
Onion-Location Measurements and Fingerprinting
Paul Syverson

paul.f .syverson.civ@us.navy.mil
U.S. Naval Research Laboratory

USA

Rasmus Dahlberg
rasmus@rgdd.se
Independent
Sweden

Tobias Pulls
tobias.pulls@kau.se
Karlstad University

Sweden

Rob Jansen
robert.g.jansen7.civ@us.navy.mil
U.S. Naval Research Laboratory

USA

Abstract
Onion-Location makes it easy for websites offering onion service
access to support automatic discovery in Tor Browser of the random-
looking onion address associated with their domain. We provide the
first measurement study of how many websites are currently using
Onion-Location. We also describe the open-source tools we created
to conduct the study. Onion-Location has been criticized elsewhere
for its lack of transparency and vulnerability to blocking. Perhaps
even more troubling, we show that Onion-Location is vulnerable to
very accurate fingerprinting. We present recommended changes to
and alternatives to Onion-Location as well as steps towards even
more secure onion discovery and association.

Keywords
onion services, Onion-Location, website fingerprinting, circuit fin-
gerprinting, network measurement

1 Introduction
Websites available at onion addresses via onion service protocols
have numerous authentication, reachability, security, and privacy
advantages [33, 49]. For this reason thousands of sites reachable
by traditional protocols at ordinary registered domains such as
torproject.org are also available at a .onion domain. One advantage
of an onion address is that it is self-authenticating: it encodes its
own public key. A corresponding disadvantage is that onion ad-
dresses are random-looking strings, hard to either remember or
recognize: the onion address for torproject.org is 2gzyxa5ihm7nsg
gfxnu52rck2vv4rvmdlkiu3zzui5du4xyclen53wid.onion.

For several years, users of Tor Browser who know a domain
name or follow a link to its URL, have been able to easily reach
the associated onion address if the site offers Onion-Location [53]
(O-L). For example, connecting to https://www.torproject.org will
yield an “.onion available” button displayed in the URL bar (see

Rasmus Dahlberg produced part of this work while at Karstad University.
This paper was submitted and accepted, subject to revision, prior to Rob Jansen be-
coming Editor-in-Chief of PoPETs. The final adjudication of the revision was overseen
by the other Editor-in-Chief, Zubair Shafiq, without any input from, or visibility to,
Rob Jansen. Reviewers were not made aware of authorship prior to the final decision.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(2), 512–526
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0074

Figure 1: Tor Browser’s Onion-Location button.

Figure 1). Clicking on the button will redirect the connection to
the onion address. Alternatively, Tor Browser could be configured
so that the redirect happens automatically—until this option was
disabled as a result of the research herein [55].

We will more fully describe features of onion services and vari-
ous previously published aspects of and issues with O-L in Section 2.
This paper focuses on the measurement and fingerprintability of
sites accessed using O-L and variants of it. Website fingerprint-
ing (WF) is a traffic analysis attack in which an adversary matches
the pattern of (encrypted) traffic to and from a client against fin-
gerprint patterns of known websites to try to determine the site
connected to without needing to observe the other end of the con-
nection [19]. Circuit fingerprinting (CF) identifies the type of circuit
in Tor. For example, it has been very effective at distinguishing the
introduction and rendezvous circuits used exclusively for connect-
ing to an onion service from general-use circuits [21, 25, 29]. One
reason CF is especially effective is that it is fingerprinting based on
a small closed world: there are only a handful of possible circuit
types in Tor. “Closed world” is sometimes used in WF to mean that
any observed client is assumed to only visit destinations within a
selected subset of possibilities. To disambiguate, we will herein use
complete world to signify that the world that observed clients are
selecting from comprises all possibilities.

O-L sites would appear to be particularly susceptible to finger-
printing given an access pattern of ordinary web connection fol-
lowed immediately by an onion service lookup and connection
to the same website (often in fact the same services on the same
server, albeit over onion service circuits). Our analysis confirms
this, showing with over 99% accuracy that a standard fingerprinting
technique identifies a connection as to an O-L site. Note that O-L
fingerprinting is more akin to CF than WF but is actually neither:
it uses the combined pattern and timing of circuits (identified via

512

https://orcid.org/0000-0001-6887-3658
torproject.org
.onion
torproject.org
2gzyxa5ihm7nsggfxnu52rck2vv4rvmdlkiu3zzui5du4xyclen53wid.onion
2gzyxa5ihm7nsggfxnu52rck2vv4rvmdlkiu3zzui5du4xyclen53wid.onion
https://www.torproject.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0074

Onion-Location Measurements and Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(2)

CF) to fingerprint that an O-L session is occurring. We will fo-
cus herein specifically on Onion-Location fingerprinting (OLF) and
closely related types of activity fingerprinting.

Although our focus is on OLF, it is possible to use methods
other than O-L for onion association (OA), i.e., for discovering and
associating an onion address for a given registered domain. For
example, if lookup of the associated onion address can be done
entirely at the client, then the only connection will be to the onion
service. In this case onion association fingerprinting (OAF) would
seem to merely reveal an onion service access. Consequently, WF
of an accessed OA site would be rendered equivalent to WF in the
much larger world of general onion-service access.

To investigate the current state of O-L fingerprintability, we first
determine the O-L sites currently available. Since an O-L redirect
header is only accepted by Tor Browser from a URL with a certified
TLS connection, and since it is now standard to record the issuance
of a TLS certificate in Certificate Transparency (CT) logs [30], we
first download the CT logs to learn about nearly all available certified
TLS sites. We then visit these sites to determine those configured
for O-L, thus producing a list of available O-L sites. We access
them to create a dataset of access patterns for use in evaluating
fingerprintability. We show that an attacker can use CF as a building
block to create nearly perfect OLF attacks. This in turn allows an
attacker to create highly tailored WF attacks on all the O-L sites on
the list. (We describe how OLF facilitates WF attacks and the likely
expected impacts, but we do not analyze WF attacks in this paper.)

Contributions: In this paper:

• We conduct the first Internet-wide measurement of O-L. We
introduce novel tools and use them to measure and then
analyze how many clearnet websites use O-L to also offer
onionsites, finding 1,505 stable (available after six months)
O-L onions. Our measurement tools and data are available
so that this can be repeated and tracked over time [7, 8].

• We show that both O-L and circuit types are extremely finger-
printable (99% accuracy). We show that such fingerprinting
shrinks the anonymity set of an onion service associated
with a registered domain by nearly an order of magnitude
(versus non-O-L onion services [38]) andmakes the onionsite
susceptible to Website Oracle [41] attacks through DNS [9].

• We recommend changes and alternatives to O-L for onion
discovery and association that are less susceptible to finger-
printing. We discuss the steps needed to produce OA that is
usable and resistant to fingerprinting and other attacks. We
recommend immediate actions to reduce the threat of OLF
as well as longer-term research actions that should make
onion discovery and association even less fingerprintable.

The next section presents background on Tor, onion services,
O-L, andWF, as well as our fingerprinting threat model. In Section 3
we describe OLF, as well as the attacks we evaluate. In Section 4 we
describe the open-source tools we created to learn the list of avail-
able O-L sites, the browsing of onion-associated pairs, as well as the
data gathered from running these on the Internet. In Section 5 we
describe the results of conducting OLF attacks on the sites on which
we gathered data. In Section 6 we discuss our recommendations for
O-L, trade-offs of recommended choices, and suggestions to further

reduce onion service fingerprintability. In Section 7 we describe
related work, and we conclude in Section 8.

2 Background
In this section, we provide a general background on Tor and onion
services. Next we will describe O-L as currently deployed. Then we
will describe alternative versions of O-L as well as alternative means
of OA and their known pros and cons. Finally we will describe the
basics of WF on Tor and our threat model.

2.1 Tor and onion services
Tor is best known as an anonymous networking tool. By separating
identification from routing it offers security and privacy protections
to its millions of client users, typically accessing the network via
Tor Browser. Onion services offer somewhat similar protections to
servers. Since we are concerned with WF, we will need to under-
stand a bit of how these work to be able to explain our threat model.
But our primary focus for the offered protections is on a different
aspect of Tor that is less generally appreciated, authentication that
is both stronger and more in control of the authenticated service.

The vast majority of Tor traffic is not to onion services but on
connections that exit the Tor network for ordinary destinations on
the Internet, such as the webpage at www.torproject.org. The Tor
network is comprised of thousands of volunteer-run relays. The Tor
client learns about the relays in the network from a directory system.
For our purposes we do not need to understand how. (Description of
unexplained aspects of Tor and further details on explained aspects
can be found at [52].) The client builds a three-hop cryptographic
circuit through the relays of the Tor network, exiting the last of
these for the intended Internet destination. In building the circuit
the client establishes a session key with each relay known only
to those two parties and kept only for the duration of the circuit.
Tor relays in a circuit are chosen at random, though not uniformly.
Such a three-hop circuit is comprised of a guard, a middle, and an
exit. A guard is selected by a client and used for several months as
the entrance to all Tor circuits. If the guard is not controlled by an
adversary, a relay-based adversary will not find itself selected to be
on a Tor circuit adjacent to (thus identifying) the client.

An onion service essentially acts as another client from the per-
spective of the Tor network. Instead of a circuit to an exit, the onion
service connects to an introduction point, a relay that listens for
client requests to connect to that onion service and passes them
along. Upon receiving such a request, the onion service connects to
the end of a circuit the client has constructed to a rendezvous point
which mates the circuits from the client and from the onion service.
For clients to know how to find introduction points, there is an
onion service directory system on a distributed hash table (DHT)
comprised of thousands of Tor relays. Each such relay (called an
HSDir) stores a list of introduction points and other information
about an onion service in a descriptor associated with the onion
address. The DHT is constructed so that an HSDir that does not
already know an onion address will not know it is storing the de-
scriptor for that onion address. Descriptors are regularly reassigned
to new HSDirs based on a distributed source of randomness so that
relays cannot predictably serve as directories for particular onion
addresses to facilitate mining of lookup activity for given addresses.

513

www.torproject.org

Proceedings on Privacy Enhancing Technologies 2025(2) Syverson et al.

The onion address is a 56-character string encoding an ed25519
public key that authenticates the onion service. The top level do-
main .onion is reserved by RFC 7686 [3] and must not be resolved
by DNS. Because the onion address encodes its own public key, it is
self-authenticating. But, it thus generally appears to be a meaning-
less, random-looking 56-character string, though some sites spend
the resources to make a small portion of that meaningful.

Publicly available sites typically do not need to take advantage
of the network location protection that onion service protocols
offer. But, onion services offer other advantages. Exit relays in the
Tor network are subject to resource contention, so offering onion
service access can improve user experience. Also, DNS lookup oc-
curs at exits. Though Tor detects and removes exits that abuse DNS,
such abuse is not unheard of: those steps are necessary. Abuse also
occurs once beyond the control of Tor network elements. Several
years ago, Cloudflare began offering its DNS resolver 1.1.1.1 at an
onion service in part to cope with such concerns [44].

Another advantage of offering onion service access to your web-
site is that the address is self-authenticating. It offers authority
independence from DNS hijack or TLS certificate hijack. Even if
those occur, lookup, routing, and site authentication cannot be
usurped by anyone not in possession of the private key correspond-
ing to the address itself. But this is true only if the client knows the
address, which is a random-looking string by itself not memorable,
recognizable, or easily discovered as associated with a commonly
known entity. This is a motivation for O-L.

2.2 Onion-Location and onion association
O-L is one way to discover and access an onion service associated
with a registered domain. There are others. For example, Cloudflare
began offering onion alternative (alt) services for its supported
domains in 2018 [43]. Tor users could request connection to an
HTTPS URL hosted by Cloudflare but be routed and connected to
that website through its onion address. The URL address bar shows
the requested HTTPS URL, even though the connection is via the
onion address. No changes to Tor Browser were needed for these
to function as intended, although the lack of transparency to users
or browsers was shown to be the basis of multiple attacks [49, 50].

We will use “onion association” (OA) to mean an association
between a registered domain and an onion address such that the
onion address is visible to the user, as is whether an onion service
protocol is being used for the connection. Thus onion alt services
do not count as OA. We will reserve “Onion-Location” (O-L) for OA
that requires for each access a connection to a registered domain
from which an onion service connection is induced.

We wish to also require that the domain responsible for the redi-
rection is also visible to the user, but we must be careful what we
are claiming if we intend to included O-L under “onion association”,
which we do. It is unfortunately ambiguous to claim that current
O-L offers such visibility. Once “.onion available” is selected and
Tor Browser redirects to the onion address, the original domain is
no longer visible. If the Tor Browser setting “Prioritize .onion sites
when known.” is set to “Always”, then the redirect is automatic

when clicking on a link to a domain offering O-L.1 It is thus easy
for a momentarily distracted user to not even notice the original do-
main in the URL bar, which can be leveraged to create attacks [49].
Nonetheless, it was previously possible to set onionsite prioritiza-
tion so that the domain associating with the onionsite (and its TLS
certificate) could be inspected before selecting “.onion available”.
And that setting is now the only option. We will count as OA O-L
that offers to cautious users this level of visibility of both registered
domain and onion address.

Our focus is not hijacks but OAF by a client’s guard relay. We
thus now describe the connection pattern occurring in O-L and
other variants.

2.2.1 Current Onion-Location: A client making an O-L connection,
e.g., to torproject.org first creates an exit circuit, and the exit’s
DNS resolver will resolve torproject.org. (We assume that, like
the overwhelming majority, the client is not configured to resolve
domains on its own, e.g., via an onion service such as Cloudflare’s
mentioned above.) The same circuit used to resolve the address
is then used to connect to the IP address of the torproject.org
server, and the index page is loaded. This includes either an O-L
HTTP header or an HTML <meta> http equiv attribute that
states the onion address to be associated with the domain [53]. For
ease of exposition, we use “header-based” to refer to O-L using
either HTTP headers or HTML tags. This example describes O-L
redirection from an index page. O-L works the same way from
another page at a domain, however. Thus, following O-L from
torproject.org/about/history/ will redirect to 2gzyxa5ihm7nsggfxn
u52rck2vv4rvmdlkiu3zzui5du4xyclen53wid.onion/about/history/.

Tor Browser only allows O-L on certified HTTPS connections.
For such a connection, the client can use O-L to select connecting
to the onion address. The next actions are the same as if the onion
address were entered directly into the URL bar (or a link to it
clicked on), as described above in Section 2.1. If the client’s request
to connect is accepted by the onion service, the onion service will
then send over the rendezvous circuit the index page of the website
it is serving. Typically this would be the same index page as was
sent over the exit service, as we show later in Section 4.

For privacy reasons, Tor Browser will not cache OA informa-
tion. The pattern of first connecting to the clearnet website and
downloading its index page before connecting to the onion ser-
vice happens each time O-L is invoked (whether automatically or
manually). This makes O-L trivially censorable if the destination
is censored on the open Internet. For this and other reasons, an
alternative has been designed and implemented.

2.2.2 Onion-Location via Sauteed Onions using TLS handshake.
Current O-L is not transparently consistent. O-L headers (or tags)
can direct connections to different onion addresses, and there is no
easy way to detect this without collaboration amongst the clients
directly affected. However, if the OA were based on public append-
only logs such as those which Certificate Transparency (CT) pro-
vides, then there would be a consistent public record of the OAs
available. This is a feature of sauteed-onion based O-L [10], so called
because actual onions became transparent when sauteed.
1This describes the state of O-L prior to the release of Tor Browser 13.0.12, in which
automatic O-L was removed as a result of our findings reported herein [55]. Similar
comments apply to Brave Browser. See Section 6 below.

514

.onion
torproject.org
torproject.org
torproject.org
torproject.org/about/history/
2gzyxa5ihm7nsggfxnu52rck2vv4rvmdlkiu3zzui5du4xyclen53wid.onion/about/history/
2gzyxa5ihm7nsggfxnu52rck2vv4rvmdlkiu3zzui5du4xyclen53wid.onion/about/history/

Onion-Location Measurements and Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(2)

To offer sauteed O-L using TLS handshake, a domain must first
obtain a sauteed-onion TLS certificate. This adds to the certificate, a
Subject Alternative Name (SAN) that encodes the associated onion
address as a subdomain. For example, mullvad.net has a TLS cer-
tificate with the SAN o54hon2e2vj6c7m3aqqu6uyece65by3vgoxx
hlqlsvkmacw6a7m7kiadonion.mullvad.net. Such a certificate can
easily be obtained for free from Let’s Encrypt. Instructions for this
are available at https://www.sauteed-onions.org, which also has a
sauteed-onion certificate.

Client configuration for sauteed O-L is currently implemented us-
ing a WebExtension for easy implementation and adoption, though
ultimately it is best built into the browser. Connection patterns are
the same as in current O-L, except the redirect happens not after
loading the index page but immediately upon the TLS handshake.
As a side benefit, this reduces the traffic load and cuts down on the
overall time to load the index page from the onion service.

2.2.3 Onion Association via Sauteed Onions using CT Log Monitors.
Because modern certificate issuance requires proof of submission
of a certificate to CT logs, certificate-based OA need not require
O-L, that is, OA requiring a client to connect to the registered
domain each time. One can do a lookup of, e.g., mullvad.net at
a CT-log-based certificate search site such as https://crt.sh/. The
aforementioned subdomain onion SAN appears in the returned
values under “Matching Identities”. An advantage of this approach
is that if mullvad.net is blocked by an adversary, it will not preclude
discovery of the associated onion address. Looking only at the
pattern of connections, rather than any pattern differences of traffic
served and time for human processing of returned information, this
will be roughly the same as O-L. First, there is an exit circuit to
an Internet site (following DNS lookup). This is followed by onion
service connections to the discovered associated onion address.

We assume that connecting to an onion address follows imme-
diately after the association is retrieved. If the OA lookup is done
enough in advance that there is no apparent association between
it and visiting the onion service, then the relevant pattern will
essentially be the same as just visiting an onion service. We do
not consider this case further since it assumes significant planning
and/or usability inconvenience on the part of users.

A sauteed-onion search API based on multiple CT logs has been
implemented and made available at api.sauteed-onions.org [10].
This is also available at zpadxxmoi42k45iifrzuktwqktihf5didbae
c3xo4dhvlw2hj54doiqd.onion, thus improving privacy, security,
and blocking resistance versus O-L. OA based on this onion service
is the first pattern of connections not superficially similar to O-L,
instead characterized by two successive patterns of onion service
connections. As above, if the discovery of OA is done far enough
in advance of the connection to the onion service, then the pattern
will essentially be just that of connecting to one onion service. But,
also as above, that will require planning and/or inconvenience. To
mirror the convenience offered by O-L it will be necessary to have
the association be immediately available or automatic.

2.2.4 Local Onion Association via Sauteed Onions. All of the above
means of OA are implemented and available now. A future imple-
mentation of sauteed OA could periodically use the above search
API to download all currently known onion associations and then do
each particular OA locally as needed, similar to HTTPS-Everywhere

rulesets [16]. (HTTPS-Everywhere loads into participating browsers
rulesets that locally rewrite requested HTTP URLs to associated
HTTPS URLs. As HTTPS sites have become all but ubiquitous and
HTTPS-only mode has been adopted by more browsers, HTTPS-
Everywhere has increasingly become moot [17].) As we will see
in Section 4, the number of available OA sites could grow by more
than an order of magnitude over what is currently provided by
O-L before this will begin to be comparable to what is already
downloaded regularly by Tor clients. Such periodic download is
thus not a significant overhead at existing levels. If the retrieval
of OAs from the API is done automatically and periodically, then
the pattern of connections to associated onions will be essentially
indistinguishable from any onion service access. Unlike manual
use of a certificate search or of an OA API, this will also not imply
a usability hit. If anything, it is likely to improve usability because
no additional Tor circuits or external retrieval is needed before
accessing a locally associated onion address.

2.3 Adversary model
Our attack is based on CF, not WF, but our adversary model also
follows that of prior work on WF. Also, prior work we cite shows
that WF of onion services in general is quite effective—even before
(1) applying our OLF or OAF methods which effectively reduces us
from an open world of tens of thousands of onionsites to a world
an order of magnitude smaller, and (2) using website oracles as
described below to further shrink the size of the world.

Website Fingerprinting allows an adversary observing client
traffic patterns to infer the destination to which a client is connect-
ing even if the adversary observes neither the destination end of
communication nor the specific content exchanged. WF on onion
routing and other anonymous communication systems predates
Tor itself [19]. For recent surveys of WF attacks and defenses specif-
ically on Tor, see [6, 32, 47]. Importantly, these cover Tor but do not
discuss WF on onion services. Explorations of WF that specifically
analyze onion service fingerprintability include [21, 29, 36, 37, 41].

AWF adversarymay also bemodelled to have access to aWebsite
Oracle (WO) [41]. AWO is an abstraction of a source of information
for the adversary that simply answers the question of whether a
given website was visited over Tor by someone (or something) at a
given time, for example, by observing whether a DNS lookup of a
relevant domain occurred. One can observe the timing difference of
lookups at recursive resolvers to know whether a given domain is
cached, and thus requested recently. Tor exit relays cache recently
requested domains for up to an hour, and can be probed [9]. Note
that there are many passive sources of WOs [41]. Since O-L requires
an exit connection to a domain, a WO based on DNS would greatly
reduce the False Positive Rate (FPR) of WF attacks on all but the
most popular websites visited over the Tor network [41].

Our adversary will be assumed to be conducting attacks from the
entry guard of the client. The adversary is not assumed to control
the guard of the onion service or otherwise observe the server end of
an onion service connection. The adversarymight be controlling the
guard of a particular client by pure luck. This might be a “hoovering”
adversary [20] that is fingerprinting the behavior of any clients
unlucky enough to have selected a guard under the adversary’s
control. But it may also be that the adversary has targeted the guard

515

mullvad.net
o54hon2e2vj6c7m3aqqu6uyece65by3vgoxxhlqlsvkmacw6a7m7kiadonion.mullvad.net
o54hon2e2vj6c7m3aqqu6uyece65by3vgoxxhlqlsvkmacw6a7m7kiadonion.mullvad.net
https://www.sauteed-onions.org
mullvad.net
https://crt.sh/
mullvad.net
api.sauteed-onions.org
zpadxxmoi42k45iifrzuktwqktihf5didbaec3xo4dhvlw2hj54doiqd.onion
zpadxxmoi42k45iifrzuktwqktihf5didbaec3xo4dhvlw2hj54doiqd.onion

Proceedings on Privacy Enhancing Technologies 2025(2) Syverson et al.

of particular clients for takeover, possibly expending significant
resources to do so. The clients might, for example, reside in an
area in which the adversary controls the ISP and will attempt to
compromise the guards of observed clients that are of interest for
whatever reason. In the case of such a targeting adversary, it may be
that the adversarymerely controls the ISP and somemiddle relays as
analyzed in [20] or even just middle relays [21]. Wang and Goldberg
have shown that even an ISP adversary, seeing only encrypted
TCP traffic (thus without direct access to cells, as described in the
next paragraph), can successfully split packet sequences to identify
separate page loads [58]. Our attacks should thus also work at an
ISP adversary that uses such techniques to address splitting. We
will assume a guard adversary to keep things simple.

As an entry guard, the adversary is able to observe the traffic
patterns of packets going back and forth on circuits. Tor packages
all traffic into cells, which are generally of uniform length. As
a relay, the guard can also see which circuit a cell is associated
with as well as the cell commands. Cell commands identify the
purpose of the cell within the Tor protocol. Most will be RELAY
cells, sending data up and down the circuit. Others include CREATE
cells for establishing a circuit and DESTROY cells for tearing a
circuit down. RELAY cells carrying data from the client will arrive
triple-encrypted at the guard (once for each hop in the circuit). The
guard will strip off one layer of encryption before forwarding to
the middle. RELAY cells carrying data from the destination arrive
at the guard from the middle and are double-encrypted. The guard
adds its layer of encryption before sending to the client.

We also assume a purely passive adversary. This is not so much
because actively altering, e.g., the timing patterns of packets pass-
ing through its control or dropping circuits, etc. is expected to be
difficult for the adversary to perform. Rather, it is because a purely
passive adversary is all that is needed to be extremely effective in
performing the attacks we wish to evaluate.

3 Onion-Location Fingerprinting
A fingerprinting attack can attempt to directly identify via finger-
print the specific website being accessed (i.e., WF). But fingerprint-
ing can also be used to attempt to identify the type of access rather
than the specific site. For example, Kwon et al. [29] used a CF attack
to identify that a connection was being made to an onion service,
any onion service. While Jansen et al. [21] show how to distinguish
onion service circuits based on circuit type (e.g., Rendezvous) and
relay position (e.g., client-side middle relay). Recall that CF is inher-
ently a complete world attack. And there are only four2 types in the
world of circuits originating from an ordinary client (general-use,
HSDir, Introduction, Rendezvous).

This may be of interest in its own right but may be useful even if
the adversary ultimately wants to identify the specific destination.
According to metrics.torproject.org there have been roughly 800K
onionsites available for the last few years, but the number of active
reachable sites is significantly smaller. Estimates vary greatly, but
the number in studies is typically around ten thousand or even
less [38]. Thus, identifying the site being accessed as an onionsite
greatly shrinks the world of possible destinations.

2Conflux [2, 14] was relatively recently added as a fifth type, see discussion in Section 5.

Our analysis to be described in Section 4 shows that the number
of reachable O-L sites is almost an order of magnitude smaller than
reachable onionspace, around 1,500 when we performed our study.
The primary goal of our OLF adversary will thus be to accurately
determine if a client is connecting to an O-L site.

If one adds to the adversary’s arsenal a Website Oracle, then FPR
becomes negligible [41]. As Pulls and Dahlberg observed, when
onion services moved several years ago from version 2 to version 3,
the resources needed for a WO (based on the DHT) dramatically
increased and the percentage of covered onionsites by a given WO
adversary dramatically decreased. But for O-L, which involves a
DNS lookup and a DHT lookup, a WO remains readily available
even though v3 onion services have been the default for years. In
general our adversary’s goal is to identify whether a connection
pattern constitutes O-L, or another form of OA discussed earlier.

Further, we describe in Section 4 how to identify all the O-L sites
available at a given time. Shrinking the world of onionsites in this
way by roughly an order of magnitude is extremely impactful even
without the WO that automatic O-L facilitates.

(1) Create a list of all registered domains with TLS certificates
offering O-L.

(a) Download CT logs to create a list of all SANs in TLS
certificates issued by CAs.

(b) Visit domains on the resulting list of SANs to find the
ones offering O-L.

(2) Construct datasets to be used in fingerprinting O-L.
(a) Set up a Tor client and a guard relay it will use.
(b) Create traces from the guard of visits by the client to the

list of O-L domains and onion addresses, both separately
and with O-L turned on.

(3) Train classifiers to identify the types of circuits used in O-L:
general-use, HSDir, Introduction, Rendezvous.

(4) Use the pattern of circuit types associated with O-L to decide
if observed traffic through an adversary guard matches an
O-L fingerprint.

Figure 2: Steps for an OLF attack.

Any moderately resourced attacker should be able to follow the
specific steps we took to conduct OLF. The steps are shown in
Figure 2, and more details will be set out in the next two sections.
The steps in Figure 2 describe current header-based O-L. Because
Tor Browser does not currently support TLS-handshake-based O-L
natively, our traces for it are based on simulation using curl run-
ning through our Tor client. When TLS-handshake-based O-L is
deployed, an adversary will be able to follow the steps in Figure 2
for it as well, without the need for any simulation.

OA via the onion service API described in Section 2.2.3 can either
occur at the time of connection to the associated onion address
or can utilize a list of associations periodically downloaded, as de-
scribed in Section 2.2.4. As noted, in the local case there will be no
traffic additional to what would occur in any onion service access.
So, there should be no fingerprint distinguishing local OA from any
other onion service access. A fingerprint in the case of (automated)

516

metrics.torproject.org

Onion-Location Measurements and Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(2)

lookup at the time of connection will follow a slightly different
pattern than O-L, and importantly will take an exit-based WO off
the table. (Note that unless OA lookup at a server retrieves the
entire list of OAs there, we make a large server-trust assumption:
an adversary-run server would effectively be an ideal WO. Private
Information Retrieval (PIR) or some other technique would be re-
quired to address this, such as an adaptation of the proposal to use
PIR to reduce trust in the HSDir storing the onion service descrip-
tor [13]. Discussion of possible ways to remove or reduce this trust
assumption are beyond the scope of this paper.) The guard adver-
sary and goal will be the same: look for a fingerprint indicating
that the client is making an OA from the available list.

An unknown is how prevalent patterns indicating successive
onion service connections will be, especially as onion service of-
ferings continue to grow. Existing websites make extensive use of
content loaded from other domains or from third parties when ser-
vicing connections to their index page. As the volume of providers
offering onion service access continues to grow, it is thus conceiv-
able that an onion-service-then-onion-service fingerprint will by
itself not be indicative of OA by this means. For now, it is reason-
able to assume that there is a very small increase in false positives
if identifying OA by such a fingerprint versus an O-L fingerprint.
In Section 6 we propose cover activity to add to general-purpose
circuit creation and use, so as to make it harder to distinguish the
traffic patterns of onion service access versus others. This will also
increase the FPR of such OA and could even be extended to occa-
sionally make general purpose activity harder to distinguish from
two successive onion service accesses.

4 Measurement and datasets
To carry out our OLF attack, an adversary must distinguish patterns
resulting from loading websites with and without O-L. We now
describe several Internet measurement tasks to demonstrate how
an adversary may (1) identify the set of websites that configure O-L,
and (2) construct a dataset of encrypted traffic patterns for use in
subsequent fingerprinting attacks. Figure 3 provides an overview.

4.1 Identifying sites with Onion-Location
4.1.1 Domain names in CT logs. CT is a system of logs that publish
certificates issued by trusted certificate authorities. Because several
major web browsers require that a website’s certificate is promised
to be in the logs before establishing a secure HTTPS connection,
the logged certificates form a representative dataset of sites config-
uring HTTPS. In our pursuit of finding sites with O-L, we created a
free and open-source tool named ct-sans that assembles a repro-
ducible3 dataset of Subject Alternative Names (SANs) found via CT.
Data gathering takes place in three phases:
Snapshot Record the current state of all logs. The state of a log

includes information such as the number of certificates, a
Merkle tree hash, and a log’s digital signature on its state.

Collect Download the logs up until the recorded snapshot. The
SANs found in each log are persisted to disk, but not the
complete certificates to reduce storage requirements.

3Requires that the logs remain available for download, and that the same libraries and
versions of these libraries are used for certificate and domain name parsing.

Assemble Combine the SANs found in each log. The resulting
dataset is one unique SAN per line in ascending order and
the snapshot that fixates these SANs for reproducibility.

The list of logs is managed automatically by ct-sans: Google’s
signed log list is consulted to use the same logs as Google Chrome.4
All cryptographic properties of the logs are also verified, such as
checking that the next snapshot is consistent with the current
one (given repeated snapshot phases) and that the downloaded
certificates are really included with regard to the current snapshot.

We conducted our ct-sans data gathering between 2023-03-18
and 2023-04-03. The machine used for the data collection was an
Ubuntu 22.04.2 LTS VM configured with 62.9GiB RAM, 32 (virtual)
CPU cores, and a 2TiB SSD.We used 2-16 workers for logs nearby us
(or if they contained few certificates), and 40 workers for Google’s
Xenon log which was further away from our measurement setup
(to get comparable download speeds at around 1000 certificates/s).
Each of these workers backed-off exponentially on rate-limit errors
using a library created by Google.5 The utilized bandwidth (all logs
combined) ranged from 45-388 Mbps throughout the measurement.
In total, 3.7B certificates were downloaded from 17 logs. 7,418 cer-
tificates were ignored because they or their SANs could not be
parsed.6 This resulted in 0.91B unique SANs (25.2 GiB).

The ct-sans source code (roughly 1,000 lines of Go), the exact
measurement configuration that was used, and the assembled data
set can be located at https://git.rgdd.se/ct-sans.

4.1.2 Sites with Onion-Location. We created a free and open-source
tool named onion-grab to determine which HTTPS sites config-
ure O-L. For overview, the input is a list of domain names. The
output is a list of domain names and discovered onion addresses,
categorized on if HTTP headers or HTML meta tags were used
for configuration. We opted to create our own tool rather than
integrating with existing general-purpose scanners like zgrab7 to
get fine-grained control over the number of requests/s and error
handling. For example, onion-grab can be configured with an up-
per limit for requests/s and categorizes why a given request failed
(e.g., TCP error, DNS error, TLS error, too many redirects, and time-
out). The level of output also makes it easy to resume a previously
crashed session without starting over again from scratch.

We used a measurement setup consisting of three VMs. One
VM was configured with 62.9GiB RAM, 32 (virtual) CPU cores,
and a 2TiB SSD. The other two VMs were configured with 62.9GiB
RAM, 16 (virtual) CPU cores, and 60GiB SSDs. All VMs used Ubuntu
22.04.2 LTS and shared a 1x10Gbps link with each other and other
network VMs we have no control over. To ensure there can be many
concurrent connections, the maximum number of file descriptors
were set to 1M.8 The range of ports that can be used for our outgoing
TCP connections were also increased.9 For geographical diversity,
the three VMs were configured to proxy their respective traffic

4https://github.com/google/certificate-transparency-community-site/blob/master/d
ocs/google/known-logs.md
5https://github.com/google/certificate-transparency-go/blob/master/scanner/fetch
er.go
6SANs that contain newlines are considered malformed because our dataset is line-
terminated. No other value constraints were applied to minimize dataset assumptions.
7https://github.com/zmap/zgrab2
8ulimit -Sn 1000000
9net.ipv4.ip_local_port_range="1024 65535"

517

https://git.rgdd.se/ct-sans
https://github.com/google/certificate-transparency-community-site/blob/master/docs/google/known-logs.md
https://github.com/google/certificate-transparency-community-site/blob/master/docs/google/known-logs.md
https://github.com/google/certificate-transparency-go/blob/master/scanner/fetcher.go
https://github.com/google/certificate-transparency-go/blob/master/scanner/fetcher.go
https://github.com/zmap/zgrab2

Proceedings on Privacy Enhancing Technologies 2025(2) Syverson et al.

Figure 3: Overview of our measurement and data collection process using Certificate Transparency (CT) logs to identify sites
using O-L with matching index pages and constructing four datasets for evaluating OLF.

through Frankfurt, New York, and Melbourne using Mullvad VPN.
Google’s 8.8.8.8 and 8.8.4.4 were set as primary and secondary
DNS resolvers. Google’s DNS policy permits 1,500 requests/s (per
distinct IP) without any special negotiation.10 We configured our
scans to be just below this limit at 1,450 requests/s. We could expect
each VM to spend 200-250 Mbps with such a configuration.

While measuring, we used the same list of domain names on
each VM but in randomized order to reduce the impact of transient
network errors and possible errors that only occur as a result of
the used order. Any wildcard domain name in the input dataset
was treated as a literal domain name. For example, example.org
would be measured if the input dataset contains *.example.org.
No web crawling or subdomain guessing was done to possibly
identify additional O-L sites that get HTTPS through a wildcard.
Because we do no web crawling and because our measurement is a
one-off, robots.txt or similar are not taken into account.

After informal validation of our measurement setup using the
(comparably small) Tranco top-1M list [40], we conducted a full
measurement using the 0.91B domain names discovered by ct-sans.
The full measurement took place between 2023-04-03 and 2023-04-
13. Table 1 shows our results, and also includes what we learned
about Tranco top-1M. 3,330 unique .onion addresses were config-
ured by 26,937 unique domains. Post data-collection we realized the
large number of unique domains was caused by onion-grab fol-
lowing HTTP redirects without properly taking note of this in the
results. For example, a personal website that configures an HTTP
redirect to X would in our dataset be shown as if the unique domain
configured X’s O-L using an HTML meta tag when it is in fact an
HTTP redirect (≈14k instances of this). For Tranco top-1M, 207
unique .onion addresses were found from 285 unique domains.

The onion-grab source code (≈700 lines of Go), the exact mea-
surement configuration that was used, and the collected datasets
are at https://gitlab.torproject.org/tpo/onion-services/onion-grab.

4.1.3 Sites with mirrored Onion sites. About six months after iden-
tifying sites with O-L, on 2023-10-31, we attempted to visit each
onion and the associated clearnet URLs using torify curl. We
tried five times throughout the day for each onion and associated
clearnet URL (after onion success, re-trying up to five times if we
hit a Cloudflare CAPTCHA). We temporarily stored (only) the index
HTML of the onion and the clearnet URLs, filtered out index pages
below 100 bytes and with a Levenshtein distance between onion
and clearnet pages below 0.9, saving the result. Since O-L works the
same from any page, OLF attacks do as well. We used index pages
simply to quantify the number TLS-certified domains offering O-L.

We originally had 3,330 onions with 26,984 clearnet URLs from
2023-04-03. Of the original 3,330 onions, we could still reach 2,101

10https://developers.google.com/speed/public-dns/docs/isp

Table 1: The number of unique domains that when visited
with Tor Browser would land at (or possibly redirect to) a site
configuring O-L, as well as themethod used for configuration
and how many of the advertised onion addresses are unique.
When looking at the method of discovering each unique
onion address for the combined scan, 3,077 and 281 onion
associations are available via HTTP headers and HTML tags.

Domains HTTP HTML Onions
Frankfurt 23,869 8,097 18,828 3,105

Melbourne 25,993 8,812 20,894 3,138
New York 25,827 8,850 20,655 3,283
Combined 26,937 - - 3,330
Tranco 1M 285 - - 207

onions (63%) on 2023-10-31. Of those 2,101 onions, 1,505 onions (72%)
had reachable clearnet URLs with matching index pages. The re-
maining 596 “lonely” onions (28%) had no reachable clearnet URLs
with matching index pages. Of those 596 onions, 208 (35%) had no
reachable clearnet URL (7 of those returned less than 100 bytes
though) and the remaining 388 (65%) had one or more reachable
clearnet URLs but no matching index pages. As perhaps expected,
the percentage of persistently available O-L sites is a bit higher than
persistent onion addresses in general, e.g., in a recent study of onion
services, Boshmaf et al. found “only 52.2% of the crawled domains
were available and mapped to active services on any given day” [5].
A study of the types of sites offering O-L is a natural follow-on to
our results that might shed light on the above numbers.

4.1.4 Ethical considerations. Our ct-sans measurement used the
public-good CT infrastructure. To avoid harm on the volunteer-
operated logs that need to be available for other users than us at the
same time, we did not try to speed up download times more than
what was possible using a single IP address and one HTTPS connec-
tion per log. Within these HTTPS connections, multiple concurrent
workers were used that each backed-off exponentially. The num-
ber of workers were tuned manually to find an equilibrium during
which additional workers did not result in higher throughput. As a
precaution, we ensured that it was possible for log operators to get
in touch with us by using a university IP address and setting the
HTTP agent to a value that identified us. The latter is a common but
mostly undocumented best practise when downloading the logs.

To put our onion-grabmeasurement into perspective, the index
page of each public HTTPS site was fetched three times over the
course of 10 days. Such a one-off measurement has negligible im-
pact on each individual site and does not cause harm. We ensured
that our campus network was able to handle the load of each VM,
and got permission to run our measurement by relevant system

518

https://gitlab.torproject.org/tpo/onion-services/onion-grab
https://developers.google.com/speed/public-dns/docs/isp

Onion-Location Measurements and Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(2)

administrators. As already described, no permission is needed for
the (controlled) load we put on Google’s DNS servers. Similarly,
no permission is needed to use the (paid) Mullvad VPN service
which operates at overcapacity without limits.11 To not exacerbate
congested VPN relays though, we monitored our effective band-
width and timeout errors carefully and ended up switching to a
less congested location (Frankfurt) one day into our measurements.
The timeline for this and supplementary notes are available online.

Conclusion:We are the first to identify and measure the preva-
lence of websites that configure O-L. Such associations are crit-
ical for constructing informative datasets for OLF.

4.2 Constructing datasets for fingerprinting
Once the adversary obtains a set of onion URLs that are confirmed to
be mirrors of clearnet sites, it may use the associations to construct
fingerprinting datasets. In this section, we demonstrate how to
construct such datasets, which we will use in Section 5 to evaluate
the effectiveness of our OLF attack.

4.2.1 Measurement goals. An adversary using machine learning to
conduct fingerprinting attacks generally needs informative datasets
to train classification models to differentiate various types of pat-
terns. As described in Section 3, the adversary we consider first
uses CF to help it label the types of circuits it observes from the
guard position, and then uses the sequence of circuit types and
their patterns in OAF. To be successful, it should train on the circuit
types and sequence of circuits it expects to observe in practice so
that it can accurately predict when an O-L access occurs.

4.2.2 Measurement process. We suppose that the adversary uses
website-to-onionsite associations to gather examples of the patterns
that would be observed by a guard performing OLF. Thus, we first
construct a list of website-to-onionsite pairs using the results of
our measurement from Section 4.1; recall that we have a dataset of
1,505 websites that are confirmed to be mirrored at an onion URL.
The dataset is a mapping of one onion URL to many domain names
that point to the same website. We construct a list of (onion URL,
domain name) pairs by choosing a single domain name at random
among those associated with each onion URL.

We carry out measurement of the patterns resulting from loading
the onion URLs and domain names through the Tor network. Our
measurement utilizes a Tor client that pins a guard relay under
our control in all circuits it creates. The client and guard run a
version of Tor v0.4.7.10 that we modified to support in-protocol
circuit identification and labeling (similar to the “opt-in” method
of Cherubin et al. [6]). Our Tor modifications enable us to tag each
client session (start Tor, load URL, stop Tor) with a string label.
Whenever our client constructs a circuit through our guard, the
client immediately sends to the guard a special SIGNAL cell type
that embeds the session label, URL, and type of circuit created by
the client. Upon receiving the SIGNAL cell from our client, our guard
marks the circuit for measurement and records the label, circuit
type, and the type and directionality of each of the first 5,000 cells
sent in the circuit for subsequent analysis.
11See https://mullvad.net/en/help/improve-slow-speeds- throttling and https:
//mullvad.net/en/blog/unlimited-traffic-volume.

Table 2: Counts of circuit types composing our OLF datasets.

Dataset General HSDir. Intro. Rend. Total
clearnet 29,697 10,627 10,195 10,083 60,602

onion 19,251 24,491 18,592 18,400 80,734
autoloc 31,916 21,888 18,159 17,998 89,961

curl 3,994 0 0 0 3,994
Total 84,858 57,006 46,946 46,481 235,291

With the Tor client and relay measurement process in place, we
create an automated Python script using the open-source stem and
tbselenium packages [1]. For each URL in a configured list, the
script creates an ephemeral Tor client configured with a unique
session id, loads the URL using Tor Browser, and then stops the
ephemeral client. The script also optionally sets the Tor Browser
preference privacy.prioritizeonions.enabled to true in order
to enable O-L automatic redirect. Note that Tor Browser is config-
ured in its Safest level, which includes disabling JavaScript. From
a fingerprinting perspective, this is the most conservative both
because it means that any differentiation discernible from the dis-
abled features are not available to the attacker and because it re-
flects fingerprinting of clients even if they have opted for the most
conservative settings.

4.2.3 Datasets. Weapply themeasurement process described above
to our set of 1,505 web and onion URL pairs as follows:
clearnet Load each of the 1,505 web URLs through Tor. Repeat

6 times.
onion Load each of the 1,505 onion URLs through Tor. Repeat

6 times.
autoloc Load each of the 1,505 web URLs through Tor after en-

abling O-L automatic redirect. Repeat 6 times.
curl Load a standard TLS page using curl (through our Tor client)

that results in a 302 redirect, to simulate a Sauteed Onion
TLS handshake. Repeat 2,000 times.

We collect the resulting circuit traces and labels as observed by
our guard relay into an independent dataset for each measurement
type. Each URL load resulted in the creation of numerous circuits
that are all tied to the same client session. We show in Table 2 the
counts of the number of circuit traces of each type of circuit that
we recorded in each dataset. As shown in the table, we collected a
total of 235,291 circuits, 84,858 (36%) of which are general-purpose
circuits, 57,006 (24%) of which are HSDir circuits, 46,946 (20%) of
which are introduction circuits, and 46,481 (20%) of which are ren-
dezvous circuits.

Note that circuits of every type are generally observed in all but
the curl dataset because for each client session we use Tor Browser
and follow its standard bootstrapping procedures (including onion
service update checks). The curl dataset was collected without Tor
Browser and thus update checks do not occur. Although we report
the counts of all observed circuits here, some are filtered out during
our fingerprinting evaluation as described in Section 5.

4.2.4 Ethical considerations. We conducted data measurement us-
ing the public Tor network. We limited the impact of our mea-
surement in several ways. First, all circuits that are measured by
our guard relay are created by a client under our control. This is

519

https://mullvad.net/en/help/improve-slow-speeds-throttling
https://mullvad.net/en/blog/unlimited-traffic-volume
https://mullvad.net/en/blog/unlimited-traffic-volume

Proceedings on Privacy Enhancing Technologies 2025(2) Syverson et al.

guaranteed through the use of the special SIGNAL cell type that we
created and that is only understood by our measurement client and
relay. Second, our client pins our guard relay in the first hop of
all created circuits, which reduces our load on other public relays.
Third, we limit our measurement to just six instances of each URL
for each dataset (1,000 instances of one URL for the curl dataset),
since this was enough to evaluate our hypothesis.

Conclusion: We demonstrate how an adversary can use ex-
isting methods and open-source tools to construct encrypted-
traffic datasets for OLF.

5 Onion-Location Fingerprinting attack results
Recall that our adversary is a guard that can link all circuits belong-
ing to a client, reliably determine the start and end of each circuit,
and observe individual cells. We break the problem down into a
number of binary classifiers, each of which identifies a particular
type of circuit (or later, activity). The binary classifiers are trained
on two classes: the target circuit (or activity) type and all other
circuits. The classes come from filtering the datasets collected in
Section 4. Using one or more of these binary classifiers, we show
that a guard attacker can reliably do CF and then use that for OLF,
thus reducing the possible-destination anonymity set of a client to
a small world (relative to all possible destinations, and even relative
to just all onionsite destinations).

We split our datasets 8:1:1, stratified by label, i.e., proportionally
8:1:1 for each label, but the labels might not be balanced. (We note
the baseline accuracy in each experiment, i.e., the accuracy if the
classifier just always picks the most prevalent label.) Results are
presented as the mean and standard deviation accuracy and false
positive rate (FPR) from 10-fold cross validation. We use the WF
attack Deep Fingerprinting (DF) [48], which only considers cell
sequences12 and completely ignores time. For CF, we use the first
512 cells of traces (because we are fingerprinting handshakes) and
for OLFwe use up to 5000 cells (the default DF input size).We update
DF to use 200 epochs with an early stop of 10 epochs on the training
loss. We use the last model for testing (ignoring the validation
results). It is likely that a combination of hyperparameter tuning,
a more sophisticated model using time and approach to training,
data collection artifacts and/or randomized learning algorithms will
explain the last fractions of a percentage point of accuracy missing
from making the following fingerprinting results perfect.

As a pre-processing step, we filtered out our data collection
SIGNAL cell (see Section 4) and all general circuits with an observ-
able (to the guard) BEGIN_DIR relay command. Note that all datasets
but the curl dataset contain onion traffic, probably due to some
Tor Browser extension checking for updates and the prevalence of
Cloudflare with alt-svc headers.

5.1 Circuit Fingerprinting
To perform OLF we first show that it is still possible to reliably
perform CF, as first shown by Kwon et al. [29], despite deployed
partial defenses in Tor [25] after Kwon et al.’s work. A limitation
of our work is that we intentionally excluded the recently added
12Representing a circuit trace as a sequence of numbers with -1 for cells received and
1 for cells sent, padded with zeroes if lacking cells to a fixed length.

Conflux [2, 14] circuits. We suspect that the Conflux handshake is
fingerprintable as well (as noted by Goulet and Perry [14]), espe-
cially when taking timing into account, but we leave this for future
work. The types of circuits created by clients (that are not serv-
ing onion services, which is discernible by the guard) are general,
introductory, rendezvous, and HSDir circuits. This constitutes a
complete world. Any discrepancy between circuit counts below
and in Table 2 is due to our pre-processing on general circuits.

5.1.1 General circuits. To fingerprint general exit circuits, we cre-
ate two classes by filtering: include only general circuits from
the clearnet dataset (21,795 samples) and exclude all general cir-
cuits from the clearnet dataset (30,905 samples). We get accuracy
99.94±0.03% (58.64% baseline) and FPR 0.02±0.02%.

5.1.2 HSDir circuits. To fingerprint HSDir circuits, we create two
classes by filtering: include only HSDir circuits from the onion
dataset (24,491 samples) and exclude all HSDir circuits from the
onion dataset (48,323 samples).We get accuracy 99.91±0.02% (66.36%
baseline) and FPR 0.10±0.05%.

5.1.3 Introductory circuits. To fingerprint introductory circuits,
we create two classes by filtering: include only introductory cir-
cuits from the onion dataset (18,592 samples) and exclude all intro-
ductory circuits from the onion dataset (54,222 samples). We get
accuracy 99.95±0.03% (74.47% baseline) and FPR 0.03±0.02%.

5.1.4 Rendezvous circuits. To fingerprint rendezvous circuits, we
create two classes by filtering: include only rendezvous circuits
from the onion dataset (18,400 samples) and exclude all rendezvous
circuits from the onion dataset (54,414 samples). We get accuracy
99.94±0.02% (74.73% baseline) and FPR 0.03±0.02%.

Conclusion: Circuit fingerprinting of general, HSDir, introduc-
tory, and rendezvous circuits is practically perfect for a guard
attacker, with at least 99.9% accuracy and a FPR below 0.1%.

5.2 Onion Association Fingerprinting
Armed with the ability to perform CF, we can now use that for
OAF. We show that fingerprinting is reliable, further reducing the
potential destination anonymity sets of clients. Figure 4 gives an
overview complementing the following sections.

For OAF, we have to consider all circuits that are part of a web-
site visit, as observed by the guard. During a time window in which
the attacker considers a website visit to be ongoing, the attacker
first uses CF to identify the kinds of circuits. The attacker looks for
a general circuit followed by a rendezvous circuit with the HSDir
and introductory circuits in between. The HSDir and introductory
circuits are useful for CF, but since they will have the same finger-
print regardless of the visited onionsite they will not play a role in
creating classifiers. We also note that an important characteristic of
automatic and manual OLF is that the attacker can use the overlap
between the general and rendezvous circuits to build a better clas-
sifier because both circuits will transport the same website, likely
with the same page. Since the general and rendezvous circuits of
an OLF session should overlap in the content they carry, classifiers
can learn to detect this overlap, as our attacks demonstrate and as
we experimentally evaluate. (See Section 5.2.2 below.)

520

Onion-Location Measurements and Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(2)

Automatic Onion-Location Circuit Fingerprinting
--------- general circuit ---
HSDir circuit
* introduction circuit ***
++++++++++++++++++ rendezvous circuit +++

Manual Onion-Location

#
*
++++++++++++++++++

Onion-Location via Sauteed Onions using TLS handshake

#
*
++++++++++++++++++

Onion association via Sauteed Onions inline API
+++++

#
*
++++++++++++++++++

Figure 4: Overview of the different types of circuits and their
use in O-L techniques. An attacker can use CF to identify
circuits, and then use OAF to further reduce the potential
destination anonymity sets of clients.

5.2.1 Classes, filtering, and input traces. Our goal is yet again to
create binary classifiers. Here, we stress the difference between the
positive and negative classes. The positive class is the target for what
we are trying to fingerprint, while the negative class is everything
else. An attacker, as part of the training data, is free to define the
classes as they see fit. However, it is vital that the negative class
is representative of the real-world traffic the attacker expects to
see. Therefore, the only (indirect) filtering for the negative class is
based on the existence of circuits: per definition, if a website visit
does not contain a general or rendezvous circuit, it is not an O-L
(or most kinds of OA) website visit (and trivially classified).

For the positive class—that defines the fingerprinting target—we
perform three forms of filtering in our dataset. First, we filter out
circuits to Cloudflare and their onion service13, which uses alt-svc
headers to transparently reroute to onionsites connection requests
for content they host. Second, we filter out circuits caused by the
Tor Browser extension HTTPS-Everywhere to SecureDrop, which
hosts rulesets [49] that was checked on launch of Tor Browser
in our data collection (for every website visit). Finally, for OLF,
we set a minimum circuit length of 100 cells on both the general
and rendezvous circuits. This is to ensure that the circuits are not
just broken connections, and for utilizing the overlap between
the general and rendezvous circuits. We emphasize again that the
negative class is not filtered. Filtering of the positive class would
not be needed if more care was taken during data collection to
ensure that only fully complete website visits were included and
only circuits that were part of the website visit were included.

With a more tailored classifier than DF, one could for example
put each observed circuit during a website visit into a separate
input to the classifier. Instead, we do a poor researcher’s version by
concatenating the first 2500 cells from the general circuit followed
by the first 2500 cells from the rend circuit as the input trace. Note
13https://blog.cloudflare.com/cloudflare-onion-service

that this works because the rend circuit input always starts at
position 2500 in the input trace. If cells are missing, we pad with
zeroes. For the positive class, in the case where website visits have
more than one general or rendezvous circuit after filtering, we
use the largest circuit. For the negative class, in case of more than
one circuit of any kind, we add every combination of general and
rendezvous circuits to the negative class.

5.2.2 Automatic Onion-Location. We use the autoloc dataset for
the positive class, using the largest general circuit and the largest
rend circuit per visit (minimum 100 cells each), resulting in 4,392
samples. We consider two sources for the negative class: the
clearnet dataset and the onion dataset.

With the clearnet dataset as the negative class, we have 14,143
samples. We get accuracy 99.87±0.09% (76.3% baseline) and FPR
0.16±0.10%. Note the skew towards the negative class.

With the onion dataset as the negative class, we have 4,685
samples. We get accuracy 98.81±0.74% (51.6% baseline) and FPR
1.23±0.74%. Note that in the onion dataset, the negative class is
more balanced. However, 8,064 out of 9,566 website visits (84%)
had no general circuit at all and were thus not considered for the
negative class. Adjusting for this, the accuracy would be 99.8%
((8064/9566) ∗ 1.0 + (1 − 8064/9566) ∗ 0.9881 = 0.9981) with a FPR
of 0.2% ((1 − 8064/9566) ∗ 0.0123 = 0.0019).

To verify that fingerprinting is also robust in the presence of
unknown O-L websites (e.g., due to new O-L websites being de-
ployed after the attacker enumerates all O-L websites using the
technique in Section 4), we also ran our experiment by splitting our
dataset probabilistically based on website: for each website, with
some probability, assign all positive and negative samples to either
the training or testing set. This is similar to open-world WF, where
unknown websites are present in the unmonitored set.

For the clearnet dataset, an 80/20 split (i.e., 80% used for train-
ing and 20% reserved for testing) resulted in accuracy 99.70±0.18%
and FPR 0.30±0.23%, a 50/50 split resulted in accuracy 99.77±0.13%
and FPR 0.24±0.13%, and a 30/70 split resulted in accuracy 99.68±0.09%
and FPR 0.22±0.09%. Note that as the testing set size increases, the
confidence interval shrinks and the accuracy remains within the
confidence interval of the smaller testing sets. Similarly for FPR.
This indicates that the attack generalizes beyond websites, because
it is based on circuit kinds and overlap, not website content alone
(unlikeWF). The results for the onion dataset is similar (accounting
for the 84% with no general circuit).

The 100-cell minimum for the general and rendezvous circuits in
the positive class may seem arbitrary. We re-ran our experiments
with decreasing minimum lengths, resulting in slowly degrading
fingerprintability (albeit minor, comparing minimum length 100
and 0 the accuracy decreases from 99.87%±0.09% to 97.1%±0.39%
and FPR increases from 0.16±0.10% to 1.24%±0.57%). However, we
argue that the overlap is essential to consider in practice.

To establish how informative the overlap between the general
and rendezvous circuits is in O-L, we create an artificial negative
dataset. The dataset is constructed by randomly pairing general and
rendezvous circuits from both the clearnet and onion datasets
into samples, with the same 100-cell minimum and filtering as for
the positive class. This ensures that the distinguishing factor is the
overlap in content between circuits (with high probability), and not

521

https://blog.cloudflare.com/cloudflare-onion-service

Proceedings on Privacy Enhancing Technologies 2025(2) Syverson et al.

lengths or kinds of circuits. With 5,397 negative samples, we get
accuracy 91.23±1.17% (55.1% baseline) and FPR 9.36±2.09%. That
DF—a WF attack—can correlate general and rend circuits to such a
high degree is a strong indication that the overlap is a distinguisher
on its own. It is likely that flow correlation attacks could do even
better [34]. Traces from Tor Browser with the Standard security
level (where JavaScript is enabled) would likely also greatly im-
prove WF and correlation attacks. We note that making a classifier
that determines if a general circuit and a rendezvous circuit carries
overlapping website traffic is closely related to both end-to-end
correlation and WF. Specifically, the proposed one-page WF set-
ting [57] by Wang showed this to be particularly advantageous to
the attacker. We leave this as future work.

5.2.3 Manual Onion-Location. Identical to automatic O-L finger-
printing, except that the duration between the general and ren-
dezvous circuits may be longer. This may lead to a larger number
of circuits being observed in the time window, but the attacker
can still use the—increasingly longer—overlap between the general
and rendezvous circuits to filter out false positives. We did not
experimentally evaluate manual O-L because it comes down to user
behavior and background traffic assumptions where we lack real
data from the Tor network (and means of ethically collecting it).
Given what we know, it is plausible both that user behavior in the
wild will significantly affect FPR and that it will not. For example,
if users visit other clearnet or onion sites before eventually clicking
the “onion available” button that could complicate OLF. But, users
inclined to click as soon as the button appears would be just as
fingerprintable as in automatic O-L.

5.2.4 Onion-Location via Sauteed Onions using TLS handshake. As
a first step, an attacker would use CF to identify general circuits. A
special case of a general circuit is when the client is redirected to an
onion service by identifying its address as part of a TLS certificate,
assumed to immediately stop any further requests on the general
circuit. We create our two classes by using the tailored curl dataset
(1,991 samples) and filter to include only general circuits from the
clearnet dataset (21,795 samples). We get accuracy 100.00±0.01%
(91.63% baseline) and FPR 0.00±0.00%.

5.2.5 Onion association via Sauteed Onions inline API. By neces-
sity, this would involve at least two rendezvous circuits: one for
communicating with the Sauteed Onions API (either newly created
or reused, depending on implementation) and one for the onion ser-
vice. If the API lookup does not block an additional general circuit
will be observed, potentially with overlapping web traffic as for the
O-L case. We did not experimentally evaluate this type of OA. As
we discussed at the end of Section 3, it is possible that as onion
service use continues to grow, such circuit patterns may become
more common for other purposes than OA. For now, however, it is
reasonable to assume at most a small increase in FPR over OLF.

Conclusion: OAF builds upon CF and is practical, allowing
a guard attacker to greatly reduce the number of candidate
websites, as long as the OA method results in creating and
using additional active circuits.

6 Discussion
Fundamentally, our results in Section 5 show that the transition
from clearnet to onion is extremely fingerprintable. This transition
may happen due to O-L, users clicking an onion link from a clearnet
website, users simply going to an onion after visiting an unrelated
clearnet website, or something else. We do not have data from the
live Tor network to say how prevalent these transitions are.

When the transition from clearnet to onion is to the samewebsite—
or even the same webpage as in Tor Browser today—then overlap
of traffic in the general and rendezvous circuits will likely be de-
tectable. Preventing detection is akin to defending againstWF in the
challenging one-page setting [57]. There is also a tradeoff between
overlap and the attacker’s timing signal if redirecting before a page
has finished. The extreme here is redirects based on the certificate
in the TLS handshake with no overlap but a clear timing signal.

Our results in Section 4 show that the work needed to uncover
all recent O-L sites is well within the capabilities of even a relatively
low-resource adversary. Thus, suppose an adversary Alice has done
the CT and O-L dataset generation as well as the classifier training
we have done; that Alice owns the guard of a client Bob that she
intends to fingerprint; that example.com is a site among the roughly
1500 O-L sites on Alice’s list; and that Bob visits example.com and
follows an automated O-L redirect to the associated onionsite. (And
assume for simplicity because it is left for future work that circuits
are not using Conflux.) Recall that the attacks we analyze use data
gathered by accessing real sites over the live Tor network via a guard
we controlled. The site access fingerprints used in our analysis are
thus real; analysis of detecting them is based on simulated rather
than live connections in order to not place real Tor users at risk.

Our analyses show that Alice will succeed at an OLF of the
connections to example.com and its onionsite with an accuracy of at
least 99.8% and an FPR of nomore than 0.2%. This is itself significant.
But further, the limit to on the order of 1500 sites may prompt other
reactions or other approaches to identify the destination, depending
on the sites on the O-L list and adversary goals and capabilities.

Even if Alice uses only WF to identify the specific O-L site Bob is
visiting and the particular site example.com is specifically targeted,
previous results imply that accuracy of WF by Alice of just the
exit connection can be roughly 95% [6]. If the target is the entire
list, then the story is more complex and mostly less successful
for an adversary conducting only a basic WF of a clearweb site.
But, from the OLF attack Alice also knows the destination is an
O-L site: any exit destination identified but not on the O-L list
can be ruled out or trivially checked to see if it began offering
O-L since the list was created. Since the base rate of onion service
connections is only 5% of Tor traffic [21], OLF should dramatically
improve accuracy and reduce FPR over an exit destinationWF alone.
Similarly, O-L facilitates Website Oracles (such as via DNS [9]),
which have been shown to greatly improve accuracy and reduce
FPR over WF of exit destinations alone [41]. Specific numbers for
the results of a combined OLF, WO, and WF attack that O-L enables
would require experiments and analysis beyond the scope of this
paper, but the result should be a dramatic improvement in successful
site identification over a WF attack by itself.

It is instructive to contrast O-L with onion discovery by simply
putting on a website a link to an associated onion address. This may

522

Onion-Location Measurements and Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(2)

be less convenient than O-L, but a circuit fingerprint of someone
following the link in this case effectively identifies a connection to
some onionsite or other. Since there is no systematic and practical
way for the adversary to discover all onionsites after v3 [56], the
adversary would need to have already been targeting the site or
otherwise have discovered the onion address for a correct identifi-
cation from the guard position to even be possible. By contrast, the
adversary can systematically construct a list on which all recently
active O-L sites will appear. Thus, correctly fingerprinting as O-L
virtually guarantees that the onion address is one of the roughly
1500 on that list, whether or not the adversary had previously been
aware of it. Note that even if we just assume that somehow the
connection is to a known stable onionsite, that still makes for a
possibility set at least 7-10 times larger than the list of O-L sites.

This work was done in coordination and collaboration with the
Tor Project, and we will continue supporting them as they work to
resolve problems we have uncovered. Our recommendations split
into two groups: (1) things that are relatively straightforward to
carry out and that we believe should be done immediately. (2) rec-
ommendations for research into making OA less fingerprintable.

6.1 Immediate recommendations
Simply offering an onionsite provides advantages versus just en-
couraging Tor access to a registered domain [33]. But the means of
discovering the association between these matters with respect to
resistance to multiple attacks. As noted in previous work, problems
with O-L include facilitating censorship and hijack [10, 49], and as
we have shown in this paper, facilitating fingerprinting.

For some sites, a significant fraction of their users would be at
personal risk if fingerprinting revealed the user to be visiting that
site. These include whistleblower sites and dissident or controver-
sial information sites whose adversaries are well-resourced and
repressive. For such sites, the convenience of O-L may not justify
the risk. We do not know, however, what the fingerprint risk is (for
example FPR) for manual O-L, nor can we easily decide which sites
have user populations at significant risk. And manual O-L does
provide convenient onion discovery for users. We thus have not
recommended disabling manual O-L in general in the near future.
But we do know that automated O-L is extremely fingerprintable
due to its automated and deterministic nature.

Immediate recommendation: Tor Browser should immedi-
ately stop offering an automatic O-L option.

The work reported in this paper was done in coordination with
other members and collaborators of the Tor Project. Automatic
O-L was removed from Tor Browser as of version 13.0.12, released
March 19, 2024 [55]. Our presentation herein has been based in
Tor Browser. Brave Browser (https://brave.com) also supports
Tor network connections and onion service access. Brave Browser
offered essentially the same options of manual and automatic O-L
up until March 2024 and was thus subject to the same OLF attacks.
They similarly removed automatic O-L at that time.

Like its header-based counterparts, automated O-L based on
sauteed-onion certificates would be highly fingerprintable. Sauteed-
onion certificates do, however, enable right now manual use of CT

log monitors for OA that is more secure in various ways, more
resistant to blocking, and less fingerprintable (and less easy to use)
than O-L, as well as not subject to easy Website Oracles. And since
there is as yet no browser support for CT-log-monitor-based O-L,
such manual OA is the only form of OA available using CT log
monitors. Sauteed OA is thus a somewhat user-friendly form of
OA that also encourages growth of associated-onion space. And a
sauteed-onion certificate is generally free and easy to obtain [10].
A sauteed-onion certificate does not by itself reduce fingerprint-
ability. But, especially for any domain that is likely to be subject to
Internet blocks or disruption or is concerned about the transparent
consistency of its OA, there is benefit and little cost to doing so.

6.2 Research recommendations
CF underpins the fingerprintability of most available approaches
to OA and onion services in general. Improving CF defenses is
thus a natural research direction. Ideally, rendezvous and general-
purpose circuits should be indistinguishable, and fake HSDir and
introductory circuits are needed as part of general-purpose circuits
to not be a clear distinguisher. Kadianakis et al. [25] already did
much of the ground work for such defenses, but work remains, also
around the use of the Tor Circuit Padding Framework [39] for real
deployment in the near to mid term. As noted, Tor already ships
with padding machines, but they are not effective (see Section 5).

Within the Circuit Padding Framework, Tor could also deploy
one ormore practicalWF defenses [32], perhaps after tailoring them
to onionsites. While the real-world impact of WF attacks has been
debated, the small world of onionsites has been recognized as more
fingerprintable [21, 29, 36, 37, 41], and our work shows that the
O-L world is even smaller. Note that deploying WF defenses only
for rendezvous circuits may confound other efforts to reduce cir-
cuit fingerprintability, because web traffic over rendezvous circuits
would potentially be even more peculiar than it is now [25].

Research recommendation: Continue the work of Kadianakis
et al. [25] on CF defenses for the Tor Circuit Padding Frame-
work [39]. Investigate practical WF defenses [32] and CF de-
fenses that are tailored to onionsites.

Any automated O-L is highly susceptible to OLF, similarly for
automated OA via a sauteed-onion-based discovery server at an
onion service. For a subsequent WF attack, automated OA from an
onion-service-hosted server will avoid easy exit Website Oracles,
but until PIR or similar is developed for this setting we must make
the potentially show-stopping assumption that the server itself
is trusted to not act as an oracle for a WF adversary. Moving to
local OA would raise the OA anonymity set by roughly an order of
magnitude to that of general onionsite access. Local association lists
could be based on periodic retrievals of all OAs from the sauteed-
onion search API, as described in Section 2.2.4 or built by other
criteria. Stability and dynamics of the OA site list is an important
deployment question for how often such retrievals should occur.

Another open deployment question is simply how much the
list of OAs could grow before it becomes too untenably large to
download to clients regularly. It might take some time if growth is
organic, but it might happen much faster if, intentionally or not,
many OAs are set up without sustained intent to use the association.

523

https://brave.com

Proceedings on Privacy Enhancing Technologies 2025(2) Syverson et al.

For example, someone who wants to overwhelm the clients of this
system could obtain sauteed-onion certificates for large numbers
of subdomains of registered domains they own.

If it were possible to include both the domain name and the
onion address in a single URL understandable to both Tor-aware
and Tor-unaware browsers, it might be possible to include among
the addresses comprising the nodes of the Web, addresses that have
OA effectively built in. This could potentially avoid the CF issues
of realtime lookup from a remote server and also the scaling issues
of local lists of OAs. Self-Autheniticating Traditional Addresses
(SATAs) [49, 50] were designed to address limitations of the existing
Web authentication infrastructure, but they also employ just such
addresses. They are thus another possible avenue to secure, scalable,
fingerprint resistant OA.

Research recommendation: Investigate schemes that address
or circumvent the scaling limitations of local onion association.

7 Related work
There are many different approaches to associating onion addresses
with domain names. These include Onion-Location and sauteed
onions, both of which have been described above.

The alt-svc approach, briefly described above, uses an HTTP
header sent when connecting to the registered domain, as does O-L.
Unlike O-L, the header has a max age parameter, so re-routing to
the onion address does not require connecting to the original do-
main until the header expires. This might seem a good thing with
respect to fingerprinting resistance: during that time there will
only be onion service connections for that domain. But, there is no
easy way for the user (or the browser) to know whether re-routing
is taking place, thus no easy way to know how fingerprintable a
connection to an alt-svc-supporting domain is (although a guard
adversary should be able to tell easily). Also, onion alt services
facilitate targeted tracking of users and have other problems [50].
Therefore, alt-svc support in Tor Browser remains extremely prob-
lematic despite potential gains in terms of fingerprinting resistance.

Another approach is to use DNS records, either by means of
an HTTPS Resource Record, as proposed in RFC 9460 [46], or an-
other existing record such as the TXT or SRV record. A potential
fingerprintability advantage over O-L is that there would not need
to be an exit connection to the domain for redirection or “clicked”
selection to connect to the onion service. There would still need
to be a DNS lookup, however. Thus, the circuit fingerprints would
be comparable to those of O-L, and this would still support a WO
fingerprinting of the onion association. This approach as well as
the alt-svc approach and O-L and sauteed onions are described on
the Tor Project page on “Traditional address translation” [54].

Many prior works measured CT logs in various ways, e.g., for
the purpose of studying the log system itself [15, 26, 31] or the cer-
tificates that are being published [27, 28, 35, 42, 45]. Some develop
their own tools to measure the logs in ad-hoc ways, whereas others
depend on existing certificate datasets such as the one Censys puts
together from CT and active scans [12]. Unlike prior work, our tool
for measuring CT logs is tailored for easily creating a reproducible
dataset of SANs that is tied to the logs’ cryptographic states. Such

a dataset can be used for a wide variety of active HTTPS/TLS mea-
surements [51]. We conducted one such measurement ourselves,
informing for the first time on the prevalence of sites configuring
O-L as well as the characteristics of how such configuration is done.

As noted, we believe ours to be the first study of the number of
O-L sites. The current number of onionsites in general is not easy to
assess, and reported numbers vary widely. The Tor Metrics portal
has been reporting roughly 800K addresses for over a year. But this
is based on the number of addresses in the directory system, which
is probably more than forty times the number of publicly reachable
addresses. Pastor-Galindo et al. recently published a survey of onion
address measurement studies [38] reflecting widely varying num-
bers. Most studies covering onion service availability have found
that most addresses are unreachable or highly volatile. Wang et al.
found, however, that of the roughly 50K addresses they deemed
“public” based on being retrievable from popular search engines,
roughly 80% were available roughly 80% of the time and 10% were
available over 90% of the time [56]. Another factor affecting any
measurement studies is that Tor moved from v2 to v3 onion services
a few years ago (support for v2 in stable Tor clients was removed
by the end of 2021). v3 onion services not only have incompatibly
different address formats, but descriptors became encrypted, and
where they are stored in the DHT became unpredictable. Thus,
studies done more than a few years ago are even less likely to be
reflective of the state of onionspace.

Our methodology of measuring cell traces at a relay using in-
protocol client-to-relay signaling was first set out by Cherubin
et al. [6] and recently used to create GTT23, the largest existing
dataset of genuine Tor traces [23, 24]. Many other studies of website
fingerprinting have constructed datasets of cell traces by program-
matically accessing websites through the Tor network. The most
recent examples are the Drift dataset [4], the Wikipedia brows-
ing dataset [22], the Multi-tab dataset [11], and the BigEnough
dataset [32]. However, relatively few existing datasets contain cell
traces collected from onion service circuits [18], and we are not
aware of any which contain associated traces of the same website
loaded through both clearnet and onion services, as our dataset
does. Additionally, we are the first to measure the cell traces result-
ing from automatic O-L redirection, which was required in order
to explore the research questions in this paper.

8 Conclusion
We have provided the first Internet-wide measurement of Onion-
Location, finding 1505 stable sites offeringO-L.We have also created
open-source tools to repeat such measurements, thus supporting
the ability to track the state of O-L deployment over time. We have
also performed fingerprintability analysis on O-L and other onion
association schemes showing that O-L is easily fingerprintable by
a guard adversary with high accuracy. Based on our analysis, we
make several recommendations including some for easy immediate
changes to counter O-L fingerprintability and others for research to
create onion association solutions without the limitations of O-L.

Artifacts availability
https://github.com/pylls/ol-measurements-and-fp and [7, 8].

524

https://github.com/pylls/ol-measurements-and-fp

Onion-Location Measurements and Fingerprinting Proceedings on Privacy Enhancing Technologies 2025(2)

Acknowledgments
We would like to thank Björn Töpel for debugging help when cre-
ating onion-grab. We would also like to thank the Tor Project,
especially Silvio Rhatto and Micah Anderson, for helpful comments
and discussions while researching and writing this paper; as well
as Pier Angelo Vendrame for reporting a bug in how onion-grab
noted down results for sites with HTTP redirects to other O-L sites.
Some authors used GitHub Copilot and Grammarly integrated into
their LATEX editor to revise the text in the paper (no explicit prompt-
ing, continuous feedback). Work by Tobias Pulls funded by the
Knowledge Foundation of Sweden.

References
[1] Gunes Acar, Marc Juarez, and individual contributors. 2023. tor-browser-selenium

- Tor Browser automation with Selenium. https://github.com/webfp/tor-browser-
selenium.

[2] Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. 2013. The path
less travelled: Overcoming Tor’s bottlenecks with traffic splitting. In Privacy
Enhancing Technologies: 13th International Workshop, PETS 2006. Springer-Verlag,
LNCS 7981. https://doi.org/10.1007/978-3-642-39077-7_8

[3] Jacob Appelbaum and Alec Muffett. 2015. The ".onion" Special-Use Domain
Name. RFC 7686. https://doi.org/10.17487/RFC7686

[4] Alireza Bahramali, Ardavan Bozorgi, and Amir Houmansadr. 2023. Realistic
Website Fingerprinting By Augmenting Network Traces. In ACM CCS 2023:
30th Conference on Computer and Communications Security. ACM Press. https:
//doi.org/10.1145/3576915.3616639

[5] Yazan Boshmaf, Isuranga Perera, Udesh Kumarasinghe, Sajitha Liyanage, and
HusamAl Jawaheri. 2023. Dizzy: Large-Scale Crawling and Analysis of Onion Ser-
vices. In Proceedings of the 18th International Conference on Availability, Reliability
and Security (Benevento, Italy) (ARES ’23). Association for Computing Machinery,
New York, NY, USA, Article 9, 11 pages. https://doi.org/10.1145/3600160.3600167

[6] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online website
fingerprinting: Evaluating website fingerprinting attacks on Tor in the real world.
In 31st USENIX Security Symposium (USENIX Security 22). 753–770.

[7] Rasmus Dahlberg. 2023. ct-sans. https://git.rgdd.se/ct-sans.
[8] Rasmus Dahlberg. 2023. onion-grab. https://gitlab.torproject.org/tpo/onion-

services/onion-grab.
[9] Rasmus Dahlberg and Tobias Pulls. 2023. Timeless Timing Attacks and Preload

Defenses in Tor’s DNS Cache. In 32nd USENIX Security Symposium (USENIX
Security 23).

[10] Rasmus Dahlberg, Paul Syverson, Linus Nordberg, and Matthew Finkel. 2022.
Sauteed Onions: Transparent Associations from Domain Names to Onion Ad-
dresses. In Proceedings of the 21st ACM Workshop on Workshop on Privacy in the
Electronic Society (WPES ’22). ACM, ACM Press, 35–40. https://doi.org/10.1145/
3559613.3563208

[11] Xinhao Deng, Qilei Yin, Zhuotao Liu, Xiyuan Zhao, Qi Li, Mingwei Xu, Ke Xu,
and Jianping Wu. 2023. Robust Multi-tab Website Fingerprinting Attacks in the
Wild. In 2023 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 1005–1022. https://doi.org/10.1109/SP46215.2023.10179464

[12] Zakir Durumeric, David Adrian, Ariana Mirian, Michael D. Bailey, and J. Alex Hal-
derman. 2015. A Search Engine Backed by Internet-Wide Scanning. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher
Kruegel (Eds.). ACM, 542–553. https://doi.org/10.1145/2810103.2813703

[13] Edward Eaton, Sajin Sasy, and Ian Goldberg. 2022. Improving the Privacy of
Tor Onion Services. In Applied Cryptography and Network Security (ACNS 2022),
Giuseppe Ateniese and Daniele Venturi (Eds.). Springer-Verlag, LNCS 13269,
273–292. https://doi.org/10.1007/978-3-031-09234-3_14

[14] David Goulet and Mike Perry. 2020. Overcoming Tor’s Bottlenecks
with Traffic Splitting. https://gitlab.torproject.org/tpo/core/torspec/-
/raw/main/proposals/329-traffic-splitting.txt.

[15] Josef Gustafsson, Gustaf Overier, Martin F. Arlitt, and Niklas Carlsson. 2017.
A First Look at the CT Landscape: Certificate Transparency Logs in Practice.
In Passive and Active Measurement - 18th International Conference, PAM 2017,
Sydney, NSW, Australia, March 30-31, 2017, Proceedings (Lecture Notes in Computer
Science, Vol. 10176), Mohamed Ali Kâafar, Steve Uhlig, and Johanna Amann (Eds.).
Springer, 87–99. https://doi.org/10.1007/978-3-319-54328-4_7

[16] Alexis Hancock. 2020. 10 Years of HTTPS Everywhere. https://www.eff.org/de
eplinks/2020/11/10-years-https-everywhere. Online; Retrieved Feb. 13 2024.

[17] Alexis Hancock. 2021. HTTPS is Actually Everywhere. https://www.eff.org/de
eplinks/2021/09/https-actually-everywhere. Online; Retrieved Feb. 19 2024.

[18] Jamie Hayes and George Danezis. 2016. 𝑘-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In USENIX Security 2016: 25th USENIX Security
Symposium.

[19] Andrew Hintz. 2002. Fingerprinting Websites Using Traffic Analysis. In Privacy
Enhancing Technologies: Second International Workshop, PET 2002, Roger Dingle-
dine and Paul Syverson (Eds.). Springer-Verlag, LNCS 2482, San Francisco, CA,
USA, 171–178.

[20] Aaron D. Jaggard and Paul Syverson. 2017. Onions in the Crosshairs: When
The Man really is out to get you. In Proceedings of the 16th ACM Workshop on
Workshop on Privacy in the Electronic Society (WPES ’17). ACM, ACM Press, Dallas,
Texas, USA. https://doi.org/10.48550/arXiv.1706.10292

[21] Rob Jansen, Marc Juarez, Rafael Galvez, Tariq Elahi, and Claudia Diaz. 2018.
Inside Job: Applying Traffic Analysis to Measure Tor fromWithin. In 25th Annual
Network and Distributed System Security Symposium (NDSS 2018). The Internet
Society. https://doi.org/10.14722/ndss.2018.23261

[22] Rob Jansen and Ryan Wails. 2023. Data-Explainable Website Fingerprinting with
Network Simulation. Proceedings on Privacy Enhancing Technologies 2023, 4 (July
2023). https://doi.org/10.56553/popets-2023-0125

[23] Rob Jansen, Ryan Wails, and Aaron Johnson. 2024. GTT23: A 2023 Dataset of
Genuine Tor Traces. https://doi.org/10.5281/zenodo.10620519

[24] Rob Jansen, Ryan Wails, and Aaron Johnson. 2024. A Measurement of Genuine
Tor Traces for Realistic Website Fingerprinting. arXiv:2404.07892 [cs.CR]

[25] George Kadianakis, Theodoros Polyzos, Mike Perry, and Kostas Chatzikoko-
lakis. 2022. Tor circuit fingerprinting defenses using adaptive padding.
arXiv:2103.03831 [cs.CR]

[26] Nikita Korzhitskii and Niklas Carlsson. 2020. Characterizing the Root Landscape
of Certificate Transparency Logs. In 2020 IFIP Networking Conference, Networking
2020, Paris, France, June 22-26, 2020. IEEE, 190–198. https://ieeexplore.ieee.org/
document/9142756

[27] Nikita Korzhitskii and Niklas Carlsson. 2021. Revocation Statuses on the Internet.
In Passive and Active Measurement - 22nd International Conference, PAM 2021,
Virtual Event, March 29 - April 1, 2021, Proceedings (Lecture Notes in Computer
Science, Vol. 12671), Oliver Hohlfeld, Andra Lutu, and Dave Levin (Eds.). Springer,
175–191. https://doi.org/10.1007/978-3-030-72582-2_11

[28] Deepak Kumar, Zhengping Wang, Matthew Hyder, Joseph Dickinson, Gabrielle
Beck, David Adrian, Joshua Mason, Zakir Durumeric, J. Alex Halderman, and
Michael D. Bailey. 2018. Tracking Certificate Misissuance in the Wild. In 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA. IEEE Computer Society, 785–798. https://doi.org/
10.1109/SP.2018.00015

[29] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas.
2015. Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden
Services. In 24th USENIX Security Symposium (USENIX Security 15). USENIX,
287–302.

[30] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.
RFC 6962. IETF.

[31] Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Wei Wang, Qi Li, Guang-
shen Cheng, Jiwu Jing, and Congli Wang. 2022. The Invisible Side of Certificate
Transparency: Exploring the Reliability of Monitors in the Wild. IEEE/ACM Trans.
Netw. 30, 2 (2022), 749–765. https://doi.org/10.1109/TNET.2021.3123507

[32] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,
Nicholas Hopper, and Matthew Wright. 2022. SoK: A Critical Evaluation of
Efficient Website Fingerprinting Defenses. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 344–361.

[33] Alec Muffett. 2022. Why offer an Onion Address rather than just encourage
browsing-over-Tor? https://alecmuffett.com/article/16007. Online; Retrieved
Feb. 16 2024.

[34] Se Eun Oh, Taiji Yang, Nate Mathews, James K. Holland, Mohammad Saidur
Rahman, Nicholas Hopper, and Matthew Wright. 2022. DeepCoFFEA: Improved
Flow Correlation Attacks on Tor via Metric Learning and Amplification. In 43rd
IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May
22-26, 2022.

[35] Olamide Omolola, Richard Roberts, Md. Ishtiaq Ashiq, Taejoong Chung, Dave
Levin, and Alan Mislove. 2021. Measurement and Analysis of Automated Certifi-
cate Reissuance. In Passive andActiveMeasurement - 22nd International Conference,
PAM 2021, Virtual Event, March 29 - April 1, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12671), Oliver Hohlfeld, Andra Lutu, and Dave Levin (Eds.).
Springer, 161–174. https://doi.org/10.1007/978-3-030-72582-2_10

[36] Rebekah Overdorf, Marc Juarez, Gunes Acar, Rachel Greenstadt, and Claudia
Diaz. 2017. How Unique is Your .onion? An Analysis of the Fingerprintability
of Tor Onion Services. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, ACM Press, 2021–2036.

[37] Andriy Panchenko, Asya Mitseva, Martin Henze, Fabian Lanze, Klaus Wehrle,
and Thomas Engel. 2017. Analysis of fingerprinting techniques for Tor hidden
services. In Proceedings of the 16th ACM Workshop on Workshop on Privacy in the
Electronic Society (WPES ’17). ACM, ACM Press, 165–175. https://doi.org/10.114
5/3139550.3139564

525

https://github.com/webfp/tor-browser-selenium
https://github.com/webfp/tor-browser-selenium
https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.17487/RFC7686
https://doi.org/10.1145/3576915.3616639
https://doi.org/10.1145/3576915.3616639
https://doi.org/10.1145/3600160.3600167
https://git.rgdd.se/ct-sans
https://gitlab.torproject.org/tpo/onion-services/onion-grab
https://gitlab.torproject.org/tpo/onion-services/onion-grab
https://doi.org/10.1145/3559613.3563208
https://doi.org/10.1145/3559613.3563208
https://doi.org/10.1109/SP46215.2023.10179464
https://doi.org/10.1145/2810103.2813703
https://doi.org/10.1007/978-3-031-09234-3_14
https://doi.org/10.1007/978-3-319-54328-4_7
https://www.eff.org/deeplinks/2020/11/10-years-https-everywhere
https://www.eff.org/deeplinks/2020/11/10-years-https-everywhere
https://www.eff.org/deeplinks/2021/09/https-actually-everywhere
https://www.eff.org/deeplinks/2021/09/https-actually-everywhere
https://doi.org/10.48550/arXiv.1706.10292
https://doi.org/10.14722/ndss.2018.23261
https://doi.org/10.56553/popets-2023-0125
https://doi.org/10.5281/zenodo.10620519
https://arxiv.org/abs/2404.07892
https://arxiv.org/abs/2103.03831
https://ieeexplore.ieee.org/document/9142756
https://ieeexplore.ieee.org/document/9142756
https://doi.org/10.1007/978-3-030-72582-2_11
https://doi.org/10.1109/SP.2018.00015
https://doi.org/10.1109/SP.2018.00015
https://doi.org/10.1109/TNET.2021.3123507
https://alecmuffett.com/article/16007
https://doi.org/10.1007/978-3-030-72582-2_10
https://doi.org/10.1145/3139550.3139564
https://doi.org/10.1145/3139550.3139564

Proceedings on Privacy Enhancing Technologies 2025(2) Syverson et al.

[38] Javier Pastor-Galindo, Félix Gómez Mármol, and Gregorio Martínez Pérez. 2023.
On the gathering of Tor onion addresses. Future Generation Computer Systems
145 (2023), 12–26. https://doi.org/10.1016/j.future.2023.02.024

[39] Mike Perry and George Kadianakis. 2022. Tor Padding Specification. https:
//spec.torproject.org/padding-spec/overview.html. Online; Retrieved Feb. 25
2024.

[40] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyn-
ski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Ranking
Hardened Against Manipulation. In 26th Annual Network and Distributed System
Security Symposium, (NDSS 2019. The Internet Society. https://www.ndss-
symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-
hardened-against-manipulation/

[41] Tobias Pulls and Rasmus Dahlberg. 2020. Website Fingerprinting with Website
Oracles. Proceedings on Privacy Enhancing Technologies 2020, 1 (2020), 235–255.

[42] Richard Roberts and Dave Levin. 2019. When Certificate Transparency Is Too
Transparent: Analyzing Information Leakage in HTTPS Domain Names. In Pro-
ceedings of the 18th ACMWorkshop on Privacy in the Electronic Society, (WPES ’19),
London, UK, November 11, 2019, Lorenzo Cavallaro, Johannes Kinder, and Josep
Domingo-Ferrer (Eds.). ACM, 87–92. https://doi.org/10.1145/3338498.3358655

[43] Mahrud Sayrafi. 02018. Introducing the Cloudflare Onion Service. https://blog.c
loudflare.com/cloudflare-onion-service/. Online; Retrieved Feb. 12 2024.

[44] Mahrud Sayrafi. 2018. Introducing DNS Resolver for Tor. https://blog.cloudflare
.com/welcome-hidden-resolver/. Online; Retrieved Feb. 12 2024.

[45] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg
Carle, Ralph Holz, Thomas C. Schmidt, and Matthias Wählisch. 2018. The Rise
of Certificate Transparency and Its Implications on the Internet Ecosystem. In
Proceedings of the Internet Measurement Conference 2018, IMC 2018, Boston, MA,
USA, October 31 - November 02, 2018. ACM, 343–349. https://dl.acm.org/citation.
cfm?id=3278562

[46] Benjamin M. Schwartz, Mike Bishop, and Erik Nygren. 2023. Service Binding
and Parameter Specification via the DNS (SVCB and HTTPS Resource Records).
RFC 9460. https://doi.org/10.17487/RFC9460

[47] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Sub-
verting Website Fingerprinting Defenses with Robust Traffic Representation. In
32nd USENIX Security Symposium (USENIX Security 23).

[48] Payap Sirinam, Mohsen Imani, Marc Juárez, and MatthewWright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In CCS ’18: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security. ACM, 1928–1943. https://doi.org/10.1145/3243734.3243768

[49] Paul Syverson, Matthew Finkel, Saba Eskandarian, and Dan Boneh. 2021. Attacks
on Onion Discovery and Remedies via Self-Authenticating Traditional Addresses.
In Proceedings of the 20th ACM Workshop on Privacy in the Electronic Society
(WPES ’21). ACM, ACM Press, 45–52. https://doi.org/10.1145/3463676.3485610

[50] Paul Syverson and Matt Traudt. 2019. Self-Authenticating Traditional Domain
Names. In 2019 IEEE Secure Development (SecDev). IEEE, 147–160.

[51] Pouyan Fotouhi Tehrani, Eric Osterweil, Thomas C. Schmidt, and Matthias Wäh-
lisch. 2024. How to Measure TLS, X.509 Certificates, and Web PKI: A Tutorial
and Brief Survey. CoRR abs/2401.18053 (2024). https://doi.org/10.48550/ARXIV.2
401.18053 arXiv:2401.18053

[52] Tor Project 2019. Getting up to speed on Tor’s past, present, and future. https:
//2019.www.torproject.org/docs/documentation.html.en Online; Retrieved Feb.
12 2024.

[53] Tor Project 2021. Onion-Location. https://community.torproject.org/onion-
services/advanced/onion-location/ Online; Retrieved Feb. 8 2024.

[54] Tor Project. 2023. Traditional address translation. https://tpo.pages.torproject.n
et/onion-services/onionplan/proposals/usability/discovery/translation/. Online;
Retrieved Feb. 25 2024.

[55] Tor Project 2024. New Release: Tor Browser 13.0.12 | The Tor Project. https:
//blog.torproject.org/new-release-tor-browser-13012/ Online; Retrieved Aug. 20
2024.

[56] Chunmian Wang, Junzhou Luo, Zhen Ling, Lan Luo, and Xinwen Fu. 2023. A
Comprehensive and Long-term Evaluation of Tor V3 Onion Services. In IEEE
INFOCOM 2023 - IEEE Conference on Computer Communications. 1–10. https:
//doi.org/10.1109/INFOCOM53939.2023.10229057

[57] Tao Wang. 2021. The One-Page Setting: A Higher Standard for Evaluating
Website Fingerprinting Defenses. In CCS ’21: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, Republic
of Korea) (CCS ’21). ACM, New York, NY, USA, 2794–2806. https://doi.org/10.1
145/3460120.3484790

[58] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. Proceedings on Privacy Enhancing Technologies 2016, 4 (2016),
21–36. https://doi.org/10.1515/popets-2016-0027

526

https://doi.org/10.1016/j.future.2023.02.024
https://spec.torproject.org/padding-spec/overview.html
https://spec.torproject.org/padding-spec/overview.html
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://doi.org/10.1145/3338498.3358655
https://blog.cloudflare.com/cloudflare-onion-service/
https://blog.cloudflare.com/cloudflare-onion-service/
https://blog.cloudflare.com/welcome-hidden-resolver/
https://blog.cloudflare.com/welcome-hidden-resolver/
https://dl.acm.org/citation.cfm?id=3278562
https://dl.acm.org/citation.cfm?id=3278562
https://doi.org/10.17487/RFC9460
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3463676.3485610
https://doi.org/10.48550/ARXIV.2401.18053
https://doi.org/10.48550/ARXIV.2401.18053
https://arxiv.org/abs/2401.18053
https://2019.www.torproject.org/docs/documentation.html.en
https://2019.www.torproject.org/docs/documentation.html.en
https://community.torproject.org/onion-services/advanced/onion-location/
https://community.torproject.org/onion-services/advanced/onion-location/
https://tpo.pages.torproject.net/onion-services/onionplan/proposals/usability/discovery/translation/
https://tpo.pages.torproject.net/onion-services/onionplan/proposals/usability/discovery/translation/
https://blog.torproject.org/new-release-tor-browser-13012/
https://blog.torproject.org/new-release-tor-browser-13012/
https://doi.org/10.1109/INFOCOM53939.2023.10229057
https://doi.org/10.1109/INFOCOM53939.2023.10229057
https://doi.org/10.1145/3460120.3484790
https://doi.org/10.1145/3460120.3484790
https://doi.org/10.1515/popets-2016-0027

	Abstract
	1 Introduction
	2 Background
	2.1 Tor and onion services
	2.2 Onion-Location and onion association
	2.3 Adversary model

	3 Onion-Location Fingerprinting
	4 Measurement and datasets
	4.1 Identifying sites with Onion-Location
	4.2 Constructing datasets for fingerprinting

	5 Onion-Location Fingerprinting attack results
	5.1 Circuit Fingerprinting
	5.2 Onion Association Fingerprinting

	6 Discussion
	6.1 Immediate recommendations
	6.2 Research recommendations

	7 Related work
	8 Conclusion
	Acknowledgments
	References

