are executed at those intervals. Both sign and generate
the message containing Idev device information. In PAISA, TAnn

is fixed and configured at provisioning time. In contrast, TReq in
DB-PAISA depends on the environment. When there are no new
users sendingMsgreq-s, 𝑆𝑊𝑑𝑒𝑣 runs with no interference. Therefore,
DB-PAISA incurs lower runtime overhead than PAISA, making it
better suited for Idev-s in less crowded settings.

Table 3 shows DB-PAISA overhead with varied TReq-s and TGen-
s. As mentioned in Section 5, if there are multiple Msgreq-s in a
given TGen, 𝑆𝑊DB−PAISA receives them, appends their nonces to
PoolN, and generates a singleMsgresp to respond to all at the end of
TGen. For example, when TGen = 1s, 13-15 Msgreq-s are collectively
handled by oneMsgresp on average with 0.1 TReq. This incurs 𝑆𝑊𝑑𝑒𝑣

delay of 1.43s (28.59%). Moreover, with the same TReq = 1s, TGen

significantly impacts the overhead: 2.13s (42.55%) for TGen = 0s,
0.88s (17.64%) for TGen = 1s, and 0.26s (5.15%) for TGen = 5s.

As shown in Table 5, a user obtains device information in 3.57s,
on average. Thus, the result can be shown to the user within 10s
when TGen = 5s. A too-long TGen would lead to users having a
false sense of privacy. It is because they may leave the place before
getting Msgresp-s. Then, they would think that there are no nearby
Idev-s. To avoid such issues, TGen must be configured reasonably by
compliant manufacturers. This is further discussed in Section 7.

Recall that the network peripheral is configured as secure. 𝑆𝑊𝑑𝑒𝑣

invokes an NSC function to send data to the remote server. The

overhead of the NSC function call primarily stems from context-
switching between Secure and Normal worlds. To measure this
overhead, the number of cycles was measured before and after
calling the NSC function. We create a mock function that executes
the same task as the NSC function in Normal world, andmeasure the
number of cycles to execute the mock function. The NSC function
call requires 519 cycles, while the mock function takes 392 cycles.
Thus, the overhead of calling an NSC function is only 127 cycles,
corresponding to < 1𝜇s on Idev running at 150MHz.

6.3 Udev Runtime Overhead
Table 5 shows the latency of each step in the DB-PAISA app when
TGen = 0s. After sending Msgreq, it takes ≈ 2.2s, on average, to
receiveMsgresp. In the worst case, the DB-PAISA app would wait
≈ 4.95s. This overhead mostly stems from network communication
delay between Udev and Idev. In both PAISA and DB-PAISA, process-
ingMsgresp takes ≈ 1.3s, i.e., the time between receivingMsgresp
and displaying device information on Udev screen. This latency is
primarily due to the fetching ofManifestIoT from URLMan.

InDB-PAISA, the app needs to wait for ≈ 3.5s to receiveMsgresp.
In contrast, in 𝑃𝑢𝑠ℎ model, the app simply listens for device an-
nouncements. It displays Idev details much faster, after ≈ 1.3s.

6.4 Idev Energy Consumption
On the NXP board representing Idev, we measure the current by
observing the voltage drop over a 2.43ohm resistor via Pinout 12.
However, the network module (ESP) does not support power con-
sumption measurements. Hence, our ESP board’s current measure-
ment relies on the energy estimation specified in the official docu-
mentation [48]. Transmission duration is assumed to be 300ms with
30ms intervals for reliable reception on Udev, i.e., 10 transmissions
per Msgreq.

Note that the current on the ESP board is substantially higher
than on the NXP board because BLE on the ESP board drains quite
a lot of energy: 97.5mA for receiving and 130mA for transmitting,
on average. Also, the ESP board consumes more energy than main-
stream BLE technology (Nordic BLE [75]) because it is a standalone
board running a real-time operating system. BLE energy consump-
tion can be lowered by integrating BLE into the device.

Table 4 shows energy consumption on NXP and ESP boards
with 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 models. Power consumption on the NXP board
remains almost the same in both. Since the 𝑃𝑢𝑙𝑙 model continuously
listens for Msgreq-s on the ESP board, it results in constant high
power consumption. However, energy consumed in the 𝑃𝑢𝑠ℎ model
goes down significantly when TAnn increases while making users
wait longer to receive Msgresp-s. Consequently, as expected, the
𝑃𝑢𝑠ℎ model is more energy efficient. Nevertheless, the gap in power
consumption of 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 models can be reduced when (1) BLE
is integrated into Idev as mentioned above, and (2) TAnn is small
to minimize the latency to get device information from the user
perspective.

The preceding analysis shows a clear trade-off between perfor-
mance and energy overheads. See details in Section 7.1.
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TAnn/TReq 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s
2.13 0.89 0.56 0.40 0.32 0.26 0.22 0.20 0.17 0.15Mean (s) (42.55%) (17.70%) (11.13%) (8.08%) (6.39%) (5.30%) (4.43%) (3.95%) (3.44%) (3.08%)

Std (s) 0.10 0.06 0.11 0.14 0.07 0.10 0.14 0.15 0.15 0.15
Min (s) 2.06 0.59 0.29 0.29 0.29 0.00 0.00 0.00 0.00 0.00
Max (s) 2.40 0.92 0.63 0.63 0.61 0.36 0.33 0.33 0.33 0.32

Median (s) 2.09 0.90 0.59 0.30 0.30 0.30 0.29 0.29 0.29 0.29

Table 2: Idev Runtime Overhead with Varying TAnn (in PAISA) and TReq (in DB-PAISA)

TGen 1 s
TReq 0.1s 0.3s 0.5s 1s 2s 3s 4s 5s

1.43 1.25 1.25 0.88 0.87 0.56 0.40 0.32Mean (s) (28.59%) (25.04%) (24.99%) (17.64%) (17.47%) (11.17%) (7.95%) (6.40%)
Std (s) 0.13 0.12 0.11 0.08 0.08 0.11 0.14 0.07
TGen 2 s
TReq 0.1s 0.3s 0.5s 1s 2s 3s 4s 5s

0.73 0.71 0.68 0.55 0.40 0.55 0.40 0.32Mean (s) (14.64%) (14.12%) (13.53%) (10.97%) (8.04%) (10.95%) (8.04%) (6.34%)
Std (s) 0.13 0.12 0.11 0.08 0.08 0.11 0.14 0.07
TGen 3 s
TReq 0.1s 0.3s 0.5s 1s 2s 3s 4s 5s

0.48 0.47 0.46 0.40 0.40 0.26 0.41 0.32Mean (s) (9.65%) (9.39%) (9.29%) (8.06%) (8.10%) (5.24%) (8.20%) (6.37%)
Std (s) 0.15 0.15 0.15 0.14 0.14 0.10 0.15 0.07
TGen 4 s
TReq 0.1s 0.3s 0.5s 1s 2s 3s 4s 5s

0.36 0.35 0.35 0.32 0.26 0.26 0.20 0.31Mean (s) (7.30%) (7.06%) (7.04%) (6.33%) (5.22%) (5.11%) (3.93%) (6.24%)
Std (s) 0.13 0.12 0.12 0.07 0.10 0.11 0.15 0.09
TGen 5 s
TReq 0.1s 0.3s 0.5s 1s 2s 3s 4s 5s

0.29 0.29 0.29 0.26 0.26 0.26 0.20 0.16Mean (s) (5.86%) (5.88%) (5.89%) (5.15%) (5.24%) (5.26%) (3.91%) (3.19%)
Std (s) 0.05 0.04 0.04 0.11 0.10 0.10 0.14 0.15

Table 3: Idev Runtime Overhead with Varying TGen in DB-PAISA

NXP (mA) ESP (mA) Idev (mA)
(NXP+ESP)Time (s)

(TAnn/TGen)
𝑃𝑢𝑠ℎ 𝑃𝑢𝑙𝑙 𝑃𝑢𝑠ℎ 𝑃𝑢𝑙𝑙 𝑃𝑢𝑠ℎ 𝑃𝑢𝑙𝑙

1 8.46 9.12 60.35 100.75 68.81 109.87
2 8.46 8.78 45.43 99.13 53.88 107.91
3 8.45 8.67 40.45 98.59 48.90 107.26
4 8.45 8.62 37.96 98.31 46.42 106.93
5 8.45 8.58 36.47 98.15 44.92 106.74

Table 4: Idev Energy Consumption of 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙

6.5 Network Overhead
In PAISA 𝑃𝑢𝑠ℎ model, announcement size is 128 bytes, while in the
𝑃𝑢𝑙𝑙 model,Msgreq andMsgresp are 18 and 100 bytes, respectively
Since both 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 models use the same Bluetooth packet
header, we compare only the payload size. Figure 8 shows bits per
second (bps) of 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 Idev-s, respectively, with varying
intervals. Bandwidth overhead is reduced by 40.1% in the hotel
scenario and 70.5% in the concert hall scenario. However, the 𝑃𝑢𝑙𝑙
model raises another concern; packet size scales with the number
of UdevMsgreq-s within one TGen, leading to largerMsgresp.

Figure 8: Network Traffic Overhead

To alleviate this problem, 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 models can be blended
to dynamically switch between 𝑃𝑢𝑙𝑙 and 𝑃𝑢𝑠ℎ protocols depending
on the rate ofMsgreq-s. For instance, given a high influx ofMsgreq-s,
𝑃𝑢𝑙𝑙 model would switch to 𝑃𝑢𝑠ℎ model. This mitigation is further
discussed in Section 7.1.

7 Discussion & Limitations
7.1 𝑃𝑢𝑠ℎ vs 𝑃𝑢𝑙𝑙 Tradeoffs & Blending
𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙 models have trade-offs in terms of energy consump-
tion as well as performance overheads. Also, network bandwidth
utilization in both models depends on the number of Idev-s and
Udev-s in an area. The better-suited model is contingent on the
deployment use case. However, it is quite straightforward to blend
them and support on-the-fly switching between them.

For example, suppose that Idev is using 𝑃𝑢𝑙𝑙 mode. Once it starts
receiving an influx of Msgreq-s (say, over a certain threshold) in
rapid succession, it switches to 𝑃𝑢𝑠ℎ mode. Idev stays in 𝑃𝑢𝑠ℎ mode
for a certain period (configurable byMfr) and then switches back
to 𝑃𝑢𝑙𝑙 mode. In other words, when the setting experiences an
influx of new users, 𝑃𝑢𝑠ℎ mode works better, while 𝑃𝑢𝑙𝑙 is better
when there are fewer and/or infrequent new users. Note that Udev
need not be aware of whether Idev is running in 𝑃𝑢𝑠ℎ model or
𝑃𝑢𝑙𝑙 model. It can collect both announcement messages (from 𝑃𝑢𝑠ℎ

devices) and Msgresp-s (from 𝑃𝑢𝑙𝑙 devices) once it sends a single
Msgreq. This heuristic is quite easy to implement, in part because
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Model Event Time (ms) Std Dev (ms) Min (ms) Max (ms) Median (ms)
𝑷𝒖𝒔𝒉 Scan - Display 1324.56 405.81 794 3085 1279

Request - Reception 2237.18 526.17 993 3721 2215.5
Reception - Display 1328.60 205.99 993 2244 1305.0𝑷𝒖𝒍𝒍

Total 3565.62 519.04 2611 4952 3486.5

Table 5: Udev Runtime Overhead of 𝑃𝑢𝑠ℎ and 𝑃𝑢𝑙𝑙

announcement messages in 𝑃𝑢𝑠ℎ and Msgresp-s in 𝑃𝑢𝑙𝑙 are almost
identical format-wise.

7.2 Msgreq DoS Mitigation
As discussed in Section 3.4, the lazy-response approach does not
fully mitigate DoS attacks: once PoolN size reaches |PoolN |Max, Idev
composes and signs Msgresp without waiting for TGen to elapse.
Thus, if it is subject to a high volume of incoming Msgreq-s, Idev
can be essentially choked.

Intuitively, public key-based signing can be replaced with highly
efficient symmetric MACs. However, this would require the exis-
tence and involvement of a trusted third party (e.g., Mfr) to verify
such MACs for Udev. (Recall that Idev-s and Udev-s have no prior
security context.) When Idev sends Msgresp with an HMAC, Udev
can askMfr, via a secure channel, to verify the HMAC. We consider
this approach undesirable as it involves an additional (and trusted)
third party, which can become a bottleneck and would represent a
highly attractive attack target.

7.3 Localization
Localizing Idev-s can help considerably improve user awareness and
IoT device transparency. Although PAISA and DB-PAISA discover
nearby devices, none of them truly and reliably localize them.

Indoor localization using WiFi or Bluetooth poses a challenge.
Localization typically relies on signal strength (e.g., RSSI), timing in-
formation (e.g., time-of-flight, time-of-arrival, and round-trip time),
or directional information (e.g., angle-of-arrival). Signal strength-
based localization is relatively imprecise and vulnerable to spoofing
attacks [17, 58, 102]. Meanwhile, timing-based localization is vul-
nerable to distance enlargement attacks, whereby the device falsely
claims to be farther than it really is [91].

High-accuracy localization relies on external infrastructure or
multiple antennas to triangulate location. Recently, Bluetooth 5.1
[20] introduced a new feature called Direction Finding, which sup-
ports highly accurate localization. This requires devices to have
multiple antennas to triangulate the locations of other devices. The
emerging Ultra-Wideband (UWB) technology [4] is promising for
indoor localization due to its high precision and resistance to inter-
ference. Nonetheless, these advanced localization technologies are
not yet widely available on commodity IoT devices.

7.4 TZ-M Alternatives
DB-PAISA relies on TZ-M to provide guaranteed execution. It can
also be deployed on devices with a Root-of-Trust (RoT) that sup-
ports a secure timer, secure network peripherals, secure storage,
and task prioritization. As one of the examples of low-end, GAROTA

[7], an active RoT solution for small embedded devices, supports
a secure timer, UART, and GPIO. It customizes hardware to offer
these security features. Alternatively, RISC-V devices can execute
DB-PAISA using MultiZone [54]. It supports Physical Memory Pro-
tection (PMP) to isolate secure execution from non-secure tasks.
In addition, I/O PMP (IOPMP) allows configuring peripherals as
secure.

7.5 False Sense of Privacy with Large TGen

Fast response time of Msgresp through small TGen is relevant to
users who linger long enough to receive Idev Msgresp-s. Users who
run, walk, or cycle by Idev’s location (i.e., move out of Idev’s WiFi/BT
broadcast range too quickly) may miss Idev Msgresp-s. We expect
privacy-concerned users to remain in a given location long enough
to receiveMsgresp-s; TGen should be configured by manufacturers
to be at most a few seconds to retain users’ attention.

8 Related Work
Device discovery: In addition to recent work described in Sec-
tion 1.1, some research [31, 72, 78] introduces a registration-based
approach to enhance the transparency of device presence and capa-
bilities. The technique provides a scalable registry-based privacy
infrastructure, where IoT device owners publish information about
their IoT devices and their capabilities in online registries acces-
sible to other users. This setup assists users in identifying nearby
IoT resources and selectively informs users about the data privacy
practices of these resources. Furthermore, IoT-PPA [31] facilitates
the discovery of user-configurable settings for IoT resources (e.g.,
opt-in, opt-out, data erasure), enabling privacy assistants to help
users align their IoT experience with their privacy preferences.
Hidden IoT device detection: There is also a large body of re-
search focused on discovering hidden devices through either emit-
ting/measuring signals with specialized hardware or analyzing
network traffic.

[52, 70, 81, 83, 93] employ specialized hardware to detect hidden
IoT devices using various technologies, including NLJD sensors
[81], millimeter waves [70], software-defined radio (SDR) signals
[52], and time-of-flight sensor data [83]. While these methods are
effective in detecting the presence of IoT devices, they are incapable
of identifying them. Moreover, this technique requires users to
possess specialized tools to discover IoT devices.

Network traffic analysis involves examining patterns and packets
to deduce the presence of devices. Prior research used this approach
to identify devices [77, 88], detect active sharing of sensed informa-
tion [53], and localize devices [88]. In particular, [90] achieves these
objectives by establishing causality between patterns in observable
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wireless traffic. However, network analysis is less effective when
IoT devices communicate infrequently. Also, malicious Adv can
evade detection by not communicating when users are detected
nearby or manipulating its network traffic [56].
IoT privacy: Another line of IoT privacy research involves suggest-
ing privacy labels designed for IoT devices that inform users about
security and privacy concerns. This entails understanding user
concerns, incorporating expert recommendations, and offering the
privacy labels on devices to aid purchasing decisions [43, 49]. An-
other related research direction explored users’ perceptions of risk
and their willingness to pay for security/privacy features [44, 45].

Automated privacy assistants and consent platforms [27, 55, 64,
71, 103] have been proposed to assist users in managing privacy
settings for IoT devices that they encounter, especially, in scenarios
where the volume of notifications might overwhelm users.

9 Conclusion
This work presents DB-PAISA, a novel approach to enhance pri-
vacy and security in IoT ecosystems through a 𝑃𝑢𝑙𝑙-based discovery
mechanism. Unlike previous 𝑃𝑢𝑠ℎ-based models, DB-PAISA mini-
mizes unnecessary network traffic and interference with device op-
erations by enabling IoT devices to respond to explicit user requests.
Our implementation and evaluation demonstrate DB-PAISA’s prac-
ticality and efficiency, comparing runtime overheads and energy
consumption with the 𝑃𝑢𝑠ℎ model.

Acknowledgments
We thank PETS 2025 reviewers for their constructive feedback. This
work was supported in part by funding from NSF Award SATC-
1956393, NSA Awards H98230-20-1-0345 and H98230-22-1-0308, as
well as a DARPA subcontract from Peraton Labs.

References
[1] Ramia Babiker Mohammed Abdelrahman, Amin Babiker A Mustafa, and

Ashraf A Osman. 2015. A Comparison between IEEE 802.11 a, b, g, n and
ac Standards. IOSR Journal of Computer Engineering (IOSR-JEC) 17, 5 (2015),
26–29.

[2] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow
Attestation for Embedded Systems Software. In Proceedings of the 2016 ACM
CCS. ACM, 743–754.

[3] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Mi-
ettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac.
2020. Peek-a-boo: i see your smart home activities, even encrypted!. In Proceed-
ings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (Linz, Austria) (WiSec ’20). Association for Computing Machinery,
New York, NY, USA, 207–218. https://doi.org/10.1145/3395351.3399421

[4] G Roberto Aiello and Gerald D Rogerson. 2003. Ultra-wideband wireless systems.
IEEE microwave magazine 4, 2 (2003), 36–47.

[5] Airbnb. 2024. Airbnb update their policy on security cameras. https://
news.airbnb.com/an-update-on-our-policy-on-security-cameras/.

[6] Rubayyi Alghamdi and Martine Bellaïche. 2023. A cascaded federated deep
learning based framework for detecting wormhole attacks in IoT networks.
Comput. Secur. 125 (2023), 103014.

[7] Esmerald Aliaj, Ivan De Oliveira Nunes, and Gene Tsudik. 2022. {GAROTA}:
generalized active {Root-Of-Trust} architecture (for tiny embedded devices).
In 31st USENIX Security Symposium (USENIX Security 22). 2243–2260.

[8] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In 2019 IEEE Symposium
on Security and Privacy (SP). 1362–1380. https://doi.org/10.1109/SP.2019.00013

[9] Moreno Ambrosin, Mauro Conti, Riccardo Lazzeretti, Md Masoom Rabbani,
and Silvio Ranise. 2020. Collective remote attestation at the Internet of Things
scale: State-of-the-art and future challenges. IEEE Communications Surveys &
Tutorials 22, 4 (2020), 2447–2461.

[10] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, ZaneMa, JoshuaMason, DamianMenscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding
the Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, Vancouver, BC, 1093–1110. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/antonakakis

[11] Jacob Arellano. 2019. Bluetooth vs. Wi-Fi for IoT: Which is Bet-
ter? https://www.verytechnology.com/iot-insights/bluetooth-vs-wifi-for-iot-
which-is-better.

[12] ARM. 2021. ARM Confidential Compute Aarchitecture (ARM CCS).
https://www.arm.com/architecture/security-features/arm-confidential-
compute-architecture.

[13] Arm Ltd. 2009. ARM TrustZone for Cortex-M. https://www.arm.com/
technologies/trustzone-for-cortex-m.

[14] Arm Ltd. 2017. Cortex-M Prototyping System.
https://developer.arm.com/documentation/100112/0100.

[15] Arm Ltd. 2018. Arm TrustZone. https://www.arm.com/products/security-on-
arm/trustzone.

[16] Anas M Atieh, Hazem Kaylani, Yousef Al-Abdallat, Abeer Qaderi, Luma Ghoul,
Lina Jaradat, and Iman Hdairis. 2016. Performance improvement of inventory
management system processes by an automatedwarehousemanagement system.
Procedia Cirp (2016).

[17] Kevin Bauer, Damon McCoy, Eric Anderson, Markus Breitenbach, Greg Grudic,
Dirk Grunwald, and Douglas Sicker. 2009. The Directional Attack on Wireless
Localization -or- How to Spoof Your Location with a Tin Can. In GLOBECOM
2009 - 2009 IEEE Global Telecommunications Conference. 1–6. https://doi.org/
10.1109/GLOCOM.2009.5425737

[18] Bitly. 2008. Bitly. https://bitly.com/.
[19] Bluetooth Special Interest Group. 2016. Bluetooth 5.0 Specification. https:

//www.bluetooth.com/specifications/specs/core-specification-5-0.
[20] Bluetooth Special Interest Group. 2019. Bluetooth 5.1 Specification. https:

//www.bluetooth.com/specifications/specs/core-specification-5-1.
[21] Mirai Botnet. 2016. Website. https://www.incapsula.com/blog/malware-

analysis-mirai-ddos-botnet.html.
[22] Agnès Brelurut, David Gérault, and Pascal Lafourcade. 2015. Survey of Distance

Bounding Protocols and Threats. In Foundations and Practice of Security - 8th
International Symposium, FPS.

[23] Ismail Butun, Patrik Österberg, and Houbing Song. 2019. Security of the Internet
of Things: Vulnerabilities, attacks, and countermeasures. IEEE Communications
Surveys & Tutorials (2019).

[24] Adam Caulfield, Norrathep Rattanavipanon, and Ivan De Oliveira Nunes. 2023.
{ACFA}: Secure Runtime Auditing & Guaranteed Device Healing via Active
Control Flow Attestation. In 32nd USENIX Security Symposium (USENIX Security
23).

[25] Adam Caulfield, Norrathep Rattanavipanon, and Ivan De Oliveira Nunes. 2023.
{ACFA}: Secure Runtime Auditing & Guaranteed Device Healing via Active
Control Flow Attestation. In 32nd USENIX Security Symposium (USENIX Security
23).

[26] Mario Collotta, Giovanni Pau, Timothy Talty, and Ozan K Tonguz. 2018. Blue-
tooth 5: A concrete step forward toward the IoT. IEEE Communications Magazine
56, 7 (2018), 125–131.

[27] Jessica Colnago, Yuanyuan Feng, Tharangini Palanivel, Sarah Pearman, Megan
Ung, Alessandro Acquisti, Lorrie Faith Cranor, and Norman Sadeh. 2020. Inform-
ing the design of a personalized privacy assistant for the internet of things. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[28] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX Security
Symposium (USENIX Security 16).

[29] NIST Cybersecurity. 2019. Submission Requirements and Evaluation
Criteria for the Lightweight Cryptography Standardization Process.
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/
documents/final-lwc-submission-requirements-august2018.pdf.

[30] NIST Cybersecurity. 2022. Recommended Criteria for Cybersecurity Labeling for
Consumer Internet of Things (IoT) Products. https://nvlpubs.nist.gov/nistpubs/
CSWP/NIST.CSWP.02042022-2.pdf.

[31] Anupam Das, Martin Degeling, Daniel Smullen, and Norman Sadeh. 2018. Per-
sonalized privacy assistants for the internet of things: Providing users with
notice and choice. IEEE Pervasive Computing 17, 3 (2018), 35–46.

[32] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. 2014. Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation. In Design Automation Conference.

[33] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. 2019. VRASED: A Verified Hardware/Software Co-
Design for Remote Attestation. In USENIX Security.

446

https://doi.org/10.1145/3395351.3399421
https://news.airbnb.com/an-update-on-our-policy-on-security-cameras/
https://news.airbnb.com/an-update-on-our-policy-on-security-cameras/
https://doi.org/10.1109/SP.2019.00013
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.verytechnology.com/iot-insights/bluetooth-vs-wifi-for-iot-which-is-better
https://www.verytechnology.com/iot-insights/bluetooth-vs-wifi-for-iot-which-is-better
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://doi.org/10.1109/GLOCOM.2009.5425737
https://doi.org/10.1109/GLOCOM.2009.5425737
https://bitly.com/
https://www.bluetooth.com/specifications/specs/core-specification-5-0
https://www.bluetooth.com/specifications/specs/core-specification-5-0
https://www.bluetooth.com/specifications/specs/core-specification-5-1
https://www.bluetooth.com/specifications/specs/core-specification-5-1
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.02042022-2.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.02042022-2.pdf


DB-PAISA Proceedings on Privacy Enhancing Technologies 2025(2)

[34] Ivan De Oliveira Nunes, Seoyeon Hwang, Sashidhar Jakkamsetti, and Gene
Tsudik. 2022. Privacy-from-Birth: Protecting Sensed Data from Malicious Sen-
sors with VERSA. In 43rd IEEE Symposium on Security and Privacy, SP 2022.

[35] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Youngil Kim, and Gene Tsudik.
2022. CASU: Compromise Avoidance via Secure Update for Low-End Embedded
Systems. In 41st IEEE/ACM International Conference on Computer-Aided Design
(ICCAD).

[36] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. 2021. Tiny-
CFA: Minimalistic Control-Flow Attestation Using Verified Proofs of Execution.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[37] Departmemt for Digital, Culture, Media, and Sport, The UK. 2018. Code of
Practice for Consumer IoT Security. https://assets.publishing.service.gov.uk/
government/uploads/system/uploads/attachment_data/file/971440/
Code_of_Practice_for_Consumer_IoT_Security_October_2018_V2.pdf.

[38] Department of Home Affairs, Australia. 2020. Securing the Internet of Things
for Consumers. https://www.homeaffairs.gov.au/reports-and-pubs/files/code-
of-practice.pdf.

[39] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi. 2018.
LiteHAX: lightweight hardware-assisted attestation of program execution. In
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[40] D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE
Transactions on Information Theory (1983).

[41] Ashutosh Dhar Dwivedi, Gautam Srivastava, Shalini Dhar, and Rajani Singh.
2019. A decentralized privacy-preserving healthcare blockchain for IoT. Sensors
(2019).

[42] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.
SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root of
Trust. In NDSS.

[43] Pardis Emami-Naeini, Yuvraj Agarwal, Lorrie Faith Cranor, and Hanan Hibshi.
2020. Ask the Experts: What Should Be on an IoT Privacy and Security Label?.
In 2020 IEEE Symposium on Security and Privacy (SP). 447–464. https://doi.org/
10.1109/SP40000.2020.00043

[44] Pardis Emami-Naeini, Janarth Dheenadhayalan, Yuvraj Agarwal, and Lor-
rie Faith Cranor. 2021. Which privacy and security attributes most impact
consumers’ risk perception and willingness to purchase IoT devices?. In 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 519–536.

[45] Pardis Emami-Naeini, Janarth Dheenadhayalan, Yuvraj Agarwal, and Lor-
rie Faith Cranor. 2023. Are Consumers Willing to Pay for Security and Privacy
of IoT Devices?. In In Proceedings of the 32nd USENIX Security Symposium.

[46] Ericsson. 2024. Realizing smart manufacturing through IoT. https://
www.ericsson.com/en/reports-and-papers/mobility-report/articles/realizing-
smart-manufact-iot.

[47] Espressif Systems. 2016. ESP32-C3-DevKitC-02. https://docs.espressif .com/
projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-
02.html.

[48] Espressif Systems. 2024. ESP32 Series Datasheet. https://www.espressif .com/
sites/default/files/documentation/esp32_datasheet_en.pdf.

[49] Yuanyuan Feng, Yaxing Yao, and Norman Sadeh. 2021. A design space for
privacy choices: Towards meaningful privacy control in the internet of things.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–16.

[50] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. {FlowFence}: Practical data protection for
emerging {IoT} application frameworks. In 25th USENIX security symposium
(USENIX Security 16).

[51] Google. 2021. Google Pixel 6 Pro Specifications. https://www.gsmarena.com/
google_pixel_6_pro-10918.php.

[52] Stefan Gvozdenovic, Johannes K Becker, John Mikulskis, and David Starobinski.
2022. Multi-Protocol IoT Network Reconnaissance. In 2022 IEEE Conference on
Communications and Network Security (CNS). 118–126.

[53] Jeongyoon Heo, Sangwon Gil, Youngman Jung, Jinmok Kim, Donguk Kim,
Woojin Park, Yongdae Kim, Kang G. Shin, and Choong-Hoon Lee. 2022. Are
There Wireless Hidden Cameras Spying on Me?. In Annual Computer Security
Applications Conference, ACSAC 2022, Austin, TX, USA, December 5-9, 2022. ACM,
714–726.

[54] HexFive. 2019. HexFive Multizone Security. https://hex-five.com/.
[55] Jason I Hong and James A Landay. 2004. An architecture for privacy-sensitive

ubiquitous computing. In Proceedings of the 2nd international conference on
Mobile systems, applications, and services. 177–189.

[56] Tao Hou, Tao Wang, Zhuo Lu, Yao Liu, and Yalin Sagduyu. 2021. IoTGAN: GAN
Powered Camouflage Against Machine Learning Based IoT Device Identification.
In 2021 IEEE International Symposium on Dynamic Spectrum Access Networks
(DySPAN). 280–287. https://doi.org/10.1109/DySPAN53946.2021.9677264

[57] Yih-Chun Hu, A. Perrig, and D.B. Johnson. 2006. Wormhole attacks in wireless
networks. IEEE Journal on Selected Areas in Communications (2006).

[58] Todd Humphreys, B.M. Ledvina, Mark Psiaki, B.W. O’Hanlon, and Kintner Jr.
2008. Assessing the spoofing threat: Development of a portable GPS civilian
spoofer," in. Proc. of the ION GNSS international technical meeting of the satellite

division 55 (01 2008).
[59] IEEE Standard Association. 2009. IEEE 802.11n-2009 Standard. https://

standards.ieee.org/ieee/802.11n/3952/.
[60] Inman. 2019. More than 1 in 10 airbnb guests have found hidden cameras:

Survey. https://www.inman.com/2019/06/07/more-than-1-in-10-airbnb-guest-
have-found-cameras-in-rentals-survey.

[61] Intel. 2015. Intel Software Guard Extensions (Intel SGX). https://
software.intel.com/en-us/sgx.

[62] Shalabh Jain, Tuan Ta, and John S. Baras. 2012. Wormhole detection using
channel characteristics. In Proceedings of IEEE International Conference on Com-
munications, ICC 2012, Ottawa, ON, Canada, June 10-15, 2012. IEEE, 6699–6704.

[63] Sashidhar Jakkamsetti, Youngil Kim, andGene Tsudik. 2023. Caveat (IoT) Emptor:
Towards Transparency of IoT Device Presence. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 1347–1361.

[64] Hongxia Jin, Gokay Saldamli, Richard Chow, and Bart P. Knijnenburg. 2013.
Recommendations-based location privacy control. In 2013 IEEE International
Conference on Pervasive Computing and Communications Workshops.

[65] Pallavi Kaliyar, Wafa Ben Jaballah, Mauro Conti, and Chhagan Lal. 2020. LiDL:
Localization with early detection of sybil and wormhole attacks in IoT Networks.
Comput. Secur. 94 (2020), 101849.

[66] Berkay Kaplan, Israel J Lopez-Toledo, Carl Gunter, and Jingyu Qian. 2023. A
Tagging Solution to Discover IoT Devices in Apartments. In Proceedings of the
39th Annual Computer Security Applications Conference.

[67] Youngil Kim, Isita Bagayatkar, and Gene Tsudik. 2024. DB-PAISA Source Code.
https://github.com/sprout-uci/DB-PAISA.

[68] Khairy AH Kobbacy and Yansong Liang. 1999. Towards the development of an
intelligent inventory management system. Integrated Manufacturing Systems
(1999).

[69] California Legislature. 2020. California Consumer Privacy Act of 2018 (as
amended by the California Privacy Rights Act of 2020). https://www.oag.ca.gov/
privacy/ccpa.

[70] Zhengxiong Li, Zhuolin Yang, Chen Song, Changzhi Li, Zhengyu Peng, and
Wenyao Xu. 2018. E-Eye: Hidden Electronics Recognition through mmWave
Nonlinear Effects. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, Gowri Sankar Ramachandran and Bhaskar Krishna-
machari (Eds.).

[71] Xuying Meng, Suhang Wang, Kai Shu, Jundong Li, Bo Chen, Huan Liu, and
Yujun Zhang. 2019. Towards privacy preserving social recommendation under
personalized privacy settings. World Wide Web 22 (2019), 2853–2881.

[72] Chenglin Miao, Wenjun Jiang, Lu Su, Yaliang Li, Suxin Guo, Zhan Qin, Houping
Xiao, Jing Gao, and Kui Ren. 2015. Cloud-enabled privacy-preserving truth
discovery in crowd sensing systems. In Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems. 183–196.

[73] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered
passenger vehicle. Black Hat USA (2015).

[74] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter Maene,
Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller, and Felix C.
Freiling. 2017. Sancus 2.0: A Low-Cost Security Architecture for IoT Devices.
ACM Trans. Priv. Secur. (2017).

[75] Nordic Semiconductor. 2012. nRF8000 Series. https://www.nordicsemi.com/
Products/nRF8000-series/.

[76] NXP Semiconductors. 2020. NXP LPC55S69-EVK. https://www.nxp.com/
design/software/development-software/mcuxpresso-software-and-tools-
/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK.

[77] Jorge Ortiz, Catherine H. Crawford, and Franck Le. 2019. DeviceMien: network
device behavior modeling for identifying unknown IoT devices. In Proceedings
of the International Conference on Internet of Things Design and Implementation,
IoTDI 2019, Montreal, QC, Canada, April 15-18, 2019. ACM.

[78] Primal Pappachan, Martin Degeling, Roberto Yus, Anupam Das, Sruti Bha-
gavatula, William Melicher, Pardis Emami Naeini, Shikun Zhang, Lujo Bauer,
Alfred Kobsa, Sharad Mehrotra, Norman Sadeh, and Nalini Venkatasubramanian.
2017. Towards Privacy-Aware Smart Buildings: Capturing, Communicating,
and Enforcing Privacy Policies and Preferences. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW). 193–198.
https://doi.org/10.1109/ICDCSW.2017.52

[79] European Parliament and Council. 2016. General Data Protection Regulation,
Regulation (EU) 2016/679 (as amended). https://eur-lex.europa.eu/eli/reg/2016/
679/2016-05-04.

[80] Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. 2004. Tamper
resistance mechanisms for secure embedded systems. In 17th International
Conference on VLSI Design. Proceedings. 605–611. https://doi.org/10.1109/
ICVD.2004.1260985

[81] REI. 2015. Orion HX Deluxe Non-Linear Junction Detector. https://reiusa.net/
nljd/orion-hx-deluxe-nljd/.

[82] RISC-V International. 2015. RISC-V. https://riscv.org/about/.
[83] Sriram Sami, Sean Rui Xiang Tan, Bangjie Sun, and Jun Han. 2021. LAPD:

Hidden Spy Camera Detection Using Smartphone Time-of-Flight Sensors. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems

447

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/971440/Code_of_Practice_for_Consumer_IoT_Security_October_2018_V2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/971440/Code_of_Practice_for_Consumer_IoT_Security_October_2018_V2.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/971440/Code_of_Practice_for_Consumer_IoT_Security_October_2018_V2.pdf
https://www.homeaffairs.gov.au/reports-and-pubs/files/code-of-practice.pdf
https://www.homeaffairs.gov.au/reports-and-pubs/files/code-of-practice.pdf
https://doi.org/10.1109/SP40000.2020.00043
https://doi.org/10.1109/SP40000.2020.00043
https://www.ericsson.com/en/reports-and-papers/mobility-report/articles/realizing-smart-manufact-iot
https://www.ericsson.com/en/reports-and-papers/mobility-report/articles/realizing-smart-manufact-iot
https://www.ericsson.com/en/reports-and-papers/mobility-report/articles/realizing-smart-manufact-iot
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-02.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-02.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-02.html
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.gsmarena.com/google_pixel_6_pro-10918.php
https://www.gsmarena.com/google_pixel_6_pro-10918.php
https://hex-five.com/
https://doi.org/10.1109/DySPAN53946.2021.9677264
https://standards.ieee.org/ieee/802.11n/3952/
https://standards.ieee.org/ieee/802.11n/3952/
https://www.inman.com/2019/06/07/more-than-1-in-10-airbnb-guest-have-found-cameras-in-rentals-survey
https://www.inman.com/2019/06/07/more-than-1-in-10-airbnb-guest-have-found-cameras-in-rentals-survey
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://github.com/sprout-uci/DB-PAISA
https://www.oag.ca.gov/privacy/ccpa
https://www.oag.ca.gov/privacy/ccpa
https://www.nordicsemi.com/Products/nRF8000-series/
https://www.nordicsemi.com/Products/nRF8000-series/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/lpcxpresso55s69-development-board:LPC55S69-EVK
https://doi.org/10.1109/ICDCSW.2017.52
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://doi.org/10.1109/ICVD.2004.1260985
https://doi.org/10.1109/ICVD.2004.1260985
https://reiusa.net/nljd/orion-hx-deluxe-nljd/
https://reiusa.net/nljd/orion-hx-deluxe-nljd/


Proceedings on Privacy Enhancing Technologies 2025(2) Isita Bagayatkar, Youngil Kim, & Gene Tsudik

(Coimbra, Portugal) (SenSys ’21). Association for Computing Machinery, New
York, NY, USA, 288–301. https://doi.org/10.1145/3485730.3485941

[84] Christoph L Schuba, Ivan V Krsul, Markus G Kuhn, Eugene H Spafford, Au-
robindo Sundaram, and Diego Zamboni. 1997. Analysis of a denial of service
attack on TCP. In Proceedings. 1997 IEEE Symposium on Security and Privacy
(Cat. No. 97CB36097). IEEE, 208–223.

[85] Arindam Sengupta, Feng Jin, Renyuan Zhang, and Siyang Cao. 2020. mm-Pose:
Real-time human skeletal posture estimation using mmWave radars and CNNs.
IEEE Sensors Journal 20, 17 (2020), 10032–10044.

[86] Amazon Web Services. 2017. FreeRTOS. https://www.freertos.org.
[87] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,

and Pradeep Khosla. 2005. Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems. ACM SIGOPS Operating
Systems Review (December 2005).

[88] Rahul Anand Sharma, Elahe Soltanaghaei, Anthony Rowe, and Vyas Sekar. 2022.
Lumos: Identifying and Localizing Diverse Hidden IoT Devices in an Unfamiliar
Environment. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association.

[89] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu, Trent Jaeger, and A. Sel-
cuk Uluagac. 2021. A Survey on Sensor-Based Threats and Attacks to Smart
Devices and Applications. IEEE Communications Surveys & Tutorials 23, 2 (2021),
1125–1159. https://doi.org/10.1109/COMST.2021.3064507

[90] Akash Deep Singh, Luis Garcia, Joseph Noor, and Mani Srivastava. 2021. I
Always Feel Like Somebody’s Sensing Me! A Framework to Detect, Identify, and
Localize Clandestine Wireless Sensors. In 30th USENIX Security Symposium.

[91] Mridula Singh, Patrick Leu, AbdelRahman Abdou, and Srdjan Capkun. 2019.
UWB-ED: Distance Enlargement Attack Detection in Ultra-Wideband. In
28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
Santa Clara, CA, 73–88. https://www.usenix.org/conference/usenixsecurity19/
presentation/singh

[92] Tianyi Song, Ruinian Li, BoMei, Jiguo Yu, Xiaoshuang Xing, and Xiuzhen Cheng.
2017. A privacy preserving communication protocol for IoT applications in
smart homes. IEEE Internet of Things Journal (2017).

[93] Spygadgets. 2015. Bug detector and hidden camera finder. https://
www.spygadgets.com/collections/counter-surveillance.

[94] KENS 5 Staff and Zack Briggs. 2023. Landlord accused of recording female ten-
ant with hidden camera. https://www.kens5.com/article/news/local/landlord-
accused-of-recording-female-tenant-with-hidden-camera/273-ad6cd4ab-
9f6c-4f64-975a-0a868c92b7b1.

[95] Statista. 2022. Number of Internet of Things (IoT) connected devices worldwide
from 2019 to 2021, with forecasts from 2022 to 2030. https://www.statista.com/
statistics/1183457/iot-connected-devices-worldwide/.

[96] Statista. 2024. Industrial IoT. https://www.statista.com/outlook/tmo/internet-
of-things/industrial-iot/worldwide/.

[97] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. 2020. OAT: Attesting
operation integrity of embedded devices. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 1433–1449.

[98] Hailun Tan, Wen Hu, and Sanjay Jha. 2011. A TPM-enabled remote attestation
protocol (TRAP) in wireless sensor networks. In Proceedings of the 6th ACM
workshop on Performance monitoring and measurement of heterogeneous wireless
and wired networks. ACM, 9–16.

[99] B Sai Subrahmanya Tejesh and SJAEJ Neeraja. 2018. Warehouse inventory man-
agement system using IoT and open source framework. Alexandria engineering
journal (2018).

[100] Tim Newcomb. 2017. 7 of the World’s Largest Manufacturing Plants.
https://www.popularmechanics.com/technology/infrastructure/g2904/7-of-
the-worlds-largest-manufacturing-plants/.

[101] TinyURL LLC. 2002. TinyURL. https://tinyurl.com/app.
[102] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, Christina Pöpper, and Srdjan

Čapkun. 2009. Attacks on public WLAN-based positioning systems. In Pro-
ceedings of the 7th International Conference on Mobile Systems, Applications, and
Services (Kraków, Poland) (MobiSys ’09). Association for Computing Machinery,
New York, NY, USA, 29–40. https://doi.org/10.1145/1555816.1555820

[103] Christine Utz, Matthias Michels, Martin Degeling, Ninja Marnau, and Ben Stock.
2023. Comparing large-scale privacy and security notifications. Proceedings on
Privacy Enhancing Technologies (2023).

[104] Jaikumar Vijayan. 2010. Stuxnet renews power grid security con-
cerns. https://www.computerworld.com/article/2754164/stuxnet-renews-
power-grid-security-concerns.html.

[105] Meng Xu,Manuel Huber, Zhichuang Sun, Paul England,Marcus Peinado, Sangho
Lee, Andrey Marochko, Dennis Mattoon, Rob Spiger, and Stefan Thom. 2019.
Dominance as a New Trusted Computing Primitive for the Internet of Things.
In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. IEEE, 1415–1430.

[106] Yaxing Yao, Justin Reed Basdeo, Smirity Kaushik, and Yang Wang. 2019. De-
fending my castle: A co-design study of privacy mechanisms for smart homes.
In Proceedings of the 2019 chi conference on human factors in computing systems.

[107] Bassam Zahran, Adamu Hussaini, and Aisha Ali-Gombe. 2021. IIoT-ARAS:
IIoT/ICS Automated risk assessment system for prediction and prevention. In
Proceedings of the Eleventh ACM Conference on Data and Application Security
and Privacy. 305–307.

[108] Andreas Zankl, Hermann Seuschek, Gorka Irazoqui, and Berk Gulmezoglu.
2021. Side-channel attacks in the Internet of Things: threats and challenges. In
Research Anthology on Artificial Intelligence Applications in Security. IGI Global,
2058–2090.

[109] Eric Zeng, Shrirang Mare, and Franziska Roesner. 2017. End User Security
and Privacy Concerns with Smart Homes. In Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017). USENIX Association.

448

https://doi.org/10.1145/3485730.3485941
https://www.freertos.org
https://doi.org/10.1109/COMST.2021.3064507
https://www.usenix.org/conference/usenixsecurity19/presentation/singh
https://www.usenix.org/conference/usenixsecurity19/presentation/singh
https://www.spygadgets.com/collections/counter-surveillance
https://www.spygadgets.com/collections/counter-surveillance
https://www.kens5.com/article/news/local/landlord-accused-of-recording-female-tenant-with-hidden-camera/273-ad6cd4ab-9f6c-4f64-975a-0a868c92b7b1
https://www.kens5.com/article/news/local/landlord-accused-of-recording-female-tenant-with-hidden-camera/273-ad6cd4ab-9f6c-4f64-975a-0a868c92b7b1
https://www.kens5.com/article/news/local/landlord-accused-of-recording-female-tenant-with-hidden-camera/273-ad6cd4ab-9f6c-4f64-975a-0a868c92b7b1
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/outlook/tmo/internet-of-things/industrial-iot/worldwide/
https://www.statista.com/outlook/tmo/internet-of-things/industrial-iot/worldwide/
https://www.popularmechanics.com/technology/infrastructure/g2904/7-of-the-worlds-largest-manufacturing-plants/
https://www.popularmechanics.com/technology/infrastructure/g2904/7-of-the-worlds-largest-manufacturing-plants/
https://tinyurl.com/app
https://doi.org/10.1145/1555816.1555820
https://www.computerworld.com/article/2754164/stuxnet-renews-power-grid-security-concerns.html
https://www.computerworld.com/article/2754164/stuxnet-renews-power-grid-security-concerns.html


DB-PAISA Proceedings on Privacy Enhancing Technologies 2025(2)

Figure 9: IM-PAISA Overview

Figure 10: IM-PAISA State Machine on Idev

A DB-PAISA Variant – IM-PAISA
IM-PAISA is a variant ofDB-PAISA, designed for inventory manage-
ment in large IIoT settings. IM-PAISA has two components: Idev and
O𝑑𝑒𝑣– the owner’s device authorized to solicit information from a
multitude of Idev-s. As shown in Figure 9, IM-PAISA also has two
phases: Registration and Runtime.
Registration phase occurs prior to device deployment. Each Idev
is securely provisioned with (1) unique secret key (K) shared with
O𝑑𝑒𝑣 , (2) its own device information, and (3) O𝑑𝑒𝑣 ’s public key
(𝑝𝑘owner).
Runtime phase has three steps: Request, Response, and Reception.
There are three significant differences from DB-PAISA: (1) Msgreq
is authenticated with O𝑑𝑒𝑣 ’s private key (𝑠𝑘owner), (2) Msgresp is
encrypted with K , and (3) Att takes place upon everyMsgreq.

A.1 IM-PAISA Adversary model
DoS attacks on Idev-s: Similar to DB-PAISA, malware Adv can
try to deplete Idev resources via software vulnerabilities. However,
DoS attacks from a network Adv are more challenging to address
because of costly verification of O𝑑𝑒𝑣 ’s signatures inMsgreq-s.
Replay attacks: A network-based Adv can replay arbitrary mes-
sages to both O𝑑𝑒𝑣 and Idev-s.
Eavesdropping: A network-based Adv can eavesdrop on all IM-
PAISA protocol messages to learn individual Idev information and
the number and types of deployed Idev-s. Adv can also attempt to
link occurrences of one or more Idev-s.

A.2 IM-PAISA Requirements
System requirements are the same as in DB-PAISA, except that
scaling to multiple users is no longer a concern in IM-PAISA. Al-
though IM-PAISA operates in settings with large numbers of Idev-s,
only an authorized O𝑑𝑒𝑣 can solicit information from them.
Security requirements (beyond those of DB-PAISA):

• Request authentication: Idev must validate eachMsgreq.
• Response confidentiality:Msgresp must not leak information
about Idev.

• Unlinkability: Given any two validMsgresp-s, the probability
of determining if they were produced by the same Idev should
be negligibly close to 50%, for any party except O𝑑𝑒𝑣 .

A.3 IM-PAISA Protocol Details
In this section, we only describe the aspects of IM-PAISA that differ
from DB-PAISA.

A.3.1 Registration. 𝑝𝑘owner, K , and some metadata are securely
installed for each Idev. However, information, that is not deployment-
dependent (e.g., 𝑆𝑊IM−PAISA, 𝐻𝑆𝑊𝑑𝑒𝑣

, and peripheral configuration),
is assumed to be securely provisioned earlier by Mfr. Note that,
since the owner is aware of all identities and types of its Idev-s, there
is no longer any need for device information to be provisioned on
Idev or maintained byMfr. As a result,Mfr does not play any active
role in IM-PAISA. The TCB of IM-PAISA is identical to that of
DB-PAISA.

A.3.2 Runtime. Similar toDB-PAISA, the IM-PAISA Runtime phase
has three steps: Request, Response, and Reception.

𝑺𝑾IM−PAISA on Idev: As discussed in Section A.1, DoS attacks
by a network-basedAdv are out-of-scope. Also, scalability is not an
issue since only one O𝑑𝑒𝑣 is assumed. Furthermore, because O𝑑𝑒𝑣 ’s
requests are expected to be much less frequent than Udev’s requests
in DB-PAISA,Att is performed on the fly upon each O𝑑𝑒𝑣 ’s request.

Figure 10 shows four states of Idev:
(a) Wait: The only transition is switching to VerifywhenMsgreq
is received.
(b) Verify: Idev verifies Msgreq with 𝑝𝑘owner. If verification suc-
ceeds, it transitions to Att. Otherwise, it discards Msgreq and re-
turns to Wait.
(c) Att: Idev computes Attresult and transitions to Gen. Note that
Idev need not compute the attestation time or include it in Msgresp
because Att occurs with everyMsgreq.
(d) Gen: Idev encrypts Nowner (O𝑑𝑒𝑣 ’s nonce inMsgreq), device in-
formation, and Attreport with K . It composes Msgresp that contains
an authentication tag. Encryption offersMsgresp confidentiality and
unlinkability.

IM − PAISA app onO𝒅𝒆𝒗 : There are two steps onO𝑑𝑒𝑣 :Request
and Reception.
Request: O𝑑𝑒𝑣 signs Nowner with 𝑠𝑘owner and broadcasts Msgreq,
containing Nowner and the signature (Sigreq). After sending Msgreq,
it starts a scan to receiveMsgresp-s from potential nearby Idev-s.
Reception: Upon receiving Msgresp, O𝑑𝑒𝑣 retrieves the correspond-
ingK in brute-force attempts. After retrievingK , it decryptsMsgresp
with K , and finally, device details are displayed on O𝑑𝑒𝑣 .
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