
Achieving Data Reconstruction Hardness and Efficient
Computation in Multiparty Minimax Training
Truong Son Nguyen

Arizona State University

Tempe, AZ, USA

snguye63@asu.edu

Yi Ren

Arizona State University

Tempe, AZ, USA

yiren@asu.edu

Guangyu Nie

Arizona State University

Tempe, AZ, USA

gnie1@asu.edu

Ni Trieu

Arizona State University

Tempe, AZ, USA

ntrieu1@asu.edu

Abstract
Generative models have achieved remarkable success in a wide

range of applications. Training such models using proprietary data

from multiple parties has been studied in the realm of federated

learning. Yet recent studies showed that reconstruction of authentic

training data can be achieved in such settings. On the other hand,

multiparty computation (MPC) guarantees standard data privacy,

yet scales poorly for training generative models. In this paper, we

focus on improving reconstruction hardness during Generative Ad-

versarial Network (GAN) training while keeping the training cost

tractable. To this end, we explore two training protocols that use a

public generator and an MPC discriminator: Protocol 1 (P1) uses a

fully private discriminator, while Protocol 2 (P2) privatizes the first

three discriminator layers. We prove reconstruction hardness for P1

and P2 by showing that (1) a public generator does not allow recov-

ery of authentic training data, as long as the first two layers of the

discriminator are private; and through an existing approximation

hardness result on ReLU networks, (2) a discriminator with at least

three private layers does not allow authentic data reconstruction

with algorithms polynomial in network depth and size. We show

empirically that compared with fully MPC training, P1 reduces the

training time by 2× and P2 further by 4− 16×. Our implementation

can be found at https://github.com/asu-crypto/ppgan.

Keywords
secure machine learning, minimax training, multiparty computa-

tion, generative adversarial neural network

1 Introduction
Background. Generative models have shown significant success

in applications from content generation [34], automated program-

ming [70] to scientific discoveries [21]. To achieve emergent in-

telligence and generalization, these models often rely on large ag-

gregated datasets [47]. While data augmentation has been used

to bootstrap the training [48], there exist industry settings where

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(3), 44–60
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0088

multiple providers of proprietary datasets agree to collaborate on

building a generative model, yet would like to be assured that their

own data is kept private during the training process. In practice,

we expect the resultant generative model, i.e., the generator, to be

public to all participants so that inferences can be done efficiently,

and also to mimic the true data distribution so that it is qualified to

perform downstream tasks. For these reasons, the training of such

generative models does not enjoy standard security definitions that

are rooted in indistinguishability likelihoods (e.g., cryptographic

and differential privacy). Indeed, as shown in [5], targeted extrac-

tion of training data from a public generative model is possible.

Therefore, the focus of this paper is to achieve reconstruction hard-
ness: we design model architectures and training protocols such

that untrusted servers that execute the training protocol cannot

successfully reconstruct sensitive training data during or after the

training even in the worst-case scenarios. Without loss of gener-

ality, we will focus on protocols for solving minimax problems,

i.e., generative adversarial network (GAN), and our method can

be applied to minimization problems, e.g., diffusion models [61],

which we discuss in Sec. B. The research question we address is the

following:

Does there exist a GAN training protocol that achieves both recon-
struction hardness and tractable computation?

Problem formulation. We introduce the following settings to

formalize the problem.

Training protocol: Before training, each data holder sends an

additive secret share [14] of their data to all of the two computing

servers, who then use these shares to together update a generator

and a discriminator following a protocol. Depending on the protocol,

the generator and the discriminator can be either secret-shared (or

“private”), partially private, or public, during the training process.

Regardless of the protocol, the generator will be made public after

the training.

Threat model: We consider a semi-honest model following

[4, 18, 29, 54] wherein servers are incentivized to adhere to the

training protocol but may try to reconstruct authentic data from

public information released during and after the training. This

adversarial goal is similar to the Data Reconstruction attack in [57],

and we refer to their work for further discussion on the relation

between this goal and other types of attack on training, such as

Membership Inference and Attribute Inference.

44

https://orcid.org/0000-0002-9637-7624
https://github.com/asu-crypto/ppgan
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0088

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

Figure 1: Reconstruction hardness (R) versus image generation quality (G) for federated learning (FL), differential privacy (DP), and the
proposed protocols (P2 with 1 to 3 private discriminator layers). The x-axis represents the normalized inverse of CW-SSIM for reconstructed
images (higher means better privacy), and the y-axis represents the normalized inverse of FID for the resultant generators (higher means
better quality). DP-∞, DP-1.39e8, and DP-9.6 are DPs with corresponding 𝜖 values. On CelebA, our method (P2 with 2 private layers) is 8×
slower than DP GAN training and 6× faster than full MPC training, while preserving reconstruction hardness and image generation quality.

Servers are unable to change their (either private or public)

inputs or outputs. This paper considers a two-server non-colluding

setting. Let training data be 𝑋 = {𝑋𝑡 }𝑇𝑡=1
, where 𝑋𝑡 is used for each

training iteration 𝑡 ∈ [𝑇]. Server 𝑖 follows a protocolM and gain

informationM(𝑋𝑡) at each iteration.M(𝑋𝑡) may include (i) the

parameter trajectories of the public generator and discriminator

layers throughout the training, (ii) the learning rates used for model

updates, and (iii) the public discriminator outputs corresponding to

generated inputs. In the analysis, we consider the worst case that

favors the attacker, where 𝑋𝑡 ∈ 𝑋 contains a single data point and

M is deterministic.

Reconstruction hardness: A reconstruction 𝑋𝑡 is considered

successful if “sensitive” information about 𝑋𝑡 is revealed. Therefore

reconstruction hardness is a data-dependent notion: A successful

reconstruction could be the recognition of generic data categories,

or the revealing of specific text labels on images. Without a con-

sensus on its definition, this paper defines reconstruction hardness

based on the L2 distance 𝜌(·, ·) : R𝑑𝑥 × R𝑑𝑥 → R as follows:

Definition 1.1. M achieves (𝜖, 𝛿)-reconstruction hardness if there
does not exist an algorithmwith polynomial data and computational

complexities that, with probability at least 1−𝛿 , computes 𝑋𝑡 based

onM(𝑋𝑡) such that 𝜌(𝑋𝑡 , 𝑋𝑡) ≤ 𝜖 for some 𝑡 ∈ [𝑇].

In our empirical evaluation on image generation, we use standard

image quality metrics CW-SSIM [58], PSNR [27], and Feat-MSE [19]

to define and compare hardness. Two images are more similar if

their CW-SSIM and PSNR are high, or Feat-MSE is low. See Sec-

tion 2.6 for definitions of these metrics.

Contributions. Our contributions are three-fold:
(1) We propose two simple (unconditional or traditional) GAN

training protocols that rely on the MPC framework: Protocol

1 (P1) uses a fully private discriminator, and Protocol 2 (P2)

privatizes the first three layers of the discriminator. Both P1 and

P2 use public generators. Additionally, we then extend these

protocols to support conditional GANs, offering an efficient

approach to training data-secured classifiers and addressing

tasks that require data labeling.

(2) We provide the first proof on reconstruction hardness for P1 and

P2 by showing that (1) publicizing the generator still achieves

reconstruction hardness, as long as the first two layers of the dis-

criminator are private; and through an existing approximation

hardness result on ReLU networks, (2) a ReLU discriminator

with at least three private layers achieves reconstruction hard-

ness even if its remaining layers are public. This is the primary

contribution of our work.

In general, it is assumed that all computations in ML algorithms

must remain private when implemented using secret-sharing

(via MPC) or encrypted settings (via homomorphic encryption).

However, to the best of our knowledge, no prior work has

specifically explored the security implications of applying MPC

to GAN training. Through our proof, we demonstrate the level

of security guarantees that can be achieved when a few layers

of computation are made public to enhance efficiency.

(3) We show empirically that compared with a full MPC imple-

mentation of our unconditional GAN training, P1 reduces the

training time by 2× and P2 further by 4 to 16×; and compared

with DP implementations, our protocols achieve better recon-

struction hardness. To the authors’ best knowledge, this is one

of the first methods that tractably train GAN models on CelebA

with a reconstruction hardness proof.

For conditional GANs, our primary focus is on classification

accuracy, as their runtime and communication cost is almost

similar to those of the corresponding unconditional protocols.

To evaluate this, we train a multilayer perceptron (MLP) and a

logistic regression (LR) model on downstream classification task

using images generated by our conditional privacy-preserving

GANmodels and compare it to state-of-the-art secure GS-WGAN [8],

and show that our solution provide data that help classification

model improve the performance by 2-3% accuracy.

Difference from standard privacy. It is necessary to clarify the

differences between our privacy definition, i.e., (𝜖, 𝛿)-reconstruction

hardness, and existing ones. First, standard definitions are rooted

in distinguishability of likelihoods, where privacy is considered

achieved when the difference between the likelihoods ofM(𝑋) and

45

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

M(𝑋 ′) is within some threshold. For example, (𝜖, 𝛿)-DP uses the

divergence of the likelihood between two adjacent datasets [16].

As is discussed in [64], limited likelihood difference alone does not

explain how much of the training set 𝑋 can be reconstructed by

an adversary either during or after the training. To this end, [64]

introduced probably approximately correct (PAC) privacy, which

follows Def. 1.1. Our threat model for hardness analysis, however, is

critically different from that of PAC privacy: PAC privacy assumes

M to be known to the attacker so that the output distribution of

M(𝑋) can be computed; in this study,M, e.g., the computation

of discriminator and generator gradients, is at least partially un-

known due to the private layers of the discriminator. We rule out

two potential attempts to circumvent this difficulty for an attacker:

First, one may consider these private layers as part of the input

data to be reconstructed, yet their prior distribution at an arbitrary

training step 𝑡 is unknown, which is a prerequisite for PAC privacy.

Second, one may attempt to approximate the distribution ofM(𝑋)

by passing a large batch 𝑋 through a blackboxM. Yet this can

be prevented by the training protocol that constrains the size and

content of 𝑋 processed by the servers. To summarize, our privacy

definition focuses on reconstruction hardness of a specific training

setting rather than distinguishability of likelihoods, and is thus

different from DP variants; and our threat mode takes into account

the practical reconstruction challenges introduced by private layers

and the training protocol, and is thus different from PAC privacy.

Essentially, we exchange one type of tradeoff for privacy, namely,

the lack of generation quality caused by gradient noise introduced

in DP and PAC privacy, for another type of tradeoff, namely, the

additional cost of secure computation on private layers. Fig. 1 sum-

marizes the performance tradeoffs of all training protocols.

Notations. We will use 𝐷𝑡 (resp. 𝐺𝑡) as the discriminator (resp.

generator) at training iteration 𝑡 , and use 𝜃𝐷𝑡 ∈ H𝐷 (resp. 𝜃𝐺𝑡 ∈
H𝐺) as its parameters, with H𝐷 and H𝐺 being the hypothesis

spaces. We use 𝛼𝑡 (resp. 𝛽𝑡) as the learning rate of the discrimina-

tor (resp. generator) updates, and ∇𝜃𝐷 (resp. ∇𝜃𝐺) as the model

gradient with respect to its parameters.

2 Related Work
2.1 Generative Adversarial Network (GAN)
GANs [24] represent a class of minimax algorithms for training

generative models, i.e., models that approximate the mapping of

random samples 𝑧 from a standard distributions 𝑝𝑧 to a data distri-

bution 𝑝𝑥 . A GAN is composed of a generator 𝐺 : R𝑑𝑧 → R𝑑𝑥
that

synthesizes data and a discriminator 𝐷 : R𝑑𝑥 → [0, 1] that assesses

the authenticity of the generated data. The training solves a Nash

equilibrium between 𝐺 and 𝐷 :

min

𝐺
max

𝐷
𝐿(𝐷,𝐺) = E𝑥∼𝑝𝑥 [log𝐷(𝑥)] + E𝒛∼𝑝𝑧 [log(1 − 𝐷(𝐺(𝑧)))] .

(1)

This adversarial interplay between the generator and discrimina-

tor constitutes the core dynamics of GANs, enabling the matching

between 𝑝𝐺 and 𝑝𝑥 . Recent advancements of GANs [25, 30, 59]

have propelled the development of various privacy sensitive ap-

plications such as medical imaging [35, 60, 67], networking and

server traces [37] and facial image generation [33, 46]. The de-

ployment of these applications has raised concerns over private

information leakage since the generated samples of a GAN can

reflect its underlying training dataset’s property and potentially

disclose privacy-sensitive data. Our paper is not concerned about

post-hoc treatments of generative models to prevent the accidental

generation of authentic data, but rather about the training proto-

cols to prevent reconstruction of sensitive data during multiparty

training.

There is a variant of traditional GAN which is Conditional GAN

(CGAN) [41]. Unlike GAN, CGAN allows user to specify the con-

straint in which the generated image should reflect. For example, a

CGAN on MNIST dataset allows users to specify which digit that

the generated image is classified as. Thus, CGAN provides an effec-

tive way to generate synthetic data for downstream task such as

training a data-secured classifier.

2.2 Secure and Decentralized GAN Training
Federated Learning (FL) has been used to train GANs with multi-

ple clients for the sake of data privacy. For example, FedGAN [53]

achieves image generation quality comparable to normal GANs.

[2, 8] take differential privacy (DP) into account by adding random

noises to the training gradients, which causes slow convergence in

solving the minimax problem. AsyncGAN [6] introduces a secure

training protocol for conditional GANs where multiple data holders

train their own discriminators and a centralized server trains a gen-

erator by querying gradient information from the discriminators.

This protocol assumes that the data distributions of all data holders

are known to the central server. Using MNIST as an example, the

server knows that a particular data holder holds images of “0”s, and

will only send “0”-labeled images to its discriminator. We do not use

this assumption since it leaks data type information to the server.

Instead, our protocols train a single generator and a discriminator

without any knowledge about the training dataset.

In addition to existed approach, there is a naive approach apply-

ing MPC [31, 44] in a straightforward manner, similar to the ways

MPC is applied in training machine learning model [31]. We refer

to this approach as Protocol P0 in our paper, and try to optimize

the performance of it using some weaker security assumption of

reconstruction hardness.

Finally, one can also implement normal GAN training augmented

by defenses against data reconstruction attack. [39] proposes and

tests several defense mechanism against data reconstruction attack.

Their paper finds that Gradient Pruning, with high probability

of weight being pruned, achieves the best defense against data

reconstruction. However, the reconstructed image quality shown

in their work still shows limitation of the defense, as the structure

of the real input is still being preserved. We show a comparison

with such a defense later in Section 5.3 where our protocol achieves

a far better reconstruction defense compared to [39].

2.3 Multiparty Computation
We review multiparty computation (MPC) as it plays a central

role in our solution. MPC is a method for parties to evaluate any

arbitrary functions without revealing any information about the

input data. MPC can have any number of data holders as long as

they secretly share their data to a specific number of servers who

later do the computation. A conventional MPC framework consists

46

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

𝑛 servers and𝑚 data holders participating in a two-stage process

to compute a function 𝑓 :

• Step 1: Data-holder breaks the data 𝑥 into additive pieces

J𝑥K𝑖∈[𝑛]
. The pieces sum up to the original data:

∑𝑛
𝑖=1

J𝑥K𝑖 = 𝑥 .

Then, they distribute the shares one piece per server, i.e. J𝑥K𝑖
to server S𝑖 .
• Step 2: Servers use the additive shares to perform secure

computation to get 𝑓 (𝑥) = 𝐶(J𝑥K
1
, . . . , J𝑥K𝑛) where 𝐶(·) is an

interactive computation process on the additive shares.

We note that if the training is executed fully in MPC, then stan-

dard security is achieved in the sense no information about the

training data is leaked to the servers since each only hold a random

shares of the data, unless all servers collude. In order to securely

evaluate any functions using additive piece of the user data, MPC

often relies on three core operations: Addition, Multiplication, and

Comparison. We show the details of how each operation works in

Section 2.5. In this paper, private layers of the discriminator will

use MPC for training. As a result, no servers have any knowledge

about the weights and biases of these layers, nor do they know the

input to and outputs from these layers.

Multiparty computation in machine learning. Privacy-preserving
machine learning (PPML) [15, 17, 28, 36, 42, 43, 45, 49, 51, 55] allows

different entities to collaboratively and privately train and evaluate

machine learning models using their collective data. The existing

body of literature on PPML has applications to linear regression, lo-

gistic regression, neural networks, and transformers [36, 38, 50, 56].

Most PPML schemes operate in a server-aided setting, where data

owners delegate the computation to a small number of servers that

are neither trusted nor colluding. [45] introduced the first practical

PPML system based on a two-server setting. Designs employing

three servers [42] and four servers [51] offer a weaker security

guarantee, as collusion between any pair of these servers can reveal

the private data of the data owners. Consequently, the two-server

PPML model remains preferable. Despite satisfying standard cryp-

tographic security, MPC leads to significantly higher training cost.

This paper follows the server-aided framework using two non-

trusted and non-colluding servers. But instead of following the

standard security/privacy definition, we use reconstruction hard-

ness as a data-dependent privacy interpretation, which allows us

to hybridize private and public layers to achieve more tractable

training.

2.4 Vertical Federated Learning (VFL)
Works such as VFL-GAN [68] leverages federation of clients

to jointly train a GAN model. In such a scheme, clients pass the

data through a local model, then send the intermediate output to a

central server to combine and do further computation. Even though

the results of such a model is promising, the use cases of VFL-GAN

and MPC-GAN are different. VFL-GAN having clients participate

in training process has a bottleneck on low power client or client

with poor communication and goes offline often. The probability

of having this kind of client increases when the number of clients

increase. Thus, in use cases where there are many clients, VFL

might not be optimal. MPC, on the other hand, does not require

clients to be involved in the training process and is competitive

in that use case. The main focus of this paper is on improving the

performance of secure GAN in the MPC use case.

2.5 MPC Implementation
We implement training protocols using Crypten [31], a PyTorch

framework for multi-party computation. Here we describe in de-

tail some of the core operations that we extensively used. MPC

hyperparameters are chosen as Crypten default values, which are

results of their extensive experiments for values with good effi-

ciency/accuracy trade-off [32].

Addition. To compute J𝑥 + 𝑦K, each parties compute J𝑥K𝑖 + J𝑦K𝑖
and the share is J𝑥 + 𝑦K𝑖 = J𝑥K𝑖 + J𝑦K𝑖 .

Multiplication. To compute J𝑥 ∗ 𝑦K, all parties pre-exchange shares
of a Beaver triple (𝑎, 𝑏, 𝑐) such that 𝑎𝑏 = 𝑐 . Then they reveal value of

𝜖 = 𝑥+𝑎, 𝛿 = 𝑦+𝑏. Then the final output J𝑥𝑦K = 𝜖∗J𝑦K𝑖−𝛿∗J𝑎K𝑖+J𝑐K𝑖 .

Comparison. To compute J𝑥 < 𝑦K, the parties either implement

a garbled circuit [66] or convert J𝑥 − 𝑦K = J𝑥K − J𝑦K to a “binary”

version ⟨𝑥 − 𝑦⟩ such that ⊕⟨𝑥 − 𝑦⟩ = 𝑥 − 𝑦 and evaluate the first

bit of ⊕(⟨𝑥 − 𝑦⟩) [32].

Data type conversion. Crypten uses integer in a group Z𝑞 for

secure computation. Thus, it uses a scale-and-round algorithm for

converting floating-point numbers to integers. In particular, to

convert a floating-point number 𝑥 ∈ R to an integer 𝑥𝑐 ∈ Z𝑞 ,
Crypten multiplies 𝑥 by a large number 𝐵 and round it to the

nearest integer:

𝑥𝑐 = ⌊𝐵𝑥⌉ .
In order to convert 𝑥𝑐 back to 𝑥 , Crypten simply divides it by 𝐵:

𝑥 =

𝑥𝑐

𝐵
.

In our implementation, we set 𝐵 = 2
16
and 𝑞 = 2

64
.

Additive sharing. We define J𝑥K as the sharing of a private value
𝑥 . In the two-server setting, to securely distribute an ℓ-bit secret

value 𝑥 , the data owner randomly chooses J𝑥K
1
in the arithmetic

field Z
2
ℓ , computes J𝑥K

2
= 𝑥 − J𝑥K

1
, and sends each J𝑥K𝑖 to a server

𝑆𝑖∈[2]. To reconstruct a secret 𝑥 , each server sends its shared J𝑥K𝑖 to
the data owner who computes 𝑥 = J𝑥K

1
+ J𝑥K

2
. When sharing a set

of values {𝑥1, . . . , 𝑥𝑛}, the data owner can employ Pseudorandom

Generator (PRG) to generate J𝑥𝑖K1
from a PRG seed 𝑠 . Consequently,

only the PRG seed 𝑠 needs to be transmitted to 𝑆1 instead of all J𝑥𝑖K1
.

This approach significantly enhances communication efficiency. In

our implementation, 𝑙 = 64.

Multiplication. Crypten uses Beaver’s trick to perform secure

multiplication. This is described in Section 2.5.

Comparison. Crypten first let servers compute J𝑥 − 𝑦K = J𝑥K −
J𝑦K and convert it to the binary share version ⟨𝑥 − 𝑦⟩ which has

the property: ⊕⟨𝑥 − 𝑦⟩ = 𝑥 −𝑦. The share of comparison J𝑥 > 𝑦K is
then just the first bit of ⟨𝑥 − 𝑦⟩

Exponentiation and Sigmoid. Sigmoid is calculated easily if we

have exp approximation. In Crypten, exp approximation can be

done in several ways. In our implementation, we use the approach

using iterations which is based on the equation:

lim

𝑛→∞
(1 +

𝑥

2
𝑛

)
2
𝑛

47

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

Figure 2: Schematics of the Proposed Protocols

In our implementation, we set 𝑛 = 8.

Logarithm. Similar to exponentiation, Crypten has many meth-

ods for approximating log function. We choose the approach based

on high-order modified Householder method, which to compute

log(𝑥) it has the update rules as:

ℎ𝑛 = 1 − 𝑥 exp(−𝑦𝑛)

,

𝑦𝑛+1 = 𝑦𝑛 −
ord∑︁
𝑘=1

1

𝑘
ℎ𝑘𝑛

In our experiment, we choose 𝑛 = 2, ord = 8 and number of itera-

tions for calculating exp is 8.

Leaky-ReLU. To enable secret-shared computation of Leaky ReLU,

we rewrite its standard formula max(0, 𝑥) + 𝑎min(0, 𝑥) as an MPC-

friendly formula 𝑥 (sign(𝑥) +𝑎− sign(𝑥)𝑎) which is a combination of

one addition, one multiplication-by-a-constant (which can be done

locally without any communication), one secure comparison, and

one secure multiplication.

2.6 Image Reconstruction Metrics
CW-SSIM. [58] The Complex-Wavelet Structural Similarity func-

tion is defined as:

CW-SSIM(𝑐𝑥 , 𝑐𝑦) =

(
2

∑𝑁
𝑖=1
|𝑐𝑥,𝑖 | |𝑐𝑦,𝑖 |+𝐾∑𝑁

𝑖=1
(|𝑐𝑥,𝑖 |2+|𝑐𝑦,𝑖 |2) + 𝐾

) (
2|∑𝑁

𝑖=1
𝑐𝑥,𝑖𝑐

∗
𝑦,𝑖 |+𝐾

2

∑𝑁
𝑖=1
|𝑐𝑥,𝑖𝑐∗𝑦,𝑖 |+𝐾

)
,

where 𝑐𝑥 , 𝑐𝑦 represent complex wavelet transform of the images 𝑥

and 𝑦 respectively; 𝐾 be small positive number, ideally set to 0.

PSNR. [27] Peak signal-to-noise ratio (PSNR) function is defined

as:

PSNR(𝑥,𝑦) = 20 log
10

(max(𝑥)) − 10 log
10

(MSE(𝑥,𝑦)),

where MSE represents the mean square error function.

Feat-MSE. [20] Given a modelM, the feat MSE is defined as the

mean square error between two outputs, formally:

Feat-MSE(𝑥,𝑦) = MSE(M(𝑥),M(𝑦)),

In our paper, we use the Discriminator 𝐷 as the modelM.

3 Proposed Learning Architecture and Protocols
This section presents two GAN architectures and training proto-

cols, each comprising four phases, see Alg. 3. In Phase I, every

data owner secretly shares their private dataset 𝑋 (𝑖)
among servers.

Phase I is communication-optimized using a pseudorandom gen-

erator (PRG) [22] (details in Section 2.5). Since P1 and P2 use the

same Phase I implementation, we only report computational cost of

Phases II to IV. Figure 2 shows the high-level design of our protocols.

3.1 Protocol 0 (P0): Fully-secure MPC
A vanilla solution is to directly apply MPC to GAN training, in

which case all intermediate values, such as layer-wise forward and

backward outputs, are secret-shared among the servers. P0 enjoys

standard security, assuming the security of MPC, and serves as the

baseline for comparisons on computational cost and generation

quality. P0 is implemented using Crypten [31].

3.2 Protocol 1 (P1): Private Discriminator
Based on the observation that generator training only involves

random samples rather than authentic training data, we propose P1

where only the discriminator is kept private. We prove in Sec. 4.3

that reconstruction hardness is achieved in P1.

At a high level, our protocol P1 assumes that the generator

model 𝐺 is a public and common model to all the servers, while

the discriminator model 𝐷 is kept secret by theMPC mechanism.

Our P1 first begins with Data Sharing step, similar to P0, where

data holder D𝑗 additively shares his data to all the servers. Second,

each of the servers samples a random noise vector 𝑧, and computes

�̃� = 𝐺(𝑧). Then, the server additively shares �̃� to 𝑛 − 1 other

servers. With secret shares of �̃� , 𝑋, 𝐷 , 𝑛 servers use MPC protocol

to compute the binary cross entropy loss as dloss = −E[log𝐷(𝑋)]−
E[log(1−𝐷(�̃�)] and get the gradient∇𝜃𝐷 dloss to update the weights
𝜃𝐷 of discriminator. Then, S1 computes �̃� = 𝐺(𝑧), broadcasts that

value to all servers. Now, all server compute and reveal the value

of grad = ∇�̃� (−E[log(𝐷(�̃�))]. This gradient value will be then used

to calculate ∇𝜃𝐺 gloss = grad · ∇𝜃𝐺 �̃� . Note that ∇𝜃𝐺 �̃� is public to

all servers as 𝐺 and �̃� are public.

3.3 Protocol 2 (P2): Partially-private
Discriminator

We propose P2 to further reduce training cost. Here only the first

few layers of the discriminator are private, after which, the private

outputs from both servers are combined and made public. The

remainder of the discriminator forward pass is done locally on an

individual server without the need for communication or secure

computation. We prove in Sec. 4.4 that reconstruction hardness can

still be achieved for a ReLU network.

At a high level, protocol P2 differs from P1 in the third step:

Discriminator Pass. In P2’s Discriminator Pass, we divide 𝐷
into two parts: 𝐷𝑝𝑟𝑖 which is kept as additive shares across servers,

and 𝐷𝑝𝑢𝑏 which is publicly shared to all servers. The servers after

use MPC to compute J𝑦K = J𝐷𝑝𝑟𝑖 (�̃�)K and J𝑦K = J𝐷𝑝𝑟𝑖 (𝑋)K, will
then reveal these intermediate values. Later, the discriminator loss

and the corresponding gradient is publicly computed. We need

48

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

Parameters:𝑚 data holders {D1, . . . ,D𝑚 } with corresponding data {𝑋 (1), . . . , 𝑋 (𝑚)}; 𝑛 computing servers {S1, . . . , S𝑛 }; Generator model 𝐺 ;

Discriminator model 𝐷

Protocol:

I. Data Sharing
(1) Each data-holder D𝑖 secretly break their data 𝑋 (𝑖)

into 𝑛 additive shares J𝑋 (𝑖)K𝑗 ∈[𝑛]

(2) D𝑖 sends J𝑋 (𝑖)K𝑗 ∈[𝑛]
to computing server S𝑗

For each training iteration, 𝑛 servers {S1, . . . , S𝑛 } together perform the following:

II. Generator Forward
(1) Each S𝑖∈[𝑛]

chooses a random noise vector 𝑧, compute �̃� = 𝐺 (𝑧)

(2) Each S𝑖∈[𝑛]
locally breaks �̃� into 𝑛 pieces and sends J𝑋 K𝑗 to S𝑗

III.a. Discriminator Pass (Private Discriminator, P1)

(1) 𝑛 server use MPC to

(a) Calculate dloss = −E[log𝐷(𝑋)] − E[log(1 − 𝐷(�̃�))]

(b) Update Discriminator parameters using Gradient Descent on gradient ∇𝜃𝐷 dloss
(2) S1 compute �̃� = 𝐺 (𝑧), broadcasts �̃� to all S𝑖
(3) 𝑛 servers use MPC to calculate grad = ∇

�̃�
(−E[log(𝐷(�̃�)])

III.b. Discriminator Pass (Partially Private Discriminator, P2)

(1) 𝑛 servers together reveal �̃� = 𝐷𝑝𝑟𝑖 (�̃�), 𝑦 = 𝐷𝑝𝑟𝑖 (𝑋)

(2) Each server S𝑖 locally do:

(a) Update 𝐷𝑝𝑢𝑏 parameters using Gradient Descent on gradient ∇𝜃𝐷𝑝𝑢𝑏
dloss = (∇𝜃𝐷𝑝𝑢𝑏

− E[log𝐷𝑝𝑢𝑏 (𝑦)] − E[log(1 − 𝐷𝑝𝑢𝑏 (�̃�))])

(b) Update 𝐷𝑝𝑟𝑖 parameters using Gradient Descent on gradient (∇𝜃𝐷𝑝𝑟𝑖
𝑦 · ∇𝑦 + ∇𝜃𝐷𝑝𝑟𝑖

�̃� · ∇�̃�)dloss

(3) S1 compute �̃� = 𝐺 (𝑧), broadcasts �̃� to all S𝑖
(4) 𝑛 servers use MPC to calculate grad = ∇

�̃�
(−E[log(𝐷𝑝𝑢𝑏 ◦𝐷𝑝𝑟𝑖 (�̃�))])

IV. Generator Update
(1) Each server S𝑖 do:

(a) Receive JgradK𝑖 from (III.a) or (III.b)

(b) Calculate J∇𝜃𝐺 glossK
𝑖

= 𝑛𝛼 · JgradK𝑖 · ∇𝜃𝐺 �̃�

(c) Update𝐺 using Gradient Descent to𝐺𝑖 using J∇𝜃𝐺 (−E[log(𝐷(�̃�)])K
𝑖

(2) 𝑛 servers together get true updated value𝐺 =
1

𝑛

∑𝑛
𝑖=0

𝐺𝑖

Figure 3: Our Unconditional Privacy Preserving Generative Adversarial Network (PPGAN)

to compute the gradient of the private weight ∇𝜃𝐷𝑝𝑟𝑖
usingMPC

based on the value of ∇𝑦dloss and ∇�̃�dloss

3.4 Conditional GAN Training
Conditional GAN [41] provides an effective way to train a data

secured classifier and tasks that require data label. We provide a

protocol, which adapt from unconditional GAN, but with an addi-

tional MPC component: label encoding. First, in the Data Sharing
step, the data holder D𝑖 embeds the label 𝑦(𝑖)

into an embedding

𝑦
(𝑖)

𝑒𝑚𝑏
= embed(𝑦(𝑖)

) where embed is an embedding function such as

one hot encoding. Then, he breaks that embedding into 𝑛 additive

shares and sends them to 𝑛 servers. In Generator Forward step,

each server S𝑖∈[𝑛] samples a fake label 𝑦 uniformly along with the

random noise vector 𝑧 sampled from a Normal distribution, then

from [𝑧 : 𝑦𝑒𝑚𝑏] (where [· : ·] indicates concatenation) the server S𝑖
generates a fake image �̃� corresponding to the fake label 𝑦. The

server S𝑖 then converts the fake image �̃� and fake embeded label 𝑦

into 𝑛 additive shares and distributes the shares to all servers. Next,

in Discriminator Pass step, 𝑛 servers use MPC to calculate the

share of the loss and the share of the gradient, as well as update

the weight of the discriminator using the gradient. 𝑛 servers also

useMPC to compute the gradient with respect to generator output

grad = ∇�̃� gloss. All servers finally reconstruct the value of grad

and use it in Gradient Update step to update the weight of the

generator using gradient descent. We show the detail of Conditional

GAN training algorithm in Figure 4.

3.5 Correctness of Our protocols
We note that P1 and P2 update the generator based on secret shares

of the discriminator. Let𝛼𝑡 be the generator learning rate, and J𝜃𝐺𝑡 K𝑖
follows a gradient descent update: J∆𝜃𝐺K𝑖 = J−𝛼𝑡∇𝜃𝐺 𝐿K𝑖 . Then
since the secret shares are additive, it is easy to show that 𝜃𝐺𝑡+1

=∑
𝑖 J𝜃𝐺𝑡 K𝑖 + J∆𝜃𝐺K𝑖 . Note that in practice, secret shares introduce

small numerical errors, which affect the training convergence.

4 Reconstruction Hardness
In this section, we first lay out our assumption on the threat model.

Second, we introduce Proposition 1, which justifies the generality

of Def. 1.1 when applied to image generation, i.e., reconstruction

hardness defined on all these metrics can be alternatively defined

through 𝜌 (the proof in Section 4.2). Therefore, our hardness analy-

ses will be based on Def. 1.1. Finally, we provide a detail analysis

on the security of our protocol P1 and P2 for unconditional im-

age generation, the security proofs for corresponding conditional

generation protocols can be similarly derived.

49

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

Parameters:𝑚 data holders {D1, ..,D𝑚 }, 𝑛 computing server {S1, .., S𝑛 }, a generator network 𝐺 , a discriminator network 𝐷 , an Embedding

function emb that maps the label 𝑦 ∈ [10] to a 10 × 1 vector.

Protocol

I. Data Sharing
(1) For each 𝑖 ∈ [𝑚] do

(a) Data holder D𝑖 embed all the label 𝑦(𝑖)
to 𝑦

(𝑖)

𝑒𝑚𝑏
= emb(𝑦(𝑖)

)

(b) Data holder D𝑖 breaks their data𝑋
(𝑖), 𝑦

(𝑖)

𝑒𝑚𝑏
into 𝑛 additive secret shares J𝑋 (𝑖)K𝑗 ∈[𝑛]

such that

∑𝑛
𝑗=1

J𝑋 (𝑖)K𝑗 = 𝑋 (𝑖)
,

∑𝑛
𝑗=1

J𝑦(𝑖)

𝑒𝑚𝑏
K
𝑗

= 𝑦
(𝑖)

𝑒𝑚𝑏
.

(c) D𝑖 sends J𝑋 (𝑖)K𝑗 , J𝑦
(𝑖)

𝑒𝑚𝑏
K
𝑗
to computing server S𝑗 for 𝑗 ∈ [𝑚]

II. Generator Forward
(1) For each S𝑖 ∈ {S1, ..S𝑛 } do

(a) Choose a random noise vector 𝑧, and a label �̃�

(b) Get the embedded label vector �̃�𝑒𝑚𝑏 = emb(�̃�)

(c) Get fake data �̃� (𝑖)
= 𝐺 ([𝑧 : �̃�𝑒𝑚𝑏]) where [· : ·] indicates concatenation of 2 vectors.

(d) Break �̃� (𝑖)
and �̃�

(𝑖)

𝑒𝑚𝑏
to 𝑛 pieces J�̃� (𝑖)K𝑗 ∈[𝑛]

and J�̃�(𝑖)

𝑒𝑚𝑏
K

(e) Send J�̃� (𝑖)K𝑗 , J�̃�𝑒𝑚𝑏K𝑗 to S𝑗
III. Discriminator Pass (Private Discriminator GAN, Protocol 1)

(1) Update discriminator: The 𝑛 servers use MPC to

(a) Calculate dloss = −E[log𝐷([𝑋 : 𝑦𝑒𝑚𝑏])] − E[log(1 − 𝐷([�̃� : �̃�𝑒𝑚𝑏]))]

(b) Update Discriminator parameters using Gradient Descent on gradient ∇𝜃𝐷 dloss
(2) Calculate Generator loss:

(a) Use only 1 party S𝑖 to get �̃� = 𝐺 ([𝑧 : �̃�𝑒𝑚𝑏])

(b) 𝑛 servers useMPC to calculate gloss = −E[log𝐷(�̃�)]

(c) 𝑛 servers useMPC to calculate grad =
𝜕

𝜕�̃�
gloss

III.b. Discriminator Pass (Partially-private Discriminator GAN, Protocol 2)

(1) Update discriminator: The 𝑛 servers use MPC to

(a) 𝑛 servers together reveal 𝑡 = 𝐷𝑝𝑟𝑖 ([�̃� : �̃�𝑒𝑚𝑏]), 𝑡 = 𝐷𝑝𝑟𝑖 ([𝑋 : 𝑦𝑒𝑚𝑏])

(b) Calculate dloss = −E[log𝐷𝑝𝑢𝑏 (𝑡)] − E[log(1 − 𝐷𝑝𝑢𝑏 (𝑡))]

(c) Update 𝐷𝑝𝑢𝑏 parameters using Gradient Descent on gradient ∇𝜃𝐷𝑝𝑢𝑏
dloss

(d) Update 𝐷𝑝𝑟𝑖 parameters using Gradient Descent on gradient (∇𝜃𝐷𝑝𝑟𝑖
𝑡 · ∇𝑡 + ∇𝜃𝐷𝑝𝑟𝑖

𝑡 · ∇𝑡)dloss

(2) Calculate Generator loss:

(a) Use only 1 party S𝑖 to get �̃� = 𝐺 ([𝑧 : �̃�𝑒𝑚𝑏])

(b) 𝑛 servers locally calculate gloss = −E[log𝐷𝑝𝑢𝑏 (𝑡)] where 𝑡 = reveal(𝐷𝑝𝑟𝑖 ([�̃� : �̃�𝑒𝑚𝑏]))

(c) 𝑛 servers use MPC to calculate grad =
𝜕

𝜕�̃�
gloss

IV. Generator Update
(1) Each S𝑖 receives JgradK𝑖 from PPGAN.DiscriminatorPass
(2) S𝑖 calculates J∇𝜃𝐺 glossK

𝑖
= 𝑛𝜂 · JgradK𝑖 · ∇𝜃𝐺 �̃�

(3) S𝑖 updates𝐺 using Gradient Descent to𝐺𝑖 using J∇𝜃𝐺 glossK
𝑖

(4) 𝑛 parties together get true updated value𝐺 =
1

𝑛

∑𝑛
𝑖=0

𝐺𝑖

Figure 4: Our Conditional Privacy Preserving Generative Adversarial Network (Conditional PPGAN)

4.1 Threat Model
To justify the protocol design, we consider the following worst-case

assumptions that favor an attacker: (1) The attacker has access

to all public information during and after the training, including

the terminal generator and its distribution 𝑝𝐺𝑇
; (2) 𝑝𝐺𝑇

matches

the true training data distribution 𝑝𝑥 ; (3) the discriminator uses

a sigmoid output activation and the discriminator loss is a cross-

entropy function; (4) a single data point 𝑥𝑡 ∼ 𝑝𝑥 is drawn at iteration
𝑡 and used to update𝐷𝑡 via gradient descent, where the learning rate

𝛼𝑡 is public. For private layers of the discriminator, Assumptions

(3) and (4) lead to the following update:

J𝜃𝐷𝑡 K = J𝜃𝐷𝑡−1
K − 𝛼𝑡 J∇𝜃𝐷𝑡−1(𝑥𝑡)/𝐷𝑡−1(𝑥𝑡)K. (2)

We assume updates on one data point. As shown empirically in

[20], reconstructing one data point is easier for an attacker than a

batch. Then with an artificial sample 𝑥 := 𝐺𝑡−1(𝑧) where 𝑧 ∼ 𝑝(𝑧),

the generator is updated based on 𝐷𝑡 . In P1 where 𝐷𝑡 is private, an

aggregation of secret shares of 𝐷𝑡 (𝑥) and ∇𝑥𝐷𝑡 (𝑥) is needed before

computing the following update:

∆𝜃𝐺𝑡 = −𝛼𝑡 (1 − 𝐷𝑡 (𝑥))
−1∇𝑥𝐷𝑡 (𝑥)∇𝜃𝐺𝑡−1(𝑧). (3)

Since 𝑧 is known, Eq. (2) and Eq. (3) together define a deterministic

mechanism from (𝜃𝐷𝑡−1
, 𝑥𝑡) to ∆𝜃𝐺𝑡 , which we denote byM(·, ·) :

H𝐷 × X → H𝐺 .

We examine reconstruction hardness of the proposed architec-

ture and training protocol in this section. To overview, we consider

two types of attacks that exploit the public information in these

protocols: The first type (Sec. 4.3) uses the fact that the public up-

date of the generator is based on that of the discriminator, which

is in turn based on the authentic data. We show that the public

50

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

update of the generator achieves reconstruction hardness as long

as the discriminator has at least two private layers. The second type

(Sec. 4.4) concerns data reconstruction through public outputs of

the discriminator when only the first few discriminator layers are

private. Here we leverage existing approximation hardness results

to show that with at least three private layers, authentic training

data cannot be recovered with polynomial data and computational

complexity.

4.2 Connection between Reconstruction
Hardness and Image Reconstruction

The following Proposition (Proposition 1) gives a connection be-

tween L2 distance and image similarity distance metrics such as

CW-SSIM, PSNR, FMSE. This connection shows that we can use a

bound in terms of the L2 distance to conservatively satisfy bounds

in terms of these three similarity metrics. Therefore our theoret-

ical analysis uses the L2 distance only. For empirical results in

Section 5.3, we report results using all three similarity metric.

Proposition 1. Let 𝜌1, 𝜌2, and 𝜌3 : R𝑑𝑥 × R𝑑𝑥 → R be CW-SSIM,
PSNR, and FMSE metrics. For any 𝑥 and 𝑦 ∈ R𝑑𝑥 such that 𝜌(𝑥,𝑦) ≤
𝜖 , there exist 𝑐1, 𝑐2, 𝑐3 > 0, such that 𝜌1(𝑥,𝑦) ≥ max{1 − 𝑐1𝜖, 0},
𝜌2(𝑥,𝑦) ≥ 20(𝑐2 − log

10
𝜖), and 𝜌3(𝑥,𝑦) ≤ 𝑐3𝜖 .

Proof. For CW-SSIM: We start by considering two signals

𝑥 and 𝑦 ∈ R𝑑𝑥
that lead to complex wavelet coefficients 𝑐𝑦,𝑖 =

𝑐𝑥,𝑖 + ∆𝑐𝑖 ∈ C for 𝑖 = [𝑀] where 𝑀 is the number of discrete

wavelet coefficients. Let 𝛼 = [|𝑐𝑥,𝑖 |]𝑀𝑖=1
and 𝛽 = [|∆𝑐𝑖 |]𝑀𝑖=1

where

|·| is the modulus. Since 𝛼 and 𝛽 are vectors with non-negative

elements, we have 𝛽 = Λ𝛼 where Λ = 𝑑𝑖𝑎𝑔([𝜆𝑖]) is positive definite.

Let 𝜆 = max𝑖 𝜆𝑖 . Note that 𝜆 is bounded if 𝛼𝑖 ̸= 0 for all 𝑖 ∈ [𝑀]

which is a reasonable assumption to make for e.g., a natural image

𝑥 . CW-SIMM for 𝑐𝑦 and 𝑐𝑥 is then

𝑆(𝑐𝑦, 𝑐𝑥) =

2|∑𝑖 𝑐𝑥,𝑖𝑐
∗
𝑦,𝑖 |+𝐾∑

𝑖 |𝑐𝑥,𝑖 |2+|𝑐𝑦,𝑖 |2+𝐾

=

2|∑𝑖 |𝑐𝑥,𝑖 |2+𝑐𝑥𝑖 ∆𝑐
∗
𝑖 |+𝐾∑

𝑖 2|𝑐𝑥,𝑖 |2+|∆𝑐𝑖 |2+2𝑅𝑒(𝑐𝑥,𝑖∆𝑐
∗
𝑖
) + 𝐾

≥
2

(∑
𝑖 |𝑐𝑥,𝑖 |2−|𝑐𝑥𝑖 | |∆𝑐𝑖 |

)∑
𝑖 2|𝑐𝑥,𝑖 |2+|∆𝑐𝑖 |2+2|𝑐𝑥,𝑖 | |∆𝑐𝑖 |

(4)

𝑆(𝑐𝑦, 𝑐𝑥) =

2𝛼𝑇 (𝛼 − 𝛽)

𝛼𝑇𝛼 + (𝛼 + 𝛽)
𝑇

(𝛼 + 𝛽)

≥ 2(1 − 𝜆)

1 + (1 + 𝜆)
2
.

Since this lower bound of CW-SSIM monotonically decreases with

respect to 𝜆, we need to find an upper bound of 𝜆 to lower bound 𝑆 .

To do so, we first denote the Fourier transform of 𝑥 and 𝑦 as 𝑋 (𝑤)

and𝑌 (𝑤) with frequency𝑤 , respectively; ∆(𝑤) = 𝑌 (𝑤)−𝑋 (𝑤);𝐺(𝑤)

the Fourier transform of the wavelet filter;𝑤𝑐 the center frequency;

and (𝑠𝑖 , 𝑝𝑖) the 𝑖th discrete scaling and translation factors. Here we

use 𝑗 as the imaginary unit. Then we have

𝜆 = max

𝑖

���∫∞−∞ ∆(𝑤)𝐺(𝑠𝑖𝑤 −𝑤𝑐)𝑒 𝑗𝑤𝑝𝑖𝑑𝑤

������∫∞−∞ 𝑋 (𝑤)𝐺(𝑠𝑖𝑤 −𝑤𝑐)𝑒 𝑗𝑤𝑝𝑖𝑑𝑤

��� ≤ 𝑘 |∆| (5)

where |∆|= max𝑤 |∆(𝑤)| and 𝑘 = max𝑖
|
∫∞
−∞𝐺 (𝑠𝑖𝑤−𝑤𝑐)𝑒 𝑗𝑤𝑝𝑖 𝑑𝑤 |

|
∫∞
−∞ 𝑋 (𝑤)𝐺 (𝑠𝑖𝑤−𝑤𝑐)𝑒 𝑗𝑤𝑝𝑖 𝑑𝑤 | .

Lastly, let ∆𝑥(𝑢) = 𝑦(𝑢) − 𝑥(𝑢) be the spatial domain difference.

We have

|∆|2 = max

𝑤

����∫∞
−∞

∆𝑥 (𝑢)𝑒−𝑖2𝜋𝑤𝑢
����2

≤ 2

(∫∞
−∞

∆𝑥 (𝑢)𝑑𝑢

)
2

≤ 4𝜌2
(𝑥,𝑦).

(6)

Therefore if 𝜌(𝑥,𝑦) ≤ 𝜖 , 𝑆(𝑐𝑦, 𝑐𝑥) ≥ 2(1−2𝑘𝜖)

1+(1+2𝑘𝜖)
2
. For small 𝜖 , we have

𝑆(𝑐𝑦, 𝑐𝑥) ≥ 1 − 4𝑘𝜖 .

For PSNR: Given 𝑥 and 𝑦 ∈ R𝑑𝑥
and 𝜌(𝑥,𝑦) ≤ 𝜖 , we have the

following upper bound on PSNR:

𝜌2(𝑥,𝑦) = 20 log
10

max𝑥−10 log
10
𝜌2

(𝑥,𝑦) ≤ 20 log
10

max𝑥−20 log 𝜖.

(7)

For FMSE: Given 𝑥 and 𝑦 ∈ R𝑑𝑥
, and let 𝑐 (𝑙)

: R𝑑𝑥 → R𝑑𝑙 be the

mapping from inputs to discriminator features at the 𝑙th hidden

layer. FMSE measures the L2 distance between 𝑐 (𝑙)
(𝑥) and 𝑐 (𝑙)

(𝑦).

Notice that 𝑐 (𝑙)
is Lipschitz continuous with constant 𝐿𝑙 [63]. Thus

𝜌3(𝑥,𝑦) ≤ 𝐿𝑙𝜖 . □

4.3 Privacy under a Public Generator
We now examine ifM(·, ·) allows reconstruction of authentic data.

First, Proposition 2 shows that for small enough 𝐷 learning rate

and for 𝐷 with two private layers, (𝜖, 𝛿)-reconstruction hardness

can be achieved.

Proposition 2. Given any ∆𝜃𝐺𝑡 attained byM(·, ·) for some 𝜃𝐷𝑡−1
∈

H𝐷 and 𝑥∗ ∈ X, consider 𝐷 with two private linear layers and
a public sigmoid output: 𝐷𝑡 (𝑥) = 𝜎(𝑎𝑇𝑡 𝐵𝑡𝑥), where 𝑎𝑡 ∈ R𝑙 and
𝐵𝑡 ∈ R𝑙×𝑑𝑥 . (𝜖, 𝛿)-reconstruction hardness can be achieved if 𝛼𝑡 ≤
𝑐𝜖−1𝛿1/𝑑𝑥 , where the constant 𝑐 is problem independent.

Proof. First, recall that the generator update follows:

∆𝜃𝐺𝑡 = 𝛽𝑡 (1 − 𝐷𝑡 (𝑥))
−1∇𝑥𝐷𝑡 (𝑥)∇𝜃𝐺𝑡−1(𝑧), (8)

where 𝑥 = 𝐺𝑡−1(𝑧) is a generated data point and 𝑧 ∼ 𝑝𝑧 . Recall that
for both P1 and P2, the vector (1 −𝐷𝑡 (𝑥))

−1∇𝑥𝐷𝑡 (𝑥) is public to the

servers. We now consider the worst case where 𝐷𝑡 (𝑥) and ∇𝑥𝐷𝑡 (𝑥)

are known to the attacker. This is true for P2. For P1, this is also

reasonable for a successful training as 𝐷𝑡 (𝑥) approaches 0.5.

Given 𝐷𝑡 (𝑥) = 𝜎(𝑎𝑇𝑡 𝐵𝑡𝑥), we have

∇𝑥𝐷𝑡 (𝑥) = −𝐷𝑡 (𝑥)(1 − 𝐷𝑡 (𝑥))𝑎𝑇𝑡 𝐵𝑡 . (9)

Hence,𝑤𝑇
𝑡 := 𝑎𝑇𝑡 𝐵𝑡 can be computed by the attacker given ∆𝜃𝐺𝑡 for

any 𝑡 ∈ [𝑇].

SinceM(·, ·) assumes that the update of 𝐷 is performed based

on a single authentic data point 𝑥∗, we have the following updates

from 𝑎𝑡−1 and 𝐵𝑡−1:

∆𝑎 = 𝛼𝑡−1𝐷𝑡−1(𝑥∗)(1 − 𝐷𝑡−1(𝑥∗))∇𝑎𝑎𝑇𝑡−1
𝐵𝑡−1𝑥

∗

= 𝛼𝑡−1𝐷𝑡−1(𝑥∗)(1 − 𝐷𝑡−1(𝑥∗))𝐵𝑡−1𝑥
∗,

(10)

and

∆𝐵 = 𝛼𝑡−1𝐷𝑡−1(𝑥∗)(1 − 𝐷𝑡−1(𝑥∗))∇𝐵𝑎𝑇𝑡−1
𝐵𝑡−1𝑥

∗

= 𝛼𝑡−1𝐷𝑡−1(𝑥∗)(1 − 𝐷𝑡−1(𝑥∗))𝑎𝑡−1(𝑥∗)𝑇
(11)

51

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

Let ∆𝑤 = 𝑤𝑡 −𝑤𝑡−1, then

∆𝑤𝑇
=(𝑎𝑡−1 + ∆𝑎)

𝑇
(𝐵𝑡−1 + ∆𝐵) − 𝑎𝑇𝑡−1

𝐵𝑡−1

= ∆𝑎𝑇𝐵𝑡−1 + 𝑎𝑇𝑡−1
∆𝐵 + ∆𝑎𝑇 ∆𝐵

= (𝑥∗)𝑇
(
𝑐 ∥𝑎𝑡−1∥22+𝑐2𝑤𝑇

𝑡−1
𝑥∗ + 𝑐𝐵𝑇𝑡−1

𝐵𝑡−1

)
,

(12)

where 𝑐 = 𝛼𝑡−1𝐷𝑡−1(𝑥∗)(1 − 𝐷𝑡−1(𝑥∗)) is known.
For brevity, we will omit time dependence in the following dis-

cussion. Let 𝑔 = ∆𝑤/𝑐 , we have the following system of equations

with respect to unknown quantities 𝑎 ∈ R𝑙
, 𝐵 ∈ R𝑙×𝑑𝑥

, and the

reconstruction 𝑥 ∈ R𝑑𝑥
, where 𝑔 ∈ R𝑑𝑥

, 𝑐 ∈ R,𝑤 ∈ R𝑑𝑥
are known

parameters:

𝑔 =

(
𝑑𝑖𝑎𝑔

(
∥𝑎∥2

2
+𝑐(𝑥)

𝑇𝐵𝑇𝑎

)
+ 𝐵𝑇𝐵

)
𝑥

𝑤 = 𝐵𝑇𝑎.
(13)

We need to show that there exists an infinite number of 𝑥 , for

each of which there exists some (𝑎, 𝐵) that, together with the corre-

sponding 𝑥 , satisfies Eq. (13).

To do so, we propose the following synthesis process. First, let

𝑁 = 𝑄Λ𝑄𝑇 ∈ R𝑑𝑥 ×𝑑𝑥
be a symmetric matrix with randomly sam-

pled orthogonal matrix 𝑄 ∈ R𝑑𝑥 ×𝑑𝑥
and positive-definite diagonal

matrix Λ = 𝑑𝑖𝑎𝑔(𝜆1, ..., 𝜆𝑑𝑥). Let 𝜆 = min𝑖 {𝜆𝑖 }. Then introduce

𝑀 := 𝑁𝛾 := 𝑑𝑖𝑎𝑔(∥𝑎∥2
2
+𝑐(𝑥)

𝑇𝐵𝑇𝑎) + 𝐵𝑇𝐵, (14)

with some 𝛾 > 0. Since𝑀 is positive-definite, we can get 𝑥 = 𝑀−1𝑔

from Eq. (13). From Eq. (14) we also have

𝐵𝑇𝐵 = 𝑄𝑑𝑖𝑎𝑔(𝜆𝑖𝛾 − 𝑐𝑤𝑇𝑥 − ∥𝑎∥2
2
)𝑄𝑇 . (15)

Let ∥𝑎∥2
2
= 2𝜏 ∥𝑤 ∥2 where 𝜏 ∈ (0, 0.5]. Then we have the following

constraint on 𝛾 for 𝐵𝑇𝐵 to be positive semi-definite:

min

𝑖
𝜎2

𝑖 := min

𝑖
𝜆𝑖𝛾 − 𝑐𝑤𝑇𝑥 − 2𝜏 ∥𝑤 ∥2≥ 0. (16)

Solve Eq. (16) to have

𝛾 ≥
𝜏 ∥𝑤 ∥2+

√︃
𝜏2∥𝑤 ∥2

2
+𝜆𝑐𝑔𝑇𝑁 −1𝑤

𝜆
. (17)

Then we can rewrite 𝐵𝑇𝐵 = 𝑄Σ
2𝑄𝑇

, where Σ
2

= 𝑑𝑖𝑎𝑔(𝜎2

1
, ..., 𝜎2

𝑑𝑥
).

Therefore, 𝐵 can be constructed as 𝐵 = 𝑈 Σ̄𝑄𝑇
with some orthogonal

matrix𝑈 ∈ R𝑙×𝑙
and Σ̄ ∈ R𝑙×𝑑𝑥

with diagonal elements from those

of Σ.

We still need to show that there exists 𝜏 ∈ (0, 0.5] such that 𝐵

constructed in the above satisfies the second equation in Eq. (13):

𝑤 = 𝑎𝑇𝐵. To do so, we first note that 𝑎𝑇𝑈 = 𝑤𝑇𝑄Σ̄
†
, where Σ̄

† ∈
R𝑙×𝑑𝑥

is the pseudo-inverse of Σ̄. Now we show that there exists 𝜏

such that the following satisfies:

2𝜏 ∥𝑤 ∥= ∥𝑎∥2= ∥𝑎𝑇𝑈 ∥2= ∥𝑤𝑇𝑄Σ̄
†∥2 . (18)

Let 𝑦 = 𝑄𝑇𝑤 and 𝐴𝑖 = 𝜆𝑖𝛾 − 𝑐𝑤𝑇𝑥 , we have

∥𝑤𝑇𝑄Σ̄
†∥2 = 𝑦𝑇 Σ

−2𝑦

=

∑︁
𝑖

(𝐴𝑖 − 2𝜏 ∥𝑤 ∥)−1𝑦2

𝑖
(19)

Let 𝐴 = min𝑖 {𝐴𝑖 }. For 𝜏 to exist, we need to show that the

following function have a root in [0, 𝐴/2]:

𝑓 (𝑥) =

∑︁
𝑖

𝑦2

𝑖

𝐴𝑖 − 𝑥
− 𝑥 . (20)

Note that 𝑓 (0) =

∑
𝑖 𝑦

2

𝑖 /𝐴𝑖 > 0 and 𝑓 (𝐴/2) ≤ 2∥𝑤 ∥2/𝐴 −𝐴/2. Since

𝐴 ≥ 2∥𝑤 ∥, 𝑓 (𝐴/2) ≤ 0. Since 𝑓 is continuous in [0, 𝐴/2], 𝑓 (𝑥) has a

root in [0, 𝐴/2].

To summarize the synthesis process: with some arbitrary orthog-

onal matrices 𝑄 and 𝑈 , positive diagonal matrix Λ, 𝛾 satisfying

Eq. (17), and 𝜏 satisfying 𝑓 (2𝜏 ∥𝑤 ∥) = 0, we can compute𝑀 , Σ̄, and

Σ̄
†
, then 𝑥 = 𝑀−1𝑔, 𝐵 = 𝑈 Σ̄𝑄𝑇

, and 𝑎 = 𝑈 (Σ̄
†
)
𝑇𝑄𝑇𝑤 satisfy Eq. (13).

Since both the transformation (𝑄) and scaling (Λ) can be chosen

freely, the above result suggests that we can choose arbitrary 𝑥

within a ball of some radius 𝑅 to satisfy Eq. (13). We now derive

the lower bound on 𝑅:

∥𝑥 ∥2
2

=

𝑔𝑇𝑄Λ
−2𝑄𝑇𝑔

𝛾2

=

(𝑔′)𝑇 Λ
−2𝑔′

𝛾2

=

∑𝑑𝑥
𝑖=1

(𝑔′𝑖)
2𝜆−2

𝑖

𝛾2

≤
∑𝑑𝑥

𝑖=1
(𝑔′𝑖)

2𝜆−2

𝑖 𝜆2(
∥𝑤 ∥2+

√︃
∥𝑤 ∥2

2
+𝜆𝑐2

∑
𝑖 (𝑔
′
𝑖
)
2𝜆−1

𝑖

)
2
.

(21)

The lower bound of the RHS of Eq. (21) is

RHS ≥
∑𝑑𝑥

𝑖=1
(𝑔′𝑖)

2

(1 +

√
2)

2∥𝑤 ∥2
2

= 𝑐−2
(1 +

√
2)
−2 ≥ 16

(1 +

√
2)

2

𝛼−2

𝑡 . (22)

Let 𝐵𝑟 (𝑥) ⊂ R𝑑𝑥
be a ball centered at 𝑥 with radius 𝑟 . Then 𝑥 can

be arbitrarily chosen in 𝐵𝑅(0) with radius 𝑅 =
4

𝛼𝑡 (1+

√
2)

.

Lastly, let 𝑥 ∈ 𝐵𝜖 (𝑥∗) be successful reconstructions of 𝑥∗, and
assume that 𝑥 is uniformly chosen from 𝐵𝑅(0), then to achieve

(𝜖, 𝛿)-reconstruction hardness, we need

Pr(𝑥 /∈ 𝐵𝜖 (𝑥∗)) = 1 −
(𝜖
𝑅

)𝑑𝑥
≥ 1 − 𝛿

⇒ 𝛼𝑡 ≤
4

(1 +

√
2)𝜖

𝛿1/𝑑𝑥 .

(23)

□

Remarks. Since 𝑑𝑥 is usually large in real-world applications,

reconstruction hardness can be achieved almost surely provided

that 𝛼𝑡 ≤ 𝑐𝜖−1
. The proposition reveals a reasonable tradeoff: For

a stronger hardness definition (larger 𝜖), the training of 𝐷 has to

be slower. Since more private layers will further increase the diffi-

culty of reconstruction, we conjecture that hardness is preserved

for deeper private discriminators. The above result justifies the

introduction of public 𝐺s in secure GAN training, which is critical

for training cost reduction due to the large sizes of generators. We

reiterate that our analysis is different from PAC privacy [64]. In

our setting, the attacker only observes a single gradient update

∆𝜃𝐺 within a training iteration as is specified by the protocol. PAC

privacy assumes that the attacker knows the output distribution of

M.

52

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

4.4 Privacy under a Partially Private
Discriminator

Now we study hardness of reconstructing 𝑥∗ based on public out-

puts from a discriminator where only the first few layers are pri-

vate. Specifically, we consider fully-connected ReLU networks 𝐷 :

R𝑑𝑥 → [0, 1] of the following form:

𝑐 (𝑙)
=𝑊 (𝑙)𝑎(𝑙−1)

+ 𝑏(𝑙), ∀𝑙 = 1, ..., 𝐿,

𝑎(𝑙)
= 𝑅𝑒𝐿𝑈 (𝑐 (𝑙)

), ∀𝑙 = 1, ..., 𝐿 − 1,

𝑎(0)
= 𝑥 ∈ R𝑑𝑥 , 𝐷(𝑥) = 𝑐 (𝐿),

where𝑊 (𝑙) ∈ R𝑑𝑙 ×𝑑𝑙−1 and 𝑏(𝑙) ∈ R𝑑𝑙 are the weights and biases of

layer 𝑙 . 𝑑𝐿 = 1. We use 𝜃
(𝑙)

𝐷
:= (𝑊 (𝑙), 𝑏(𝑙)

) for 𝑙 ∈ [𝐿] to denote layer

parameters. Let the first𝑀 layers be private and the rest public, i.e.,

𝑐 (𝑙)
is public only for 𝑙 ≥ 𝑀 . The attack follows Prop. 3 [20] (details

in Appendix A.2):

Proposition 3. If 𝐷 and its gradient updates ∇𝜃𝐷𝐿 are public, the
data 𝑥∗ used to compute the gradient can be reconstructed.

Proof. Recall that the discriminator update follows:

𝜃𝐷𝑡 − 𝜃𝐷𝑡−1
= −𝛼𝑡∇𝜃𝐷𝐿(𝑥∗), (24)

where 𝐿(·) is the discriminator training objective. Using chain rule,

we can get

∆𝑊 (1)
= −𝛼𝑡𝐿𝐷 (𝑥∗)𝛿 (1)

(𝑥∗)𝑇

∆𝑏(1)
= −𝛼𝑡𝐿𝐷 (𝑥∗)𝛿 (1),

where

𝛿 (𝑙)
= (𝑊 (𝑙+1)

)
𝑇𝛿 (𝑙+1) ⊙ 𝑅𝑒𝐿𝑈 ′(𝑧(𝑙)

)

𝛿 (𝐿−1)
= (𝑊 (𝐿)

)
𝑇 ⊙ 𝑅𝑒𝐿𝑈 ′(𝑧(𝐿−1)

),

𝐿𝐷 (𝑥∗) := ∇𝐷𝐿(𝑥∗), ⊙ is element-wise product and 𝑅𝑒𝐿𝑈 ′(𝑥) = 1 if

𝑥 ≥ 0 and 0 otherwise. It is easy to see that if ∆𝜃𝐷 is known, 𝑥∗ can
be derived exactly from ∆𝑊 (1)

and ∆𝑏(1)
. □

Since 𝐷 is partially private in our case, we study a two-step

attack where the attacker first reverse engineer the private layers

of 𝐷 using public outputs 𝑐 (𝑀)
based on artificial inputs, and then

uses the approximation �̂� along with ∇𝜃𝐷𝐿 to reconstruct 𝑥∗. Re-
construction hardness comes from existing studies regarding the

first step. Specifically, Prop. 4 (Theorem 1.2 of [11]) states that for a

fully-connected ReLU 𝐷 , a function approximation algorithm exists

where its data and computational complexities grow exponentially

with respect to model size:

Proposition 4. Let𝑥 ∼ N (0, 𝐼), 𝑆 =

∑𝑀
𝑙=1
𝑑𝑙 (𝑑𝑙−1+1), and 𝑐 (𝑀)

(𝑥) be a
size-𝑆 ReLU network with depth𝑀 , Lipschitz constant at most Λ, rank
of𝑊 (1) 𝑘 , and the spectral norm of𝑊 (𝑙) for 𝑙 ∈ [𝑀] at most 𝐵. There is
an algorithm that draws 𝑑𝑥 log(1/𝛿) exp(poly(𝑘, 𝑆,Λ/𝜀))𝐵𝑂(𝑀𝑘) sam-
ples, runs in time �̃�(𝑑2

log(1/𝛿)) exp(poly(𝑘, 𝑆,Λ/𝜀))𝐵𝑂(𝑀𝑘𝑆2
), and

outputs a ReLU network 𝑐 (𝑀) such that E[(𝑐 (𝑀)
(𝑥) − 𝑐 (𝑀)

(𝑥))
2
] ≤ 𝜀

with probability at least 1 − 𝛿 .

Remarks. Note that even for spectral normalized architectures

(𝐵 ≤ 1), the exponential complexity with respect to model size 𝑆

(and thus depth 𝑀) still holds. More recent studies showed that for

𝑀 = 2, polynomial approximation algorithms exist [9, 12]. Yet for

𝑀 = 3, Prop. 5 (Theorem 4.1 in [10]) showed that polynomial ap-

proximation cannot be achieved. Informally, the proposition states

that if a 3-layer ReLU network can be learned in polynomial time,

then the Learning With Rounding (LWR) problem would be solved

in polynomial time. A contradiction is reached assuming hardness

of LWR. We conjecture that this approximation hardness result

holds for𝑀 > 3.

Proposition 5. Let 𝑛 be the security parameter, and fix moduli
𝑝, 𝑞 ≥ 1 such that 𝑝, 𝑞 = 𝑝𝑜𝑙𝑦(𝑛) and 𝑝/𝑞 = 𝑝𝑜𝑙𝑦(𝑛). Let 𝑑 = 𝑛.
Let 𝑐 > 0,𝑚 = 𝑚(𝑑) = log

𝑐
(𝑑) and 𝑑 ′ = 𝑑𝑚 . Suppose there exists a

𝑝𝑜𝑙𝑦(𝑑 ′)-time algorithm capable of learning 𝑝𝑜𝑙𝑦(𝑑 ′)-sized depth-2
(𝑀 = 3) ReLU networks under 𝑁 (0, 𝐼𝑑𝑑′) up to squared loss 1/𝑝𝑜𝑙𝑦(𝑑 ′).
Then there exists a 𝑝𝑜𝑙𝑦(𝑑 ′) = 2

Θ(log
1+𝑐 𝑛) time algorithm for 𝐿𝑊𝑅𝑛,𝑝,𝑞

For non-ReLU activation functions, we use Prop. 6 (Theorem

15 in [1]), which states that the the number of samples needed

for learning a general neural network is at least exponential in𝑀 .

Formally,

Proposition 6. Fix any nonlinear activation 𝜎 with the coefficient of
non-linearity 𝜇 that satisfies the sub-gaussianity assumption. Let 𝑓𝑊
be𝑀-layer neural network with width𝑚 = Ω(𝑀

𝜇2

𝛿2
) taking inputs of

dimension 𝑑 with weights randomly initialized to standard Gaussians.
Any algorithm that makes at most 𝑝(𝑑,𝑀) statistical queries with
tolerance 1/𝑝𝑜𝑙𝑦(𝑑,𝑀) and outputs a function that is 1/𝑝𝑜𝑙𝑦(𝑑,𝑀)-
correlated with 𝑠𝑔𝑛(𝑓𝑊) must satisfy 𝑝(𝑑,𝑀) ≥ 𝑒𝑥𝑝(Ω(𝑀)).

Lastly, we note that the above results are concerned about ap-

proximation hardness. Yet parameter recovery, as is needed for

the first attack step, is a stronger requirement, and has not been

achieved through polynomial solutions even for𝑀 = 2 [3].

4.5 Relation between Our P2 and Federated
Learning

In P2, we assume servers have access to partial information of the

training discriminator. We note that this mechanism of publicizing

the model instead of the data is not new. In Federated Learning,

the parties participating in the training process send the whole

models to the central server, meaning the whole model are being

made public to the servers. In our case, the servers know a part

of the model. Thus, the information being made public are less

in P2 compared to federated training, yet the type of information

being shared is quite similar. We further quantify this difference in

Section 5.3.

5 Experiment
We answer the following questions through experiments:

(1) Can P1 and P2 provide acceptable generation quality for im-

age generation task? If so, howmuch faster are their learning

than P0? (Sec. 5.1)

(2) How much performance boost do the proposed protocols

bring to PPGAN ? (Sec. 5.1)

(3) Can P1 and P2 provide acceptable conditional generation
quality for downstream task? (Sec. 5.2)

(4) How does P2 fare against Federated Learning andDifferential

Privacy in terms of reconstruction hardness? (Sec. 5.3)

To answer the first two questions, we did two experiments: one

on FCGAN model on MNIST dataset, and one on DCGAN model

53

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

(a) standard GAN (b) P0 (c) P1 (d) P2 3-layer (e) P2 2-layer (f) P2 1-layer

Figure 5: Generated images from models trained on MNIST.

(a) standard (b) P1 (c) P2 3-layer (d) P2 2-layer (e) P2 1-layer

Figure 6: Generated images from models trained on CelebA with image size 64 × 64.

on CelebA dataset with image size 64 × 64. Detail of the models’

architecture can be found in Appendix A.3.

To answer the third question, we conduct another experiment on

conditional generation task on MNIST dataset. After training the

conditional PPGAN, we generate 60000 images with similar class

distributions as the MNIST training dataset and test if a classifier

can be trained well on the generated dataset.

To answer the last question, we conduct a practical attack on both

Federated Learningmodel and PPGAN to see if the set up in Protocol

2 can provide better protection.

Experiment settings. In all GAN training, we use 50k training

iterations, a batch size of 32, and SGD with a learning rate of 0.1 for

MNIST and 0.002 for CelebA
1
. Due to the overhead cost of secret-

sharing the data, we do not use data augmentation. All data values

are normalized to [−1, 1] before training. We train 5 unconditional

models respectively using standard GAN, P0, P2, and P2 with 1 to

3 private layers, and we train 3 conditional models respectively

using standard GAN, P1, and P2 with 3 private layers. We run all

experiment on local machine with 11th Gen Intel(R) Core(TM) i9-

11900KF Processor with an all-core CPU frequency of 3.50GHz, 16

vCPU, 32GB RAM.

5.1 Uncoditional PPGAN on MNIST and CelebA
Generation quality and cost on MNIST. We train an FCGAN [23]

on MNIST and report generation quality in Fig. 5) and Tab. 1. P1

and P2 achieve significantly lower training costs than P0: The wall-

clock time is 68k seconds (19 hours) for P1, 28k seconds (8 hours) for

P2 3-layer, and 11k seconds (3 hours) for P2 1-layer. Although we

follow the common practice of GAN training to run the experiment

1
Crypten only supports SGD currently. We leave MPC implementation of more ad-

vanced training algorithms for future studies.

Table 1: Runtime and generation quality comparison on MNIST.
Speed-up baseline is P0.

Model FID Training
Time (s)

Speed up

standard 115 429 235×
P0 124 101000 1.0×
P1 118 68306 1.48×
P2 3-layer 114 28289 3.57×
P2 2-layer 115 20588 4.91×
P2 1-layer 114 10580 9.55×

Table 2: Runtime and generation quality comparison on
CelebA.DP,𝜖: 𝜖-DP .P2,M: M-layer

Model FID Training
Time (s)

FID<100
#Iter

FID<100
time (s)

standard 48.52 1214 12400 301.07

DP,1.39𝑒8 445 4920 - -

P0 - 238766 - -

P1 94.91 119383 43200 103146

P2,3 91.34 59348 43200 51276

P2,2 98.86 41607 25200 21001

P2,1 78.84 14002 29800 8345

only once, we note that the runtime performance is (1) not affected

by the randomness of the experiments rooted from sampling, and

(2) measured over 50000 iterations. Thus, the result indicates an

average per iteration runtime that is reliable enough to show P1

and P2 are more efficient than the baseline.

54

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

(a) standard GAN (b) P1 (c) P2 3-layer

Figure 7: CGANon standard training, Protocol 1, and Protocol
2 3-layer.

Generation quality and cost on CelebA. We train a DCGAN [52]

on CelebA. Fig. 6 compares generation quality of models from all

protocols except P0. Since P0 uses full MPC, it fails to converge due

to (i) information loss in secret sharing of data and model weights,

and (ii) the intrinsic lack of convergence of SGD on GAN [7]. The

wall-clock runtime and FID scores are reported in Tab. 2. The com-

parison shows that generation quality of P1 and P2 are visually

comparable to the standard training. However, P1 and P2 still have

a significant quality and training efficiency gap from the standard

GAN, as is reflected through FID and the minimum number of iter-

ations to achieve FID<100. Tab. 2 also shows that having a smaller

number of private layers reduces the training cost: P1 reduces the

cost by 2× from P0 and P2 by up to 16×.

5.2 Classification Performance on
Conditionally Generated MNIST

We examine the generation quality of the proposed protocols with

respect to downstream classification tasks. For each protocol, we

generate a synthetic MNIST dataset of 60k data points from its

trained model. The datasets all consist with the same label distribu-

tion as original MNIST training dataset. The qualitative visualiza-

tion of our protocol and a standard CGAN training are shown in

Figure 7.

For each synthetic dataset, we train a Logistic Regression (LR)

and a Multi-layer Perceptron (MLP) model. We report the Area Un-

der ROC curve (AuROC) for the resultant classifiers on the standard

MNIST 10k test dataset. We compare our protocol with GW-GAN

which has DP guarantee [8]. The results in Tab. 3 show that the

accuracy of models trained on our synthetic dataset outperform

that on [8], while being marginally lower than those trained on

the authentic MNIST training set. In addition, our models achieve

better Inception score yet worse FID than [8]. Note, however, that

FID is defined based on the Inception model trained on ImageNet,

which is not representative for MNIST.

Table 3: Comparison on classification accuracy (AuROC), In-
ception Score (IS) and FID Score. bold: best of secure protocol

Data

AuROC

IS FID

LR MLP

real 98.87% 99.62% - -

GS-WGAN 94.03% 94.74% 9.23 61.34
P1 96.82% 97.85% 9.49 114

P2 (3-layer) 97.00% 98.12% 9.58 118

Table 4: Reconstruction quality. CW-SSIM (CW) and PSNR: low
value = high privacy; FMSE: high value = high privacy

Dataset Model CW PSNR FMSE

CelebA

FL GAN 0.79 32.89 7.06E-07

DP (𝜖 = 9.6) 0.27 17.94 3.77

GP (𝑝 = 0.99) 0.43 15.30 2.77E-07

1-layer 0.359 11.11 3.34E-4

2-layer 0.20 6.24 5.13
3-layer 0.19 6.76 2.36

MNIST

FL GAN 0.99 36.19 4.45E-05

DP (𝜖 = 9.6) 0.359 18.53 1.02E-05

GP (𝑝 = 0.99) 0.78 26.01 0.0026

1-layer 0.54 13.24 7.79E-06

2-layer 0.17 13.11 2.43E-04
3-layer 0.22 12.33 1.91E-04

5.3 Reconstruction Hardness
We follow the method in Sec. 4.4 (and [20]) to test the hardness of

P2, FL, DP, and Gradient Pruning (GP) [39].

Attack settings: The attacker is allowed to use a varying batch

size of 16 to 1024 artificial data points to reconstruct the private

layers of 𝐷 , and only needs to reconstruct a single authentic data

point based on its output 𝑐 (𝑀)
. These parameters are chosen in

favor of the attacker, while in practice a larger batch-size for the

authentic data will make the reconstruction harder [20]. Note that

the parameters setup is still consistent with our theoretical analysis

provided in Section 4, as batch size of real data, i.e. the real input

that the adversary wants to reconstruct, is always set to 1.

Protocols:We consider P2 with the first 1 to 3 layers being private.

For DP, we use 𝜖 = 9.6 and 𝛿 = 10
−5

as in [62]. We follow the setup

in [65] where we clip the gradient by 𝐶 = 0.01 and add the noise

of N (𝜎2𝐶2
) where 𝜎 = 2

32

dataset-size

√︃
50000 log(

1

𝛿
)

/
𝜖 . Note that

GS-WGAN [13] uses 𝜖 = 10.0 which is easier to attack than our

setting.

Metrics: We measure the similarity (or difference) between the

authentic and the reconstructed images using CW-SSIM, PSNR, and

Feat-MSE.

Result: Fig. 8 compares MNIST and CelebA reconstruction results

for all training protocols. Quantitative results are summarized in

Tab. 5. The result is consistent with our analysis: reconstruction

becomes hard when the first 3 layers of 𝐷 are private. We note that

2 private layers already achieved empirical hardness because while

the SOTA approximation attack on 2-layer fully-connected ReLU

network enjoys a polynomial data complexity [12], the amount of

55

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

(a) Real (b) FL (c) DP (d) P2 1-layer (e) P2 2-layer (f) P2 3-layer

(g) Real (h) FL (i) DP (j) P2 1-layer (k) P2 2-layer (l) P2 3-layer

Figure 8: Reconstructed images during different training protocols. Left to right: Original training data, Federated Learning,
Differential Privacy (𝜖 = 9.6), Protocol 2 1,2,3-layer.

Table 5: Reconstruction quality of diffusion model on MNIST
dataset. CW-SSIM (CW) and PSNR: low value = high privacy; FMSE:
high value = high privacy

Dataset Model CW PSNR FMSE

MNIST

FL Diffusion 0.65 19.26 0.21

GP (𝑝 = 0.99) 0.65 19.03 0.21

1-layer 0.38 13.34 0.21

2-layer 0.16 13.06 0.20
3-layer 0.21 12.47 0.20

data needed to launch such an attack is still much larger than the

usual batch size allowed for discriminator update. Since the batch

size is controlled by the training protocols, using 2 private layers in

𝐷 is practically sufficient. Lastly, we note that while DP achieves

some level of reconstruction hardness, the resultant DP-GAN train-

ing cannot successfully converge due to the gradient noise added

in DP, leading to poor generation quality even in MNIST [62].

5.4 Reconstruction Hardness Beyond GAN
model

Since our protocol P2 partially shares first layers of the network

does not technically limit to GAN training, it is possible to extend

the technique to other image generation model. We proposed one

of such extensionn in Appendix B In this section, we want to test

whether such an extension is secure given the same attack setting

as the previous section.

6 Conclusion
In this paper, we presented two training protocols utilizing MPC

in both unconditional and conditional GAN training. In addition,

we introduced the notion of reconstruction hardness, as well as

proofs and empirical results demonstrating how these protocols

safeguard sensitive user data from potential reconstruction attacks

by untrusted servers used for training on these data. In term of

effectiveness, the proposed protocols improve the training cost

by 2 − 16× compared with the full MPC training. Plus, we show

a significant improvement on conditional generation that boost

the accuracy of model trained on generated data by 2-3%. Since

our method achieves reconstruction hardness under attacks dur-

ing mini-max training, it can be directly applied to minimization

problems, e.g., training of diffusion models (see Appendix B).

Limitations.Despite the positives, our protocol still has limitations.

First, our protocol only provides protection against the proposed

reconstruction hardness, and provide no guarantees against other

types of attack such as Membership Inference Attack. Second, our

analysis rely mainly on the L2 distance, and justified this choice

based on the fact that commonly used distance metrics between

images (CW-SSIM, PSNR, and FMSE) are contained within large

enough spheres defined by an L2 distance. This raises a limitation

on defense against partial information reconstruction attack: even

though we can protect partial information using a large enough

L2 sphere, as long as the radius is bounded, it may provide an

overly conservative upper bound on the learning rate due to the

conservative translation.

Future work.We will assess potential data-efficient model approx-

imation attacks, e.g., [12] in future work.

Acknowledgments
This work was in part supported by NSF awards #2101052, #2115075,

and ARPA-H SP4701-23-C-0074. The views and conclusions con-

tained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or

implied, of the NSF or the U.S. Government.

References
[1] Naman Agarwal, Pranjal Awasthi, and Satyen Kale. 2020. A Deep Conditioning

Treatment of Neural Networks.

[2] Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy,

Peter Kairouz, Mingqing Chen, Rajiv Mathews, and Blaise Aguera y Arcas. 2020.

56

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

Generative Models for Effective ML on Private, Decentralized Datasets. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?

id=SJgaRA4FPH

[3] Pranjal Awasthi, Alex Tang, and Aravindan Vijayaraghavan. 2021. Efficient

algorithms for learning depth-2 neural networks with general relu activations.

Advances in Neural Information Processing Systems 34 (2021), 13485–13496.
[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-

cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,

NY, USA, 1175–1191. https://doi.org/10.1145/3133956.3133982

[5] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag,

Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. 2023. Extracting

training data from diffusion models. In 32nd USENIX Security Symposium (USENIX
Security 23). 5253–5270.

[6] Qi Chang, Hui Qu, Yikai Zhang, Mert Sabuncu, Chao Chen, Tong Zhang, and

Dimitris Metaxas. 2020. Synthetic Learning: Learn From Distributed Asynchro-

nized Discriminator GAN Without Sharing Medical Image Data. 13853–13863.

https://doi.org/10.1109/CVPR42600.2020.01387

[7] Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien.

2020. Reducing Noise in GAN Training with Variance Reduced Extragradient.

arXiv:1904.08598 [stat.ML]

[8] Dingfan Chen, Tribhuvanesh Orekondy, and Mario Fritz. 2020. GS-WGAN: A

Gradient-Sanitized Approach for Learning Differentially Private Generators.

In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-

zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,

Inc., 12673–12684. https://proceedings.neurips.cc/paper_files/paper/2020/file/

9547ad6b651e2087bac67651aa92cd0d-Paper.pdf

[9] Sitan Chen, Zehao Dou, Surbhi Goel, Adam Klivans, and Raghu Meka. 2023.

Learning narrow one-hidden-layer relu networks. In The Thirty Sixth Annual
Conference on Learning Theory. PMLR, 5580–5614.

[10] Sitan Chen, Aravind Gollakota, Adam Klivans, and Raghu Meka. 2022. Hard-

ness of Noise-Free Learning for Two-Hidden-Layer Neural Networks. In Ad-
vances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,

A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,

Inc., 10709–10724. https://proceedings.neurips.cc/paper_files/paper/2022/file/

45a7ca247462d9e465ee88c8a302ca70-Paper-Conference.pdf

[11] Sitan Chen, Adam R Klivans, and RaghuMeka. 2022. Learning deep relu networks

is fixed-parameter tractable. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 696–707.

[12] Sitan Chen and Shyam Narayanan. 2023. A faster and simpler algorithm for

learning shallow networks. arXiv preprint arXiv:2307.12496 (2023).
[13] Xiaojun Chen, Shu Yang, Li Shen, and Xuanrong Pang. 2020. A Distributed Train-

ing Algorithm of Generative Adversarial Networks with Quantized Gradients.

arXiv:2010.13359 [cs.LG]

[14] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In 22nd An-
nual Network and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2015. The Internet Society.

[15] Abdulrahman Diaa, Lucas Fenaux, Thomas Humphries, Marian Dietz, Faezeh

Ebrahimianghazani, Bailey Kacsmar, Xinda Li, Nils Lukas, Rasoul Akhavan Mah-

davi, Simon Oya, Ehsan Amjadian, and Florian Kerschbaum. 2024. Fast and

Private Inference of Deep Neural Networks by Co-designing Activation Func-

tions. arXiv:2306.08538 [cs.CR]

[16] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-

ferential Privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (aug 2014), 211–407.
https://doi.org/10.1561/0400000042

[17] Radhika Garg, Kang Yang, Jonathan Katz, and Xiao Wang. 2023. Scalable Mixed-

Mode MPC. Cryptology ePrint Archive, Paper 2023/1700. https://eprint.iacr.org/

2023/1700 https://eprint.iacr.org/2023/1700.

[18] R. Garg, K. Yang, J. Katz, and X. Wang. 2024. Scalable Mixed-Mode MPC. In

2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los

Alamitos, CA, USA, 109–109. https://doi.org/10.1109/SP54263.2024.00106

[19] Jonas Geiping. 2020. Inverting Gradients - How easy is it to break Privacy in

Federated Learning? https://github.com/JonasGeiping/invertinggradients.

[20] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.

2020. Inverting gradients-how easy is it to break privacy in federated learning?

Advances in Neural Information Processing Systems 33 (2020), 16937–16947.
[21] Garrett B. Goh, Nathan O. Hodas, and Abhinav Vishnu. 2017. Deep Learning for

Computational Chemistry. arXiv:1701.04503 [stat.ML]

[22] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. 1986. How to Construct

Random Functions. J. ACM 33, 4 (aug 1986), 792–807. https://doi.org/10.1145/

6490.6503

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial

Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Asso-

ciates, Inc., 2672–2680. http://papers.nips.cc/paper/5423-generative-adversarial-

nets.pdf

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial

networks. Commun. ACM 63, 11 (2020), 139–144.

[25] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and

Aaron C Courville. 2017. Improved training of wasserstein gans. Advances
in neural information processing systems 30 (2017).

[26] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic

Models. arXiv:2006.11239 [cs.LG]

[27] Alain Horé and Djemel Ziou. 2010. Image Quality Metrics: PSNR vs. SSIM. In

2010 20th International Conference on Pattern Recognition. 2366–2369. https:

//doi.org/10.1109/ICPR.2010.579

[28] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen jie Lu, Cheng Hong, and Kui

Ren. 2023. CipherGPT: Secure Two-Party GPT Inference. Cryptology ePrint

Archive, Paper 2023/1147. https://eprint.iacr.org/2023/1147 https://eprint.iacr.

org/2023/1147.

[29] N. Jawalkar, K. Gupta, A. Basu, N. Chandran, D. Gupta, and R. Sharma. 2024. Orca:

FSS-based Secure Training and Inference with GPUs. In 2024 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 66–66.

https://doi.org/10.1109/SP54263.2024.00063

[30] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and

Timo Aila. 2020. Analyzing and improving the image quality of stylegan. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
8110–8119.

[31] B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P.

van der Maaten. 2021. CrypTen: Secure Multi-Party Computation Meets Machine

Learning. In arXiv 2109.00984.
[32] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark

Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure multi-party com-

putation meets machine learning. Advances in Neural Information Processing
Systems 34 (2021).

[33] Marek Kowalski, Stephan J Garbin, Virginia Estellers, Tadas Baltrušaitis, Matthew

Johnson, and Jamie Shotton. 2020. Config: Controllable neural face image gener-

ation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XI 16. Springer, 299–315.

[34] Lalit Kumar and Dushyant Kumar Singh. 2023. A comprehensive survey on gener-

ative adversarial networks used for synthesizing multimedia content. Multimedia
Tools Appl. 82, 26 (mar 2023), 40585–40624. https://doi.org/10.1007/s11042-023-

15138-x

[35] Lan Lan, Lei You, Zeyang Zhang, Zhiwei Fan, Weiling Zhao, Nianyin Zeng,

Yidong Chen, and Xiaobo Zhou. 2020. Generative adversarial networks and its

applications in biomedical informatics. Frontiers in public health 8 (2020), 164.

[36] Dacheng Li, Hongyi Wang, Rulin Shao, Han Guo, Eric Xing, and Hao Zhang.

2023. MPCFORMER: FAST, PERFORMANT AND PRIVATE TRANSFORMER

INFERENCE WITH MPC. In The Eleventh International Conference on Learning
Representations. https://openreview.net/forum?id=CWmvjOEhgH-

[37] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. 2020. Using

gans for sharing networked time series data: Challenges, initial promise, and open

questions. In Proceedings of the ACM Internet Measurement Conference. 464–483.
[38] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network

Predictions via MiniONN Transformations. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (Dallas, Texas,

USA) (CCS ’17). Association for Computing Machinery, New York, NY, USA,

619–631. https://doi.org/10.1145/3133956.3134056

[39] Sheng Liu, Zihan Wang, Yuxiao Chen, and Qi Lei. 2024. Data Reconstruction

Attacks and Defenses: A Systematic Evaluation. arXiv:2402.09478 [cs.CR] https:

//arxiv.org/abs/2402.09478

[40] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.

2016. Federated Learning of Deep Networks using Model Averaging. CoRR
abs/1602.05629 (2016). arXiv:1602.05629 http://arxiv.org/abs/1602.05629

[41] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial

Nets. CoRR abs/1411.1784 (2014). arXiv:1411.1784 http://arxiv.org/abs/1411.1784

[42] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework

for Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 35–52. https://doi.org/10.1145/

3243734.3243760

[43] PaymanMohassel, Mike Rosulek, and Ni Trieu. 2020. Practical Privacy-Preserving

K-means Clustering. Proceedings on Privacy Enhancing Technologies (PETS) 2020,
4 (2020), 414–433.

[44] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable

privacy-preserving machine learning. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 19–38.

[45] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and
Privacy (SP). 19–38. https://doi.org/10.1109/SP.2017.12

57

https://openreview.net/forum?id=SJgaRA4FPH
https://openreview.net/forum?id=SJgaRA4FPH
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1109/CVPR42600.2020.01387
https://arxiv.org/abs/1904.08598
https://proceedings.neurips.cc/paper_files/paper/2020/file/9547ad6b651e2087bac67651aa92cd0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/9547ad6b651e2087bac67651aa92cd0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/45a7ca247462d9e465ee88c8a302ca70-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/45a7ca247462d9e465ee88c8a302ca70-Paper-Conference.pdf
https://arxiv.org/abs/2010.13359
https://arxiv.org/abs/2306.08538
https://doi.org/10.1561/0400000042
https://eprint.iacr.org/2023/1700
https://eprint.iacr.org/2023/1700
https://eprint.iacr.org/2023/1700
https://doi.org/10.1109/SP54263.2024.00106
https://github.com/JonasGeiping/invertinggradients
https://arxiv.org/abs/1701.04503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/abs/2006.11239
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/ICPR.2010.579
https://eprint.iacr.org/2023/1147
https://eprint.iacr.org/2023/1147
https://eprint.iacr.org/2023/1147
https://doi.org/10.1109/SP54263.2024.00063
https://doi.org/10.1007/s11042-023-15138-x
https://doi.org/10.1007/s11042-023-15138-x
https://openreview.net/forum?id=CWmvjOEhgH-
https://doi.org/10.1145/3133956.3134056
https://arxiv.org/abs/2402.09478
https://arxiv.org/abs/2402.09478
https://arxiv.org/abs/2402.09478
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

[46] Fania Mokhayeri, Kaveh Kamali, and Eric Granger. 2020. Cross-domain face syn-

thesis using a controllable GAN. In Proceedings of the IEEE/CVF winter conference
on applications of computer vision. 252–260.

[47] Alhassan Mumuni and Fuseini Mumuni. 2022. Data augmentation: A com-

prehensive survey of modern approaches. Array 16 (2022), 100258. https:

//doi.org/10.1016/j.array.2022.100258

[48] Mukrin Nakhwan and Rakkrit Duangsoithong. 2022. Comparison Analysis

of Data Augmentation using Bootstrap, GANs and Autoencoder. In 2022 14th
International Conference on Knowledge and Smart Technology (KST). 18–23. https:

//doi.org/10.1109/KST53302.2022.9729065

[49] Qi Pang, Yuanyuan Yuan, and Shuai Wang. 2024. MPCDiff: Testing and Repairing

MPC-Hardened Deep Learning Models. https://doi.org/10.14722/ndss.2024.23380

[50] Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider.

2023. BOLT: Privacy-Preserving, Accurate and Efficient Inference for Transform-

ers. Cryptology ePrint Archive, Paper 2023/1893. https://eprint.iacr.org/2023/

1893 https://eprint.iacr.org/2023/1893.

[51] Rahul Rachuri and Ajith Suresh. 2019. Trident: Efficient 4PC Framework for Pri-

vacy PreservingMachine Learning. CoRR abs/1912.02631 (2019). arXiv:1912.02631

http://arxiv.org/abs/1912.02631

[52] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Repre-

sentation Learning with Deep Convolutional Generative Adversarial Networks.

arXiv:1511.06434 [cs.LG]

[53] Mohammad Rasouli, Tao Sun, and Ram Rajagopal. 2020. FedGAN: Federated

Generative Adversarial Networks for Distributed Data. CoRR abs/2006.07228

(2020). arXiv:2006.07228 https://arxiv.org/abs/2006.07228

[54] Deevashwer Rathee, Anwesh Bhattacharya, Divya Gupta, Rahul Sharma, and

Dawn Song. 2023. Secure Floating-Point Training. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 6329–6346.

https://www.usenix.org/conference/usenixsecurity23/presentation/rathee

[55] Deevashwer Rathee, Anwesh Bhattacharya, Divya Gupta, Rahul Sharma, and

Dawn Song. 2023. Secure Floating-Point Training. Cryptology ePrint Archive,

Paper 2023/467. https://eprint.iacr.org/2023/467 https://eprint.iacr.org/2023/467.

[56] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure

Computation Framework for Machine Learning Applications. Association for

Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3196494.

3196522

[57] Ahmed Salem, Giovanni Cherubin, David Evans, Boris Köpf, Andrew Paverd,

Anshuman Suri, Shruti Tople, and Santiago Zanella-Béguelin. 2023. SoK: Let the

Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine

Learning. arXiv:2212.10986 [cs.LG] https://arxiv.org/abs/2212.10986

[58] Mehul P. Sampat, Zhou Wang, Shalini Gupta, Alan Conrad Bovik, and Mia K.

Markey. 2009. Complex Wavelet Structural Similarity: A New Image Similarity

Index. IEEE Transactions on Image Processing 18, 11 (2009), 2385–2401. https:

//doi.org/10.1109/TIP.2009.2025923

[59] Axel Sauer, Katja Schwarz, and Andreas Geiger. 2022. Stylegan-xl: Scaling style-

gan to large diverse datasets. In ACM SIGGRAPH 2022 conference proceedings.
1–10.

[60] Youssef Skandarani, Pierre-Marc Jodoin, and Alain Lalande. 2023. Gans for

medical image synthesis: An empirical study. Journal of Imaging 9, 3 (2023), 69.

[61] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2022. Denoising Diffusion

Implicit Models. arXiv:2010.02502 [cs.LG]

[62] R. Torkzadehmahani, P. Kairouz, and B. Paten. 2019. DP-CGAN: Differentially

Private Synthetic Data and Label Generation. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE Computer

Society, Los Alamitos, CA, USA, 98–104. https://doi.org/10.1109/CVPRW.2019.

00018

[63] Aladin Virmaux and Kevin Scaman. 2018. Lipschitz regularity of deep neural net-

works: analysis and efficient estimation. InAdvances in Neural Information Process-
ing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.

cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf

[64] Hanshen Xiao and Srinivas Devadas. 2023. PAC Privacy: Automatic Privacy

Measurement and Control of Data Processing. arXiv:2210.03458 [cs.CR]

[65] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. Differ-

entially Private Generative Adversarial Network. CoRR abs/1802.06739 (2018).

arXiv:1802.06739 http://arxiv.org/abs/1802.06739

[66] Andrew C Yao. 1982. Protocols for secure computations. In 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 160–164.

[67] Xin Yi, Ekta Walia, and Paul Babyn. 2019. Generative adversarial network in

medical imaging: A review. Medical image analysis 58 (2019), 101552.
[68] Xun Yuan, Yang Yang, Prosanta Gope, Aryan Pasikhani, and Biplab Sikdar. 2024.

VFLGAN: Vertical Federated Learning-based Generative Adversarial Network

for Vertically Partitioned Data Publication. Proceedings on Privacy Enhancing
Technologies 2024, 4 (Oct. 2024), 840–858. https://doi.org/10.56553/popets-2024-

0144

[69] Joshua C. Zhao, Atul Sharma, Ahmed Roushdy Elkordy, Yahya H. Ezzeldin,

Salman Avestimehr, and Saurabh Bagchi. 2023. LOKI: Large-scale Data Re-

construction Attack against Federated Learning through Model Manipulation.

arXiv:2303.12233 [cs.LG]

[70] Yabing Zhu, Yanfeng Zhang, Huili Yang, and FangjingWang. 2019. GANCoder: An

Automatic Natural Language-to-Programming Language Translation Approach

based on GAN. arXiv:1912.00609 [cs.CL]

A More details about implementation
A.1 Federated Learning
We follow the Federated Averaging algorithm [40] in our exper-

iment in Section 5. We note that our implementation is for pure

Federated Learning without further defense such as Differential

Privacy (which is separately compared in Section 5) and Secure

Aggregation. The details of the algorithm is shown in Algorithm 1.

We left out Secure Aggregation due to the following two reasons:

• Firstly, the Inverting Gradient attack that we used works

even in the presence of Secure Aggregation when the total

batch size of all clients per round is small. As tested in [20], it

works for up to 100 input images. Since we study worst-case

scenarios with batch size of 1, adding Secure Aggregation

does not help increase security in set up of our experiment.

• Secondly, as pointed out in [69], when the total batch size is

large, Secure Aggregation fails if the central server of fed-

erated learning has the ability to modify the network archi-

tecture. In contrary, under such a threat model, our training

protocols are still robust to inverting gradient attacks be-

cause we do not use a central server, i.e., the semi-honest

servers cannot altogether collude and change the network

architecture. Based on these reasons, we do not consider

secure aggregation in this paper.

Algorithm 1: FederatedAveraging. The 𝐾 clients are in-

dexed by 𝑘 ; 𝐶 is the fraction of clients joining each round,

𝑇 is the number of training rounds, and 𝑛𝑘 is the size of

dataset hold by client 𝐶𝑘 .

1: Server execute
2: initialize weight of model𝑤0

3: for each round 𝑡 = 1, . . . ,𝑇 do
4: 𝑚 ← max(𝐶 · 𝐾, 1)

5: 𝑆𝑡 ← (random set of𝑚 clients)

6: for each client 𝑘 ∈ 𝑆𝑡 do
7: Client 𝐶𝑘 train locally, return𝑤𝑘

𝑡+1
to server

8: end for
9: 𝑚𝑡 ←

∑
𝑘∈𝑆𝑡 𝑛𝑘

10: 𝑤𝑡+1 ←
∑

𝑘∈𝑆𝑡
𝑛𝑘
𝑚𝑡
𝑤𝑘
𝑡+1

11: end for
12: return𝑤𝑇

A.2 Inverting gradient attack for reconstruction
Algorithm 2 describes the inverting gradient attack from [20],

whose goal is to reconstruct the training data from the discriminator

gradient computed based on that data.

58

https://doi.org/10.1016/j.array.2022.100258
https://doi.org/10.1016/j.array.2022.100258
https://doi.org/10.1109/KST53302.2022.9729065
https://doi.org/10.1109/KST53302.2022.9729065
https://doi.org/10.14722/ndss.2024.23380
https://eprint.iacr.org/2023/1893
https://eprint.iacr.org/2023/1893
https://eprint.iacr.org/2023/1893
https://arxiv.org/abs/1912.02631
http://arxiv.org/abs/1912.02631
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/2006.07228
https://arxiv.org/abs/2006.07228
https://www.usenix.org/conference/usenixsecurity23/presentation/rathee
https://eprint.iacr.org/2023/467
https://eprint.iacr.org/2023/467
https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1145/3196494.3196522
https://arxiv.org/abs/2212.10986
https://arxiv.org/abs/2212.10986
https://doi.org/10.1109/TIP.2009.2025923
https://doi.org/10.1109/TIP.2009.2025923
https://arxiv.org/abs/2010.02502
https://doi.org/10.1109/CVPRW.2019.00018
https://doi.org/10.1109/CVPRW.2019.00018
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d54e99a6c03704e95e6965532dec148b-Paper.pdf
https://arxiv.org/abs/2210.03458
https://arxiv.org/abs/1802.06739
http://arxiv.org/abs/1802.06739
https://doi.org/10.56553/popets-2024-0144
https://doi.org/10.56553/popets-2024-0144
https://arxiv.org/abs/2303.12233
https://arxiv.org/abs/1912.00609

Achieving Data Reconstruction Hardness and Efficient Computation in Multiparty Minimax Training Proceedings on Privacy Enhancing Technologies 2025(3)

Algorithm 2: InvertingGradient. Parameters: Model 𝐷

with parameters 𝜃 , loss function 𝐿, model input 𝑥 , real input

to reconstruct 𝑥∗, label 𝑦 = 1 since 𝑥∗ is authentic. TV is

the total variation.

1: 𝑥 ∼ N (0, I)
2: optimizer← LFBGS(𝑥)

3: repeat
4: loss← 1 − ⟨∇𝜃𝐿(𝑥𝑖 ,𝑦),∇𝜃𝐿 (𝑥∗,𝑦) ⟩

∥∇𝜃𝐿(𝑥𝑖 ,𝑦)∥ ∥ |∇𝜃𝐿 (𝑥∗,𝑦) ∥ + 0.1TV(𝑥)

5: 𝑥𝑖+1 ← optimizer.step(loss)

6: until converge

A.3 Model Architecture
Tables 6 to 9 present model architectures used in experiments.

Table 6: FCGAN Generator Architecture

Generator Activation Output shape
Input noise - 1x100

FC Layer LeakyReLU 1x64

FC Layer - 1x128

BatchNorm1d - 1x128

FC Layer - 1x256

BatchNorm1d - 1x256

FC Layer Tanh 1x784

Table 7: FCGAN Discriminator Architecture

Discriminator Activation Output shape
Input image - 1x784

FC Layer LeakyReLU 1x512

FC Layer LeakyReLU 1x256

FC Layer LeakyReLU 1x128

Fully Connected Sigmoid 1

Table 8: DCGAN Generator Architecture

Generator Activation Output shape
Input noise - 1x100

Fully Connected LeakyReLU 128x256

Upsample - 128x32x32

Conv 3x3 LeakyReLU 128x32x32

Upsample - 128x64x64

Conv 3x3 LeakyReLU 64x64x64

Conv 3x3 Tanh 3x64x64

Table 9: DCGAN Discriminator Architecture

Discriminator Activation Output shape
Input image - 3x64x64

Conv 3x3 LeakyReLU 16x64x64

Conv 3x3 LeakyReLU 32x64x64

Conv 3x3 LeakyReLU 64x64x64

Conv 3x3 LeakyReLU 128x64x64

Fully Connected Sigmoid 1

B Achieving Reconstruction Hardness during
Diffusion Training

B.1 DDPM: Forward Process
The forward process of a diffusion model is structured as a Markov

chain process that gradually injects Gaussian noise to the data

according to a variance scheduler 𝛽1, ..., 𝛽𝑇

𝑞(𝑥𝑡 | 𝑥𝑡−1) := N (𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I)

𝑞(𝑥1:𝑇 | 𝑥0) :=

𝑇∏
𝑡=1

𝑞(𝑥𝑡 | 𝑥𝑡−1)

(25)

Where the forward process can be further derived into a closed

form solution that can sample 𝑥𝑡 at any arbitrary times steps give

𝑥0, using the notation 𝛼 := 1 − 𝛽𝑡 , and 𝛼𝑡 :=

∏𝑡
𝑠=1

𝛼𝑠 :

𝑞(𝑥𝑡 | 𝑥0) = N (𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡)I) (26)

B.2 DDPM: Backward Process
The reverse process follows the Markov chain assumption given

learned Gaussian transitions starting at 𝑝(𝑥𝑡) = N (𝑥𝑡 ; 0, I):

𝑝𝜃 (𝑥0:𝑇) := 𝑝(𝑥𝑡)
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡)

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡) := N (𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡))

(27)

The reverse process 𝑞(𝑥𝑡 | 𝑥𝑡−1) is tractable when conditioned

on 𝑥0 [26]:

𝑞(𝑥𝑡−1 | 𝑥𝑡 , 𝑥0) = N (𝑥𝑡−1; �̃�𝑡 (𝑥𝑡 , 𝑥0), ˜𝛽𝑡 I) (28)

Where,

�̃�𝑡 (𝑥𝑡 , 𝑥0) :=

√
𝛼𝑡−1𝛽𝑡

1 − 𝛼𝑡
𝑥0 +

√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝑥𝑡

˜𝛽𝑡 :=

1 − 𝛼𝑡−1

1 − 𝛼𝑡
𝛽𝑡

(29)

By further reparameterization of eq. 26 as 𝑥𝑡 (𝑥0, 𝜖) =

√
𝛼𝑡𝑥0 +√

1 − 𝛼𝑡𝜖 for 𝜖 ∼ N (0, I), we can get:

𝜇𝜃 (𝑥𝑡 , 𝑡) = �̃�𝑡 (𝑥𝑡 ,
1

√
𝛼𝑡

(𝑥𝑡 −
√

1 − 𝛼𝑡𝜖𝜃 (𝑥𝑡)))

=

1

√
𝛼𝑡

(𝑥𝑡 −
𝛽𝑡√

1 − 𝛼𝑡
𝜖𝜃 (𝑥𝑡 , 𝑡))

(30)

B.3 DDPM: Training Procedure
The training objective can be simplified as:

𝐿simple(𝜃) := E𝑡,𝑥0,𝜖 [∥𝜖 − 𝜖𝜃 (

√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝑡)∥2] (31)

With Eq. (31), Algorithm 3 presents the complete training proce-

dure, and Algorithm 4 presents the sampling procedure based on

Markov chain assumption following Eq. (28):

B.4 Partially-private DDPM
Similar to P2 in Section 4.4, we can design a partially-private DDPM

protocol, see Algorithm 5. We have two remarks at applying P2 to

diffusion:

59

Proceedings on Privacy Enhancing Technologies 2025(3) Nguyen et al.

Algorithm 3: Training
1: repeat
2: 𝑥0 ∼ 𝑞(𝑥0)

3: 𝑡 ∼ Uniform({1, . . . ,𝑇 }))
4: 𝜖 ∼ N (0, I)
5: Take gradient descent step on

∇𝜃 ∥𝜖 − 𝜖𝜃 (

√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝑡)∥2

6: until converged

Algorithm 4: Sampling

1: 𝑥𝑡 ∼ N (0, I)
2: for 𝑡 = 𝑇, . . . , 1 do
3: z ∼ N (0, I) if 𝑡 > 1, else z = 0
4: 𝑥𝑡−1 =

1√
𝛼𝑡

(𝑥𝑡 − 1−𝛼𝑡√
1−𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)) + 𝜎𝑡 z
5: end for

• Remarks 1 In the training process, the share of the random

noise J𝜖K can be locally sampled without any communication

between the servers. This is owing to the fact that the sum

of Gaussian distributed variables is Gaussian.

• Remarks 2 In the training process, we need to mask infor-

mation of 𝑥𝑡 ,∀𝑡 ∈ {1, . . . ,𝑇 }. Because 𝑥0 =
1√
𝛼𝑡
E(𝑥𝑡), the

adversary can learn 𝑥0 with high probability after it gets

enough samples by calculating the average values.

Algorithm 5: Partially Private DDPM Training

1: repeat
2: The servers locally get J𝑥0K from the shared dataset, they

sync to get the same data point by using the same

predefined random seed 𝑠

3: The servers locally sample the same

𝑡 ∼ Uniform({1, . . . ,𝑇 }))
4: Each server S𝑖 locally sample J𝜖K := 𝜖𝑖 ∼ N (0, I/𝑛)

5: 𝑛 servers useMPC to calculate 𝜖𝜃,pri(
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝑡),

and make this value public.

6: Each server calculate the loss and update 𝜖pub using

gradient descent on

∥𝜖 − 𝜖𝜃,pub(𝜖𝜃,pri(
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝑡))∥2

7: 𝑛 servers together useMPC to update private 𝜖𝜃,pri:

∇pri∥𝜖 − 𝜖𝜃,pub(𝜖𝜃,pri(
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝑡))∥2

8: until converged

The reconstruction hardness of this secure training is the same

as that of P2.

60

	Abstract
	1 Introduction
	2 Related Work
	2.1 Generative Adversarial Network (GAN)
	2.2 Secure and Decentralized GAN Training
	2.3 Multiparty Computation
	2.4 Vertical Federated Learning (VFL)
	2.5 MPC Implementation
	2.6 Image Reconstruction Metrics

	3 Proposed Learning Architecture and Protocols
	3.1 Protocol 0 (P0): Fully-secure MPC
	3.2 Protocol 1 (P1): Private Discriminator
	3.3 Protocol 2 (P2): Partially-private Discriminator
	3.4 Conditional GAN Training
	3.5 Correctness of Our protocols

	4 Reconstruction Hardness
	4.1 Threat Model
	4.2 Connection between Reconstruction Hardness and Image Reconstruction
	4.3 Privacy under a Public Generator
	4.4 Privacy under a Partially Private Discriminator
	4.5 Relation between Our P2 and Federated Learning

	5 Experiment
	5.1 Uncoditional PPGAN on MNIST and CelebA
	5.2 Classification Performance on Conditionally Generated MNIST
	5.3 Reconstruction Hardness
	5.4 Reconstruction Hardness Beyond GAN model

	6 Conclusion
	References
	A More details about implementation
	A.1 Federated Learning
	A.2 Inverting gradient attack for reconstruction
	A.3 Model Architecture

	B Achieving Reconstruction Hardness during Diffusion Training
	B.1 DDPM: Forward Process
	B.2 DDPM: Backward Process
	B.3 DDPM: Training Procedure
	B.4 Partially-private DDPM

