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Abstract
A proof of reserves (PoR) protocol enables a cryptocurrency ex-

change to prove to its users that it owns a certain amount of coins,

as a first step towards proving that it is solvent. We present the

design, implementation, and security analysis of MProve-Nova, a

PoR protocol for Monero that leverages the Nova recursive SNARK

to achieve two firsts (without requiring any trusted setup). It is the

first Monero PoR protocol that reveals only the number of outputs

owned by an exchange; no other information about the outputs or

their key images is revealed. It is also the first Monero PoR proto-

col where the proof size and proof verification time are constant,
i.e. they are independent of the number of outputs on the Monero

blockchain and the number of outputs owned by the exchange. To

achieve constant verification times, MProve-Nova requires a pre-

processing step which creates two Merkle trees from all the outputs

and key images on the Monero blockchain.

MProve-Nova consists of two Nova-based subprotocols, a re-
serves commitment generator (RCG) protocol used to compute a

commitment to the total reserves owned by an exchange and a non-
collusion (NC) protocol used to prove non-collusion between two

exchanges. For the RCG protocol, we observed proof sizes of about

28 KB and verification times of 4.3 seconds. For the NC protocol,

we observed proof sizes of about 24 KB and verification times of 0.2

seconds. Proving times for both protocols increase linearly with the

number of outputs owned by the exchange but remain independent

of the number of outputs on the Monero blockchain. On average,

the RCG protocol required about 42 minutes per 1000 outputs and

the NC protocol required about 5 minutes per 1000 outputs.
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1 Introduction
Cryptocurrency exchanges provide a user-friendly platform for

buying, selling, and trading of cryptocurrencies. While customers

can transfer their coins from exchanges to non-custodial wallets,

many of them prefer to keep their coins on exchanges to avoid the

hassles and risks of managing private keys. This leaves customer
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funds at the risk of being stolen from the exchange due to security

breaches or internal fraud.

Some examples include the bankruptcy of Mt. Gox [58] and the

collapse of FTX [57]. The total funds lost due to exchange hacks

alone is estimated to be at least $2.4 billion as of April 2023 [12].

While losses due to security breaches can be avoided by hardening

the protocols involving the exchange’s private keys, internal fraud

by exchange operators cannot be completely prevented. But such

fraud can be detected early (and hence deterred) if exchanges are

required to regularly publish proofs of solvency.
A proof of reserves (PoR) is one half of a proof of solvency protocol,

with a proof of liabilities (PoL) being the other half. A PoR protocol

enables an exchange to prove that it owns a certain amount of a

cryptocurrency, i.e. it holds a certain amount of assets. For this

reason, a PoR is sometimes also called a proof of assets. A PoL

protocol enables an exchange to prove that the total amount of

assets it is storing on behalf of all its customers (its liabilities) equals

a certain amount. If an exchange’s assets exceeds its liabilities, it is

considered solvent.

In this paper, we focus solely on PoR protocols for Monero [37], a

privacy-focused cryptocurrency based on the CryptoNote protocol

[51]. We present the design, implementation, and security analysis

of MProve-Nova, a PoR protocol for Monero that achieves constant

proof sizes and verification times while revealing only the number

of outputs owned by an exchange.

Paper organization. In Section 2, we describe the challenges in-

volved in designing Monero PoR protocols. Our contributions are

listed in Section 3. Section 4 describes related work. In Section 5,

we briefly cover aspects of the Nova recursive SNARK required

to describe MProve-Nova. In Section 6, we provide a high-level

motivation of MProve-Nova. Sections 7 and 8 describe RCG and

NC protocols. Section 9 contains the security analysis of MProve-

Nova. We provide implementation details and performance results

in Section 10 followed by conclusions in Section 11.

2 Challenges in Designing a Monero PoR
Protocol

To describe the challenges involved in designing Monero PoR pro-

tocols, we first introduce some terminology. See Appendix A for a

more detailed overview of Monero.

Let G be the prime-order subgroup of the ed25519 elliptic curve

that contains Monero public keys and commitments.
1
The destina-

tion of coin transfers in a Monero transaction is called an output.
Each output is characterized by a pair (𝑃,𝐶) ∈ G2

, where 𝑃 is a

1
A list of frequently used symbols and their definitions is presented in Appendix K.
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one-time address and 𝐶 is a Pedersen commitment to the number

of coins stored in the output. When we refer to the private key or

key image2 of an output, we mean the private key and key image

corresponding to the one-time address 𝑃 . Knowledge of the private

key of an output implies ownership of the output.

Outputs containing Pedersen commitments are created in a Mon-

ero transaction type called ring confidential transaction (RingCT)
[41]. Monero made the RingCT type of transactions mandatory in

September 2017 [38].

In our design of MProve-Nova, we only consider RingCT outputs.

In case an exchange owns a non-RingCT output, they can use a

Pedersen commitment with zero blinding factor, i.e. a commitment

of the form 𝐶 (𝑎, 0) = 𝑎𝐻 , to represent the output.

Many cryptocurrency protocols (including Bitcoin) have the no-

tion of an unspent transaction output (UTXO). As the name suggests,

this corresponds to an output having coins that have not been spent

by their owner. For such cryptocurrencies, a PoR protocol can re-

strict its attention to the UTXO set and ignore all spent transaction

outputs.

Since Monero hides the identity of the spending key in a trans-

action, one cannot partition the output set into spent and unspent

outputs. While some transaction graph analysis techniques have

been able to categorize a large percentage of non-RingCT outputs

as spent [31, 39], it is not possible to know if any of the RingCT

outputs (except for 5 of them
3
) have been spent [52, 60]. Conse-

quently, the set of unspent outputs in Monero keeps on growing.

Hence it is desirable to design PoR protocols where the proving

and verification times are independent of the number of outputs on

the Monero blockchain.

Any Monero PoR protocol must prove two statements:

(1) The prover knows the private keys corresponding to some

outputs on the Monero blockchain. The sum of the coins in

the output commitments will add up to the reserves owned

by the prover.

(2) The outputs contributing to the prover’s reserves have not

been already spent in a past transaction.

While a PoR protocol could be executed by anyone, it is most useful

when the prover is a cryptocurrency exchange which is trying to

convince its customers that it is solvent.

We are interested in publicly-verifiable privacy-preserving PoR

protocols. By publicly-verifiable, we mean that the PoR can be veri-

fied by any party, not just a trusted auditor. By privacy-preserving,

we mean that the protocols do not reveal the specific outputs owned

by the exchange.

Without the privacy requirement, it is trivial to construct a PoR

protocol for Monero. The exchange can generate signatures proving

ownership of a set of outputs and non-membership proofs proving

that the outputs have not been spent. The latter would involve

proving that the outputs’ key images have not appeared in any past

transaction.

2
Key images are one-way functions of one-time addresses that are generated as part

of the Monero linkable ring signatures to prevent double spending.

3
In 2017, Wijaya et al. [56] deliberately created a transaction [55] in Monero block

1468439 which spent from the same transaction ring containing 5 RingCT outputs

exactly 5 times. This meant that all the outputs in this transaction ring could be marked

as spent. No other cases like this have been observed [52].

Privacy is especially important in Monero PoR protocols because

Monero transactions contain linkable ring signatures, with the

output being spent hidden among decoy outputs sampled from

the Monero blockchain. If some outputs are identified as unspent
outputs belonging to an exchange, they can be marked as decoys in

all the previous transaction rings they appear in. This reduces the

effective ring size of such transactions. The implication is that a

non-private Monero PoR protocol can negatively impact the privacy

of other Monero users, in addition to impacting the privacy of the

exchange generating the proof.

When the identities of an exchange’s outputs are hidden by a PoR

protocol, it opens up the possibility of collusion between exchanges.

Collusion refers to the situation when the same output is used

by two exchanges to generate their respective proofs of reserves.

This is a form of double spending, where one exchange could bribe

another to contribute to the former’s PoR. It is desirable to have

privacy-preserving PoR protocols that are also collusion-resistant.
Finally, it is desirable to have PoR protocols with short proofs

that can be verified quickly on personal computers. This will lower

the bar for proof verifiers, make it more likely that the proofs of

reserves are verified by customers, and hence reduce the likeli-

hood of exchanges in engaging in activities that could render them

insolvent.

Previous Monero PoR protocols, MProve [22] and MProve+ [21],

partially addressed the above challenges. Due to scalability issues,

theywere able to hide the exchange-owned outputs in an anonymity

set that was much smaller than the set of all outputs. They proved

that the exchange-owned outputs were unspent by revealing their

key images.While the revealed key images also allowed detection of

collusion between exchanges, revealing them negatively impacted

the privacy of the exchange and the privacy of regular Monero

users.

A more detailed description of MProve and MProve+ (including

their drawbacks) is given in Appendices B and C.

3 Our Contributions
We describe the design, implementation, and security analysis of

MProve-Nova, a publicly-verifiable privacy-preserving PoR pro-

tocol for Monero. Our design is based on Nova [30], a recursive

SNARK that does not require a trusted setup. MProve-Nova con-

sists of two subprotocols: a reserves commitment generator (RCG)
protocol to generate a Pedersen commitment to the total amount of

unspent Monero coins owned by an exchange and a non-collusion
(NC) protocol to prove non-collusion between two exchanges. They

have the following features:

(1) The RCG and NC protocols both have constant proof sizes
and proof verification times, i.e. these two metrics are inde-
pendent of the number of outputs on the Monero blockchain

and the number of outputs owned by the exchange. This

makes MProve-Nova the first Monero PoR protocol with

constant proof sizes and proof verification times. However,

the RCG protocol does require a preprocessing step which

creates two Merkle trees from all the outputs and key images

on the Monero blockchain.

(2) While the RCG protocol does not reveal any information

about the exchange-owned outputs in the random oracle
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model, the NC protocol requires an exchange to send hashes

of its private keys to another exchange. These hashes only

reveal the number of outputs owned by the sender exchange

to the receiver exchange (in the random oracle model). The

MProve-Nova protocol does not reveal any other informa-

tion about the exchange-owned outputs to polynomial-time

adversaries. Particularly, MProve-Nova is the first Monero

PoR protocol which does not reveal the key images of the

exchange-owned outputs to polynomial-time adversaries.

We formally prove thatMProve-Nova proofs only reveal the number

of outputs to polynomial-time adversaries in the random oracle

model. We analyze the soundness of MProve-Nova and show that

it is inflation-resistant and collusion-resistant. Inflation resistance

means that a computationally bounded exchange cannot generate

a valid RCG protocol proof that outputs a Pedersen commitment to

a number of coins that is greater than the actual number of coins it

owns. Collusion resistance means that a pair of computationally

bounded exchanges cannot generate an valid NC protocol proof

if they used the same output while generating their RCG protocol

proofs at a certain block height.

We implemented MProve-Nova in Rust (our implementation is

available on GitHub [47]). We present simulation results to demon-

strate the feasibility of using MProve-Nova in a real-world setting.

4 Related Work
Provisions [20], proposed by Dagher et al., is one of the first privacy-
preserving proof of solvency protocols for Bitcoin exchanges. It con-

sists of three subprotocols: proof of reserves, proof of liabilities and

proof of solvency. In the proof of reserves, the exchange generates

a Pedersen commitment [42] 𝐶res to the total assets corresponding

to a subset of owned addresses Pown from a larger anonymity set P.
The exchange submits a proof that it included only those amounts

in 𝐶res for which it knows the private keys corresponding to the

addresses in P. In the proof of liabilities, the exchange generates a

Pedersen commitment to each bit of the balance amount owned by

the customer. These commitments are combined to calculate the

total liabilities 𝐶liab of the exchange. In the proof of solvency, the

exchange computes𝐶diff =𝐶res−𝐶liab and proves that𝐶diff commits

to a non-negative amount. There is also a fourth protocol to prove

non-collusion but it reveals the number of addresses owned by

the exchange and is presented as an optional protocol. Provisions

is specific to Bitcoin and cannot be applied to privacy-preserving

cryptocurrencies such as Monero.

In 2019, Blockstream [44, 45] released a tool to generate proof

of reserves which involves generating an invalid transaction us-

ing all the UTXOs of an exchange and an invalid input so that

exchange’s funds are not spent. This technique does not preserve

address privacy since all the UTXOs owned by the exchange are

revealed.

Stoffu Noether implemented a technique for generating proof

of reserves for Monero which was added to the official Monero

client in 2018 [46]. It takes a target amount as input and finds the

smallest set of addresses owned by the prover whose total amount

exceeds the target amount. Then the set of addresses and their

corresponding key images and amounts are revealed as part of the

𝐹 𝐹 𝐹

𝑤0 𝑤𝑖 𝑤𝑛−1

𝑧0 𝑧𝑛· · · · · ·𝑧1 𝑧𝑖 𝑧𝑖+1 𝑧𝑛−1

Figure 1: Incrementally Verifiable Computation

proof of reserves. Thus this technique does not provide any privacy

to the prover.

Dutta et al. [22] proposed MProve, a proof of reserves protocol

for Monero exchanges. MProve+ [21] was later proposed which

enhanced the privacy of MProve by using techniques from Bullet-

proofs [11] and Omniring [34]. The details of MProve and MProve+

are given in Appendices B and C.

Some notable work on proof of reserves include, gOTzilla [7]

proposed by Baldimtsi et al., which is an interactive zero-knowledge
protocol for proving disjunctive statements. Additionally, Chatzi-

giannis and Chalkias [16] proposed proof of assets for account-

based blockchains such as Diem, formerly known as Libra [1].

There has been significant work in proof of liabilities (PoL), most

notable ones being DAPOL [14] and DAPOL+ [24]. MProve-Nova

can be used with DAPOL+ to provide a proof of solvency. Chalkias

et al. [13] highlighted vulnerabilities in the implementation of PoL

used in production. Chatzigiannis et al. [15] evaluated and system-

atized several distributed payment systems which offer auditability.

Their work provides a comparison between different proof of assets

and proof of liabilities schemes on the basis of their efficiency and

privacy properties.

5 Nova
In this section, we cover aspects of the Nova recursive SNARK

[30, 40] required to describe the MProve-Nova protocol. Nova in-

troduced a non-interactive folding scheme for committed relaxed

rank-1 constraint systems (R1CS) [30] (see Appendix D for a defini-

tion). It consists of twomain components: an incrementally verifiable
computation (IVC) [50] scheme and a zkSNARK to prove knowledge

of valid IVC proofs.

5.1 IVC Scheme
An IVC scheme allows a prover to prove that for some function

𝐹 and public values 𝑧0 and 𝑧𝑛 , it knows auxiliary input values

𝑤0,𝑤1, . . . ,𝑤𝑛−1 such that

𝑧𝑛 = 𝐹 (𝐹 (. . . 𝐹 (𝐹 (𝐹 (𝑧0,𝑤0) ,𝑤1) ,𝑤2) , . . .) ,𝑤𝑛−1) .
Such a proof is generated by proving the execution of a series of

incremental computations of the form 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ), for each
𝑖 ∈ {0, 1, . . . , 𝑛 − 1}, where 𝑧𝑖 and 𝑧𝑖+1 are the public input and

output in the 𝑖th step, respectively. See Figure 1.

The Nova IVC scheme uses a non-interactive folding scheme for

committed relaxed R1CS. The step function 𝐹 needs to be expressed

using R1CS constraints. At each step 𝑖 , the variables 𝑧𝑖 , 𝑧𝑖+1, and
𝑤𝑖 define an R1CS instance (see definition in Appendix D). This

instance is folded into a running committed relaxed R1CS instance

which represents the correct execution of steps 0, 1, . . . , 𝑖 − 1.
The IVC prover gives a proof Π𝑖+1 at each step 𝑖 , which attests

that 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ) was computed correctly and the folding of the
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two committed relaxed R1CS instances is valid. The IVC proof Π𝑖+1
attests to the correct execution of steps 0, 1, . . . , 𝑖 . The IVC proof

generation time for 𝑛 steps is 𝑂 (𝑛 |𝐹 |), where |𝐹 | is the number of

R1CS constraints needed to express the computation of the step

function 𝐹 .

The Nova IVC scheme satisfies completeness and knowledge-

soundness. Due to space constraints, we present these definitions

in Appendix E. For more details on the Nova IVC scheme, we refer

the reader to Section 5 of the Nova paper [30].

5.2 zkSNARK of an IVC Proof
After 𝑛 steps, the IVC prover produces a proof Π𝑛 that attests to the

correct execution of steps 0, 1, . . . , 𝑛 − 1. The IVC prover can send

this proof to the verifier, but this does not satisfy zero-knowledge

since the proof Π𝑛 does not hide the prover’s auxiliary inputs.

Instead, Nova uses a zero-knowledge SNARK (zkSNARK) that

satisfies knowledge-soundness (see Appendix F for definitions) to

prove knowledge of a valid IVC proof Π𝑛 . While the original Nova

proposal did not hide the number of steps 𝑛, we use an implemen-

tation by Angel et al. [2, 3] that does hide 𝑛.

(1) The prover P𝑧𝑘 and verifierV𝑧𝑘 of the zkSNARK are given

the instance (𝐹, 𝑧0, 𝑧𝑛). The proving key pk and verification

key vk are derived from the R1CS constraints expressing 𝐹 .

(2) The prover P𝑧𝑘 uses the proving key pk, IO values 𝑧0, 𝑧𝑛 , and

IVC proof Π𝑛 to produce the proof 𝜋 .

𝜋 ← P𝑧𝑘 (pk, 𝑧0, 𝑧𝑛,Π𝑛) .

(3) The verifierV𝑧𝑘 takes the verification key vk, proof 𝜋 , and
𝑧0, 𝑧𝑛 as inputs. It either accepts the proof or rejects it.

0/1←V𝑧𝑘 (vk, 𝑧0, 𝑧𝑛, 𝜋) .

If the zkSNARK is based on a Pedersen commitment scheme for

vectors, then the proof size is O (log |𝐹 |) and the proof generation

and verification times are both O (|𝐹 |). Note that these metrics are

independent of the number of steps 𝑛 used to generate the IVC

proof Π𝑛 .

6 The Design of MProve-Nova
In this section, we provide a high-level motivation of MProve-Nova.

Previous Monero PoR protocols, MProve and MProve+ [21, 22],

suffer from the following drawbacks (see Appendices B, C).

• A PoR instance in both MProve and MProve+ contains a set

of one-time addresses Panon called the anonymity set. The

exchange-owned addresses Pknown are a subset of Panon. To
verify an MProve/MProve+ proof, the verifier has to first

download Panon. While a larger Panon allows an exchange to

hide its addresses in a larger anonymity set, it also increases

the download requirement for verifiers.

• Proof sizes increase either linearly with the size of Panon (in
the case of MProve) or linearly with the size of Pknown (in
the case of MProve+).

• Proof verification times increase linearly with the size of

Panon, raising the bar for verifiers.
• The key images of the exchange-owned addresses are re-

vealed, negatively impacting the privacy of both exchanges

and regular Monero users.

To reduce the size of the PoR protocol instance, we need to compress

the information about the addresses on the Monero blockchain into

a succinct form. MProve-Nova achieves instance compression by

taking as input the root of a Merkle tree having the Monero outputs

as leaves. This tree is called the transaction outputs tree (TXOT).
The advantage of this approach is that the size of the TXOT root is

independent of the number of outputs on the Monero blockchain.

This allows MProve-Nova to have an anonymity set which is the

set of all outputs, instead of only a small subset of the outputs like

in MProve and MProve+.

To prove ownership of an output, MProve-Nova gives a privacy-

preserving proof of knowledge of a Merkle path to an output leaf

in the TXOT tree and a proof of knowledge of the corresponding

private key. This strategy was pioneered by ZCash [8, 17] and has

been used in projects like Tornado Cash [59] and Semaphore [43].

In addition to proving ownership of an output, a Monero PoR

protocol has to also prove that the output is unspent. MProve and

MProve+ achieved this requirement by explicitly revealing the key

images of the exchange-owned outputs. MProve-Nova takes as an

additional input the root of an indexed Merkle tree [49] having all

the key images on the Monero blockchain as leaves. This tree is

called the key images tree (KIT). It then gives privacy-preserving

proofs of non-membership of the key images of exchange-owned

outputs in this tree.

The key images revealed by MProve and MProve+ also helped

to prove that exchanges did not collude, i.e. they did not share

an output while generating their respective proofs of reserves. If

two exchanges had shared an output, its key image would have ap-

peared in both their proofs. Non-collusion can be easily verified by

checking that the key image sets revealed by the exchanges have no

elements in common. Since MProve-Nova uses privacy-preserving

proofs of non-membership of output key images in the KIT, one

can no longer verify non-collusion by simply inspecting the proofs.

To solve this issue, an MProve-Nova proof outputs a Merkle root

of a tree, called the double spend tree (DST), containing only the

Monero outputs owned by an exchange. Using their respective

DST roots, two exchanges can prove non-collusion using a series

of non-membership proofs. Essentially, one of the exchanges will

prove that none of the leaves from its own DST are present in the

other exchange’s DST. This procedure is called the non-collusion
(NC) protocol in MProve-Nova.

To reduce proof sizes and verification times, MProve-Nova uses

the Nova recursive SNARK to break down the task of proving

ownership of multiple unspent outputs into smaller steps, where

each step proves the ownership of a single unspent output. Similarly,

the task of proving non-collusion is divided into steps, where each

step proves that an output from the one exchange’s DST is absent

in the other exchange’s DST. In Nova, proof sizes and verification

times depend only on the size of the step circuit and not on the

number of steps [30]. Consequently, the MProve-Nova proof size

and verification time is independent of the number of outputs on the

Monero blockchain and the number of exchange-owned outputs.

In an MProve-Nova step, the amount of coins associated with an

unspent output is accumulated in a Pedersen commitment. After the

last step, the final commitment is a commitment to the exchange’s

reserves. In addition to its role in the NC protocol, the DST also

helps ensure that an exchange does not repeat an unspent output
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across steps, in order to inflate its reserves. This kind of “double

spending” is prevented via a non-membership proof of the current

step’s output in the previous step’s DST (justifying the DS in DST).

7 Reserves Commitment Generator Protocol
Both MProve and MProve+ output a Pedersen commitment 𝐶res

to the total amount of coins owned by the exchange (its reserves).

MProve-Nova follows the same strategy, with the reserves commit-

ment generator (RCG) protocol responsible for generating 𝐶res.

Pedersen commitments to the reserves amount enable an ex-

change to hide the amount while allowing it to prove solvency.

If the exchange wants to prove that its reserves are greater than

or equal to an amount 𝑎, it can give a range proof on 𝐶res − 𝑎𝐻
proving that it is a commitment to a non-negative amount. The

amount 𝑎 may correspond to the total liabilities of the exchange

towards its customers. If the exchange wants to hide the amount 𝑎,

it can use a proof of liabilities protocol that outputs only a Pedersen

commitment 𝐶liab to the amount 𝑎. Then the exchange can prove

solvency by giving a range proof on 𝐶res −𝐶liab proving that it is a

commitment to a non-negative amount.

Recall from Section 2 that a Monero output consists of a pair

(𝑃,𝐶) where 𝑃 is a one-time address and 𝐶 is a Pedersen commit-

ment to the number of coins associated with 𝑃 .

• Let Tbh = [(𝑃1,𝐶1), (𝑃2,𝐶2), . . . , (𝑃𝑁bh ,𝐶𝑁bh )] be the vector
of all transaction outputs that have appeared in Monero

blocks up to height bh, sorted in the order of their appearance
on the Monero blockchain.

• Let Ibh be the set of all key images that have appeared in

Monero blocks up to height bh.
• Let Jknown ⊂ {1, 2, . . . , 𝑁bh} be the set of output indices such
that an exchange knows the private keys corresponding the

address 𝑃𝑖 for all 𝑖 ∈ Jknown.
• Let Junspent ⊂ {1, 2, . . . , 𝑁bh} be the set of output indices

corresponding to unspent outputs. In other words, for each

𝑖 ∈ Junspent the key image of 𝑃𝑖 has not appeared in Ibh.
If 𝐶𝑖 is a commitment to the amount 𝑎𝑖 , then the total amount of

coins owned by the exchange is

𝑎tot =
∑︁

𝑖∈J
known

⋂ Junspent 𝑎𝑖
Even though the exchange owns 𝑎tot coins, its liabilities may be

lower. So it may only want to prove that it owns 𝑎res coins, where

𝑎res < 𝑎tot. The RCG protocol allows an exchange to generate a

Pedersen commitment 𝐶res to any amount 𝑎res that satisfies

𝑎res =
∑︁

𝑖∈Jres
𝑎𝑖 , (1)

where Jres is a non-empty subset of Jknown
⋂Junspent.

7.1 Transaction Outputs and Key Images
Merkle Trees

To efficiently prove and verify that the amount in commitment

𝐶res has contributions only from unspent outputs owned by the

exchange, it is necessary to convert the information about trans-

action outputs and key images into a succinct form. To this end,

we construct a regular Merkle tree from the transactions outputs

in Tbh and an indexed Merkle tree from the key images set Ibh. In-
dexed Merkle trees were introduced by Tzialla et. al [49] to generate
efficient non-membership proofs inside a SNARK.

Both trees are constructed using the Poseidon hash function

[23] to reduce the number of R1CS constraints
4
in the computation

that will eventually be proved using Nova. Let 𝐻𝑝𝑜𝑠 : {0, 1}∗ ↦→ F𝑠
be the Poseidon hash function where F𝑠 is the scalar field used

to express the R1CS constraints. The two trees are constructed as

follows.

(1) Transaction Outputs Tree TXOT: Let 𝐻p : G ↦→ G be the

cryptographic hash function used to compute the key image

of a one-time address 𝑃 = 𝑥𝐺 as 𝑥𝐻p (𝑃). Let ∥ denote the
string concatenation operator.

The transactions outputs tree TXOT is a regular Merkle tree

constructed using the sequence of leaves{
𝐻𝑝𝑜𝑠

(
𝑃𝑖 ∥𝐶𝑖 ∥𝐻p (𝑃𝑖 )

)
| 𝑖 = 1, 2, . . . , 𝑁bh

}
.

We omit the dependence of TXOT on bh for simplicity. The

motivation for choosing this particular leaf structure is de-

scribed in Section 7.2.

(2) Key Images Tree KIT: This is an indexed Merkle tree con-

structed using the leaves {𝐻𝑝𝑜𝑠 (𝐼 ) | 𝐼 ∈ Ibh}. Once again,
we omit the dependence of KIT on bh for simplicity.

For a Monero block height bh, the trees TXOT and KIT are

uniquely defined and can be constructed by any party who has

a copy of the Monero blockchain.

7.2 RCG Protocol Instance and Witness
Definition 7.1. An instance of the RCG protocol is given by the

tuple

instRCG = (bh, root(TXOT), root(KIT),𝐶res) ,
where 𝐶res is a Pedersen commitment and root (TXOT), root (KIT)
are the root hashes of the TXOT and KIT trees, respectively.

Let MerkleProof(root, 𝑣, 𝑖) denote a Merkle proof that the 𝑖th

leaf in a Merkle tree with root hash equal to root has value 𝑣 . Let
NonMemberProof(root, 𝑣) denote a proof of non-membership of a

leaf having value 𝑣 in an indexed Merkle tree with root hash equal

to root. Both these types of proofs consist of a list of sibling nodes

along the path from a leaf to the tree root.

Definition 7.2. A witness for an RCG protocol instance instRCG
is a tuple

witRCG =
(
Jres, x, P′,C′,H, 𝜋mp, 𝜋nmp, 𝑟res

)
,

whose components satisfy the following properties.

(i) J𝑟𝑒𝑠 = {𝑖1, 𝑖2, . . . , 𝑖𝑛} ⊂ {1, 2, . . . , 𝑁bh} is a set of 𝑛 distinct
indices of leaves in TXOT.

(ii) x = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ Z𝑛𝑙 is a vector of 𝑛 scalars.

(iii) P′ = [𝑃 ′
1
, 𝑃 ′

2
, . . . , 𝑃 ′𝑛] ∈ G𝑛

is a vector of 𝑛 group elements

such that 𝑃 ′𝑗 = 𝑥 𝑗𝐺 , i.e. 𝑥 𝑗 is the private key corresponding

to 𝑃 ′𝑗 for each 𝑗 = 1, 2, . . . , 𝑛.

(iv) C′ = [𝐶′
1
,𝐶′

2
, . . . ,𝐶′𝑛] ∈ G𝑛

and H = [𝐻1, 𝐻2, . . . , 𝐻𝑛] ∈ G𝑛

are vectors of 𝑛 group elements.

4
Fewer R1CS constraints are desirable as they translate to smaller proofs and faster

proof generation and verification times.
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(v) 𝜋mp is a vector of 𝑛Merkle proofs where the 𝑗 th proof equals

MerkleProof
(
root(TXOT), 𝐻𝑝𝑜𝑠 (𝑃 ′𝑗 ∥𝐶′𝑗 ∥𝐻 𝑗 ), 𝑖 𝑗

)
,

for each 𝑗 = 1, 2, . . . , 𝑛.

(vi) 𝜋nmp is a vector of 𝑛 non-membership proofs where the 𝑗th

proof equals

NonMemberProof
(
root(KIT), 𝐻𝑝𝑜𝑠 (𝑥 𝑗𝐻 𝑗 )

)
,

for each 𝑗 = 1, 2, . . . , 𝑛.

(vii) 𝑟res ∈ Z𝑙 is a scalar that satisfies

𝐶res = 𝑟res𝐺 +
𝑛∑︁
𝑗=1

𝐶′𝑗 . (2)

We claim that if an exchange knows a witness witRCG for an

RCG protocol instance instRCG, then the𝐶res is a commitment to an

amount 𝑎res that satisfies equation (1), assuming that the Poseidon

hash function is collision resistant. We argue as follows:

• The 𝑗th Merkle proof in 𝜋mp proves that the leaf at index

𝑖 𝑗 in the TXOT tree has value 𝐻𝑝𝑜𝑠 (𝑃 ′𝑗 ∥𝐶′𝑗 ∥𝐻 𝑗 ). The leaf at
index 𝑖 𝑗 in the TXOT tree has value 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ∥𝐶𝑖 𝑗 ∥𝐻p (𝑃𝑖 𝑗 )),
by construction. From the collision resistance of the Poseidon

hash function, it follows that 𝑃 ′𝑗 = 𝑃𝑖 𝑗 , 𝐶
′
𝑗 = 𝐶𝑖 𝑗 , and 𝐻 𝑗 =

𝐻p (𝑃𝑖 𝑗 ).
So the Merkle proofs in 𝜋mp prove that the addresses in P′

have appeared on the Monero blockchain and their corre-

sponding Pedersen commitments are present in C′.
Furthermore, the exchange owns the addresses in P′ since
it knows x which contains the corresponding private keys.

Thus Jres ⊂ Jknown.
• Since 𝑥 𝑗 is the private key corresponding to 𝑃 ′𝑗 = 𝑃𝑖 𝑗 and

𝐻 𝑗 = 𝐻p (𝑃𝑖 𝑗 ), the point 𝑥 𝑗𝐻 𝑗 = 𝑥 𝑗𝐻p (𝑃𝑖 𝑗 ) is the key image

of the one-time address 𝑃𝑖 𝑗 . So the non-membership proofs

in 𝜋nmp prove that the key images of the addresses in P′

have not appeared on the Monero blockchain, i.e. they are

unspent. Thus Jres ⊂ Junspent.
• We have Jres ⊂ Jknown

⋂Junspent. Since 𝐶′𝑗 = 𝐶𝑖 𝑗 , we can

rewrite equation (2) as

𝐶res = 𝑟res𝐺 +
𝑛∑︁
𝑗=1

𝐶𝑖 𝑗 = 𝑟res𝐺 +
∑︁

𝑖∈Jres
𝐶𝑖 .

Thus 𝐶res is a commitment to an amount 𝑎res that satisfies

equation (1).

An exchange will give a zero-knowledge argument of knowledge

of a witness for an instance instRCG. In this instance, only 𝐶res

could possibly leak information about Jres. The scalar 𝑟res acts as a
blinding factor to prevent an adversary from identifying the set Jres
from 𝐶res. As 𝐶

′
𝑗 = 𝐶𝑖 𝑗 , if the 𝑟res𝐺 term were absent in equation

(2), an adversary could attempt to identify Jres by finding a subset

of commitments on the Monero blockchain that sum to 𝐶res.

The motivation for including 𝐻p (𝑃𝑖 ) in the leaves of the TXOT
tree is that it reduces the number of R1CS constraints required

to express the key image non-membership proofs. If it were not

present in the leaves, then the key image computation of an address

𝑃𝑖 would have to be expressed using R1CS constraints. This com-

putation involves the Keccak hash function [9], which requires a

large number of R1CS constraints. When 𝐻p (𝑃𝑖 ) is included in the

leaves, the Merkle proofs in 𝜋mp ensure that 𝐻 𝑗 = 𝐻p (𝑃𝑖 𝑗 ). So only

the scalar multiplication 𝑥 𝑗𝐻 𝑗 needs to be expressed using R1CS

constraints to compute the key image of 𝑃𝑖 𝑗 .

7.3 The RCG Protocol as an IVC Scheme
To take advantage of the Nova recursive SNARK, we express the

RCG protocol as an IVC scheme. Let 𝐹RCG be the step function for

an IVC scheme corresponding to the RCG protocol. The exchange

will prove knowledge of a witness witRCG by proving the correct

execution of 𝑛 invocations of the step function 𝐹RCG.

For 𝑗 = 1, 2, . . . , 𝑛, in the 𝑗th step the function 𝐹RCG will check

knowledge of the private key 𝑥 𝑗 , verify the 𝑗 th Merkle proof in 𝜋mp,

verify the 𝑗th non-membership proof in 𝜋nmp, and accumulate 𝐶′𝑗
into𝐶res. A complete specification of the 𝐹RCG is given in Section 7.4.

We now introduce some notation that is used in the specification.

7.3.1 Double Spend Tree (DST). An important constraint on the

witness witRCG is that the indices in Jres have to be distinct. Oth-

erwise, an exchange can inflate its reserves by double counting

an output. To ensure that outputs already considered in previous

invocations of 𝐹RCG are not considered again, we use an indexed

Merkle tree called the Double Spend Tree DST. This DST is also

used to prove non-collusion between exchanges, as explained in

Section 8.

For 𝑗 = 1, 2, . . . , 𝑛, let DST𝑗−1 and DST𝑗 denote the state of the

double spend tree before and after the 𝑗th invocation of 𝐹RCG,

respectively. The initial DST0 corresponds to an empty indexed

Merkle tree IMT∅ . Let InsertProof(root1, root2, 𝑣) denote the inser-
tion proof that proves that inserting a leaf having value 𝑣 into an

indexed Merkle tree with root hash root1 results in the indexed

Merkle tree with root hash root2.
Recall that 𝑥 𝑗 is the private key of the 𝑗th one-time address

𝑃𝑖 𝑗 used by the exchange. At step 𝑗 , the function 𝐹RCG does the

following:

(i) UsingNonMemberProof
(
root(DST𝑗−1), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)
, it ver-

ifies that the leaf 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh) is not present in DST𝑗−1.
(ii) Using InsertProof

(
root(DST𝑗−1), root(DST𝑗 ), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)
,

it verifies that root(DST𝑗 ) is the root hash of the indexed

Merkle tree obtained by inserting the leaf 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh) into
an indexedMerkle tree with root hash equal to root(DST𝑗−1).

The non-membership and insertion proofs are provided as private

inputs to the step function 𝐹RCG. In the 𝑗th step, the public input

to 𝐹𝑅𝐶𝐺 contains the root hash root(DST𝑗−1) and its public output

contains the root hash root(DST𝑗 ). The public inputs/outputs and
private inputs to 𝐹RCG are shown in Figure 2.

The non-membership proofs and insertion proofs ensure that

an output which is used in step 𝑗 cannot be used again in steps

𝑗 + 1, 𝑗 + 2, . . . , 𝑛. We could have obtained the same guarantee by

inserting any one of 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ), 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ) or 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ∥bh) into the
DST, instead of inserting 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh).

• The problem with using 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ) or 𝐻𝑝𝑜𝑠 (𝑃𝑖 𝑗 ∥bh) as leaves
in the DST is that an adversary could try combinations of

outputs to reconstruct the set Jres from the public root hash

of the DST.
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𝐹RCGzRCG
𝑗−1 =

[
bh, root(TXOT), root(KIT),

root(DST𝑗−1),𝐶res

𝑗−1

]
zRCG𝑗 =

[
bh, root(TXOT), root(KIT),

root(DST𝑗 ),𝐶res

𝑗

]

wRCG

𝑗−1 =


𝑖 𝑗 , 𝑥 𝑗 ,𝐶

′
𝑗 , 𝑃
′
𝑗 , 𝐻 𝑗 , 𝑟 𝑗

MerkleProof
(
root(TXOT), 𝐻𝑝𝑜𝑠 (𝑃 ′𝑗 ∥𝐶′𝑗 ∥𝐻 𝑗 ), 𝑖 𝑗

)
,NonMemberProof

(
root(KIT), 𝑥 𝑗𝐻 𝑗

)
,

NonMemberProof
(
root(DST𝑗−1), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)
, InsertProof

(
root(DST𝑗−1), root(DST𝑗 ), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)


Figure 2: Step function for MProve-Nova RCG protocol. In the 𝑗th step of the RCG protocol, zRCG
𝑗−1 is the public input, wRCG

𝑗−1 is
the private input, and zRCG

𝑗
is the public output.

• The problem with using 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ) as leaves in the DST is

that the public root hash of the DST would remain the same

if the exchange uses the same set of outputs to generate its

reserves at different block heights. This can leak information

about the asset strategy of the exchange.

7.3.2 Incremental Accumulation of the Reserves Amount. In the 𝑗 th

step, the public input of 𝐹RCG will contain a Pedersen commitment

𝐶res

𝑗−1 and its public output will contain a Pedersen commitment𝐶res

𝑗 .

These commitments enable the incremental accumulation of the

reserves amount across the 𝑛 steps.

𝐶res

𝑗−1 is a Pedersen commitment to the reserves amount accu-

mulated before step 𝑗 . 𝐶res

0
is set to 𝐺 , which commits to the zero

amount with blinding factor 1. 𝐶res

𝑗 is a Pedersen commitment to

the reserves amount accumulated after step 𝑗 . The final commit-

ment𝐶res

𝑛 will be equal to the commitment𝐶res in the RCG protocol

instance.

At the 𝑗th step, using a private scalar 𝑟 𝑗 the function 𝐹RCG com-

putes 𝐶res

𝑗 as

𝐶res

𝑗 =𝐶res

𝑗−1 +𝐶′𝑗 + 𝑟 𝑗𝐺, (3)

where 𝐶′𝑗 is the 𝑗th group element in C′. Like the scalar 𝑟res in the

RCG protocol witness, the role of 𝑟 𝑗 is to prevent an adversary

from using the public values 𝐶res

𝑗−1 and 𝐶
res

𝑗 to identify the output

contributing to the reserves in the 𝑗th step.

7.4 Step Function Computation
We are now ready to specify the step function 𝐹𝑅𝐶𝐺 . Let 𝑛 be the

number of outputs the exchangewill use to contribute to its reserves.

For 𝑗 = 1, 2, . . . , 𝑛, the public input zRCG
𝑗−1 to 𝐹RCG in step 𝑗 is

zRCG𝑗−1 =
[
bh, root(TXOT), root(KIT), root(DST𝑗−1),𝐶res

𝑗−1
]
.

The public output z𝑗 of 𝐹RCG in step 𝑗 is

zRCG𝑗 =
[
bh, root(TXOT), root(KIT), root(DST𝑗 ),𝐶res

𝑗

]
.

Not that zRCG
𝑗−1 and zRCG𝑗 differ only in the last two components.

The private input wRCG

𝑗−1 to 𝐹RCG in step 𝑗 is

wRCG

𝑗−1 =



𝑖 𝑗 , 𝑥 𝑗 ,𝐶
′
𝑗 , 𝑃
′
𝑗 , 𝐻 𝑗 , 𝑟 𝑗

MerkleProof
(
root(TXOT), 𝐻𝑝𝑜𝑠 (𝑃 ′𝑗 ∥𝐶′𝑗 ∥𝐻 𝑗 ), 𝑖 𝑗

)
,

NonMemberProof
(
root(KIT), 𝐻𝑝𝑜𝑠 (𝑥 𝑗𝐻 𝑗 )

)
,

NonMemberProof
(
root(DST𝑗−1), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)
,

InsertProof
(
root(DST𝑗−1), root(DST𝑗 ), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)

,

where 𝑖 𝑗 , 𝑥 𝑗 ,𝐶
′
𝑗 , 𝑃
′
𝑗 , 𝐻 𝑗 are as defined in Section 7.2. The DST𝑗−1,

DST𝑗 , 𝑟 𝑗 terms were defined in Section 7.3.

For each 𝑗 = 1, 2, . . . , 𝑛, in step 𝑗 function 𝐹RCG performs the

following computations:

(1) Using private input 𝑥 𝑗 , it computes 𝑥 𝑗𝐺 and checks that it is

equal to the point 𝑃 ′𝑗 . This proves knowledge of the private
key corresponding to 𝑃 ′𝑗 .

(2) Using private inputs 𝑃 ′𝑗 ,𝐶
′
𝑗 , 𝐻 𝑗 , it computes the leaf hash

𝐻𝑝𝑜𝑠

(
𝑃 ′𝑗 ∥𝐶′𝑗 ∥𝐻 𝑗

)
.

(3) UsingMerkleProof
(
root(TXOT), 𝐻𝑝𝑜𝑠 (𝑃 ′𝑗 ∥𝐶′𝑗 ∥𝐻 𝑗 ), 𝑖 𝑗

)
, it ver-

ifies that the leaf hash computed above belongs to TXOT. This
proves that (𝑃 ′𝑗 ,𝐶′𝑗 ) is an output on the Monero blockchain

and that 𝐻 𝑗 = 𝐻p (𝑃 ′𝑗 ) (as explained in Section 7.2).

(4) Using the private inputs 𝑥 𝑗 and 𝐻 𝑗 , it computes the point

𝑥 𝑗𝐻 𝑗 and its hash 𝐻𝑝𝑜𝑠 (𝑥 𝑗𝐻 𝑗 ).
(5) Using NonMemberProof

(
root(KIT), 𝐻𝑝𝑜𝑠 (𝑥 𝑗𝐻 𝑗 )

)
, it proves

the non-membership of 𝐻𝑝𝑜𝑠 (𝑥 𝑗𝐻 𝑗 ) in KIT. This proves that
𝑃 ′𝑗 is an unspent address.

(6) Using the private input 𝑥 𝑗 , it computes the hash𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh).
(7) UsingNonMemberProof

(
root(DST𝑗−1), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)
, it ver-

ifies the non-membership of leaf 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh) in DST𝑗−1.
This proves that the address 𝑃 ′𝑗 has not been used in a previ-

ous step.

(8) Using InsertProof
(
root(DST𝑗−1), root(DST𝑗 ), 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh)

)
,

it verifies that root(DST𝑗 ) is the root hash of the indexed

Merkle tree obtained by inserting the leaf 𝐻𝑝𝑜𝑠 (𝑥 𝑗 ∥bh) into
an indexedMerkle tree with root hash equal to root(DST𝑗−1).

(9) Using the private input 𝑟 𝑗 , it computes the Pedersen com-

mitment 𝐶res

𝑗 =𝐶res

𝑗−1 +𝐶′𝑗 + 𝑟 𝑗𝐺 .
(10) Using root(DST𝑗 ),𝐶res

𝑗 , it updates zRCG
𝑗−1 and outputs zRCG𝑗 .

7.5 Knowledge of IVC Witness Implies
Knowledge of RCG Protocol Witness

In this section, we argue that knowledge of a witness for the IVC

version of the RCG protocol implies the knowledge of a witness

witRCG for an original RCG protocol instance instRCG (see Definition

7.2).

Definition 7.3. Let IMT∅ denote the empty indexed Merkle tree.

An instance of the IVC version of the RCG protocol is the tuple
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instRCG-IVC = (zRCG
0

, zRCG𝑛 ), where

zRCG
0

=
[
bh, root(TXOT), root(KIT), root(IMT∅),𝐺

]
,

zRCG𝑛 =
[
bh, root(TXOT), root(KIT), root(DST𝑛),𝐶res

𝑛

]
.

The point 𝐺 in zRCG
0

corresponds to the commitment to the zero

amount with blinding factor 1.

Definition 7.4. A witness for the instance instRCG-IVC is a vector

of private inputs

witRCG-IVC =
[
wRCG

0
,wRCG

1
, . . . ,wRCG

𝑛−1
]

such that for all 𝑖 = 0, 1, . . . , 𝑛 − 1 we have
zRCG𝑖+1 = 𝐹RCG (zRCG𝑖 ,wRCG

𝑖 ) .

Suppose an exchange knows a witness witRCG-IVC of length 𝑛.

Then the values in the set Jres and vectors x, P′,C′,H, 𝜋mp, 𝜋nmp

required for witRCG are already present in witRCG-IVC. As discussed
in Section 7.3.1, the double spend tree guarantees that the indices in

Jres are distinct. Finally, for𝐶res =𝐶res

𝑛 the value of 𝑟res in witRCG is

given by 1 +∑𝑛
𝑗=1 𝑟 𝑗 , since 𝐶

res

0
=𝐺 contributes the blinding factor

1.

7.6 Proof Generation and Verification
Prior to proof generation and verification, the exchange and the

verifier use the structure of 𝐹RCG to generate the Nova proving key

pk
RCG

and verification key vkRCG, respectively. This has to be done
only once.

7.6.1 Proof Generation. At a block height bh, the exchange first
constructs the TXOT and KIT trees. At subsequent block heights,

only the outputs and key images that appeared after block bh need

to be added to these trees.

Suppose the exchange wants to use 𝑛 outputs to generate the

commitment 𝐶res to its reserves. The exchange constructs the pri-

vate inputs wRCG

𝑗−1 , 𝑗 = 1, 2, . . . , 𝑛, as defined in Section 7.4. The scalar

𝑟 𝑗 is chosen uniformly from Z𝑙 for each 𝑗 .

Starting from the public input zRCG
0

given in Definition 7.3, the

exchange uses zRCG
𝑗+1 = 𝐹RCG (zRCG𝑗 ,wRCG

𝑗 ) to compute the remaining

zRCG𝑗 values for 𝑗 = 0, 1, . . . , 𝑛− 1. It then uses the Nova IVC scheme

to generate an IVC proof Π𝑛 attesting to the correct execution of

the 𝑛 steps (see Section 5.1). Finally, it generates a zkSNARK proof

𝜋RCG proving knowledge of the IVC proof Π𝑛 (see Section 5.2).

The tuple (instRCG-IVC, 𝜋RCG) = ((zRCG
0

, zRCG𝑛 ), 𝜋RCG) is shared
with the zkSNARK verifierVRCG.

7.6.2 Proof Verification. The zkSNARK verifierVRCG verifies the

proof 𝜋RCG as

0/1←VRCG (vkRCG, instRCG-IVC, 𝜋RCG) .
Note that the number of steps 𝑛 used by the prover to obtain

zRCG𝑛 is not revealed to the verifier. If the proof is accepted, the com-

mitment 𝐶res

𝑛 in zRCG𝑛 is a commitment to the exchange’s reserves

amount assuming that the root hashes root(TXOT) and root(KIT)
are correct.

Note that the proof 𝜋RCG does not verify that the root hashes

root(TXOT) and root(KIT) actually correspond to the TXOT and

KIT trees at block height bh. If an exchange publishes incorrect root

hashes for these trees, it can inflate its reserves by using an output

which is not on the Monero blockchain or by using a spent output.

But incorrect root hashes can be detected as they are calculated

from public data available on the Monero blockchain.

In theory, we could generate a Nova proof proving that a pair of

root hashes correspond to the TXOT and KIT trees at block height

bh. But the locations of the outputs and key images in Monero

blocks can take many possible values, making it hard to express

this computation using R1CS constraints.

8 Non-Collusion Protocol
In this section, we describe the non-collusion (NC) protocol that

is used in MProve-Nova. It proves that a pair of exchanges that

both used the RCG protocol to generate commitments to their

reserves have not colluded, i.e. they did not use a common output

to contribute to their respective reserves.

8.1 NC Protocol Instance and Witness
Suppose two exchanges Ex1 and Ex2, that have executed the RCG

protocol at the same block height bh, want to prove that they have

not colluded. Let 𝑛1 and 𝑛2 be the number of owned outputs of Ex1

and Ex2, respectively. Let root
(
DSTEx1𝑛1

)
and root

(
DSTEx2𝑛2

)
be the

root hashes of the double spend trees output by the exchanges at

the end of their respective RCG protocol executions.

Definition 8.1. An instance of the non-collusion protocol is given

by the pair

instNC =

(
root

(
DSTEx1𝑛1

)
, root

(
DSTEx2𝑛2

))
.

In the NC protocol, one of the exchanges generates the proof

using information from the other exchange. Suppose Ex1 generates
the proof using information from Ex2. Then we can define the NC

protocol witness as follows.

Definition 8.2. A witness for an NC protocol instance instNC is a

pair witNC =
(
v, 𝜋nmp

)
, where

(i) the root hash of the indexed Merkle tree constructed using

the vector of leaves v = [𝑣1, 𝑣2, . . . , 𝑣𝑛2 ] ∈ F𝑛2𝑠 is equal to

root
(
DSTEx2𝑛2

)
, and

(ii) 𝜋nmp is a vector of 𝑛2 non-membership proofs where the 𝑗 th

proof equals

NonMemberProof
(
root

(
DSTEx1𝑛1

)
, 𝑣 𝑗

)
,

for each 𝑗 = 1, 2, . . . , 𝑛2.

Let v(1) =
[
𝑣
(1)
1

, 𝑣
(1)
2

, . . . , 𝑣
(1)
𝑛1

]
be the vector of leaves in DSTEx1𝑛1

and let v(2) =
[
𝑣
(2)
1

, 𝑣
(2)
2

, . . . , 𝑣
(2)
𝑛2

]
be the vector of leaves in DSTEx2𝑛2

.

To allow Ex1 to prove knowledge of the witness witNC, Ex2 shares
the leaves v(2) of its double spend tree with Ex1. Note that these
leaves are not revealed during the execution of the RCG protocol

execution.

The roles of Ex1 and Ex2 can be interchanged, but then Ex1 will
have to share v(1) with Ex2. In our protocol description, we assume

that Ex1 generates the non-collusion proof using v(2) from Ex2.
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𝐹NCzNC
𝑗−1 =

[
root(DSTEx1𝑛1

), root(OIT𝑗−1)
]

zNC𝑗 =
[
root(DSTEx1𝑛1

), root(OIT𝑗 )
]

wNC

𝑗−1 =
[
𝑣
(2)
𝑗

,NonMemberProof
(
root

(
DSTEx1𝑛1

)
, 𝑣
(2)
𝑗

)
, InsertProof

(
root(OIT𝑗−1), root(OIT𝑗 ), 𝑣 (2)𝑗

)]
Figure 3: Step Function for MProve-Nova Non-Collusion protocol. In the 𝑗th step of the NC protocol, zNC

𝑗−1 is the public input,
wNC

𝑗−1 is the private input, and zNC
𝑗

is the public output.

Recall that 𝑣
(1)
𝑗

= 𝐻𝑝𝑜𝑠

(
𝑥
(1)
𝑗
∥bh

)
for 𝑗 = 1, 2, . . . , 𝑛1 and 𝑣

(2)
𝑗

=

𝐻𝑝𝑜𝑠

(
𝑥
(2)
𝑗
∥bh

)
for 𝑗 = 1, 2, . . . , 𝑛2, where the 𝑥

(1)
𝑗

s and 𝑥
(2)
𝑗

s are the

private keys of unspent outputs owned by Ex1 and Ex2, respectively.
Knowledge of a witness witNC proves that v(1) and v(2) have no
elements in common. Assuming that the Poseidon hash function

is collision resistant, the sets of private keys used by the two ex-

changes have no elements in common. This implies that they have

not colluded.

8.2 Step Function Computation
We express the NC protocol as an IVC scheme. Let 𝐹NC be the

corresponding step function. Ex1will prove knowledge of a witness
witNC by proving the correct execution of 𝑛2 invocations of the step

function 𝐹NC.

The NC protocol requires an indexed Merkle tree called the Out-
put Inclusion Tree OIT. It is initially empty and is later populated

with the leaves v(2) of Ex2’s double spend tree DSTEx2𝑛2
. Let OIT𝑗−1

and OIT𝑗 denote the states of the output inclusion tree before and

after the 𝑗th step, respectively.

For 𝑗 = 1, 2, . . . , 𝑛2, the public input zNC
𝑗−1 to 𝐹NC in step 𝑗 is

zNC𝑗−1 =
[
root(DSTEx1𝑛1

), root(OIT𝑗−1)
]
.

The public output zNC𝑗 of 𝐹NC in step 𝑗 is

zNC𝑗 =
[
root(DSTEx1𝑛1

), root(OIT𝑗 )
]
.

Note that zNC
𝑗−1 and zNC𝑗 differ only in the last component.

The private input wNC

𝑗−1 to 𝐹NC in step 𝑗 is

wNC

𝑗−1 =


𝑣
(2)
𝑗

,

NonMemberProof
(
root

(
DSTEx1𝑛1

)
, 𝑣
(2)
𝑗

)
,

InsertProof
(
root(OIT𝑗−1), root(OIT𝑗 ), 𝑣 (2)𝑗

)
 ,

where 𝑣
(2)
𝑗

is the 𝑗th leaf in Ex2’s double spend tree DSTEx2𝑛2
.

For each 𝑗 = 1, 2, . . . , 𝑛2, in step 𝑗 function 𝐹NC performs the

following computations:

(1) UsingNonMemberProof
(
root

(
DSTEx1𝑛1

)
, 𝑣
(2)
𝑗

)
, it verifies that

the leaf 𝑣
(2)
𝑗

is not present in DSTEx1𝑛1
.

(2) Using InsertProof
(
root(OIT𝑗−1), root(OIT𝑗 ), 𝑣 (2)𝑗

)
, it verifies

that root(OIT𝑗 ) is the root hash of the indexed Merkle tree

obtained by inserting the leaf 𝑣
(2)
𝑗

into an indexed Merkle

tree with root hash equal to root(OIT𝑗−1).

(3) Using root(OIT𝑗 ), it updates zNC𝑗−1 and outputs zNC𝑗 .

After step 𝑛2, the root hash ofOIT𝑛2 is checked to be equal to the
root hash of DSTEx2𝑛2

. The equality of these root hashes ensures that

every leaf in DSTEx2𝑛2
was considered in a step of the NC protocol,

and consequently checked for non-membership in DSTEx1𝑛1
.

8.3 Knowledge of IVC Witness Implies
Knowledge of NC Protocol Witness

In this section, we argue that knowledge of a witness of the IVC

version of the NC protocol implies the knowledge of a witness

witNC for the original NC instance.

Definition 8.3. Let IMT∅ denote the empty indexed Merkle tree.

An instance of the IVC version of the NC protocol is the tuple

instNC-IVC = (zNC
0

, zNC𝑛2 ), where

zNC
0

=
[
root(DSTEx1𝑛1

), root(IMT∅)
]
,

zNC𝑛2 =
[
root(DSTEx1𝑛1

), root(DSTEx2𝑛2
)
]
.

Note that the root hash of the OIT in zNC𝑛2 is equal to the root

hash of DSTEx2𝑛2
.

Definition 8.4. A witness for the instance instNC-IVC is a vector

of private inputs

witNC-IVC =
[
wNC

0
,wNC

1
, . . . ,wNC

𝑛−1
]

such that for all 𝑖 = 0, 1, . . . , 𝑛 − 1 we have
zNC𝑖+1 = 𝐹NC (zNC𝑖 ,wNC

𝑖 ) .

Suppose an exchange knows a witness witNC-IVC of length 𝑛. We

assume that the Poseidon hash function is collision resistant. Since

the final OIT root hash root(OIT𝑛) = root
(
DSTEx2𝑛2

)
, every leaf in

DSTEx2𝑛2
must have been inserted into OIT𝑛 in one of the 𝑛 steps.

Thus 𝑛 must be equal to 𝑛2. Furthermore, the non-membership

of every leaf of DSTEx2𝑛2
in DSTEx1𝑛1

must have been checked in one

of the 𝑛2 steps. Thus the exchange must know 𝑛2 leaves which

form the tree DSTEx2𝑛2
and 𝑛2 non-membership proofs as defined in

Definition 8.2.

8.4 Proof Generation and Verification
Prior to proof generation and verification, the exchange and the

verifier use the structure of 𝐹NC to generate the Nova proving key

pk
NC

and verification key vkNC, respectively.
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8.4.1 Proof Generation. To generate an NC proof for an instance

instNC (see Definition 8.1), the pair of exchanges Ex1 and Ex2 need
to collaborate. First, Ex2 sends the leaves v(2) corresponding to its

double spend tree DSTEx2𝑛2
to Ex1. Using v(2) , the Ex1 constructs the

private inputs wNC

𝑗−1, 𝑗 = 1, 2, . . . , 𝑛2, as defined in Section 8.2.

Starting from the public input zNC
0

given in Definition 8.3, Ex1
computes the remaining zNC𝑗 values using zNC

𝑗+1 = 𝐹NC (zNC𝑗 ,wNC

𝑗 )
for 𝑗 = 0, 1, . . . , 𝑛2−1. It then uses the Nova IVC scheme to generate

an IVC proof attesting to the correct execution of the 𝑛2 steps (see

Section 5.1). Finally, it generates a zkSNARK proof 𝜋NC proving

knowledge of the IVC proof (see Section 5.2).

The tuple (instNC-IVC, 𝜋NC) = ((zNC
0

, zNC𝑛2 ), 𝜋NC) is shared with

the zkSNARK verifierVNC.

We make two observations about NC proof generation.

(i) As an NC proof is for a pair of exchanges, to prove that a

set of 𝑁 exchanges have not colluded we need to generate(𝑁
2

)
NC proofs. These proofs can be generated in parallel as

there is no dependence between them.

(ii) Ex1 learns the leaf values 𝑣 (2)
1

, 𝑣
(2)
2

, . . . , 𝑣
(2)
𝑛2 of Ex2’s double

spend tree DSTEx2𝑛2
. Recall that 𝑣

(2)
𝑗

= 𝐻𝑝𝑜𝑠 (𝑥 (2)𝑗
∥bh) where

𝐻𝑝𝑜𝑠 is the Poseidon hash function and 𝑥
(2)
𝑗

is the private

key of the 𝑗th output used by Ex2 to generate its reserves.

If we model the Poseidon hash function as a random oracle,

the 𝑣
(2)
𝑗

s do not leak any information about the private keys.

However, the number of outputs 𝑛2 used by Ex2 is revealed
to Ex1.

8.4.2 Proof Verification. The zkSNARK verifierVNC verifies the

proof 𝜋NC as

0/1←VNC (vkNC, instNC-IVC, 𝜋NC) .

Before verifying the proof, the verifier checks that the root hashes

root(DSTEx1𝑛1
), root(DSTEx2𝑛2

) in instNC-IVC appeared in two valid

RCG IVC protocol instances containing the same block height bh.
Note that the number of steps 𝑛2 used by Ex1 to obtain zNC𝑛2 is

not revealed to the verifier. So the value of 𝑛2 is only leaked to Ex1
and not to NC proof verifiers (who could be customers). If the proof

is accepted, the verifier is convinced that the two exchanges did

not collude while generating their respective RCG protocol proofs

at the same block height.

9 Security Analysis
In this section, we analyze the security of MProve-Nova. Let 𝜆 ∈
N be a security parameter. We model computationally bounded

entities as probabilistic polynomial-time (PPT) algorithms with

running times that are polynomial in 𝜆.

Our security analysis uses the asymptotic approach. So we con-

sider MProve-Nova as instantiated on a sequence of Monero-like

systems {M𝜆 | 𝜆 ∈ N}, where the discrete logarithm problem in

G, the decisional Diffie-Hellman problem in G, the problems of

finding collisions or preimages of hash functions 𝐻s, 𝐻p, 𝐻K, 𝐻𝑝𝑜𝑠 ,

all become harder with increasing 𝜆. The generation ofM𝜆 for a

given value of 𝜆 is described in Appendix G.

9.1 Inflation Resistance
We want to prove that MProve-Nova is an inflation-resistant PoR

protocol. This entails proving that a valid RCG protocol proof 𝜋RCG
implies that the 𝐶res in the corresponding RCG protocol instance

instRCG (see Definition 7.1) is a commitment to an amount of un-

spent coins actually owned by the exchange, except with a negli-

gible probability. In other words, a valid RCG protocol proof must

prevent an exchange from inflating the amount 𝑎res committed by

𝐶res.

From our discussion in Section 7.2, it is enough to prove that a

valid 𝜋RCG implies that the prover knows an RCG protocol witness

witRCG (see Definition 7.2), except with a negligible probability. Fur-

thermore, since the knowledge of a witness witRCG-IVC for the IVC

version of the RCG protocol implies knowledge of a witness witRCG
for the original RCG protocol (see Section 7.5), it is enough to prove

that a valid 𝜋RCG implies that the prover knows awitnesswitRCG-IVC,
except with a negligible probability. In other words, it is enough to

prove that the RCG protocol satisfies knowledge-soundness (see the
Definitions E.2, F.3 of IVC and zkSNARK knowledge-soundness for

context).

Let RRCG-IVC be the relation consisting of the instance-witness

pairs (instRCG-IVC,witRCG-IVC) as given in Definitions 7.3, 7.4. From

Section 7.6.2, recall thatVRCG is the zkSNARK verifier used in the

RCG protocol. Let G𝑅𝐶𝐺 denote the PPT algorithm that generates

the Nova public parameters (of both IVC scheme and zkSNARK)

for the RCG protocol. Let KRCG be the deterministic algorithm that

generates the Nova prover and verifier keys.

The below theorem says that if a PPT adversary can generate

a valid zkSNARK proof 𝜋RCG for some instance instRCG-IVC, then
a valid witness witRCG-IVC can be extracted from it, except with a

negligible probability. Thus the𝐶res

𝑛 in instRCG-IVC, which is equal to
the 𝐶res in instRCG (see Section 7.3.2), is a Pedersen commitment to

an amount of unspent coins owned by the exchange (see discussion

in Section 7.2).

Theorem 9.1. For any PPT adversary Ex, there is an expected
polynomial-time extractor ERCG such that for all randomness 𝜌 , we
have

Pr


VRCG

©­«
vkRCG,

instRCG-IVC,
𝜋RCG

ª®¬ = 1,

pp← GRCG (1𝜆),(
instRCG-IVC,

𝜋RCG

)
← Ex(pp; 𝜌),(

instRCG-IVC,
witRCG-IVC

)
∉ RRCG-IVC

(
pkRCG,
vkRCG

)
← KRCG (pp, 𝐹RCG),

witRCG-IVC ← ERCG (pp, 𝜌)


≤ negl(𝜆) .

Proof. The proof is given in Appendix H. □

9.2 Collusion Resistance
We want to prove that MProve-Nova is a collusion-resistant PoR

protocol. This entails proving that a valid NC protocol proof 𝜋NC
implies that the two exchanges whose roots appear in the NC

protocol instance instNC (see Definition 8.1) did not use a common

output while generating their reserves commitments, except with

a negligible probability.
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From our discussion in Section 8.1, it is enough to prove that a

valid 𝜋NC implies that the prover knows an NC protocol witness

witNC (see Definition 8.2), except with a negligible probability. Fur-

thermore, since the knowledge of a witness witNC-IVC for the IVC

version of the NC protocol implies knowledge of a witness witNC
for the original NC protocol (see Section 8.3), it is enough to prove

that a valid 𝜋NC implies that the prover knows a witness witNC-IVC,
except with a negligible probability. In other words, it is enough to

prove that the NC protocol satisfies knowledge-soundness.
Let RNC-IVC be the relation consisting of the instance-witness

pairs (instNC-IVC,witNC-IVC) as given in Definitions 8.3, 8.4. From

Section 8.4.2, recall thatVNC is the zkSNARK verifier used in the

NC protocol. Let G𝑁𝐶 denote the PPT algorithm that generates the

Nova public parameters (of both IVC scheme and zkSNARK) for the

NC protocol. LetKNC be the deterministic algorithm that generates

the Nova prover and verifier keys.

Theorem 9.2. For any PPT adversary Ex, there is an expected
polynomial-time extractor ENC such that for all randomness 𝜌 , we
have

Pr


VNC

©­«
vkNC,

instNC-IVC,
𝜋NC

ª®¬ = 1,

pp← GNC (1𝜆),(
instNC-IVC,

𝜋NC

)
← Ex(pp; 𝜌),(

instNC-IVC,
witNC-IVC

)
∉ RNC-IVC

(
pkNC,
vkNC

)
← KNC (pp, 𝐹NC),

witNC-IVC ← ENC (pp, 𝜌)


≤ negl(𝜆) .

Proof. The proof is given in Appendix I. □

The above theorem says that if a PPT adversary can generate a

valid zkSNARK proof 𝜋NC for some instance instNC-IVC, then a valid

witness witNC-IVC can be extracted from it, except with a negligible

probability. Thus, as long as the Poseidon hash function is collision

resistant, the two exchanges whose DST roots appear in instNC-IVC
did not share any outputs while generating their respective reserves

commitments (see discussion in Section 8.1).

9.3 Privacy
As discussed in Appendices B and C, MProve and MProve+ nega-

tively impact the privacy of both Monero exchanges and regular

Monero users. In this section, we show that MProve-Nova proofs

only reveal the number of outputs used by an exchange in the

NC proof generation. No other information about an exchange’s

outputs or their key images is revealed.

Recall from Sections 7.6.2 and 8.4.2 that the zkSNARK verifiers do

not learn the number of outputs used by the exchanges. However,

the NC proof generation requires Ex2 to reveal its double spend

tree leaves to Ex1. If we model the Poseidon hash function 𝐻𝑝𝑜𝑠

as a random oracle, the leaves themselves do not reveal any infor-

mation about the outputs used by Ex2. However, the number of

leaves equals the number of outputs used by Ex2. While Ex2 could
request Ex1 to keep the number of outputs a secret, we consider the

worst-case scenario where Ex1 itself uses this information to either

identify Ex2’s outputs or violate the untraceability, unlinkability,
and amount confidentiality properties of Monero.

To the best of our knowledge, we are not aware of any attack

which can use the number of outputs used by the exchange to

affect the privacy of Monero exchanges or users in the real world.

However, we cannot prove that no such attack exists because the

number of outputs can affect privacy in extreme cases.

For example, consider the hypothetical scenario where at some

block height bh all the 𝑁bh RingCT outputs that have appeared on

the Monero blockchain
5
are owned only by two exchanges Ex1 and

Ex2. Suppose they own 𝑛1 and 𝑛2 outputs respectively, where 𝑛1 +
𝑛2 = 𝑁bh. During the NC protocol proof generation, if Ex2 reveals
the 𝑛2 leaves of its double spend tree, then Ex1 immediately knows

that all the outputs it does not own belong to Ex2. This hypothetical
scenario is unlikely in practice due to output ownership by other

Monero users and exchanges.

We claim that whatever a PPT adversary can infer from the Mon-

ero blockchain after observing a polynomial number of MProve-

Nova proofs can also be inferred by a PPT adversary who only

knows the number of outputs owned by the exchanges. To prove

our claim, we need an algorithm that generates an instance of the

Monero blockchain.

Recall that {M𝜆 | 𝜆 ∈ N} is a sequence of Monero-like systems.

Let B be a PPT algorithm which givenM𝜆 and a block height bh,
generates an instance Bbh of the Monero blockchain up to block

height bh.
Bbh ← B(M𝜆, bh) .

The instance Bbh will contain bh Monero blocks with each block

containing some valid transactions.

We want to model an adversary that observes a polynomial

number of MProve-Nova proofs on the blockchain instance Bbh

and then attempts to violate the privacy of Monero users or the

privacy of an exchange (by identifying its outputs). MProve-Nova

proofs consist of RCG protocol proofs and NC protocol proofs. To

simplify our analysis, we consider a stronger adversary A that

observes the NC protocol witnesses instead of NC protocol proofs.

Specifically, for every RCG protocol proof A is given the leaves

v of the DST whose root appears in the RCG protocol instance.

Given the DST leaves,A can itself generate the NC protocol proofs

between any pair of exchanges (if their RCG protocol proofs are

at the same block height and they have not colluded). Considering

this stronger adversary simplifies our analysis because we don’t

need to specify which pairs of exchanges generated NC protocol

proofs and which exchange revealed its DST leaves in a particular

NC protocol proof. Any privacy property that holds against the

adversary A will also hold against an adversary which observes

NC protocol proofs instead of the DST leaves.

For Monero blockchain instance Bbh, supposeA observes a poly-

nomial 𝑥 (𝜆) number of RCG protocol proofs. These proofs can be

generated by different exchanges at various block heights where

each height is at most bh. Let ℎ1, ℎ2, . . . , ℎ𝑥 (𝜆) be the heights at

which these proofs were generated. These heights are not necessar-

ily distinct. Let TXOTℎ 𝑗
and KITℎ 𝑗

be the transaction outputs and

key image trees at height ℎ 𝑗 , respectively. Let 𝑛 𝑗 be the number of

outputs used to generate the 𝑗th RCG protocol proof.

The 𝑗th RCG protocol proof consists of an instance-proof pair(
inst( 𝑗 )

RCG-IVC
, 𝜋
( 𝑗 )
RCG

)
where according to Definition 7.3 the instance

5
As of May 2024, 𝑁bh is more than 100 million.
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is given by inst( 𝑗 )
RCG-IVC

=

(
z( 𝑗 )
0

, z( 𝑗 )𝑛 𝑗

)
where

z( 𝑗 )
0

=
[
ℎ 𝑗 , root(TXOTℎ 𝑗

), root(KITℎ 𝑗
), root(IMT∅),𝐺

]
,

z( 𝑗 )𝑛 𝑗
=

[
ℎ 𝑗 , root(TXOTℎ 𝑗

), root(KITℎ 𝑗
), root(DST𝑗 ),𝐶res

𝑗

]
.

Here DST𝑗 and 𝐶res

𝑗 denote the double spend tree and reserves

commitment generated in the 𝑗th RCG protocol instance. And,

𝜋
( 𝑗 )
RCG

denotes the 𝑗th zkSNARK proof that will be verified by the

zkSNARK verifierVRCG as described in Section 7.6.2.

For notational convenience, we will use RT𝑗 to denote the 𝑗th

instance-proof pair

(
inst( 𝑗 )

RCG-IVC
, 𝜋
( 𝑗 )
RCG

)
, where RT abbreviates RCG

transcript. Let v( 𝑗 ) denote the DST leaves vector corresponding

to the tree DST𝑗 . As discussed earlier, for each RT𝑗 observed by

the adversary A the vector v( 𝑗 ) will be revealed to it. Hence the

adversary A observes the vector[(
RT1, v(1)

)
,

(
RT2, v(2)

)
, . . . ,

(
RT𝑥 (𝜆) , v(𝑥 (𝜆) )

)]
.

We have following theorem which states that whatever the ad-

versary A can infer from the MProve-Nova proofs can also be

inferred by an adversaryA′ which only knows the values of the re-

serves commitments, the DST leaves, and the block heights at which

the proofs were generated. The symbol ≈ denotes computationally

indistinguishable distributions (see Definition F.4).

Theorem 9.3. For every PPT adversary A, there exists a PPT
adversary A′ such that, for a blockchain instance Bbh we have

A
(
Bbh, (RT1, v(1) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

)
≈

A′
(
Bbh,𝐶

res
1
, . . . ,𝐶res

𝑥 (𝜆) , v
(1) , . . . , v(𝑥 (𝜆) ) , ℎ1, . . . , ℎ𝑥 (𝜆)

)
where 𝑥 (𝜆) is a polynomial in the security parameter 𝜆.

Proof. The proof is given in Appendix J. □

Corollary 9.4. In the random oracle model, MProve-Nova proofs
generated by non-colluding exchanges only reveal the number of
outputs owned by an exchange to PPT adversaries.

Proof. In Theorem 9.3, we showed that whatever can be inferred

by a PPT adversary from the RCG protocol proofs and DST leaves

can be inferred by a PPT adversary that only knows the reserves

commitments, DST leaves, and the block heights at which the proofs

were generated.

First, note that the Pedersen commitments 𝐶res

𝑗 are uniformly

distributed in G and independent of each other and the v( 𝑗 ) vectors.
So they don’t reveal any information even to a computationally

unbounded adversary, let alone a PPT adversary.

Recall that DST leaves vector v( 𝑗 ) has components of the form

𝐻𝑝𝑜𝑠 (𝑥𝑖 ∥ℎ 𝑗 ) where 𝐻𝑝𝑜𝑠 is the Poseidon hash function, 𝑥𝑖 is a pri-

vate key, and ℎ 𝑗 is a block height. A valid RCG protocol proof

ensures that the 𝑥𝑖s in a given v( 𝑗 ) are distinct. If we model 𝐻𝑝𝑜𝑠

as a random oracle, then the components of v( 𝑗 ) are independent
and uniformly distributed in the field F𝑠 .

Suppose v( 𝑗 ) and v( 𝑗
′ )
correspond to DST leaves vectors at the

same block height, i.e. ℎ 𝑗 = ℎ 𝑗 ′ . Under the assumption that the

exchanges do not collude, the 𝑥𝑖 values in v( 𝑗 ) and v( 𝑗
′ )
cannot

overlap. In the random oracle model, the vectors v( 𝑗 ) and v( 𝑗
′ )
will

then be independent.

If v( 𝑗 ) and v( 𝑗
′ )
correspond to DST leaves vectors at different

block heights, i.e. ℎ 𝑗 ≠ ℎ 𝑗 ′ . Then even if the 𝑥𝑖 values in v( 𝑗 ) and
v( 𝑗
′ )
overlap (which can happen if an exchange uses an output at

both block heights), the vectors v( 𝑗 ) and v( 𝑗
′ )
will still be indepen-

dent in the random oracle model.

Hence each v( 𝑗 ) only reveals the number of leaves in the DST

which is equal to the number of outputs owned by an exchange at

height ℎ 𝑗 . This proves the corollary. □

10 Implementation and Performance
The reference implementation of Nova [19] was not zero-knowledge

[36] when we began this work. Angel et al. [2, 3] had implemented

a zero-knowledge version of Nova by using hiding commitments

and zero-knowledge sumcheck. Their code was based on an older

version of the Nova implementation. We ported the relevant com-

mits to the latest version of the Nova implementation. We used our

modified implementation of Nova to implement both the subproto-

cols of MProve-Nova in Rust (source available on GitHub [47]). The

implementation uses Pasta curves [61], a 2-cycle of elliptic curves,

and the Poseidon hash function [23, 32].

To use Nova, the step function 𝐹 must be expressed as R1CS

constraints using the bellpepper library [33]. We implemented the

following component gadgets in bellpepper (sources available on
GitHub [48, 53, 54]).

(1) Regular and indexed Merkle trees [4, 49]: While implementa-

tions of regular Merkle trees already existed [62], our imple-

mentation of indexed Merkle trees is new.

(2) bellpepper-emulated: A gadget for non-native finite field

arithmetic inspired by the emulated [18] package (written

in Go) from the gnark zkSNARK library [10].

(3) bellpepper-ed25519: A gadget for ed25519 elliptic curve op-

erations using bellperson-emulated.

Table 1 shows comparison between MProve-Nova RCG protocol,

MProve+, and MProve for proof generation/verification. The simu-

lations were run on a 64 core 2.30GHz Intel Xeon Gold 6314U CPU

with access to 125GiB RAM. The open source implementations of

MProve [5] and MProve+ [6] were used to perform the simulations.

For MProve and MProve+ the simulations were run for different

sizes of the anonymity set Panon up to 45,000 outputs, whereas

for MProve-Nova RCG protocol the anonymity set is the set of

all outputs on the Monero blockchain. Thus the comparison is

unfair towards MProve-Nova PoR since for an anonymity set of all

outputs, MProve and MProve+ would be impractical (see discussion

in Sections B.4 and C.4). However, despite this, the MProve-Nova

RCG protocol gives practical results and performs better in terms

of verification times and proof sizes.

For the MProve-Nova RCG protocol, the proving time is linear

in the number of exchange-owned outputs 𝑛, while the proof veri-

fication times and proof sizes are constant. The proving time per

10,000 owned outputs is about 7 hours. The verification time and

proof size are constant at about 4.3 s and 28 KB, respectively.

The MProve-Nova RCG protocol has smaller proof sizes and

faster verification times as compared to both MProve+ and MProve.

MProve has faster proving times because we chose |Panon | ≤ 45, 000.
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Table 1: Performance comparison of protocols. 𝑛 is the number of outputs owned by the exchange. PT denotes proving time,
VT denotes verification time and PS denotes proof size with units in parentheses. Values with a * are estimated values due to
simulation running out of memory.

MProve-Nova RCG MProve+ MProve
𝑛 PT (Hrs) VT (s) PS (KB) |Panon | PT (Hrs) VT (s) PS (KB) |Panon | PT (s) VT (s) PS (MB)

500 0.34 4.3 28.02 10,000 0.29 112.1 82.43 10,000 7.3 3.8 8.32

1,000 0.68 4.3 28.02 15,000 0.62 236.9 162.50 15,000 11.7 5.7 12.48

3,000 2.03 4.3 28.02 20,000 3.51* 1337.7* 400.90* 20,000 16.8 7.6 16.64

5,000 3.40 4.3 28.02 25,000 6.06* 2292.5* 723.23* 25,000 23.2 9.5 20.80

7,000 4.78 4.3 28.02 30,000 8.75* 3318.5* 1043.49* 30,000 30.4 11.4 24.96

10,000 6.94 4.3 28.02 35,000 22.49* 8820.1* 1523.88* 35,000 38.7 13.3 29.12

15,000 10.51 4.3 28.02 40,000 35.03* 13586.0* 2402.42* 40,000 47.3 15.2 33.28

20,000 14.00 4.3 28.02 45,000 47.98* 19624.1* 3205.06* 45,000 57.4 17.1 37.44

Table 2: Performance of MProve-Nova NC protocol. 𝑛2 de-
notes the number of leaves in the double spend tree DSTEx2

of exchange Ex2

𝑛2 PT (mins) VT (s) PS (KB)

500 2.39 0.2 23.70

1,000 4.75 0.2 23.70

3,000 14.14 0.2 23.70

5,000 23.50 0.2 23.70

7,000 33.08 0.2 23.70

10,000 47.11 0.2 23.70

15,000 70.62 0.2 23.70

20,000 93.88 0.2 23.70

If |Panon | is increased to 100 million, MProve proofs would require

35 hours. While this seems reasonable, proof sizes would increase

to 80 GB.

Table 2 shows the performance of the MProve-Nova NC protocol.

In all cases, the proof size is 24 KB and proof verification times

are about 200 ms. The proving time is linear in 𝑛2, the number of

outputs owned by Ex2, taking about 47 minutes per 10,000 outputs.

11 Conclusion
We described MProve-Nova, the first Monero PoR protocol that

reveals no information about the exchange-owned outputs or their

key images in the random oracle model, except their number. It

is also the first Monero PoR protocol to achieve proof sizes and

verification times that are independent of the number of outputs on

the Monero blockchain. We compared MProve-Nova with MProve+

and MProve to show that our protocol has practical proving times

and proof sizes. The proving times can be further reduced using

non-uniform IVC schemes like SuperNova [26].

The MProve-Nova NC protocol reveals the number of outputs

owned by the exchange which shares its double spend tree leaves

with the other exchange. The construction of a non-collusion pro-

tocol using multi-party computation techniques in which the ex-

changes do not reveal any information to each other and generate

a publicly-verifiable non-collusion proof is a possible direction for

future work.

The MProve-Nova protocol assumes that the transactions output

tree and key image tree roots have been constructed correctly from

the Monero blockchain. While incorrect values for these tree roots

can be detected by anyone with a copy of the Monero blockchain,

it would require them to recompute the roots. Generating a SNARK

proof for the validity of these tree roots is a challenging direction

for future work.

Proving ownership of an output in Monero only requires a proof

of knowledge of the corresponding private key. In Bitcoin, an out-

put is specified by a challenge script and proving ownership of an

output requires a proof of knowledge of a corresponding response

script. The challenge script can take many possible forms making

it difficult to prove knowledge of an output inside an R1CS cir-

cuit. This is the main obstacle that prevents us from applying our

protocol to Bitcoin or similar UTXO-based cryptocurrencies.

Acknowledgments
We acknowledge the support of Trust Lab, IIT Bombay, for provid-

ing access to computational resources necessary for running the

simulations. We thank Abhiram Kothapalli and Srinath Setty for

their help in understanding the zero-knowledge property of Nova.

We also express our gratitude to Manoj Prabhakaran, Sruthi Sekar,

Chaya Ganesh and Chethan Kamath for insightful discussions.

References
[1] Zachary Amsden and et al. 2020. The Libra Blockchain. https://diem-developers-

components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf

[2] Sebastian Angel. 2023. Nova Implementation with Zero-knowledge. https:

//github.com/sga001/Nova

[3] Sebastian Angel, Eleftherios Ioannidis, Elizabeth Margolin, Srinath Setty, and Jess

Woods. 2023. Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs.

Cryptology ePrint Archive, Paper 2023/1886. https://eprint.iacr.org/2023/1886

https://eprint.iacr.org/2023/1886.

[4] Aztec. 2023. Indexed Merkle Tree. https://docs.aztec.network/aztec/concepts/

storage/trees/indexed_merkle_tree

[5] Suyash Bagad. 2020. Implementation of MProve. https://github.com/suyash67/

MProve-Ristretto

[6] Suyash Bagad. 2021. Implementation of MProve+. https://github.com/suyash67/

MProvePlus-Ristretto

[7] Foteini Baldimtsi, Panagiotis Chatzigiannis, S. Gordon, Phi Le, and Daniel

McVicker. 2022. gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from

MPC in the Head, with Application to Proofs of Assets in Cryptocurrencies.

Proceedings on Privacy Enhancing Technologies (2022), 229–249. https://doi.org/

10.56553/popets-2022-0107

[8] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

594

https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://github.com/sga001/Nova
https://github.com/sga001/Nova
https://eprint.iacr.org/2023/1886
https://eprint.iacr.org/2023/1886
https://docs.aztec.network/aztec/concepts/storage/trees/indexed_merkle_tree
https://docs.aztec.network/aztec/concepts/storage/trees/indexed_merkle_tree
https://github.com/suyash67/MProve-Ristretto
https://github.com/suyash67/MProve-Ristretto
https://github.com/suyash67/MProvePlus-Ristretto
https://github.com/suyash67/MProvePlus-Ristretto
https://doi.org/10.56553/popets-2022-0107
https://doi.org/10.56553/popets-2022-0107


MProve-Nova Proceedings on Privacy Enhancing Technologies 2025(2)

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy (SP).
IEEE, 459–474. https://doi.org/10.1109/SP.2014.36

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2014. The

making of KECCAK. Cryptologia 38, 1 (2014), 26–60. https://doi.org/10.1080/

01611194.2013.856818

[10] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie.

2022. ConsenSys/gnark: v0.7.0. https://doi.org/10.5281/zenodo.5819104

[11] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Bul-

letproofs: Short Proofs for Confidential Transactions and More. In 2018 IEEE
Symposium on Security and Privacy (IEEE S&P). 315–334. https://doi.org/10.1109/

SP.2018.00020

[12] ChainSec. 2023. The Complete List of Crypto Exchange Hacks - ChainSec —

chainsec.io. https://chainsec.io/exchange-hacks/

[13] Konstantinos Chalkias, Panagiotis Chatzigiannis, and Yan Ji. 2022. Broken Proofs

of Solvency in Blockchain Custodial Wallets and Exchanges. Cryptology ePrint

Archive, Paper 2022/043. https://eprint.iacr.org/2022/043

[14] Konstantinos Chalkias, Kevin Lewi, Payman Mohassel, and Valeria Nikolaenko.

2020. Distributed Auditing Proofs of Liabilities. Cryptology ePrint Archive, Paper

2020/468. https://eprint.iacr.org/2020/468

[15] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. 2021. SoK:

Auditability and Accountability in Distributed Payment Systems. Cryptology

ePrint Archive, Paper 2021/239. https://eprint.iacr.org/2021/239

[16] Panagiotis Chatzigiannis and Konstantinos Chalkias. 2021. Proof of Assets in

the Diem Blockchain. In Applied Cryptography and Network Security Workshops:
ACNS 2021 Satellite Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI,
SecMT, and SiMLA, Kamakura, Japan, June 21–24, 2021, Proceedings (Kamakura,

Japan). Springer-Verlag, Berlin, Heidelberg, 27–41. https://doi.org/10.1007/978-

3-030-81645-2_3

[17] Electric Coin Co. 2024. Zcash Protocol Specification. Technical Report.

Electric Coin Co. https://zips.z.cash/protocol/protocol.pdf Overwin-

ter+Sapling+Blossom+Heartwood+Canopy.

[18] Consensys. 2020. Implementation of gnark emulated package. https://github.

com/Consensys/gnark/tree/master/std/math/emulated

[19] Nova Contributors. 2021. Nova Implementation. https://github.com/microsoft/

Nova

[20] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan Boneh.

2015. Provisions: Privacy-Preserving Proofs of Solvency for Bitcoin Exchanges. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security (Denver, Colorado, USA) (CCS ’15). Association for Computing Machin-

ery, New York, NY, USA, 720–731. https://doi.org/10.1145/2810103.2813674

[21] Arijit Dutta, Suyash Bagad, and Saravanan Vijayakumaran. 2021. MProve+:

Privacy Enhancing Proof of Reserves Protocol for Monero. IEEE Transactions on
Information Forensics and Security 16 (2021), 3900–3915. https://doi.org/10.1109/

TIFS.2021.3088035

[22] Arijit Dutta and Saravanan Vijayakumaran. 2019. MProve: A Proof of Reserves

Protocol for Monero Exchanges. In 2019 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). 330–339. https://doi.org/10.1109/EuroSPW.

2019.00043

[23] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge

Proof Systems. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 519–535. https://www.usenix.org/conference/usenixsecurity21/

presentation/grassi

[24] Yan Ji and Konstantinos Chalkias. 2021. Generalized Proof of Liabilities. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing

Machinery, New York, NY, USA, 3465–3486. https://doi.org/10.1145/3460120.

3484802

[25] Koe, Kurt M. Alonso, and Sarang Noether. 2020. Zero to Monero: Second Edition.

https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf

[26] Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal

machine executions without universal circuits. Cryptology ePrint Archive, Paper

2022/1758. https://eprint.iacr.org/2022/1758

[27] Abhiram Kothapalli and Srinath Setty. 2023. HyperNova: Recursive arguments

for customizable constraint systems. Cryptology ePrint Archive, Paper 2023/573.

https://eprint.iacr.org/2023/573 https://eprint.iacr.org/2023/573.

[28] Abhiram Kothapalli and Srinath Setty. 2024. personal communication.

[29] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2021. Nova: Recursive

Zero-Knowledge Arguments from Folding Schemes. Cryptology ePrint Archive,

Paper 2021/370. https://eprint.iacr.org/2021/370.

[30] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive

Zero-Knowledge Arguments from Folding Schemes. In Advances in Cryptology –
CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part IV (Santa Barbara,

CA, USA). Springer-Verlag, Berlin, Heidelberg, 359–388. https://doi.org/10.1007/

978-3-031-15985-5_13

[31] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. 2017. A Trace-

ability Analysis of Monero’s Blockchain. In Computer Security – ESORICS 2017,

Simon N. Foley, Dieter Gollmann, and Einar Snekkenes (Eds.). Springer Interna-

tional Publishing, Cham, 153–173. https://doi.org/10.1007/978-3-319-66399-9_9

[32] Lurk Lab. 2020. neptune : Implementation of the Poseidon hash function. https:

//github.com/lurk-lab/neptune

[33] Lurk Lab. 2023. bellpepper : Rust Library for R1CS circuits. https://github.com/

lurk-lab/bellpepper

[34] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Ar-

avinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling Private

Payments Without Trusted Setup. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (London, United Kingdom)

(CCS ’19). Association for Computing Machinery, New York, NY, USA, 31–48.

https://doi.org/10.1145/3319535.3345655

[35] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. 2004. Linkable Spontaneous

Anonymous Group Signature for Ad Hoc Groups. In Information Security and
Privacy, Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 325–335. https://doi.org/10.1007/978-3-

540-27800-9_28

[36] Microsoft. 2023. Zero-knowledge implementation gap in Nova. https://github.

com/microsoft/Nova/issues/174

[37] Monero. 2024. The Monero Project. https://www.getmonero.org/

[38] MoneroSchedule 2020. Monero Scheduled Software Upgrades. https://github.

com/monero-project/monero/#scheduled-software-upgrades Last Accessed: Au-

gust 13, 2023.

[39] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat

Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,

and Nicolas Christin. 2018. An Empirical Analysis of Traceability in the Monero

Blockchain. Proceedings on Privacy Enhancing Technologies (2018), 143–163.
https://doi.org/10.1515/popets-2018-0025

[40] Wilson Nguyen, Dan Boneh, and Srinath Setty. 2023. Revisiting the Nova Proof

System on a Cycle of Curves. Cryptology ePrint Archive, Paper 2023/969. https:

//eprint.iacr.org/2023/969

[41] Shen Noether and AdamMackenzie. 2016. Ring Confidential Transactions. Ledger
1 (12 2016), 1–18. https://doi.org/10.5195/LEDGER.2016.34

[42] Torben Pryds Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In Advances in Cryptology — CRYPTO ’91. Springer,
129–140. https://doi.org/10.1007/3-540-46766-1_9

[43] Privacy and Scaling Explorations (PSE). 2024. Semaphore: Privacy-preserving

signaling protocol. https://semaphore.pse.dev/. Accessed: 2024-12-12.

[44] Elements Project. 2018. Proof-of-Reserves tool for Bitcoin. https://github.com/

ElementsProject/reserves

[45] Steven Roose. 2019. Standardizing Bitcoin Proof of Reserves. https://blog.

blockstream.com/en-standardizing-bitcoin-proof-of-reserves/

[46] Stoffu Noether. 2018. Reserve Proof Pull Request. https://github.com/monero-

project/monero/pull/3027

[47] Varun Thakore. 2024. Implementation of MProve-Nova. https://github.com/

varunthakore/mprove-nova

[48] Varun Thakore. 2024. Vanilla and Indexed Merkle Trees. https://github.com/

varunthakore/merkle-trees

[49] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. 2022. Trans-

parency Dictionaries with Succinct Proofs of Correct Operation. ISOC Con-
ference on Network and Distributed System Security (NDSS) (2022). https:

//doi.org/10.14722/ndss.2022.23143

[50] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowledge

Imply Time/Space Efficiency. In Proceedings of the 5th Conference on Theory of
Cryptography (New York, USA) (TCC’08). Springer-Verlag, Berlin, Heidelberg,
1–18. https://doi.org/10.1007/978-3-540-78524-8_1

[51] Nicolas van Saberhagen. 2013. CryptoNote v 2.0. https://bytecoin.org/old/

whitepaper.pdf

[52] Saravanan Vijayakumaran. 2023. Analysis of CryptoNote Transaction Graphs

Using the Dulmage-Mendelsohn Decomposition. In 5th Conference on Advances
in Financial Technologies (AFT 2023), Vol. 282. 28:1–28:22. https://doi.org/10.

4230/LIPIcs.AFT.2023.28

[53] Saravanan Vijayakumaran. 2024. bellpepper-ed25519. https://github.com/lurk-

lab/bellpepper-gadgets/tree/main/crates/ed25519

[54] Saravanan Vijayakumaran. 2024. bellpepper-emulated. https://github.com/lurk-

lab/bellpepper-gadgets/tree/main/crates/emulated

[55] Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, and Dongxi Liu. 2017. Monero

transaction in block 1468439 spending 5 RingCT outputs. https://xmrchain.net/

tx/8d4a0c7eccf92542eb5e1f09e72cc0d934b180b768bc95388d33051db83194bb

[56] Dimaz Ankaa Wijaya, Joseph Liu, Ron Steinfeld, and Dongxi Liu. 2018. Mon-

ero Ring Attack: Recreating Zero Mixin Transaction Effect. In 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And Commu-
nications/ 12th IEEE International Conference O n Big Data Science And Engineering
(TrustCom/BigDataSE). 1196–1201. https://doi.org/10.1109/TrustCom/BigDataSE.

2018.00165

[57] Wikipedia. 2023. FTX —Wikipedia, The Free Encyclopedia. https://en.wikipedia.

org/wiki/FTX

595

https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1080/01611194.2013.856818
https://doi.org/10.1080/01611194.2013.856818
https://doi.org/10.5281/zenodo.5819104
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://chainsec.io/exchange-hacks/
https://eprint.iacr.org/2022/043
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2021/239
https://doi.org/10.1007/978-3-030-81645-2_3
https://doi.org/10.1007/978-3-030-81645-2_3
https://zips.z.cash/protocol/protocol.pdf
https://github.com/Consensys/gnark/tree/master/std/math/emulated
https://github.com/Consensys/gnark/tree/master/std/math/emulated
https://github.com/microsoft/Nova
https://github.com/microsoft/Nova
https://doi.org/10.1145/2810103.2813674
https://doi.org/10.1109/TIFS.2021.3088035
https://doi.org/10.1109/TIFS.2021.3088035
https://doi.org/10.1109/EuroSPW.2019.00043
https://doi.org/10.1109/EuroSPW.2019.00043
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://doi.org/10.1145/3460120.3484802
https://doi.org/10.1145/3460120.3484802
https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2021/370
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-319-66399-9_9
https://github.com/lurk-lab/neptune
https://github.com/lurk-lab/neptune
https://github.com/lurk-lab/bellpepper
https://github.com/lurk-lab/bellpepper
https://doi.org/10.1145/3319535.3345655
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://github.com/microsoft/Nova/issues/174
https://github.com/microsoft/Nova/issues/174
https://www.getmonero.org/
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://github.com/monero-project/monero/#scheduled-software-upgrades
https://doi.org/10.1515/popets-2018-0025
https://eprint.iacr.org/2023/969
https://eprint.iacr.org/2023/969
https://doi.org/10.5195/LEDGER.2016.34
https://doi.org/10.1007/3-540-46766-1_9
https://semaphore.pse.dev/
https://github.com/ElementsProject/reserves
https://github.com/ElementsProject/reserves
https://blog.blockstream.com/en-standardizing-bitcoin-proof-of-reserves/
https://blog.blockstream.com/en-standardizing-bitcoin-proof-of-reserves/
https://github.com/monero-project/monero/pull/3027
https://github.com/monero-project/monero/pull/3027
https://github.com/varunthakore/mprove-nova
https://github.com/varunthakore/mprove-nova
https://github.com/varunthakore/merkle-trees
https://github.com/varunthakore/merkle-trees
https://doi.org/10.14722/ndss.2022.23143
https://doi.org/10.14722/ndss.2022.23143
https://doi.org/10.1007/978-3-540-78524-8_1
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://doi.org/10.4230/LIPIcs.AFT.2023.28
https://doi.org/10.4230/LIPIcs.AFT.2023.28
https://github.com/lurk-lab/bellpepper-gadgets/tree/main/crates/ed25519
https://github.com/lurk-lab/bellpepper-gadgets/tree/main/crates/ed25519
https://github.com/lurk-lab/bellpepper-gadgets/tree/main/crates/emulated
https://github.com/lurk-lab/bellpepper-gadgets/tree/main/crates/emulated
https://xmrchain.net/tx/8d4a0c7eccf92542eb5e1f09e72cc0d934b180b768bc95388d33051db83194bb
https://xmrchain.net/tx/8d4a0c7eccf92542eb5e1f09e72cc0d934b180b768bc95388d33051db83194bb
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00165
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00165
https://en.wikipedia.org/wiki/FTX
https://en.wikipedia.org/wiki/FTX


Proceedings on Privacy Enhancing Technologies 2025(2) Thakore et al.

[58] Wikipedia. 2023. Mt. Gox — Wikipedia, The Free Encyclopedia. https://en.

wikipedia.org/wiki/Mt._Gox

[59] Wikipedia contributors. 2024. Tornado Cash. https://en.wikipedia.org/wiki/

Tornado_Cash. Accessed: 2024-12-12.

[60] Zuoxia Yu, Man Ho Au, Jiangshan Yu, Rupeng Yang, Qiuliang Xu, and Wang Fat

Lau. 2019. New Empirical Traceability Analysis of CryptoNote-Style Blockchains.

In Financial Cryptography and Data Security. 133–149. https://doi.org/10.1007/

978-3-030-32101-7_9

[61] Zcash. 2020. Pasta curves. https://github.com/zcash/pasta

[62] zkcrypto. 2015. bellman : Rust Library for R1CS circuits. https://github.com/

zkcrypto/bellman

A Overview of Monero
Monero [37] is the most popular instantiation of the CryptoNote

protocol [51], with additional privacy and efficiency improvements.

In Monero transactions, receiver identities are hidden using one-
time addresses, sender identities are obfuscated using linkable ring
signatures, and the number of coins being transferred is hidden us-

ing Pedersen commitments [42]. These techniques together achieve
three design properties of Monero, namely unlinkability, untrace-
ability and amount confidentiality.

A.1 One-Time Addresses and Unlinkability
Monero public keys are points in the prime order subgroup of

the twisted Edwards elliptic curve ed25519 [25]. Let G denote this

subgroup whose order is a 253-bit prime 𝑙 . Monero private keys

are integers in the set Z𝑙 = {0, 1, 2, ..., 𝑙 − 1}. For the base point

𝐺 ∈ G, the public key 𝑃 ∈ G corresponding to a private key 𝑥 ∈ Z𝑙
is denoted by 𝑃 = 𝑥𝐺 . We will use additive notation for scalar

multiplication throughout this paper.

Suppose Alice wants to send some Monero coins to Bob.

(1) Bob shares a public key pair (𝐵𝑣𝑘 , 𝐵𝑠𝑘 ) ∈ G2
with Alice. The

subscripts 𝑣𝑘 and 𝑠𝑘 are abbreviations of view key and spend
key. Let (𝑏𝑣𝑘 , 𝑏𝑠𝑘 ) ∈ Z2

𝑙
denote the corresponding private

key pair.

(2) She signs a transaction transferring coins she owns to Bob.

This transactionwill contain a random point𝑅 and a one-time
address 𝑃 that will be controlled by Bob.

(3) Alice chooses a random scalar 𝑟 ∈ Z𝑙 and computes the

random point 𝑅 as 𝑟𝐺 .

(4) Alice creates the one-time address 𝑃 as

𝑃 = 𝐻s (𝑟𝐵𝑣𝑘 ∥𝑜𝑖𝑛𝑑𝑒𝑥 )𝐺 + 𝐵𝑠𝑘
where ∥ denotes concatenation, 𝐻s : {0, 1}∗ ↦→ Z𝑙 is a scalar-
valued cryptographic hash function, and 𝑜𝑖𝑛𝑑𝑒𝑥 is the index

of the new output (defined in Section 2) in the transaction.
6

Note that the private key corresponding to 𝑃 is known only
to Bob as it equals

𝑥 = 𝐻s (𝑏𝑣𝑘𝑅∥𝑜𝑖𝑛𝑑𝑒𝑥 ) + 𝑏𝑠𝑘 ,
where 𝐵𝑠𝑘 = 𝑏𝑠𝑘𝐺 .

(5) Alice broadcasts the transaction containing (𝑃, 𝑅), which
will be eventually included in a Monero block by miners.

(6) Bob identifies transactions transferring coins to him as fol-

lows:

(i) For every new Monero block, Bob reads the point pairs

(𝑃, 𝑅) in all the transactions.

6
The output index is included to allow the creation of distinct one-time addresses from

the same public key pair in the same transaction.

(ii) He computes the point 𝑃 ′ = 𝐻s (𝑏𝑣𝑘𝑅∥𝑜𝑖𝑛𝑑𝑒𝑥 )𝐺 + 𝐵𝑠𝑘 .
(iii) If 𝑃 ′ = 𝑃 , Bob concludes that the transaction is sending

coins to him.

(7) Bob adds 𝑃 to the list of one-time addresses owned by him.

Note that Bob will always be able to identify transactions meant for

him as 𝑟𝐵𝑣𝑘 = 𝑟𝑏𝑣𝑘𝐺 = 𝑏𝑣𝑘𝑅. This is nothing but a Diffie-Hellman

shared secret between public keys 𝑅 and 𝐵𝑣𝑘 .

One-time addresses generated using Bob’s public key pair cannot

be linked to his key pair as long as the decisional Diffie-Hellman

(DDH) problem remains hard in ed25519. This is called the un-
linkability property of Monero i.e. given a one-time address 𝑃 , a

probabilistic polynomial time (PPT) adversary can identify the cor-

responding public key pair (𝐵𝑣𝑘 , 𝐵𝑠𝑘 ) with a probability which is

only negligibly better than random guessing. In this way, Monero

hides the receiver’s identity in a transaction.

A.2 Linkable Ring Signatures and
Untraceability

Monero uses linkable ring signatures [35, 41] to obfuscate sender

identities, while preventing double spending. Given a list of public

keys, a ring signature allows a signer to prove that he knows the

private key of one public key from the list without revealing which

one. A linkable ring signature allows an observer to link multiple

ring signatures generated using the same private key.

Suppose Bob wants to spend the coins tied to a one-time address

𝑃 he owns, i.e. he knows 𝑥 ∈ Z𝑙 such that 𝑃 = 𝑥𝐺 . This one-time

address is already present on the Monero blockchain. He proceeds

as follows:

(1) For a protocol-specified ring size 𝑛, Bob randomly samples

𝑛 − 1 one-time addresses 𝑃1, 𝑃2, . . . , 𝑃𝑛−1 (all distinct from 𝑃 )

from the blockchain. These are called decoy addresses.

(2) Bob signs the spending transaction using a linkable ring

signature on the set of one-time addresses

R = {𝑃1, 𝑃2, . . . , 𝑃𝑛−1, 𝑃}.

This set is sorted in chronological order (oldest address first)

to prevent the ordering of the keys in R from leaking the

identity of 𝑃 . The set R is called the transaction ring.
(3) Bob includes the linkable ring signature in the transaction

he broadcasts to the Monero P2P network.

Hiding the identity of the spending key opens up the possibility

of double spending. To prevent this, the linkable ring signature

contains an element of G called the key image, defined as 𝐼 =

𝑥𝐻p (𝑃) where 𝐻p : G ↦→ G is a point-valued cryptographic hash

function.

Two linkable ring signatures spending from the same one-time

address will have identical key images. The Monero blockchain

maintains the set I of key images that have appeared in past trans-

actions. If the coins tied to a one-time address 𝑃 have already been

spent, then its key image 𝐼 will already be in I. Monero block min-

ers will reject transactions whose linkable ring signatures have key

images from I.
At the same time, revealing the key image of a one-time address

does not leak information about the latter as long as the DDH prob-

lem remains hard in ed25519. To see this, let 𝐻p (𝑃) = 𝑦𝐺 for some

unknown 𝑦 ∈ Z𝑙 . Then 𝐼 = 𝑥𝐻p (𝑃) = 𝑥𝑦𝐺 is the Diffie-Hellman
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function of 𝑃 = 𝑥𝐺 and 𝐻p (𝑃). If the DDH problem is assumed to

be hard in ed25519, then given 𝑃 and 𝐻p (𝑃) a polynomial-time ob-

server cannot distinguish between 𝐼 and a uniformly chosen point

from G, except with a negligible probability.

Linkable ring signatures achieve the untraceability property of

Monero while preventing double spending i.e. given a transaction

ring R, a PPT adversary can correctly identify the one-time address

𝑃 in R that is actually being spent with a probability which is only

negligibly better than random guessing.

A.3 Pedersen Commitments and Amount
Confidentiality

In the original CryptoNote protocol specification, the number of

coins tied to a one-time address was public. To create a ring sig-

nature spending from an address, the spender could only sample

from other addresses containing the same amount.

To improve privacy, Monero introduced the use of Pedersen com-

mitments [42] to hide the number of coins tied to a one-time address.

The Pedersen commitment to an amount 𝑎 ∈ {0, 1, 2, ..., 264 − 1} is
given by

𝐶 (𝑎,𝑦) = 𝑎𝐻 + 𝑦𝐺,
where 𝑦 ∈ Z𝑙 is a randomly chosen blinding factor and 𝐻 ∈ G is a

curve point whose discrete logarithm with respect to the base point

𝐺 is unknown. Such commitments are perfectly hiding and com-

putationally binding. Pedersen commitments achieve the amount
confidentiality property of Monero by hiding the amount in a trans-

action.

For a transaction which transfers coins to be valid, the source ad-

dress must have more coins than the sum of the transferred amount

and the transaction fees. When the number of coins associated

with addresses are hidden in Pedersen commitments, checking this

condition is non-trivial.

Pedersen commitments are homomorphic in the following sense.

If 𝐶1 and 𝐶2 are Pedersen commitments to amounts 𝑎1, 𝑎2 respec-

tively, then𝐶1+𝐶2 is a Pedersen commitment to the amount 𝑎1+𝑎2.
The homomorphic property of Pedersen commitments is used in

conjunction with range proofs to check the sum of input amounts in

a transaction exceed the sum of the output amounts. A range proof

proves that the amount committed to by a Pedersen commitment

is in a given range like {0, 1, 2, ..., 264 − 1}.
When Alice wants to transfer some of her coins to Bob, she

creates a Pedersen commitment 𝐶 (𝑎,𝑦) in addition to the one-time

address 𝑃 whose private key is known to Bob. Bob needs to know

𝑎 and 𝑦 to verify the transaction and spend from 𝑃 in the future.

To communicate 𝑎 and 𝑦 to Bob, Alice includes

𝑎′ = 𝑎 ⊕ 𝐻K (𝐻K (𝑟𝐵𝑣𝑘 ))
𝑦′ = 𝑦 ⊕ 𝐻K (𝑟𝐵𝑣𝑘 )

in the transaction, where ⊕ is bitwise XOR and 𝐻K is the Keccak

hash function. As the point 𝑅 is contained in the transaction, Bob

can use his private view key 𝑏𝑣𝑘 to recover 𝑎 and 𝑦 from 𝑎′ and 𝑦′

using the Diffie-Hellman shared secret 𝑟𝐵𝑣𝑘 = 𝑏𝑣𝑘𝑅 as

𝑎 = 𝑎′ ⊕ 𝐻K (𝐻K (𝑏𝑣𝑘𝑅)),
𝑦 = 𝑦′ ⊕ 𝐻K (𝑏𝑣𝑘𝑅) .

A consequence of this design is that Alice knows the opening

of the commitment 𝐶 (𝑎,𝑦) associated with the one-time address

𝑃 , even though she does not know the private key corresponding

to 𝑃 . On the other hand, knowledge of the private key of a one-

time address 𝑃 implies knowledge of an opening to the Pedersen

commitment 𝐶 associated with 𝑃 .

B MProve
In this appendix, we describe the MProve [22] PoR protocol. Recall

that Monero uses a cyclic elliptic curve group G whose order 𝑙 is a

253-bit prime and base point is 𝐺 . Let Z𝑙 = {0, 1, . . . , 𝑙 − 1} denote
the set of scalars (private keys).

Let Pall be the set of all one-time addresses corresponding to

RingCT outputs that have appeared on the Monero blockchain. An

exchange knows the private keys corresponding to a subset Pknown
of Pall which will be used to generate the proof of reserves. The

exchange chooses a subset Panon of Pall such that

Pknown ⊂ Panon ⊂ Pall .
Panon will be the anonymity set in which the exchange’s addresses

will be hidden.

Let Panon = {𝑃1, 𝑃2, . . . , 𝑃𝑁 }. Let 𝐶𝑖 be the Pedersen commit-

ment corresponding to 𝑃𝑖 . An MProve instance is given by the

tuple inst = (P,C,𝐶assets) where P = [𝑃1, 𝑃2, . . . , 𝑃𝑁 ] ∈ G𝑁
, C =

[𝐶1,𝐶2, . . . ,𝐶𝑁 ] ∈ G𝑁
, and 𝐶assets ∈ G. The point 𝐶assets will be a

Pedersen commitment to the exchange’s reserves amount.

An MProve proof is given by a tuple 𝜋 = (C′, Γ,Σ) where C′ ∈
G𝑁

and Γ,Σ are vectors of 𝑁 signatures described below.

B.1 Proof Generation
Let 𝑥𝑖 ∈ Z𝑙 be the private key corresponding to 𝑃𝑖 . The exchange

knows 𝑥𝑖 for each 𝑃𝑖 ∈ Pknown. The exchange generates the MProve

instance inst and proof 𝜋 as follows.

(1) The exchange constructs P by arranging the elements of

Panon as a vector. It constructs C by arranging the corre-

sponding Pedersen commitments as a vector.

(2) For each 𝑃𝑖 ∈ Panon, the exchange randomly chooses 𝑧𝑖 from

Z𝑙 and generates 𝐶′𝑖 as

𝐶′𝑖 =

{
𝑧𝑖𝐺 if 𝑃𝑖 ∈ Pknown,
𝑧𝑖𝐺 +𝐶𝑖 if 𝑃𝑖 ∉ Pknown .

It sets C′ =
[
𝐶′
1

𝐶′
2
· · · 𝐶′

𝑁

]
.

(3) The exchange calculates𝐶assets using the following equation.

𝐶assets =

𝑁∑︁
𝑖=1

(𝐶𝑖 −𝐶′𝑖 )

(4) For each 𝑖 = 1, 2, . . . , 𝑁 , 𝑧𝑖 is the discrete logarithm of either

𝐶′𝑖 or 𝐶
′
𝑖 −𝐶𝑖 . The exchange uses 𝑧𝑖 to generate a ring sig-

nature 𝛾𝑖 verifiable by the pair of public keys (𝐶′𝑖 ,𝐶′𝑖 −𝐶𝑖 ).
Each 𝛾𝑖 belongs to Z3

𝑙
(see the MProve paper [22] for the

details regarding the generation of 𝛾𝑖 ). The exchange sets

Γ =
[
𝛾1 𝛾2 · · · 𝛾𝑁

]
.

(5) For each 𝑖 = 1, 2, . . . , 𝑁 , the exchange knows the private key

𝑥𝑖 of 𝑃𝑖 if 𝑃𝑖 ∈ Pknown or the discrete logarithm of𝐶′𝑖 −𝐶𝑖 . It

generates a linkable ring signature 𝜎𝑖 verifiable by the pair

of public keys (𝑃𝑖 ,𝐶′𝑖 −𝐶𝑖 ). Each 𝜎𝑖 belongs to G × Z3

𝑙
and
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will contain the key image 𝐼𝑖 of either 𝑃𝑖 or 𝐶
′
𝑖 − 𝐶𝑖 . The

exchange sets Σ =
[
𝜎1 𝜎2 · · · 𝜎𝑁

]
.

An MProve proof does not leak the members of Pknown because
of the following reasons. The ring signature 𝛾𝑖 does not reveal if

it was generated using the discrete logarithm of 𝐶′𝑖 or 𝐶
′
𝑖 −𝐶𝑖 . As

long as the decisional Diffie-Hellman (DDH) problem is hard in

G, a polynomial-time adversary who observes the linkable ring

signature 𝜎𝑖 and the key image 𝐼𝑖 cannot detect if it was generated

using the discrete logarithm of 𝑃𝑖 or𝐶
′
𝑖 −𝐶𝑖 (see Section A.2). Hence

the MProve proof does not reveal if 𝑃𝑖 ∈ Pknown or not. We will see

later in this appendix that revealing the key image of 𝑃𝑖 is a major

drawback of MProve.

B.2 Proof Verification
Let I be the set of all key images which have appeared on the

Monero blockchain. Given the instance inst = (P,C,𝐶assets) and
proof 𝜋 = (C′, Γ,Σ), the MProve verifier checks the following:

(1) For each 𝑖 = 1, 2, . . . , 𝑁 , the verifier checks that the 𝑃𝑖 from

P is an address on the Monero blockchain. If not, it rejects

the proof.

(2) For each 𝑖 = 1, 2, . . . , 𝑁 , the verifier reads the Pedersen com-

mitment𝐶𝑖 corresponding to 𝑃𝑖 from the Monero blockchain.

It checks that

𝐶assets =

𝑁∑︁
𝑖=1

(𝐶𝑖 −𝐶′𝑖 )

If the equation does not hold, it rejects the proof.

(3) For each 𝑖 = 1, 2, . . . , 𝑁 , it checks that 𝛾𝑖 from Γ is a correct

ring signature for the public keys (𝐶′𝑖 ,𝐶′𝑖 −𝐶𝑖 ). If signature
verification fails, it rejects the proof.

(4) For each 𝑖 = 1, 2, . . . , 𝑁 , it checks that 𝜎𝑖 from Σ is a correct

linkable ring signature for the public keys (𝑃𝑖 ,𝐶′𝑖 − 𝐶𝑖 ). If
signature verification fails, it rejects the proof.

(5) For each 𝑖 = 1, 2, . . . , 𝑁 , it checks that the key image 𝐼𝑖 re-

vealed in 𝜎𝑖 does not belong to I, i.e. it has not appeared on

the Monero blockchain. Otherwise, it rejects the proof for

using a spent output.

(6) For each 𝑖 = 1, 2, . . . , 𝑁 , it checks that the key image 𝐼𝑖 re-

vealed in 𝜎𝑖 has not appeared in an MProve proof published

by another exchange. If a key image repeats in the MProve

proofs generated by two exchanges, then collusion is de-

clared and the proof is rejected.

B.3 Implications of a Correct MProve Proof
The soundness of an MProve proof relies on the assumption that no

polynomial-time adversary can forge a ring signature or a linkable

ring signature on ed25519, except with a negligible probability. If

an MProve proof passes all the verifier’s checks, then either the

following theorem holds or the exchange (prover) has managed to

forge one of the signatures in Γ or Σ.

TheoremB.1 (MProve). Let (P,C,𝐶assets) , (C′, Γ,Σ) be anMProve
instance-proof pair that passes all the verifier’s checks. Let Panon =

{𝑃1, . . . , 𝑃𝑁 }. Let the Pedersen commitment corresponding to 𝑃𝑖 be
𝐶𝑖 = 𝑎𝑖𝐻 + 𝑦𝑖𝐺 , with amount 𝑎𝑖 and blinding factor 𝑦𝑖 . Suppose that
none of the signatures in Γ or Σ have been forged. Then there exists a

subset of the anonymity set indices J ⊂ {1, 2, . . . , 𝑁 } such that the
following conditions hold.

(i) 𝐶assets is a Pedersen commitment to the amount∑︁
𝑖∈J

𝑎𝑖 .

(ii) If 𝑖 ∈ J and 𝑎𝑖 ≠ 0, then 𝑃𝑖 ∈ Pknown and the key image 𝐼𝑖
revealed by the linkable ring signature 𝜎𝑖 is equal to the key
image of 𝑃𝑖 . In other words, the exchange knows the private
key corresponding to 𝑃𝑖 and will generate 𝜎𝑖 using this private
key. Furthermore, this 𝑃𝑖 is an unspent address.

Proof. The outline of the proof is as follows. If the exchange

does not know the private key corresponding to 𝑃𝑖 , i.e. 𝑃𝑖 ∉ 𝑃known,

then it will be forced to generate the linkable ring signature 𝜎𝑖
using the discrete logarithm of 𝐶′𝑖 −𝐶𝑖 . This means the 𝐶𝑖 −𝐶′𝑖 is a
commitment to the zero amount. Hence it will not contribute an

amount term to 𝐶assets. Such indices 𝑖 will not be included in the

set J .

Suppose the exchange knows the private key corresponding to

𝑃𝑖 , i.e. 𝑃𝑖 ∈ 𝑃known. To generate the ring signature 𝛾𝑖 , the exchange

needs the discrete logarithm of either 𝐶′𝑖 or 𝐶
′
𝑖 −𝐶𝑖 with respect to

the base point 𝐺 .

• If the discrete logarithm of 𝐶′𝑖 is used to generate 𝛾𝑖 , then 𝐶
′
𝑖

is a commitment to the zero amount as it is of the form 𝑧𝑖𝐺 . If

𝑎𝑖 ≠ 0, then the discrete logarithm of𝐶′𝑖−𝐶𝑖 = 𝑧𝑖𝐺−𝑦𝑖𝐺−𝑎𝑖𝐻
with respect to 𝐺 is not known, as the discrete logarithm of

𝐻 with respect to 𝐺 is unknown. So the exchange will be

forced to generate the linkable ring signature 𝜎𝑖 using the

private key corresponding to 𝑃𝑖 , revealing its key image 𝐼𝑖 .

Furthermore, the 𝐶𝑖 − 𝐶′𝑖 term in 𝐶assets will contribute an

amount equal to 𝑎𝑖 . The indices 𝑖 corresponding to this case

will form the set J .

• If the discrete logarithm of𝐶′𝑖 −𝐶𝑖 is used to generate𝛾𝑖 , then

𝐶′𝑖−𝐶𝑖 is a commitment to the zero amount. Then irrespective

of which discrete logarithm the exchange uses to generate

the linkable ring signature 𝜎𝑖 , the𝐶𝑖 −𝐶′𝑖 term in𝐶assets will

contribute the zero amount. The indices 𝑖 corresponding to

this case will not be included in the set J .

So all indices 𝑖 with 𝑃𝑖 ∈ Pknown will not be included in J . Only

those indices 𝑖 where𝐶𝑖 −𝐶′𝑖 is a commitment to a non-zero amount

will be included in J . For such indices, we are ensured that 𝑃𝑖 ∈
Pknown. As the verifier checks that the key image 𝐼𝑖 revealed in

𝜎𝑖 has not appeared on the Monero blockchain, the address 𝑃𝑖 is

unspent for each 𝑖 ∈ J .

□

As 𝑃𝑖 ∈ Pknown for each 𝑖 ∈ J with 𝑎𝑖 ≠ 0, all the amounts

that contribute to

∑
𝑖∈J 𝑎𝑖 correspond to addresses owned by the

exchange. This means that the exchange cannot inflate its reserves

beyond what it actually owns.

B.4 Drawbacks
The main drawback of MProve is that the linkable ring signature 𝜎𝑖
reveals the key image 𝐼𝑖 of 𝑃𝑖 for 𝑖 ∈ J . This key image is used to

prove that the corresponding 𝑃𝑖 is unspent and to detect collusion
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between exchanges. When such a 𝑃𝑖 is actually spent by the ex-

change in a Monero transaction, the key image 𝐼𝑖 will reappear. An

observer who has seen the MProve proof can immediately identify

𝑃𝑖 as the spending key in the transaction ring. This violates the un-

traceability property of Monero and also identifies 𝑃𝑖 as an address

owned by the exchange in the previously observed MProve proof.

As proof sizes in MProve are proportional to |Panon |, it is not
feasible for the exchange to set Panon = Pall. As of May 2024, the

number of RingCT addresses is more than 100 million. If |Panon |
is 100 million, the MProve proof generation time will be about 35

hours and proof size will exceed 80 GB. If Panon ≠ Pall, then an

MProve proof reveals that the exchange-owned addresses belong

to a strict subset of the set of all addresses.

C MProve+
In this appendix, we describe the MProve+ [21] PoR protocol. It

relies on the Bulletproofs [11] protocol, a zero-knowledge argu-

ment of knowledge which only requires hardness of the discrete

logarithm problem in an underlying cyclic group.

Given a vector of group elements G =
[
𝐺1,𝐺2, . . . ,𝐺𝑁

]
and a

vector of scalars x =
[
𝑥1, 𝑥2, . . . , 𝑥𝑁

]
of same length, let x ·G denote

the multi-scalar multiplication operation given by

x · G =

𝑁∑︁
𝑖=1

𝑥𝑖𝐺𝑖 .

As in the case of MProve, an exchange chooses an anonymity

set Panon such that

Pknown ⊂ Panon ⊂ Pall,
where Pall is the set of all one-time addresses corresponding to

RingCT outputs that have appeared on the Monero blockchain and

the exchange knows the private keys corresponding to the subset

Pknown.
Let Panon = {𝑃1, 𝑃2, . . . , 𝑃𝑁 }. Let𝐶𝑖 be the Pedersen commitment

corresponding to 𝑃𝑖 . Recall that 𝐻p : G ↦→ G is the point-valued

cryptographic hash function used in the calculation of key images

in Monero.

For an integer 𝑠 satisfying 1 ≤ 𝑠 ≤ 𝑁 , anMProve+ instance is a tu-

ple inst = (P,H,C, I,𝐶assets) ∈ G3𝑁+𝑠+1
where P = [𝑃1, 𝑃2, . . . , 𝑃𝑁 ] ∈

G𝑁
, H =

[
𝐻p (𝑃1), 𝐻p (𝑃2), . . . , 𝐻p (𝑃𝑁 )

]
, C = [𝐶1,𝐶2, . . . ,𝐶𝑁 ] ∈

G𝑁
, I = [𝐼1, 𝐼2, . . . , 𝐼𝑠 ] ∈ G𝑠

and 𝐶assets ∈ G. The point 𝐶assets will

be a Pedersen commitment to the exchange’s reserves amount.

An MProve+ proof is a Bulletproofs proof 𝜋 that proves that the

MProve+ instance satisfies certain desirable properties (as explained

in the following subsection).

C.1 Proof Generation
The exchange generates the MProve+ instance and proof as follows.

(1) The exchange constructs P by arranging the elements of

Panon as a vector. It constructs C by arranging the corre-

sponding Pedersen commitments as a vector. It hashes the

elements of P using 𝐻p to construct vector H.

(2) Let 𝑠 = |Pknown | and Pknown = {𝑃𝑖1 , 𝑃𝑖2 , . . . , 𝑃𝑖𝑠 }. For each
𝑃𝑖 𝑗 ∈ Pknown, the exchange uses the corresponding private
key 𝑥 𝑗 to calculate the key image 𝐼 𝑗 = 𝑥 𝑗𝐻p (𝑃𝑖 𝑗 ). It arranges
these key images into the vector I = [𝐼1, 𝐼2, . . . , 𝐼𝑠 ].

(3) The exchange chooses a scalar 𝑟 uniformly from Z𝑙 and sets

𝐶assets = 𝑟𝐺 + ∑𝑠
𝑗=1𝐶𝑖 𝑗 where 𝐶𝑖 𝑗 is the Pedersen commit-

ment corresponding to 𝑃𝑖 𝑗 .

(4) The exchange generates a Bulletproofs proof 𝜋 , which is a

zero-knowledge argument of knowledge of a witness wit =
(x, e1, e2, . . . , e𝑠 , a, r, 𝑎res, 𝑟𝑟𝑒𝑠 ) ∈ Z(𝑁+3)𝑠+2

𝑙
that satisfies the

following conditions.

• All the elements ofwit are either scalars from Z𝑙 or vectors
whose components belong to Z𝑙 .
• Each e𝑗 is a unit vector of length 𝑁 , i.e. all its components

except one are 0. The non-zero component has the value

1.

• x is a vector of length 𝑠 . Let 𝑥 𝑗 denote the 𝑗 th component of

x. Then for each 𝑗 ∈ {1, 2, . . . , 𝑠}, the following condition
holds:

e𝑗 · P = 𝑥 𝑗𝐺.

In other words, the vector x contains the private keys of 𝑠

addresses in Panon.
• a and r are both vectors of length 𝑠 . Let 𝑎 𝑗 and 𝑟 𝑗 denote

the 𝑗th components of a and r, respectively. For each 𝑗 ∈
{1, 2, . . . , 𝑠}, the following condition holds:

e𝑗 · C = 𝑟 𝑗𝐺 + 𝑎 𝑗𝐻.

In other words, the vectors a, r contain the amounts and

blinding factors of 𝑠 commitments in C. Furthermore, the

locations of these commitments in C match with the lo-

cations of the addresses in P whose private keys are con-

tained in x.
• For each 𝑗 ∈ {1, 2, . . . , 𝑠}, the following condition holds:

e𝑗 · H =

(
𝑥−1𝑗

)
𝐼 𝑗 .

Note that e𝑗 · P = 𝑃𝑖 𝑗 and e𝑗 · H = 𝐻p (𝑃𝑖 𝑗 ) for some

𝑖 𝑗 ∈ {1, 2, . . . , 𝑁 } as e𝑗 is a unit vector. As e𝑗 · P = 𝑥 𝑗𝐺 ,

it follows that 𝑥 𝑗 is the private key corresponding to 𝑃𝑖 𝑗 .

From e𝑗 · H =

(
𝑥−1𝑗

)
𝐼 𝑗 , it follows that 𝐼 𝑗 = 𝑥 𝑗𝐻p (𝑃𝑖 𝑗 ).

In other words, 𝐼 𝑗 is the key image of an address 𝑃𝑖 𝑗 in

Panon, whose private key is the 𝑗th component of x.
• 𝐶assets is equal to 𝑟res𝐺 +𝑎res𝐻 and 𝑎res =

∑𝑠
𝑗=1 𝑎 𝑗 . In other

words,𝐶assets is a Pedersen commitment to the amount 𝑎res.

Furthermore, this amount is the sum of the amounts in

the commitments corresponding to addresses in P whose

private keys are contained in x. The value of 𝑟res will be
𝑟 +∑𝑠

𝑗=1 𝑟 𝑗 .

C.2 Proof Verification
Let I be the set of all key images which have appeared on the

Monero blockchain. Given the instance inst = (P,H,C, I,𝐶assets)
and Bulletproof proof 𝜋 , the MProve+ verifier checks the following:

(1) For each 𝑖 = 1, 2, . . . , 𝑁 , the verifier checks that the 𝑃𝑖 from

P is an address on the Monero blockchain. If not, it rejects

the MProve+ proof.

(2) For each 𝑖 = 1, 2, . . . , 𝑁 , the verifier checks that the 𝑖th com-

ponents of H and C contain 𝐻p (𝑃𝑖 ) and the Pedersen com-

mitment𝐶𝑖 corresponding to 𝑃𝑖 , respectively. If not, it rejects

the proof.
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(3) It checks that all the key images in I are distinct. If not, it
rejects the proof for trying to use an output more than once.

This check ensures that the unit vectors e1, e2, . . . , e𝑠 are all
distinct.

(4) It uses the Bulletproofs verifier to check that 𝜋 passes verifi-

cation. If not, it rejects the proof.

(5) It checks that none of the key images in I appear in the set

of key images I. Otherwise, it rejects the proof for using a
spent output.

(6) It checks that none of the key images I have appeared in

an MProve+ proof published by another exchange. If a key

image repeats in the MProve+ proofs generated by two ex-

changes, then collusion is declared and the proof is rejected.

C.3 Implications of a Correct MProve+ Proof
The soundness of an MProve+ proof relies on the assumption that

no polynomial-time adversary can forge a Bulletproofs proof 𝜋

in a group where the discrete logarithm problem is hard, except

with a negligible probability. Since the Bulletproofs protocol is zero-

knowledge in the random oracle model, the proof 𝜋 does not reveal

any information about the witness wit.
If the Bulletproofs proof 𝜋 passes verification, then except with

a negligible probability the exchange knows a witness wit which
satisfies the properties mentioned in Section C.1. This implies the

following.

(i) The exchange knows the private keys of 𝑠 addresses in Panon.
In other words, it owns 𝑠 addresses in the anonymity set.

(ii) The identities of the 𝑠 addresses owned by the exchange are

not revealed, as they are part of the witness wit.
(iii) 𝐶assets is a commitment to the sum of the amounts in the

commitments corresponding to the 𝑠 addresses owned by

the exchange.

(iv) The vector I contains the key images of the 𝑠 addresses owned

by the exchange.

As long as the DDH problem is hard in G, a polynomial-time

adversary cannot use I to identify the 𝑠 addresses owned by the

exchange.

A correct MProve+ proof also requires that the key images in

I are distinct and have not appeared in the set of all key images

I or in another exchange’s MProve+ proof. This ensures that the

𝑠 addresses used to generate the PoR are used exactly once each,

correspond to unspent outputs, and that two exchanges are not

sharing addresses.

C.4 Drawbacks
Like MProve, the MProve+ protocol also requires the prover to

reveal the key images of the addresses it uses to generate the PoR.

While MProve establishes a direct relationship between a specific

address 𝑃𝑖 and its key image 𝐼𝑖 , MProve+ only reveals that the key

images in I correspond to some 𝑠 addresses in Panon.
Suppose an address 𝑃𝑖 ∈ 𝑃known is spent by the exchange after it

was used in an MProve+ proof. The spending transaction will have

a transaction ring R of addresses containing 𝑃𝑖 and the key image

𝐼𝑖 of 𝑃𝑖 . An observer who has seen the MProve+ proof can identify

that the transaction is being performed by the exchange. Since the

address corresponding to 𝐼𝑖 has to belong to both R and Panon, the

observer can mark addresses which do not belong to R ∩ Panon
as decoy addresses in the transaction ring. If |R ∩ Panon | < |R |,
the untraceability property of Monero is violated by the MProve+

protocol, as the probability of correctly identifying the address

being spent increases from
1

| R | to
1

| R∩Panon | . In the extreme case of

|R ∩ Panon | = 1, the address 𝑃𝑖 is identified as the address being

spent in the transaction ring R.
An exchange could mitigate the above issue by choosing the

transaction rings R spending from addresses used in MProve+

proofs to always be subsets of Panon. But the fact that the exchange
is the party performing the transaction is still revealed. This can

negatively impact the exchange’s privacy in some scenarios. For

example, a flurry of transactions from an exchange could mean that

the exchange is trying to sell its Monero reserves. This can cause

buyers to offer lower prices.

While the Bulletproofs proof 𝜋 has a size which is logarithmic in

|Panon | × |Pknown |, the MProve+ proof sizes increases linearly with

|Pknown | as one key image is revealed per exchange-owned address.

Furthermore, the proof generation and verification times increase

linearly [21] with Panon making it infeasible to set Panon = Pall. If
Panon contains 100 million addresses, then the proof verification

time can take more than 10,000 hours and the proof generation time

will be an order of magnitude larger. This implies that set Panon can
only be chosen to be a small subset of Pall. So an MProve+ proof

will reveal that the exchange-owned addresses belong to this small

subset.

D Rank-1 Constraint Systems
Let F be a finite field. A rank-1 constraint system (R1CS) instance

is a tuple (F, 𝐴, 𝐵,𝐶, 𝑖𝑜,𝑚, 𝑛) where
• 𝐴, 𝐵,𝐶 are𝑚 ×𝑚 matrices with entries from the field F with

at most 𝑛 = Ω(𝑚) non-zero entries.

• 𝑖𝑜 is a vector with entries from F representing the public

input and output of the instance, whose length satisfies |𝑖𝑜 | +
1 ≤𝑚.

Definition D.1. An R1CS instance (F, 𝐴, 𝐵,𝐶, 𝑖𝑜,𝑚, 𝑛) is said to

be satisfiable if there exists a witness𝑤 ∈ F𝑚−|𝑖𝑜 |−1 such that

𝐴𝑧 ◦ 𝐵𝑧 =𝐶𝑧,

where 𝑧 =
[
𝑖𝑜 1 𝑤

]𝑇
and ◦ is the Hadamard product operation.

The equation in the above definition encodes𝑚 R1CS constraints

in the field F. Each constraint is a quadratic expression in the entries
of 𝑧.

Let 𝑎𝑖, 𝑗 , 𝑏𝑖, 𝑗 , 𝑐𝑖, 𝑗 denote the entries of the 𝐴, 𝐵,𝐶 matrices, respec-

tively. Let 𝑧 𝑗 denote the 𝑗th entry of 𝑧. Then for 𝑖 = 1, 2, . . . ,𝑚, the

𝑖th R1CS constraint is given by(
𝑚∑︁
𝑗=1

𝑎𝑖, 𝑗𝑧 𝑗

) (
𝑚∑︁
𝑗=1

𝑏𝑖, 𝑗𝑧 𝑗

)
=

𝑚∑︁
𝑗=1

𝑐𝑖, 𝑗𝑧 𝑗 .

A relaxed R1CS instance is a tuple (F, 𝐴, 𝐵,𝐶, 𝐸, 𝑠, 𝑖𝑜,𝑚, 𝑛) which
has two more components when compared to an R1CS instance, a

vector 𝐸 ∈ F𝑚 and a scalar 𝑠 ∈ F.

Definition D.2. A relaxed R1CS instance (F, 𝐴, 𝐵,𝐶, 𝐸, 𝑠, 𝑖𝑜,𝑚, 𝑛)
is said to be satisfiable if there exists a witness𝑤 ∈ F𝑚−|𝑖𝑜 |−1 such
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that

𝐴𝑧 ◦ 𝐵𝑧 = 𝑠𝐶𝑧 + 𝐸,
where 𝑧 =

[
𝑖𝑜 𝑠 𝑤

]𝑇
and ◦ is the Hadamard product operation.

Let Commit be an algorithm that given some public parameters

pp generates commitments to vectors with entries from F. Let
𝐸 = Commit(pp, 𝐸) and 𝑤 = Commit(pp,𝑤) for 𝐸 ∈ F𝑚 and

𝑤 ∈ F𝑚−|𝑖𝑜 |−1.
A committed relaxed R1CS instance is a tuple(

F, 𝐴, 𝐵,𝐶, 𝐸,𝑤, 𝑠, 𝑖𝑜,𝑚, 𝑛

)
which replaces 𝐸 in a relaxed R1CS instance with the components

𝐸 and𝑤 .

Definition D.3. A committed relaxed R1CS instance given by(
F, 𝐴, 𝐵,𝐶, 𝐸,𝑤, 𝑠, 𝑖𝑜,𝑚, 𝑛

)
is said to be satisfiable if there exists an

extended witness (𝐸,𝑤) ∈ F𝑚 × F𝑚−|𝑖𝑜 |−1 such that

𝐸 = Commit(pp, 𝐸)
𝑤 = Commit(pp,𝑤)
𝐴𝑧 ◦ 𝐵𝑧 = 𝑠𝐶𝑧 + 𝐸,

where 𝑧 =
[
𝑖𝑜 𝑠 𝑤

]𝑇
and ◦ is the Hadamard product operation.

E IVC Scheme Definitions
Let 𝐹 be a polynomial-time computable function. Starting from an

input 𝑧0, 𝐹 is used to compute output 𝑧𝑛 using 𝑛 invocations of the

form

𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ),
for 𝑖 = 0, 1, . . . , 𝑛 − 1, where𝑤𝑖 is an auxiliary input to the 𝑖th step.

An IVC scheme allows a prover to generate a proof Π𝑖+1 for the
statement 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ) given a proof Π𝑖 for the statement 𝑧𝑖 =

𝐹 (𝑧𝑖−1,𝑤𝑖−1). It is defined by a tuple of PPT algorithms (G,P,V,K)
where G is the public parameters generator, P is the IVC prover,

V is the IVC verifier, and K generates the prover and verifier keys.

Let 𝜆 be a security parameter. Let PPT and EPT denote probabilis-

tic polynomial-time and expected polynomial-time, respectively.

The completeness and knowledge-soundness of IVC scheme are

defined as follows [30].

Definition E.1 (Perfect Completeness). An IVC scheme (G,P,V,K)
satisfies perfect completeness if for any PPT adversary A, we have

Pr


V

(
vk, 𝑧0,

𝑧𝑖+1,Π𝑖+1

)
= 1

pp← G(1𝜆),
𝐹 , (𝑧0, 𝑧𝑖+1, 𝑧𝑖 ,𝑤𝑖 ,Π𝑖 ) ← A(pp),
(pk, vk) ← K(pp, 𝐹 ),
𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ),
V (vk, 𝑧0, 𝑧𝑖 ,Π𝑖 ) = 1,

Π𝑖+1 ← P (pk, 𝑧0, 𝑧𝑖+1; 𝑧𝑖 ,𝑤𝑖 ,Π𝑖 )


= 1,

where 𝐹 is a polynomial-time computable function, pp are public

parameters, pk is a prover key, and vk is a verifier key.

In other words, if the verifier of an IVC scheme that satisfies

perfect completeness accepts an IVC proof Π𝑖 for initial input 𝑧0
and final output 𝑧𝑖 , then the prover can generate an IVC proof

Π𝑖+1 for initial input 𝑧0 and final output 𝑧𝑖+1 which will always be

accepted by the verifier. Here 𝑧𝑖+1 = 𝐹 (𝑧𝑖 ,𝑤𝑖 ) for some auxiliary

input𝑤𝑖 .

Definition E.2 (Knowledge-Soundness). An IVC scheme (G,P,V,K)
satisfies knowledge-soundness if for any constant 𝑛 ∈ N and EPT

adversary P∗, there exists an EPT extractor E such that for any

input randomness 𝜌

Pr


pp← G(1𝜆),

𝑧𝑛 ≠ 𝑧, 𝐹, (𝑧0, 𝑧,Π) ← P∗ (pp; 𝜌),

V
(
vk, 𝑧0,
𝑧,Π

)
= 1

(pk, vk) ← K(pp, 𝐹 ),
(𝑤0, . . . ,𝑤𝑛−1) ← E(pp, 𝑧0, 𝑧; 𝜌),
𝑧𝑖 ← 𝐹 (𝑧𝑖−1,𝑤𝑖−1),∀𝑖 ∈ {1, 2, . . . , 𝑛}


≤ negl(𝜆) .

In other words, if the verifier of an IVC scheme that satisfies

knowledge-soundness accepts an IVC proof Π for initial input 𝑧0
and final output 𝑧, then the prover knows auxiliary inputs (𝑤0,𝑤1, . . . ,𝑤𝑛−1)
such that 𝑧 = 𝑧𝑛 except with a negligible probability where 𝑧𝑛 is

the end result of the sequence of computations 𝑧𝑖 = 𝐹 (𝑧𝑖−1,𝑤𝑖−1)
for 𝑖 = 1, 2, . . . , 𝑛.

TheNova IVC scheme satisfies perfect completeness and knowledge-

soundness [30].

F zkSNARK Definitions
In this section, we present the definition of a zero-knowledge suc-

cinct non-interactive argument of knowledge (zkSNARK) using

notation from the Nova and HyperNova papers [27, 30]. Let 𝜆 ∈ N
denote a security parameter. Let PPT and EPT denote probabilistic

polynomial-time and expected polynomial-time, respectively.

Definition F.1 (Non-interactive Argument of Knowledge). Let R
be a relation over public parameters pp, structure s, instance u,
and witness 𝑤 tuples. A non-interactive argument of knowledge

for R consists of PPT algorithms (G,P,V) and deterministic K ,
denoting the generator, the prover, the verifier, and the encoder,

respectively, with the following interface:

• pp← G(1𝜆): On input 𝜆, G samples public parameters pp.
• (pk, vk) ← K(pp, s): On input s, representing common

structure among instances, K outputs prover key pk and

verifier key vk.
• 𝜋 ← P (pk, 𝑢,𝑤): On input instance 𝑢 and witness 𝑤 , P
outputs a proof 𝜋 proving that (pp, s, 𝑢,𝑤) ∈ R.
• 1/0 ← V (vk, 𝑢, 𝜋): On input instance 𝑢 and proof 𝜋 , V
verifies proof 𝜋 for instance 𝑢. It outputs 1 if the proof veri-

fication succeeds and 0 otherwise.

Definition F.2 (Perfect Completeness). A non-interactive argu-

ment of knowledge (G,P,V,K) for relation R satisfies perfect

completeness if for any PPT adversary A we have

Pr


V

(
vk, 𝑢, 𝜋

)
= 1

pp← G(1𝜆),
(s, (𝑢,𝑤)) ← A(pp),
(pp, s, 𝑢,𝑤) ∈ R,
(pk, vk) ← K(pp, s),
𝜋 ← P (pk, 𝑢,𝑤)


= 1.

In other words, if a non-interactive argument of knowledge for

a relation R satisfies perfect completeness, then for every instance

𝑢 in R the prover P can use the witness 𝑤 to generate a proof 𝜋

that will always be accepted by the verifierV .
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Definition F.3 (Knowledge-Soundness). A non-interactive argu-

ment of knowledge (G,P,V,K) for relationR satisfies knowledge-

soundness if for all EPT adversariesA there exists an EPT extractor

E such that for all randomness 𝜌 we have

Pr


pp← G(1𝜆),

V
(
vk, 𝑢, 𝜋

)
= 1, (s, 𝑢, 𝜋) ← A(pp; 𝜌),

(pp, s, 𝑢,𝑤) ∉ R (pk, vk) ← K(pp, s),
𝑤 ← E (pp, 𝜌)

 ≤ negl(𝜆) .

In other words, if a non-interactive argument of knowledge for

a relation R satisfies knowledge-soundness, then if an adversary

A can generate a valid proof 𝜋 for an instance 𝑢 then it must know

a witness𝑤 such that (𝑢,𝑤) is a valid instance-witness pair in R.
To define the notion of zero-knowledge, we need to first define

computational indistinguishability.

Definition F.4 (Computational Indistinguishability). Let 𝑋𝜆 and

𝑌𝜆 be two sequences of distributions ranging over {0, 1}𝑝 (𝜆) for a
polynomial 𝑝 . We say that 𝑋𝜆 and 𝑌𝜆 are computationally indis-

tinguishable, denoted by 𝑋𝜆 ≈ 𝑌𝜆 , if for any PPT adversary A we

have ���� Pr

𝑥←𝑋𝜆

[A(𝑥) = 1] − Pr

𝑦←𝑌𝜆

[A(𝑦) = 1]
���� ≤ negl(𝜆).

We adapt the definition of zero-knowledge for an interactive ar-

gument of knowledge given in the HyperNova paper [27, Definition

26] to the non-interactive setting to obtain the following definition.

The Nova zkSNARK satisfies this definition of zero-knowledge [28].

Definition F.5 (Zero-Knowledge). A non-interactive argument of

knowledge (G,P,V,K) for relation R satisfies zero-knowledge if

there exists an EPT simulator S such that for any PPT adversary

A we have
(pp, s, 𝑢, 𝜋, st)

pp← G(1𝜆),
(s, (𝑢,𝑤), st) ← A(pp),
(pp, s, 𝑢,𝑤) ∈ R,
(pk, vk) ← K(pp, s),
𝜋 ← P (pk, 𝑢,𝑤)


≈

 (pp, s, 𝑢, 𝜋, st)
pp← G(1𝜆),
(s, (𝑢,𝑤), st) ← A(pp),
(pp, s, 𝑢,𝑤) ∈ R,
𝜋 ← S (pp, s, 𝑢, st)

 .

Here st is any auxiliary input available to the verifier.

In other words, if a non-interactive argument of knowledge for a

relation R satisfies zero-knowledge, then for any PPT adversaryA
that generates an instance-witness pair (𝑢,𝑤) in R and auxiliary

information st there exists an EPT simulator S that can generate

a simulated proof 𝜋 sim
using only the public parameters pp, struc-

ture s, instance 𝑢 and auxiliary information st such that the joint

distributions of (pp, s, 𝑢, 𝜋act, st) and (pp, s, 𝑢, 𝜋 sim, st) are computa-

tionally indistinguishable, where 𝜋act
is the actual proof generated

by an honest prover.

Definition F.6 (Succinctness). Anon-interactive argument of knowl-

edge (G,P,V,K) for relation R is succinct if the size of the proof

𝜋 and verifier running time are at most polylogarithmic in the size

of the structure s and witness𝑤 .

G Generating a Sequence of Monero-like
Systems

Monero uses the ed25519 curve, which means that a real-world

deployment of MProve-Nova will use this curve. But our analysis of

MProve-Nova’s security takes an asymptotic approach where our

claims are expressed as functions of a security parameter 𝜆 ∈ N. For
the purpose of the security analysis, we will assume that MProve-

Nova is being used in a sequence of Monero-like systems {M𝜆 |
𝜆 ∈ N}, where the discrete logarithm problem in G, the decisional
Diffie-Hellman problem in G, the problems of finding collisions

or preimages of hash functions 𝐻s, 𝐻p, 𝐻K, 𝐻𝑝𝑜𝑠 , all become harder

with increasing 𝜆. In this appendix, we describe howM𝜆 can be

instantiated for a given 𝜆.

Let GroupGen be a PPT algorithm that on input 1
𝜆
generates a

triple (G, 𝑙,𝐺) where G is an elliptic curve of prime order 𝑙 with

generator 𝐺 and the bit length of 𝑙 satisfies |𝑙 | = 𝜆.

Definition G.1. The discrete logarithm problem is hard relative

to GroupGen if for all PPT adversaries A there exists a negligible

function negl such that

Pr


(G, 𝑙,𝐺) ← GroupGen(1𝜆),

𝐺 ′ = 𝑥𝐺 𝐺 ′ is chosen uniformly from G,
𝑥 ← A(G, 𝑙,𝐺,𝐺 ′), 𝑥 ∈ Z𝑙 .

 ≤ negl(𝜆) .

Definition G.2. The decisional Diffie-Hellman (DDH) problem is
hard relative to GroupGen if for all PPT adversariesA there exists

a negligible function negl such that���� Pr [A (G, 𝑙,𝐺, 𝑥𝐺,𝑦𝐺, 𝑧𝐺) = 1]

− Pr [A (G, 𝑙,𝐺, 𝑥𝐺,𝑦𝐺, 𝑥𝑦𝐺) = 1]
���� ≤ negl(𝜆),

where (G, 𝑙,𝐺) ← GroupGen(1𝜆) and 𝑥,𝑦, 𝑧 are chosen uniformly

and independently from Z𝑙 .

We assume that the existence of an algorithm GroupGen which

satisfies the two definitions above. To instantiateM𝜆 , we run the

GroupGen algorithm first to obtain the elliptic curve group G.
Let E1 be a prime order elliptic curve whose points have coordi-

nates in a prime field F𝑞 . Let the 𝑝 be the prime which equals |E1 |.
Then F𝑝 is called the scalar field of E1 and F𝑞 is called the base field
of E1. If there exists another elliptic curve E2 with scalar field F𝑞
and base field F𝑝 , then E1 and E2 are said to form a curve cycle. The
implementation of Nova requires a cycle of elliptic curves.

Let CurveCycleGen be a PPT algorithm that on input 1
𝜆
gen-

erates a tuple (E1,E2,𝐺1,𝐺2, 𝑝, 𝑞) where E1 and E2 form a curve

cycle and have orders 𝑝 and 𝑞 respectively. Furthermore, 𝐺1 and

𝐺2 are generators of E1 and E2 respectively. The CurveCycleGen
algorithm can interpreted as two instances of GroupGen, since it
generates two prime order groups. We assume that the discrete

logarithm problem is hard relative to both instances of GroupGen
embedded in CurveCycleGen. For a given value of 𝜆, we run the

CurveCycleGen algorithm to obtain a pair of elliptic curves E1,E2.

A Monero-like system needs a hash function 𝐻s : {0, 1}∗ ↦→
Z𝑙 to generate one-time addresses, a hash function 𝐻p : G ↦→
G to generate key images, and a hash function 𝐻K : {0, 1}∗ ↦→
{0, 1} |𝑙 | to blind the scalars of an output Pedersen commitment.
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Additionally, the MProve-Nova protocol requires a hash function

𝐻𝑝𝑜𝑠 : {0, 1}∗ ↦→ F𝑝 , where 𝐹𝑝 is the scalar field of the elliptic curve

E1. All four of these hash functions need to be collision resistant.

We use the notion of keyed hash functions to define the collision

resistance of these hash functions. LetHashGen be a PPT algorithm

that on input 1
𝜆
generates a pair of PPT algorithms (Gen, 𝐻 ). The

algorithm Gen takes 1
𝜆
as input and generates a key 𝑡 ∈ {0, 1}𝑓 (𝜆)

where 𝑓 is a polynomial. The algorithm 𝐻 takes as inputs a key

𝑡 and a bitstring 𝑥 ∈ {0, 1}∗. It outputs a string 𝐻 𝑡 (𝑥) ∈ {0, 1}𝑙 (𝜆)
where 𝑙 is a polynomial. We require 𝐻 𝑡 (·) to be collision resistant

even if an adversary knows 𝑡 .

Definition G.3. Ahash functionΠ = (Gen, 𝐻 ) is collision resistant
if for all PPT adversariesA there is a negligible function negl such
that

Pr

[
𝐻 𝑡 (𝑥) = 𝐻 𝑡 (𝑥 ′) 𝑡 ← Gen(1𝜆),

𝑥, 𝑥 ′ ← A(𝑡), 𝑥 ≠ 𝑥 ′ .

]
≤ negl(𝜆).

We assume that the existence of an algorithm HashGen that

outputs hash functions satisfying the above definition. To complete

the instantiation ofM𝜆 , the algorithm HashGen is invoked four

times with input 1
𝜆
to obtain keyed versions of the hash functions

𝐻s, 𝐻p, 𝐻K, 𝐻𝑝𝑜𝑠 . For each of these hash functions, the correspond-

ing key generation algorithm Gen is run with input 1
𝜆
and the

resulting keys 𝑡 are made public to obtain the unkeyed versions of

the hash functions.

H Proof of Theorem 9.1
The existence of the extractor ERCG will follow from the knowledge-

soundness of the zkSNARK and IVC scheme used in Nova (see

Definitions E.2 and F.3).

Suppose a PPT adversary Ex uses randomness 𝜌 to generate a

zkSNARK proof 𝜋RCG for an instance instRCG-IVC that is verified to

be correct by the zkSNARK verifier. Recall from Section 7.6.1 that

the proof 𝜋RCG proves knowledge of an IVC proof Π𝑛 .

Since the zkSNARK used in Nova satisfies knowledge-soundness,

by Definition F.3, there exists an EPT extractor ESNARK which out-

puts a valid IVC proof Π𝑛 for instRCG-IVC using the randomness 𝜌

used by Ex, except with a negligible probability negl
1
(𝜆). So the

probability that the output Π𝑛 of ESNARK is a valid IVC proof is at

least 1 − negl
1
(𝜆).

Since the IVC scheme in Nova satisfies knowledge-soundness,

setting P∗ = ESNARK in Definition E.2, there exists an EPT extractor

EIVC which outputs a valid witness witRCG-IV for instRCG-IVC using

the randomness 𝜌 used by Ex, except with a negligible probability

negl
2
(𝜆). So conditioned on the event that Π𝑛 is a valid IVC proof,

the probability that the output witRCG-IV of EIVC is a valid witness

for the instance instRCG-IVC is at least 1 − negl
2
(𝜆).

We construct the required extractor ERCG by composing ESNARK
with EIVC. Using the randomness 𝜌 , ERCG first runs the extractor

ESNARK to get Π𝑛 . Then it runs the extractor EIVC again with input

𝜌 to get the witness witRCG-IV.
The probability that witRCG-IV is a valid witness is at least(

1 − negl
1
(𝜆)

) (
1 − negl

2
(𝜆)

)
= 1 − negl

3
(𝜆),

for a negligible function negl
3
(𝜆). Thus the extractor ERCG succeeds

in generating a valid witness, except with the negligible probability

negl
3
(𝜆). Since both ESNARK and EIVC have expected polynomial

running times, ERCG has an expected polynomial running time.

I Proof of Theorem 9.2
The proof of this theorem is identical to the proof of Theorem

9.1. Suppose a PPT adversary Ex uses randomness 𝜌 to generate a

zkSNARK proof 𝜋NC for an instance instNC-IVC that is verified to be

correct by the zkSNARK verifier. By the knowledge-soundness of

the zkSNARK, there exists an EPT extractor ESNARK which outputs

a valid IVC proof Π𝑛 for instNC-IVC using the randomness 𝜌 used

by Ex, except with a negligible probability negl
1
(𝜆).

Since the IVC scheme in Nova satisfies knowledge-soundness,

there exists an EPT extractor EIVC which outputs a valid witness

witNC-IV for instNC-IVC using the randomness 𝜌 used by Ex, except
with a negligible probability negl

2
(𝜆).

As in Appendix H, the required extractor ENC is obtained by

composing ESNARK with EIVC. It has an expected polynomial run-

ning time. It will generate a valid witness witNC-IV, except with a

negligible probability negl
3
(𝜆).

J Proof of Theorem 9.3
The outline of the proof is as follows. For every adversaryA, wewill

define an adversary A′ which will run A as a subroutine. A′ will
generate simulated transcripts RT𝑠𝑖𝑚𝑗 , which are computationally

indistinguishable from the actual RCG protocol transcripts RT𝑗 .

The final output ofA′ will be the output of its subroutineA whose

inputs are the simulated protocol transcripts.

We will argue using a hybrid argument that the vector of simu-

lated protocol transcripts is computationally indistinguishable from

a vector of actual RCG transcripts. Since A is a PPT algorithm, its

output when fed actual protocol transcripts is computationally in-

distinguishable from its output when it is fed simulated protocol

transcripts. This will prove the theorem.

Let RT denote a RCG protocol transcript generated by an ex-

change at a block height ℎ using a blockchain instance Bbh. Then

RT = (instRCG-IVC, 𝜋RCG) = ((z0, z𝑛), 𝜋RCG) where
z0 =

[
ℎ, root(TXOTℎ), root(KITℎ), root(IMT∅),𝐺

]
,

z𝑛 =
[
ℎ, root(TXOTℎ), root(KITℎ), root(DST),𝐶res

]
.

Let v be the DST leaves vector corresponding to the tree DST. The
following lemma proves the existence of an EPT simulator SRT
which uses Bbh,𝐶

res
, ℎ, and v to output a simulated transcript RTsim

such that the joint distributions of (RT, v, st′) and (RTsim, v, st′) are
computationally indistinguishable for any auxiliary information

st′ that can be generated by a polynomial-time adversary.

Lemma J.1. Let RT denote a RCG protocol transcript generated by
a honest prover at block height ℎ using a blockchain instance Bbh. Let
𝐶res be the reserves commitment in RT and let v be the DST leaves
vector of the double spend tree generated in RT. Let ppRCG be the
public parameters of the RCG protocol. For any PPT adversary A
that generates auxiliary information st′ ← A(ppRCG), there exists a
PPT simulator SRT which generates a simulated protocol transcript
RTsim ← SRT (Bbh,𝐶

res, ℎ, v) such that

(RT, v, st′) ≈ (RTsim, v, st′) .
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Proof. The simulator SRT proceeds as follows:

(1) Using the blockchain instance Bbh and the height ℎ, it con-

structs the trees TXOTℎ and KITℎ .
(2) Using the leaves v, it constructs the double spend tree DST.
(3) Usingℎ, root(TXOTℎ), root(KITℎ), root(DST),𝐶res

, it constructs

the instance instRCG-IVC = (z0, z𝑛).
(4) For the zkSNARK used in Nova, there exists a PPT simulator

SRCG (see Appendix D of the Nova preprint [29]) which takes

as input the instance instRCG-IVC and generates a simulated

zkSNARK proof

𝜋sim ← SRCG
(
pp

RCG
, sRCG, instRCG-IVC

)
.

such that(
pp

RCG
, sRCG, instRCG-IVC, 𝜋RCG, st

)
≈

(
pp

RCG
, sRCG, instRCG-IVC, 𝜋sim, st

)
for any polynomially computable auxiliary information st.
While zero-knowledge as defined in Definition F.5 only re-

quires the simulator SRCG to run in expected polynomial-

time, SRCG in fact has a polynomial running time. The simu-

lator SRT runs SRCG as a subroutine to obtain the simulated

proof 𝜋sim.

(5) The simulator SRT outputs the simulated RCG protocol tran-

script as RTsim = (instRCG-IVC, 𝜋sim).
Since each of the above steps can be executed in polynomial time,

SRT has a polynomial running time.

For the case when the auxiliary information st = (v, st′), we
have (

pp
RCG

, sRCG, instRCG-IVC, 𝜋RCG, v, st′
)

≈
(
pp

RCG
, sRCG, instRCG-IVC, 𝜋sim, v, st′

)
=⇒ (instRCG-IVC, 𝜋RCG, v, st′) ≈ (instRCG-IVC, 𝜋sim, v, st′)

=⇒ (RT, v, st′) ≈
(
RTsim, v, st′

)
.

This completes the proof of the lemma. □

For 𝑗 = 1, 2, . . . , 𝑥 (𝜆), let RT𝑗 be the 𝑗 th RCG protocol generated

by an honest prover. Let v( 𝑗 ) be the leaves vector of the DST gener-

ated in RT𝑗 . Let RTsim𝑗 be the 𝑗th simulated proof corresponding to

RT𝑗 generated by the simulator SRT described in Lemma J.1. Note

that SRT is independent of the auxiliary information st′; it only
depends on the values of Bbh,𝐶

res, ℎ, v. We will use a hybrid argu-

ment to show that the vector of actual protocol transcript and DST

leaves pairs is computationally indistinguishable from a vector of

simulated protocol transcript and DST leaves pairs. This is stated

precisely in the following lemma.

Lemma J.2. Let RT𝑗 , RTsim𝑗 , v( 𝑗 ) be as defined above. Then we have[
Bbh, (RT1, v(1) ), (RT2, v(2) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
≈[

Bbh, (RTsim1 , v(1) ), (RTsim
2

, v(2) ), . . . , (RTsim
𝑥 (𝜆) , v

(𝑥 (𝜆) ) )
]
.

Proof. For every 𝑙 ∈ {0, 1, . . . , 𝑥 (𝜆)}, we define a hybrid ran-

dom variable 𝑇𝑙 as a vector containing 𝑙 simulated RCG protocol

transcripts followed by 𝑥 (𝜆) − 𝑙 actual RCG protocol transcripts,

𝑇𝑙 =

[
Bbh, (RTsim1 , v(1) ), . . . , (RTsim

𝑙
, v(𝑙 ) ),

(RT𝑙+1, v(𝑙+1) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
.

For 𝑙 = 0, we have

𝑇0 =
[
Bbh, (RT1, v(1) ), (RT2, v(2) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
,

and for 𝑙 = 𝑥 (𝜆), we have

𝑇𝑥 (𝜆) =
[
Bbh, (RTsim1 , v(1) ), (RTsim

2
, v(2) ), . . . , (RTsim

𝑥 (𝜆) , v
(𝑥 (𝜆) ) )

]
.

To prove the lemma, we need to prove that 𝑇0 ≈ 𝑇𝑥 (𝜆) . We will

prove this by showing that

𝑇0 ≈ 𝑇1 ≈ 𝑇2 ≈ · · · ≈ 𝑇𝑥 (𝜆)−1 ≈ 𝑇𝑥 (𝜆) .

To see why 𝑇0 ≈ 𝑇1, consider a PPT adversary A1 in Lemma J.1

that generates the auxiliary information

st′
1
=

[
Bbh, (RT2, v(2) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
.

The adversaryA1 could be a coalition of exchangeswhich generates

𝑥 (𝜆) − 1 actual RCG protocol transcripts with indices 2, 3, . . . , 𝑥 (𝜆)
and reveals the corresponding DST leaves vectors. By Lemma J.1,

there exists a PPT simulatorSRT that generates a simulated protocol

transcript

RTsim
1
← SRT

(
Bbh,𝐶

res

1
, ℎ1, v(1)

)
such that

(RT1, v(1) , st′1) ≈ (RTsim1 , v(1) , st′
1
) =⇒ 𝑇0 ≈ 𝑇1 .

To prove that 𝑇1 ≈ 𝑇2, consider a PPT adversary A2 in Lemma

J.1 that generates the auxiliary information

st′
2
=

[
Bbh, (RTsim1 , v(1) ), (RT3, v(3) ), (RT4, v(4) ),

. . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
.

The adversaryA2 could be a coalition of exchangeswhich generates

𝑥 (𝜆) − 1 actual RCG protocol transcripts with indices 1, 3, . . . , 𝑥 (𝜆)
and replaces RT1 with RTsim

1
by using the simulator SRT. As before,

this coalition reveals the DST leaves vectors corresponding to the

transcripts. By Lemma J.1, there exists a PPT simulator SRT that

generates a simulated protocol transcript

RTsim
2
← SRT

(
Bbh,𝐶

res

2
, ℎ2, v(2)

)
such that

(RT2, v(2) , st′2) ≈ (RTsim2 , v(2) , st′
2
)

=⇒
[
Bbh, (RTsim1 , v(1) ), (RT2, v(2) ), (RT3, v(3) ),

. . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
≈[

Bbh, (RTsim1 , v(1) ), (RTsim
2

, v(2) ), (RT3, v(3) ),
. . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
=⇒ 𝑇1 ≈ 𝑇2 .

To prove that𝑇2 ≈ 𝑇3, we will consider the auxiliary information

st′
3
=

[
Bbh, (RTsim1 , v(1) ), (RTsim

2
, v(2) ), (RT4, v(4) ),

(RT5, v(5) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
.
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By Lemma J.1, there exists a PPT simulator SRT that generates a

simulated protocol transcript

RTsim
3
← SRT

(
Bbh,𝐶

res

3
, ℎ3, v(3)

)
such that

(RT3, v(3) , st′3) ≈ (RTsim3 , v(3) , st′
3
)

=⇒
[
Bbh, (RTsim1 , v(1) ), (RTsim

2
, v(2) ), (RT3, v(3) ),

(RT4, v(4) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
≈[

Bbh, (RTsim1 , v(1) ), (RTsim
2

, v(2) ), (RTsim
3

, v(3) ),
(RT4, v(4) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
=⇒ 𝑇2 ≈ 𝑇3 .

In general, for 𝑙 = 1, 2, . . . , 𝑥 (𝜆) the 𝑙th auxiliary information

will have the form

st′
𝑙
=

[
Bbh, (RTsim1 , v(1) ), (RTsim

2
, v(2) ), . . . , (RTsim

𝑙−1, v
(𝑙−1) ),

(RT𝑙+1, v(𝑙+1) ), (RT𝑙+2, v(𝑙+2) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
.

And the simulator will generate the 𝑙th simulated protocol tran-

script as

RTsim
𝑙
← SRT

(
Bbh,𝐶

res

𝑙
, ℎ𝑙 , v(𝑙 )

)
such that

(RT𝑙 , v(𝑙 ) , st′𝑙 ) ≈ (RT
sim

𝑙
, v(𝑙 ) , st′

𝑙
) =⇒ 𝑇𝑙−1 ≈ 𝑇𝑙 .

Then for any PPT distinguisherD, there exists a negligible function

negl such that��
Pr [D (𝑇𝑙−1) = 1] − Pr [D (𝑇𝑙 ) = 1]

�� ≤ negl(𝜆).

To complete the proof, consider any PPT distinguisher D. Then���� Pr [D (𝑇0) = 1] − Pr
[
D

(
𝑇𝑥 (𝜆)

)
= 1

] ����
=

���� Pr [D (𝑇0) = 1] − Pr [D (𝑇1) = 1]

+ Pr [D (𝑇1) = 1] − Pr [D (𝑇2) = 1]
+ Pr [D (𝑇2) = 1] − Pr [D (𝑇3) = 1]

.

.

.

+ Pr
[
D

(
𝑇𝑥 (𝜆)−2

)
= 1

]
− Pr

[
D

(
𝑇𝑥 (𝜆)−1

)
= 1

]
+ Pr

[
D

(
𝑇𝑥 (𝜆)−1

)
= 1

]
− Pr

[
D

(
𝑇𝑥 (𝜆)

)
= 1

] ����
≤

𝑥 (𝜆)∑︁
𝑙=1

��
Pr [D (𝑇𝑙−1) = 1] − Pr [D (𝑇𝑙 ) = 1]

��
≤ 𝑥 (𝜆) · negl(𝜆)

for some negligible function negl. Since 𝑥 (𝜆) is a polynomial in 𝜆,

𝑥 (𝜆) · negl(𝜆) is also negligible. This implies that 𝑇0 ≈ 𝑇𝑥 (𝜆) .
□

To complete the proof of Theorem 9.3, we need to show that for

every PPT adversary A there is a PPT adversary A′ such that

A
(
Bbh, (RT1, v(1) ), (RT2, v(2) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

)
≈

A′
(
Bbh,𝐶

res

1
, . . . ,𝐶res

𝑥 (𝜆) , v
(1) , . . . , v(𝑥 (𝜆) ) , ℎ1, . . . , ℎ𝑥 (𝜆)

)
.

For any PPT adversary A, the strategy of the corresponding

adversary A′ will be as follows:
(1) For 𝑖 = 1, 2, . . . , 𝑥 (𝜆), the adversary A′ uses the simulator

SRT of Lemma J.1 with Bbh,𝐶
res

𝑖 , v(𝑖 ) , ℎ𝑖 as inputs to generate
the 𝑖th simulated RCG protocol transcript

RTsim𝑖 ← SRT
(
Bbh,𝐶

res

𝑖 , ℎ𝑖 , v(𝑖 )
)
.

(2) A′ will run the adversary A as a subroutine with actual

RCG protocol transcripts replaced with simulated protocol

transcripts as

A
(
Bbh, (RTsim1 , v(1) ), (RTsim

2
, v(2) ), . . . , (RTsim

𝑥 (𝜆) , v
(𝑥 (𝜆) ) )

)
.

The final output of A′ will be the output of its subroutine
A.

By Lemma J.2, we know that[
Bbh, (RT1, v(1) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

]
≈[

Bbh, (RTsim1 , v(1) ), . . . , (RTsim
𝑥 (𝜆) , v

(𝑥 (𝜆) ) )
]

Since A is a PPT algorithm, we have

A
(
Bbh, (RT1, v(1) ), . . . , (RT𝑥 (𝜆) , v(𝑥 (𝜆) ) )

)
≈

A
(
Bbh, (RTsim1 , v(1) ), . . . , (RTsim

𝑥 (𝜆) , v
(𝑥 (𝜆) ) )

)
Since the random variable on the right hand side is

A′
(
Bbh,𝐶

res

1
, . . . ,𝐶res

𝑥 (𝜆) , v
(1) , . . . , v(𝑥 (𝜆) ) , ℎ1, . . . , ℎ𝑥 (𝜆)

)
,

we have proved the claim of Theorem 9.3. □

K List of Symbols
A list of symbols used to describe the MProve-Nova protocol is

given in Table 3 for easy reference.
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Table 3: List of symbols used in MProve-Nova description

Symbol Description

G Prime order subgroup of the ed25519 elliptic curve whose order is a 253-bit prime 𝑙

𝐺 The base point of the group G
𝐻 An element of group G whose discrete logarithm wrt 𝐺 is unknown. Used to generate Pedersen commitments

Z𝑙 The set {0, 1, 2, . . . , 𝑙 − 1} of scalars from which Monero private keys and Pedersen commitment blinding factors are chosen

𝐻s 𝐻s : {0, 1}∗ ↦→ Z𝑙 is a scalar-valued cryptographic hash function that is used in Monero one-time address generation

𝐻p 𝐻p : G ↦→ G is a point-valued cryptographic hash function that is used in Monero key image generation

𝑃 An element in G representing a one-time address. Usually appears with subscripts

𝐶 An element in G representing a Pedersen commitment of the form 𝑎𝐻 + 𝑦𝐺 for 𝑎,𝑦 ∈ Z𝑙 where 𝑎 is the amount and 𝑦 is a

blinding factor. To explicitly specify 𝑎 and 𝑦, the commitment 𝐶 = 𝑎𝐻 + 𝑦𝐺 is sometimes written as 𝐶 (𝑎,𝑦).
(𝑃,𝐶) An element of G2

that denotes a Monero RingCT output

𝐶res A Pedersen commitment to an exchange’s reserves amount

F𝑠 Prime field used to express R1CS constraints

𝐻𝑝𝑜𝑠 𝐻𝑝𝑜𝑠 : {0, 1}∗ ↦→ F𝑠 is the Poseidon hash function

bh Block height

𝑁bh Number of RingCT outputs that have appeared on the Monero blockchain up to block height bh
Tbh Vector of all outputs [(𝑃1,𝐶1), (𝑃2,𝐶2), . . . , (𝑃𝑁bh ,𝐶𝑁bh )] that have appeared on the Monero blockchain up to block height bh
Ibh Set of all key images that have appeared on the Monero blockchain up to block height bh
Jknown A subset of {1, 2, . . . , 𝑁bh} containing the indices of outputs which are owned by an exchange

Junspent A subset of {1, 2, . . . , 𝑁bh} containing the indices of unspent outputs

TXOT Transaction outputs tree, a regular Merkle tree with leaves of the form 𝐻𝑝𝑜𝑠

(
𝑃 ∥𝐶 ∥𝐻p (𝑃)

)
where (𝑃,𝐶) ∈ Tbh

KIT Key images tree, an indexed Merkle tree with leaves of the form 𝐻𝑝𝑜𝑠 (𝐼 ) where 𝐼 ∈ Ibh
DST Double spend tree, an indexed Merkle tree with leaves of the form 𝐻𝑝𝑜𝑠 (𝑥 ∥bh) where 𝑥 ∈ Z𝑙 . DST𝑗−1 and DST𝑗 denote the

double spend trees before and after the 𝑗th step of the RCG protocol

OIT Output inclusion tree, an indexed Merkle tree with leaves of the form 𝐻𝑝𝑜𝑠 (𝑥 ∥bh) where 𝑥 ∈ Z𝑙 . OIT𝑗−1 and OIT𝑗 denote the

output inclusion trees before and after the 𝑗th step of the NC protocol

instRCG Instance of the RCG protocol (see Definition 7.1)

witRCG Witness of the RCG protocol (see Definition 7.2)

instRCG-IVC Instance of the IVC version of the RCG protocol (see Definition 7.3)

witRCG-IVC Witness of the IVC version of the RCG protocol (see Definition 7.4)

pk
RCG

Nova proving key for the RCG protocol

vkRCG Nova verification key for the RCG protocol

𝜋RCG Nova zkSNARK proof for the RCG protocol

VRCG Nova zkSNARK verifier for the RCG protocol

DSTEx1𝑛1
Double spend tree of Exchange 1 containing 𝑛1 leaves

𝑣
(1)
𝑗

The 𝑗th leaf of DSTEx1𝑛1
for 𝑗 = 1, · · · , 𝑛1

DSTEx2𝑛2
Double spend tree of Exchange 2 containing 𝑛2 leaves

𝑣
(2)
𝑗

The 𝑗th leaf of DSTEx2𝑛2
for 𝑗 = 1, · · · , 𝑛2

instNC Instance of the NC protocol (see Definition 8.1)

witNC Witness of the NC protocol (see Definition 8.2)

instNC-IVC Instance of the IVC version of the NC protocol (see Definition 8.3)

witNC-IVC Witness of the IVC version of the NC protocol (see Definition 8.4)

pk
NC

Nova proving key for the NC protocol

vkNC Nova verification key for the NC protocol

𝜋NC Nova zkSNARK proof for the NC protocol

VNC Nova zkSNARK verifier for the NC protocol

IMT∅ An empty indexed Merkle

𝜆 A security parameter taking values in N
M𝜆 A sequence of Monero-like systems where the discrete logarithm problem in G, the decisional Diffie-Hellman problem in G,

the problems of finding collisions or preimages of hash functions 𝐻s, 𝐻p, 𝐻𝑝𝑜𝑠 , all become harder with increasing 𝜆

Bbh An instance of the Monero blockchain up to block height bh, generated using the specifications inM𝜆

RT𝑗 The 𝑗th RCG protocol transcript containing the 𝑗th instance-proof pair

(
inst( 𝑗 )

RCG-IVC
, 𝜋
( 𝑗 )
RCG

)
v( 𝑗 ) The vector of leaves of the double spend tree corresponding to RT𝑗

606


	Abstract
	1 Introduction
	2 Challenges in Designing a Monero PoR Protocol
	3 Our Contributions
	4 Related Work
	5 Nova
	5.1 IVC Scheme
	5.2 zkSNARK of an IVC Proof

	6 The Design of MProve-Nova
	7 Reserves Commitment Generator Protocol
	7.1 Transaction Outputs and Key Images Merkle Trees
	7.2 RCG Protocol Instance and Witness
	7.3 The RCG Protocol as an IVC Scheme
	7.4 Step Function Computation
	7.5 Knowledge of IVC Witness Implies Knowledge of RCG Protocol Witness
	7.6 Proof Generation and Verification

	8 Non-Collusion Protocol
	8.1 NC Protocol Instance and Witness
	8.2 Step Function Computation
	8.3 Knowledge of IVC Witness Implies Knowledge of NC Protocol Witness
	8.4 Proof Generation and Verification

	9 Security Analysis
	9.1 Inflation Resistance
	9.2 Collusion Resistance
	9.3 Privacy

	10 Implementation and Performance
	11 Conclusion
	Acknowledgments
	References
	A Overview of Monero
	A.1 One-Time Addresses and Unlinkability
	A.2 Linkable Ring Signatures and Untraceability
	A.3 Pedersen Commitments and Amount Confidentiality

	B MProve
	B.1 Proof Generation
	B.2 Proof Verification
	B.3 Implications of a Correct MProve Proof
	B.4 Drawbacks

	C MProve+
	C.1 Proof Generation
	C.2 Proof Verification
	C.3 Implications of a Correct MProve+ Proof
	C.4 Drawbacks

	D Rank-1 Constraint Systems
	E IVC Scheme Definitions
	F zkSNARK Definitions
	G Generating a Sequence of Monero-like Systems
	H Proof of Theorem 9.1
	I Proof of Theorem 9.2
	J Proof of Theorem 9.3
	K List of Symbols

