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Abstract
This paper presents a novel method for generating differentially

private tabular datasets for hierarchical data, specifically focusing

on origin-destination (O/D) trips. The approach builds upon the

TopDown algorithm, a constraint-based mechanism developed by

the US Census to incorporate invariant queries into tabular data.

O/D hierarchical data refers to datasets representing trips between

geographical areas organized in a hierarchical structure (e.g., re-

gion → province → city). The proposed method is designed to

improve the accuracy of queries covering broader geographical ar-

eas, which are derived through aggregation. This feature provides

a “zoom-in” effect on the dataset, ensuring that when zoomed back

out, the overall picture is preserved. Furthermore, the approach

aims to reduce false positive detection. These characteristics can

strengthen practitioners’ and decision-makers’ confidence in adopt-

ing differential privacy datasets. The main technical contribution

of this paper includes a novel TopDown algorithm that employs

constrained optimization with Chebyshev distance minimization,

with theoretical guarantees on the maximum absolute error. Ad-

ditionally, we propose a new integer optimization algorithm that

significantly reduces the incidence of false positives. The effective-

ness of the proposed approach is validated using real-world and

synthetic O/D datasets, demonstrating its ability to generate private

data with high utility and a reduced number of false positives. Our

experiments focus on O/D datasets with a single trip as a unit of

privacy; nevertheless, the proposed approach supports other units

of privacy and also applies to any tabular data with a hierarchical

structure.
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1 Introduction
Origin-destination (O/D) data plays a crucial role in policy plan-

ning, especially in today’s context, where official statistical agencies

release detailed trip records. These records include origin and des-

tination areas, along with various trip attributes such as mode of

travel and trip purpose. These detailed data are important for a

wide range of planning purposes, from transportation planning

[23] to epidemic modeling [16], and are essential for understanding

and managing the flow of people and goods in various settings.
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65.480.464 OD pairs

Figure 1: The first three hierarchical levels of Italy, according to
ISTAT.

However, the release of mobility data poses significant privacy

risks. Individuals’ movement patterns can be sensitive informa-

tion, potentially revealing personal habits and frequented locations.

Differential Privacy (DP) [13] provides a rigorous solution to this

challenge. It involves introducing randomness to data in a con-

trolled manner, ensuring that the privacy of individuals in a dataset

is preserved while still allowing meaningful analysis. In this pa-

per, we focus on differentially private release of O/D trips with

a geographic hierarchy, focusing on obtaining a "zoom-in" effect

(which we call hierarchical accuracy) and reducing false positives.

We will focus on the case where each user contributes one trip and

specifically on bounded differential privacy [21], where the total

number of users is an invariant and does not change under DP.

The Geographic Hierarchy. A geographic hierarchy with 𝑔 levels

can be represented as a tree that captures the relationships between

these geographic levels. Each node in the tree corresponds to a

geographic area, while its children represent subareas into which

that area is divided. For example, the Italian Institute of Statistics

(ISTAT)
1
organizes Italy into a geographic hierarchy consisting of

regions, provinces, municipalities, section areas, and census sec-

tions (with the first three levels illustrated in Figure 1). The regions

represent the largest areas (level 1), and each unit at level 𝑗 is en-

tirely contained within exactly one unit at level 𝑗 − 1. An O/D

dataset of trips 𝐷 = {(𝑢𝑖 , 𝑣𝑖 )}𝑖=1,...,𝑛 , where 𝑢𝑖 , 𝑣𝑖 denote the origin

and destination at level 𝑔 of the user 𝑖 , enables practitioners to

compute marginal geographic queries. For example, given an O/D

dataset that contains trips between municipalities, it is possible to

derive flows (i.e., the number of O/D trips in the dataset) between

pairs of provinces or regions.

1
https://www.istat.it/it/archivio/222527
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Reducing False Positives. In the O/D dataset scenario, the basic

mechanism to ensure DP is the addition of Laplace or Gaussian

noise to all the O/D flows, regardless of the existence of a trip in

the data. However, since these datasets are typically sparse (e.g., for

trips between cities within a country, only a small subset of possible

trips is usually reported), this approach can result in a pathological

behavior of false positives, a phenomenon well-documented in the

literature [4, 9]. False positives in data analysis refer to instances

where there are O/D trips in the DP data, even though they were not

present in the real data. For sparse datasets, minimizing false posi-

tives is essential to preserve their inherent sparsity, ensuring that

the released dataset remains compact in size. Furthermore, reducing

false positives can improve confidence in adopting such solutions:

a dataset cluttered with numerous insignificant trips (with small

flows) is likely to be perceived as low quality by decision-makers,

even if the flow of false positive trips might not be statistically

significant.

The Hierarchical Accuracy. A geographic hierarchy enables prac-

titioners to aggregate differentially private noisy data flows to ob-

tain insights about broader geographic regions. However, this ap-

proach leads to a decrease in precision due to noise accumulation,

which significantly reduces the accuracy of the dataset at larger

scales. This outcome contrasts with the intuitive expectation that,

for general purpose private data, statistics become less accurate

as one “zooms-in” to smaller regions. One potential solution is to

generate multiple DP datasets, each tailored to a specific geographic

level. However, this approach has two major drawbacks: it requires

practitioners to manage multiple datasets, and the results derived

from these datasets may lack consistency. Therefore, there is a

clear need for a single tabular dataset that provides hierarchical

accuracy, offering higher precision for broader geographic regions

while maintaining consistency and usability.

Our goal is to derive a mechanism to release a unique O/D tabular

dataset �̃� at level 𝑔 with

(1) (Privacy) The dataset �̃� is (𝜖, 𝛿)-differentially private.

(2) (Hierarchical accuracy) The dataset �̃� has a "zoom-in" effect

on accuracy. Hence, it has higher accuracy for queries that

cover larger geographic areas compared to those covering

smaller areas
2
.

(3) (Reduce False Positives) The differentially private algorithm

is designed to reduce the occurrence of false positives.

Our algorithm InfTDA rigorously satisfies the first two points and

has been experimentally shown to reduce false positives in real and

synthetic data sets. InfTDA is built upon the TopDown Algorithm

(TDA) developed by the US Census [1] and used to publish the 2020

US census. The main idea of TDA is to use an iterative optimization

approach along the hierarchy to ensure hierarchical accuracy in

practice. InfTDA distinguishes itself from TDA through a modified

optimization approach and a specific focus on addressing false pos-

itives, which are effectively minimized using a heuristic integrated

into the optimization process.

2
In the sense that the estimates related to area A are more accurate than those related

to any area nested within A.

1.1 Our Results
Our algorithm InfTDA builds upon TDA with a key modification:

it uses the Chebyshev distance (which is the ℓ∞ distance, so the

name of our algorithm) as the objective function in the constrained

optimization problem, instead of the Euclidean distance in TDA. In-
tuitively, minimizing Chebyshev distance is simpler than Euclidean,

as the former can be minimized with a linear program. More im-

portantly, to the best of our knowledge, with this choice we are the

first to provide an upper bound for the utility of a TDA-like mecha-

nism
3
. Consequently, we propose IntOpt as an optimizer for the

Chebyshev distance that works entirely in the integer domain and is

designed with a heuristic to reduce false positives. Finally, we show

that any TDA-like algorithm works for a specific tree data structure

having some well-defined properties, which we call non-negative
hierarchical tree. With this generalization, we ensure the broad ap-

plicability of InfTDA to any tabular data that can be represented as

a non-negative hierarchical tree, making it highly generalizable
4
.

The main results of this paper are

(1) A demonstration that any O/D dataset can be parsed into

a non-negative hierarchical tree, and so it is suitable for a

TopDown algorithm.

(2) A theoretical analysis of the accuracy of InfTDA. The chosen
accuracy is the maximum absolute error at each level of the

hierarchy.

(3) We propose IntOpt, a fast integer-constrained optimization

algorithm that minimizes Chebyshev distance and includes

a heuristic to reduce false positives in practical scenarios.

We evaluated InfTDA using both real-world data (a dataset of O/D

commuting flows in Italy) and synthetic O/D data. The results show

that its utility is not worse than TDA while being faster, simpler, and

generates a dataset with fewer false positives. In contrast to TDA,
our InfTDA has a theoretical upper bound for the utility, which we

now informally show for O/D datasets.

Theorem 1 (Informal version of utility of InfTDA). Given
a O/D dataset with 𝑔 geographic levels. InfOPT with constant proba-
bility returns a differentially private tabular dataset, with maximum
absolute error at most �̃� (

√︁
ℓ3𝑔), for O/D flows with origin and desti-

nation at level ℓ ∈ {0, . . . , 𝑔}.

A more formal version for any non-negative hierarchical tree is

stated in Theorem 11.

1.2 Previous Work
Histogram in DP. Releasing a differentially private O/D dataset

is essentially equivalent to the release of differentially private his-

tograms, extensively explored in existing literature [25, 30, 31]. In

fact, 𝐷 = {(𝑢𝑖 , 𝑣𝑖 )}𝑖=1,...,𝑛 has a classical histogram representation

where each bin counts the occurrence of an O/D pair in 𝐷 . This can

be seen as a tabular representation with origin, destination, and

flow (i.e., counts) as columns. The main strategy involves adding

Laplace noise to achieve pure differential privacy, as detailed by

3
We intend any mechanism that uses an iterative optimization approach along a

hierarchy, regardless of the optimization or the differentially private mechanism used.

4
For example, in a healthcare dataset encompassing diseases and user characteristics,

a possible hierarchy might start with counts of diseases, segmented further by gender,

then by age groups, and so on.
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Dwork et al. [13], or incorporating Gaussian noise for approximate

differential privacy [5, 8]. The latter has found practical applica-

tion in the US Census [1] as Gaussian tail bounds provide a better

trade-off between privacy and outliers. These methods return an

unbiased estimator of the histogram, but are space-inefficient when

the histogram is sparse, as it is necessary to generate independent

noise for every count. To address this challenge, more sophisticated

algorithms have been developed specifically for sparse histograms.

The stability-based method [22, 26, 28] relies on thresholding pri-

vate counts, getting a biased estimator without false positives. For

the sensitivity one scenario, Desfontaines et al. [11] have developed

a mechanism that is optimal to reduce the number of false nega-

tives. A method to obtain an unbiased estimator of the histogram

has been developed by Cormode et al. [9] using priority sampling

at the price of increasing the expected error. Aumüller et al. [4]

developed a biased estimator for the counts that matches a lower

bound up to a constant factor. All the aforementioned approaches

return a differentially private histogram representation of𝐷 , mostly

by matching lower bounds for counts [28]. However, when range

queries are important (i.e., sum of counts), these mechanisms do

not offer strong upper bounds due to noise propagation.

Constrained Optimization. The pioneering study by Hay et al.

[19] was the first to observe that the accuracy of range queries in

differential privacy could be improved through a post-processing

stage involving constrained optimization. This was achieved using

the Hierarchical mechanism, which is based on the construction of a

tree of range queries. In this approach, the outputs of differentially

private queries are post-processed such that the result of each

query node is derived from an aggregation of the results from its

child nodes. The authors also provided an analytical solution to the

optimization problem, however it only applies to queries in the real

domain, which makes it not appropriate to release counts.

Fioretto et al. [15] further advanced the field, particularly for

mobility data, by developing the Constrained Based Differential

Private (CBDP) mechanism. This mechanism specifically addresses

the challenge of releasing mobility data with differential privacy,

particularly for On-Demand multi-modal transit systems. Building

upon the Hierarchical mechanism, CBDP enhances it by integrating

the non-negativity constraint (i.e., only positive flows are accepted;

negative flows may occur due to injection of randomness) and

generalizes it by allowing more general constraints than only hier-

archical ones. However, this involves solving a unique constrained

optimization problem with a potentially prohibitively large number

of variables and constraints, especially for O/D data.

The most significant utilization of constrained optimization has

been observed in the Disclosure Avoidance System TopDown al-

gorithm (which we called it TDA) implemented by the US Census

Bureau to publish the 2020 USA census data [1]. The goal of TDA
was to release population histograms, including ethnicity and age

distributions, for each census section while maintaining a fixed

number of people per state. To achieve this, the US Census Bureau

devised a TopDown algorithm that follows a geographic hierarchy

that they called geographic spine (Nations→ Regions→ Divisions

→ States → Counties etc.) [27]. Starting with the creation of a

differentially private tabulated dataset at the national level, the

TopDown approach then proceeds to process data for regions. To

ensure coherence, a constraint optimization problem is solved dur-

ing post-processing, aiming for the regional tabulated data to be

consistent with that of the nation. Essentially, the aggregated at-

tributes of the regions must align with the national attributes. The

process is repeated iteratively up to the final level of the geographic

spine, ending in the release of micro-data at the census section

level. The advantage of a TopDown approach is twofold: it splits

the optimization problem into many more feasible problems, and it

mimics the sparsity of the data. The latter advantage is an inherent

characteristic of the TopDown approach, as identifying false pos-

itives is more straightforward in large aggregated datasets. Once

an attribute is determined to not exist in a geographic area, it is

inferred that the same attribute will also be absent in any subdivi-

sion of that area. This inference avoids the introduction of noise in

these areas throughout the TopDown process.

Objective Function. All the previously discussed algorithms aim

to solve a constrained optimization problem by returning a vector

that is as close as possible to the differentially private estimate,

measured in terms of the Euclidean distance, referred to as the ℓ2
distance. Hay et al. [19] raised the possibility of minimizing the ℓ1
distance (the sum of absolute errors between the differentially pri-

vate estimate and the released vector). Since this approach does not

guarantee a unique solution, the authors chose the ℓ2 minimization,

as it ensures uniqueness. TDA uses a weighted non-negative least
squares optimization, meaning that a weight could be assigned to

each absolute error. In particular, the US Census opted to use the

inverse variance of the differentially private random variables as

weights. A similar weighted approach was used by Fioretto et al.

[15].

We chose to minimize the Chebyshev distance for two purposes: it

produces a simple integer constraint minimization problem, and

it gives theoretical guarantees. In contrast, TDA uses a complex

two-step optimization algorithm, first solving the problem in the

real space with convex optimization and then performing the best

integer rounding with linear programming.

1.3 Structure of the Paper
In Section 2, we introduce the core principles of differential privacy,

highlighting two key mechanisms: the Gaussian mechanism and

the Stability Histogram. Additionally, we define the non-negative

hierarchical tree. In Section 3, we define the notation used for the hi-

erarchical structure of O/D data, its reformulation as a non-negative

hierarchical tree, and the utility metric used in our analysis. The

tree reformulation is then used to formulate our algorithm InfTDA
in Section 4, making it of broad applicability. This is followed by

a theoretical analysis of InfTDA and the introduction of IntOpt,
an optimizer tailored to reduce false positives. The discussion con-

cludes in Section 5, which presents an experimental evaluation of

InfTDA compared to baselines and other TDA-like mechanisms on

real-world and synthetic datasets, highlighting the advantages of

the proposed methodology.
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2 Preliminaries
2.1 Differential Privacy
This section introduces the key concepts of differential privacy

relevant to this article. In our discussion, we focus on the notion of

privacy known as bounded [21]. In this framework, two datasets, 𝐷

and 𝐷 ′, are neighbors (that is, 𝐷 ∼ 𝐷 ′) if one can be obtained from

the other by substituting a single user. Thus, the name bounded

refers to the fact that neighboring datasets have a fixed size. In

contrast, within the framework of unbounded differential privacy

[21], two neighboring datasets may differ by either the addition

or removal of a single user, allowing their sizes to vary. In the

following, we present the formal definition of differential privacy.

Definition 1 (Differential Privacy (DP) [14]). Given 𝜀 > 0

and 𝛿 ∈ [0, 1). A randomizedmechanismM : D → R satisfies (𝜀, 𝛿)-
differential privacy if for any two neighboring datasets 𝐷 ,𝐷 ′ ∈ D
and for any subset of outputs 𝑆 ⊆ R it holds that

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀Pr[M(𝐷 ′) ∈ 𝑆] + 𝛿.
Another definition, which is more suitable to study the injection

of Gaussian noise (used in practical applications, such as that used in

the US Census release [1]) is zero-Concentrated Differential Privacy.
This definition provides a tighter analysis of the aforementioned

mechanism and yields simpler composition results.

Definition 2 (zero-Concentrated Differential Privacy

(zCDP)[7]). Given 𝜌 > 0. A randomized mechanismM : D → R
satisfies 𝜌-zCDP if for any two neighboring datasets 𝐷 ,𝐷 ′ ∈ D and
any 𝛼 > 1

𝐷𝛼 (M(𝐷)∥M(𝐷 ′)) ≤ 𝛼𝜌,

where 𝐷𝛼 (M(𝐷)∥M(𝐷 ′)) is the 𝛼-Rényi divergence.
Any 𝜌-zCDP mechanism satisfies also (𝜀, 𝛿)-DP.
Lemma 2 (From 𝜌-zCDP to (𝜀, 𝛿)-DP (Lemma 21 in [7])). Let

M : D → R satisfy 𝜌-zCDP. Then M satisfies (𝜀, 𝛿)-DP for all
𝛿 ∈ (0, 1) and

𝜀 = 𝜌 + 2

√︁
𝜌 log(1/𝛿) .

This lemma is useful for converting 𝜌-zCDP guarantees into

(𝜀, 𝛿)-DP, which are more commonly used in real-world applica-

tions. A significant benefit of employing differential privacy is its

resilience to privacy degradation, regardless of the application of

any post-processing functions.

Lemma 3 (Post-Process Immunity (Lemma 8 [7])). Let M :

D → R and 𝑓 : R → R′ be an arbitrary (also randomized) mapping.
SupposeM satisfies 𝜌-zCDP. Then 𝑓 ◦M : D → R′ satisfies 𝜌-zCDP.

This characteristic is crucial when data are released to practi-

tioners. If a dataset �̃� is generated using a differentially private

algorithm, then running any query on this dataset will not com-

promise its privacy. Another important property of differential

privacy is the composition of privacy budgets, which enables the

computation of differential privacy guarantees for the composition

of several private algorithms.

Lemma 4 (Composition (from Lemma 7 in [7])). LetM : D →
R andM′ : D → R′ be randomized algorithms. SupposeM satisfies
𝜌-zCDP andM′ satisfies 𝜌 ′-zCDP. DefineM′′ : D → R × R′ by
M′′ (𝑥) = (M(𝑥),M′ (𝑥)). ThenM′′ satisfies (𝜌 + 𝜌 ′)-zCDP.

Since O/D data can be visualized as a histogram covering all

possible O/D trips, we shift our focus to the release of histograms

under differential privacy. The histogram for a dataset X𝑛
, where

X denotes the data universe (e.g., all possible O/D pairs) and 𝑛 is

the number of users, is generated by a counting query 𝑞 : X𝑛 →
N |X | . This query outputs the absolute frequency of each row in the

dataset. A common paradigm for approximating these functions

with differentially private mechanisms is through additive noise
mechanisms calibrated to the 𝑝-global sensitivity GS𝑝 (𝑞) of the
function, which is defined as the maximum absolute ℓ𝑝 distance

GS𝑝 (𝑞) = sup

𝐷∼𝐷′
∥𝑞(𝐷) − 𝑞(𝐷 ′)∥𝑝 ,

where the sup is taken over two neighboring datasets. If a user

contributes at most to 𝑚 different trips in an O/D dataset then,

under bounded privacy, we have GS1 (𝑞) = 2𝑚 and GS2 (𝑞) =
√

2𝑚.
5

The first calibrates the additive noise from a Laplace distribution,

while the second calibrates the noise from a Gaussian distribution.

We now illustrate two mechanisms for the release of (𝜀, 𝛿)-DP
histograms.

2.1.1 Discrete Gaussian Mechanism. If the data universe X is finite

and known, we can achieve zCDP (so approximate DP due to Lemma

2) by adding Gaussian noise to each count.

Theorem 5 (Discrete Gaussian Mechanism [8]). Let 𝑞 : X𝑛 →
N |X | be a counting query. The discrete Gaussianmechanism applied to
a counting query 𝑞(𝐷) consisting of the injection of discrete Gaussian
noise

𝑞(𝐷) = 𝑞(𝐷) + 𝑍 𝑍 ∼ NZ

(
0,
GS2 (𝑞)2

2𝜌

) |X |
is 𝜌-zCDP.

The precision of the mechanism is not worse than that of its

continuous counterpart [7]

Corollary 6 (Corollary 9 [8]). Let𝑍 ∼ NZ (0, 𝜎2). ThenVar[𝑍 ] ≤
𝜎2 and Pr[𝑍 ≥ 𝑡] ≤ 𝑒−

𝑡2

2𝜎2 for any 𝑡 ≥ 0.

2.1.2 Stability-BasedHistogram. If the data universeX is unknown,

infinite, or very large, we can apply Laplace noise to each positive

count of the histogram as long as noisy counts smaller than a certain

threshold are set to zero.

Theorem 7 (SH-Stability-Based Histogram [6]). Let 𝑞 : X𝑛 →
N |X | be a counting query of 1-global sensitivity equal to 2. The algo-
rithm that first applies Laplace noise to positive queries

𝑞(𝑥𝑖 ) = 𝑞(𝑥𝑖 ) + 𝑍 ∀𝑥𝑖 ∈ X : 𝑞(𝑥𝑖 ) > 0, and𝑍 ∼ 𝑒− 2

𝜀 |𝑥 |

and then maps to zero the noisy counts under 𝑡 = 1 + 2 log(2/𝛿 )
𝜀

, is
(𝜀, 𝛿)-differentially private.

It is important to stress that this mechanism does not return false
positives by construction since it only injects noise into positive

counts. However, it returns a biased estimator due to thresholding,

which might be useless for estimating aggregate queries. For ex-

ample, if all counts fall below the threshold, any aggregate query

would result in zero.

5
For unbounded privacy, we instead have GS1 (𝑞) =𝑚 and GS2 (𝑞) =

√
𝑚. The factor

of 2 in bounded privacy arises from the definition of neighboring datasets, where 𝐷 ′

is considered a neighbor of 𝐷 if it differs from 𝐷 by both the addition and removal of

two distinct users (i.e., a substitution).
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2.2 Non-Negative Hierarchical Tree
The InfTDA algorithm and the analysis provided in this paper are

formulated for a tree data structure satisfying a few properties,

ensuring broad applicability beyond O/D data. A tree T of depth

𝑇 is a tuple T = (𝑉 , 𝐸): 𝑉 = ∪𝑇ℓ=0
𝑉ℓ is the set of nodes, with 𝑉ℓ

denoting the set of nodes at level ℓ ∈ [𝑇 ], for [𝑇 ] = [0, . . . ,𝑇 ]; 𝐸
is the set of edges between consecutive levels. A node at level ℓ is

indicated with 𝑢ℓ ∈ 𝑉ℓ . The set of children to a node is indicated by

a function C : 𝑉ℓ → 2
𝑉ℓ+1

for any level ℓ ∈ [𝑇 ]. Each node of the

tree has an attribute 𝑞(𝑢ℓ ). The specific tree we are interested in

this paper is defined as follows.

Definition 3 (Non-Negative Hierarchical Tree). A tree T =

(𝑉 , 𝐸) is said to be non-negative if it contains non-negative attributes
𝑞(𝑢) ≥ 0 for any 𝑢 ∈ 𝑉 . The tree is hierarchical if the attribute of
𝑢 can be computed as the sum of the attributes of its children C(𝑢).
Specifically, for every 𝑢 ∈ 𝑉 that is not a leaf, we have:

𝑞(𝑢) =
∑︁

𝑣∈C(𝑢 )
𝑞(𝑣) . (1)

In our algorithm, we will use the function qC (𝑢ℓ ), which is the

vector containing the attributes of the children of 𝑢ℓ . For the the-

oretical analysis of the algorithm, we consider a tree with fixed

branching factor 𝑏 ∈ N, so that |𝑉ℓ | = 𝑏ℓ . Given any randomized

mechanismM applied to the attributes of the tree, the utility metric

is defined for each level ℓ ∈ [𝑇 ] as the maximum absolute error

max

𝑢ℓ ∈𝑉ℓ
|err(𝑢ℓ ) | = max

𝑢ℓ ∈𝑉ℓ
|M(𝑞(𝑢ℓ )) − 𝑞(𝑢ℓ ) |. (2)

3 Tree Structure of O/D Data
In this section, we show how anyO/D dataset can be parsed into two

different non-negative hierarchical trees, which we call the origin

and destination trees. This reformulation is useful for describing

some queries in the dataset. We start by defining the hierarchy in

the geographic space.

Space Partitioning. Let 𝑋 be a geographic area (e.g., 𝑋 represents

Italy), and assume that 𝑋 is hierarchically partitioned into 𝑔 levels

(𝑃1, . . . , 𝑃𝑔). The dependency among levels is described by the rela-

tion ℎℓ : 𝑃ℓ → 𝑃ℓ−1, which are injections mapping areas at level ℓ

to the larger areas at level ℓ − 1, for any ℓ ∈ [1, . . . , 𝑔]. Note that,
according to the previous definition, an area at level ℓ ′ is included
in only one area at level ℓ < ℓ ′. In our example in Figure 1, 𝑋 is

all of Italy, while 𝑃1 is the set of regions, 𝑃2 is the set of provinces

and 𝑃3 is the set of municipalities. With a slight abuse of notation,

we write 𝑣ℓ ∈ 𝑣ℓ−1 to indicate that area 𝑣ℓ is embodied in area 𝑣ℓ−1,

so 𝑣ℓ ∈ ℎ−1

ℓ (𝑣ℓ−1). This holds for any geographical inclusion, so

𝑣ℓ′ ∈ 𝑣ℓ if 𝑣ℓ′ is completely contained in the larger region 𝑣ℓ for

ℓ < ℓ ′.

The O/D Dataset and Range Queries. The dataset we study is

a collection of O/D pairs (also called trips) in the finest partition

𝑃𝑔 . It is represented as 𝐷 = {(𝑢𝑔,𝑖 , 𝑣𝑔,𝑖 )}𝑖=1,...,𝑛 , for 𝑢𝑔, 𝑣𝑔 ∈ 𝑃𝑔 . For
example, considering the hierarchy in Figure 1 that stops at the mu-

nicipality level (e.g., 𝑔 = 3), the dataset would contain trips between

municipalities. These O/D pairs can be counted and aggregated to

answer marginal queries, which we refer to as hierarchical range
queries.

Definition 4 (Hierarchical RangeQuery). Given two levels
ℓ1, ℓ2 ∈ [𝑔] and two areas 𝑢ℓ1 ∈ 𝑃ℓ1 and 𝑣ℓ2 ∈ 𝑃ℓ2 , the hierarchical
range query is

𝑞(𝑢ℓ1 , 𝑣ℓ2 ) =
∑︁

𝑢𝑔∈𝑢ℓ
1

∑︁
𝑣𝑔∈𝑣ℓ

2

∑︁
𝑥∈𝐷

1{𝑥 = (𝑢𝑔 , 𝑣𝑔)}.

Here, 1{𝑥 = (𝑢𝑔 , 𝑣𝑔)} is an indicator function that is used to

count how many O/D pairs (that is, the flow) are in the dataset.

Meanwhile, 𝑃0 represents the entire geographic space 𝑋 . These

queries are conceptually equivalent to SQL GROUP BY followed by

SUM, so we will refer to them simply as range queries. In particular,

we are interested in intra-level range queries when ℓ1 = ℓ2, and

cross-level range queries of order one, when |ℓ1 − ℓ2 | = 1, as they

allow us to construct the origin or destination tree, thanks to a

hierarchical consistency.

Observation 1 (Hierarchical Consistency). Given two levels
ℓ1, ℓ2 ∈ [𝑔] and two areas 𝑢ℓ1 ∈ 𝑃ℓ1 and 𝑣ℓ2 ∈ 𝑃ℓ2 , then for any
ℓ1 ≤ ℓ ′

1
≤ 𝑔 and ℓ2 ≤ ℓ ′

2
≤ 𝑔 we have

𝑞(𝑢ℓ1 , 𝑣ℓ2 ) =
∑︁

𝑢ℓ ′
1

∈𝑢ℓ
1

∑︁
𝑣ℓ ′

2

∈𝑣ℓ
2

𝑞(𝑢ℓ′
1

, 𝑣ℓ′
2

) .

Following the Italy example, the number of trips from the region

Veneto to the region Lombardia has to be the sum of the number of

trips among their cities. Another example is that the number of Ital-

ians going to Milan must be the sum of the number of trips starting

in any Italian region and ending in Milan. Notice that origins and

destinations may belong to two completely different geographic

spaces 𝑋,𝑋 ′. Before, we considered the case where 𝑋 = 𝑋 ′ and
have the same partitions; however, the same arguments can be

applied even if 𝑋 ≠ 𝑋 ′. For example, 𝑋 and 𝑋 ′ could represent

two different countries, such as Italy and Germany. Italy’s parti-

tioning may include regions→ provinces→ municipalities, while

Germany’s may consist of states→ districts→ municipalities. The

dataset might then represent trips between municipalities in Italy

and Germany, which can be aggregated at coarser levels within

their respective hierarchies. In the next paragraph, we introduce

the tree construction in the case 𝑋,𝑋 ′ having the same number of

partitions 𝑔 = 𝑔′.

The Destination and Origin Trees. We explain the construction

for the destination tree, the origin tree will follow naively. The

destination tree is a rooted tree that contains information about

intra and cross level range queries of order one. Any node in the tree
contains an origin area 𝑢ℓ1 , a destination area 𝑣ℓ2 , and a range query

𝑞(𝑢ℓ1 , 𝑣ℓ2 ) with the property that it can be obtained by summing the

queries of its child nodes. The root node contains the intra-level

query at the zero level, hence the triple (𝑢0, 𝑣0, 𝑞(𝑢0, 𝑣0) = 𝑛). The
construction then follows an iterative two-step procedure. Given a

node (𝑢ℓ , 𝑣ℓ , 𝑞(𝑢ℓ , 𝑣ℓ )):
(1) create a child node for each finer destination 𝑣ℓ+1 ∈ 𝑣ℓ with

attribute (𝑢ℓ , 𝑣ℓ+1, 𝑞(𝑢ℓ , 𝑣ℓ+1));
(2) for each child node having destination 𝑣ℓ+1, expand the

branch by creating a child node for each finer origin𝑢ℓ+1 ∈ 𝑢ℓ
with attribute (𝑢ℓ+1, 𝑣ℓ+1, 𝑞(𝑢ℓ+1, 𝑣ℓ+1)).

Each iteration adds two levels in the tree, first by adding a cross-

level hierarchical query of order one, then by adding intra-level
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𝑢ℓ

(a)

𝑣ℓ

Origin Destination

𝑢ℓ(b) 𝑣ℓ+1,0

𝑣ℓ+1,1

𝑢ℓ+1,0

𝑢ℓ+1,1

𝑣ℓ+1,0

𝑣ℓ+1,1

(c)

(d)

𝑞 (𝑢ℓ ,𝑣ℓ )

𝑞 (𝑢ℓ ,𝑣ℓ+1,0 )

𝑞 (𝑢ℓ+1,0,𝑣ℓ+1,0 ) 𝑞 (𝑢ℓ+1,1,𝑣ℓ+1,0 )

𝑞 (𝑢ℓ ,𝑣ℓ+1,1 )

𝑞 (𝑢ℓ+1,0,𝑣ℓ+1,1 ) 𝑞 (𝑢ℓ+1,1,𝑣ℓ+1,1 )

Destination Tree

Figure 2: Example of the two-step construction for the destination tree, represented in the left figure from the top to the bottom. In Figure (a),
we have two areas at level ℓ , 𝑢ℓ and 𝑣ℓ , and an arrow with attribute 𝑞 (𝑢ℓ , 𝑣ℓ ) indicating the flow between them. In Figure (b), the first step is
depicted, the destination area 𝑣ℓ is divided into its child areas 𝑣ℓ+1,0 and 𝑣ℓ+1,1 (in this example, we used a bi-partition). The arrows indicate
the cross-level range query of order one. In Figure (c), the last step is depicted, the origin area is divided as well, and the arrows indicate the
intra-level query of the finer geographic level ℓ + 1. Figure (d) depicts the destination tree. The links assure hierarchical consistency such that
the value of a node can be obtained as the sum of the values of its children.

queries, ending with a tree of 𝑇 = 2𝑔 + 1 levels. Figure 2 offers an

example of the two-step construction of the destination tree. Using

the geographic hierarchy of Italy as an example, the destination

tree at level 1 represents a histogram of trips from the country

level to the regions, level 2 captures trips between regions, level 3

corresponds to trips from regions to provinces, continuing up to

level 6, which contains trips between municipalities. The origin

tree can be obtained similarly by selecting finer origins in step

(a). The choice of using the destination or origin tree depends

on what the practitioners wish to focus on. If cross-level queries

starting from origins belonging to larger areas (e.g., regions) and

ending to destinations belonging to smaller areas (e.g., provinces)

are more important, then the destination tree is the best choice. In

the opposite case, we advise to choose the origin tree. Finally, it is

important to state that from the non-negative hierarchical tree, we

can obtain the original O/D dataset. This is because the leaves of

the tree represent the histogram of the dataset 𝐷 , indicating the

absolute frequency with which each O/D pair (𝑢𝑔, 𝑣𝑔) is observed.

Lemma 8 (Relation with Non-Negative Hierarchical Tree).

The destination (origin) tree is a non-negative hierarchical tree.

Proof. Any node of the destination (origin) tree is a tuple of O/D

pairs with non-negative attributes defined in Definition 4. Given

a father node (𝑢ℓ , 𝑣ℓ ), its set of children is C(𝑢ℓ , 𝑣ℓ ) = {(𝑢ℓ , 𝑣ℓ+1) :

∀𝑣ℓ+1 ∈ 𝑣ℓ } (for the origin tree the set of children is C(𝑢ℓ , 𝑣ℓ ) =
{(𝑢ℓ+1, 𝑣ℓ ) : ∀𝑢ℓ+1 ∈ 𝑢ℓ }). The hierarchical consistency in Observa-

tion 1 states that

𝑞(𝑢ℓ , 𝑣ℓ ) =
∑︁

𝑣ℓ+1∈𝑣ℓ
𝑞(𝑢ℓ , 𝑣ℓ+1) =

∑︁
𝑥∈C(𝑢ℓ ,𝑣ℓ )

𝑞(𝑥),

which is the hierarchical property in Equation 1. The analysis ap-

plies similarly to the next level of the destination tree (as well as to

the origin tree). □

Errors. Let M be a (𝜀, 𝛿)-DP mechanism that acts on range

queries. We are interested in the maximum absolute error for any
cross-level range queries of order one and intra-level range queries.

Therefore, for (ℓ1, ℓ2) = {(0, 0), (0, 1), (1, 1), (1, 2), . . . , (𝑔,𝑔)}, the
error is

max

(𝑢ℓ
1
,𝑣ℓ

2
) ∈𝑃ℓ

1
×𝑃ℓ

2

��M(𝑞(𝑢ℓ1 , 𝑣ℓ2 )) − 𝑞(𝑢ℓ1 , 𝑣ℓ2 )�� (3)

Hence, we are interested in the maximum absolute error for any

level of the destination tree. The maximum error defined in Equa-

tion 3 can be reformulated as in Equation 2.

4 The Top Down Algorithm
In this section, we present InfTDA, but first let us explain why it

is appropriate to use a TopDown approach to ensure hierarchical

accuracy. The goal is to release a differentially private tabular data

�̃� , allowing the data analyzer to perform anymarginal query. Under

bounded DP, the total number of users, denoted as 𝑛, remains fixed

within neighboring datasets; thus, it may be disclosed without com-

promising privacy. However, when applying a differentially private

mechanism directly to the histogram representation of 𝐷 (that is,

at the higher level of the hierarchy), the perturbed aggregated �̃�

tends to vary around 𝑛, with its variance increasing proportion-

ally to the number of point queries. Consider the case 𝑋 = 𝑋 ′ ,
where the origin and destination geographic spaces are the same.

When releasing an O/D dataset involving 𝑘 areas using the Gauss-

ian mechanism with a constant privacy budget, the variance of �̃� is

Var(�̃�) =𝑂 (𝑘2), as the potential number of O/D pairs is 𝑘2
. Due to

the cancellation effect of the unbiased estimates produced by the

Gaussian mechanism, the maximum error becomes 𝑂 (𝑘). In con-

trast, the Stability Histogram does not produce unbiased estimates,

resulting in a maximum error of 𝑂 (𝑘2). This reasoning applies at
any level of the hierarchy, providing a theoretical upper bound on

accuracy that does not satisfy the hierarchical accuracy effect we

aim to achieve.
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Proposition 1 (MaximumAbsolute Error per Level for Base-

lines). Given a non-negative hierarchical tree T with branching
factor 𝑏, depth 𝑇 , and a parameter 𝛽 ∈ (0, 1). The application of the
𝜌-zCDP Gaussian mechanism at level 𝑇 achieves for any ℓ ∈ [𝑇 ]
with probability at least 1 − 𝛽

max

𝑢ℓ ∈𝑉ℓ
|err(𝑢ℓ ) | ≤ 𝑂

(
𝑏

𝑇 −ℓ
2

√︄
ℓ

𝜌
log

(
𝑏

𝛽

))
. (4)

While, for 𝛽 = 𝑛𝛿 , the application of the (𝜀, 𝛿)-DP Stability Histogram
mechanism at level 𝑇 achieves with probability at least 1 − 𝛽

max

𝑢ℓ ∈𝑉ℓ
|err(𝑢ℓ ) | ≤ 𝑂

(
min(𝑏𝑇−ℓ , 𝑛) log(1/𝛿)

𝜀

)
. (5)

The proof of the Proposition can be found in Appendix A. To

solve this problem, we could compute the DP estimates of each

range query by reallocating the privacy budget among the geo-

graphic levels. However, this approach returns inconsistent infor-

mation about the dataset. For example, the computed flow between

two regions might appear smaller than the aggregate flows between

their constituent cities. This issue can be addressed by reconciling

the estimates with the closest possible values that satisfy certain

consistency constraints, as done in the CBDP mechanism [15] and

the Hierarchical mechanism [19]. However, the first solves a unique

optimization problem for the entire set of queries, yielding a solu-

tion that does not scale well, while the latter may return queries

with negative values.

We propose a different approach, based on TDA developed by

the US Census [1]. For a non-negative hierarchical tree, we iterate

a differentially private algorithm starting from the root. At each

iteration, an optimization problem is solved using information from

the previous level. Unlike TDA, which employs an optimization with

an ℓ2 objective function, our optimization algorithm minimizes an

ℓ∞ objective function, specifically the Chebyshev distance to the

noisy vector. We demonstrate both theoretically and experimentally

that this is a valid alternative to ensure hierarchical accuracy.

In contrast to TDA, where ℓ2 minimization leads to a unique solu-

tion, minimizing the Chebyshev distance yields multiple optimal

solutions. In Section 4.2 we developed an algorithm for integer-

constrained optimization that returns an optimal solution that effec-

tively reduces false positives. Another advantage of this approach is

that it operates entirely in the integer domain. By comparison, TDA
constrained optimization introduced in [1] proceeds in two phases:

first, it solves the constrained optimization in the real domain (a

relaxation of the integer problem), and then performs a secondary

optimization to determine the best rounding. We now present in

detail our algorithm.

4.1 InfTDA: TDA with Chebyshev Distance
The TopDown Gaussian Optimized Mechanism with Chebyshev

distance optimization InfTDA, operates on the non-negative hier-

archical tree, such as the destination tree introduced in Section 3.

Similarly to TDA, this method applies discrete Gaussian noise to

each level of the tree in a TopDown way, followed by a constrained

optimization procedure before descending to the next level.

Since we use bounded privacy, the root attribute, representing

the total number of users 𝑛 in the dataset, can be released with-

out compromising privacy. However, if unbounded privacy were

Algorithm 1 InfTDA

Require: Tree T = (𝑉 , 𝐸) of depth 𝑇 , privacy budget 𝜌 > 0.

1: �̃�0 ← {(𝑢0, 𝑛)}
2: for ℓ ∈ (1, . . . ,𝑇 ) do
3: �̃�ℓ ← {} ⊲ DP nodes at level ℓ

4: for (𝑢, 𝑐) ∈ �̃�ℓ−1 do ⊲ Go through the constraints

5: q̃← qC (𝑢) + NZ
(
0,𝑇 /𝜌

)
dim(qC (𝑢 ) ) ⊲ Apply noise

6: q̄← IntOpt∞
(
q̃ , 𝑐

)
⊲ Solve optimization

7: 𝐶 ← C(𝑢) ⊲ Collect set of child nodes of 𝑢

8: 𝑋 ← {(𝐶 𝑗 , 𝑞 𝑗 ) : 𝑞 𝑗 > 0} ⊲ Drop zero attributes

9: �̃�ℓ ← �̃�ℓ ∪ 𝑋 ⊲ Update level

10: return ˜T ←
(
∪𝑇ℓ=0

�̃�ℓ , 𝐸
)

⊲ DP Tree

required, perturbing the root attribute would become necessary.

The algorithm then perturbs the attributes at the first level of the

tree using a discrete Gaussian mechanism. The resulting vector

is then post-processed to satisfy the hierarchical consistency and

non-negativity constraints by solving an integer optimization prob-

lem. For each optimized node, the algorithm selects its child nodes,

applies a discrete Gaussian mechanism to their attributes, and opti-

mizes them to ensure they are non-negative integers that sum to the

attribute of the parent node. The procedure is executed iteratively

until the final level 𝑇 is reached and optimized.

The detailed pseudocode of InfTDA is provided in Algorithm 1.

The process begins by constructing the root �̃�0 of the differentially

private tree in line 1. Here, 𝑢0 denotes the root node of the input

tree, while 𝑛 represents its attribute. The algorithm then starts the

TopDown loop in line 2. Each iteration aims to construct the set of

nodes at level ℓ of the differentially private tree, instantiated in line

3. Each node of the previous level ℓ −1 is sampled in line 4 and used

as a constraint. In line 5 the discrete Gaussian mechanism with 𝜌/𝑇
privacy budget (for zCDP) is applied to the attributes qC (𝑢) of the
child nodes of the constraint. Then, in line 6 the private attributes q̃
are post-processed to satisfy the constraints. The algorithm IntOpt
solves the following integer optimization problem by minimizing

the Chebyshev distance

P(x, 𝑐) := arg min

y
∥x − y∥∞ (6)

s.t. 𝑦𝑖 ∈ N0 ∀𝑖 ∈ [1, . . . , 𝑏]

s.t.

𝑏∑︁
𝑖=1

𝑦𝑖 = 𝑐.

The algorithm IntOpt is described in Section 4.2. In line 7, the set

of child nodes of the constraint is constructed, and it is augmented

with the corresponding post-processed DP attributes in line 8, drop-

ping nodes with zero attributes. This final step effectively reduces

the size of the DP tree and the running time of the algorithm, partic-

ularly for sparse datasets. In fact, if there is a node𝑢ℓ with optimized

attribute 𝑞(𝑢ℓ ) = 0, then, by consistency, the entire branch of the

tree starting at 𝑢ℓ will also have nodes with zero attributes. Finally,

in line 9 the set of DP nodes is updated, and this set will serve as

constraints in the next iteration. The algorithm outputs a differen-

tially private tree, with optimized attributes. Note that the leaves of
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the DP tree constitute the histogram representation of differentially

private tabular data.

Theorem 9 (Privacy of InfTDA). InfTDA satisfies GS2 (𝑞)2 𝜌

2
-

zCDP under bounded privacy.

Proof. The attribute of each node at an even level of the tree rep-

resents a cross-range query of order one, while nodes at odd levels

contain intra-level queries. Hence, an entire level is a histogram of

cross or intra-level queries, which have general 2-global sensitivity

GS2 (𝑞). Theorem 5 implies that each iteration of the TopDown loop

uses GS2 (𝑞)2 𝜌

2𝑇
privacy budget. As the loop goes through 𝑇 levels,

by the composition and post-processing properties, the algorithm

satisfies GS2 (𝑞)2 𝜌

2
-zCDP. □

Different Privacy Types and Sensitivities. If each user in the dataset
contributes𝑚 distinct trips, the 2-global sensitivity becomes

√
2𝑚

for bounded privacy, and

√
𝑚 for unbounded privacy. In cases where

each user contributes𝑚 trips without requiring them to be distinct,

the 2-global sensitivity becomes

√
2𝑚 for bounded privacy and𝑚

for unbounded privacy. An algorithm that takes into account un-

bounded privacy is provided in Appendix B. Essentially, it privatizes

𝑛 in �̃�0 and rescales the variance of the Gaussian mechanism. Our

experiments focus on bounded privacy with𝑚 = 1.

Corollary 10. When each user in the O/D dataset used to con-
struct the tree contributes a single trip, InfTDA satisfies 𝜌-zCDP under
bounded privacy.

We now provide an upper bound for the maximum absolute error

for each level of the tree.

Theorem 11 (Utility of InfTDA). Given a non-negative hier-
archical tree T with branching factor 𝑏, depth 𝑇 , and a parameter
𝛽 ∈ (0, 1). For each level ℓ ∈ [1, . . . ,𝑇 ], InfTDA with privacy budget
𝜌 > 0 achieves with probability at least 1 − 𝛽

max

𝑢ℓ ∈𝑉ℓ
|err(𝑢ℓ ) | ≤ 𝑂

©­«
√︄

ℓ3𝑇

𝜌
log

(
𝑏ℓ

𝛽

)ª®¬
Proof. The algorithm applies Gaussian noise in a TopDown

way to all attributes of the nodes, except the root. Then, it performs

an optimization procedure at each level. Consider a node 𝑢ℓ at

level ℓ ∈ [1, . . . ,𝑇 ], with attribute 𝑞(𝑢ℓ ). Let 𝑞(𝑢ℓ ) be the attribute
returned by the Gaussian mechanism before the optimization is

applied, and 𝑞(𝑢ℓ ) after the optimization. By triangle inequality we

have

|err(𝑢ℓ ) | = |𝑞(𝑢ℓ ) − 𝑞(𝑢ℓ ) | ≤ |𝑞(𝑢ℓ ) − 𝑞(𝑢ℓ ) | + |𝑞(𝑢ℓ ) − 𝑞(𝑢ℓ ) |. (7)

The first term is just the absolute value of a Gaussian random vari-

able, so we focus on the second term. Let 𝑢ℓ−1 be the father node

of 𝑢ℓ , then 𝑞(𝑢ℓ ) is an element of the vector solution to the opti-

mization problem q̄C (𝑢ℓ−1) = P(q̃C (𝑢ℓ−1), 𝑐), where 𝑐 = 𝑞(𝑢ℓ−1),
thus

|𝑞(𝑢ℓ ) − 𝑞(𝑢ℓ ) | ≤ ∥q̃C (𝑢ℓ−1) − q̄C (𝑢ℓ−1)∥∞ .
Let us consider another vector 𝝃 , called the offset, such that qC (𝑢ℓ−1)+
𝝃 lies within the feasible region of the constrained optimization

problem in Equation 6, then

𝑞C, 𝑗 (𝑢ℓ−1) + 𝜉 𝑗 ≥ 0 (8)

𝑏∑︁
𝑗=1

𝑞C, 𝑗 (𝑢ℓ−1) + 𝜉 𝑗 = 𝑞(𝑢ℓ−1). (9)

As the vector q̄C (𝑢ℓ−1) is a solution to the optimization problem, it

minimizes the Chebyshev distance with q̃C (𝑢ℓ−1) under the non-
negativity and summation constraints, then by triangle inequality

∥q̃C (𝑢ℓ−1) − q̄C (𝑢ℓ−1)∥∞ ≤ ∥q̃C (𝑢ℓ−1) − qC (𝑢ℓ−1) − 𝝃 ∥∞
≤ ∥q̃C (𝑢ℓ−1) − qC (𝑢ℓ−1)∥∞ + ∥𝝃 ∥∞ .

As |𝑞(𝑢ℓ ) − 𝑞(𝑢ℓ ) | ≤ ∥q̃C (𝑢ℓ−1) − qC (𝑢ℓ−1)∥∞, the upper bound in

Equation 7 becomes

|err(𝑢ℓ ) | ≤ 2∥q̃C (𝑢ℓ−1) − qC (𝑢ℓ−1)∥∞ + ∥𝝃 ∥∞ . (10)

The problem is now to find an upper bound for ∥𝝃 ∥∞.
To upper bound ∥𝝃 ∥∞, we now construct an example of 𝝃 satisfy-

ing the constraints and having a bounded ℓ∞ norm. By construction,

from Equation 9 we have that

𝑏∑︁
𝑗=1

𝜉 𝑗 = 𝑞(𝑢ℓ−1) −
𝑏∑︁
𝑗=1

𝑞C, 𝑗 (𝑢ℓ−1) = 𝑞(𝑢ℓ−1) − 𝑞(𝑢ℓ−1)

= err(𝑢ℓ−1) .

If err(𝑢ℓ−1) ≥ 0 we can take 𝜉 𝑗 =
err(𝑢ℓ−1 )

𝑏
for any 𝑗 ∈ [𝑏] as a solu-

tion satisfying the summation constraint and the inequality con-

straint in Equation 8. However, this is not sufficient. If err(𝑢ℓ−1) < 0

the inequality constraint might not be satisfied. In this scenario

we might consider a solution where 𝜉𝑖 = 0 for any 𝑖 ∈ [𝑏] \ {𝑖∗}
where 𝜉𝑖∗ = −|err(𝑢ℓ−1) |. Any zero element satisfies the constraint

in Equation 8 as 𝑞C, 𝑗 (𝑢ℓ−1) ≥ 0. If 𝜉𝑖∗ ≥ −𝑞C,𝑖∗ (𝑢ℓ−1) then we fin-

ish and obtain an upper bound ∥𝝃 ∥∞ ≤ |err(𝑢ℓ−1) |. In the other

case where 𝜉𝑖∗ < −𝑞C,𝑖∗ (𝑢ℓ−1) we need to augment 𝜉𝑖∗ up to meet

−𝑞C,𝑖∗ (𝑢ℓ−1). By doing so we increase

∑
𝑖 𝜉𝑖 making it necessary to

decrease some elements of the offset. As we are reducing elements

that initially are zero, the new offset still contains only negative

elements, and as

∑
𝑖 𝜉𝑖 = −|err(𝑢ℓ−1) | any element cannot be less

than −|err(𝑢ℓ−1) |. Thus, we conclude that there always exists an
offset such that ∥𝝃 ∥∞ ≤ |err(𝑢ℓ−1) |.

Now we continue from the upper bound in Equation 10

|err(𝑢ℓ ) | ≤ 2∥q̃C (𝑢ℓ−1) − qC (𝑢ℓ−1)∥∞ + |err(𝑢ℓ−1) |.
Completing the recurrence relation by ending at err(𝑢0) = 0 we get

|err(𝑢ℓ ) | ≤ 2

ℓ−1∑︁
𝜅=1

∥q̃C (𝑢ℓ−𝜅 ) − qC (𝑢ℓ−𝜅 )∥∞ . (11)

For ℓ = 0, we have err(𝑢0) = 0 under bounded privacy, while for

ℓ = 1 the error is |err(𝑢1) | ≤ 2∥q̃C (𝑢0) − qC (𝑢0)∥∞ which is twice

the deviation caused by adding Gaussian noise alone. In Equation 11

we sum the ℓ∞ norms of Gaussian random vectors with zero mean

and variance 𝑇 /𝜌 , hence by applying the tail bound in Corollary 6

and a union bound over the dimension 𝑏 of each vector and ℓ levels,

we get for any 𝛽 ∈ (0, 1)

Pr

max

𝜅∈[ℓ ]
∥q̃C (𝑢𝜅 ) − qC (𝑢𝜅 )∥∞ ≥ 𝑂 ©­«

√︄
𝑇

𝜌
log

(
𝑏ℓ

𝛽

)ª®¬
 ≤ 𝛽.
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Algorithm 2 ℓ∞ Integer Optimization (IntOpt∞)

Require: x ∈ Z𝑑 , 𝑐 ∈ N.
1: z← max

(⌈ 𝑐−∑𝑖 𝑥𝑖
𝑑

⌉
,−x

)
2: 𝑡 ← ∥z∥∞
3: 𝐼 ← sorted indices of x in ascending order

4: 𝑗 ← 0

5: while
∑

𝑖 𝑧𝑖 > 𝑐 −∑
𝑖 𝑥𝑖 do

6: Δ← ∑
𝑖 𝑧𝑖 − 𝑐 +

∑
𝑖 𝑥𝑖

7: 𝑧𝐼 [ 𝑗 ] ← max(𝑧𝐼 [ 𝑗 ] − Δ,−𝑥𝐼 [ 𝑗 ] ,−𝑡)
8: 𝑗 ← ( 𝑗 + 1) mod |𝐼 |
9: if 𝑗 = 0 then
10: 𝑡 ← 𝑡 + 1

11: return x + z

Thus, Equation 11 yields the following upper boundwith probability

at least 1 − 𝛽

|err(𝑢ℓ ) | ≤ 𝑂
©­«ℓ

√︄
𝑇

𝜌
log

(
𝑏ℓ

𝛽

)ª®¬ .
The claim follows by a union bound over 𝑏ℓ = |𝑉ℓ | nodes at level ℓ ,
leading to an additional

√
ℓ factor. □

4.2 IntOpt: Integer Optimization with
Chebyshev Distance

In this section, we present an algorithm to solve the integer opti-

mization problem aimed at minimizing the ℓ∞ norm, with special

attention to reducing false positives. Given a vector of integers

x ∈ Z𝑏 , representing the output of a differentially private mecha-

nism, and a natural number 𝑐 ∈ N, the integer optimization problem

P(x, 𝑐), as defined in Equation 6, can be reformulated by introduc-

ing z = y−x. Minimizing ∥z∥∞ is equivalent to solving the following

linear problem

min𝛼 s.t. − 𝛼 ≤ 𝑧𝑖 ≤ 𝛼 ∀𝑖 ∈ [1, . . . , 𝑏]
s.t. 𝑧𝑖 ≥ −𝑥𝑖 ∀𝑖 ∈ [1, . . . , 𝑏] (12)

s.t.

𝑏∑︁
𝑖=1

𝑧𝑖 = 𝑐 −
𝑏∑︁
𝑖=1

𝑥𝑖 .

With this reformulation, we can compute a lower bound for the

minimum 𝛼∗ = ∥z∥∞ satisfying the constraints of the problem in

Equation 12.

Lemma 12. Let 𝛼∗ be the solution of the linear program in Equa-
tion 12, then

𝛼∗ ≥ max

(⌈�����𝑐 −∑𝑏
𝑖=1

𝑥𝑖

𝑏

�����
⌉

; −min

𝑖
𝑥𝑖

)
. (13)

Proof. From the constraint−𝑥𝑖 ≤ 𝑧𝑖 ≤ 𝛼 , it follows that 𝛼 ≥ −𝑥𝑖
for all 𝑖 ∈ [𝑏]. Thus, 𝛼 must satisfy 𝛼 ≥ max𝑖 (−𝑥𝑖 ) = −min𝑖 𝑥𝑖 .

Additionally, the equality constraint, combined with −𝛼 ≤ 𝑧𝑖 ≤ 𝛼 ,

implies that 𝛼 ≥
�� 𝑐−∑𝑖 𝑥𝑖

𝑏

��
. Therefore, we deduce

𝛼 ≥ max

(����𝑐 −∑
𝑖 𝑥𝑖

𝑏

���� ,−min

𝑖
𝑥𝑖

)
,

for the relaxed problem in the real domain. Since the feasible region

of the relaxed real problem includes the feasible region of the integer

problem, the final value of 𝛼 is obtained by applying the ceiling

function. □

Note also that the solution is not generally unique. For instance,

consider x = (0,−1, 1) and 𝑐 = 2. In this case, there are two pos-

sible solutions y1 = (1, 0, 1) or y2 = (0, 0, 2) both of which have

a Chebyshev distance of 1 from x. In Algorithm 2 we present a

simplified version of our optimizer. A faster implementation, guar-

anteed to run in polynomial time with respect to 𝑏, can be found in

Appendix C. The core idea is to initialize a solution that satisfies

the inequality constraints, achieves a small ℓ∞ norm, and has a

summation exceeding the required value. The algorithm then itera-

tively reduces the entries of the solution to meet the summation

constraint while minimizing any increase in the objective function.

Lemma 13 (Optimality). Algorithm 2 returns a solution that
minimizes the Chebyshev distance.

Proof. In line 1, we propose our initial solution. First, we demon-

strate that its summation exceeds the required value:

𝑏∑︁
𝑖=1

max

(⌈
𝑐 −∑𝑏

𝑖=1
𝑥𝑖

𝑏

⌉
, −𝑥𝑖

)
≥

𝑏∑︁
𝑖=1

⌈
𝑐 −∑𝑏

𝑖=1
𝑥𝑖

𝑏

⌉
≥ 𝑐 −

𝑏∑︁
𝑖=1

𝑥𝑖 .

Next, we prove that ∥z∥∞ is at most equal to the lower bound in

Equation 13. When 𝑐 −∑
𝑖 𝑥𝑖 < 0, we obtain:

max

𝑖
|𝑧𝑖 | ≤ max

(⌈����𝑐 −∑𝑑
𝑖=1

𝑥𝑖

𝑑

����⌉ , −min

𝑖
𝑥𝑖

)
, (14)

which follows from

��⌈ 𝑐−∑𝑖 𝑥𝑖
𝑑

⌉�� = ⌈�� 𝑐−∑𝑖 𝑥𝑖
𝑑

��⌉− 1
6
. Conversely, when

𝑐 −∑
𝑖 𝑥𝑖 ≥ 0, ∥z∥∞ matches the lower bound in Equation 13. Thus,

the algorithm starts with a vector that satisfies the inequality con-

straints, has a small ℓ∞ norm, and its entries sum to a value larger

than what is required. In the loop from lines 5 to 10, each entry in

the vector z is reduced iteratively until its total summation satis-

fies the constraint. To guarantee optimality, it is crucial to ensure

that no entry is excessively reduced, thus avoiding unnecessary

increases in ∥z∥∞. This consideration is addressed in line 2, where

the algorithm identifies the smallest possible entry of z such that

∥z∥∞ remains unchanged. In line 7, the algorithm updates 𝑧𝑖 . When

set to 𝑧𝑖 − Δ, where Δ is defined in line 6 as the positive remainder,

the process terminates, and the result y = x + z is returned. The

update respects the inequality constraint 𝑧𝑖 ≥ −𝑥𝑖 and the optimal-

ity condition 𝑧𝑖 ≥ −𝑡 . If a solution is achieved in the first round of

updates, it is guaranteed to be optimal since 𝑡 corresponds to the

lower bound given in Equation 13. Otherwise, 𝑡 increases by one,

allowing smaller entries and thereby increasing ∥z∥∞ by 1, which

is the minimum increase. A solution and therefore the end of the

cycle is always guaranteed as if no updates are possible then z = −x
and so

∑
𝑖 𝑧𝑖 ≤ 𝑐 −

∑
𝑖 𝑥𝑖 for 𝑐 ≥ 0. □

Reducing False Positives. The updates in line 7 can be performed

iteratively using any permutation 𝐼 of the indices of z. In line 3,

we propose a specific permutation. The idea behind this choice is

that when x results from a differentially private mechanism, false

positives are likely to be associated to attributes with small values.

6
For 𝑎 < 0, we have | ⌈𝑎⌉ | = −⌈𝑎⌉ = ⌊−𝑎⌋ = ⌊ |𝑎 | ⌋ = ⌈ |𝑎 | ⌉ − 1.
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Consequently, the permutation in line 3 prioritizes reducing the

smaller elements first, potentially setting them to zero (i.e., 𝑦𝑖 = 0).

Alternatively, an inverse approach can be taken in line 3 by sorting

the indices of x in descending order, which would focus on reducing

false negatives instead.

5 Experiments
This section provides an experimental evaluation of InfTDA against
various baselines in real-world and synthetic datasets. We start by

presenting the baselines used, then we introduce the datasets and

the experimental setup.

Baselines. As simple baselines, we use the injection of discrete

Gaussian noise, and the application of the Stability-Based histogram,

on the leaves’ attributes of the tree. They will be labeled respectively

as VanillaGauss and SH. We are aware of more accurate baselines

for sparse histograms [4, 11]. However, in terms of maximum ab-

solute error utility, they offer the same asymptotic performance

as SH. VanillaGauss offers stronger guarantees for range queries
compared to SH, but it is space-inefficient and may produce nega-

tive counts. Conversely, SH generates datasets with non-negative

counts and no false positives; however, it performs poorly for range

queries, especially when the dataset consists predominantly of

rare items. These baselines provide experimental evidence under-

scoring the necessity of using TopDown constraint optimization

algorithms like TDA or our proposed InfTDA. We evaluate InfTDA
against two variations of TopDown algorithms, each employing a

different optimization strategy. The first is a simple implementation

of TDA, referred to as TDAℓ2 , which uses the Euclidean distance as

the objective function
7
. The second, denoted as TDAℓ∞ , incorpo-

rates Chebyshev optimization but relies on a black-box solver for

the optimization process. This latter baseline allows us to assess

the effectiveness of our optimizer, IntOpt, particularly in reducing

false positives. We recognize the possibility of employing CBDP and
the Hierarchical mechanism as a baseline. However, the first faces

significant implementation obstacles due to the vast quantity of

O/D pairs in the analyzed dataset, while the second does not work

in the integer domain.

Real Dataset. The real-world dataset under examination origi-

nates from the ItalianNational Institute of Statistics (ISTAT) [20].The

dataset contains 28,805,440 commutes for 2011, which are trips de-

parting from the habitual residence and returning to the same place

daily. These trips were obtained from survey questionnaires in

which each individual was asked to provide the address of their

usual place of study or work. As each individual contributes one trip

to the dataset, we apply the privacy analysis outlined in Corollary 6.

This dataset is structured with a geographic hierarchy consisting of

five partitions: regions, provinces, municipalities, section areas, and

census sections, with regions representing the highest level (i.e.,

the largest areas). The first three geographic partitions are shown

in Figure 1. The dataset exhibits significant sparsity, containing

362,292 census sections, which theoretically could result in over

100 billion possible O/D pairs. However, it only records 14,287,549

7
We remark that the real implementation of TDA would require weighted non-negative
least squares optimization, and a complex two step optimization to obtain integer

values.

Dataset Number of users Number of O/D
Binary Complete 1051271 65536

Binary Dense 734688 32768

Binary Sparse 23302 655

Random Complete 2019580 189225

Random Dense 1003943 95612

Random Sparse 67840 1892

Table 1: Characteristics of synthetic datasets.

actual flows. Due to computational limitations, we considered only

O/D pairs up to the municipality level for our experiments. This

results in approximately 500,000 O/D pairs out of more than 65

million possible pairs. We generate the destination tree from this

dataset, obtaining a tree of depth 𝑇 = 6.

Synthetic Datasets. We generate two types of synthetic partitions,

a binary partition and a random partition, to create six distinct O/D

datasets. The binary partition consists of 8 hierarchical levels, where

each area is iteratively divided into two smaller areas, resulting

in a binary destination tree with a depth of 𝑇 = 16. In contrast,

the random partition has 4 levels, where each area is randomly

divided into 𝑘 smaller areas, with 𝑘 sampled uniformly from 2

to 10. This latter approach simulates real-world scenarios where

areas are partitioned unevenly, creating a destination tree with a

variable structure. The O/D flows are sampled from a continuous

Pareto distribution (Pr(𝑥) ∼ 𝑥−𝛽 , where 𝑥 represents the flow and

𝛽 > 0) and rounded, a common pattern observed in mobility and

social data [3, 18]. These flows are then assigned as attributes to the

leaves of the generated trees. To evaluate the mechanisms under

varying levels of sparsity, we simulate three scenarios: complete,
where all leaves have positive attributes; dense, where 50% of the

leaves are assigned positive attributes; and sparse, where only 1%

of the leaves are assigned positives attributes. This allows for a

comprehensive testing of the performance of the mechanisms under

different sparsity conditions. The number of users generated and

the number of O/D in the synthetic dataset can be found in Table 1.

Experimental Setup. The systemwas developed using open source

libraries and Python 3.11. Our approach to differential privacy lever-

ages the OpenDP library
8
[24], which includes implementations

of the discrete Gaussian mechanism and the Stability Histogram.

For black-box optimization, we use cvxpy [2, 12]. TDAℓ2 first min-

imizes the Euclidean distance for the relaxed program in the real

domain using CLARABEL [17], then it rounds and redistributes the

exceeding in a similar fashion of InfTDA, hence by prioritizing the

elimination of small values. TDAℓ∞ optimization works completely

in the integer domain and uses the GLPK mixed integer optimizer.

The tests were conducted using an Intel Xeon Processor W-2245 (8

cores, 3.9GHz), 128GB RAM, and Ubuntu 20.04.3. The experiments

and the code are publicly available
9
. Each mechanism is run 10

times, and the error bars in the graphs indicate the maximum and

minimum value of the metric considered.

8
https://github.com/opendp/opendp

9
https://github.com/aidaLabDEI/TDA_hierarchical
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Figure 3: Experiments run for the Italian dataset (from ISTAT). From left to right: maximum absolute error, false discovery rate, and execution
time. The error bars indicate maximum and minimum values over 10 experiments.

Privacy budget. The experiments were carried out with 𝜀 ∈
[0.1, 1, 10] and 𝛿 = 10

−8
(sufficient to ensure that 𝛿 ≪ 1/𝑛). Privacy

budget 𝜀 ≤ 1 provides strong real-world privacy in most cases

[29], however, there are examples of deployments with larger val-

ues. The US Census of 2020 distributed the population data under

(17.14, 10
−10)-DP [27]. Unfortunately, such a high privacy budget

may give meaningless theoretical guarantees in the worst-case sce-

nario
10
, but still may offer good privacy under some specific and

more realistic attacks. Although we recognize that intelligent allo-

cation of the privacy budget across levels can improve the utility

of a differentially private dataset (as done by the US Census [27]),

we opted for a uniform distribution of the budget across all levels.

We used Lemma 2 to compute the privacy budget for zCDP.

Quality of the DP Dataset. To assess the quality of the DP dataset

�̃� we measured two key indicators that can be computed at any

level of the tree: the maximum absolute error defined in Equation 2

and the false discovery rate, which is the percentage of O/D pairs

present in �̃� but absent in the original data. In tree notation, for

any level ℓ ∈ [𝑇 ] the false discovery rate is

𝑓𝑑 (ℓ ; �̃�, 𝐷) =
|{𝑢ℓ : 𝑞(𝑢ℓ ) > 0 ∧ 𝑞(𝑢ℓ ) = 0}|

|{𝑢ℓ : 𝑞(𝑢ℓ ) > 0}| · 100%,

where 𝐷 is the original data.

5.1 Discussion
Italian dataset. The analysis of the O/D commuting dataset for

Italy is presented in Figure 3, which illustrates three metrics from

left to right: the maximum absolute error per level, the false discov-

ery rate per level and the running time.We emphasize that the levels

are defined as follows: the zero level represents the total number of

users, the second level corresponds to range queries for regions, the

fourth level pertains to provinces, and the final level corresponds to

10
The suspicion of a user’s presence in the dataset for a strong attacker—who knows

everything about the dataset except their target—grows significantly for large values

of 𝜀 . For instance, with 𝜀 = 10 and an initial suspicion of 10%, the attacker’s suspicion

increases to 99.9% after observing the differentially private dataset. In contrast, for

𝜀 = 1, the suspicion would increase only to 23%. For further details, refer to [10].

municipalities’ O/D commutes. The VanillaGaussmechanism was

not applied to this dataset due to the computational infeasibility

of sampling more than 65 million Gaussian noises, one for each

potential O/D commute. Instead, this baseline will be evaluated

using synthetic data.

We immediately observe that SH performs poorly on range queries,

although it provides the most accurate estimates for O/D flows at

finer geographic levels. This is not surprising since the mechanism

achieves on the leaves a maximum error close to a lower bound [28]

(Theorem 5.13). Consistent with our theoretical findings in Theo-

rem 11, InfTDA produces datasets with diminishing accuracy as one

moves down the levels of the tree, reflecting improved precision

for O/D flows at larger geographic scales. This trend is similarly

observed with TDAℓ2 and TDAℓ∞ . While TDAℓ2 shows comparable util-

ity to InfTDA, TDAℓ∞ underperforms slightly. This is due to the fact

that Chebyshev optimization produces multiple optimal solutions,

not all of which perform well in practice in terms of utility. This

underscores the importance of our optimizer IntOpt, in selecting

the most practical solution. This is clearly illustrated in the middle

plot of Figure 3, where InfTDA consistently reduces false positive

detections compared to TDAℓ∞ and TDAℓ2 , regardless of the privacy
budget. The reduction in the false discovery rate depends on fac-

tors like hierarchical structure and attribute distribution, such as

the presence of sparse levels followed by dense ones. Nonetheless,

InfTDA consistently outperforms the other mechanisms in reducing

false positives.

In terms of running time, SH is clearly the fastest, since it does

not need to perform any kind of optimization and runs linearly with

the number of users 𝑛. InfTDA is the fastest TopDown algorithm.

Running time increases with the privacy budget because, in the

low-privacy regime, false negatives are more frequent. These occur

when attributes that were positive in the sensitive dataset appear as

zero in the DP dataset. This reduction in positive attributes typically

decreases the size of the returned dataset, leading to fewer opti-

mizations. In conclusion, SH achieves significantly better accuracy,

approximately an order of magnitude higher, for flows between

municipalities, but performs poorly for range queries. Mechanisms
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Figure 4: Experiments run for the synthetic datasets with a focus onmaximum absolute error. The error bars indicate maximum andminimum
values over 10 experiments

based on TDA provide hierarchical accuracy and produce meaning-

ful results even in high privacy regimes. For instance, for 𝜀 = 1

(resp., 𝜀 = 0.1), they achieve a maximum absolute error of about 100

(resp., 1000). Additionally, InfTDA generates datasets with fewer

false positives and operates more efficiently.

Synthetic Dataset. Figure 4 illustrates the maximum absolute

error for the six synthetic datasets we generated. Unlike the previ-

ous analysis, this evaluation includes VanillaGauss. As expected,
VanillaGauss demonstrates better accuracy than SH for range

queries, particularly when the dataset is not highly sparse. In con-

trast, SH performs better on sparse datasets; however, even in these

cases, the error increases significantly for large range queries at the

higher levels of the tree. The TopDown algorithms exhibit similar

behavior across all scenarios, with one exception: TDAℓ∞ on the

random sparse dataset for 𝜀 ≤ 1. Although this deviation is not

substantial compared to the other TDA algorithms, it provides valu-

able insights consistent with the findings from the Italian dataset.

In trees with random branching factors, similar to the structure of

the Italy tree, the number of variables in the optimization problem

increases. This expansion of the solution space for the Chebyshev

distance optimization increases the likelihood of sampling an opti-

mal solution that performs poorly in practice. Conversely, this issue

does not arise in binary trees, where each optimization involves

only two variables, making it more likely to sample the best optimal

solution for the Chebyshev minimization.

Figure 5 shows the false discovery rate for the sparse datasets.

For the binary tree, no significant improvements are observed, indi-

cating that when optimization involves a small number of variables,

the choice of the optimization function has minimal impact on the

utility of the released datasets. In contrast, for the random tree,

InfTDA generates a dataset with fewer false positives compared to

the othermechanisms (with the obvious exception of SH). Regarding
the execution times of the algorithms, Figure 6 clearly shows that

our optimizer is faster than a black-box optimizer. This is not only

because InfTDA generates a dataset with fewer false positives but

also because it runs faster even for the complete synthetic dataset.

6 Conclusion and Future Directions
We found that a well-designed implementation of the TopDown

algorithm can significantly improve the accuracy in the differen-

tially private release of O/D data with a hierarchical structure. This

improvement is particularly beneficial when producing tabular

datasets where range queries must be more accurate for larger

geographical areas. Specifically, this paper explores TopDown algo-

rithms for general tree data structures with non-negative attributes

and hierarchical consistency. We illustrate how any O/D dataset
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Figure 5: False discovery rate for synthetic datasets

Figure 6: Running time for synthetic datasets and TDA

can be structured in the required tree format. Additionally, we pro-

pose a Chebyshev distance constraint optimization problem as an

alternative to the commonly used Euclidean distance minimization.

This approach yields two key outcomes: a theoretical analysis of the

maximum absolute error for a TopDown algorithm and a practical,

efficient integer optimization algorithm that has been proven to

reduce false positives on both real and synthetic datasets. Our pro-

posed TopDown algorithm, InfTDA, combined with our optimizer,

IntOpt, outperforms naive baselines and is not worse than black-

box implementations of TDA with different objective functions on

both real and synthetic datasets, while being simpler to implement,

running faster and effectively reducing the false discovery rate.

Given the versatility of our approach, it would be valuable to test it

on various real-world datasets beyond O/D data. Any tabular data,

such as healthcare data, can be used to construct a non-negative

hierarchical tree, provided that a query hierarchy is defined. We

leave this exploration for future research. Furthermore, we believe

that studying stability-based algorithms as a source of noise in a

TDA would be interesting, particularly in scenarios where the hier-

archy consists of unknown partitions. Finally, based on the results

of our experiments, we believe that similar theoretical results hold

for TDA with Euclidean distance minimization.
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A Additional Proof
Proof of Proposition 1. We start by proving the Equation 4.

By applying the discrete Gaussian mechanism on each attribute of

the final level nodes we can reconstruct the attributes at any level

using the hierarchical relation in equation 1. Consider a node 𝑢ℓ at

level ℓ ∈ {0, . . . ,𝑇 − 1}, its private attribute is

𝑞(𝑢ℓ ) =
∑︁

𝑖ℓ+1∈C(𝑢ℓ )
· · ·

∑︁
𝑖𝑇 ∈C(𝑢𝑇 −1

)
𝑞(𝑢𝑇 ),

so the error err(𝑢ℓ ) = 𝑞(𝑢ℓ ) − 𝑞(𝑢ℓ ) is

err(𝑢ℓ ) =
∑︁

𝑢ℓ+1∈C(𝑢ℓ )
· · ·

∑︁
𝑢𝑇 ∈C(𝑢𝑇 −1

)

[
𝑞(𝑢𝑇 ) − 𝑞(𝑢𝑇 )

]
. (15)

Each error𝑞(𝑢𝑇 )−𝑞(𝑢𝑇 ) at the𝑇 level is a Gaussian random variable

NZ (0, 1/𝜌), then the right hand side of equation 15 is a Gaussian

random variableNZ (0, 𝑏𝑇−ℓ/𝜌), as it is a summation of 𝑏𝑇−ℓ Gauss-
ian random variables. Then, by applying Corollary 6 and a union

Algorithm 3 InfTDA for unbounded privacy

Require: Tree T = (𝑉 , 𝐸) of depth 𝑇 , privacy budget 𝜌 > 0.

1: �̃� ← 𝑛 + NZ

(
0, 𝑇

𝜌

)
2: �̃�0 ← {(𝑢0, �̃�)}
3: for ℓ ∈ (1, . . . ,𝑇 ) do
4: �̃�ℓ ← {} ⊲ DP nodes at level ℓ

5: for (𝑢, 𝑐) ∈ �̃�ℓ−1 do ⊲ Go through the constraints

6: q̃← qC (𝑢) + NZ

(
0, 𝑇

𝜌

)
dim(qC (𝑢 ) )

⊲ Apply noise

7: q̄← IntOpt∞
(
q̃ , 𝑐

)
⊲ Solve optimization

8: 𝐶 ← C(𝑢) ⊲ Collect set of child nodes of 𝑢

9: 𝑋 ← {(𝐶 𝑗 , 𝑞 𝑗 ) : 𝑞 𝑗 > 0} ⊲ Drop zero attributes

10: �̃�ℓ ← �̃�ℓ ∪ 𝑋 ⊲ Update level

11: return ˜T ←
(
∪𝑇ℓ=0

�̃�ℓ , 𝐸
)

⊲ DP Tree

bound over 𝑏ℓ nodes, we obtain for 𝛽 ∈ (0, 1)

Pr

[
max

𝑢ℓ ∈𝑉ℓ
|err(𝑢ℓ ) | ≤ 𝑂

(
𝑏

𝑇 −ℓ
2

√︄
ℓ

𝜌
log

(
𝑏

𝛽

))]
≥ 1 − 𝛽.

We now prove equation 5. Equation 15 is still applicable; how-

ever, the noise inserted at level𝑇 follows a complicated distribution,

which is the result of a symmetric Laplace noise distribution fol-

lowed by a truncation. So it is not straightforward to compute the

distribution of composition of such random variables. However, we

have |err(𝑢𝑇 ) | ≤ 𝑂
(

log(1/𝛿 )
𝜀

)
with probability at least 1 − 𝛿 . There-

fore, by summing the error and applying a union bound on 𝑛, since

we have at most 𝑛 random variables to sum, equation 15 leads to

|err(𝑢ℓ ) | ≤ 𝑂
(
min(𝑏𝑇−ℓ , 𝑛) log(1/𝛿 )

𝜀

)
with probability at least 1−𝑛𝛿 .

As 𝛿 ≪ 1/𝑛 follows a constant probability upper bound. □

B InfTDA for unbounded privacy
Theorem 14. InfTDA in Algorithm 3 satisfies

(
𝑚2

𝑇
+ GS2 (𝑞)2

)
𝜌

2
-

zCDP under unbounded privacy.

Proof. Each iteration of the TopDown loop consumesGS2 (𝑞)2 𝜌

2𝑇

privacy budget. Since the loop goes through 𝑇 levels, by composi-

tion and post-processing properties, the total privacy budget con-

sumed is
GS2 (𝑞)2

2
𝜌 . Additionally, the privatization of the root at-

tribute in line 1 increases the overall privacy budget. Given that

𝑛 represents a point query and the addition or removal of a sin-

gle user alters 𝑛 by𝑚, the ℓ2 sensitivity is𝑚. Consequently, line 1

contributes an additional privacy budget of
𝑚2

𝑇
𝜌 . □

C Fast IntOpt∞
This is the algorithm that we implemented in our experiments. One

key modification is that the while loop operates only on the indices

of elements in z that can still be reduced, as specified in lines 4 and

11. The main modification is in line 12, where it is computed the

smallest entry of z that, if 𝑧𝑖 = −𝑡 − 𝑟 for any 𝑖 ∈ 𝐼 , then we would

have

𝑐 −
𝑑∑︁
𝑖=1

𝑥𝑖 ≤
𝑏∑︁
𝑖=1

𝑧𝑖 ≤ 𝑐 −
𝑏∑︁
𝑖=1

𝑥𝑖 + |𝐼 |,
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Algorithm 4 Polynomial time ℓ∞ Integer Optimization (IntOpt∞)

Require: x ∈ Z𝑏 , 𝑐 ∈ N.
1: z← max

(⌈ 𝑐−∑𝑖 𝑥𝑖
𝑏

⌉
,−x

)
2: 𝑡 ← ∥z∥∞
3: 𝐼 ← sorted indices of x
4: 𝐼 ← (𝑖 ∈ 𝐼 : 𝑧𝑖 > −𝑥𝑖 )
5: 𝑗 ← 0

6: while
∑

𝑖 𝑧𝑖 > 𝑐 −∑
𝑖 𝑥𝑖 do

7: Δ← ∑
𝑖 𝑧𝑖 − 𝑐 +

∑
𝑖 𝑥𝑖

8: 𝑧𝐼 [ 𝑗 ] ← max(𝑧𝐼 [ 𝑗 ] − Δ,−𝑥𝐼 [ 𝑗 ] ,−𝑡)
9: 𝑗 ← ( 𝑗 + 1) mod |𝐼 |
10: if 𝑗 = 0 then
11: 𝐼 ← (𝑖 ∈ 𝐼 : 𝑧𝑖 > −𝑥𝑖 )
12: 𝑟 ←

⌊
1

|𝐼 |
( ∑

𝑖 𝑧𝑖 − 𝑐 +
∑

𝑖 𝑥𝑖
) ⌋

13: 𝑡 ← 𝑡 +max(1, 𝑟 )
14: return x + z

ensuring that only one additional reduction round is required to

satisfy the equality constraint. If all elements are clipped to −𝑡 − 𝑟 ,
the total summation decreases by

∑
𝑖 𝑧𝑖 − 𝑟 · |𝐼 |. The first inequality

is derived as follows

𝑏∑︁
𝑖=1

𝑧𝑖 − 𝑟 · |𝐼 | =
𝑏∑︁
𝑖=1

𝑧𝑖 −
⌊

1

|𝐼 |
(∑︁

𝑖

𝑧𝑖 − 𝑐 +
∑︁
𝑖

𝑥𝑖
) ⌋
· |𝐼 |

≥
𝑏∑︁
𝑖=1

𝑧𝑖 −
1

|𝐼 |

( 𝑏∑︁
𝑖=1

𝑧𝑖 − 𝑐 +
𝑏∑︁
𝑖=1

𝑥𝑖

)
· |𝐼 | = 𝑐 −

𝑏∑︁
𝑖=1

𝑥𝑖 ,

while the second comes from

𝑏∑︁
𝑖=1

𝑧𝑖 − 𝑟 · |𝐼 | ≤
𝑏∑︁
𝑖=1

𝑧𝑖 −
[

1

|𝐼 |

( 𝑏∑︁
𝑖=1

𝑧𝑖 − 𝑐 +
𝑏∑︁
𝑖=1

𝑥𝑖

)
− 1

]
· |𝐼 |

= 𝑐 −
𝑏∑︁
𝑖=1

𝑥𝑖 + |𝐼 |,

If not all elements are clipped to−𝑡−𝑟 , at least one element is clipped

to−𝑥𝑖 , reducing the cardinality of 𝐼 by at least 1. Consequently, after
the first reduction loop (line 10), the algorithm either transitions to

the second-to-last loop (where all elements are clipped to −𝑡 − 𝑟 )
or reduces |𝐼 | to |𝐼 | − 1. In the worst-case scenario, where |𝐼 | = 𝑏,

it takes 𝑂 (𝑏) iterations for |𝐼 | to decrease by 1. Thus, the overall

runtime of the algorithm is bounded by 𝑂 (𝑏2).
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