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Abstract
DNA edit distance (ED) measures the minimum number of single

nucleotide insertions, substitutions, or deletions required to convert

a DNA sequence into another. ED has broad applications in health-

care such as sequence alignment, genome assembly, functional

annotation, and drug discovery. Privacy-preserving computation is

essential in this context to protect sensitive genomic data. Nonethe-

less, the existing secure DNA edit distance solutions lack efficiency

when handling large data sequences or resort to approximations

and fail to accurately compute the metric.

In this work, we introduce SecurED, a protocol that tackles these
limitations, resulting in a significant performance enhancement of

approximately 2− 24× compared to existing methods. Our protocol

computes a secure ED between two genomes, each comprising

1, 000 letters, in just a few seconds. The underlying technique of

our protocol is a novel approach that transforms the established

approximate matching technique (i.e., the Ukkonen algorithm) into

exact matching, exploiting the inherent similarity in human DNA

to achieve cost-effectiveness. Furthermore, we introduce various

optimizations tailored for secure computation in scenarios with a

limited input domain, such as DNA sequences composed solely of

the four nucleotide letters.

Keywords
Applied Cryptography, Dynamic Programming, DNA Matching,

Edit Distance, Genomics, Multiparty Computation

1 Introduction
The rise of genomic sequencing technologies has marked a new

era in biological and healthcare research. The Human Genome

Project [18], completed in the early 2000s, is a milestone of sequenc-

ing technologies to map the entire human genome. This motivates

numerous fields of research and a wide range of applications includ-

ing, personal medical treatments [4, 13], paternity test [8, 12, 38],

cancer and infectious disease research [5, 39], etc. A fundamental

challenge is measuring the similarity of sequences using Hamming

distance, Jaccard similarity, Pearson correlation, and Euclidean dis-

tance. However, among these options, computing edit distance is

often favored for several reasons across many scenarios.
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Edit distance (ED) [30] is given by the minimum number of in-

sertions, deletions, and substitutions to convert one sequence into

another. This metric can be intuitively understood as represent-

ing the number of evolutionary events that may occur between

sequences. The Wagner-Fischer (WF) algorithm [42] is renowned

for its efficacy in solving the edit distance problem using dynamic

programming. This algorithm enables precise calculations of edit

distances with manageable computational overhead and without re-

liance on any public reference. Dynamic programming (DP) [30, 42]

solves complex problems by breaking them down into smaller sub-

problems. For edit distance, each sub-problem involves computing

the edit distance between increasingly larger subsequences of the

original inputs. The WF algorithm fills in a DP table D with each

cell relying on the values of neighboring cells to determine the

minimum edit cost for the transformation at that step.

Table 1: ED from DP.

D - T C G T C
- 0 1 2 3 4 5

A 1 1 2 3 4 5

T 2 1 2 3 3 4

C 3 2 1 2 3 3

G 4 3 2 1 2 3

A 5 4 3 2 2 3

An example is provided

in Table 1 for sequences

𝛼 = ATCGA and 𝛽 = TCGTC.
The DP table D is struc-

tured as a 6 × 6 grid, pro-

gressing from the top-left

to the bottom-right corner.

In this table, each cell D𝑖, 𝑗

represents the edit distance

between the subsequences

𝛼0 . . . 𝛼𝑖 and 𝛽0 . . . 𝛽 𝑗 . The

final entry, D5,5 = 3 (highlighted with a yellow background) indi-

cates that the edit distance between the original inputs 𝛼 and 𝛽 is

3. Additionally, the yellow-highlighted path captures the minimum

steps required for this transformation.

While the WF algorithm provides an efficient solution for ED,

genomic data inherently contain sensitive information with signifi-

cant ethical and legal implications. Traditional DP approaches do

not address the privacy concerns that arise when multiple parties

wish to compute the edit distance of their genome sequences. This

scenario falls within the realm of secure multi-party computation

(MPC), where parties collaboratively compute a function over their

private inputs without revealing any information beyond the result.

Customized MPC protocols include private set intersections and

unions [22, 23, 34] to decision trees, histograms, and heavy hitters

[3, 10, 11, 19, 20, 35, 36], whereas MPC compilers [9, 21, 27, 43]

allow for private computation from high level programs.

In this work, we introduce SecurED, a protocol to enable multiple

parties to compute the secure edit distance of their input sequences

as 𝐸𝐷 (𝛼, 𝛽) while maintaining their privacy. To establish a proto-

col for secure ED computation, a range of generic methods can be
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employed, including garbled circuits and secret-sharing techniques.

Zhu et al.[48] proposed a tailored garbled circuit approach, while

[41] employed a secret-sharing-based approach. We delve into more

details about these approaches in Section 2.1. Additionally, [1, 44]

proposed secure solutions for an approximate edit distance, which

are also discussed in Section 2.2. This work prioritizes exact solu-

tions for ED, particularly due to the necessity of precise results in

DNA-related computations such as parental testing (i.e., ensuring

support for exact ED computation remains a high priority).

Technical Overview.When developing a privacy-preserving ED

solution for genome sequences using dynamic programming (DP),

efficiency relies on two key aspects. Firstly, the performance of

generic MPC methods is closely tied to the efficiency of the under-

lying algorithm in the clear. However, computing the minimum

value of adjacent cells in the DP table is expensive under MPC (as

it requires comparisons), and careful consideration is needed to

convert the cleartext algorithm to a privacy-preserving equivalent.

Although state-of-the-art solutions [14] over clear data outperform

general-purpose ED algorithms, they rely on different structures

of the DP table and reveal the histogram of the DP computation.

This poses significant security concerns when considering privacy-

preserving edit distance solutions. Secondly, genome sequences

possess distinct properties compared to sequences from a general

alphabet, allowing for tailored optimizations with MPC in mind.

Thus, to make SecurED practical, we begin by tailoring the DP

algorithm specifically for genome sequences. This customization

is grounded in the observation that two arbitrary DNA sequences

exhibit high similarity (with over 99.5% nucleotides being identi-

cal [18]). Consequently, when computing 𝐸𝐷 (𝛼, 𝛽) in the DP table,

likely, the minimum values leading to the optimal solution lie close

to the diagonal. Thus, we can optimize this scenario by employing

Ukkonen’s algorithm [40], which computes only the entries around

the diagonal, thereby reducing computational load.

Traditionally, Ukkonen’s algorithm provides an approximation

rather than an exact result. However, in the context of DNA se-

quences, achieving precise computations hinges on setting an ap-

propriate threshold. This raises an intriguing question: how can
we determine the suitable threshold T for Ukkonen’s algorithm to
compute the edit distance accurately? This work introduces a novel

method that effectively identifies this threshold under MPC. To

the best of our knowledge, SecurED marks the first instance of

combining the Wagner-Fischer and Ukkonen algorithms for precise

computation. Beginning with a loose upper bound for the threshold

such as T = 0.1max (𝑚,𝑛) (where𝑚 and 𝑛 are the sizes of the two

sequences), we propose an efficient algorithm to determine a tighter

threshold T′ suitable for application to Ukkonen’s algorithm.
1
Us-

ing this tighter threshold T′, we identify the path in the DP table

that closely approaches optimal (e.g., the yellow path in Table 1)

and make the computation of edit distance significantly more light-

weight, and thus feasible under MPC. To the best of our knowledge,

revealing the value T′ does not leak any significant information as

it is highly correlated with the final edit distance result. We include

a detailed discussion on this topic in Section 5.5 describing that the

1
We refer to T as loose and T′ as tight in the sense of the gap to the true edit distance.

More discussion is provided in Section 6.1 to illustrate this point further where we

show the statistics for T, T′ , and the ground truth for ED.

information leakage is minor and cannot be used to infer anything

meaningful about the private DNA sequences in practice.

We implement our protocol in two MPC variants: (a) using a

secret-sharing scheme where the DP table is shared among the

participants and no party learns the other parties’ inputs or the

intermediate values but can reconstruct and learn the final out-

puts, and (b) using a garbled circuit approach where one of the

participants creates the circuit using their input and the other par-

ticipant can evaluate it. The two approaches introduce a compu-

tation/communication trade-off; when secret sharing is employed,

the total communication cost is lower than that of the garbled cir-

cuits, albeit with more communication rounds. We delve into this

trade-off in our evaluations in Section 6.2. Our SecurED protocol

can be instantiated in the semi-honest setting, which we discuss in

Section 3.1 and evaluate in Section 6.2.

To accelerate our solution further, we adopt the optimization

proposed in [41], where the DP table is partitioned into small boxes.

This optimization enables direct computation of the optimal value

for each partition box, rather than processing one entry at a time.

Depending on the size of the partition boxes, the method proposed

in [41] provides a trade-off between computation and the number

of rounds, both of which impact the end-to-end performance of

secret-sharing protocols. However, despite this optimization, all

computations (such as comparing minimum values among different

numbers of edits) still need to be performed for each box to obtain

the optimal value. In other words, [41] operates over the whole

DP table, rendering it impractical. In SecurED, we refine this box
optimization further by combining it with Ukkonen’s algorithm;

we observe that certain computations can be avoided, which occurs

within a threshold of the main diagonal. We demonstrate a 4-fold

improvement over our baseline protocol without box optimization

by integrating this box optimization into our protocol.

Our contributions can be summarized as follows:

• We introduce SecurED, an efficient secure protocol for com-

puting the exact edit distance of genome sequences. SecurED
relies on the Ukkonen algorithm in conjunction with the

Wagner-Fischer dynamic programming method, achieving

exact computation rather than approximate. SecurED can

be instantiated with semi-honest security and works with

multiple parties.

• We propose a novel method to determine a tight upper bound

T′ for ED between two genome sequences. SecurED uses T′

in the Ukkonen algorithm for edit distance, which operates

with linear computational complexity in both time and space.

• We implement our SecurED protocol in both two-party and

multi-party settings using MP-SPDZ [27] and evaluate it in

terms of execution time and communication cost in both

LAN and WAN settings. Additionally, we implement Se-
curED with both garbled circuits and secret sharing. Our

protocol outperforms the state-of-the-art SS-based [41] and

GC-based [48] works more than 24× and 2× in terms of

running time, while at the same time our communication is

reduced by more than 9× and 1.2×, respectively. Finally, we
evaluate the threshold determination protocol in the same

LAN and WAN settings and analyze its accuracy.
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2 Related Work
The two main approaches in the field of secure edit distance compu-

tation either focus on exact ED [2, 16, 37, 41, 48] or on approximate

computation [1, 44, 47]. The latter approaches rely on the strong

assumption of possessing a good public reference string for edit

distance that enables parties to perform local computations (e.g.,

sequence alignment) to enhance performance. This work elimi-

nates this assumption since determining the reference string is not

reliable in many cases – the performance of ED protocols highly de-

pends on a reference string as shown in [48]. Furthermore, we focus

on the exact edit distance computation as it is vital for healthcare ap-

plications that require precise results. For comprehensiveness, this

section provides an overview of existing works in both categories.

2.1 Focusing on Exact ED Computation
Dynamic programming is the most effective method for finding the

exact edit distance between two sequences. To devise a privacy-

preserving edit distance computation, secure computation can be

applied on top of the dynamic programming algorithm. These tech-

niques encompass Homomorphic Encryption (HE), Garbled Circuits

(GC), and Secret Sharing (SS).

Based on HE, the first edit distance protocol was proposed by

[2], where two parties maintain additive shares of the DP table. An-

other HE-based protocol was developed by [37], where the sender

computes the encryption of the DP table, and the receiver can only

learn the last entry, representing the value of the edit distance. In

[16], encrypted data is outsourced to a cloud server, which performs

dynamic programming under HE, and only the data owner can de-

crypt the final output. They also propose a method to divide the edit

distance matrix into sub-boxes to reduce the depth of computation.

The work of [48] presents a generic edit distance framework by

introducing a customized GC approach. Their improvement stems

from the observation that, during edit distance computation, the

difference of inputs for the minimum circuit is bounded, and an

arithmetic circuit proves more efficient than a binary one.

The work by [41] implements a secret-shared-based dynamic

programming algorithm. They enhance the algorithm using the

box technique [16] to strike a balance between computation and

round complexity. Despite improving performance compared to

the baseline dynamic programming approach in both semi-honest

and malicious models, the efficiency of their protocol remains sub-

optimal for large inputs as they compute the entire DP table. In

contrast, our protocol only computes a partial table using the Ukko-

nen algorithm, rendering it practical.

Comparison. For comparison, we ignore the works based on ho-

momorphic encryption since their performance is impractical. Com-

pared to the state-of-the-art GC-based approach [48] and SS-based

approach [41], our protocol demonstrates a 2-fold and 20-fold im-

provement, respectively. These improvements come from signifi-

cant reductions in computation achieved by our protocol for the

basic dynamic programming algorithm. We provide detailed exper-

imental comparisons in Section 6.2.

2.2 Focusing on Approximate ED Computation
An approximate secure edit distance protocol that leverages pri-

vate set difference was proposed by [44]. Given a public reference

genome sequence, they compress the input genome sequence into

smaller sets by tracking the differences and approximate the ED

by the difference between these two sets. Subsequently, they com-

press set 𝑆 into an integer 𝑑𝑆 , representing the sum of the eval-

uations of each element on a random binary hash function (i.e.,

H(·) : {0, 1}∗ ↦→ {−1, 1}). They demonstrate that the expression

𝐸 [(𝑑𝐴 − 𝑑𝐵)2] corresponds to the set difference |𝐷𝑖 𝑓 𝑓 (𝐴, 𝐵) | be-
tween sets 𝐴 and 𝐵, serving as a reliable approximation for the edit

distance. This expression can be computed by securely averaging

(𝑑𝐴−𝑑𝐵)2 over multiple iterations, where in each iteration, the hash

function is independent and randomly sampled from a family of

binary hash functions. Unfortunately, their protocol hinges on the

assumption of having a public reference string and solely operates

in the semi-honest setting.

The work by [1] enhances the approach of [44] by partitioning in-

put genomes into smaller segments and approximating the edit dis-

tance through the summation of edit distances across all partitions.

They observe that the potential edit distances for each partition

are quite limited, allowing for significant computational savings.

These small edit distances can be pre-computed, reducing the prob-

lem to a secure matrix-vector multiplication. To divide the genome

into smaller segments, both the database and query sequences are

aligned with a common reference genome sequence, followed by

segmentation into fixed-length segments. Unfortunately, as in [44],

[1] computes the approximate ED, operates only in the semi-honest

setting, and relies on having the reference sequence public.

The work of [47] builds on HE and considers the outsourced

setting, empowering clients to query databases securely. Similar to

[1], the approximation is derived by summing the edit distances

across segments of the original input sequences. Each small seg-

ment’s distance is pre-computed and stored, allowing for querying

with new inputs, facilitated by the finite possible variations for

each segment. The proposed index technique employs HE when

querying the edit distance for each pair of small segments.

Comparison. In summary, the existing protocols [1, 44, 47] are

only secure in the semi-honest setting and do not support exact

computation for edit distance, which is crucial for healthcare ap-

plications. Moreover, their performance heavily depends on large

iterations, as seen in [44], and they require genome sequences to

be aligned before computation. The absence of a clear method for

selecting a suitable reference sequence significantly affects the effi-

ciency and accuracy of these protocols. We discuss the performance

comparison in detail in Section 6.2.3.

3 Preliminaries
Notation.We use [·] notation to refer to a set. For example, [𝑚]
implies the set {1, . . . ,𝑚}.

3.1 Security Model
There aremainly two adversarial models for securemulti-party com-

putation. In the semi-honest model, all parties follow the protocol

but try to learn additional information by analyzing themessages re-

ceived during the execution of the protocol. In the malicious model,
corrupted parties may deviate from the protocol in any way that can

help to learn additional information. We consider the semi-honest

adversarial model and rely on the underlying MPC framework.
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Parameters: Sender S and Receiver R, 𝑁 servers 𝑃1, . . . , 𝑃𝑁 ,

alphabet A, and length𝑚,𝑛.

Functionality:

• Wait for input 𝛼 ∈ A𝑚
from R.

• Wait for input 𝛽 ∈ A𝑛
from S.

• Wait for no input from server 𝑃𝑖∈[𝑁 ] .
• Give R and S the value 𝐸𝐷 (𝛼, 𝛽).

Figure 1: Ideal Functionality for Secure Edit Distance
(SecurED). We show in gray color the Ideal Functionality
for Delegated SecurED.

3.2 Secure Edit Distance Computation
The secure edit distance computation for human genome sequences

involves a two-party protocol where the sender S has a DNA se-

quence 𝛼 and the receiver R has a DNA sequence 𝛽 . They aim to

learn the edit distance between 𝛼 and 𝛽 without revealing any addi-

tional information. In this scenario, the two sequences are denoted

as 𝛼 ∈ A𝑚
and 𝛽 ∈ A𝑛

, each of lengths𝑚 and 𝑛, respectively, with

alphabet A = {A, G, T, C}. We assume that 𝑚 ≥ 𝑛 as in multiple

places in the paper we write𝑚 − 𝑛 (e.g., in Theorem 4.1); this can

trivially work in the case where𝑚 < 𝑛 where we need to take the

absolute value |𝑚 − 𝑛 |. Regardless, this does not affect the security
of our protocol and it is used for simplicity. The possible edits in-

clude insertion, deletion, and substitution of a single character in

the sequences. The distance between two sequences is defined as

the minimum number of edits required to convert one string into

the other. Fig. 1 (only black color) presents the ideal functionality

of the secure edit distance.

Additionally, we delve into the delegated setting, where both S
and R delegate the computation to untrusted cloud servers using

the secret sharing scheme outlined in Section 3.5.1. Specifically, S
and R secret-share their inputs to 𝑁 servers (with 𝑁 ≥ 2), which

conduct the dynamic programming on the shared values. The secret-

shared result is subsequently transmitted back to the R, who can

reconstruct the input. The protocol maintains security under the

assumption that all servers do not collude. The delegated ideal

functionality is presented in Fig. 1 (both gray and black color).

3.3 Wagner Fischer (WF) Algorithm
The dynamic programming algorithm used to solve the edit dis-

tance between arbitrary sequences is commonly referred to as the

Wagner-Fischer (WF) algorithm [42]. Given two strings 𝛼 and 𝛽 of

lengths𝑚 and 𝑛, the edit distance 𝐸𝐷 (𝛼, 𝛽) is computed by filling

a matrix D of size (𝑚 + 1) × (𝑛 + 1). Each cell D𝑖, 𝑗 in the matrix

represents the minimum number of edits required to convert the

prefix 𝛼1 . . . 𝛼𝑖 to 𝛽1 . . . 𝛽 𝑗 , with the final cell D𝑚,𝑛 holding the edit

distance between the two strings 𝛼 and 𝛽 .

Initially, the cells in the first row D0, 𝑗 for 𝑗 ∈ [𝑚] are initialized
to represent the cost of inserting 𝑗 characters to transform a string

of size 0 into the string 𝛽1 . . . 𝛽 𝑗 . Similarly, the cells in the first

column D𝑖,0 for 𝑖 ∈ [𝑛] are filled to represent the cost of deleting 𝑖

characters. This initialization can be formalized as:

D0, 𝑗 =

𝑖∑︁
𝑘=1

𝜔𝑖𝑛𝑠 (𝛽𝑘 ), D𝑖,0 =

𝑖∑︁
𝑘=1

𝜔𝑑𝑒𝑙 (𝛼𝑘 ),

where 𝜔𝑖𝑛𝑠 and 𝜔𝑑𝑒𝑙 denote the cost of insertions and deletions. As

a result of the initialization, we have the edit distances between

each string and the empty string; e.g., observe in Table 1 thatD𝑖,0 =

D0,𝑖 = 𝑖 for 𝑖 ∈ [𝑚] (𝑚 = 𝑛 = 6 in this case). Subsequently, each

remaining matrix cell D𝑖, 𝑗 is filled by either using the cost of the

upper left cell (D𝑖−1, 𝑗−1) in case 𝛼𝑖 is equal to 𝛽 𝑗 , or by propagating

the minimum cost of the three neighboring cells added to the cost

of the current cell (i.e., D𝑖−1, 𝑗−1 plus the cost of a substitution,

D𝑖−1, 𝑗 in addition to the cost of one deletion, and D𝑖, 𝑗−1 plus one
insertion cost). We formalize this in Eq. (1), where 𝜔𝑠𝑢𝑏 represents

the substitution cost:

D𝑖, 𝑗 =


D𝑖−1, 𝑗−1 if 𝛼𝑖 = 𝛽 𝑗 ,

𝑚𝑖𝑛


D𝑖−1, 𝑗−1 + 𝜔𝑠𝑢𝑏 (𝛼𝑖 , 𝛽 𝑗 )
D𝑖−1, 𝑗 + 𝜔𝑑𝑒𝑙 (𝛼𝑖 )
D𝑖, 𝑗−1 + 𝜔𝑖𝑛𝑠 (𝛽 𝑗 )

if 𝛼𝑖 ≠ 𝛽 𝑗 .
(1)

Without loss of generality, we assume a uniform cost for all op-

erations, meaning that 𝜔𝑖𝑛𝑠 (𝑎) = 𝜔𝑑𝑒𝑙 (𝑎) = 𝜔𝑠𝑢𝑏 (𝑎, 𝑏) = 1 for all

symbols 𝑎, 𝑏 ∈ A. Table 1 in Section 1 provides an end-to-end

example of the application of the WF algorithm.

3.4 Ukkonen Algorithm for Approximate ED
Ukkonen altered the WF algorithm and diminished time and space

requirements, albeit with a minimal chance of inaccuracies in the

edit distance result [40]. In this approach, a threshold T is set, re-

stricting computations to T diagonals extending in both directions

from the main diagonal of the WF matrix. For the diagonal passes

D𝑖, 𝑗 (with 𝑖, 𝑗 being in the diagonal), we refer to it as the 𝑘-th diag-

onal where 𝑘 = 𝑗 − 𝑖 . We present this in Alg. 1: Lines 3-4 initialize

the first row and column, while lines 8-9 update the value ofD𝑖, 𝑗 as

per Eq. eq1. The primary difference from the original WF algorithm

is that updates are limited to the T leading diagonals. Note that

we have removed any control flow decisions from Alg. 1 to make

it MPC-friendly – i.e., 𝑐𝑚𝑝 is always added to D𝑖, 𝑗 regardless of

whether 𝛼𝑖 is equal or not to 𝛽𝑖 .

Another way to view this problem is to consider the matrix as a

directed dependency graph with each cellD𝑖, 𝑗 being a node and the

operations (insertions, deletions, and substitutions) being weighted

rightward, downward, and diagonal paths. Then, the goal is to

move from D0,0 to D𝑚,𝑛 via the path with the least cost. Viewing

this as a graph highlights the dependency structure inherent in

edit distance calculations and shows how each operation impacts

the traversal path. As we consider all weights to be equal, we see

that if there is a directed path from D𝑖, 𝑗 to D𝑖′, 𝑗 ′ then, D𝑖′, 𝑗 ′ ≥
D𝑖, 𝑗 + |( 𝑗 ′ − 𝑖′) − ( 𝑗 − 𝑖) | [40]. We can extend this observation to

see that if the path corresponding to the minimum number of edits

from D0,0 to D𝑚,𝑛 and if any node in that path D𝑖′, 𝑗 ′ > T, then
| 𝑗 ′ − 𝑖′ | > T indicating the path goes cross the T-th diagonal. In

this case, restricting calculations to T diagonals might miss parts of

the optimal path, leading to an approximation. In practice, there is

no good way to learn the upper bound of the edit distance for two

arbitrary inputs. That is why a predefined parameter T leads to an

approximation. Of course, a larger T gives a better approximation

at the cost of more diagonals needing to be evaluated.
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Algorithm 1 Ukkonen’s Approximate Edit Distance [40]

Inputs: 𝛼 = 𝛼1 ...𝛼𝑚, 𝛽 = 𝛽1 ...𝛽𝑛 , ⊲ Arrays 𝛼 , 𝛽 .
T > |𝑚 − 𝑛 | ⊲ Threshold T.

1: procedure UkkonenED(𝛼 , 𝛽 , T)
2: D ← matrix of shape (𝑚 + 1) × (𝑛 + 1) initialized with 0s.

3: D𝑖,0 ← 𝑖 ∀𝑖 ∈ [0, T) ⊲ Initialize first column (up to T).
4: D0, 𝑗 ← 𝑗 ∀𝑗 ∈ [0, T) ⊲ Initialize first row (up to T).
5: 𝑑 ← −(⌊(T − (𝑛 −𝑚))/2⌋) ⊲ First diagonal offset.
6: for 𝑖 ← 1 to𝑚 do
7: for 𝑗 ←𝑚𝑎𝑥 (1, 𝑑 + 𝑖) to𝑚𝑖𝑛(T + 𝑑 + 𝑖, 𝑛) do
8: 𝑐𝑚𝑝 ← 𝛼𝑖 ≠ 𝛽 𝑗 ⊲ 0 (False) if 𝛼𝑖 = 𝛽 𝑗 , 1 (True), otherwise.
9: D𝑖, 𝑗 ←𝑚𝑖𝑛{D𝑖−1, 𝑗−1 + 𝑐𝑚𝑝,D𝑖−1, 𝑗 + 1,D𝑖, 𝑗−1 + 1}
10: return D𝑚,𝑛 ⊲ Edit distance result.

3.5 Multi-party Computation
SecurED proposes an MPC-friendly edit distance algorithm from

DP. To this end, we first discuss two widely used MPC methods.

3.5.1 Secret Sharing (SS). Secret sharing splits private inputs and
intermediate results of a computation into seemingly random val-

ues, which are then distributed between non-colluding parties. One

form of SS, called additive, splits an ℓ-bit value 𝑥 as follows: the

data owner selects 𝑛 − 1 random values 𝑥1, . . . , 𝑥𝑛−1 from {0, 1}ℓ
and computes 𝑥𝑛 as 𝑥1 + . . . + 𝑥𝑛−1 − 𝑥 = 𝑥𝑛 . (For simplicity, we

omit the modulo operation, denoting the share of party 𝑖 J𝑥K𝑖 .) To
reconstruct the shared value J𝑥K, each party transmits its share to

a combiner, who locally reconstructs the secret 𝑥 = 𝑥1 + . . . + 𝑥𝑛 .
One can directly perform addition, subtraction, andmultiplication-

by-constant operations on the shares without communication be-

tween parties. For instance, J𝑥 + 𝑦K can be computed as J𝑥K + J𝑦K
locally. To securely multiply two ℓ-bit values, we employ Beaver

triples [6], where much of the communication and computation

is offloaded into a (offline) preprocessing phase, which is inde-

pendent of the inputs. During the offline phase, secret shared

values (J𝑎K, J𝑏K, J𝑐K) are generated such that 𝑐 = 𝑎𝑏. Then, in

the online phase, parties locally compute J𝛼K = J𝑥K − J𝑎K and

J𝛽K = J𝑦K − J𝑏K, where 𝑥 and 𝑦 denote the private inputs. Thus,

parties collaboratively reconstruct 𝛼 and 𝛽 by exchanging their re-

spective shares J𝛼K and J𝛽K. Finally, the product J𝑥𝑦K is calculated
as J𝑐K + 𝛼J𝑏K + 𝛽J𝑎K + 𝛼𝛽 , which each party can evaluate locally.

Utilizing addition and multiplication operations on secret-shared

data enables computation while maintaining privacy, ranging from

simple equality checks and finding minimum values, to any arith-

metic circuit. This capability is crucial for computing the DP table

for ED computation in a privacy-preserving way.

3.5.2 Garbled Circuits (GC). Garbled Circuits [24, 45] is another
technique for two-party computation. The ideal functionality of GC

is to take inputs 𝑥 and 𝑦 from the parties and compute a function 𝑓

on them without revealing the inputs as GC(𝑓 , 𝑥,𝑦). In this work,

on top of our SS-based approach, we design a GC-tailored technique

for computing the DP table, consisting of “less than” and “equal”

circuits. The GC protocol involves a garbler and an evaluator : the
garbler encodes a boolean function 𝑓 (e.g., less than) into a circuit

using two random keys per wire of the circuit; the evaluator obtains

the corresponding keys of the input wires and evaluates the circuit

to learn the corresponding output wire key. Finally, the evaluator

utilizes a decoding table, which maps the final output wire keys to

the actual values, to decode the final output 𝑓 (𝑥,𝑦).

4 Our Edit Distance Protocol
This section presents our main protocol for SecurED. Our goal is
to compute the exact edit distance of two DNA sequences while

maintaining the efficiency of approximate ED methods. Our start-

ing point is Ukkonen’s algorithm (Alg. 1) for approximate ED. Next,

we introduce an efficient protocol for determining a precise edit dis-

tance upper bound. This enables us to select an appropriate thresh-

old for Ukkonen’s algorithm, optimizing its performance while

maintaining the accuracy of exact matching. Finally, we discuss

various optimizations that can be implemented when deploying our

protocol with both garbled circuits and secret-sharing techniques.

4.1 From Approximate to Exact: Achieving
Precision in Edit Distance Computation

Contrary to other sequences, genome sequences consisting of DNA

nucleotidesA = {A, G, T, C} exhibit properties that can be exploited

when constructing an edit distance protocol [44]. Specifically:

(1) For arbitrary human genome sequences, it has been observed

that over 99.5% of nucleotides are identical.

(2) When considering the application of insertion, deletion, and

substitution edits to transform one genome sequence into

another, it has been found that over 95% of edits are non-

adjacent. Furthermore, within this non-adjacent edit set, ap-

proximately 80% to 90% of the edits are substitutions.

The first observation suggests that the edit distance is significantly

smaller than the input size. The second observation implies that

the path leading to the optimal output is likely to be near the lead-

ing diagonal. These characteristics make Ukkonen’s algorithm an

excellent candidate for efficiently solving the edit distance problem

over human genome sequences.

However, the Ukkonen algorithm with a threshold T may not

yield an exact result. This is because, rather than computing all

cells in the matrix, it only examines T diagonals adjacent to and

including the leading diagonal. We observe that when we assign

a uniform cost of 1 to any edit operation, it can be easily proved

that if the actual edit distance does not exceed T, assessing only

the T diagonals always yields the exact result. On the other hand,

if the edit distance is greater than T and Ukkonen only examines T
diagonals, it does not necessarily yield inexact results. For this to

happen, the path of optimal edits (e.g., the yellow path in Table 1)

may be very close to the leading diagonal but the result could be

greater than T (e.g., due to many substitutions). Below, we formalize

the condition for yielding exact computation in a theorem; our proof

follows from [40, Corollary 1].

Theorem 4.1. Considering the T + (𝑚 − 𝑛) leading diagonals in
the DP matrix D ∈ Z(𝑚+1)×(𝑛+1) for input sequences 𝛼 ∈ A𝑚 and
𝛽 ∈ A𝑛 , if the ground truth 𝐸𝐷 (𝛼, 𝛽) < T+𝑚 −𝑛, then the Ukkonen
algorithm gives exact edit distance computation.

Proof. To demonstrate the accuracy of the ED computation

without error, we need to prove that the path corresponding to
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(a) Initial approach by restricting inser-
tions/deletions to the ends.

(b) Segmented approach where diagonal
switches can only be made at checkpoints.

(c) A snippet of (b). The substitution costs
(red arrows) are stored in matric D while
the costs to switch diagonals (blue arrows)
are stored in array C. At each checkpoint
(blue background), we accumulate the costs
D + C to 𝑎𝑐𝑐𝑢𝑚.

Figure 2: Overview of our upper bound T′ algorithm. In (a), we show the array C that keeps track of the cost of insertions and
deletions at the beginning and the end (shown with vertical and horizontal arrows). We only show C in the end (i.e., the cost of
going from D𝑚−2,𝑛 to D𝑚,𝑛 is 2). Through the rest of matrix D, we only count the substitutions (i.e., diagonal arrows). In (b), we
use the same approach as (a) but we use multiple segments and at the end of each segment we introduce a “checkpoint”. At
each checkpoint, we synchronize the costs for additions and deletions. Lastly, in (c), we show a snippet of (b) in more detail.

the optimal solution never intersects a diagonal outside the range

defined by the T +𝑚 − 𝑛 leading diagonals. We prove Theorem 4.1

by contradiction. Suppose the optimal path contains at least one

node, say D𝑖, 𝑗 , outside the range defined by the T +𝑚 − 𝑛 leading

diagonals. Let’s consider the following two cases:

• D𝑖, 𝑗 is located on the (−T/2)-th diagonal (i.e., 𝑖 − 𝑗 = −T/2),
• D𝑖, 𝑗 is located on the (𝑚 − 𝑛 + T/2)-th diagonal (i.e., 𝑖 − 𝑗 =

𝑚 − 𝑛 + T/2).
In both cases, the optimal path is divided into two halves. The first

half begins at D0,0 and ends at D𝑖, 𝑗 , while the second starts at D𝑖, 𝑗

and ends at D𝑚,𝑛 . According to [40, Lemma 2], we have:

D𝑖, 𝑗 − D0,0 ≥ | 𝑗 − 𝑖 | and D𝑚,𝑛 − D𝑖, 𝑗 ≥ |𝑛 −𝑚 − ( 𝑗 − 𝑖) |
Combining these two inequalities, we have:

D𝑖, 𝑗 − D0,0 + D𝑚,𝑛 − D𝑖, 𝑗 ≥ | 𝑗 − 𝑖 | + |𝑚 − 𝑛 − (𝑖 − 𝑗) |
⇔ D𝑚,𝑛 − D0,0 ≥ |T/2| + |𝑚 − 𝑛 + T/2|
⇔ 𝐸𝐷 (𝛼, 𝛽) ≥ |T/2 +𝑚 − 𝑛 + T/2|
⇔ 𝐸𝐷 (𝛼, 𝛽) ≥ T +𝑚 − 𝑛.

The assumption that the optimal solution path contains at least one

node outside the range defined by the T +𝑚 − 𝑛 leading diagonals

leads to a contradiction. Thus, all nodes in the optimal path must lie

within this range. Considering only the T+𝑚 −𝑛 leading diagonals

the Ukkonen algorithm provides accurate computation if the true

value of 𝐸𝐷 (𝛼, 𝛽) is smaller than T +𝑚 − 𝑛. □

The immediate question that follows is: how can we efficiently
determine such a threshold to enable exact edit distance computation
from the Ukkonen algorithm? The main contribution of SecurED is

to address the above question by proposing an efficient threshold

determination algorithm (which we present in Section 4.2). This

approach transforms our main MPC-friendly construction into

two phases. First, we determine a tight upper bound T′ based on

a predefined loose upper bound T. Second, we utilize T′ as the

threshold for the Ukkonen algorithm to compute the edit distance

for genome sequences. Note that after being computed securely,

the upper bound T′ can be seen as publicly disclosed information,

as it can also be inferred from the final output.

4.2 Edit Distance for Genomic Sequences:
Determining Threshold Upper Bounds

A straightforward approach to selecting a threshold for Ukkonen’s

algorithm is to establish a predetermined upper limit. This method

may suffice when analyzing entire genome sequences containing

billions of nucleotides, as even a conservative estimate of 0.5%− 1%,
according to the first observation in Section 4.1, could serve as

a robust upper bound. However, for applications such as patient

queries or personalized medicine, where only specific segments of

the genome are of interest for comparison [25, 28, 33], analyzing

the entire genome sequences may not be practical. Instead, focusing

on relevant portions of the sequence is more efficient and targeted.

Motivation.When focusing on specific parts of the DNA sequence,

such as thousands of nucleotides, it becomes challenging to find

a precise upper bound that closely matches the ground truth. For

instance, consider the dataset from the iDASH 2016 competition

[26], consisting of sequences with lengths of around 3500. This

dataset, extracted from chromosome 3 of the human genome within

the high divergence region of gene ZNF717, exhibits significant
variation in edit distance among pairs of genome sequences. Our

experiment with the iDASH data shows that the edit distance ranges

from 37 to 172, corresponding to approximately 1% to 5% of the

total sequence length. This variability underscores the difficulty

in establishing a solid upper bound for edit distance, particularly

when analyzing specific segments of the DNA sequence.

Indeed, selecting an excessively large upper bound can result in

unnecessary computational costs for cases with small edit distances,

while on the flip side of things, a smaller threshold increases the
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likelihood of approximation rather than exact computation for cases

with larger edit distances. To mitigate this, we propose a refined

method for determining the threshold. Our algorithm efficiently

determines a tight upper bound T′ for the edit distance based on

a pre-defined loose upper bound T, such as 10% instead of 1% or

5%. This approach aims to strike a balance between computational

efficiency and accuracy, ensuring that the selected threshold is ap-

propriate for the specific characteristics of the data being analyzed.

High-Level Overview.We view the DP matrix D of dimensions

(𝑚 + 1) × (𝑛 + 1) as a dependency graph with paths starting from

D0,0 and ending at D𝑚,𝑛 . Moving right, down, or diagonally along

these paths represents a series of edits needed to convert one se-

quence into another. The shortest path in this graph corresponds

to the edit distance, representing the fewest steps required. To find

a reasonable upper bound (T′) for the threshold edit distance, it

suffices to identify a satisfactory or nearly optimal path, rather than

aiming for perfection (the exact path), from D0,0 to D𝑚,𝑛 . This can

be achieved by confining specific edits to certain areas and comput-

ing fewer comparisons (i.e., to find the minimum of the neighboring

cells) than required in Eq. (1). Note that computing the minimum

is the main bottleneck in secure computation for determining the

value of the edit distance.

Algorithm Description.We present our optimal threshold algo-

rithm in Alg. 2 which takes a pair of genome sequences 𝛼 ∈ A𝑚
and

𝛽 ∈ A𝑛
, a loose upper bound of threshold T > 𝑚 −𝑛, and returns a

tight upper bound T′. Notably, we refer to T′ as tight upper bound
and optimal threshold interchangeably. For simplicity, we assume

𝑚 = 𝑛 and denote the corresponding dynamic programming matrix

as D(𝑚+1)×(𝑛+1) in the following section.

Algorithm 2 Find optimal threshold T′.

Inputs: 𝛼 = 𝛼1 ...𝛼𝑚, 𝛽 = 𝛽1 ...𝛽𝑛 , ⊲ Arrays 𝛼 , 𝛽 .
T > |𝑚 − 𝑛 |, 𝑥 ⊲ Threshold T, segment size 𝑥 .

1: procedure FindThreshold(𝛼 , 𝛽 , T, 𝑥 )
2: 𝑛 ← Size(𝛼)
3: C𝑖 ← Abs(⌊𝑇 /2⌋ − 𝑖) ∀𝑖 ∈ [0, T) ⊲ Distance vector.
4: 𝑎𝑐𝑐𝑢𝑚 ← 0 ⊲ Final accumulated upper bound
5: D ← matrix of shape (𝑛 + 1) × (𝑛 + 1) initialized with 0s.

6: for 𝑥𝑆𝑇𝐴𝑅𝑇 ← 0 to 𝑛 by 𝑥 do ⊲ For each segment.
7: 𝑥𝐸𝑁𝐷 ← Min(𝑥𝑆𝑇𝐴𝑅𝑇 + 𝑥, 2𝑛) ⊲

8: for 𝑑 ← −𝑇 /2 to 𝑇 /2 do ⊲ Traverse diagonals.
9: for 𝑖 ← 𝑥𝑆𝑇𝐴𝑅𝑇 to 𝑥𝐸𝑁𝐷 do ⊲ Traverse segment.
10: 𝑗 ← 𝑖 + 𝑑 ⊲ Given 𝑖 and diagonal 𝑑 , determine 𝑗 .
11: if 𝑖 = 𝑥𝑆𝑇𝐴𝑅𝑇 then ⊲ Init. D at beginning of segment.
12: D𝑖, 𝑗 ← 𝛼𝑖 ≠ 𝛽 𝑗
13: if 0 ≤ 𝑗 < 𝑛 and 𝑖 + 𝑗 < 𝑥𝐸𝑁𝐷 then
14: D𝑖, 𝑗 ← D𝑖−1, 𝑗−1 + (𝛼𝑖 ≠ 𝛽 𝑗 ) ⊲ Substitutions cost.
15: L ← array with T cells from D containing 𝑥𝐸𝑁𝐷 ⊲Check-

point area: anti-diagonal passing from 𝑥𝐸𝑁𝐷 .
16: 𝑡𝑜𝑡𝑎𝑙𝑘 = L𝑘 +𝐶𝑘 ∀𝑘 ∈ [0, T] ⊲ Costs at checkpoint.
17: 𝑑𝑀𝐼𝑁 ← ArgMin(𝑡𝑜𝑡𝑎𝑙) ⊲ Index of minimum value.
18: 𝑎𝑐𝑐𝑢𝑚 ← 𝑎𝑐𝑐𝑢𝑚 + Min(𝑡𝑜𝑡𝑎𝑙) ⊲ Add minimum value.
19: C𝑖 ← Abs(𝑖 − 𝑑𝑀𝐼𝑁 ) ∀𝑖 ∈ [0, T) ⊲ Dist. from 𝑑𝑀𝐼𝑁 (Alg. 4).
20: return 𝑎𝑐𝑐𝑢𝑚 + Min(C) ⊲ Final threshold T′.

As shown in Fig. 2a, we begin by solely focusing on paths that

follow diagonals, which follows the second observation in Sec-

tion 4.1 that substitutions dominate edits for genome sequences.

To illustrate, we consider the path corresponding to the first (or

similarly last) diagonal ⌊−T/2⌋ (⌊T/2⌋ respectively). Starting from

cell D0,0, we execute ⌊T/2⌋ insertions (or deletions) to reach the

first (or last) diagonal. We account for these insertions and dele-

tions in a separate array called C. In more detail, each element of

array C represents the number of steps (cost) needed to convert

the corresponding index to the leading diagonal and counts the

cost of insertion and deletion at both ends. In Step 3 of Alg. 2, we

initialize C with the offset from the leading diagonal, which is in the

middle of our enumeration [⌊−T/2⌋, . . . , 0, . . . , ⌊T/2⌋]. For instance,
in Fig. 2b we maintain seven diagonals (thus, T = 7), C is initialized

as [3, 2, 1, 0, 1, 2, 3]; meaning that the cost of moving from the first

diagonal to the leading one is 3.

Subsequently, for each of these T starting points, the path pro-

gresses diagonally to perform substitutions (if necessary). The sub-

stitution cost is stored in the matrix D – note that this is different

from the array C that holds the costs of insertions and deletions.

The first row and column of matrix D are initialized with zeros as

D0, 𝑗 = D𝑖,0 = 0. The value for D𝑖, 𝑗 is updated for each step (Step

14 in Alg. 2) according to the following equation:

D𝑖, 𝑗 =

{
D𝑖−1, 𝑗−1 if 𝛼𝑖 = 𝛽 𝑗

D𝑖−1, 𝑗−1 + 1 if 𝛼𝑖 ≠ 𝛽 𝑗
(2)

It is clear that the value of D𝑖, 𝑗 only depends on the previous value

D𝑖−1, 𝑗−1 in the same diagonal.

Once we reach the end (highlighted blue area in Fig. 2a), for each

diagonal (up to ⌊T/2⌋ from each side), we execute deletions (or

insertions) to return to the leading diagonal at the cell D𝑛,𝑛 (which

incurs an extra C cost). This approach is equivalent to confining

insertions/deletions to the beginnings and ends, permitting sub-

stitutions only in between – i.e., it only moves diagonally across

D, except in the beginning and at the end. We then incorporate to

C the additional cost to return to the leading diagonal from each

blue cell (i.e., C = C + [3, 2, 1, 0, 1, 2, 3] = [6, 4, 2, 0, 2, 4, 6]). Finally,
the ultimate upper bound T′ is determined by adding the updated

C to the highlighted blue values of D and selecting the minimum

among all T values.

This outcome is similar to determining the minimum edit dis-

tance involving substitutions only across T diagonals, incorporating
insertions/deletions to both ends of 𝛼 or 𝛽 . These steps can be exe-

cuted in 𝒪(𝑛) time since each diagonal is independent (as we only

care about substitutions) and computation for each diagonal can

be made in parallel. However, this approach may not consistently

yield a nearly optimal upper bound T′ for the actual edit distance.
Typically, in the WF algorithm, the path corresponding to edit dis-

tance involves taking multiple downward or rightward steps to

select the best diagonals to traverse. As these steps only incur a

single comparison (for whether the two characters we currently

inspect are not equal to increase the cost by one), the main objective

is to maximize the number of steps available before reaching the

endpoint. In our approach in Fig. 2a, restricting insertions/deletions

to the ends, while offering a tighter bound T′ than T, may not align

with the goal of the WF algorithm, i.e., maximizing the concept
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of the aforementioned efficient steps. For instance, consider the

genomes 𝛼 = GACATTACGCA and 𝛽 = GACTTACGCAA. The true edit
distance between them would be 2, involving the insertion of A at

the fourth position and the removal of A from the last position in 𝛽 .

However, the approach illustrated in Fig. 2a would result in 6:

G A C A T T A C G C A

G A C T T A C G C A A

0 0 0 1 1 2 3 4 5 6 6

that significantly deviates from the true value.

Checkpoints for Synchronization. To address this issue, we

break down our algorithm into segments and iteratively apply it in

smaller partitions, rather than across the entire matrix D. This al-

lows us to periodically switch to the better diagonal and determine

the minimum accumulation, as depicted with a blue background in

Fig. 2b. Checkpoints are chosen periodically along the diagonals

based on segment length 𝑥 as described below. Starting from the

same initial point for C, let 𝑥 denote the length of the segment,

i.e., the number of cells the algorithm will visit before reaching a

synchronization “checkpoint”. Thus, the size of each segment deter-

mines how frequent the checkpoints will be. We discuss the choice

of segment length to select checkpoints in Section 6.1 so that the

T′ is close to the ED. As before, D is filled out, according to Eq. (2).

However, at the end of each segment (i.e., the blue checkpoint in

Fig. 2b), we incorporate the offset cost from C for each diagonal

into the corresponding cells in D. We isolate the blue area of D
in L, and, at each checkpoint, we compute the minimum value of

L + C among the T diagonals (Steps 15-17 in Alg. 2) and store it in

𝑎𝑐𝑐𝑢𝑚 along the corresponding diagonal (that the minimum value

originated from), which we call 𝑑𝑀𝐼𝑁 . We proceed as follows:

• Reset the accumulated substitutions for the next segment,

i.e., for all diagonals setD to 0 if 𝛼𝑖 = 𝛽 𝑗 and to 1, otherwise

(Step 12 in Alg. 2).

• Update C to reflect the offset cost relative to 𝑑𝑀𝐼𝑁 (i.e., C𝑖 =
|𝑖 − 𝑑𝑀𝐼𝑁 | shown in Step 19 of Alg. 2). For instance, if T = 7

and 𝑑𝑀𝐼𝑁 = 2, the updated C would be [2, 1, 0, 1, 2, 3, 4].
We then move on to the next segment and repeat the process of

adding cells of the updated C to the corresponding cells in D, find

the minimum, and add it to 𝑎𝑐𝑐𝑢𝑚.

In other words, for every segment, the minimum value for each

diagonal is computed by adding the number of substitutions within

the current segment to the offset from it to the optimal diagonal

from the previous segment. After iterating through this process

and finishing the computation for the final segment (until reaching

the bottom right), we then incorporate the cost to “return back”

(offset) to the leading diagonal into the 𝑎𝑐𝑐𝑢𝑚 value obtained (Step

19 in Alg. 2).

Ridge Walking on Checkpoints. Our algorithm for finding the

tight threshold relies on synchronizing the costs between the mul-

tiple diagonals on multiple checkpoints. We now explain our algo-

rithm for this synchronization, called ridge walking. Ridge walking
involves traversing along two anti-diagonals

2
in a “zigzag” pattern

2
We call anti-diagonals the diagonals that are parallel to the diagonal from bottom left

to the top right.

and collecting the cells of interest in the checkpoint. For exam-

ple, the cells with a blue background in Fig. 2c are filled during

a single iteration of ridge walking. (We exclude the first row and

column in this diagram, so the starting cell here is D1,1 rather

than D0,0). Values for each cell are shown for the first segment

and the beginning of the second. The cells in D highlighted in

blue depict the hamming distance for each diagonal, which are

[2, 3, 3, 1, 3, 2, 2]. In this case, C (i.e., the cost of moving horizontally

and vertically by additions and deletions in the beginning) is ini-

tialized as [3, 2, 1, 0, 1, 2, 3]. Thus, the total cost for each diagonal

is given by D + C = [5, 5, 4, 1, 4, 4, 5]. The minimum is 1, and the

index for this value is 3 (across the leading diagonal). Consequently,

𝑎𝑐𝑐𝑢𝑚 is updated to 1, and C is updated as [3, 2, 1, 0, 1, 2, 3], reflect-
ing the offset for the diagonal with the minimum cost in the first

segment. This iteration continues until the last segment, and 𝑎𝑐𝑐𝑢𝑚

provides the upper bound T′ as the output.

Putting Everything Together. In the traditional Ukkonen’s al-

gorithm, the minimum of three values, as per Eq. (1), must be

computed T × 𝑛 times. However, in our approach, with a seg-

ment length of 𝑥 , we only need to compute the minimum of T
values 2𝑛/𝑥 times. This strategy renders our algorithm practical

in a privacy-preserving setting since computing the minimum is

resource-intensive and requires multiple rounds of communication.

The choice of segment length 𝑥 serves as a configurable parameter,

enabling better upper bounds for the edit distance. The choice of

𝑥 depends on the statistics and distribution of the data. Of course,

when 𝑥 = 1, the algorithm converges into the normal DP method.

For the iDASH dataset, we have empirically found that the optimal

value for 𝑥 is around 60. More details about the choice of 𝑥 can be

found in Section 6.1. Alternatively, if the exact distance is needed,

this 𝑎𝑐𝑐𝑢𝑚 could act as the tighter threshold T′ and could be used

to run Ukkonen’s algorithm. The updated algorithm significantly

improves the nearly optimal upper bound T′, resulting in 3 instead

of 6 for the example mentioned earlier.

In summary, our algorithm for determining the upper bound T′

follows a greedy approach. It breaks down large genomic sequences

into smaller segments, computes the substitution distance for each

segment, and, during checkpointing, adjusts it with the offset cost

from the leading diagonal. Subsequently, for the following segments,

the cost adjustment is made relative to the diagonal that had the

minimum cost-adjusted distance. The loose upper bound T can be

chosen to be a much higher value compared to what is feasible with

the regular Ukkonen algorithm. From T, we achieve the tight bound
T′. T is required to be greater or equal to the true edit distance

which is easy to select since two arbitrary DNA sequences have

over 99.5% nucleotides being identical [18]. We choose T = 10%

and it works well in practice. More discussion can be found in

Section 6. This flexibility enables our protocol to achieve the exact

edit distance. The following lemma demonstrates that the output

of Alg. 2 is indeed an upper bound for the true edit distance.

Lemma 4.2. For input sequences 𝛼 ∈ A𝑚 and 𝛽 ∈ A𝑛 with a
pre-defined loose threshold T and a segmentation length 𝑥 > T, the
output T′ = FindThreshold(𝛼, 𝛽, T, 𝑥) from Alg. 2 is a tight upper
bound for the edit distance 𝐸𝐷 (𝛼, 𝛽).
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Proof. The output T′ from Alg. 2 indicates a path that converts

𝛼 to 𝛽 by applying insertion, deletion, and substitution in certain

places. By the definition of edit distance which is the minimum

number of applying these edits without restriction, T′ ≥ 𝐸𝐷 (𝛼, 𝛽).
□

5 Complete Protocols
Wenow present our SecurED protocols using secret sharing and gar-

bled circuits. At a high level, SecurED combines our novel method

for determining the upper bound threshold T′ with our modified

privacy-preserving Ukkonen algorithm. Secret sharing involves

distributing input data among participants, resulting in low total

communication, albeit potentially requiring more communication

rounds. On the other hand, garbled circuits facilitate arbitrary func-

tionalities in a fixed number of rounds, but may lead to larger data

transmission due to garble table encoding. We formally present

both the SS-based and GC-based SecurED protocols in Fig. 3.

Parameters:

• Sender S and Receiver R, alphabet A, the threshold T, lengths
𝑚, 𝑛, and segment size 𝑥 .

• Algorithm FindThreshold( ) described in Algorithm 2.

• Algorithm UkkonenED( ) described in Algorithm 1.

Input: A sequence 𝛼 ∈ A𝑚
from R, a sequence 𝛽 ∈ A𝑛

from S
Secret-Sharing-Based Protocol:

(1) R secret shares J𝛼K to S.
(2) S secret shares J𝛽K to R.
(3) Both parties compute JT′K ← FindThreshold(J𝛼K, J𝛽K, T, 𝑥 ) ,

and reconstruct T′ .
(4) Both parties compute J𝐸𝐷K← UkkonenED(T′, J𝛼K, J𝛽K)
(5) S and R exchange J𝐸𝐷K and reconstruct the output 𝐸𝐷 (𝛼, 𝛽 ) .

Garbled-Circuits-Based Protocol:

(1) Both parties compute T′ ← GC(FindThreshold, 𝛼, 𝛽, T, 𝑥 ) as
described by the GC functionality in Section 3.5.2.

(2) Both parties compute 𝐸𝐷 ← GC(UkkonenED, T′, 𝛼, 𝛽 ) .

Figure 3: SecurED: Our Secure Edit Distance Protocol.

5.1 Generic Optimizations
We introduce optimizations for both garbled-circuit and secret-

sharing-based protocols. In comparing the genomes 𝛼 and 𝛽 , given

that nucleotides are limited to four types A = {A, C, G, T}, they can

be efficiently encoded as two bits {00, 01, 10, 11}. This enables effi-

cient comparisons using small bit lengths or binary XOR operations.

Additionally, our FindThreshold algorithm (Alg. 2) requires

comparing each 𝛼𝑖 with each 𝛽𝑖 in Step 12. This comparison is also

necessary for the Ukkonen algorithm (Step 8, Alg. 1). Therefore,

we can cache and reuse the comparison result. Regarding ridge

walking on checkpoints, we do not need to store the row and col-

umn indices separately; we only need the indices of the start and

end cells which we can obtain from the previous start and end cell

indices in constant time. In our protocol for threshold determina-

tion, it is evident that maintaining the whole path is unnecessary.

Thus, instead of matrixD, we only keep an array (L) that contains
only the latest values of D for each diagonal. This adjustment re-

duces space complexity to 𝒪(T) instead of 𝒪(T × 𝑛). Combining

Figure 4: Optimization in [16]: (𝜏 + 1) boxes where 𝜏 = 2, 3, 4.

all these optimizations in conjunction with our novel threshold

determination algorithm allows us to achieve practical DNA edit

distance computation. Note that our implementation uses these

optimizations but for presentation purposes, we have not included

them in the main protocol.

5.2 Optimizing Secret Sharing with Boxes
The primary bottleneck of our edit distance algorithm based on

secret-sharing is the number of rounds of interaction between two

parties. Recall that each cell is filled based on the minimum of

the three neighboring cells (above, left, and above left), as seen in

Eq. (1). Computing comparisons one after the other for each cell to

determine the minimum of the three surrounding cells results in a

blow up in the number of communication rounds. [16] omits certain

cells in the dynamic programming matrix from the computation to

reduce the multiplicative depth of homomorphic encryption (HE).

Similarly to [41], we can apply the HE approach by [16] to reduce

the number of rounds by “ignoring” D𝑖−1, 𝑗−1 and deducing the

information from its surrounding cells. Let the equality between

𝛼𝑖 and 𝛽 𝑗 be denoted by E𝑖, 𝑗 . As depicted in Fig. 4, with D𝑖−1, 𝑗−1
being the white cell in the middle, we can compute D𝑖, 𝑗 as:

D𝑖, 𝑗 =𝑚𝑖𝑛



D𝑖−2, 𝑗−2 + E𝑖−1, 𝑗−1 + E𝑖, 𝑗
D𝑖−1, 𝑗−2 + E𝑖, 𝑗−1 + 1
D𝑖−1, 𝑗−2 + E𝑖, 𝑗 + 1
D𝑖, 𝑗−2 + 2
D𝑖−2, 𝑗−1 + E𝑖−1, 𝑗 + 1
D𝑖−2, 𝑗−1 + E𝑖, 𝑗 + 1
D𝑖−2, 𝑗 + 2

Although this expansion, rather than storing and reusing D𝑖−1, 𝑗−1,
would increase the number of multiplications and comparisons

(and thus the total communication), it decreases the communication

rounds as all these operations can happen together. In Fig. 4, we

illustrate this optimization where cells with a white background

are omitted for different box sizes. We need to carefully consider

the value 𝜏 as if we make it too large, although the number of

rounds decreases, it significantly increases the bandwidth and the

number of arithmetic operations. We employ this optimization in

our secret-sharing implementation.

5.3 Garbled Circuits
For our garbled circuit approach, we leverage Free-XOR [29], half-
gates [46], and fixed-key AES garbling optimizations [7]. We com-

pose the circuit such that the additions in Alg. 1 are done in parallel.

Note that the optimizations proposed in [48] are orthogonal and

could be applied in SecurED to further accelerate our protocol. Our
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implementation has the commonly used optimizations mentioned

above, and it already surpasses [48].

5.4 Complexity
This section presents the complexity of our approach and examines

the performance enhancements compared to existing methods [40,

41, 48]. Considering the input 𝛼 ∈ A𝑚
, 𝛽 ∈ A𝑛

, and a loose upper

bound T (such as T = 0.1 · max (𝑚,𝑛)), our secure edit distance

protocol consists of two phases. First, we determine the threshold T′

using FindThreshold(𝛼, 𝛽, T), and then compute the edit distance

𝐸𝐷 (𝛼, 𝛽) using UkkonenED(𝛼, 𝛽, T′).
The FindThreshold algorithm fills T diagonals of matrixD and

updating C for each segment. The overall computation and space

complexity is𝒪(T ·𝑚𝑖𝑛(𝑚,𝑛)). The diagonal-wise computation for

D𝑖, 𝑗 in Eq. (2) can be parallelized, resulting in a time complexity

of 𝒪(𝑚𝑖𝑛(𝑚,𝑛)). Since we only need to learn the upper bound

T′, the space complexity can be reduced to 𝒪(T). For the second
phase, the complexity of Ukkonen’s algorithm with a threshold T′

is 𝒪(T′ ·𝑚𝑖𝑛(𝑚,𝑛)) in time and 𝒪(T′ ·𝑚𝑖𝑛(𝑚,𝑛)) in space.

Comparison to other threshold determination algorithms.
To the best of our knowledge, there is no previous work specifically

focused on finding the threshold for the Ukkonen algorithm. In

the original Ukkonen paper [40], an algorithm is provided to check

whether a value T is larger than the true edit distance (see Test 1

and Test 2 in [40]). The main idea of this algorithm is to naively

perform the Ukkonen algorithm with the threshold T and then

check the validity of the output.

A binary search method can indeed be employed when given

a loose upper bound T. This approach results in a computation

complexity of 𝒪(T log T · 𝑚𝑖𝑛(𝑚,𝑛)) and a space complexity of

𝒪(T log T). Thus, our FindThreshold algorithm reduces both com-

plexities by 𝒪(log T). Note that the majority of the computation in

our algorithm involves comparisons from Eq. 2 rather than mini-

mum computations done at the end of each segment, further en-

hancing performance.

Comparison to other exact protocols. Previous works for secure
edit distance [41, 48] built on the Wagner-Fischer (WF) algorithm,

which has a computation complexity of 𝒪(𝑚 · 𝑛). In contrast, our

UkkonenED algorithm has an overall complexity of𝒪(T′ ·𝑚𝑖𝑛(𝑚,𝑛)).
In the case of genome sequences, T′ is typically much smaller than

𝑚𝑎𝑥 (𝑚,𝑛), significantly enhancing the performance of the proto-

col. For conducting fair comparisons against [41, 48], we selected

datasets (iDASH) where each pair of genome sequences has a large

edit distance. Note that this choice favors [41, 48] as it requires

larger T′ values for our protocol, while their protocol remains un-

affected. Yet, we demonstrate a substantial improvement in terms

of running time, ranging from 2 to 24 times faster compared to

existing protocols. The detailed performance comparison between

our protocol and [41, 48] is presented in Table 2. Further details are

discussed next (Section 6).

5.5 Discussion on Leakage
We now discuss the security of our methodology. Our protocol

reveals the value of T′ from FindThreshold (Step (3) for secret-

sharing-based protocol and Step (1) for garbled-circuits-based pro-

tocol in Fig. 3) and uses it as the input for the following steps. Ideally,

for each party, it would be possible to simulate the value of T′ given
the input of that party and its output from the protocol [31].

40 60 80 100 120 140 160 180
ED

50

100

150

200

250

T'

iDASH data
Linear Regression

Figure 5: Distribution of T′ and edit-distance over iDASH
dataset. The T′ is based on the initial T = 10% and segmenta-
tion length of 50.

To further analyze the security of our two-step protocol, we

explored the iDASH dataset.
3
We use an initial threshold of 10%

and a segment length of 50 (these values are empirically found

in Section 6.1). For each pair of DNA sequences in the iDASH

dataset, we compute the value of T′ and the ground truth edit

distance and examine their correlation by computing the Pearson

correlation coefficient. The coefficient value is 0.95, suggesting a

strong linear relationship between T′ and the edit distance. We

already know from Lemma 4.2 that T′ ≥ 𝐸𝐷 . We investigate this

further by analyzing the unified gap𝐺 = (T′−𝐸𝐷)/𝐸𝐷 . The Pearson

correlation coefficient of 𝐺 and 𝐸𝐷 is 0.06, indicating a negligible

linear relationship. Based on these observations, we propose the

following hypothesis:

It is possible to estimate the value of T′ given the true edit distance,
and the error for this estimation is small and independent of each

computation.
To test this hypothesis, we applied linear regression over the

iDASH dataset. As shown in Fig. 5, the regression line fits the data

tightly. Given the input of ED, the estimated value of T′ has an error

that is only 7% overall. Thus, we can effectively estimate T′ given
only the output of the protocol (and vice versa). This indicates that

any information leaked by T′ is minor. Notably, we also tried to

assess this information leakage of our protocol using different T and
T′ values but we could not leak anything meaningful in practice.

To the best of our knowledge, there does not exist any practical

attack over the leakage of edit distance or any other similarity

measurements.

Regardless, although we do not have formal proof, we also were

unable to leak any significant information. In conjunction with our

empirical results, we believe our protocol is secure in practice.

6 Experimental Evaluation
We implement our SecurED protocols using theMP-SPDZ [27]MPC

library. Our implementation includes both secret-sharing-based

and garbled-circuit-based approaches in the two-party setting.
4

Although our implementation can straightforwardly support the

semi-honest and delegated setting by selecting appropriate parame-

ters on MP-SPDZ, we report the numbers for this setting to ensure

a fair comparison with existing protocols.

3
We computed the edit distance between each pair of the iDASH dataset (1275 pairs).

4
Our code is open-source at https://github.com/asu-crypto/secureED.
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(a) Avg. % difference of T′ and true ED. (b) Avg. T′ on iDASH data. (c) Avg. T′ on PGP data.

Figure 6: Performance of FindThreshold with different sequence and segment lengths.

Our reported results are gathered as an average of ten runs.

We conducted a series of experiments on a single server equipped

with AMD EPYC 74F3 processors and 256GB of RAM. All parties

were run on the same network, with a simulated network connec-

tion using the Linux tc command. We simulated a LAN setting

with 1ms round-trip latency and 2 Gbps network bandwidth, as

well as a WAN setting with 40ms round-trip latency and 200 Mbps

network bandwidth.

Our experiments utilize the iDASH 2016 dataset to ensure fair

comparisons with existing work. The iDASH dataset is widely used

in privacy-preserving edit distance protocols [1] and their associ-

ated applications [15, 32, 47]. Additionally, for our FindThreshold
experiment, we use a dataset generated from genome sections of

two individuals sourced from the Personal Genomes Project [17].

We evaluate the performance of our protocol across varying val-

ues of sequence length 𝑚 = 𝑛 ∈ {1000, 2000, 3000, 4000}.5 Short
sequence lengths are typically employed for exact edit distance

in applications related to disease identification and tests focused

on specific genome segments, such as paternity tests [4]. As we

mentioned in the discussion above Theorem 4.1, a T larger than the

edit distance is preferred as it always guarantees correct results. On

the other hand, a smaller T marginally increases the efficiency of

our framework but may result in inexact computation. The iDASH

dataset exhibits high variance, with maximum edit distances be-

tween any two sequences ranging from 5.6–7.6% of the sequence

length. For all experiments, we use set T = 10%, which has been

proven to work effectively. However, in general, the edit distance

between arbitrary DNA sequences should be much lower than this

value – typically below 0.5% of the sequence length [18].We verified

this using the PGP dataset, which has low variance and confirmed

that our algorithm performs well with T = 10% across both high-

and low-variance datasets.

6.1 Performance Evaluation of Optimal
Threshold Protocol

We begin by presenting the efficacy of our upper bound determi-

nation protocol (FindThreshold). To ensure the accuracy of the

tight upper bound T′, we exhaustively consider all pairs of genomic

5
For sequence length 4000, since the iDASH samples are only of length ∼ 3500, we

replicate at the end. For instance, if a genome sample is of length 3425, we repeat

letters 1 to 625 in the end to reach 4000.

sequences within the iDASH dataset. Subsequently, we assess the

average error, defined as |𝑒 − T′ |/𝑒 , where 𝑒 represents the true edit
distance (the optimal bound) and T′ denotes the output from our

FindThreshold.
We conducted experiments with various segment lengths 𝑥 to

determine the optimal value with the lowest average error com-

pared to the true edit distance. Smaller segment lengths result in

more frequent checkpointing (see Section 4.2). Exploring segment

lengths 𝑥 within the set 30, 60, 90, 120, we assessed the error rate

across different genome lengths𝑚,𝑛 ∈ {1000, 2000, 3000, 4000}. As
shown in Fig. 6a, the impact of the sequence length (𝑚 and 𝑛) on

performance is relatively low. We observe that for segment lengths

𝑥 = 60 and 90, the accuracy remains relatively unaffected for in-

creasing sequence lengths (1000 to 4000) and also achieves the most

accurate results. On the other hand, for 𝑥 = 30 and 120 the accuracy

varies more, which points towards 60 being a good segment length.

Note that due to the greedy nature of our approach, the accuracy

level is not inversely proportional to the segment length. In fact,

setting small segment lengths results in poorer performance.

To find the optimal segment length for the iDASH dataset, we

investigated segment lengths ranging from 30 to 120 in increments

of 10, as depicted in Fig. 6b. We compared the resulting upper

bounds with the true edit distance of all pairs of complete genomes

in iDASH which is represented by the green dashed line. We found

that a segment length of 60 yields the best upper bound for the

iDASH dataset on average, with only a 24% deviation from the

true value. Additionally, we evaluated the accuracy of our proto-

col on genome sections from the Personal Genome Project (PGP)

[17] dataset in Fig. 6. This dataset exhibits less variability, with

significantly lower average edit distances compared to iDASH. We

conducted experiments with 60 sections, each of length 1000, and

tested various segment lengths. Among these, segment lengths

of 40 and 50 yielded the best results, achieving an average upper

bound of 6.9 compared to the true edit distance of 5.5.

The optimal segment length depends on the dataset characteris-

tics and can be determined through experimentation with pairs of

small sequences. Importantly, the effectiveness of segment lengths

remains consistent regardless of the sequence length. Based on our

experiments with various genome datasets, we conclude that set-

ting the segment length 𝑥 around 50 is appropriate for our protocol

FindThreshold.
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Table 2: Performance comparison with related works. The variable 𝜏 represents the box size optimization. Cells with a “-”
denote trials that are not supported or not reported by the paper or take longer than 8 hours.

Setting Sequence
Length 𝑛

Garbled Circuits (GC) Secret Sharing (SS) SS with 𝜏 = 3 SS with 𝜏 = 4

[48] SecurED WF SecurED [41] SecurED [41] SecurED

LAN
(sec.)

1000 - 0.704 26270 1082 7595 296.8 6364 262.5

2000 - 2.650 - 3581 29349 978.6 - 902.7

3000 - 6.960 - 6865 - 1882 - 1729

4000 23.72 11.43 - 11393 - 3079 - 3044

WAN
(sec.)

1000 - 8.230 - 42803 - 11463 - 9971

2000 - 27.55 - - - - - -

3000 - 56.14 - - - - - -

4000 178.0 79.62 - - - - - -

Data
(MB)

1000 - 255.2 1214 125.3 2641 276.2 4207 404.0

2000 - 948.7 6001 434.4 13172 935.0 21091 1402

3000 - 1983 13409 866.8 30514 1843 48826 2720

4000 4188 3370 - 1440 - 3033 - 4798

The algorithm is very effective in providing a tight upper bound

threshold relative to the length of the sequence, which is the highest

possible ED.We show the comparison for T, T′, and ED for each pair

of sequences from the iDASH dataset in Fig. 7. It only contributes

10% of the computational cost and 25% of the communication cost to

our main edit distance protocol. However, it significantly enhances

the performance of our final protocol since we only need to execute

UkkonenED with a much smaller threshold. On average, using the

segment length that yielded the optimal results, T′ was found to

be 40 − 60% of T. In turn, this introduces about 50 − 70% saving

in execution time and bandwidth for the second phase (Ukkonen)

depending upon the underlying MPC protocol.

Pairs of DNA sequences

100

200

300

Va
lu
es T

T'
ED

Figure 7: Loose upper bound T, tight upper bound T′, and edit-
distance ED for each pair of DNA sequences from the iDASH
dataset. The data is sorted by ED and the T′ is permuted
accordingly for better visualization. Note, T is 10% since we
used sequences of length 3500.

6.2 Secure Edit Distance Protocols
We present an end-to-end performance comparison between our

SecurED protocol and existing works [41, 48] in the semi-honest set-

ting in Table 2. For the evaluation of [41], we utilized their provided

code available at https://github.com/hdvanegasm/sec-edit-distance.

However, since the implementation of [48] is not publicly available,

we obtained the reported numbers from [48, Table 1]. To ensure a

fair comparison, we use the same LAN and WAN network settings

of [48] for our experiments. We do not have the performance results

for lower sequence lengths for [48]. We were also unable to execute

the algorithm proposed by VCA [41] for larger sequence lengths

on LAN and WAN, as the execution time exceeded eight hours.

6.2.1 Secret-sharing. Implementing the secure version of the naive

WF algorithm with secret sharing becomes impractical due to the

significant number of rounds required, reaching into the millions,

even for genomes as short as 1000. In our experiments on a LAN

network, the algorithm terminated after over 8 hours. To reduce

the number of rounds, as discussed in Section 5.2, [41] employed

𝜏 + 1 boxes. We opted to restrict 𝜏 to 4 since bandwidth increases

exponentially for higher 𝜏 values. When 𝜏 = 4, they managed to

execute the algorithm in approximately 35 minutes on a LAN with

0.3 ms latency. We replicated their implementation and tested it on

a 1 ms latency LAN, where it took about 1 hour and 46 minutes. This

duration is considered as our baseline for the 𝜏 + 1 box approach.
A naive implementation of Ukkonen’s algorithm based on secret

sharing encounters a significant bottleneck due to the high thresh-

old necessary to ensure accurate results, leading to a substantial

number of communication rounds, albeit far fewer than the general

WF algorithm. On a LAN, the baseline Ukkonen algorithm with

a threshold of 10% of𝑚𝑎𝑥 (𝑚,𝑛) terminated in approximately 46

minutes. Our implementation, encompassing both phases of the

main protocol, had a running time of about 18 minutes. We further

optimized it with 𝜏 = 5 boxes and our end-to-end time for SecurED
decreased to only 4 minutes and 20 seconds.

When compared to the naiveWF algorithm, our approach demon-

strates a 100× improvement, attributed to a combination of factors

including Ukkonen’s bounds, threshold optimization, 𝜏 + 1 boxes,
and implementation optimizations such as binary XORs and reusing
comparisons. Compared to the state-of-the-art secret sharing proto-

col [41], our method demonstrates more than 24.24× running time

improvement and more than 9.56× reduction in terms of communi-

cation cost. We further evaluated the performance of our approach

across different sequence lengths, reporting our execution time and

bandwidth in Fig. 8.

6.2.2 Garbled-circuit. Implementing the same protocols with gar-

bled circuits [45] improved the performance of the protocol com-

pared to our secret sharing-based approach. For a sequence length of
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(a) Running times of different SecurED
schemes on the sequence length 1000.

(b) Running time of our SecurED. (c) Bandwidth cost of our SecurED.

Figure 8: Running time and Bandwidth Cost of Secret Sharing based SecurED in LAN.

(a) Running time in LAN. (b) Running time in WAN. (c) Bandwidth Cost.

Figure 9: Running time and Bandwidth of our SecurED protocol based on Garbled Circuits compared with the naive Ukkonen
approach.

4000 on a LAN, our algorithm required approximately 11.4 seconds

compared to the state-of-the-art GC-based protocol [48], which

achieved 23.7 seconds, effectively halving the time with standard

optimizations. As mentioned earlier, integrating [48]’s customized

garbled circuit approach could further enhance running time perfor-

mance. To ensure an unbiased comparison, we consider the general

Ukkonen algorithm with a large threshold (10%) as our baseline and

evaluate our performance against it for different sequence lengths.

We present the results in Fig. 9.

6.2.3 Comparison to Approximation protocols. The work of [48]

provides a comparison between exact computation protocols and

approximation protocols, which we briefly discuss here for com-

pleteness. As introduced in Section 2.2, the current best approxima-

tion protocols are [1, 44]. In [44], the approximation is derived by

transforming the edit distance problem into the set difference prob-

lem. Meanwhile, in [1], the approximation edit distance is computed

as the summation of edit distances for each segment. However, the

correctness of both methods heavily relies on the distribution of

genome sequences, and their accuracy lacks formal proofs.

Another issue with approximation protocols is their sensitivity

to the choice of the reference sequence. [48] demonstrates that

with a randomly generated reference sequence, both [1, 44] exhibit

poor accuracy of 75% and 59%, respectively, in terms of root mean

square relative error. In contrast, our approach is independent of any

reference genome and does not have such restrictions. Additionally,

DP-based exact computation protocols such as [41, 48], as well as

ours, allow for finding the path to convert sequence 𝛼 to sequence

𝛽 , whereas approximation protocols [1, 44] only provide the value

of the edit distance.

7 Conclusion
This work has presented SecurED, a novel MPC protocol that over-

comes the limitations of existing secure DNA edit distance solutions.

The core innovation of our protocol is a novel transformation of

the established approximate matching technique, specifically the

Ukkonen algorithm, into an exact matching algorithm. We have

leveraged the inherent similarity found in human DNA and intro-

duced a privacy-preserving algorithm to find an optimal threshold

for two given DNA sequences. We implemented several optimiza-

tions tailored to secure computation in DNA sequences composed

solely of the four nucleotide letters. Finally, we have instantiated

SecurEDwith secret-sharing and garbled circuits and have achieved

a speedup of approximately 2 − 24× over previous works. SecurED
successfully computes secure edit distance between genomes, each

containing 1000 letters, in a few seconds. An open question is to

prove whether revealing the threshold introduces any leakage and

explore whether a concrete attack exists that could exploit the

threshold to recover input data. We also consider developing an

efficient construction for the malicious setting as part of our future

work.
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Appendix
For completeness, we present the building blocks for Alg. 2. Alg. 3

demonstrates the procedure to find the minimum of two values

without branching and how it can be used in an array to find

the array minimum. Note that ArgMin can be computed similarly

by additionally keeping track of the indices. We use Alg. 4 for

computing the absolute value without branching over encrypted

data.

Algorithm 3 Minimum Value.

1: procedure Min(𝑥 , 𝑦) ⊲ Minimum of two values.
2: 𝑐𝑚𝑝 ← 𝑥 < 𝑦 ⊲ 1 (True) if 𝑥 < 𝑦, 0 (False), otherwise.
3: return 𝑐𝑚𝑝 × 𝑥 + (1 − 𝑐𝑚𝑝) × 𝑦
4: procedure Min(𝑎𝑟𝑟 ) ⊲ Minimum of an array.
5: if size(𝑎𝑟𝑟 ) = 1 then ⊲ If 𝑎𝑟𝑟 has a single value.
6: return 𝑎𝑟𝑟0
7: else
8: 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ← [] ⊲ Empty array.
9: for every two elements (𝑥,𝑦) ∈ 𝑎𝑟𝑟 ) do
10: append Min(𝑥,𝑦) to 𝑟𝑒𝑑𝑢𝑐𝑒𝑑
11: if size(𝑎𝑟𝑟 ) mod 2 ≠ 0 then ⊲ If size is odd.
12: append last element of 𝑎𝑟𝑟 to 𝑟𝑒𝑑𝑢𝑐𝑒𝑑

13: return Min(𝑟𝑒𝑑𝑢𝑐𝑒𝑑) ⊲ Recursive call.

Algorithm 4 Absolute Value.

1: procedure Abs(𝑥 )
2: 𝑐𝑚𝑝 ← 𝑥 < 0 ⊲ 1 (True) if 𝑥 < 0, 0 (False), otherwise.
3: return 𝑐𝑚𝑝 × (−𝑥) + (1 − 𝑐𝑚𝑝) × 𝑥
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