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Abstract

Differential Privacy (DP) is one of the most successful privacy-

preserving frameworks. In the central model of DP a trusted server

adds controlled noise as it acts as an interface between the data

providers (users) and the data consumers (analysts). To overcome

the strong trust assumption of having a trusted server, Local Dif-

ferential Privacy (LDP) has been proposed, where the individual

data are obfuscated directly at the end of the data provider. To im-

prove LDP, in recent years researchers have proposed to combine

it with a shuffler which is supposed to mix the data at the time of

collection, enhancing the privacy of LDP without affecting utility.

The shuffler is assumed to be trusted, but this is also an arguably

strong assumption that cannot always be guaranteed.

Metric privacy (aka 𝑑-privacy) is a variant of DP that can be

applied in domains provided with a notion of distance and it is

particularly used in location privacy, where it takes the name of

geo-indistinguihability. In contrast to DP, metric privacy allows

calibrating the noise so that data points closer to the true one are

more likely to be reported.

In this work we study how metric privacy can be improved by

combining it with a shuffler. More specifically, we consider the

combination of the shuffler with three mechanisms, Randomized

Response, Geometric and an optimal protocol, in the context of

the sum and average queries. In all cases, we formally derive the

relations that express the privacy amplification due to the shuffler,

in terms of metric privacy. Moreover, we formally study the privacy

guarantees of each protocol if the shuffler is compromised. Finally

we conduct experiments using synthetic data as well as real-world

location data, showing that the proposed mechanisms achieve a

better privacy-utility trade-off compared to the baseline of the

standard geometric mechanism.
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1 Introduction

Differential privacy (DP) [17] [16] is a formal notion of privacy,

ensuring the protection of each individual in a statistical database,

when it is queried by an analyst to get aggregated information. DP

establishes a bound on the ratio of the probability to get the same
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answer from two adjacent databases, namely, two databases that

differ for just one record. The bound is expressed in terms of a

parameter 𝜀, which represents the level of privacy. Most research

focuses on two opposite approaches to implement DP. The first one

is the central model of DP, where a trusted central party collects

the data and injects noise, high enough to reach the desired level

of privacy but also maintain the utility of the data. The central

model requires to assume that the central party is trusted. This is

the Achilles’ heel of this approach.

At the other extreme, there is the local model [27] where the data

providers (called users in this paper) apply noise on their own by

using a so-called Local Randomizer. While this method enjoys a lack

of obligation to trust a central party, it comes with its limitations,

as certain learning tasks that can be performed in the central model

cannot be performed in the local model [27]. Moreover, it is proven

that inmost cases, to achieve the same level (i.e. 𝜀) of DP, the amount

of noise needs to be higher, hurting utility [6, 8]. For this reason,

often a high number of users is necessary to decrease the (relative)

error. Therefore this model has been used mainly by technology

giants such as Google [19], Microsoft [13] and Apple [12].

With the purpose of improving the trade-off between privacy

and utility in the local model, A. Bittau et al. proposed to combine

it with a shuffler [7]. In the shuffle model, users still run a Local

Randomizer to locally add noise, but instead of sending the result

directly to the central party, they send it to a middle layer, the

shuffler. After shuffling (i.e. mixing) the inputs received from all the

users, the shuffler sends them to the central party which can then

query them. The idea is that shuffling provides an additional layer

of obfuscation by eliminating the link between the data and their

original owners. Hence, to achieve the intended level of privacy,

users can add less noise to their data. Since the shuffler does not alter

the utility of the data (at least for the queries that are commutative

on the messages), the net result is an improvement of the privacy-

utility trade-off. In conclusion, the shuffle model is an appealing

compromise between the poorer utility of the local model and the

stronger trust assumption of the central model.

In the shuffle model it is customary to assume that the shuffler is

trusted. Indeed, this is a weaker trust assumption compared to the

central model since the shuffler can be implemented in a distributed

way. Furthermore, even if the shuffler is compromised, the data

available to it still contain some noise, unlike the central model.

The distributed shuffling can be implemented via MPC [11],

trusted hardware [7] or using a MixNet. A MixNet is a sequence of

servers where each one receives the data, shuffles it and sends it to

the next server. Zero-knowledge proofs need to be shared at each

step to ensure that the server has not tampered with the data. The

shuffling will be executed correctly as long as at least one server

is honest. Since we cannot always assume that the first server is
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honest, an “onion encryption” protocol needs to be adopted (similar

to Tor [14]). This type of encryption works by having the first server

decrypt the first, “outermost layer” of encryption without having

the key to decrypt the next layer, which is held only by the next

server. The server has to now shuffle the encrypted messages. In

other words, this ensures that no server in the MixNet can actually

see the raw data.

Nonetheless, in real-world applications, the assurance that the

shuffler is trusted is not always easy to achieve, which raises the

question what are the consequences in a scenario where a shuffle

model mechanism is used and the shuffler becomes compromised. If

this happens, the mechanism essentially reduces to providing only

local model privacy guarantees, and in fact with reduced privacy

level (since the noise added by each user is typically reduced). Inter-

estingly, however, not all shuffle model mechanisms behave in the

same way wrt their local model privacy guarantees; some achieve

their privacy amplification in a way that is somewhat "compatible"

with local privacy, while others achieve it in a way that severely

violates local privacy. Hence, as we see later in this paper, we can

have scenarios in which two mechanisms have identical shuffle

model privacy, comparable utility, but drastically different local

model privacy.

However, in many applications one wishes to protect the pre-
cision with which an adversary can learn the user’s secret. For

instance, consider a scenario where a single individual, traveling in

a city, wishes to use a location-based service while still enjoying

a level of privacy. The adversary should not be able to guess his

exact location, but could be able to deduce the district he is in. In

other words, nearby secrets (locations) should look identical to the

adversary, but far-away locations are allowed to be distinguished.

Metric privacy was introduced in [9] (where it was called 𝑑-privacy)

as a variant of DP suitable for domains provided with a notion of

distance. Like in central and local DP, metric privacy imposes a

bound on the probability that the same result is obtained from two

different elements. However, in contrast to DP, this bound does not

depend only on the parameter 𝜀, but also on the distance between

the objects. This means that the noise can be calibrated depending

on how large the range in which we want to achieve indistinguisha-

bility is. In contrast, LDP requires indistinguishability between any

pair of elements in the domain. Therefore metric privacy is particu-

larly useful in those applications in which hiding an element within

a group of neighbors is a sufficient measure of privacy protection.

Metric privacy has been applied mostly in the local model, and

particularly for location privacy, where it takes the name of geo-
indistinguishability [1]. However, metric privacy can also be applied

in the central model; indeed, metric privacy can be considered an

extension of both local and central DP. In the central case, the

elements (arguments of the mechanism) are datasets, and the notion

of distance that corresponds to the DP property is the Hamming

distance (two datasets are adjacent if their Hamming distance is 1).

Metric privacy, however, can also use different distances on datasets.

In this paper we employ the Manhattan and the Euclidean distance,

in which the level of distinguishability between two datasets not

only depends on the number of different values but also on the

values themselves.

A natural question, explored in this paper, is whether metric

privacy can be applied in the shuffle model to provide a privacy

boost similar to that of standard DP. Interestingly, although for

standard DP we can take the natural local model mechanism (𝑘-

Randomized Response) and achieve a boost simply by shuffling the

users’ values, the same is not true for metric privacy. The natural

mechanism in this case is the geometric mechanism, but simply

shuffling its outcome does not achieve a non-negligible boost. The

reason is that the probability of reporting a value close to the

original one is much larger if we are only interested in metric

privacy, which means that outlier values will be recognizable after

the shuffling, in a sense canceling its effect. Hence, to achieve a

privacy boost we need to employ the geometric mechanism in a

non-trivial way; in fact, later in this paper we present two distinct

such adaptations of the geometric mechanism, Geo-Shuffle and

SGDL-Shuffle, with distinct privacy properties. To the best of our

knowledge, this is the first work that proposes and investigates the

shuffle model for metric privacy.

1.1 Contributions

• We study RR-Shuffle, a shuffle model variant of the Random-

ized Response mechanism, and derive its metric privacy and

utility guarantees (Section 3.2).

• We propose Geo-Shuffle, a novel adaptation of the geometric

mechanism (the natural choice for metric privacy). We show

that its privacy can be expressed in terms of the Symmetric

Generalized Discrete Laplace (SGDL) distribution which, as

far as we are aware, has not been previously studied in the

context of privacy (Section 4).

• We propose SGDL-Shuffle, a different adaptation of the geo-

metric mechanism, based on techniques from [21]. We again

study its privacy guarantees and show that it provides opti-

mal utility (Section 5).

• We experimentally evaluate all proposed mechanisms in two

datasets: a synthetic one and a real-world dataset of location

data. We show that all mechanisms of the shuffle model pro-

vide significantly better utility compared to those of the local

model. RR-Shuffle is outperformed by Geo-Shuffle and SGDL-

Shuffle; the latter provides optimal utility that matches that

of the central model, while the former closely approaches it

(Section 6).

• We study the privacy guarantees of all mechanisms in the

case where the shuffler is compromised. This type of analysis

is often missing from the shuffle model literature. We show

that, surprisingly, although Geo-Shuffle and SGDL-Shuffle

have identical shuffle model privacy and comparable utility,

their local model privacy is drastically different (Section 7).

1.2 Background and Related Work

For standard DP, the shuffle model has been studied in a series of

works. Albert Cheu et al. [11], provided a formal analytical model by

providing a protocol for Boolean Sums and a protocol for Real Sums

of bounded input, using the famous mechanism of Randomized

Response, proposed by Stanley L. Warner in 1965 [31]. For privately

estimating bounded real-value statistical queries, they proposed

a mechanism in the shuffle model which is (𝜀, 𝛿) - differentially
private with an error that is only 𝑂 ( 1

𝜀
𝑙𝑜𝑔𝑛

𝛿
), when executed with

𝑛 users. This is close to the error of the curator model which is
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𝑂 (1/𝜀). For binary sums, the error reduces to𝑂 ( 1
𝜀

√︃
𝑙𝑜𝑔 1

𝛿
) and each

user sends only one bit. Erlingsson et al. [18] proved that adding

a shuffler to any local differential privacy protocol amplifies the

privacy parameters. They showed that if a protocol satisfies 𝜀 -

differential privacy in the local model then adding a shuffler will

make the protocol satisfy 𝑂 (𝜀
√︁
𝑙𝑜𝑔(1/𝛿)/𝑛, 𝛿) - DP in the central

model.

Another interesting study of the shuffle model for standard DP

was conducted by B. Balle et al. [4]. They proposed a single-message

protocol of the shuffle model where estimating the sum of real

numbers in [0, 1], each held by one of 𝑛 users results in an er-

ror with standard deviation of 𝑂 (𝑛1/6). Each user sends only one

message with size 𝑂 (𝑙𝑜𝑔𝑛), which results in a smaller communica-

tion cost compared to [11]. Moreover, they proved a lower bound

of the error of any single-message protocol of the shuffle model.

They showed that the mean square error has to be in the order

of Ω(𝑛1/3). Another interesting contribution is their proof of the

privacy amplification that occurs when a shuffler is added. Shuffling

𝑛 copies of 𝜀0- differentially private Local Randomizers each with

𝜀0 =𝑂 (𝑙𝑜𝑔(𝑛/𝑙𝑜𝑔(1/𝛿)) yields an 𝜀, 𝛿 - differentially private mech-

anism with 𝜀 =𝑂 (𝑚𝑖𝑛(𝜀0, 1)𝑒𝜀0
√︁
𝑙𝑜𝑔(1/𝛿)/𝑛). An optimal error for

the problem of private summation has been proved by B. Balle et

al [5] and B. Ghazi et al. [22]. They showed that there is an (𝜀, 𝛿)

differentially private protocol in the shuffle model that has an error

equal to the Discrete Laplace mechanism of the central model with

parameter (1−𝛾)𝜀 for every 𝜀 ≤ 𝑂 (1) and every 𝛿,𝛾 ∈ (0, 1/2). They
also extended this theorem to the problem of privately computing

histograms. In the recent work of Albert Cheu [10] an overview

of all shuffle protocols is presented, for Binary Sums, Histograms,

Uniformity Testing and Pointer Chasing problems. Also, he proves

that the shufflemodel, under natural constraints, is weaker, in terms

of error, compared to the central model.

Note that the corruption of the shuffler has been studied in the

literature. As an alternative approach, the framework of Differen-
tially Oblivious Shuffling [24] was proposed as a way to reduce the

trust on the shuffler by tolerating a small amount of information

being leaked during shuffling (formally described by 𝜀, 𝛿 , similarly

to standard DP). In this paper, on the other hand, we study the case

of the shuffler getting fully compromised, in which the shuffle’s

model privacy reduces to that of the local model.

The lack of studies on the application of the shuffle model in

metric privacy is the motivation of this work.

1.3 Plan of the Paper

The next section recalls the preliminary notions of central and local

DP, metric privacy and the shuffle model.

In Sections 3, 4 and 5 we discuss the proposed mechanisms which

are based respectively on the Randomized Responsemechanism, the

Geometric mechanism and the Symmetric Generalized Discerete

Laplace distribution.

Next, in Section 6 we evaluate the utility of the proposed shuffler-

enhancedmechanisms, and compare themwith the geometric mech-

anism in the local model.

In Section 7 we study how the proposed mechanisms compare,

in terms of privacy, when the adversary also controls the shuffler.

Table 1: Table of Notations

Notation Description

𝑅 Local Randomizer

𝑆 Shuffler

𝐴 Analyst

𝑑𝑋 Function measuring the distance between two datasets

𝑑 The distance between two datasets (the result of 𝑑𝑋 )

𝑛 Number of users

𝑘 Users have values in {0, . . . , 𝑘 }
𝑥𝑖 Secret of user 𝑖

U Unary encoding (Algorithm 1)

𝜆 The expected number of random bits in RR-Shuffle

𝑁𝑖 Noise of user 𝑖

𝑐 Padding value

𝐺 Geometric Mechanism

G Geometric distribution

NB Negative Binomial distribution

𝜀𝑔𝑒𝑜 𝜀 of the local randomizer of Geo-Shuffle

Geo-Central Geometric Mechanism in the Central Model

Geo-Local Geometric Mechanism in the Local Model

𝜀𝐿 𝜀 in the Local Model (shuffler compromised)

𝜀𝑆 𝜀 in the Shuffle Model (shuffler not compromised)

Then, in Section 8 we justify our assumption that only a primitive

shuffler can be used and discuss the communication cost of the

proposed protocols. Finally, Section 9 concludes, and discusses

future work.

2 Preliminaries and Definitions

2.1 Differential Privacy

We define a dataset as a vector 𝑋 = (𝑥1, . . . , 𝑥𝑛) of 𝑛 users, each

with a numerical value, who wish to privately compute the sum

of their values. In the central model of DP a curator has access to

the full dataset 𝑋 , and applies a probabilistic mechanism𝑀 which

typically computes the outcome of the query and adds random

noise to it. Two datasets 𝑋,𝑋 ′ are considered adjacent, if they differ
by the value of exactly one element, or equivalently their Hamming

distance is 1. Differential Privacy requires that such changes should

not be observable in the query outcome.

Note that this corresponds to the so-called bounded DP. The
standard definition of DP uses a different notion of adjacency, in

which two datasets are adjacent if one can be obtained from the

other by adding or removing one user. For our work, however, this

definition is not convenient since the number of users in the shuffle

model is observable, hence it is considered fixed.

Definition 1 (Approximate Differential Privacy). A
mechanism𝑀 is (𝜀, 𝛿) - approximate differentially private iff for all
pairs of adjacent datasets 𝑋,𝑋 ′ and all sets of results 𝑆 :

P[𝑀 (𝑋 ) ∈ 𝑆] ≤ 𝑒𝜀 · P[𝑀 (𝑋 ′) ∈ 𝑆] + 𝛿
where the probabilities are in the randomness of M. If 𝛿 = 0, then M is
𝜀-differentially private.

A useful property of differential privacy is that any post process-

ing operation does not affect privacy.
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Lemma 2.1 (Post-Processing). [16] If 𝑀 is (𝜀, 𝛿) - approximate
differentially private then for every function 𝐴, 𝐴 ◦𝑀 is (𝜀, 𝛿) - ap-
proximate differentially private.

To overcome the strong trust assumption of the fully-trusted

entity holding all users’ data of the central model, the local model
has been proposed. Each user, holding a value 𝑥 from some domain

D, applies the mechanism 𝑀 on his own data 𝑥 , and publishes

the mechanism’s noisy result, thus avoiding the need for a central

entity. The noise has to be large enough so that any particular value

has substantial probability to be reported, leading to the following

definition:

Definition 2 (local model of Differential Privacy).

[27] A mechanism𝑀 provides (𝜀, 𝛿) - approximate Local Differential
Privacy iff for all values 𝑥, 𝑥 ′ ∈ D and all sets of results 𝑆 we have:

P[𝑀 (𝑥) ∈ 𝑆] ≤ 𝑒𝜀 · P[𝑀 (𝑥 ′) ∈ 𝑆] + 𝛿
Although the local model achieves privacy without a central

authority, the need to add noise directly to each value results in

worse utility compared to the central model. As a consequence, the

shuffle model [11] has recently emerged, with the goal of achieving

the best of both worlds.

2.2 The Shuffle Model

In the shuffle model, users add noise locally but then a shuffler ran-

domly permutes the values before they get published to the analyst.

Intuitively, the idea is that users can add less noise compared to the

local model and the noise created by the shuffling will compensate

for the difference.

Let 𝑛 users with each user 𝑖 holding a secret 𝑥𝑖 . A mechanism

(𝑅, 𝑆,𝐴) in the shuffle model consists of:

• Local Randomizer 𝑅 : X → Y∗ . A randomized encoder

used by each user 𝑖: takes as input 𝑥𝑖 and outputs a vector

𝑦𝑖 with length𝑚 . If𝑚 = 1 , we define it as the one-message
shuffle model and if𝑚 > 1 as themulti-message shuffle model
.

• Shuffler 𝑆 : Y∗ → Y∗. Takes as input the vectors𝑦1, . . . , 𝑦𝑛 ,
each with length 𝑚, and shuffles their bits altogether. In

other words, it first concatenates them to a single bit vector,

creating 𝑦1,1, . . . , 𝑦𝑛,𝑚 , then chooses a uniformly random per-

mutation 𝜋 : N→ N and finally outputs 𝑦𝜋 (1,1) , . . . , 𝑦𝜋 (𝑛,𝑚) .
We assume that only a "primitive" shuffler can be used; we

further discuss this in Section 8.

• Analyst
1 𝐴 : Y∗ → R . Uses an analysis function that takes

as input a set of messages 𝑦1,1, . . . , 𝑦𝑛,𝑚 and tries to estimate

a function 𝑓 (𝑥1, . . . , 𝑥𝑛) from these messages.

The result of shuffling the locally randomized values can be

viewed as a mechanism:𝑀 (𝑋 ) = 𝑆 (𝑅(𝑥1), . . . , 𝑅(𝑥𝑛)). Hence we
can adapt the definition of Differential Privacy in this model as

follows:

Definition 3 (Shuffle model of Differential Privacy).

[11, 18] A mechanism (𝑅, 𝑆,𝐴) is (𝜀, 𝛿)- approximate differentially
private iff𝑀 (𝑋 ) = 𝑆 (𝑅(𝑥1), . . . , 𝑅(𝑥𝑛)) is (𝜀, 𝛿)- approximate differ-
entially private.
1
We recall here the definition of the mechanism given in [11, 18], which includes an

entity called the "analyst" representing the final use of the output. This is to underline

the fact that, in general, a mechanism is designed for a specific notion of utility.

2.3 Metric Privacy

The notion of distance used in Differential Privacy, namely the

Hamming distance, depends only on the number of different records

between the two datasets, without considering how much different

they actually are. In other words standard Differential Privacy aims

at fully hiding the value of each individual; any change in the value

is equally hidden.

Metric privacy, a generalisation of Differential Privacy, aims at

addressing this limitation, by considering an arbitrary set of se-

crets X, equipped with a metric 𝑑𝑥 , where 𝑑𝑥 (𝑥, 𝑥 ′) denotes how
indistinguishable 𝑥 and 𝑥 ′ are required to be. Then, metric privacy

requires that, the closer (wrt 𝑑𝑥 ) two secrets are, the more similar

the outcomes of the mechanism on these secrets should be.

Definition 4 (Approximate Metric Privacy).
2 A mecha-

nism𝑀 satisfies approximate (𝜀, 𝛿) - 𝑑𝑥 - privacy, iff for all secrets x,
x’ ∈ X and sets of results S:

P[𝑀 (𝑥) ∈ 𝑆] ≤ 𝑒𝜀 ·𝑑𝑥 (𝑥,𝑥 ′ ) P[𝑀 (𝑥 ′) ∈ 𝑆] + 𝛿

In the subsequent sections of this work, in order to express that

a mechanism satisfies approximate metric privacy, we will simply

write that is satisfies (𝜀, 𝛿) - 𝑑𝑥 - privacy. Moreover if 𝛿 = 0 we say

that the mechanism satisfies pure 𝑑𝑥 - privacy.

Note that the use of an arbitrary set of secrets X in the above

definition, with its corresponding metric 𝑑𝑥 , allows us to adapt

metric privacy to the various privacy models, by selecting X and

𝑑𝑥 accordingly:

• Local model. Here X is the domain of user values D. In this

paper we consider numeric data, hence the domain is R and

𝑑𝑥 is the Euclidean distance, which will be denoted as 𝑑R.

In the case of location data, the domain is R2
and the metric

is | | · | |2.
• Central model. Here X is the set of all datasets. As for the

metric, in this paper we consider the Manhattan distance,

i.e.:

𝑑𝑋 (𝑋,𝑋 ′) =
∑
𝑖 𝑑𝑥 (𝑥𝑖 , 𝑥 ′𝑖 ) , (1)

where 𝑑𝑥 is an underlying metric on the values (in our case

the Euclidean distance). Hence,𝑑𝑋 measures the total change

in the values between the two datasets, instead of just the

number of modified records.

• Shuffle model. Similarly to the central model, here X is the

set of all datasets with the metric𝑑𝑋 from (1). The only differ-

ence is that the employed mechanism𝑀 (𝑋 ) = 𝑆 (𝑅(𝑥1), . . . ,
𝑅(𝑥𝑛)) involves a Local Randomizer 𝑅 and a shuffler 𝑆 .

We notate with 𝑑 the result of 𝑑𝑋 . The most widely used appli-

cation of metric privacy is the case when X ⊆ R2
are locations

and 𝑑𝑥 is the Euclidean distance, known in the literature as geo-
indistinguishability [1].

Finally, note that in the central model, we can achieve metric

privacy by simply applying a local mechanism to the whole dataset

𝑋 . If𝑀 (𝑥) satisfies (𝜀, 𝛿)-𝑑𝑥 -privacy, then the mechanism𝑀 (𝑋 ) =
(𝑀 (𝑥1), . . . , 𝑀 (𝑥𝑛)) satisfies (𝜀, 𝛿)-𝑑𝑋 -privacy. However, if we only
wish to answer a specific numeric query 𝑓 (𝑋 ), we can achieve

2
Aweaker variant of this definition has been proposed in [2], requiring that P[𝑀 (𝑥 ) ∈
𝑆 ] ≤ 𝑒𝜀𝑑𝑥 (𝑥,𝑥 ′ )P[𝑀 (𝑥 ′ ) ∈ 𝑆 ] + 𝛿𝑒𝑑𝑥 (𝑥,𝑥 ′ ) , meaning that 𝛿 increases with the

distance (similarly to 𝜀). For this work, the stronger variant is sufficient, the results

however can be directly translated to the weaker variant.

653



Proceedings on Privacy Enhancing Technologies 2025(2) A. Athanasiou, K. Chatzikokolakis and C. Palamidessi

Figure 1: Trust Boundaries (in green)

(a) when the shuffler is trusted (b) when the shuffler is corrupted

stronger privacy in the central model by applying 𝑀 only to the

outcome of 𝑓 , instead of the data, and adapting the noise to the

sensitivity of 𝑓 as follows:

Theorem 2.2. [1] Let 𝑓 (𝑋 ) be a numeric query on a dataset 𝑋 and
let Δ𝑓 be its sensitivity, defined as:

Δ𝑓 =max

𝑋,𝑋 ′

𝑑R (𝑓 (𝑋 ), 𝑓 (𝑋 ′))
𝑑𝑋 (𝑋,𝑋 ′)

.

If a mechanism𝑀 (𝑥) satisfies (𝜀, 𝛿)-𝑑R-privacy then𝑀 (𝑓 (𝑋 )) satis-
fies (Δ𝑓 · 𝜀, 𝛿)-𝑑𝑋 -privacy.

2.4 Adversary Model

In this work we consider the analyst to be the adversary who

receives the output of the shuffler and tries to determine the value

of a user. First, we follow the traditional assumption of the shuffle

model and assume that the shuffler is trusted and not controlled by

the analyst (Figure 1a). Note that, in this case, the privacy of the

proposed mechanisms only depends on the output of the shuffler

and not on any extra actions possibly performed by the analyst

(Lemma 2.1). This is to emphasize that the role of the analyst solely

impacts the utility of the mechanism.

Then, in Section 7 we continue by challenging the assumption

that the shuffler is trusted and examine the privacy of the proposed

protocols when the analyst corrupts the shuffler (Figure 1b).

Furthermore, in both cases, we consider that the adversary can

monitor the communication channel between the users and the

shuffler. Although the messages are encrypted, their metadata could

reveal information. This necessitates the requirement for every user

to send messages of the same length (further discussed in Section 8).

Finally, we assume that the adversary does not control any users.

We expect all users to behave in at least an honest-but-curious way,

meaning that each will properly execute their Local Randomizer

and send their obfuscated value to the shuffler.

3 Randomized Response in the Shuffle Model

The core mechanism . First let us describe Randomized Response

(RR) [31]. Consider a user in the local model with a value 𝑥 from

a binary domain D = {0, 1}. RR performs a probabilistic choice:

with probability 𝑝 (a parameter of the mechanism) it ignores 𝑥 and

uniformly reports a value in {0, 1} and with probability 1 − 𝑝 it

reports 𝑥 truthfully.

Randomized Response can also be used in the case of a non-

binary domain D; in this case it is usually called 𝑘-RR, where

𝑘 = |D|. Similarly to the binary case, the mechanism reports a

random value from D with probability 𝑝 and 𝑥 with probability

1 − 𝑝 . Note that 𝑘-RR treats all values that are different from 𝑥 in

the same way, independently from their distance from 𝑥 . In other

words, when 𝑥 = 0, the probability of reporting 1 or 10
10
is the same.

However, recall that, in metric privacy, a mechanism should report

something close (wrt a metric function 𝑑𝑥 ) to the initial value. This

makes 𝑘-RR a poor choice for metric privacy.

3.1 RR for Standard DP in the Shuffle Model

The idea of improving the privacy (for standard DP) of RR with a

shuffler was introduced in [11]. The author first discussed Binary
RR-Shuffle, a protocol for binary summation where each user 𝑖

with a secret 𝑥𝑖 runs RR(𝑥𝑖 , 𝑝) and then sends their obfuscated bit

to the shuffler. After receiving all the bits, the shuffler randomly

permutates them and releases the output to the analyst who may

sum it (and debias it to get a more accurate result).

For real summation an encoding step is necessary, where the real

value of each user 𝑖 is encoded to a bit vector (𝑏𝑖 ) of size 𝑟 . Then

Binary RR-Shuffle can be run for each bit of the vector. This allows

us to estimate the sum

∑
𝑖 𝑏

𝑗

𝑖
of the 𝑗-th bit of all users. The analyst

may then add them together and divide by 𝑟 to compute the sum

of all 𝑥𝑖 ’s.

3.2 Adapting RR for Metric Privacy in the

Shuffle Model

We now turn our attention to the problem of reporting the sum

of values from a discrete domain D = {0, . . . , 𝑘} while satisfying
metric privacy in the shuffle model. Since 𝑘-RR does not respect the

underlying metric of the values, we employ a variation of Binary
RR-Shuffle, using a unary encoding inspired by the real summation

protocol of [11]. Each value 𝑥𝑖 ∈ D is encoded as a bit vector

(𝑏1𝑖 , . . . , 𝑏𝑘𝑖 ) with exactly 𝑥𝑖 ones. Then, RR is applied to each bit.

Algorithm 1:U(𝑥, 𝑟 ): Unary encoding of x in r bits

Input :𝑥 ∈ N, 𝑟 ∈ N, where 𝑥 ≤ 𝑟
Output : (𝑏1, . . . , 𝑏𝑟 ) ∈ {0, 1}𝑟
𝑏 ← {0}𝑟
for 𝑗 = 1, . . . , 𝑥 do

𝑏 𝑗 = 1

end

Return (𝑏1, . . . , 𝑏𝑟 )

The protocol RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛) works as follows:
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Local Randomizer:
• Each user 𝑖 encodes his secret 𝑥𝑖 to a bit vector 𝑏𝑖 using

U(𝑥𝑖 , 𝑘).
• Then, for each bit 𝑗 of 𝑏𝑖 they run RR( 𝑗, 𝑝), creating the

obfuscated bit vector 𝑏′𝑖 which is sent to the shuffler.

Shuffler:
• The shuffler receives all the bit vectors, concatenates them

into a single bit vector, randomly permutes it, creating the

permutated bit vector 𝐵 which is finally released to the ana-

lyst.

Analyst:
• The analyst may sum 𝐵 and perform a debiasing to increase

the utility of the mechanism. Let 𝜆 = 𝑝 · 𝑛 · 𝑘 . The debiased
result 𝑧 is computed as:

𝑧 =
𝑛 · 𝑘

𝑛 · 𝑘 − 𝜆 ·
( 𝑛·𝑘∑︁
𝑖=1

𝐵𝑖 −
𝜆

2

)
Note that, in contrast to 𝑘-RR, this procedure respects the un-

derlying (i.e. Euclidean) metric. Noise is applied to each bit of 𝑥𝑖
independently, and the noisy bits are added. This causes values

close to 𝑥𝑖 to be produced with higher probability than values fur-

ther away from 𝑥𝑖 , since the latter requires a larger number of bits

to be flipped.

Algorithm 2: RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛)

Input: 𝑛 users, privacy parameter 𝛿 , maximum possible

value 𝑘 , parameter of RR 𝑝 .

Output: debiased result 𝑧

Local Randomizer (each user 𝑖):

𝑏𝑖 ←U(𝑥𝑖 , 𝑘)
𝑏′𝑖 ← {𝑅𝑅(𝑏𝑖,0, 𝑝), . . . , 𝑅𝑅(𝑏𝑖,𝑘 , 𝑝)}
Shuffler:

Collect all bit vectors 𝑏′𝑖 from users.

𝐵 ← {𝑏′
0,0, . . . , 𝑏

′
𝑛,𝑘
}

Send {𝐵𝜋 (0) , . . . , 𝐵𝜋 (𝑛·𝑘 ) } to the analyst.

Analyst:

Receive the permutated vector 𝐵 from the shuffler.

𝜆 ← 𝑝 · 𝑛 · 𝑘
𝑧 = 𝑛 ·𝑘

𝑛·𝑘−𝜆 ·
( ∑𝑛·𝑘

𝑖=1 𝐵𝑖 − 𝜆
2

)
Return 𝑧

A natural question arises: why does the user need to send their

noisy value as a vector of bits rather than an integer? We are going

to answer this question in detail in Section 4.1.1, but a high-level

argument follows. Observe that, in the integer case, the outliers

would still be recognizable after shuffling, albeit with some noise.

By converting the values into bits and shuffling them, the adversary

cannot distinguish an outlier. For example, he cannot determine if

one user has a particularly large value (𝑥𝐿) or 𝑛𝑠 users have smaller

values s.t.

∑𝑛𝑠
𝑖=1
𝑥𝑖 = 𝑥𝐿 ; in both cases the mechanism produces

the same output. Consequently, with this unary conversion, the

amount of information that the adversary obtains is significantly

reduced.

We can then show that RR-Shuffle satisfies (𝜀, 𝛿) approximate

metric privacy:

Theorem 3.1. For any 𝛿 > 0,0 ≤ 𝑝 ≤ 1 and 𝑛 · 𝑘 ≥ 𝜆 ≥ 14𝑙𝑜𝑔 4

𝛿
, let

𝜆 = 𝑝 · 𝑛 · 𝑘 .
RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛) is (𝜀, 𝛿) - 𝑑𝑋 - private where

𝜀 =

√√√√
32 log

4

𝛿

𝜆 −
√︃
2𝜆 log 2

𝛿

The proof can be found in Appendix A. Finally, observe that each

user has to send 𝑘 bits but this is further discussed in Section 8.

3.3 Utility of RR-Shuffle

Following the approach of [11] we can present a utility bound for

the RR-Shuffle mechanism:

Theorem 3.2. Let 𝑃 be RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛) and 𝜆 = 𝑝 · 𝑛 · 𝑘 . For
every 𝑛 ∈ N, 0 < 𝛽 ≤ 1, 𝑛𝑘 > 𝜆 ≥ 2𝑙𝑜𝑔 2

𝛽
and 𝑋 = {0, 1}𝑛𝑘 :

P

[���𝑃 (𝑋 ) −∑
𝑖 𝑥𝑖

��� > 𝑛𝑘
𝑛𝑘−𝜆

√︃
2𝜆 log 2

𝛽

]
< 𝛽

The proof can be found in Appendix A.

4 Geometric Mechanism in the Shuffle Model

In Section 3.2 we showed that by using a unary encoding, we can

achieve metric privacy via Randomized Response in the shuffle

model, although RR itself does not respect the underlying metric.

Nevertheless, the natural question that arises is whether we can

apply shuffling to a mechanism that does respect the underlying

metric, since one would expect such a mechanism to be better

suitable for metric privacy.

This is the goal of this section, in which we study the geometric
mechanism (aka discrete Laplace mechanism), a natural choice to

achieve metric privacy.

The core mechanism. The geometric mechanism [23] draws noise

from the double geometric distribution, a discrete version of the

Laplace distribution with a parameter 𝜀geo. In the local model, the

geometric mechanism 𝐺 (𝑥, 𝜀geo), applied to the user’s value 𝑥 , pro-

duces a value 𝑦 with probability decreasing exponentially with the

distance between 𝑥 and 𝑦, as follows:

P[𝐺 (𝑥, 𝜀geo) = 𝑦] =
1 − 𝑒−𝜀geo
1 + 𝑒−𝜀geo · 𝑒

−𝜀geo |𝑥−𝑦 |
(2)

From (2) we can easily conclude that the geometric mechanism

satisfies 𝜀geo-𝑑R-privacy.

We can also use the geometric mechanism in the central model

to answer a query 𝑓 (𝑋 ), by adapting its noise to the sensitivity of

𝑓 , as discussed in Section 2.3. For instance, the average query on

a dataset of 𝑛 users has sensitivity Δ𝑓 = 1

𝑛
, so the central-model

mechanism 𝐺 (𝑓 (𝑋 )) satisfies 𝜀geo

𝑛
-𝑑𝑋 -privacy. In other words, in

the central model we achieve much stronger privacy with the same

noise, since the noise is only applied to the result of a low-sensitive

query.

In the following, we will refer to the application of the geometric

mechanism in the local and central models respectively asGeo-Local
and Geo-Central.
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4.1 Enhancing the Geometric Mechanism with a

Shuffler

We are now ready to discuss how the privacy of Geo-Local can

be improved via the use of a shuffler. The goal is to apply 𝐺 (the

geometric mechanism) with parameter 𝜀geo, but exploit the boost of

the shuffler to obtain stronger than 𝜀geo-𝑑𝑋 -privacy. In the remain-

der of this section, we will use 𝜀 to indicate the privacy loss of the

Geo-Shuffle mechanism and 𝜀geo for the privacy loss of Geo-Local.

Issues with the direct approach. First, let us combine the geometric

mechanism with a shuffler in a direct way: we apply local noise to

each value, obtaining from each user 𝑖 the value 𝑦𝑖 = 𝐺 (𝑥𝑖 , 𝜀geo),
then we apply the shuffler to (𝑦1, . . . , 𝑦𝑛) and publish the shuffled

vector. Although this straightforward approach seems natural, it

fails to provide stronger than 𝜀geo metric privacy. To understand

why, consider a dataset in which 𝑥1 is a large value, say 10
10
, and all

other values are 0. Since the geometric mechanism produces values

close to the original one with higher probability, 𝑦1 will almost

surely be much larger than the remaining 𝑦𝑖 ’s. As a consequence,

an adversary can distinguish which of the shuffled values is 𝑦1,

defeating the effect of the shuffler. This means that, in order for the

shuffler to provide an actual boost, we need to effectively hide the

relationship between the original and the shuffled values.

Overcoming the hurdle. We are going to exploit once again the

unary encoding step used in Section 3.2. The general idea is the fol-

lowing: we first apply the geometric mechanism, then we truncate

the outcome within a bounded interval and produce a unary encod-

ing of the obtained bounded value. Finally, the shuffler permutes

these encoded values and releases the output.

Let 𝑛 users, with each user 𝑖 holding 𝑥𝑖 , an integer value in

{0, . . . , 𝑘} for a 𝑘 ∈ N. Geo-Shuffle(𝜀geo, 𝛿, 𝑛) works as follows:

Local Randomizer:
• Each user 𝑖 runs Geo-Local with parameter 𝜀geo to sample

the noise 𝑁𝑖 , e.g. 𝑁𝑖 ∼ 𝐺 (0, 𝜀geo).
• Then, they compute 𝑥 ′𝑖 :

𝑥 ′𝑖 =


𝑥𝑖 + 𝑁𝑖 + 𝑐 0 ≤ 𝑥𝑖 + 𝑁𝑖 + 𝑐 ≤ 𝑘 + 2𝑐
0 𝑥𝑖 + 𝑁𝑖 + 𝑐 < 0 (truncate to 0)

𝑘 + 2𝑐 𝑥𝑖 + 𝑁𝑖 + 𝑐 > 𝑘 + 2𝑐 (truncate to k+2c)

(3)

where 𝑐 =

⌈
−

ln

[ (
1+𝑒−𝜀𝑔𝑒𝑜

) (
1− 𝑛

√︃
1− 𝛿

2

)
2

]
𝜀𝑔𝑒𝑜

⌉
• Finally, they encode 𝑥 ′𝑖 to a bit vector 𝑏𝑖 usingU(𝑥 ′𝑖 , 𝑘 + 2𝑐)
and send it to the shuffler.

Shuffler:
• The shuffler receives all the bit vectors, concatenates them

into a single bit vector, randomly permutes it and then re-

leases it to the analyst.

Analyst:
• The analyst may sum the permutated bit vector. They can

perform a debiasing to increase the utility of the mechanism

by subtracting 𝑛 · 𝑐 .
The Geo-Shuffle mechanism is a multi-message shuffle protocol.

Each user has to send 𝑘 + 2𝑐 bits but this is further discussed in

Section 8.

Algorithm 3: Geo-Shuffle(𝜀geo, 𝛿, 𝑛)

Input: 𝑛 users, privacy parameters 𝜀geo, 𝛿

Output: debiased result 𝑧

𝑐 ←
⌈
−

ln

[ (
1+𝑒−𝜀𝑔𝑒𝑜

) (
1− 𝑛

√︃
1− 𝛿

2

)
2

]
𝜀𝑔𝑒𝑜

⌉
Local Randomizer (each user 𝑖):

𝑁𝑖 ∼ 𝐺 (0, 𝜀geo)

𝑥 ′𝑖 ←

𝑥𝑖 + 𝑁𝑖 + 𝑐, 0 ≤ 𝑥𝑖 + 𝑁𝑖 + 𝑐 ≤ 𝑘 + 2𝑐
0, 𝑥𝑖 + 𝑁𝑖 + 𝑐 < 0

𝑘 + 2𝑐, 𝑥𝑖 + 𝑁𝑖 + 𝑐 > 𝑘 + 2𝑐

SendU(𝑥 ′𝑖 , 𝑘 + 2𝑐) to the shuffler.

Shuffler:

Collect all bit vectors 𝑏𝑖 from users.

𝐵 ← {𝑏0,0, . . . , 𝑏𝑛,𝑘+2𝑐 }
Send {𝐵𝜋 (0) , . . . , 𝐵𝜋 (𝑛· (𝑘+2+𝑐 ) ) } to the analyst.

Analyst:

Receive the permutated vector 𝐵 from the shuffler.

𝑧 ← ∑
𝑖 𝐵𝑖 − 𝑛 · 𝑐

Return 𝑧

4.1.1 Privacy analysis. We provide here an overview of the privacy

analysis of Geo-Shuffle, referring to the 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐵 for the full proofs.

Note that, unlike RR-Shuffle, the privacy analysis of Geo-Shuffle is

not subject to parameter restrictions.

Main idea. The core substance is the unary representation which,
as we are about to explore, overcomes the limitations of the direct

approach and protects the outliers. This is because releasing a

shuffled bit vector is privacy-wise equivalent to releasing its sum:

Proposition 1. Let a mechanism 𝐾 (𝑋 ) = ∑
𝑥∈𝑋 𝑅(𝑥) be (𝜀, 𝛿) -

𝑑𝑋 - private for a dataset 𝑋 and 𝑅 be a Local Randomizer. Then, the
shuffle model mechanism with a shuffler 𝑆 (as defined in Section 2.2)
which uses the unary encoding U(𝑥, 𝑟 ) (Algorithm 1):

𝑀 (𝑋 ) = 𝑆
(
{U(𝑅(𝑥), 𝑟 ) : 𝑥 ∈ 𝑋 }

)
is also (𝜀, 𝛿) - 𝑑𝑋 - private.

For instance, consider a bit vector of size 5 that contains 3 ones

and 2 zeros. Then, the following statements give exactly the same

level of information to the adversary: "the sum of the vector is 3",
"the values of the shuffled vector are {0, 0, 1, 1, 1}". We need to stress

that this is only the case when the vector has unary values. For

example, consider an integer vector with values {0, 5, 10}. Clearly
now these statements are not privacy-wise equivalent: "the sum
of the vector is 15" ,"the values of the shuffled vector are {0, 5, 10}".
This example clarifies why we could not directly use Geo-local and

shuffle all its outputs.

It is important to avoid a confusion between the summation

of the outputs of the Local Randomizers, which will be used for

reasoning about privacy (e.g.𝐾 in Proposition 1) and the summation

performed by the analyst. The output of the mechanism is the

output of the shuffler; any operation thereafter (for example the

analyst summing all the shuffled bits) is considered post-processing.
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In other words, whatever the analyst does with the shuffled bits

does not affect the privacy of this mechanism, which always equates

to disclosing the sum of the bits.

Achieving a unary representation. First, let us explain the moti-

vation behind the truncation happening in Equation (3). If users

just submitted 𝑥𝑖 +𝑁𝑖 (their value plus noise), then unary encoding

might not be always possible (using Algorithm 1), since 𝑁𝑖 can

be negative. To solve this problem, we shift by 𝑐 ∈ N the user’s

obfuscated value. If the final result (initial secret + noise + 𝑐) is

outside of [0, 𝑘 + 2𝑐], then it is truncated to the nearest bound.

Now we need to bound the probability of this truncation hap-

pening, as it will be necessary for the rest of the proof. To do this,

we study the probability that at least one of 𝑛 users samples a noise

that is ∉ [−𝑐, 𝑐]. Due to the fact that the geometric mechanism will

produce a value close to the initial one with high probability, for a

reasonable choice of 𝜀geo, the following proposition dictates that

this probability is small, and hence can be covered by 𝛿/2. We show

that:

Proposition 2. Let 𝑁𝑖 ∼ 𝐺 (0, 𝜀geo), 𝛿 ∈ (0, 1] and :

𝑐 =

⌈
−

ln

[ (
1+𝑒−𝜀𝑔𝑒𝑜

) (
1− 𝑛

√︃
1− 𝛿

2

)
2

]
𝜀𝑔𝑒𝑜

⌉
Then:

1 −
𝑛∏
𝑖=1

P
[
𝑁𝑖 ∈ [−𝑐, 𝑐]

]
≤ 𝛿

2

Observe that we did not take into account the input dataset. To

put it simply, we did not consider that a user having a value 𝑥 = 𝑘

is more likely to truncate than someone having a value 𝑥 ′ = 𝑘/2.
In other words, this is not just the probability that every user picks

the first branch Equation (3), which of course depends on the input

dataset. This is instead a sub-event of picking the first branch: the

amount of noise is so small that users always select the first branch

regardless of their 𝑥𝑖 . In other words, it is not that 𝑥𝑖+𝑁𝑖 is bounded,
but that 𝑁𝑖 alone is bounded, considering the worst case scenarios

for 𝑥𝑖 (i.e. 𝑥𝑖 = 𝑘 for the upper bound and 𝑥𝑖 = 0 for the lower

bound). This enabled us to find an upper bound regardless of the

input dataset, leading to the following corollary:

Corollary 1. If 𝑛 users run Geo-Shuffle(𝜀geo, 𝛿, 𝑛), each with a secret
𝑥𝑖 , the probability that at least one of them reports a truncated 𝑥 ′𝑖 is
at most 𝛿/2, regardless of each 𝑥𝑖 .

Studying the case when nobody truncates. Next, we show that it

suffices to study the privacy of Geo-Shuffle when no user has to

truncate (i.e. every 𝑥 ′𝑖 comes from the first branch of Equation (3)

because 𝑁𝑖 is small). If we prove that in that case, the mechanism

is (𝜀, 𝛿
2
)-metric private, then, using Proposition 3, we will be able

to conclude that Geo-Shuffle is (𝜀, 𝛿)-metric private, in every case

(someone submitting a truncated value or not).

Proposition 3. Let𝑀 be a mechanism and 𝐻 be an event indepen-
dent of the input of 𝑀 such that Pr[𝐻 ] ≥ 1 − 𝛿1. Moreover, assume
that when 𝐻 occurs𝑀 is (𝜖, 𝛿2)- 𝑑𝑋 - private, namely for all 𝑋,𝑋 ′:

Pr[𝑀 (𝑋 ) ∈ 𝑆 |𝐻 ] ≤ 𝑒𝜖 ·𝑑𝑋 (𝑋,𝑋 ′ ) Pr[𝑀 (𝑋 ′) ∈ 𝑆 |𝐻 ] + 𝛿2
If 𝐾 is a mechanism that behaves like𝑀 when 𝐻 occurs then 𝐾 is

(𝜖, 𝛿1 + 𝛿2) - 𝑑𝑋 - private.

Here we apply Proposition 3 by setting 𝐻 as the event that no-

body truncates, which is irrelevant of the input dataset (Corollary 1),

𝐾 as the Geo-Shuffle mechanism and𝑀 as the special case of Geo-

Shuffle when nobody truncates (because 𝑁𝑖 is small, regardless of

their 𝑥𝑖 ), which we are about to study its privacy. Regarding 𝛿 we

set 𝛿1 = 𝛿/2 (Proposition 2) and 𝛿2 = 𝛿/2.

Geo-Shuffle when nobody truncates. Now let us examine the sce-

nario in which no user truncates their obfuscated value. Let us

notate the total noise generated by all the users, in this scenario,

by 𝑁𝑡𝑜𝑡𝑎𝑙 =
∑
𝑖 𝑁𝑖 .

First, we prove that Geo-Local can be described by the differ-

ence between two geometric distributions. Successively, this can

be expressed as the difference between two Negative Binomial

distributions (NB): 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝐵(𝑛, 1 − 𝑒−𝜀geo ) − 𝑁𝐵(𝑛, 1 − 𝑒−𝜀geo ).
In turn, this difference has been studied in the literature as the

symmetric version of the Generalized Discrete Laplace distribution
[28] (SGDL) i.e.: 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑆𝐺𝐷𝐿(𝑛, 𝑒−𝜀geo ). As far as we are aware,
SGDL has not been studied before in DP or metric privacy.

The SGDL distribution has the following PMF, for Y ∼ SGDL

(𝛽, 𝑝) and any 𝑟 ∈ Z:

P(𝑌 = 𝑟 ) = (1 − 𝑝)2𝛽
∞∑︁

𝑘=|𝑟 |

(
𝛽 + 𝑘 − 1

𝑘

) (
𝛽 + 𝑘 − |𝑟 | − 1

𝑘 − |𝑟 |

)
𝑝𝑘𝑝𝑘−|𝑟 |

Let us now briefly present this distribution, visualized in Figure

2 for multiple values of 𝛽, 𝑝 . SGDL(𝛽, 𝑝) represents the difference

between two Negative Binomial Distributions (NB) with parameters

𝛽, 1 − 𝑝 . In Geo-Shuffle’s case, the parameters are 𝛽 = 𝑛 and 𝑝 =

𝑒−𝜀geo .
By studying the SGDL distribution we prove that this special

case of Geo-Shuffle (when nobody has to truncate) is (𝜀, 𝛿
2
) metric

private with:

𝜀 =max

𝑑𝑋

𝑙𝑛(𝑔(−𝛼,𝑑𝑋 (𝑋,𝑋 ′), 𝑒−𝜀geo , 𝑛))
𝑑𝑋 (𝑋,𝑋 ′)

(4)

for a function 𝑔 and an 𝛼 as defined in Theorem 4.1.

Note that after conducting numerous experiments with every

possible combination of parameters (presented in Appendix B), we

have observed that the maximum 𝜀 results from 𝑑𝑋 = 1. Finally,

Figure 2: PMF of SGDL
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using Proposition 3 we can conclude about the privacy of Geo-

Shuffle in every scenario (regardless of someone truncating or not):

Theorem 4.1. Let 𝛿 ∈ (0, 1]. The Geo-Shuffle(𝜀geo, 𝛿, 𝑛) mechanism
is (𝜀, 𝛿)- 𝑑𝑋 - private, with:

𝜀 =max

𝑑𝑋

𝑙𝑛(𝑔(−𝛼,𝑑𝑋 (𝑋,𝑋 ′), 𝑒−𝜀geo , 𝑛))
𝑑𝑋 (𝑋,𝑋 ′)

(5)

where

𝑔 (𝑟, 𝑑, 𝑒−𝜀geo , 𝑛) =max{ℎ (𝑟, 𝑑, 𝑒−𝜀geo , 𝑛), 1

ℎ (𝑟, 𝑑, 𝑒−𝜀geo , 𝑛) }

ℎ (𝑟, 𝑑, 𝑝, 𝑛) =

∑∞
𝑘=| ⌊𝑟− 𝑑

2
⌋ |

(𝑛+𝑘−1
𝑘

) (𝑛+𝑘−|⌊𝑟− 𝑑
2
⌋ |−1

𝑘−|⌊𝑟− 𝑑
2
⌋ |

)
𝑝𝑘𝑝𝑘−|⌊𝑟−

𝑑
2
⌋ |)

∑∞
𝑘=| ⌊𝑟+𝑑

2
⌋ |

(𝑛+𝑘−1
𝑘

) (𝑛+𝑘−|⌊𝑟+𝑑
2
⌋ |−1

𝑘−|⌊𝑟+𝑑
2
⌋ |

)
𝑝𝑘𝑝𝑘−|⌊𝑟+

𝑑
2
⌋

𝑡 = 2 ·
𝜀geo√
𝑛

𝑝 = 𝑒−𝜀geo

𝛼 = −
ln( 𝛿

4
· [ (1−𝑝 )2
(1−𝑝𝑒𝑡 ) (1−𝑝𝑒−𝑡 ) ]

−𝑛 )
𝑡

4.2 Privacy Boost

In the previous section we showed why Geo-Shuffle can achieve

(𝜀, 𝛿) approximate metric privacy using Geo-Local as a Local Ran-

domizer which is 𝜀geo metric private. Informally, consider that we

used a mechanism with 𝜀geo privacy and the extra noise created by

shuffling resulted in 𝜀 privacy. The crucial observation that has to

be made is that 𝜀 < 𝜀geo. As more users use Geo-Shuffle, 𝜀 further

decreases, because, intuitively, shuffling more values creates more

noise.

Figure 3: Privacy boost of Geo-Shuffle, 𝜀 and 𝜀𝑔𝑒𝑜 are its pri-

vacy levels in the shuffle and local model respectively.

The complex formula of Theorem 4.1 does not make that obser-

vation clear. To clarify, we visualize this privacy boost in Figure 3.

For only one user there is no privacy boost, because essentially both

mechanisms are the same. But even for a few users 𝜀 is remarkable

smaller. As the number of users increases, the shuffling effect is

amplified, offering even better privacy. Equivalently, one might

consider that for the same level of privacy, Geo-Shuffle can produce

less noisy results, offering better utility, as we experimentally show

in Section 6.

5 SGDL in the Shuffle Model

In this section, we provide a mechanism that has with high proba-

bility optimal accuracy wrt the central model. Our motivation is

the Correlated Noise protocol suggested by Badih Ghazi et.al. [21]

for standard DP. We begin by discussing the original mechanism,

then we describe our adaptation in metric privacy.

5.1 The Correlated Noise Mechanism [21]

Recall that summing bits releases the same level of information

as shuffling them (Proposition 1). The core idea of the protocol of

[21] is that users add noise s.t. the sum of all these noises is equal

to the noise produced by the Geo-Central mechanism. Hence we

need to deconstruct Geo-Central into a sum of 𝑛 i.i.d. samples, one

for each user. Formally, this is described by the notion of infinite
divisibility. The geometric mechanism is infinitely divisible [25]

and this property has already been used in standard DP [5] [21].

Specifically, to achieve this, each user has to add noise sampling

from 𝑆𝐺𝐷𝐿(1/𝑛, 𝑒−𝜀 ) = 𝑁𝐵(1/𝑛, 1− 𝑒−𝜀 ) −𝑁𝐵(1/𝑛, 1− 𝑒−𝜀 ) 3. The
first NB distribution can be considered as the positive noise and

the second as the negative noise.

The original mechanism of [21] involves each user submitting

two messages: one with their secret along with the positive noise

(first NB distribution) and one with only the negative noise (second

NB distribution). Since the analyst observes each type of message

separately, they could greatly reduce the amount of noise simply by

dropping the negative messages. To prevent this, 0.01𝜀 is allocated

to a third mechanism (called correlated noise) to add some extra

noise to both messages. Each user samples this noise once and

adds it to both messages, hence the utility of the mechanism is not

affected as adding all messages together cancels out this extra noise.

However, the adversary can no longer deduce as much information

just by examining the positive messages.

Our adaptation. We adapt this mechanism to metric privacy,

proposing SGDL-Shuffle by making the following changes. First we

again use the SGDL distribution to describe the difference between

two NB distributions, to stay consistent with our analysis of Geo-

Shuffle (Section 4). This will also be advantageous when studying

the privacy guarantees of the mechanism in the event that the

shuffler is compromised (Section 7). Moreover, we refrain from

using the correlated noise approach, to be consistent with our

requirement that every user sends the same number of bits. Instead,

we use the same approach of shifting by c, as we did in Section 4.

This leads us to spend a small amount of 𝛿 , but in turn we will avoid

spending 0.01𝜀, making our approach simpler.

5.2 The SGDL-Shuffle Mechanism

In this section we describe our proposed mechanism for metric

privacy in detail. Consider 𝑛 users, with each user 𝑖 holding 𝑥𝑖 , an

integer value in {0, . . . , 𝑘} for a 𝑘 ∈ N.

Let 𝑢 = 1 +
√
𝑤 (𝑤−4)−𝑤

2
, where𝑤 = 2𝑛 · ln

(
1− 𝑛√

1−𝛿
2

)
The SGDL-Shuffle(𝜀, 𝛿, 𝑛) protocol works as follows:

Local Randomizer:

3
A similar technique of noise division has been studied in distributional DP [29, 33].
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• Each user 𝑖 samples noise𝑁𝑖 from the Symmetric Generalized

Discrete Laplace distribution: 𝑁𝑖 ∼ 𝑆𝐺𝐷𝐿( 1𝑛 , 𝑒
−𝜀 ).

• Then, they compute 𝑥 ′𝑖 :

𝑥 ′𝑖 =


𝑥𝑖 + 𝑁𝑖 + 𝑐 0 ≤ 𝑥𝑖 + 𝑁𝑖 + 𝑐 ≤ 𝑘 + 2𝑐
0 𝑥𝑖 + 𝑁𝑖 + 𝑐 < 0 (truncate to 0)

𝑘 + 2𝑐 𝑥𝑖 + 𝑁𝑖 + 𝑐 > 𝑘 + 2𝑐 (truncate to k+2c)

(6)

where: 𝑐 =

⌈
𝑢 (1−𝑒−𝜀 )

𝑛

⌉
• Finally, they encode 𝑥 ′𝑖 to a bit vector 𝑏𝑖 usingU(𝑥 ′𝑖 , 𝑘 + 2𝑐)
and send it to the shuffler.

Shuffler:
• The shuffler receives all the bit vectors, concatenates them

into a single bit vector, randomly permutes it and then re-

leases it to the analyst.

Analyst:
• The analyst may sum the permutated bit vector. They can

perform a debiasing to increase the utility of the mechanism

by subtracting 𝑛 · 𝑐 .
The SGDL-Shuffle mechanism is a multi-message shuffle proto-

col. Each user has to send 𝑘 + 2𝑐 bits where 𝑐 = 𝑓 (𝜀, 𝛿, 𝑛).

Algorithm 4: SGDL-Shuffle(𝜀, 𝛿, 𝑛)

Input: 𝑛 users, privacy parameters 𝜀, 𝛿

Output: debiased result 𝑧

𝑤 ← 2𝑛 · ln
(
1− 𝑛√

1−𝛿
2

)
𝑢 ← 1 +

√
𝑤 (𝑤−4)−𝑤

2

𝑐 ←
⌈
𝑢 (1−𝑒−𝜀 )

𝑛

⌉
Local Randomizer (each user 𝑖):

𝑁𝑖 ∼ 𝑆𝐺𝐷𝐿( 1𝑛 , 𝑒
−𝜀 )

𝑥 ′𝑖 =


𝑥𝑖 + 𝑁𝑖 + 𝑐 0 ≤ 𝑥𝑖 + 𝑁𝑖 + 𝑐 ≤ 𝑘 + 2𝑐
0 𝑥𝑖 + 𝑁𝑖 + 𝑐 < 0

𝑘 + 2𝑐 𝑥𝑖 + 𝑁𝑖 + 𝑐 > 𝑘 + 2𝑐

SendU(𝑥 ′𝑖 , 𝑘 + 2𝑐) to the shuffler.

Shuffler:

Collect all bit vectors 𝑏𝑖 from users.

𝐵 ← {𝑏0,0, . . . , 𝑏𝑛,𝑘+2𝑐 }
Send {𝐵𝜋 (0) , . . . , 𝐵𝜋 (𝑛· (𝑘+2+𝑐 ) ) } to the analyst.

Analyst:

Receive the permutated vector 𝐵 from the shuffler.

𝑧 ← ∑
𝑖 𝐵𝑖 − 𝑛 · 𝑐

Return 𝑧

In the following paragraphs, we outline the privacy and utility

of SGDL-Shuffle, referring readers to Section C for the full proofs.

Privacy Analysis. Following Section 5.1, observe that the protocol
would have had the same output as the geometric mechanism in

the central model, if the users never truncated their noise; in other

words, always choosing the first case of Equation (6). We show that

this happens with probability 1 − 𝛿 (Lemma C.1), regardless of the

input dataset, using the fact that SGDL will return a value close to 0

with high probability (similarly to Section 4.1). In other words, with

probability 1 − 𝛿 these two mechanisms are identical; this enables

to employ again Proposition 3 to prove the privacy of SGDL-Shuffle

by setting 𝐻 as the event that nobody truncates (because each 𝑁𝑖
is small, regardless of each 𝑥𝑖 ), 𝐾 as the SGDL-Shuffle mechanism

and𝑀 as the special case of SGDL-Shuffle where nobody truncates.

We set 𝛿1 = 𝛿 and 𝛿2 = 0. This leads us to the following theorem:

Theorem 5.1. For any 𝛿 ∈ (0, 1] SGDL-Shuffle (𝜀, 𝛿, 𝑛) is (𝜀, 𝛿) - 𝑑𝑋
- private.

Observe that, similar to Geo-Shuffle but unlike RR-Shuffle, there

are no parameter restrictions.

Utility Analysis. If all users choose the first case of Equation (6),

the analyst would see the same output as the Geo-Central mecha-

nism, which has been shown to be universally optimal [9, 23]. We

showed that this happens with probability 1−𝛿 , which is negligible

because typically 𝛿 is small. Thus, we can immediately conclude in

Proposition 4; the utility of SGDL-Shuffle is with probability 1 − 𝛿
the same as that of Geo-Central.

Proposition 4. For any integer dataset 𝑋 with 𝑛 users and any 𝛿 ∈
(0, 1], if 𝐴 ∼ SGDL-Shuffle(𝑋, 𝜀, 𝛿, 𝑛) and 𝐵 ∼ Geo-Central(𝑋, 𝜀),
then 𝐴 and 𝐵 follow the same distribution w.p. 1 − 𝛿 .

6 Experimental Evaluation

In this section, we experimentally evaluate the utility of the pro-

posed shuffle mechanisms for metric privacy, namely RR-Shuffle,
Geo-Shuffle and SGDL-Shuffle. We compare the mechanisms to each

other, but also, as a baseline, to Geo-Local, the standard geometric

mechanism in the local model. The mechanisms are evaluated on

two datasets: one with synthetic numeric data and one with real-

world location data. In the following sections, we first describe the

experimental setup and then present the results for both datasets.

We present the most notable results for each experiment, direct-

ing readers to Section E for additional experiments with varying

parameters and utility metrics.

Summary of Findings. A summary of findings is shown in Ta-

ble 2 and Table 3 for the first and second experiment respectively,

showing the utility loss of each mechanism for multiple parameters.

We can observe that SGDL-Shuffle greatly outperforms all other

mechanisms, scoring near-optimal utility. The second-best mecha-

nism is Geo-Shuffle, offering comparable results as the number of

users (𝑛) increases. Although RR-Shuffle performs worse than both

of them, it still offers, most of the time, better utility compared to

Geo-Local.

6.1 Experimental Setup

Our goal is to compare the utility of these four mechanisms while

tuning them all to satisfy 𝜀-𝑑𝑋 -privacy, for the same 𝜀. Observe that

Geo-Local achieves pure metric privacy (𝛿 = 0) while the other

mechanisms need a 𝛿 ∈ (0, 1]. In the following experiments, we

vary the number of users 𝑛, showing the improvement of privacy

as 𝑛 increases. It should be noted that our privacy analysis of RR-
Shuffle (Theorem 3.1) requires a minimum number of users for a

specified privacy level 𝜀. Hence, in the following experiments we
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Summary of Findings: Utility Loss

Table 2: Synthetic data experiment: MAE

n 𝜀 Geo Local RR-Shuffle Geo-Shuffle SGDL-Shuffle

50 0.2 1 1.21 0.52 0.1

50 0.5 0.42 0.43 0.05 0.0004

100 0.1 1.2 1.1 0.49 0.03

100 0.2 0.66 0.67 0.18 0.01

100 0.3 0.41 0.41 0.04 0.005

200 0.1 0.92 0.43 0.11 0.007

Table 3: Location data experiment: Euclidean distance (meters)

n 𝜀 Geo Local RR-Shuffle Geo-Shuffle SGDL-Shuffle

1000 0.15 300 120 40 2

1000 0.2 210 80 40 0.9

1000 0.3 100 40 20 0.04

2000 0.1 190 50 10 1

3000 0.2 130 40 20 0.001

4000 0.3 50 5 1 0.00006

omit the results for RR-Shuffle if the number of users is insufficient

for the desired privacy level 𝜀.

6.2 Evaluation on Synthetic Numeric Data

In this experiment, we consider 𝑛 users who want to privately com-

pute the average of their values. Each user holds a uniformly ran-

dom integer ∈ {0, . . . , 1000}. We run all three shuffle mechanisms,

along with Geo-Local, with 𝜀 = 0.1 and 𝛿 = 10
−4
. In this section we

use the MAE (Mean Absolute Error) as metric for the utility loss

(more utility metrics are available in Section E). Namely if 𝑓 (𝑋 ) is
the actual result of the query and𝑀 (𝑋 ) is the output of a mecha-

nism𝑀 then we define its utility loss as:𝑈𝑀 = E[|𝑓 (𝑋 ) −𝑀 (𝑋 ) |].

Figure 4: Utility loss with synthetic data. RR-Shuffle cannot

achieve 𝜀 = 0.1 for 𝑛 < 23

Figure 4 shows the obtained utility level as a function of the

number of users 𝑛. First, we observe that RR-Shuffle needs at least

23 users for 𝜀 = 0.1. Moreover, for 23 ≤ 𝑛 ≤ 70, despite the use

of a shuffler, RR-Shuffle actually performs worse than Geo-Local

(since the latter is better tailored to metric privacy). However, as

the number of users increases, the privacy boost from shuffling

becomes larger, and RR-Shuffle outperforms Geo-Local. On the

other hand, Geo-Shuffle outperforms both RR-Shuffle and Geo-local

for all values of 𝑛, offering a substantial improvement, especially

for smaller values of 𝑛. SGDL-Shuffle offers near-optimal utility

even with a small amount of users.

6.3 Evaluation on Real-World Location Data

In this experiment we are going to use GPS locations of addresses in

Austin, Texas (Figure 22), from [30], in order to find their centroid. To
do this, wemake a grid of the city of Austin

4
, with size of 1000𝑥1000

squares; each square having a side of 100meters. Furthermore, each

square has a horizontal and a vertical number, from 0 to 1000. Each

user 𝑖 holds a pair of integers 𝑥𝑖 , 𝑦𝑖 where 𝑥𝑖 , 𝑦𝑖 ∈ {0, . . . , 1000}
indicates respectively the number of horizontal or vertical square

that she belongs. Note that {0, 0} is the upper-most left square and

{1000, 1000} is the bottom-most right square. We average separately

all the 𝑥 ′𝑠 and 𝑦′𝑠 to find the centroid of the data.

We desire to have an 𝜀 = 0.15 for all mechanisms and 𝛿 = 10
−4
.

If 𝑓 (𝑋 ) is the actual centroid and 𝑀 (𝑋 ) is the output centroid of

a mechanism𝑀 , we define the utility loss (in meters) of𝑀 as the

Euclidean distance, i.e.𝑈𝑀 = E[| |𝑓 (𝑋 ) −𝑀 (𝑋 ) | |2].
Despite running the mechanisms on two different datasets (lati-

tude and longitude), one should observe the correlation between

them. We cannot therefore treat these two datasets as independent.

Informally, consider that running a mechanism for the horizontal

dimension, might leak some information about the vertical dimen-

sion. In Section D we show that to achieve (𝜀, 𝛿) - | | · | |2 - privacy,
we have to apply the mechanism to each dimension with

𝜀√
2

and
𝛿
2
.

Finally, to tune the value of 𝜀, note that in geo-indistinguishability,

the level of privacy is proportional to the desired privacy radius 𝑟

[1]. Namely each user enjoys 𝜀 · 𝑟 metric privacy within 𝑟 . In this

experiment we set a privacy radius 𝑟 = 600 meters (or equivalently

6 squares). Thus, in conclusion, we have to run each mechanism

for each dimension with 𝜀run = 𝜀

6·
√
2

≈ 0.017 to achieve the target

𝜀 = 0.15. Note that for that 𝜀run, RR-Shuffle needs at least 776 users,
by Theorem 3.1.

Figure 5 shows the resulting utility using box plots, as a function

of the number of users. Similar observations as in the previous

experiment can be made. The shufflemechanisms offer better utility

than Geo-Local. Between RR-Shuffle and Geo-Shuffle, the latter is

utility-wise superior especially when running with fewer users.

Moreover, the box plot enables us to see that Geo-Shuffle has less

variance compared to RR-Shuffle and Geo-Local. SGDL-Shuffle

provides, in this setting, near-optimal utility, as its reported centroid

is only a few meters away from the actual one. Finally, based on

the observation that Austin is a densely populated area, we also

examine in Figure 29 a variation of the experiment, discarding users

4
Namely, we create a rectangle between 4 points with the following coordinates:

(30.091, -98.27048), (30.95534, -98.27048), (30.091, -97.3819 ) and (30.95534, -97.3819).
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Figure 5: Utility loss with location data (box plot) with 𝜀 = 0.15

living in downtown Austin and keeping only those in the suburbs,

which is placed in the Appendix as it displays similar results.

7 Compromised Shuffler

Despite the fact that SGDL-Shuffle provides better utility than the

other two proposed mechanisms, surprisingly, it offers virtually no

privacy if the shuffler is compromised. In this section, we challenge

the assumption that the shuffler is trusted, expanding the adver-

sary model to align more closely with real-world applications, as

explained in Section 1. After we formally describe how the privacy

of each mechanism is affected, we perform a comparison between

them. Proofs can be found in the Appendix.

RR-Shuffle. The privacy guarantees of RR-Shuffle, in the local

model, will be:

Theorem 7.1. RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛) is (𝜀𝐿, 𝛿) - 𝑑𝑥 - private in the
local model, if 𝜆𝐿 = 𝑝 · 𝑘 and 𝑘 ≥ 𝜆𝐿 ≥ 14𝑙𝑜𝑔 4

𝛿
, where

𝜀𝐿 =

√√√√
32 log

4

𝛿

𝜆𝐿 −
√︃
2𝜆𝐿 log

2

𝛿

(7)

Geo-Shuffle. It has been shown that the truncated Geo-Local(𝜀geo)
mechanism, which is used in Geo-Shuffle as a Local Randomizer,

yields the same privacy guarantees, in the local model, as the non-

truncated mechanism [26]. Hence we can trivially show that:

Proposition 5. Geo-Shuffle(𝜀geo, 𝛿, 𝑛) is (𝜀𝐿 ,0) - 𝑑𝑥 - private in the
local model, with 𝜀𝐿 = 𝜀geo.

SGDL-Shuffle. Recall that the amount of noise is decreased with

the number of users, since each user samples noise from SGDL

( 1
𝑛
, 𝑒−𝜀𝑆 ) in order to have 𝜀𝑆 privacy in the shuffle model, leading

to a significantly reduced privacy in the local model.

Theorem 7.2. SGDL-Shuffle(𝜀𝑆 , 𝛿, 𝑛), is (𝜀𝐿 ,𝛿) - 𝑑𝑥 - private, in the
local model, with:

𝜀𝐿 =max

𝑑𝑥

ln(𝑔(0, 𝑑𝑥 (𝑥, 𝑥 ′), 𝑒−𝜀𝑆 , 1/𝑛))
𝑑𝑥 (𝑥, 𝑥 ′)

(8)

for the function 𝑔 as defined in Theorem 4.1.

Figure 6: Privacy in the local model (𝜀𝐿) when the same level

of privacy in the shuffle model (𝜀𝑆 ) is fixed.

Privacy comparison. We fix the same level of privacy in the shuf-

fle model (𝜀𝑆 ) and measure the privacy of each mechanism in the

local model (𝜀𝐿) if the shuffler is compromised.

For RR-Shuffle and SGDL-Shuffle, 𝜀𝐿 can be directly calculated

from the above formulas. On the other hand, for Geo-Shuffle in

order to find 𝜀𝐿 we need to find a proper 𝜀𝑔𝑒𝑜 which if given as

a parameter to Geo-Shuffle it will result in the target 𝜀𝑆 privacy

(Theorem 4.1). Then, we can use Proposition 5 and set 𝜀𝐿 = 𝜀𝑔𝑒𝑜 .

Observe that 𝜀𝑔𝑒𝑜 depends on the number of users; as more users

join the system the target 𝜀𝑆 can be reached with a bigger 𝜀𝑔𝑒𝑜 ,

due to the increased privacy amplification by shuffling. Figure 6

shows that when the shuffler gets compromised, the privacy of

SGDL-Shuffle diminishes significantly. For instance, with 150 users

the local privacy 𝜀𝐿 is about 5, while for Geo-Shuffle is about 1.

In general, Geo-Shuffle maintains a reasonable level of privacy,

surpassing that of RR-Shuffle.

To comprehend the significant difference, recall that the noise

applied by each user is sampled from SGDL(1, 𝑒−𝜀𝐿 ) in Geo-Shuffle
and from SGDL(1/𝑛, 𝑒−𝜀𝑆 ) in SGDL-Shuffle. Therefore, fixing the

same 𝜀𝑆 implies that Geo-Shuffle’s noise scales with the second

parameter of the SGDL distribution, whereas SGDL-Shuffle scales

with the first, which depends on the number of users. This obstacle

cannot be avoided, as setting the first parameter of SGDL to 1/𝑛 is

necessary in order to take advantage of the property of infinitely

divisibility of the geometric mechanism.

A note about the missing values of RR-Shuffle in Figure 6. Recall
that RR-Shuffle requires at least a minimum number of users for a

specified 𝜀𝑆 (Section 3.2). On the other hand, the number of random

bits 𝜆 does not depend on 𝑛. Hence as the number of users increases,

the parameter 𝑝 (proportion of random bits) decreases, making

harder to meet the requirement that 𝑝 · 𝑘 ≥ 14𝑙𝑜𝑔 4

𝛿
, for the local

model. Thus it is only possible to calculate 𝜀𝐿 for a specific range

of users. In this experiment we considered 𝛿 = 0.01 and 𝑘 = 1000

(recall that 𝑘 is the maximum value of the secrets domain). Note that

𝛿 and 𝑘 only affect in this comparison, privacy-wise, RR-Shuffle.
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8 Primitive Shuffler and Communication Cost

In the proposed mechanisms all users send the exact same number

of bits to the shuffler: 𝑘 bits in RR-Shuffle and 𝑘 + 2𝑐 bits in Geo-

Shuffle and SGDL-Shuffle. In other words, each reported message

has the same length as the one with the maximum possible value.

In this section we discuss this conscious design choice which was

based under the assumptions that a) standard shuffling techniques

should be applied (Section 2.2) and b) the adversary may monitor

the network between the users and the shuffler (Section 2.4).

In the shuffle model literature there is no clear agreement on

the exact capabilities of the shuffler. In the original proposal [7],

all users send an equal number of bits to the shuffler. Similarly, in

[11], a probabilistic rounding step is used to assure same-length

messages. On the other hand, in other works the reported num-

ber of bits per user varies [3, 20]. In such works, an adversary is

assumed to be unable to observe how many bits each user sends,

since he only observe the outcome of the shuffler. In other words,

the communication between the shuffler and the users is assumed

to be entirely hidden from the adversary.

In practice, however, an adversary can often monitor the traffic

between the users and the shuffler. Although the actual values re-

main encrypted, the size of encrypted traffic can still be observed.

For example, in the case of MixNets, an adversary with control

over the network (such as an ISP or a law enforcement agency) can

trivially observe the size of the encrypted traffic, and hence the

number of messages sent from each user. Note that this is especially

important in metric privacy where the reported (noisy) value is

with high probability close to the initial secret. As a consequence,

variable-length shuffling which does not leak any information (un-

der such an adversary) is a non-standard operation that cannot be

easily achieved via all traditional shuffling implementations.

Moreover, note that if a shuffler is allowed to perform more com-

plicated operations than standard naive shuffling, then there exist

various ways of reducing the communication cost. For instance, if

the shuffler can also sum the received values (say by substituting the

shuffler with a MPC protocol for summation [32]) then there is no

reason to employ an inefficient unary encoding. Values can be en-

coded in binary format, leading to a much smaller communication

cost of log𝑘 or resp. log(𝑘 + 2𝑐).
Nonetheless, if one wishes to reduce the communication cost

while accepting a privacy loss, they can change the quantization

granularity of Algorithm 1. Currently, the bit "1" represents the

integer "1", meaning that the integer 𝑥 is represented by 𝑥 ones. The

granularity Q can change so that each bit of the encoded vector

actually represents a larger integer. In Section G we show a possible

implementation of this approach. Unfortunately this approach may

diminish metric privacy as a high granularity could make the users

that hold a big value more easily distinguishable.

9 Conclusion and Future Work

The shuffle model provides a solution to the utility and trust trade-

off between the local model and the central model, essentially pro-

viding almost the best from both worlds. For this reason, many

mechanisms have been proposed in the literature for the shuffle

model and standard DP. On the other hand, its implementation in

metric privacy had not been studied before.

First we presented RR-Shuffle, inspired by an existing imple-

mentation of RR for standard DP. Then, we continued with the

geometric mechanism, which is already tailored to metric privacy,

and proposed Geo-Shuffle. More specifically, we formalized the

way that Geo-Shuffle creates noise, and proved that it follows the

Symmetric Generalized Discrete Laplace distribution. Finally, we

presented SGDL-Shuffle, which offers optimal error for the summa-

tion query.

Our experiments indicate that the shuffle mechanisms provide a

utility level that almost matches that of the central model, when

executed with many users. When the number of users is small,

Geo-Shuffle and SGDL-Shuffle provide sufficiently better utility

than Geo-Local.

If the adversary model is expanded, incorporating the corrup-

tion of the shuffler by the adversary, then Geo-Shuffle provides

significantly better privacy than SGDL-Shuffle. After considering

our analysis, one might opt for Geo-Shuffle and tolerate a slight

decrease in utility to ensure a level of privacy even if the shuffler

gets compromised by the adversary. In scenarios where there is

no such a threat, SGDL-Shuffle can be chosen to provide optimal

utility.

Our work provided a first study on the shuffle model for metric

privacy. As there are many mechanisms that have been studied

in the literature for the shuffle model and standard differential

privacy, research should continue with them. Additionally, in this

work we focused only on integer summation. In the future we aim

to extend our work with the problem of privately computing his-

tograms. Lastly, changing the granularity Q and studying its impact

on metric privacy will offer a formal trade-off between privacy and

communication cost.
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A Metric Privacy of the RR-Shuffle

Theorem A.1. For any 𝛿 > 0,0 ≤ 𝑝 ≤ 1 and 𝑛 · 𝑘 ≥ 𝜆 ≥ 14𝑙𝑜𝑔 4

𝛿
, let

𝜆 = 𝑝 · 𝑛 · 𝑘 .
RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛) is (𝜀, 𝛿) - 𝑑𝑋 - private where

𝜀 =

√√√√
32 log

4

𝛿

𝜆 −
√︃
2𝜆 log 2

𝛿

Wewill use the same approach as the authors of [11] for standard

DP, but slightly modify it in order to prove metric privacy.

Observe that the output of the mechanism, as seen by the analyst,

includes only a shuffled vector of unary bits. Releasing a shuffled

unary vector is privacy-wise equivalent to releasing its sum, since

both reveal the same level of information (Proposition 1). It will be

more convenient to analyze the algorithm 𝐶𝜆 . The privacy of 𝐶𝜆
carries over to the RR-Shuffle mechanism, because both have the

same output space [11].

Algorithm 5: 𝐶𝜆 (𝑥1, 𝑥2, . . . , 𝑥𝑛) [11]

Input : (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 parameter 𝜆 ∈ (0, 𝑛).
Output :𝑦 ∈ {0, 1, 2, . . . , 𝑛}
Sample s← 𝐵𝑖𝑛(𝑛, 𝜆

𝑛
)

Define 𝐻𝑠 = {𝐻 ⊆ [𝑛] : |𝐻 | = 𝑠} and choose H← 𝐻𝑠
uniformly at random.

Return :y← ∑
𝑖∉𝐻 𝑥𝑖 + 𝐵𝑖𝑛(𝑠, 12 )

We will analyse the privacy of 𝐶𝜆 in three steps. Firstly (Step 1)

we will examine a simpler form of the algorithm, 𝐶𝐻 where the set

of users that respond randomly, 𝐻 , is given as input. We will prove

that for any sufficiently large 𝐻 , 𝐶𝐻 is metric private. Secondly

(Step 2), we will prove the algorithm𝐶𝑠 where any sufficiently large

value s and |𝐻 | chosen randomly with |𝐻 | = 𝑠 keeps the initial

privacy of Step 1. In the last step (Step 3) , we will prove that the

initial algorithm 𝐶𝜆 is metric private.

Step 1:

Let us begin by finding the privacy of 𝐶𝐻 :

Claim A.1. For any 𝛿 > 0 and 𝑎𝑛𝑦 𝐻 ⊆ [𝑛] such that |𝐻 | > 8𝑙𝑜𝑔 4

𝛿

𝐶𝐻 is (𝜀, 1
2
𝛿)- 𝑑𝑋 - private for
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Algorithm 6: 𝐶𝐻 (𝑥1, 𝑥2, . . . , 𝑥𝑛) [11]
Input : (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 parameter 𝐻 ⊆ [𝑛].
Output :𝑦𝐻 ∈ {0, 1, 2, . . . , 𝑛}
Let B← 𝐵𝑖𝑛( |𝐻 |, 1

2
)

Return :y𝐻 ←
∑
𝑖∉𝐻 𝑥𝑖+ B

𝜀 = 𝑑𝑋 · ln
(
1 +

√︂
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)
< 𝑑𝑋 ·

(√︂
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)
Proof. We prove this claim using a similar approach as in [11],

adapting it to metric privacy. Fix two datasets 𝑋 , 𝑋 ′ ∈ {0, 1}𝑛
that have exactly 𝑑𝑋 different bits, any 𝐻 ⊆ [𝑛] such that |𝐻 | >
8𝑙𝑜𝑔 4

𝛿
, and any 𝛿 > 0. If the points at which 𝑋,𝑋 ′ differ all lie

within 𝐻 then of course the two distributions 𝐶𝐻 (𝑋 ),𝐶𝐻 (𝑋 ′) are
identical. Hence, the biggest difference between 𝐶𝐻 (𝑋 ),𝐶𝐻 (𝑋 ′)
will be when all differing points lie outside of 𝐻 . W.l.o.g. let us

assume that 𝑥 𝑗 = 0 and 𝑥 ′𝑗 = 1 for every differing point 𝑗𝑖 ∉ 𝐻

where 𝑖 ∈ {0, 1, . . . 𝑑𝑋 − 1}.
We also define 𝑢 :=

√︃
1

2
|𝐻 |𝑙𝑜𝑔 4

𝛿
and 𝐼𝑢 :=

(
1

2
|𝐻 | − 𝑢, 1

2
|𝐻 | + 𝑢

)
,

hence using Hoeffding’s inequality (Theorem 𝐹 .2): P[B∉ 𝐼𝑢 ] < 1

2
𝛿 .

We have, for any𝑊 ⊆ {0, 1, . . . , 𝑛}:

P[𝐶𝐻 (𝑋 ) ∈𝑊 ] = P[𝐶𝐻 (𝑋 ) ∈𝑊 ∩ B ∈ 𝐼𝑢 ]+
P[𝐶𝐻 (𝑋 ) ∈𝑊 ∩ B ∉ 𝐼𝑢 ]

≤ P[𝐶𝐻 (𝑋 ) ∈𝑊 ∩ B ∈ 𝐼𝑢 ] +
1

2

𝛿

=
∑︁

𝑟 ∈𝑊∩𝐼𝑢
P[B +

∑︁
𝑖∉𝐻

𝑥𝑖 = 𝑟 ] +
1

2

𝛿 (9)

In order to conclude we have to show that for any 𝐻 and 𝑟 ∈
𝑊 ∩ 𝐼𝑢 :

P
[
B +∑

𝑖∉𝐻 𝑥𝑖 = 𝑟
]

P
[
B +∑

𝑖∉𝐻 𝑥
′
𝑖
= 𝑟

] ≤ (
1 +

√︄
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)𝑑𝑋
(10)

Because 𝑥 𝑗 = 0 and 𝑥 ′𝑗 = 1 for every differing bit 𝑗 then
∑
𝑖∉𝐻 𝑥𝑖 =∑

𝑖∉𝐻 𝑥
′
𝑖 − 𝑑𝑋 . Hence:

P
[
B +∑

𝑖∉𝐻 𝑥𝑖 = 𝑟
]

P
[
B +∑

𝑖∉𝐻 𝑥
′
𝑖
= 𝑟

] =
P
[
B +∑

𝑖∉𝐻 𝑥
′
𝑖 − 𝑑𝑋 = 𝑟

]
P
[
B +∑

𝑖∉𝐻 𝑥
′
𝑖
= 𝑟

]
=

P
[
B =

(
𝑟 −∑

𝑖∉𝐻 𝑥
′
𝑖

)
+ 𝑑𝑋

]
P
[
B =

(
𝑟 −∑

𝑖∉𝐻 𝑥
′
𝑖

) ] (11)

Let 𝑘 = 𝑟 −∑
𝑖∉𝐻 𝑥

′
𝑖 so that:

(11) = P[B = 𝑘 + 𝑑𝑋 ]
P[B = 𝑘] (12)

Thus we need to calculate the ratio of the output of the two Bino-

mial distributions. As stated in algorithm 𝐶𝐻 , both binomials run

with |𝐻 | tries and probability to success
1

2
. Hence:

P[B = 𝑘 + 𝑑𝑋 ]
P[B = 𝑘] =

( |𝐻 |
𝑘+𝑑𝑋

)
1

2

𝑘+𝑑
1

2

|𝐻 |−𝑘−𝑑𝑋( |𝐻 |
𝑘

)
1

2

𝑘
1

2

|𝐻 |−𝑘

=

( |𝐻 |
𝑘+𝑑𝑋

)
1

2

|𝐻 |( |𝐻 |
𝑘

)
1

2

|𝐻 |

=

( |𝐻 |
𝑘+𝑑𝑋

)( |𝐻 |
𝑘

)
=

|𝐻 |!
(𝑘+𝑑𝑋 )!( |𝐻 |−𝑘−𝑑𝑋 )!

|𝐻 |!
𝑘!( |𝐻 |−𝑘 )!

=
𝑘!( |𝐻 | − 𝑘)!

(𝑘 + 𝑑𝑋 )!( |𝐻 | − 𝑘 − 𝑑𝑋 )!

=
𝑘!( |𝐻 | − 𝑘 − 𝑑𝑋 )!

∏𝑑𝑋 −1
𝑖=0
( |𝐻 | − 𝑘 − 𝑖)

(𝑘)!∏𝑑𝑋
𝑖=1
(𝑘 + 𝑖) ( |𝐻 | − 𝑘 − 𝑑𝑋 )!

=

∏𝑑𝑋 −1
𝑖=0
( |𝐻 | − 𝑘 − 𝑖)∏𝑑𝑋
𝑖=1
(𝑘 + 𝑖)

=

𝑑𝑋 −1∏
𝑖=0

|𝐻 | − 𝑘 − 𝑖
𝑘 + 𝑖 + 1 (13)

The fraction of the product maximizes when i = 0. By Claim 4.4

of [11] it is proven that:

|𝐻 | − 𝑘
𝑘 + 1 ≤ 1 +

√︄
32𝑙𝑜𝑔 4

𝛿

|𝐻 | (14)

Since we have 𝑑𝑋 products the bound will be:

(13) ≤
(
1 +

√︄
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)𝑑𝑋
(15)

Note that, ln

(
1 +

√︂
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)𝑑𝑋
= 𝑑𝑋 · ln

(
1 +

√︂
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)
. However,

we need to prove that 𝑑𝑋 · ln
(
1 +

√︂
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)
< 𝑑𝑋 ·

(√︂
32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)
.

For notational convenience, let 𝑦 =

√︂
32𝑙𝑜𝑔 4

𝛿

|𝐻 | .

𝑑𝑋 · 𝑙𝑛(1 + 𝑦) < 𝑑𝑋 · 𝑦
𝑙𝑛(1 + 𝑦) < 𝑦

1 + 𝑦 < 𝑒𝑦

which is true for 𝑦 > 0 and completes the proof.

□

Step 2:

Now we consider the case that H is a random subset of [𝑛] but with
a fixed size 𝑠 . We will analyse the following algorithm:

Claim A.2. For any 𝛿 > 0 and any 8𝑙𝑜𝑔 4

𝛿
< 𝑠 𝐶𝑠 is (𝜀, 1

2
𝛿) - 𝑑𝑋 -

private for

𝜀 = 𝑑𝑋 ·
(√︃

32 log
4

𝛿

𝑠

)
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Algorithm 7: 𝐶𝑠 (𝑥1, 𝑥2, . . . , 𝑥𝑛) [11]

Input : (𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ∈ {0, 1, 2, . . . , 𝑛}
Output :𝑦𝑠 ∈ {0, 1, 2, . . . , 𝑛}
Define 𝐻𝑠 = {𝐻 ⊆ [𝑛] : |𝐻 | = 𝑠} and choose H← 𝐻𝑠
uniformly at random.

Return :y𝑠 ← 𝐶𝐻 (𝑥)

Proof. We follow the corresponding proof from [11]. Fix two

datasets, 𝑋 ∼ 𝑋 ′ ∈ {0, 1}𝑛 which differ by 𝑑𝑋 bits. Let H be the

realization of H. For shorthand, let us name the privacy that we

proved that𝐶𝐻 (𝑋 ) has as 𝜀0 ( |𝐻 |) = 𝑑𝑋 ·
(√︂

32𝑙𝑜𝑔 4

𝛿

|𝐻 |

)
. The algorithm

𝐶𝑠 (𝑋 ) selects 𝐻 uniformly random from 𝐻𝑠 and then runs 𝐶𝐻 (𝑋 ).
Because 𝑠 ≥ 8𝑙𝑜𝑔 4

𝛿
, for any 𝑠 , Claim 𝐴.1 is directly applicable.

Hence, for any such 𝑠:

P[𝐶𝑠 (𝑋 ) ∈𝑊 ] = 𝑒𝜀0 (𝑠 )P[𝐶𝑠 (𝑋 ′) ∈𝑊 ] + 1

2
𝛿 ↔

P[𝐶𝑠 (𝑋 ) ∈𝑊 ] = 𝑒𝑥𝑝 (𝑑𝑋 ·
(√︃

32 log
4

𝛿

𝑠

)
)P[𝐶𝑠 (𝑋 ′) ∈𝑊 ] + 1

2
𝛿

□

Note that, in contrast to [11], we cannot achieve a privacy boost

for 𝐶𝑠 . In standard differential privacy the randomness of 𝐻 im-

proves the privacy parameters. However, in metric privacy, since 𝑑

can be arbitrary large, the boosting factor cannot be guaranteed to

be achieved.

Step 3:

Now we are ready to prove the privacy of 𝐶𝜆 . We prove that with

high probability, 𝑠 is almost as large as 𝜆, using the same technique

as in [11]. Let us restate the claim:

Claim A.3. For any 𝛿 > 0 and 𝜆 ≥ 14𝑙𝑜𝑔 4

𝛿
,𝐶𝜆 is (𝜀, 𝛿) - 𝑑𝑋 - private

where

𝜀 =

(
𝑑𝑋 ·

√︄
32 log

4

𝛿

𝜆−
√︃
2𝜆 log 2

𝛿

)
Proof. Fix two datasets X, X’ 𝑖𝑛{0, 1}𝑛 that differ by 𝑑 bits and

any𝑊 ⊆ [𝑛].

P[𝐶𝜆 (𝑋 ) ∈𝑊 ] = P[𝐶𝜆 (𝑋 ) ∈𝑊 ∩ s ≥ 𝜆 −
√︂
2𝜆𝑙𝑜𝑔

2

𝛿
]+

P[𝐶𝜆 (𝑋 ) ∈𝑊 ∩ s < 𝜆 −
√︂
2𝜆𝑙𝑜𝑔

2

𝛿
]

≤ P[𝐶𝜆 (𝑋 ) ∈𝑊 ∩ s ≥ 𝜆 −
√︂
2𝜆𝑙𝑜𝑔

2

𝛿
] + 1

2

𝛿 [Chernoff Bound]

=
∑︁

𝑠≥𝜆−
√︃
2𝜆𝑙𝑜𝑔 2

𝛿

P[𝐶𝑠 (𝑋 ) ∈𝑊 ] · Ps = 𝑠] +
1

2

𝛿

(16)

As 𝜆 is sufficiently large, 𝜆 −
√︃
𝜆𝑙𝑜𝑔 2

𝛿
> 8𝑙𝑜𝑔 4

𝛿
. Hence, we can

apply Claim 𝐴.2 to each term of the sum.

P[𝐶𝑠 (𝑋 ) ∈𝑊 ] ≤ 𝑑𝑋 ·
(√︃

32𝑙𝑜𝑔 4

𝛿

𝑠

)
· P[𝐶𝑠 (𝑋 ′) ∈𝑊 ] + 1

2
𝛿

For shorthand, let 𝜀1 (𝑠) := 𝑑𝑋 ·
(√︃

32𝑙𝑜𝑔 4

𝛿

𝑠

)
. Thus:

(16) ≤
( ∑︁
𝑠≥𝜆−

√︃
2𝜆𝑙𝑜𝑔 2

𝛿

[
𝑒𝜀1 (𝑠 )P[𝐶𝑠 (𝑋 ′ ) ∈𝑊 ] +

1

2

𝛿

]
· P[s = 𝑠 ]

)
+ 1

2

𝛿

≤
( ∑︁
𝑠≥𝜆−

√︃
2𝜆𝑙𝑜𝑔 2

𝛿

𝑒𝜀1 (𝑠 )P[𝐶𝑠 (𝑋 ′ ) ∈𝑊 ] · P[s = 𝑠 ]
)
+ 𝛿

max

𝑠≥𝜆−
√︃
2𝜆𝑙𝑜𝑔 2

𝛿

𝑒𝜀1 (𝑠 ) · P[𝐶𝜆 (𝑋 ′ ) ∈𝑊 ] + 𝛿

(17)

Observe that 𝜀1 (𝑠 ) decreases with 𝑠 . Thus the above is maximized at the

lower bound of s:

P[𝐶𝜆 (𝑋 ) ∈𝑊 ] ≤ exp

(
𝑑𝑋 ·

√︄
32 log

4

𝛿

𝜆−
√︃
2𝜆 log

2

𝛿

)
· P[𝐶𝜆 (𝑋 ′ ) ∈𝑊 ] + 𝛿

□

A.1 Utility of RR-Shuffle

Observe that 𝑛 users holding 𝑘 bits each is privacy-wise equivalent

to 𝑛 · 𝑘 users holding each only 1 bit. That is because the shuf-

fler shuffles all bits together, hence every bit can end up in every

position with the same probability.

We will hence treat the problem as having 𝑛 · 𝑘 users, each with

1 bit. We again follow the method of [11].

Throughout the rest of this section, for notational convenience,

let 𝑃𝑛·𝑘,𝜆 (𝑋 ) for 𝑋 ∈ {0, 1}𝑛 denote the RR-Shuffle protocol, which

consists of three mechanisms:

• R𝑛·𝑘,𝜆 (𝑥) (Randomiser) which denotes the output of the

RR, run on some bit 𝑥 ∈ {0, 1} with parameter 𝑝 = 𝜆
𝑛 ·𝑘 .

• S (Shuffler)which shuffles the𝑛 ·𝑘 bits reported respectively
by 𝑛 · 𝑘 users.

• A (Analyst) which sees the output of the Shuffler.

Firstly let us make two claims that will serve as building blocks for

the proof:

Claim A.4. [11] For any 𝑛 ∈ N, 0 < 𝜆 ≤ 𝑛 · 𝑘 :

E[𝑅𝑛 ·𝑘,𝜆 (𝑥)] =
𝜆

2 · 𝑛 · 𝑘 +
(
1 − 𝜆

𝑛 · 𝑘
)
· 𝑥 (18)

𝑉𝑎𝑟 [𝑅𝑛·𝑘,𝜆 (𝑥)] =
𝜆

2 · 𝑛 · 𝑘 ·
(
1 − 𝜆

𝑛 · 𝑘
)

(19)

Proof. The proof is reported from [11], with slight changes to

reflect metric privacy. Observe that if 𝑥 = 0 then the user can report

1 only if he responds randomly. Hence the probability to report

1 follows the Bernoulli Random variable with probability
1

2

𝜆
𝑛·𝑘 .

The variance of this random variable will be
𝜆

2·𝑛 ·𝑘 ·
(
1 − 𝜆

𝑛 ·𝑘
)
. A

symmetric argument can be made to report 0 when 𝑥 = 1. Thus:

E[𝑅𝑛·𝑘,𝜆 (𝑥)] =
𝜆

𝑛 · 𝑘 · E
[
𝐵𝑒𝑟

(
1

2

)]
+

(
1 − 𝜆

𝑛 · 𝑘
)
· 𝑥 =

𝜆

2 · 𝑛 · 𝑘 +
(
1 − 𝜆

𝑛 · 𝑘
)
· 𝑥 (20)

Using this claim, we can compute the expected value and vari-

ance of 𝑃𝑛·𝑘,𝜆 because the output of the protocol is the sum of all

the reported messages.
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Claim A.5. [11] For any 𝑛 ∈ N, 0 < 𝜆 ≤ 𝑛 · 𝑘 :

E[𝑃𝑛·𝑘,𝜆 (𝑋 )] =
𝑛 ·𝑘∑︁
𝑖=1

𝑅𝑛·𝑘,𝜆 (𝑥𝑖 ) (21)

𝑉𝑎𝑟 [𝑃𝑛 ·𝑘,𝜆 (𝑋 )] =
( 𝑛 · 𝑘
𝑛 · 𝑘 − 𝜆

)
2 · 𝜆

2

(
1 − 𝜆

2 · 𝑛 · 𝑘
)

(22)

□

Theorem A.2. Let 𝑃 be RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛) and 𝜆 = 𝑝 · 𝑛 · 𝑘 . For
every 𝑛 ∈ N, 0 < 𝛽 ≤ 1, 𝑛𝑘 > 𝜆 ≥ 2𝑙𝑜𝑔 2

𝛽
and 𝑋 = {0, 1}𝑛𝑘 :

P

[���𝑃 (𝑋 ) −∑
𝑖 𝑥𝑖

��� > 𝑛𝑘
𝑛𝑘−𝜆

√︃
2𝜆 log 2

𝛽

]
< 𝛽

Proof. To prove this theorem we use the same technique as the

authors of [11]. Let 𝑋 ∈ {0, 1}𝑛 and 𝑑𝑖 denote 𝑅𝑛·𝑘,𝜆 (𝑥𝑖 ) − 𝜆
2·𝑛·𝑘 −(

1 − 𝜆
𝑛·𝑘

)
· 𝑥𝑖 . Observe that −1 < 𝑑𝑖 < 1. From the previous claim,

we can conclude that E[𝑑𝑖 ] = 0 and Var[𝑑𝑖] =
𝜆

2·𝑛·𝑘
(
1 − 𝜆

2·𝜆 ·𝑘
)
. Let

1 ≥ 𝛽 > 0. Note that Var[𝑑𝑖 ] >
4

9·𝑛 ·𝑘 log
2

𝛽
, because 𝜆 is sufficiently

large. Thus, we can use Bernstein’s inequaility (Theorem F.3):

P

[
|
𝑛·𝑘∑︁
𝑖=1

𝑑𝑖 | >

√︄
2𝜆

(
1 − 𝜆

2𝑛𝑘

)
log

2

𝛽

]
< 𝛽 (23)

Moreover, if 𝑦𝑖 = 𝑅𝑛·𝑘,𝜆 (𝑥𝑖 ) and 𝑓 (𝑥) =
∑
𝑖 𝑥𝑖 :∑︁

𝑖

𝑑𝑖 =
∑︁
𝑖

(
𝑦𝑖 −

𝜆

2𝑛𝑘
− (1 − 𝜆

𝑛𝑘
) · 𝑥𝑖

)
=

(∑︁
𝑖

𝑦𝑖
)
− 𝜆

2

−
(
1 − 𝜆

𝑛𝑘

)
· 𝑓 (𝑥))

𝑛𝑘

𝑛𝑘 − 𝜆
∑︁
𝑖

𝑑𝑖 =
𝑛𝑘

𝑛𝑘 − 𝜆

((∑︁
𝑖

𝑦𝑖

)
− 𝜆

2

)
− 𝑓 (𝑥) =

𝑃𝑛 ·𝑘,𝜆 (𝑋 ) − 𝑓 (𝑥) (24)

Hence (23) will became, after substitution:

P

[
[|𝑃𝑛 ·𝑘,𝜆 (𝑋 ) − 𝑓 (𝑥) | >

𝑛𝑘

𝑛𝑘 − 𝜆

√︄
2𝜆

(
1 − 𝜆

2𝑛𝑘

)
log

2

𝛽

]
< 𝛽 (25)

Since 𝜆 > 0, we can conclude. □

A.2 RR-Shuffle in the local model

Let us now study the case when the shuffler is compromised:

Theorem A.3. RR-Shuffle(𝛿, 𝑝, 𝑘, 𝑛) is (𝜀𝐿, 𝛿) - 𝑑𝑥 - private in the
local model, if 𝜆𝐿 = 𝑝 · 𝑘 and 𝑘 ≥ 𝜆𝐿 ≥ 14𝑙𝑜𝑔 4

𝛿
, where

𝜀𝐿 =

√√√√
32 log

4

𝛿

𝜆𝐿 −
√︃
2𝜆𝐿 log

2

𝛿

(26)

Proof. Recall that summing unary bits is privacy-wise equiva-

lent to shuffling them (Proposition 1). If we assume that some user

𝑖 with value 𝑥𝑖 has to report, according to the protocol, a unary

vector 𝑏𝑖 of size 𝑘 then the adversary will make the same observa-

tions about 𝑥𝑖 if he sees directly all 𝑘 bits of 𝑏𝑖 or if 𝑘 users report

each 1 bit of 𝑏𝑖 to the shuffler and the shuffled output is released to

him. Hence it is a special case of Theorem 3.1 for 𝑛 = 𝑘 users, each

sending 1 bit. Setting 𝜆𝐿 = 𝑝 · 𝑘 reflects this case. □

B Metric Privacy of the Geo-Shuffle mechanism

First let us prove that shuffling a binary vector is privacy-wise

equivalent to revealing its sum.

Proposition 1. Let a mechanism 𝐾 (𝑋 ) = ∑
𝑥∈𝑋 𝑅(𝑥) be (𝜀, 𝛿) -

𝑑𝑋 - private for a dataset 𝑋 and 𝑅 be a Local Randomizer. Then, the
shuffle model mechanism with a shuffler 𝑆 (as defined in Section 2.2)
which uses the unary encoding U(𝑥, 𝑟 ) (Algorithm 1):

𝑀 (𝑋 ) = 𝑆
(
{U(𝑅(𝑥), 𝑟 ) : 𝑥 ∈ 𝑋 }

)
is also (𝜀, 𝛿) - 𝑑𝑋 - private.

Proof. First, let us estimate the probability that a shuffler out-

puts a particular bit vector. Let 𝑣 be the output of a shuffler 𝑆 (𝑦1, . . .
𝑦𝑚) with sum (number of 1’s) 𝑣 . Observe that 𝑣 is only described

by 𝑣 and by its arrangement of bits. Hence if 𝐴 is the event to have

𝑣 1’s and 𝐵 is the event to achieve a given sequence of bits with 𝑣

1’s, then:

P[𝑆 (𝑦1, . . . 𝑦𝑚) = 𝑣] = P(𝐴 ∩ 𝐵) = P(𝐴) · P(𝐵)
Let us proceed to our case and consider two datasets 𝑋 and

𝑋 ′ of size 𝑛 with distance 𝑑𝑋 (𝑋,𝑋 ′). Here 𝑣 will be the output of
𝑆 ({U(𝑅(𝑥), 𝑟 ) : 𝑥 ∈ 𝑋 }). Recall that each U(𝑅(𝑥), 𝑟 ) returns a
bit vector of size 𝑟 and the shuffler 𝑆 shuffles all the bits together

creating a single bit vector 𝑣 . Hence 𝑣 will have a length of 𝑛 · 𝑟
with 𝑣 =

∑
𝑥∈𝑋 𝑅(𝑥).

Therefore, P(𝐴) = P
[ ∑
𝑥∈𝑋
(𝑅(𝑥)) = 𝑣

]
and P(𝐵) = 1

(𝑛𝑟�̂� )
for ev-

ery given sequence of bits with 𝑣 ones, since shuffling randomly

permutates the vector.

Hence for every vector 𝑣 with length 𝑛 · 𝑟 and sum 𝑣 :

P[𝑆 (𝑦1, . . . 𝑦𝑚) = 𝑣] = P(𝐴) · P(𝐵) =
P
[ ∑
𝑥∈𝑋
(𝑅(𝑥)) = 𝑣

](𝑛𝑟
𝑣

) (27)

So far we have worked only for a single vector 𝑣 with 𝑣 ones.

Since the definition of metric privacy is over sets (i.e. any subset of

the output space of the mechanism), we should properly expand

our scope of vectors. Let us defineV as a set of unary vectors (the

output space of the shuffler), and
ˆV as a set of integers representing

the sum (number of 1’s) of the corresponding (i.e. same position)

vector inV . For example, ifV = {{0, 1, 1}, {0, 0, 0}, {1, 1, 1}}, then
ˆV = {2, 0, 3}. The relationship between V and

ˆV is the same as

between 𝑣 and 𝑣 : givenV one can design a deterministic function

to produce
ˆV .

However, if
ˆV is given and the goal is to produce a target V ,

then this function is probabilistic, following the same operation of

the shuffler. This function goes as follows, for each 𝑣 ∈ ˆV: a vector

𝑣 with a known size is created with exactly 𝑣 ones in (uniformly)

random positions and it is finally placed inV .

Let us consider this event to get a specific V , given
ˆV . If we

denote this event as 𝐶 , then by using the previously computed

probability on 𝐵, for each 𝑣 ∈ ˆV:

𝑃 (𝐶) =
∏
𝑣∈�̂�

1(𝑛𝑟
𝑣

) (28)
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Hence we can expand Equation (27) with sets:

P[𝑆 (𝑦1, . . . 𝑦𝑚) ∈ V] = P
[ ∑︁
𝑥∈𝑋
(𝑅(𝑥)) ∈ ˆV

]
·
∏
𝑣∈�̂�

1(𝑛𝑟
𝑣

) (29)

Moreover:

P[𝑀 (𝑋 ) ∈ V]
P[𝑀 (𝑋 ′ ) ∈ V] =

P

[
𝑆 ({U(𝑅 (𝑥 ), 𝑟 ) : 𝑥 ∈ 𝑋 }) ∈ V

]
P

[
𝑆 ({U(𝑅 (𝑥 ′ ), 𝑟 ) : 𝑥 ′ ∈ 𝑋 ′ }) ∈ V

]

=

P
[ ∑
𝑥 ∈𝑋
(𝑅 (𝑥 ) ) ∈ ˆV

]
·∏

�̂�∈�̂�
1

(𝑛𝑟�̂� )

P
[ ∑
𝑥 ′∈𝑋 ′

(𝑅 (𝑥 ′ ) ) ∈ ˆV
]
·∏

�̂�∈�̂�
1

(𝑛𝑟�̂� )

=
P[𝐾 (𝑋 ) ∈ ˆV]
P[𝐾 (𝑋 ′ ) ∈ ˆV]

(30)

Because 𝐾 is (𝜀, 𝛿 ) - 𝑑𝑋 - private:

P[𝐾 (𝑋 ) ∈ ˆV] ≤ 𝑒𝜀 ·𝑑𝑋 (𝑋,𝑋 ′ )P[𝐾 (𝑋 ′ ) ∈ ˆV] + 𝛿 ⇔

P[𝐾 (𝑋 ) ∈ ˆV]
P[𝐾 (𝑋 ′ ) ∈ ˆV]

≤ 𝑒𝜀 ·𝑑𝑋 (𝑋,𝑋 ′ ) + 𝛿

P[𝐾 (𝑋 ′ ) ∈ ˆV]

(31)

Furthermore, note that:

P[𝑀 (𝑋 ′ ) ∈ V] = P
[ ∑︁
𝑥 ′∈𝑋 ′

(𝑅 (𝑥 ′ ) ) ∈ ˆV
]
·
∏
�̂�∈�̂�

1(𝑛𝑟
�̂�

)
≤ P

[ ∑︁
𝑥 ′∈𝑋 ′

(𝑅 (𝑥 ′ ) ) ∈ ˆV
]

= P[𝐾 (𝑋 ′ ) ∈ ˆV] (32)

Finally, by combining Equation (30) and Equation (31) we can prove that

𝑀 is also (𝜀, 𝛿 ) - 𝑑𝑋 - private. For every subset V of the output space of

𝑀 :

P[𝑀 (𝑋 ) ∈ V] ≤ 𝑒𝜀 ·𝑑𝑋 (𝑋,𝑋 ′ )P[𝑀 (𝑋 ′ ) ∈ V] + 𝛿 · P[𝑀 (𝑋
′ ) ∈ V]

P[𝐾 (𝑋 ′ ) ∈ ˆV]
≤ 𝑒𝜀 ·𝑑𝑋 (𝑋,𝑋 ′ )P[𝑀 (𝑋 ′ ) ∈ V] + 𝛿 [using (32)]

Note that [11] has also showed a similar result; it suffices to study the

privacy of the sum of the bits when considering a mechanism in the shuffle

model with a Local Randomizer which outputs one bit. □

Now we can turn our attention in bounding the probability of

the geometric mechanism to report a notably large/small value

(formally expressed by 𝑐) by 𝛿
2
. Recall that our goal is to bound

the probability that 𝑥𝑖 + 𝑁𝑖 + 𝑐 ∉ [0, 𝑘 + 2𝑐] but since we want to
bound that probability regardless of 𝑥𝑖 , we can reduce the problem

by bounding 𝑁𝑖 ∈ [−𝑐, 𝑐]. One might simply view this as taking

the worst possible case each time i.e. 𝑥𝑖 = 0 or 𝑥𝑖 = 𝑘 for the lower

and upper bound respectively.

Let us restate our theorem:

Proposition 2. Let 𝑁𝑖 ∼ 𝐺 (0, 𝜀geo), 𝛿 ∈ (0, 1] and :

𝑐 =

⌈
−

ln

[ (
1+𝑒−𝜀𝑔𝑒𝑜

) (
1− 𝑛

√︃
1− 𝛿

2

)
2

]
𝜀𝑔𝑒𝑜

⌉
Then:

1 −
𝑛∏
𝑖=1

P
[
𝑁𝑖 ∈ [−𝑐, 𝑐]

]
≤ 𝛿

2

Proof. The probability that the output of the geometric mecha-

nism is greater then 𝑐 will be:

∞∑︁
𝑖=𝑐+1

1 − 𝑒−𝜀𝑔𝑒𝑜
1 + 𝑒−𝜀𝑔𝑒𝑜 · 𝑒

−𝜀𝑔𝑒𝑜 𝑖 ≤

∞∑︁
𝑖=𝑐

1 − 𝑒−𝜀𝑔𝑒𝑜
1 + 𝑒−𝜀𝑔𝑒𝑜 · 𝑒

−𝜀𝑔𝑒𝑜 𝑖 =

1 − 𝑒−𝜀𝑔𝑒𝑜
1 + 𝑒−𝜀𝑔𝑒𝑜

∞∑︁
𝑖=0

𝑒−𝜀𝑔𝑒𝑜 (𝑖+𝑐 ) =

1 − 𝑒−𝜀𝑔𝑒𝑜
1 + 𝑒−𝜀𝑔𝑒𝑜 ·

𝑒−𝜀𝑔𝑒𝑜 ·𝑐

1 − 𝑒−𝜀𝑔𝑒𝑜 = [Geometric Series]

𝑒−𝜀𝑔𝑒𝑜 ·𝑐

1 + 𝑒−𝜀𝑔𝑒𝑜 (33)

Because the geometric mechanism is symmetric, the probability

that its output is less then −𝑐 will also be equal to (33). Hence, the

probability that the output is outside of the interval [−𝑐, 𝑐] will be:

2 · 𝑒−𝜀𝑔𝑒𝑜 ·𝑐

1 + 𝑒−𝜀𝑔𝑒𝑜 (34)

It needs to be assured that the probability of all 𝑛 users getting

an output of the geometric mechanism outside of [−𝑐, 𝑐] is at most

𝛿
2
. Hence:

1 −
(
1 − 2 · 𝑒−𝜀𝑔𝑒𝑜 ·𝑐

1 + 𝑒−𝜀𝑔𝑒𝑜
)𝑛
≤ 𝛿

2

↔

2 · 𝑒−𝜀𝑔𝑒𝑜 ·𝑐

1 + 𝑒−𝜀𝑔𝑒𝑜 ≤ 1 − 𝑛

√︂
1 − 𝛿

2

↔

𝑐 ≥ −
ln

[ (
1+𝑒−𝜀𝑔𝑒𝑜

) (
1− 𝑛

√︃
1− 𝛿

2

)
2

]
𝜀𝑔𝑒𝑜

(35)

Finally, we need to use the ceiling function because, in our case, c

represents a number of bits. □

The fact that we examined the tail bound of only the noise means

that we did not take into account at all the input dataset which

leads us to the next corollary.

Corollary 1. If 𝑛 users run Geo-Shuffle(𝜀geo, 𝛿, 𝑛), each with a secret
𝑥𝑖 , the probability that at least one of them reports a truncated 𝑥 ′𝑖 is
at most 𝛿/2, regardless of each 𝑥𝑖 .

Using the following Proposition 3 it suffices to study the privacy

of the case where nobody truncates.

Proposition 3. Let𝑀 be a mechanism and 𝐻 be an event indepen-
dent of the input of 𝑀 such that Pr[𝐻 ] ≥ 1 − 𝛿1. Moreover, assume
that when 𝐻 occurs𝑀 is (𝜖, 𝛿2)- 𝑑𝑋 - private, namely for all 𝑋,𝑋 ′:

Pr[𝑀 (𝑋 ) ∈ 𝑆 |𝐻 ] ≤ 𝑒𝜖 ·𝑑𝑋 (𝑋,𝑋 ′ ) Pr[𝑀 (𝑋 ′) ∈ 𝑆 |𝐻 ] + 𝛿2
If 𝐾 is a mechanism that behaves like𝑀 when 𝐻 occurs then 𝐾 is

(𝜖, 𝛿1 + 𝛿2) - 𝑑𝑋 - private.

Proof. If O is the output space of 𝐾 then for any 𝑆 ⊆ O:
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Pr[𝐾 (𝑋 ) ∈ 𝑆 ] = Pr[𝐾 (𝑋 ) ∈ 𝑆 |𝐻 ] Pr[𝐻 ] + Pr[𝐾 (𝑋 ) ∈ 𝑆 |¬𝐻 ] Pr[¬𝐻 ]
≤ Pr[𝐾 (𝑋 ) ∈ 𝑆 |𝐻 ] Pr[𝐻 ] + 𝛿1 [Pr[𝐻 ] ≥ 1 − 𝛿1]
= Pr[𝑀 (𝑋 ) ∈ 𝑆 |𝐻 ] Pr[𝐻 ] + 𝛿1 [𝐾 behaves as𝑀 when 𝐻 occurs]

≤ (𝑒𝜖 ·𝑑𝑋 (𝑋,𝑋 ′ )
Pr[𝑀 (𝑋 ′ ) ∈ 𝑆 |𝐻 ] + 𝛿2 ) Pr[𝐻 ] + 𝛿1[𝑀 is private under 𝐻 ]

≤ 𝑒𝜖 ·𝑑𝑋 (𝑋,𝑋 ′ )
Pr[𝐾 (𝑋 ′ ) ∈ 𝑆 |𝐻 ] Pr[𝐻 ] + 𝛿1 + 𝛿2

≤ 𝑒𝜖 ·𝑑𝑋 (𝑋,𝑋 ′ ) (
Pr[𝐾 (𝑋 ′ ) ∈ 𝑆 |𝐻 ] Pr[𝐻 ] + Pr[𝐾 (𝑋 ′ ) ∈ 𝑆 |¬𝐻 ] Pr[¬𝐻 ]

)
+ 𝛿1 + 𝛿2

= 𝑒𝜖 ·𝑑𝑋 (𝑋,𝑋 ′ )
Pr[𝐾 (𝑋 ′ ) ∈ 𝑆 ] + 𝛿1 + 𝛿2

□

In the case of Geo-Shuffle (which can be considered as 𝐾 in the

phrasing of Proposition 3), we set𝐻 as the event that nobody has to

truncate their obfuscated value which is independent of the input

dataset (Corollary 1). We set 𝑀 as the mechanism which corre-

sponds to the special case of Geo-Shuffle where no user truncates

their reported value. Thus we set 𝛿1 = 𝛿/2 and therefore it suffices

to set the remaining 𝛿2 to 𝛿/2 as well.
Finally note that it does not matter what 𝐾 does when 𝐻 does

not occur.

We continue by showing the following claim, which will be

necessary in the next proof.

Claim B.1. Let 𝐺 denote the geometric mechanism. Then the noise
added by 𝐺 (𝑥, 𝜀𝑔𝑒𝑜 ) can be expressed as the difference between two
geometric distributions, with parameter (𝑥, 1 − 𝑒−𝜀𝑔𝑒𝑜 ).

Proof. We will use the law of total probability. Let 𝑋,𝑌 be i.i.d.

variables that follow the geometric distribution with a parameter 𝑝 .

For any 𝑘 ∈ N:

P[𝑋 − 𝑌 = 𝑘 ] =
+∞∑︁

𝑖=−∞
P[𝑋 = 𝑖 + 𝑘 ] · P[𝑌 = 𝑖 ] =

+∞∑︁
𝑖=0

P[𝑋 = 𝑖 + 𝑘 ] · P[𝑌 = 𝑖 ] = [𝑋,𝑌 ≥ 0 ]

+∞∑︁
𝑖=0

𝑝 (1 − 𝑝 )𝑖+𝑘 · 𝑝 (1 − 𝑝 )𝑖 =

𝑝2 (1 − 𝑝 )𝑘 ·
+∞∑︁
𝑖=0

(1 − 𝑝 )2𝑖 =

𝑝2 (1 − 𝑝 )𝑘 · 1

1 − (1 − 𝑝 )2 =

(1 − 𝑝 )𝑘 · 𝑝2

(1 − 1 + 𝑝 ) (1 + 1 − 𝑝 ) =

(1 − 𝑝 )𝑘 · 𝑝

(2 − 𝑝 ) =

1 − 𝑒−𝜀𝑔𝑒𝑜
1 + 𝑒−𝜀𝑔𝑒𝑜 · 𝑒

−𝜀𝑔𝑒𝑜𝑘
[let 𝑝 = 1 − 𝑒−𝜀𝑔𝑒𝑜 ]

(36)

The difference between 𝑋 and 𝑌 can also be negative:

P[𝑋 − 𝑌 = −𝑘 ] =
+∞∑︁

𝑖=−∞
P[𝑋 = 𝑘 ] · P[𝑌 = 𝑖 + 𝑘 ] =

+∞∑︁
𝑖=0

𝑝 (1 − 𝑝 )𝑖+𝑘 · 𝑝 (1 − 𝑝 )𝑖 =

1 − 𝑒−𝜀𝑔𝑒𝑜
1 + 𝑒−𝜀𝑔𝑒𝑜 · 𝑒

−𝜀𝑔𝑒𝑜𝑘
[as in (36)]

(37)

□

Next, let us prove why the noise added by the mechanism when

nobody truncates can be described by the Symmetric Generalized

Discrete Laplace distribution [28].

Proposition 6. Let 𝑋 be an integer dataset with 𝑛 users and 𝛿 ∈
(0, 1]. Then:

P

[
Geo-Shuffle(𝜀geo, 𝛿, 𝑛) =

∑︁
𝑥∈𝑋
(𝑥 + 𝑐) + 𝑁𝑡𝑜𝑡𝑎𝑙

]
≥ 1 − 𝛿

2

(38)

where 𝑁𝑡𝑜𝑡𝑎𝑙 ∼ 𝑆𝐺𝐷𝐿(𝑛, 𝑒−𝜀geo ).

Proof. We again consider the case where nobody truncates their

output, which happens w.p. 1 − 𝛿
2
(Proposition 2).

Recall that shuffling unary bits is privacy-wise equivalent to

revealing their sum (Proposition 1). Let G denote the geometric

distribution and 𝑁𝑡𝑜𝑡𝑎𝑙 denote the noise added by the mechanism.

We are going to show that𝑁𝑡𝑜𝑡𝑎𝑙 follows the Symmetric Generalized

Discrete Laplace distribution.

From Claim B.1, 𝑁𝑡𝑜𝑡𝑎𝑙 will be :

𝑁𝑡𝑜𝑡𝑎𝑙 =

𝑛∑︁
𝑖=1

[
G(𝑥𝑖 , 1 − 𝑒−𝜀𝑔𝑒𝑜 ) − G(𝑥𝑖 , 1 − 𝑒−𝜀𝑔𝑒𝑜 )

]
(39)

It is well known that the Negative-Binomial distribution can rep-

resent the sum of i.i.d. random variables that follow the geometric

distribution:

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝐵(𝑛, 1 − 𝑒−𝜀𝑔𝑒𝑜 ) − 𝑁𝐵(𝑛, 1 − 𝑒−𝜀𝑔𝑒𝑜 ) (40)

The difference of two i.i.d. Negative Binomial random variables

with the same parameters, (𝑛, 𝑝) can be expressed as the symmetric

Generalized Discrete Laplace distribution (SGDL) with parameters

(𝑛, 1 − 𝑝)[28]. Hence:
𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑆𝐺𝐷𝐿(𝑛, 𝑒−𝜀𝑔𝑒𝑜 ) (41)

□

We continue by proving the privacy of the Symmetric General-

ized Discrete Laplace distribution.

Theorem B.1. Let 𝑎 = −
𝑙𝑛 ( 𝛿

4
· [ (1−𝑝 )2
(1−𝑝𝑒𝑡 ) (1−𝑝𝑒−𝑡 ) ]

−𝛽 )
𝑡

and 𝑡 = 2 · 𝜀√
𝑛

and a distance 𝑑𝑋 . The Symmetric Generalized Discrete Laplace Dis-
tribution (𝑛, 𝑒−𝜀𝑔𝑒𝑜 ) is (𝜀, 𝛿

2
) - 𝑑𝑋 - private, with 𝜀 =

𝑙𝑛 (𝑔 (−𝛼,𝑑𝑋 ) )
𝑑𝑋

,
where:

𝑔(𝑟, 𝑑𝑋 ) =𝑚𝑎𝑥{ℎ(𝑟, 𝑑𝑋 ), 1

ℎ (𝑟,𝑑𝑋 ) }, and

ℎ(𝑟, 𝑑𝑋 ) =
∑∞
𝑘=|𝑟 | (𝛽+𝑘−1𝑘 ) (𝛽+𝑘−|𝑟 |−1𝑘−|𝑟 | )𝑝𝑘𝑝𝑘−|𝑟 |∑∞

𝑘=|𝑟−𝑑𝑋 |
(𝛽+𝑘−1𝑘 ) (

𝛽+𝑘−|𝑟−𝑑𝑋 |−1
𝑘−|𝑟−𝑑𝑋 |

)𝑝𝑘𝑝𝑘−|𝑟−𝑑𝑋 |

Proof. Let𝑌 ∼ 𝑆𝐺𝐷𝐿(𝛽, 𝑝) with the following Probability Mass

Function:

P(𝑌 =𝑚) = (1 − 𝑝)2·𝛽 ∑∞
𝑘=|𝑚 |

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−|𝑚 |−1
𝑘−|𝑚 |

)
𝑝𝑘𝑝𝑘−|𝑚 |

Let 𝑡 = 2 · 𝜀𝑔𝑒𝑜√
𝑛
. Also let:

𝑃
[
𝑆𝐺𝐷𝐿(1/𝑛, 𝑒−𝜀 ) ∉ [−𝑐, 𝑐]

]
≤ 𝛿

𝑎 = −
𝑙𝑛( 𝛿

4
· [ (1−𝑝 )2
(1−𝑝𝑒𝑡 ) (1−𝑝𝑒−𝑡 ) ]

−𝛽 )
𝑡

(42)
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The moment generating function of SGDL(𝑝, 𝛽) is [28]:

𝑀𝑦 (𝑡) =
[ (1 − 𝑝)2
(1 − 𝑝𝑒𝑡 ) (1 − 𝑝𝑒−𝑡 )

]𝛽
, −𝑙𝑜𝑔𝑝 < 𝑡 < 𝑙𝑜𝑔𝑝

Applying the Chernoff Bound yields the inequality:

𝑃 (𝑌 ≥ 𝑎) ≤ 𝑒−𝑡𝑎𝑀𝑌 (𝑡) =

𝑒−𝑡𝑎 [ (1 − 𝑝)2
(1 − 𝑝𝑒𝑡 ) (1 − 𝑝𝑒−𝑡 ) ]

𝛽 =
𝛿

4

(43)

Let 𝐼 := [−𝑎, 𝑎]. By Chernoff’s Bound, for every𝑌 ∼ 𝑆𝐺𝐷𝐿(𝛽, 𝑝):

P(𝑌 ≥ 𝑎) ≤ 𝛿
4

Because SGDL is even, also:

P(𝑌 ≤ −𝑎) ≤ 𝛿
4

Hence P(𝑌 ∉ 𝐼 ) ≤ 𝛿
2
.

Consider now two datasets, 𝑋 and 𝑋 ′ that have a distance of

𝑑𝑋 (𝑋,𝑋 ′). It will be more convenient to assume, w.l.o.g. that for

some 𝑥 , the sum of 𝑋 is ⌊𝑥 − 𝑑𝑋
2
⌋ and the sum of 𝑋 ′ is ⌊𝑥 + 𝑑𝑋

2
⌋.

Note that we have to use the floor function to make the sum be an

integer, since both datasets contain only integer numbers.

∀𝑊 ⊂ Z we have:

P[𝑆𝐺𝐷𝐿(𝑋 ) ∈𝑊 ] = P[𝑆𝐺𝐷𝐿(𝑋 ) ∈𝑊 ∩ 𝑆𝐺𝐷𝐿(𝑋 ) ∈ 𝐼 ]+
P[𝑆𝐺𝐷𝐿(𝑋 ) ∈𝑊 ∩ 𝑆𝐺𝐷𝐿(𝑋 ) ∉ 𝐼 ] ≤

P[𝑆𝐺𝐷𝐿(𝑋 ) ∈ 𝐼 ] + 𝛿
2

(44)

For every 𝑟 ∈ 𝐼 ∩𝑊 , let us calculate the following ratio:

P[⌊𝑟 − 𝑑𝑋
2
⌋ = 𝑆𝐺𝐷𝐿(𝛽, 𝑝)]

P[⌊𝑟 + 𝑑𝑋
2
⌋ = 𝑆𝐺𝐷𝐿(𝛽, 𝑝)]

=

∑∞
𝑘=| ⌊𝑟− 𝑑𝑋

2
⌋ |

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−| ⌊𝑟− 𝑑𝑋
2
⌋ |−1

𝑘−| ⌊𝑟− 𝑑𝑋
2
⌋ |

)
𝑝𝑘𝑝𝑘−| ⌊𝑟−

𝑑𝑋
2
⌋ |

∑∞
𝑘=⌊ |𝑟+𝑑𝑋

2
| ⌋

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−⌊ |𝑟+𝑑𝑋
2
| ⌋−1

𝑘−⌊ |𝑟+𝑑𝑋
2
| ⌋

)
𝑝𝑘𝑝𝑘−⌊ |𝑟+

𝑑𝑋
2
| ⌋

(45)

Wewould like to find the proper values of 𝜀 that satisfy the following

inequality:

(45) ≤ 𝑒𝜀 ·𝑑 (46)

Note that the inverse ratio should also be calculated, because,

depending on 𝑑𝑋 , it could be larger. We are looking to find an upper

bound, hence we are interested in the maximum of these two ratios.

Let us denote

ℎ(𝑟, 𝑑𝑋 ) = (45) (47)

and

𝑔(𝑟, 𝑑𝑋 ) =𝑚𝑎𝑥{ℎ(𝑟, 𝑑𝑋 ),
1

ℎ(𝑟, 𝑑𝑋 )
} (48)

Note that the function ℎ also depends on 𝛽 and 𝑝 which we omit

for notational convenience. For the remainder of this section we

will hence write ℎ(𝑟, 𝑑𝑋 ) and not ℎ(𝑟, 𝑑𝑋 , 𝑝, 𝛽). For the same reason

we write 𝑔(𝑟, 𝑑) and not 𝑔(𝑟, 𝑑𝑋 , 𝑝, 𝛽). We will however retain the

form𝑔(𝑟, 𝑑𝑋 , 𝑝, 𝛽) in the statement of Theorem 4.1 to help the reader

understand the relationship between the variables without referring

to the proof.

Then we have the following theorem:

Theorem B.2. Let 𝑑𝑋 ≥ 1, 𝛽 ≥ 1 and 0 < 𝑝 < 1. Then, for any fixed
𝑑𝑋 , 𝑔(𝑟, 𝑑𝑋 ) as a function of r has the following behavior:
(1) If 𝑑𝑋 is even, 𝑔(𝑟, 𝑑𝑋 ) is monotonically increasing for 𝑟 ≥ 0. If 𝑑𝑋
is odd, 𝑔(𝑟, 𝑑𝑋 ) is monotonically increasing for 𝑟 ≥ 1

(2) If 𝑑𝑋 is even, 𝑔(𝑟, 𝑑𝑋 ) is symmetric w.r.t. the axis 𝑥 = 0. If 𝑑𝑋 is
odd, 𝑔(𝑟, 𝑑𝑋 ) is symmetric w.r.t. the axis 𝑟 = 1/2.
(3) if 𝑑𝑋 is even then 𝑔(𝑟, 𝑑𝑋 ) has its minimum in 𝑟 = 0 and 𝑔(0, 𝑑) =
1.
If 𝑑𝑋 is odd then 𝑔(0, 𝑑𝑋 ) and 𝑔(1, 𝑑𝑋 ) are the minima.

Proof follows in Appendix B below.

From Theorem B.2 we can immediately conclude that 𝑔 has a

maximum value in [−𝑎, 𝑎] of 𝑔(−𝛼,𝑑𝑋 ).
(45) ≤ 𝑔(−𝛼,𝑑𝑋 ) (49)

Hence the privacy loss of SGDL will be:

𝜀 =
𝑙𝑛 (𝑔 (−𝛼,𝑑𝑋 ) )

𝑑𝑋

□

Recall that the probability of each user reporting a value outside

of [−𝑐, 𝑐] is bounded by
𝛿
2
, as proved in Proposition 2. For that

reason it sufficed to study the privacy (using 𝜀 and the remaining
𝛿
2
)

in the case where no user has to truncate his output. Since this noise

is described by SGDL, the problem reduced to showing that the

SGDL distribution with parameters (𝑛, 𝑒−𝜀𝑔𝑒𝑜 ) is (𝜀, 𝛿
2
) 𝑑𝑋 - private.

Hence we are now ready to prove the privacy of the Geo-Shuffle

Mechanism:

Theorem 4.1. Let 𝛿 ∈ (0, 1]. The Geo-Shuffle(𝜀geo, 𝛿, 𝑛) mechanism
is (𝜀, 𝛿)- 𝑑𝑋 - private, with:

𝜀 =max

𝑑𝑋

𝑙𝑛(𝑔(−𝛼,𝑑𝑋 (𝑋,𝑋 ′), 𝑒−𝜀geo , 𝑛))
𝑑𝑋 (𝑋,𝑋 ′)

(5)

where

𝑔 (𝑟, 𝑑, 𝑒−𝜀geo , 𝑛) =max{ℎ (𝑟, 𝑑, 𝑒−𝜀geo , 𝑛), 1

ℎ (𝑟, 𝑑, 𝑒−𝜀geo , 𝑛) }

ℎ (𝑟,𝑑, 𝑝, 𝑛) =

∑∞
𝑘=| ⌊𝑟− 𝑑

2
⌋ |

(𝑛+𝑘−1
𝑘

) (𝑛+𝑘−|⌊𝑟− 𝑑
2
⌋ |−1

𝑘−|⌊𝑟− 𝑑
2
⌋ |

)
𝑝𝑘𝑝𝑘−|⌊𝑟−

𝑑
2
⌋ |)

∑∞
𝑘=| ⌊𝑟+𝑑

2
⌋ |

(𝑛+𝑘−1
𝑘

) (𝑛+𝑘−|⌊𝑟+𝑑
2
⌋ |−1

𝑘−|⌊𝑟+𝑑
2
⌋ |

)
𝑝𝑘𝑝𝑘−|⌊𝑟+

𝑑
2
⌋

𝑡 = 2 ·
𝜀geo√
𝑛

𝑝 = 𝑒−𝜀geo

𝛼 = −
ln( 𝛿

4
· [ (1−𝑝 )2
(1−𝑝𝑒𝑡 ) (1−𝑝𝑒−𝑡 ) ]

−𝑛 )
𝑡

Proof. From Theorems 2 and B.1 we can conclude that the Geo-

Shuffle mechanism will be (𝜀, 𝛿) metric private with:

𝜀 =
𝑙𝑛(𝑔(−𝛼,𝑑𝑋 ))

𝑑𝑋
(50)

After conducting numerous experiments (presented in the end

of Appendix B) we see that 𝑑𝑋 = 1 maximizes the ratio. We can

hence conclude that:

𝜀 = ln(𝑔(−𝛼, 1))

□

In the rest of this appendix, we include the missing proof of

Theorem B.2. Before proving Theorem B.2 we will prove that:
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Theorem B.3. If 𝑟 ≥ 𝑑𝑋 /2. 𝑟, 𝑑𝑋 ∈ 𝑁 and 𝛽 ≥ 1, 0 < 𝑝 < 1 and

𝑓 (𝑟, 𝑑𝑋 ) =

∑∞
𝑘=⌊𝑟− 𝑑𝑋

2
⌋
(𝛽+𝑘−1𝑘 ) (

𝛽+𝑘−⌊𝑟− 𝑑𝑋
2
⌋−1

𝑘−⌊𝑟− 𝑑𝑋
2
⌋
)𝑝𝑘𝑝𝑘−⌊𝑟−

𝑑𝑋
2
⌋)

∑∞
𝑘=⌊𝑟+𝑑𝑋

2
⌋
(𝛽+𝑘−1𝑘 ) (

𝛽+𝑘−⌊𝑟+𝑑𝑋
2
⌋−1

𝑘−⌊𝑟+𝑑𝑋
2
⌋
)𝑝𝑘𝑝𝑘−⌊𝑟+

𝑑𝑋
2
⌋

then, (1) : 𝑓 (𝑟, 𝑑𝑋 ) ≥ 1 for all 𝑟, 𝑑𝑋 as above and (2) 𝑓 (𝑟, 𝑑𝑋 ) is
monotonically increasing in r.

Proof. First of all, we note that 𝑓 (𝑟, 𝑑𝑋 ) is well defined, as the
summations in the numerator and denominator both converge.

This is because 𝑝 < 1, the term 𝑝𝑘 eventually vanishes, even when

multiplied by the combinatorial factors. We will show that it is

sufficient to prove the theorem only for 𝑑𝑋 = 1. In fact, 𝑓 (𝑟, 𝑑𝑋 ) is
of the form

𝜙 (𝑟−𝑑𝑋 )
𝜙 (𝑟 ) , and:

𝜙 (𝑟−𝑑𝑋 )
𝜙 (𝑟 ) =

𝜙 (𝑟−𝑑𝑋 )
𝜙 (𝑟−(𝑑𝑋 −1) ) ·

𝜙 (𝑟−(𝑑𝑋 −1) )
𝜙 (𝑟−(𝑑𝑋 −2) . . .

𝜙 (𝑟−1)
𝜙 (𝑟 )

Furthermore, if we prove (2) for every 𝑟 ≥ 𝑑𝑋 (and 𝑑 = 1) then it

is sufficient to prove (1) for 𝑑𝑋 = 1 and 𝑟 = 1.

We will now prove (1) for 𝑑𝑋 = 1 and 𝑟 = 1. We start with the

following observation:

Remark B.4. If 𝑎, 𝑏 ≥ 0 and 𝑎
𝑏
≥ 𝑐

𝑑𝑋
≥ 𝑏

𝑎
then 𝑎

𝑏
≥ 1

Proof. Immediate:
𝑎
𝑏
≥ 𝑏

𝑎
→ 𝑎2 ≥ 𝑏2 since 𝑎, 𝑏 ≥ 0, we can

conclude. □

Now, let us rewrite 𝑓 (1, 1) in a more convenient form:

𝑓 (1, 1) =
∑∞
𝑘=0

(𝛽+𝑘−1
𝑘

)
·
(𝛽+𝑘−1

𝑘

)
𝑝2𝑘∑∞

𝑘=1

(𝛽+𝑘−1
𝑘

)
·
(𝛽+𝑘−2
𝑘−1

)
𝑝2𝑘−1

=

(∑∞
𝑘=1

(𝛽+𝑘−1
𝛽−1

)
·
(𝛽+𝑘−2
𝛽−1

)
𝑝2𝑘 · 𝛽+𝑘−1

𝑘
) + 1∑∞

𝑘=1

(𝛽+𝑘−1
𝛽−1

)
·
(𝛽+𝑘−2
𝛽−1

)
𝑝2𝑘−1

≥

∑∞
𝑘=1

(𝛽+𝑘−1
𝛽−1

)
·
(𝛽+𝑘−2
𝛽−1

)
𝑝2𝑘 · 𝛽+𝑘−1

𝑘∑∞
𝑘=1

(𝛽+𝑘−1
𝛽−1

)
·
(𝛽+𝑘−2
𝛽−1

)
𝑝2𝑘

=

∑∞
𝑘=0

(𝛽+𝑘
𝛽−1

)
·
(𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘 · 𝛽+𝑘

𝑘+1∑∞
𝑘=0

(𝛽+𝑘
𝛽−1

)
·
(𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

= A (51)

Analogously we have:

1

𝑓 (1,1) =

∑∞
𝑘=0 (𝛽+𝑘−1𝛽−1 ) (𝛽+𝑘−1𝛽−1 )𝑝2𝑘 𝛽+𝑘

1+𝑘 𝑝∑∞
𝑘=0 (𝛽+𝑘−1𝛽−1 ) (𝛽+𝑘−1𝛽−1 )𝑝2𝑘

= B

□

By Remark B.4, it is sufficient to show that 𝐴 ≥ 𝐵. We note

that A and B are both convex sums of the same monotonically

non-increasing function of 𝑘 . Namely:

𝐴 =
∑∞
𝑘=0

𝑐𝑘𝜙 (𝑘) and

𝐵 =
∑∞
𝑘=0

𝑑𝑘𝜙 (𝑘)
where:

𝑐𝑘 =
(𝛽+𝑘𝛽−1) (𝛽+𝑘−1𝛽−1 )𝑝2𝑘∑∞

𝑘=0 (𝛽+𝑘𝛽−1) (𝛽+𝑘−1𝛽−1 )𝑝2𝑘

𝑑𝑘 =
(𝛽+𝑘−1𝛽−1 ) (𝛽+𝑘−1𝛽−1 )𝑝2𝑘∑∞

𝑘=0 (𝛽+𝑘−1𝛽−1 ) (𝛽+𝑘−1𝛽−1 )𝑝2𝑘

the 𝑐𝑘 ’s and 𝑑𝑘 ’s are convex coefficients, in the since that ∀𝑘 𝑐𝑘 ≥ 0

and

∑∞
𝑘=0

𝑐𝑘 = 1

The same holds for all the 𝑑𝑘 ’s.

Furthermore, 𝜙 (𝑘) = 𝛽+𝑘
1+𝑘 𝑝 is monotonically non increasing in 𝑘 .

The next of the proof follows from the next two lemmata:

Lemma B.5. If
∑𝑛
𝑘=0

𝑐𝑘 ≥
∑𝑛
𝑘=0

𝑑𝑘 ∀𝑚, with 𝑐𝑘 , 𝑑𝑘 being convex
coefficients and 𝜙 (𝑘) is monotonically non increasing and 𝜙 (𝑛),∑𝑛
𝑘=0

𝑐𝑘𝜙 (𝑘) and
∑𝑛
𝑘=0

𝑑𝑘𝜙 (𝑘), converge in 𝑛 then
∑𝑛
𝑘=0

𝑐𝑘𝜙 (𝑘) ≥∑𝑛
𝑘=0

𝑑𝑘𝜙 (𝑘)

Proof. Let us recall Abel’s transformation (discrete version of

integration by parts):

𝑁∑︁
𝑘=0

𝑎𝑘𝑏𝑘 = 𝑎𝑁𝐵𝑁 −
𝑁−1∑︁
𝑛=0

𝐵𝑛 (𝑎𝑛+1 − 𝑎𝑛),when 𝐵𝑛 =

𝑛∑︁
𝑘=0

𝑏𝑘 (52)

Let us define 𝐶𝑛 =
∑𝑛
𝑘=0

𝑐𝑘 and 𝐷𝑛 =
∑𝑛
𝑘=0

𝑑𝑛 .

By Abel’s transformation we have:

𝑁∑︁
𝑘=0

𝑐𝑘𝜙 (𝑘) = 𝜙𝑁𝐶𝑁 +
𝑁−1∑︁
𝑛=0

𝐶𝑛 (𝜙 (𝑛) − 𝜙 (𝑛 − 1)), and (53)

𝑁∑︁
𝑘=0

𝑑𝑘𝜙 (𝑘) = 𝜙𝑁𝐷𝑁 +
𝑁−1∑︁
𝑛=0

𝐷𝑛 (𝜙 (𝑛) − 𝜙 (𝑛 − 1)) (54)

Hence:

𝑁∑︁
𝑘=0

𝑐𝑘𝜙 (𝑘) −
𝑁∑︁
𝑘=0

𝑑𝑘𝜙 (𝑘) =

𝜙 (𝑁 )𝐶𝑁 − 𝜙 (𝑛)𝐷𝑁 +
𝑁−1∑︁
𝑛=0

(𝐶𝑛 − 𝐷𝑛) (𝜙 (𝑛) − 𝜙 (𝑛 + 1)) (55)

And for 𝑛 →∞:
∞∑︁
𝑘=0

𝑐𝑘𝜙 (𝑘) −
∞∑︁
𝑘=0

𝑐𝑘𝜙 (𝑘) =

𝜙 (∞)𝑐∞ − 𝜙 (∞)𝐷∞ +
∞∑︁
𝑛=0

(𝐶𝑛 − 𝐷𝑛) (𝜙 (𝑛) − 𝜙 (𝑛 + 1)) =

𝜙 (∞) − 𝜙 (∞) +
∞∑︁
𝑛=0

(𝐶𝑛 − 𝐷𝑛) (𝜙 (𝑛) − 𝜙 (𝑛 + 1)) ≥

0 because 𝐶𝑛 − 𝐷𝑛 ≥ 0 and 𝜙 (𝑛) − 𝜙 (𝑛 + 1) ≥ 0 (56)

Lemma B.6. If 𝜙 (𝑘) is monotonically non-increasing function, and∑𝑛
𝑘=0

𝑎𝑘 ,
∑𝑛
𝑘=0

𝑎𝑘𝜙 (𝑘) converge in 𝑛, then for all 𝑛 ≥ 0:∑𝑛
𝑘=0

𝑎𝑘𝜙 (𝑘)∑∞
𝑘=0

𝑎𝑘𝜙 (𝑘)
≥

∑𝑛
𝑘=0

𝑎𝑘∑∞
𝑘=0

𝑎𝑘
(57)

Proof. It is sufficient to show that, for all n,m with𝑚 ≥ 𝑛, we
have: ∑𝑛

𝑘=0
𝑎𝑘𝜙 (𝑘)∑𝑚

𝑘=0
𝑎𝑘𝜙 (𝑘)

≥
∑𝑛
𝑘=0

𝑎𝑘∑𝑚
𝑘=0

𝑎𝑘
(58)

To prove the latter, observe that the denominators are positive

and:

𝑛∑︁
𝑘=0

𝑎𝑘𝜙 (𝑘)
𝑚∑︁
𝑖=0

𝑎𝑖 =

𝑛∑︁
𝑘=0

𝑎𝑘𝜙 (𝑘)
𝑛∑︁
𝑖=0

𝑎𝑖 +
𝑛∑︁
𝑘=0

𝑎𝑘𝜙 (𝑘)
𝑚∑︁

𝑖=𝑛+1
𝑎𝑖 (59)
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𝑛∑︁
𝑘=0

𝑎𝑘

𝑚∑︁
𝑖=0

𝑎𝑖𝜙 (𝑖) =
𝑛∑︁
𝑘=0

𝑎𝑘

𝑛∑︁
𝑖=0

𝑎𝑖𝜙 (𝑖) +
𝑛∑︁
𝑘=0

𝑎𝑘

𝑚∑︁
𝑖=𝑛+1

𝑎𝑖𝜙 (𝑖) (60)

□

Furthermore:

𝑛∑︁
𝑘=0

𝑎𝑘𝜙 (𝑘)
𝑛∑︁
𝑖=0

𝑎𝑖 =

𝑛∑︁
𝑘=0

𝑎𝑘

𝑛∑︁
𝑖=0

𝑎𝑖𝜙 (𝑖) (61)

while:

𝑛∑︁
𝑘=0

𝑎𝑘𝜙 (𝑘)
𝑚∑︁

𝑖=𝑛+1
𝑎𝑖 ≥

𝑚∑︁
𝑘=0

𝑎𝑘

𝑚∑︁
𝑖=𝑛+1

𝑎𝑖𝜙 (𝑖) (62)

because 𝜙 (𝑘) ≥ 𝜙 (𝑖), ∀𝑘 ∈ {0, . . . , 𝑛}∀𝑖 ∈ {𝑛 + 1, . . . ,𝑚}

Let 𝑎𝑘 =
(𝛽+𝑘−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘 and 𝜙 (𝑘) = 𝛽+𝑘

1+𝑘 𝑝

. We have 𝑐𝑘 =
𝑎𝑘𝜙 (𝑘 )∑∞

ℎ=0
𝑎ℎ𝜙 (ℎ)

and 𝑑𝑘 =
𝑎𝑘∑∞

ℎ=0
𝑎ℎ

and 𝑐𝑘 , 𝑑𝑘 , 𝜙 (𝑘) and 𝑎𝑘
satisfy the conditions of lemmata 1 and 2, hence we can conclude

the proof of (1), since we shown that 𝐴 ≥ 𝐵 □

We will now prove (2), namely that 𝑓 (𝑟, 1) is monotonically

increasing in r.

Proof. Let us start by rewriting 𝑓 (𝑟, 1) in a more convenient

form:

𝑓 (𝑟, 1) =
∑∞
𝑘=𝑟−1

(𝛽+𝑘−1
𝛽−1

) (𝛽+𝑘−(𝑟−1)−1
𝛽−1

)
𝑝2𝑘−(𝑟−1)∑∞

𝑘=𝑟

(𝛽+𝑘−1
𝛽−1

) (𝛽+𝑘−𝑟−1
𝛽−1

)
𝑝2𝑘−𝑟

=∑∞
𝑘=1

(𝛽+𝑘+𝑟−2
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘+1 +

(𝛽+𝑟−2
𝛽−1

)
𝑝∑∞

𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

=

∑∞
𝑘=0

(𝛽+𝑘−𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘+3 𝛽+𝑘

1+𝑘 +
(𝛽+𝑟−2
𝛽−1

)
𝑝∑∞

𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

(63)

It is sufficient to show that:

(a) the function

𝑔(𝑟 ) =
∑∞
𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

𝛽+𝑘
1+𝑘∑∞

𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

(64)

is not decreasing in r. and:

(b) the function:

ℎ(𝑟 ) =
(𝛽+𝑟−2
𝛽−1

)∑∞
𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

(65)

is not decreasing in r.

Let us start with (a). We will show that 𝑔(𝑟 + 1) ≥ 𝑔(𝑟 ). We note

that:

𝑔(𝑟 + 1) =
∑∞
𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

𝛽+𝑘+𝑟
1+𝑘+𝑟

𝛽+𝑘
1+𝑘∑∞

𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

𝛽+𝑘+𝑟
1+𝑘+𝑟

(66)

By applying Lemma 1 and Lemma 2, we can conclude. □

We will now show (b).

Proof. To do this, it is equivalent to show that 𝑝 (𝑟 ) ≥ 𝜇 (𝑟 )
when:

𝑝 (𝑟 ) =
(𝛽+𝑟−1
𝛽−1

)(𝛽+𝑟−2
𝛽−1

) and 𝜇 (𝑟 ) =
∑∞
𝑘=0

(𝛽+𝑘+𝑟
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘∑∞

𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

(67)

We have that: 𝑝 (𝑟 ) = 𝛽+𝑟−1
𝑟

and:

𝜇 (𝑟 ) =
∑∞
𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

𝛽+𝑘+𝑟
1+𝑘+𝑟∑∞

𝑘=0

(𝛽+𝑘+𝑟−1
𝛽−1

) (𝛽+𝑘−1
𝛽−1

)
𝑝2𝑘

(68)

Hence 𝜇 (𝑟 ) has the form of

∑∞
𝑘=0

𝑐𝑘
𝛽+𝑘+𝑟
1+𝑘+𝑟 , when the 𝑐′

𝑘
𝑠 are convex

coefficients. Since
𝛽+𝑘+𝑟
1+𝑘+𝑟 ≤

𝛽+𝑟−1
𝑟

This concludes the proof. □

Now let us prove Theorem B.2 by expanding Theorem B.3.

Let us consider the following ratio:

ℎ (𝑟,𝑑𝑋 ) =

∑∞
𝑘=| ⌊𝑟− 𝑑𝑋

2
⌋ |

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−|⌊𝑟− 𝑑𝑋
2
⌋ |−1

𝑘−|⌊𝑟− 𝑑𝑋
2
⌋ |

)
𝑝𝑘𝑝𝑘−|⌊𝑟−

𝑑𝑋
2
⌋ |)

∑∞
𝑘=| ⌊𝑟+𝑑𝑋

2
⌋ |

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−|⌊𝑟+𝑑𝑋
2
⌋ |−1

𝑘−|⌊𝑟+𝑑𝑋
2
⌋ |

)
𝑝𝑘𝑝𝑘−|⌊𝑟+

𝑑𝑋
2
⌋

(69)

and the function:

𝑔 (𝑟,𝑑𝑋 ) =𝑚𝑎𝑥 {ℎ (𝑟, 𝑑𝑋 ),
1

ℎ (𝑟,𝑑𝑋 )
} (70)

We want to study the behavior of 𝑔 (𝑟, 𝑑𝑋 ) for all values of 𝑟 . Let us restate
the theorem:

Theorem B.2. Let 𝑑𝑋 ≥ 1, 𝛽 ≥ 1 and 0 < 𝑝 < 1. Then, for any fixed 𝑑𝑋 ,
𝑔 (𝑟,𝑑𝑋 ) as a function of r has the following behavior:
(1) If 𝑑𝑋 is even, 𝑔 (𝑟, 𝑑𝑋 ) is monotonically increasing for 𝑟 ≥ 0. If 𝑑𝑋 is odd,
𝑔 (𝑟,𝑑𝑋 ) is monotonically increasing for 𝑟 ≥ 1

(2) If 𝑑𝑋 is even, 𝑔 (𝑟,𝑑𝑋 ) is symmetric w.r.t. the axis 𝑥 = 0. If 𝑑𝑋 is odd,
𝑔 (𝑟,𝑑𝑋 ) is symmetric w.r.t. the axis 𝑟 = 1/2.
(3) if 𝑑𝑋 is even then 𝑔 (𝑟,𝑑𝑋 ) has its minimum in 𝑟 = 0 and 𝑔 (0, 𝑑 ) = 1.
If 𝑑𝑋 is odd then 𝑔 (0, 𝑑𝑋 ) and 𝑔 (1, 𝑑𝑋 ) are the minima.

Proof. Before we present the proof, it is worth showing a plot in Figure

7 that illustrates the behavior of 𝑔 (𝑟,𝑑𝑋 ) depending on whether 𝑑𝑋 is even

or odd:

Figure 7: Behavior of 𝑔(𝑟, 𝑑𝑋 ) for an even d and an odd d with

𝛽 = 100, 𝑝 = 0.81

To show how the symmetry changes depending on whether 𝑑𝑋 is even

or 𝑑𝑋 is odd, we present in Figure 8 the values of 𝑔 (𝑟,𝑑𝑋 ) only when
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−5 ≤ 𝑟 ≤ 5. Observe that for even values of 𝑑𝑋 the axis of symmetry is

𝑟 = 0 but for an odd 𝑑𝑋 the axis of symmetry is at 𝑟 = 0 or 𝑟 = 1.

Figure 8: Symmetry of 𝑔(𝑟, 𝑑𝑋 ) with 𝛽 = 100, 𝑝 = 0.81

For notation convenience let:

𝐶1(𝛽, 𝑘 ) =
(
𝛽 + 𝑘 − 1

𝑘

)
𝐶2(𝛽, 𝑘, 𝑟 ) =

(
𝛽 + 𝑘 − 𝑟 − 1

𝑘 − 𝑟

)
𝑃1(𝑘 ) = 𝑝𝑘

𝑃2(𝑘, 𝑟 ) = 𝑝𝑘−𝑟 (71)

First we prove (1). Let us begin with the case where 𝑑𝑋 is even. We

consider the following two cases:

a) 𝑟 ≥ 𝑑𝑋 /2. In this case ℎ (𝑟, 𝑑𝑋 ) = 𝑓 (𝑟,𝑑𝑋 ) and (1) follows from

Theorem B.3

b) 0 ≤ 𝑟 < 𝑑𝑋 /2: We have:

ℎ (𝑟, 𝑑𝑋 )

=

∑
𝑘=𝑑𝑋 /2−𝑟 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘,𝑑𝑋 /2 − 𝑟 ), ·𝑃1(𝑘 ) · 𝑃2(𝑘,𝑑𝑋 /2 − 𝑟 )∑
𝑘=𝑟+𝑑𝑋 /2𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, 𝑟 + 𝑑𝑋 /2), ·𝑃1(𝑘 ) · 𝑃2(𝑘, 𝑟 + 𝑑𝑋 /2)

= 𝑓 (𝑑𝑋 /2, 2𝑟 ) .
(72)

Theorem B.3 can be directly applied because 𝑑𝑋 /2 ≥ 2𝑟
2

Now let us examine the case where d is odd:

a) 𝑟 ≥ 𝑑𝑋 /2. Again in this case (1) follows from Theorem B.3

b) 1/2 ≤ 𝑟 < 𝑑𝑋 /2:
ℎ (𝑟, 𝑑𝑋 )

=

∑
𝑘=

𝑑𝑋 +1
2
−𝑟
𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, 𝑑𝑋 +1

2
− 𝑟 ), ·𝑃1(𝑘 ) · 𝑃2(𝑘, 𝑑𝑋 +1

2
− 𝑟 )∑

𝑘=𝑟+𝑑𝑋 −1
2

𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, 𝑟 + 𝑑𝑋 −1
2
), ·𝑃1(𝑘 ) · 𝑃2(𝑘, 𝑟 + 𝑑𝑋 −1

2
)

= 𝑓 (𝑑𝑋 /2, 2𝑟 − 1) .
(73)

Theorem B.3 can be applied because 𝑑𝑋 /2 ≥ 2𝑟−1
2

since 𝑟 ≤ 𝑑𝑋 +1
2

We will now prove (2). Let us begin with the case where d is even.

Being symmetric w.r.t. 𝑥 = 0 means that, if
𝑟+𝑟 ′
2

= 0, which means that if

𝑟 = −𝑟 ′ , then 𝑔 (𝑟, 𝑑𝑋 ) = 𝑔 (𝑟 ′, 𝑑𝑋 )

a)For 𝑟 ≤ −𝑑𝑋 /2. In this case:

ℎ (𝑟,𝑑𝑋 ) =

∑
𝑘=𝑑𝑋 /2−𝑟 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘,𝑑𝑋 /2 − 𝑟 ), ·𝑃1(𝑘 ) · 𝑃2(𝑘,𝑑𝑋 /2 − 𝑟 )∑

𝑘=−𝑟−𝑑𝑋 /2𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, −𝑟 − 𝑑𝑋 /2), ·𝑃1(𝑘 ) · 𝑃2(𝑘, −𝑟 − 𝑑𝑋 /2)
=∑

𝑘=𝑑𝑋 /2+𝑟 ′ 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘,𝑑𝑋 /2 + 𝑟
′ ), ·𝑃1(𝑘 ) · 𝑃2(𝑘,𝑑𝑋 /2 + 𝑟 ′ )∑

𝑘=𝑟 ′−𝑑𝑋 /2𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, 𝑟
′ − 𝑑𝑋 /2), ·𝑃1(𝑘 ) · 𝑃2(𝑘, 𝑟 ′ − 𝑑𝑋 /2)

=

1

ℎ (𝑟 ′, 𝑑𝑋 )
=

1

𝑓 (𝑟 ′, 𝑑𝑋 )
≤ 1

from part (1), case a, of the proof and Theorem B.3

(74)

b)For −𝑑𝑋 /2 ≤ 𝑟 ≤ 0. In this case:

ℎ (𝑟,𝑑𝑋 ) =∑
𝑘=𝑑𝑋 /2−𝑟 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘,𝑑𝑋 /2 − 𝑟 ), ·𝑃1(𝑘 ) · 𝑃2(𝑘,𝑑𝑋 /2 − 𝑟 )∑
𝑘=𝑟+𝑑𝑋 /2𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, 𝑟 + 𝑑𝑋 /2), ·𝑃1(𝑘 ) · 𝑃2(𝑘, 𝑟 + 𝑑𝑋 /2)

=∑
𝑘=𝑟 ′+𝑑𝑋 /2𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, 𝑟

′ + 𝑑𝑋 /2), ·𝑃1(𝑘 ) · 𝑃2(𝑘, 𝑟 ′ + 𝑑𝑋 /2)∑
𝑘=𝑑𝑋 /2−𝑟 ′ 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘,𝑑𝑋 /2 − 𝑟

′ ), ·𝑃1(𝑘 ) · 𝑃2(𝑘,𝑑𝑋 /2 − 𝑟 ′ )
=

1

𝑓 (𝑑𝑋 /2, 2𝑟 ′ )
≤ 1 from part (1), case b, of the proof and Theorem B.3 (75)

Now for odd values of d, the symmetry is at the axis 𝑥 = 1/2, hence 𝑟+𝑟 ′
2

= 1

2
,

thus 𝑟 = 1 − 𝑟 ′ .
Remark B.7. If 𝑑 ∈ 𝑁 is odd and 𝑟 + 𝑟 ′ = 1 where 𝑟, 𝑟 ′ ∈ 𝑍 , then:

| ⌊𝑟 − 𝑑/2⌋ | = | ⌊𝑟 ′ + 𝑑/2⌋ |
| ⌊𝑟 + 𝑑/2⌋ | = | ⌊𝑟 ′ − 𝑑/2⌋ |

Proof. Let us formally define the outputs of the floor function:

⌊𝑟 − 𝑑/2⌋ =𝑚 where m is defined as:𝑚𝑎𝑥𝑖 (𝑚𝑖 ∈ 𝑍 |𝑚𝑖 <
5𝑟 − 𝑑/2)

⌊𝑟 + 𝑑/2⌋ = 𝑛 where n is defined as:𝑚𝑎𝑥𝑖 (𝑛𝑖 ∈ 𝑍 |𝑛𝑖 < 𝑟 + 𝑑/2)

Also let:

⌊𝑟 ′ − 𝑑/2⌋ =𝑚′ where𝑚′ is defined as:𝑚𝑎𝑥𝑖 (𝑚′𝑖 ∈ 𝑍 |𝑚′𝑖 < 𝑟 ′ − 𝑑/2)
⌊𝑟 ′ + 𝑑/2⌋ = 𝑛′ where 𝑛′ is defined as:𝑚𝑎𝑥𝑖 (𝑛′𝑖 ∈ 𝑍 |𝑛′𝑖 < 𝑟 ′ + 𝑑/2)

We will show that |𝑛′ | = |𝑚 | :
Since 𝑟 + 𝑟 ′ = 1 and 𝑟, 𝑟 ′ ∈ 𝑍 , one of 𝑟, 𝑟 ′ must be positive and the other must be

negative, or zero. First, let us examine the later.

W.l.o.g. assume that 𝑟 = 0 and 𝑟 ′ = 1:

|𝑛′ | = 𝑛′ = ⌊1 + 𝑑/2⌋
and:

|𝑚 | = −𝑚 = −⌊−𝑑/2⌋ = |𝑛′ |

Similarly we can prove that |𝑛′ | = |𝑚 |
Now, w.l.o.g assume that 𝑟 is negative and 𝑟 ′ is positive.

|𝑛′ | = 𝑛′ = ⌊𝑟 ′ + 𝑑/2⌋ =𝑚𝑎𝑥𝑖 (𝑛′𝑖 ∈ 𝑍 |𝑛′𝑖 < 𝑟 ′ + 𝑑/2) =
𝑚𝑎𝑥𝑖 (𝑛′𝑖 ∈ 𝑍 |𝑛′𝑖 < 1 + 𝑑/2 − 𝑟 )

Also:

|𝑚 | = −𝑚 = −⌊𝑟 − 𝑑/2⌋ = −𝑚𝑎𝑥𝑖 (𝑚′𝑖 ∈ 𝑍 | −𝑚′𝑖 < 𝑟 − 𝑑/2)

Hence𝑚 will be equal to the previous integer before 𝑟 −𝑑/2 and thus |𝑚 | will be equal
to the next integer after 𝑑/2 − 𝑟 . On the other hand, |𝑛′ | will be equal to the previous

integer before 1 + 𝑑/2 − 𝑟 . Since (𝑑/2 − 𝑟 ) ∉ 𝑍 between 𝑑/2 − 𝑟 and 1 + 𝑑/2 − 𝑟
there is exactly one integer which is equal to |𝑚 | and |𝑛′ | .
Similarly we can prove that |𝑚′ | = |𝑛 | . □

Based on this remark, if 𝑟 < 1/2:

ℎ (𝑟, 𝑑 ) =
∑

𝑘=|𝑚 | 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, |𝑚 | ), ·𝑃1(𝑘 ) · 𝑃2(𝑘, |𝑚 | )∑
𝑘=|𝑛 | 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, |𝑛 | ), ·𝑃1(𝑘 ) · 𝑃2(𝑘, |𝑛 | )

=∑
𝑘=|𝑛′ | 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, |𝑛′ | ), ·𝑃1(𝑘 ) · 𝑃2(𝑘, |𝑛′ | )∑

𝑘=|𝑚′ | 𝐶1(𝛽, 𝑘 ) · 𝐶2(𝛽, 𝑘, |𝑚′ | ), ·𝑃1(𝑘 ) · 𝑃2(𝑘, |𝑚′ | )
=

1

ℎ (𝑟 ′, 𝑑 ) ≤ 1 from part (1) of the proof (76)

5
In the actual definition of the floor function, the inequality is not strict. But since

(𝑟 − 𝑑/2) ∉ 𝑍 , and (𝑟 + 𝑑/2) ∉ 𝑍 we can use a strict inequality in our definitions.
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Hence we have proven that for any value of d: 𝑔 (𝑟,𝑑 ) = ℎ (𝑟 ′, 𝑑 ) = 𝑔 (𝑟 ′, 𝑑 ) .

We now prove (3).

When d is even, g(r,d) is symmetric w.r.t. 𝑟 = 0 from (a) and (b) we have that 𝑔 (𝑟,𝑑 )
is monotonically decreasing for 𝑟 < 0 and monotonically increasing for 𝑟 > 0. If d

is odd, the axis of symmetry is 𝑟 = 1/2, so the points of minimum are the integers

immediately before and immediately after 1/2, namely 𝑟 = 0 and 𝑟 = 1.

□

Finally, we will experimentally show that Equation (50) maximizes when

𝑑𝑋 = 1.

Let 𝐾 (𝑟, 𝑑 ) = 𝑙𝑛 (𝑔 (𝑟,𝑑 ) )
𝑑

. Note that 𝐾 (𝑟,𝑑 ) is a discrete function and

depends on 𝑔, hence its output again depends on whether d is even or

odd. Let us begin by showing in Figure 9 what happens at the maximum

possible value of 𝑟 = −1, assuming 𝑛 = 100 users running the Geo-Shuffle
mechanism with 𝜀𝑔𝑒𝑜 = 0.2.

Figure 9: Behavior of 𝐾 (−1, 𝑑) when 𝑛 = 100, 𝜀𝑔𝑒𝑜 = 0.2

The top line indicates the behavior when 𝑑 is odd and the bottom line

when 𝑑 is even. Both lines show a decrease wrt 𝑑 . Hence either K(-1,1) or

K(-1,2) will be the maximum value. Observe that K(-1,1) > K(-1,2).

Now let us examine in Figure 10 what happens for smaller values of 𝑟 ,

keeping the same parameters for Geo-Shuffle.

Figure 10: Behavior of 𝐾 (𝑟, 𝑑), for multiple values of 𝑟 when

𝑛 = 100, 𝜀𝑔𝑒𝑜 = 0.2

We can observe the same behavior as in the previous plot,𝐾 (𝑟, 𝑑 ) seems

to be monotonically decreasing wrt d. Moreover let us increase 𝜀geo to 0.8

in Figure 11.

Figure 11: Behavior of 𝐾 (𝑟, 𝑑), for multiple values of 𝑟 when

𝑛 = 100, 𝜀𝑔𝑒𝑜 = 0.8

In this plot, our hypothesis is even more clear. Lastly, we also show in

Figure 12 a plot with 𝑛 = 10000. Here the lines are clearly more flat and the

alleged behavior is less easily observable.

Figure 12: Behavior of 𝐾 (𝑟, 𝑑), for multiple values of 𝑟 when

𝑛 = 10000, 𝜀𝑔𝑒𝑜 = 0.8

Moreover, we would like to discuss this observation using the plots

of Figure 2 and Figure 7. First in Figure 2 the PMF of SGDL is shown;

we can observe that the ratio of probabilities between two points with

distance 𝑑 increases (at most) sub-exponentially. The natural logarithm

of this ratio therefore grows slower than 𝑑 . For instance let us consider

the blue dotted line, which represents the case of SGDL(10,0.5). Observe

that 𝑃 [𝑆𝐺𝐷𝐿 (10, 0.5) = 0] ≈ 0.065 and 𝑃 [𝑆𝐺𝐷𝐿 (10, 0.5) = 10] ≈ 0.01,

making the natural logarithm of this ratio equal to≈ 1.87, much smaller than

the distance which is 𝑑 = 10. The same observation can be made in the red

dotted line where 𝑃 [𝑆𝐺𝐷𝐿 (50, 0.8) = 0] ≈ 0.009 and 𝑃 [𝑆𝐺𝐷𝐿 (50, 0.8) =
50] ≈ 0.005; the natural logarithm of this ratio is much smaller than 𝑑 = 50.
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Another useful plot is Figure 7; increasing d by 1 slightly increases the

ratio. This increase is by itself smaller than the increase in d, even without

considering its natural logarithm.

C Metric Privacy of the SGDL-Shuffle

Lemma C.1. Let 𝑛 users executing SGDL-Shuffle, with each user 𝑖 sampling
noise 𝑁𝑖 ∼ 𝑆𝐺𝐷𝐿 (1/𝑛, 𝑒−𝜀 ) , with 𝛿 ∈ (0, 1] and :

𝑐 =

⌈𝑢 (1 − 𝑒−𝜀 )
𝑛

⌉
, where

𝑢 = 1 +
√︁
𝑤 (𝑤 − 4) − 𝑤

2

𝑤 = 2𝑛 · ln
(
1 − 𝑛
√
1 − 𝛿
2

)
Then:

1 −
𝑛∏
𝑖=1

P
[
𝑁𝑖 ∈ [−𝑐, 𝑐 ]

]
≤ 𝛿

Proof. Recall that the 𝑆𝐺𝐷𝐿 (𝑏, 𝑝 ) distribution is the difference be-

tween two Negative Binomial Distributions with parameters 𝑏 and 1 − 𝑝
[28]. Observe that in SGDL, one Negative Binomial random variable bounds

the positive noise and the other the negative noise. Hence it will be easier

to find a tail bound for the Negative Binomial distribution.

If 𝑌 ∼ 𝑁𝐵 (𝑏,𝑞) , we can directly apply a standard theorem [15] (p. 6) on

the Negative Binomial Distribution to get, for any 𝑢 > 1:

P[𝑌 > 𝑢𝑏𝑞 ] ≤ exp( −𝑢𝑏 (1 − 1/𝑢 )2
2

) (77)

But due to the relationship between SGDL and NB: 𝑏 = 1/𝑛 and 𝑞 = 1− 𝑒−𝜀 .
Let

𝐵 = exp( −𝑢 (1 − 1/𝑢 )2
2𝑛

) (78)

If 𝑐 =
𝑢 (1−𝑒−𝜀 )

𝑛
, the probability that all 𝑛 users sample noise in the interval

[−𝑐, 𝑐 ] is (1 − 2𝐵)𝑛 .

Thus we need to show that:

1 − (1 − 2𝐵)𝑛 ≤ 𝛿
1 − 𝛿 ≤ (1 − 2𝐵)𝑛
𝑛
√
1 − 𝛿 − 1 ≤ −2𝐵

𝐵 ≤ 1 − 𝑛
√
1 − 𝛿
2

−𝑢 (1 − 1/𝑢 )2
2𝑛

≤ ln

(
1 − 𝑛
√
1 − 𝛿
2

)
−𝑢 (1 + 1/𝑢2 − 2/𝑢 ) ≤ 2𝑛 · ln

(
1 − 𝑛
√
1 − 𝛿
2

)
−𝑢 − 1/𝑢 + 2 ≤ 2𝑛 · ln

(
1 − 𝑛
√
1 − 𝛿
2

)

Let:

𝑤 = 2𝑛 · ln
(
1 − 𝑛
√
1 − 𝛿
2

)
We need to solve the inequality:

𝑢2 + (𝑤 − 2)𝑢 + 1 ≥ 0

which yields:

1 −
𝑤 +

√︁
𝑤 (𝑤 − 4)
2

≤ 𝑢 ≤ 1 +
√︁
𝑤 (𝑤 − 4) − 𝑤

2

(79)

Because 𝑢 > 1, we select:

𝑢 = 1 +
√︁
𝑤 (𝑤 − 4) − 𝑤

2

(80)

Finally we use the ceiling function to ensure that 𝑐 is an integer, as 𝑐 will

be used in our mechanism to represent a number of bits. □

Because we did not consider at all the input dataset:

Corollary 2. The probability that at least one user of SGDL-Shuffle (𝜀, 𝛿, 𝑛)
truncates their input is at most 𝛿 , regardless of the input dataset.

Now we can prove the privacy of SGDL-Shuffle:

Theorem 5.1. For any 𝛿 ∈ (0, 1] SGDL-Shuffle (𝜀, 𝛿, 𝑛) is (𝜀, 𝛿 ) - 𝑑𝑋 -
private.

Proof. Since we have ensured, using 𝛿 , that every user reports a value in

[−𝑐, 𝑐 ], we can just study the case when nobody has to truncate (calculating
the upper bound probability i.e. without taking into account their secret

𝑥 ), using Proposition 3. We set 𝐻 as the event that nobody truncates, 𝐾 as

the SGDL-Shuffle mechanism and 𝑀 as the special case of SGDL-Shuffle

where nobody truncates, 𝛿1 = 𝛿 (Lemma C.1) and 𝛿2 = 0. Note that 𝐻 does

not depend on the input dataset (Corollary 2).

We are going to argue that the total noise of SGDL-Shuffle, in that special

no-truncation case, is the same as the one of the Geo-Central mechanism.

The analyst is able to view only the sum of the users’ reported values as

only a shuffled version of their bits is released to her (Proposition 1). This

sum can be described by a random variable that follows 𝑆𝐺𝐷𝐿 (1, 𝑒−𝜀 ) . In
turn, this is equal to the difference between two random variables sampled

from the geometric distribution with parameter 1 − 𝑒−𝜀 . From Claim B.1,

in Section B, this is equal to Geo-Central (the geometric mechanism in the

central model) which is 𝜀 metric private, as discussed in Section 4. Thus,

the noise produced by the two mechanisms under this scenario (nobody

truncating) can be described using the same distribution.

Using Proposition 3 we can conclude that the SGDL-Shuffle mechanism

is (𝜀, 𝛿 ) metric private in every case (somebody truncating or not).

□

C.1 SGDL in the local model

Let us restate the theorem:

Theorem 7.2. SGDL-Shuffle(𝜀𝑆 , 𝛿, 𝑛), is (𝜀𝐿 ,𝛿) - 𝑑𝑥 - private, in the local
model, with:

𝜀𝐿 =max

𝑑𝑥

ln(𝑔 (0, 𝑑𝑥 (𝑥, 𝑥 ′ ), 𝑒−𝜀𝑆 , 1/𝑛) )
𝑑𝑥 (𝑥, 𝑥 ′ )

(8)

for the function 𝑔 as defined in Theorem 4.1.

Proof. We are going to use the same approach as in Theorem B.1.

Consider two elements 𝑥 and 𝑥 ′ that belong to a dataset𝑋 with distance

𝑑𝑥 (𝑥, 𝑥 ′ ) = 𝑑 . It will be more convenient to assume, w.l.o.g. that for any

𝑟 ∈ Z s.t. 𝑟 is the central point in the interval [𝑥, 𝑥 ′ ]: 𝑥 = ⌊𝑟 − 𝑑
2
⌋ and

𝑥 ′ = ⌊𝑟 + 𝑑
2
⌋. Note that we have to use the floor function since we consider

datasets which contain only integers.

Recall the Probability Mass Function of the SGDL distribution:

P(𝑌 =𝑚) = (1 − 𝑝 )2·𝛽 ∑∞
𝑘=|𝑚 |

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−|𝑚 |−1
𝑘−|𝑚 |

)
𝑝𝑘𝑝𝑘−|𝑚 |

Moreover, recall the function ℎ (𝑟, 𝑑 ) from Theorem B.1:

ℎ (𝑟, 𝑑 ) =
P[ ⌊𝑟 − 𝑑

2
⌋ = 𝑆𝐺𝐷𝐿 (𝛽, 𝑝 ) ]

P[ ⌊𝑟 + 𝑑
2
⌋ = 𝑆𝐺𝐷𝐿 (𝛽, 𝑝 ) ]

=

∑∞
𝑘=| ⌊𝑟− 𝑑

2
⌋ |

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−|⌊𝑟− 𝑑
2
⌋ |−1

𝑘−|⌊𝑟− 𝑑
2
⌋ |

)
𝑝𝑘𝑝𝑘−|⌊𝑟−

𝑑
2
⌋ |

∑∞
𝑘=⌊ |𝑟+𝑑

2
|⌋

(𝛽+𝑘−1
𝑘

) (𝛽+𝑘−⌊|𝑟+𝑑
2
|⌋−1

𝑘−⌊|𝑟+𝑑
2
|⌋

)
𝑝𝑘𝑝𝑘−⌊|𝑟+

𝑑
2
|⌋

(81)
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Note that the function ℎ also depends on 𝛽 and 𝑝 (where in SGDL-Shuffle

𝛽 = 1/𝑛 and 𝑝 = 𝑒−𝜀𝑆 ), which we omit for notational convenience. For the

remainder of this section we will hence write ℎ (𝑟, 𝑑 ) and not ℎ (𝑟, 𝑑, 𝑝, 𝛽 ) .
In order to prove metric privacy, we have to bound the ratio of probabil-

ities to observe two events that differ by 𝑑 . Hence, we would like to find

the values of 𝜀𝐿 that satisfy the following inequality:

(81) ≤ 𝑒𝜀𝐿 ·𝑑 (82)

Note that the inverse ratio should also be calculated, because, depending

on 𝑑 , it could be larger. We are looking to find an upper bound, hence we

are interested in the maximum of these two ratios.

Let:

𝑔 (𝑟,𝑑 ) =𝑚𝑎𝑥 {ℎ (𝑟, 𝑑 ), 1

ℎ (𝑟, 𝑑 ) } (83)

We now need to find a value for 𝑟 and 𝑑 that maximize 𝜀𝐿 =
ln(𝑔 (𝑟,𝑑 ) )

𝑑
.

Note that 𝑔 depends on ℎ which in turn depends on the parameters

𝑟,𝑑, 𝛽, 𝑝 . Since we have set 𝛽 = 1/𝑛 and 𝑝 = 𝑒−𝜀𝑆 , we are only interesting

in finding the proper values for 𝑟, 𝑑 . Hence we omit writing 𝑔 (𝑟,𝑑, 𝑝, 𝛽 ) and
we use the simpler form of 𝑔 (𝑟, 𝑑 ) . However we retain the form 𝑔 (𝑟, 𝑑, 𝑝, 𝛽 )
in the statement of Theorem 7.2 in order to help the reader understand the

relationship between the variables without referring to the proof.

In Theorem B.1, recall that |𝑔 (𝑟,𝑑 ) | was monotonically increasing func-

tion wrt 𝑟 , therefore, it was necessary to utilize 𝛿 in order to find 𝑟 .

However now the choice is simpler, since the fact that 𝛽 < 1, makes

|𝑔 (𝑟,𝑑 ) | a monotonically decreasing function wrt 𝑟 (Figure 13 and Fig-

ure 14); we can simply take 𝑟 = 0 as the maximum. In fact, 𝑔 (𝑟,𝑑 ) has the
same value for every 𝑟 ∈ {−𝑑, . . . , 0}. Proof is analogous to the proof of

Theorem B.1.

Figure 13: 𝑔(𝑟, 𝑑) function for 𝛽 = 0.01 when 𝑑 = 1

Figure 14: 𝑔(𝑟, 𝑑) function for 𝛽 = 0.001 when 𝑑 = 1

Similarly to Geo-Shuffle, one might directly take 𝑑𝑥 = 1 and calculate:

𝜀𝐿 = ln(𝑔 (0, 1, 𝑒−𝜀𝑆 , 1/𝑛) ) (84)

□

D Compositionality

The output of the location data experiments of Section 6 will be a composi-

tion of two mechanisms, one for each dimension. The following theorem

allows us to find the privacy of the composition:

Theorem D.1. Let mechanisms𝑀1, 𝑀2 : R→ R be (𝜀, 𝛿 )- 𝑑R-private. Then
their composition𝑀 =𝑀1 ×𝑀2 : R2 → R2 is (𝜀, 2𝛿 )- | | · | |1-private. In other
words, for all locations 𝑥, 𝑥 ′ ∈ R2 and 𝑆 ⊆ R2 we have:

P[𝑀 (𝑥 ) ∈ 𝑆 ] ≤ 𝑒𝜀 | |𝑥−𝑥 ′ | |1 P[𝑀 (𝑥 ′ ) ∈ 𝑆 ] + 2𝛿 . (85)

Proof. Let us simplify the notation and denote:

𝑃𝑖 = PM𝑖
[𝑦𝑖 ∈ 𝑆𝑖 |𝑥𝑖 ]

𝑃 ′𝑖 = PM𝑖

[
𝑦𝑖 ∈ 𝑆𝑖 |𝑥 ′𝑖

]
for 𝑖 ∈ {1, 2}. As mechanismsM1 andM2 are applied independently, we

have:

PM
1
,M

2
[ (𝑦1, 𝑦2 ) ∈ 𝑆1 × 𝑆2 | (𝑥1, 𝑥2 ) ] = 𝑃1 .𝑃2 (86)

PM
1
,M

2

[
(𝑦1, 𝑦2 ) ∈ 𝑆1 × 𝑆2 | (𝑥 ′1, 𝑥 ′2 )

]
= 𝑃 ′

1
.𝑃 ′

2
(87)

Therefore, we obtain:

PM
1
,M

2
[ (𝑦1, 𝑦2 ) ∈ 𝑆1 × 𝑆2 | (𝑥1, 𝑥2 ) ] = 𝑃1 .𝑃2

≤
(
min

(
1 − 𝛿, 𝑒𝜀 𝑑 (𝑥1,𝑥 ′1 )𝑃 ′

1

)
+ 𝛿

)
×

(
min

(
1 − 𝛿, 𝑒𝜀 𝑑 (𝑥2,𝑥 ′2 )𝑃 ′

2

)
+ 𝛿

)
≤ 𝑚1𝑚2 + 𝛿𝑚2 +𝑚1𝛿 + 𝛿2[

where𝑚𝑖 =min

(
1 − 𝛿, 𝑒𝜀 𝑑 (𝑥𝑖 ,𝑥 ′𝑖 )𝑃 ′𝑖

)]
≤ 𝑒𝜀 𝑑 (𝑥1,𝑥 ′1 )𝑃 ′

1
𝑒𝜀 𝑑 (𝑥2,𝑥

′
2
)𝑃 ′

2

+𝛿 (1 − 𝛿 ) + (1 − 𝛿 )𝛿 + 𝛿2

= 𝑒𝜀 𝑑 (𝑥1,𝑥
′
1
)+𝜀 𝑑 (𝑥

2
,𝑥 ′
2
)𝑃 ′

1
𝑃 ′
2

+𝛿 − 𝛿2 + 𝛿 − 𝛿2 + 𝛿2

≤ 𝑒𝜀 | |𝑥−𝑥 ′ | |1

×PM
1
,M

2

[
(𝑦1, 𝑦2 ) ∈ 𝑆1 × 𝑆2 | (𝑥 ′1, 𝑥 ′2 )

]
+2𝛿 (88)

□
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Note that the results of Sections 3, 4.1 and 5 gives us privacy wrt | | · | |1.
However, the standard notion of geo-indistinguishability considers | | · | |2.
The well-known inequality | |𝑥 | |1 ≤ | |𝑥 | |2 ·

√
2, 𝑥 ∈ R2

, however, gives us

the following result:

Proposition 7. If 𝑀 : R2 → R2 satisfies (𝜀, 𝛿 ) - | | · | |1 - privacy then it
also satisfies (𝜀

√
2, 𝛿 ) - | | · | |2 - privacy.

Using the above results, to achieve (𝜀, 𝛿 ) - | | · | |2 - privacy, we can apply

any mechanism to each dimension with
𝜀√
2

and
𝛿
2
.

E Additional Experiments

In this section we include additional experiments with varying parameters

and utility metrics, which are missing from Section 6.

E.1 First experiment: Synthetic Data

Figure 15: Experiment 1: 𝜀 = 0.1, 𝛿 = 10
−4
, UtilityMetric: Mean

Absolute Error

Figure 16: Experiment 1: 𝜀 = 0.2, 𝛿 = 10
−3
, UtilityMetric: Mean

Absolute Error

Figure 17: Experiment 1: 𝜀 = 0.3, 𝛿 = 10
−4
, UtilityMetric: Mean

Absolute Error

Figure 18: Experiment 1: 𝜀 = 0.2, 𝛿 = 10
−4
, Utility Metric: Root

Mean Square Error

Figure 19: Experiment 1: 𝜀 = 0.1, 𝛿 = 10
−4
, Utility Metric:

Relative Error
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Figure 20: Experiment 1: 𝜀 = 0.5, 𝛿 = 10
−2
, UtilityMetric: Mean

Absolute Error

Figure 21: Experiment 1: 𝜀 = 0.2, 𝛿 = 10
−4
, Boxplot , Utility

Metric: Mean Absolute Error

E.2 Second experiment: Location Data

First, we show in Figure 22 amap of the addresses (blue dots) that we used on

the location data experiment. Observe that the addresses are concentrated

in the center of the city. We repeat the experiment using only the addresses

of those who live in the suburbs
6
. We therefore name this dataset Dispersed

Data.

6
We omit users whose latitude ∈ [30.16737, 30.45908] and longitude ∈
[−97.877248, −97.627248]

Figure 22: Map of addresses (blue dots) in Austin, Texas.

Figure 23: Experiment 2: 𝜀 = 0.1, 𝛿 = 10
−4
, size of grid

1000x1000 squares and privacy radius of 𝑟 = 600 meters. Util-

ity Metric: Euclidean Distance

Figure 24: Experiment 2: 𝜀 = 0.2, 𝛿 = 10
−4
, size of grid 500x500

squares and privacy radius of 𝑟 = 600meters. Utility Metric:

Euclidean Distance
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Figure 25: Experiment 2: 𝜀 = 0.3, 𝛿 = 10
−4
, size of grid

1500x1500 squares and privacy radius of 𝑟 = 500 meters. Util-

ity Metric: Euclidean Distance

Figure 26: Experiment 2: 𝜀 = 0.2, 𝛿 = 10
−4
, size of grid

1000x1000 squares and privacy radius of 𝑟 = 300 meters. Dis-

persed Data. Utility Metric: Euclidean Distance

Figure 27: Experiment 2: 𝜀 = 0.1, 𝛿 = 10
−4
, size of grid

1000x1000 squares and privacy radius of 𝑟 = 600 meters. Util-

ity Metric: Manhattan Distance

Figure 28: Experiment 2: 𝜀 = 0.2, 𝛿 = 10
−4
, size of grid

1000x1000 squares and privacy radius of 𝑟 = 600 meters. Dis-

persed Data. Utility Metric: Manhattan Distance

F Concentration Inequalities

Theorem F.1 (Chernoff bound). If 𝑥1, . . ., 𝑥𝑛 are independent {0,1}-valued
random variables, each with mean 𝜇, then, for every 𝛽 > 0,

P[𝜇𝑛 − ∑
𝑥𝑖 <

√︃
2𝜇𝑛 log 1

𝛽
] ≥ 1 − 𝛽 and

P[∑𝑥𝑖 − 𝜇𝑛 <
√︃
3𝜇𝑛 log 1

𝛽
] ≥ 1 − 𝛽

Figure 29: Experiment 2: 𝜀 = 0.15, 𝛿 = 10
−4
, size of grid

1000x1000 squares and a privacy radius of 𝑟 = 600 meters.

Dispersed Data. Utility Metric: Euclidean Distance

Theorem F.2 (Hoeffding’s inequality). If 𝑥1, . . ., 𝑥𝑛 are independent random
variables, each with mean 𝜇 and bounded in (𝑎,𝑏 ) , then, for every 𝛽 > 0,

P
[
|∑𝑥𝑖 − 𝜇𝑛 | < (𝑏 − 𝑎)

√︃
1

2
𝑛𝑙𝑜𝑔 2

𝛽

]
> 1 − 𝛽

Theorem F.3 (Bernstein’s inequality). If 𝑥1, . . ., 𝑥𝑛 are independent random
variables, each with mean 0. bounded in [−1, 1], and 𝜎2 > 4

9𝑛
log

2

𝛽
then for

every 𝛽 > 0:

P
[
|∑𝑥𝑖 | < 2𝜎

√︃
𝑛 log 2

𝛽
> 1 − 𝛽

G Communication Cost

Here we explore the idea to use a bigger quantization value Q. We present in

Algorithm 8 a version of this approach
7
. The algorithm performs a euclidean

7
A similar approach for encoding bounded real values has been studied in [11].
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division of 𝑥 (the number to be encoded) with the granularity value Q get-

ting the quotient 𝑥𝑞 and the remainder 𝑥𝑟 . Then it outputs 𝑥𝑞 +𝐵𝑒𝑟 (𝑥𝑟 /Q)
ones, where the Bernoulli distribution is used to probabilistically round the

output.

Algorithm 8:UQ (𝑥, 𝑟 ): Unary encoding of x in r bits under

granularity Q
Input :𝑥 ∈ N, Q ∈ N, 𝑟 ∈ N, where 𝑥 ≤ 𝑟 · Q
Output : (𝑏1, . . . , 𝑏𝑟 ) ∈ {0, 1}𝑟
𝑥𝑞 ← 𝑥//Q (Quotient)

𝑥𝑟 ← 𝑥 mod Q (Remainder)

for 𝑗 = 1, . . . , 𝑟 do

b𝑗 =


1 𝑗 ≤ 𝑥𝑞
Ber(𝑥𝑟 /Q) 𝑗 = 𝑥𝑞 + 1
0 𝑗 > 𝑥𝑞 + 1

end

Return(𝑏1, . . . , 𝑏𝑟 )

This new unary encoding can substitute Algorithm 1 in the above mech-

anisms and the analyst can simply multiply the output by Q to get the final

result. If we assume a reasonably large 𝑟 (the size of the encoded vector),

then we can observe that summing the bits of the output of Algorithm 8

and multiplying them by Q is an unbiased estimator of the initial value 𝑥 :

E[Q (𝑥𝑞 + 𝐵𝑒𝑟 (𝑥𝑟 /𝑄 ) ) ] = Q · 𝑥𝑞 + 𝑥𝑟 = 𝑥

This approach however will decrease the metric privacy of the proposed

mechanisms. To see why, recall the example that we discussed in 4.1. Let us

take the example of a dataset where everybody holds a small value, say 𝑥𝑠 ,

but one outlier has a particular large value, say 𝑥𝐿 . Recall that applying an

obfuscation mechanism (which is metric private) will produce values close

to the initial ones with higher probability (unlike standard LDP). However,

if Q is the quantization value, setting𝑄 = 𝑥𝐿will make the user that holds

𝑥𝐿 to report 1 and every other user to report 0 (coming from 𝐵𝑒𝑟 (𝑥𝑠/𝑥𝐿)
of Algorithm 8) with very high probability. After shuffling these bits and

releasing them to the analyst, the analyst can confidently assume that the

bit "1" corresponds to someone actually having a large value close to 𝑥𝐿 .
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