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Abstract
Graph Neural Networks (GNNs) have become indispensable tools
for learning from graph-structured data, catering to various ap-
plications such as social network analysis and fraud detection for
financial services. At the heart of these networks are the edges,
which are crucial in guiding GNN models’ predictions. In many
scenarios, these edges represent sensitive information, such as per-
sonal associations or financial dealings, which require privacy as-
surance. However, their contributions to GNN model predictions
may, in turn, be exploited by the adversary to compromise their
privacy. Motivated by these conflicting requirements, this paper
investigates edge privacy in contexts where adversaries possess
only black-box access to the target GNN model, restricted further
by access controls, preventing direct insights into arbitrary node
outputs. Moreover, we are the first to extensively examine situa-
tions where the target graph continuously evolves—a common trait
of many real-world graphs. In this setting, we present a range of
attacks that leverage the message-passing mechanism of GNNs. We
evaluated the effectiveness of our attacks using nine real-world
datasets, encompassing both static and dynamic graphs, across
four different GNN architectures. The results demonstrate that our
attack outperforms existing methods across various GNN archi-
tectures, consistently achieving an F1 score of at least 0.8 in static
scenarios. Furthermore, our attack retains robustness in dynamic
graph scenarios, maintaining F1 scores up to 0.8, unlike previous
methods that only achieve F1 scores around 0.2.

1 Introduction
Graph Neural Networks (GNNs) are deep learning models specif-
ically designed to handle graph-structured data [12, 19, 38, 51].
Unlike traditional neural networks that assume data is structured
in a grid-like manner (e.g., images) or in sequences (e.g., text), GNNs
are designed for data where entities (nodes) and their relationships
(edges) are explicitly represented as a graph.

Edges in a graph often denote sensitive information, such as a
patient’s condition in a healthcare network or a transaction in a
financial network [3, 11, 18, 26, 29, 37, 40, 49]. Unveiling these con-
nections without consent infringes upon the privacy of the entities
involved. For instance, consider a healthcare coordination network
[26, 44] maintained by a model service provider, where nodes rep-
resent patients and healthcare providers. Patients may establish
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links/edges with various providers, support groups, or other pa-
tients, where these connections indicate the types of care received,
the patient’s conditions, or their support networks. Exposure of
such links/edges could lead to the leakage of sensitive health infor-
mation, potentially violating privacy regulations such as HIPAA [1]
in the United States. Hence, understanding edge inference attacks is
crucial to comprehending the vulnerabilities inherent within GNNs,
thereby devising mechanisms to preserve privacy by safeguarding
these relationships.

Previous research [14, 27, 43] highlights edge privacy vulnera-
bilities in GNN models but suffers from three key limitations:

• Dynamic Graph Assumptions: Previous methods assume adver-
saries can freely perturb the graph, yet their attacks falter when the
graph evolves due to external changes, such as updates from other
entities. This restricts their applicability in realistic, collaborative,
or rapidly evolving graph environments [27, 43].

• Architectural Dependency: Previous methods often show effec-
tiveness on specific GNN architectures, but struggle to generalize
across diverse architectures, limiting their robustness [14, 27, 43].

• Granularity: Previous works are limited in their focus, concen-
trating only on distinguishing between connected and unconnected
node pairs, without addressing the more precise and practical task
of inferring specific edges [13, 14, 27, 43].
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Figure 1: Our attack scenario: an adversary accesses some
nodes in the graph and depends on the model’s predictions
for these nodes to deduce private information about other
nodes to which they do not have access.

To address the limitations of previous works, we propose a re-
alistic threat model to explore edge privacy attacks in dynamic
graphs. Specifically, we focus on scenarios where GNNs predict
outcomes on evolving graphs, such as social or healthcare networks
[7, 26, 30, 44]. In this setup, a service provider continuously updates
the graph based on user behavior (e.g., profile updates or new con-
nections) and provides predictions while restricting users’ access
to sensitive data.

As depicted in Figure 1, an adversary, such as a healthcare
provider, might aim to infer connections between their patient
and other providers to uncover sensitive information. Using their
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existing connections, the adversary could introduce new nodes
(e.g., a new patient) to interact with the target provider, such as
by scheduling an appointment. By analyzing the model’s predic-
tions for these auxiliary nodes, the adversary can deduce hidden
relationships within the graph.

Problem and Scope. This paper examines privacy risks asso-
ciated with the exposure of private edges in graphs during the
inference phase. Specifically, we focus on inductive GNNs, which
excel in generalizing to unseen nodes and structures. These mod-
els are particularly well-suited for real-world applications where
graphs evolve dynamically, with new nodes and edges emerging
over time [7, 21, 30]. Our workmarks the first exploration of edge in-
ference attacks targeting inductive GNNs in dynamic graph settings,
shedding light on critical privacy vulnerabilities and advancing the
understanding of these risks.

Challenges. Unlike prior work [13, 14, 43, 45], in our settings,
the adversary operates under constrained circumstances, lacking
the privilege to query the model regarding the targeted node pairs
(adversary aims to infer the presence of edge between a targeted
node pair). This limitation necessitates a reliance on indirect in-
formation, escalating the complexity of any potential attack. This
complexity is further exacerbated by the diverse message aggre-
gation methods employed by various GNN models, complicating
the task of generalizing the attack across different architectures.
Moreover, the dynamic nature of graphs introduces another layer
of challenges. This continuous evolution hinders an adversary’s
ability to analyze and leverage the model output.

Key Intuition and New Attacks. Our approach is rooted in the
message aggregation process of GNNs, where information flows
between nodes through their connections. This aggregation process
inherently encodes information about the graph’s structure, as mes-
sages are passed along edges and influence predictions based on the
paths connecting nodes. By observing howmessages are exchanged
between two nodes, an adversary can estimate the underlying path
and infer structural information, such as the distance between them.
Specifically, the adversary manipulates auxiliary nodes (nodes un-
der their control) and observes the resulting changes in the pre-
dictions of target nodes. These observations capture the flow of
information along the graph’s edges, enabling the adversary to
infer the local topology. We develop two attack strategies based
on this principle: Magnitude-based attacks and Direction-based
attacks. Magnitude-based attacks estimate the distance between
nodes by measuring the extent of change in output probabilities.
Direction-based attacks focus on the patterns of change, leveraging
the consistent way messages propagate to nearby nodes.

Evaluation. We conduct a comprehensive evaluation of our at-
tacks across four widely-recognized inductive GNNmodels, namely,
Graph Attention Network (GAT) [38], Graph Convolutional Net-
work (GCN) [19], Graph Isomorphism Network (GIN) [51], and
GraphSAGE [12]. Our assessment spans seven static graph datasets,
including Flickr [55], LastFM [33], and Twitch-{DE, EN, FR, PT,
RU} [32], as well as two dynamic graph datasets, tgbl-flight [16]
and Dgraph-fin [17]. Our extensive testing demonstrates that our
attacks outperform all previous methods in the context of static
graphs, for which those methods [14, 27, 43] were originally de-
signed. Furthermore, our approach maintains robustness in dy-
namic scenarios where previous methods fail. Additionally, when

tested against state-of-the-art differential privacy-based defenses
[43], our evaluations reveal that privacy risks remain significant
when the differential privacy budget is set at a level that keeps the
model usable.

Contributions. In this paper, our primary objective is to explore
the potential risks to edge privacy posed by inductive GNNs. In
summary, we make the following contributions.

❒ We introduce a novel, practical threat model and present
several query-based edge inference attacks specifically tailored for
inductive GNNs. Our approach determines whether two nodes are
connected without requiring direct or query access to the target
nodes.

❒ We showcase consistent effectiveness across a diverse range
of inductive GNN architectures with different message aggregation
mechanisms. We analyzed the shortcomings of previous works and
conducted extensive experiments on four popular inductive GNNs.
Our results show that our approach consistently outperforms three
state-of-the-art attack methods.

❒ We are the first to explore edge inference attacks in dynamic
graphs, specifically focusing on scenarios where the graph keeps
changing during the attack. We conducted experiments using two
real-life dynamic graph datasets and two synthetic dynamic graphs.
The findings demonstrate that our method remains effective, even
when all previous attack approaches fail.

❒ We subject our attacks to cutting-edge differential privacy-
based defenses, demonstrating the intrinsic challenge of concur-
rently achieving both privacy and utility against our attacks.

2 Preliminaries
2.1 Graph Neural Network (GNN)
Graph Neural Networks (GNNs), a class of deep learning models,
can be utilized for various tasks within the graph data domain, pri-
marily aligning with three categories: node-level tasks (e.g., node
classification [12, 19, 38, 51]), graph-level tasks (e.g., graph classifi-
cation [22, 51, 54]), and edge-level tasks (e.g., link prediction [56]).
The core ideology of most GNNs revolves around the neighbor-
hood aggregation strategy. This process allows them to generate
representations of nodes that capture not only their features but
also the features of their surrounding nodes. Let 𝐺 = (𝑉 , 𝐸) be a
graph where 𝑉 represents the set of nodes and 𝐸 represents the
set of edges. We denote the 1-hop neighbors of a node 𝑣 ∈ 𝑉 as
N(𝑣). When generating representation for 𝑣 , after performing 𝑙
iterations of message-passing and aggregation, node 𝑣 ’s representa-
tion, denoted as ℎ𝑙𝑣 , captures structural information within its 𝑙-hop
neighborhood. GNNs typically consist of multiple graph convolu-
tion layers, each of which can be described as:

ℎ𝑙𝑣=𝑓 (ℎ
(𝑙−1)
𝑣 ,𝐴𝐺𝐺 (ℎ (𝑙−1)𝑣 ,ℎ

(𝑙−1)
𝑢 ) ) |𝑢∈N(𝑣)

where 𝑓 (.) is a function that obtains a new representation ℎ𝑙𝑣 for
node 𝑣 based on its current representation ℎ𝑙−1𝑣 and the aggregated
features from its 1-hop neighbors, i.e., N(𝑣). The function 𝐴𝐺𝐺 (.)
represents the specific aggregation mechanism. Note that the num-
ber of layers in a GNN model determines how far it can reach
through the network.

GNNs can be trained under two distinct settings, namely, trans-
ductive [19, 46, 58, 61] and inductive [12, 31, 38, 51, 52, 55]. In the
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transductive setting, the GNN learns from labeled and unlabeled
nodes within a fixed graph during training, subsequently predicting
the labels for the unlabeled nodes post-training. A significant limi-
tation of this approach is the necessity for retraining the models
when new nodes are added to the graph. Contrarily, the inductive
setting has garnered more popularity due to its ability to general-
ize the learned GNN model to previously unseen nodes, making it
well-suited for real-life graphs that continually evolve [4, 5, 12, 48].
In light of this, our research centers exclusively on inductive GNNs,
exploring four widely employed architectures: GAT [38], GCN [19],
GIN [51], and GraphSAGE [12].

Graph Convolutional Network (GCN). GCN [19] updates
each node’s features by aggregating features from its neighbors and
itself. The layer-wise propagation rule for a GCN can be written as:

ℎ𝑙𝑣=𝜎 (𝑊 (𝑙−1) ·𝑀𝑒𝑎𝑛𝐴𝑔𝑔 ({ℎ
(𝑙−1)
𝑢 :𝑢∈N(𝑣)∪{𝑣}}) )

where𝑊 is a learnable weight matrix, 𝜎 is a non-linear activation
function, and𝑀𝑒𝑎𝑛𝐴𝑔𝑔 calculates the mean of the feature vectors
of node 𝑣 and its 1-hop neighbors N(𝑣).

Graph Attention Network (GAT). GAT [38] computes atten-
tion coefficients that indicate the importance of each neighbor’s
information. The attention-based aggregation in GAT is represented
as follows where𝑊 is a trainable weight matrix, 𝜎 is an activation
function, and 𝛼𝑣𝑢 is the attention coefficient indicating how much
attention node 𝑣 should pay to node 𝑢 during aggregation:

ℎ𝑙𝑣=𝜎 (
∑
𝑢∈N(𝑣) 𝛼

(𝑙−1)
𝑣𝑢 𝑊 (𝑙−1)ℎ (𝑙−1)𝑢 )

Graph Sampling and Aggregation (GraphSAGE). Graph-
SAGE [12] aims to generate embeddings by sampling and aggregat-
ing features from a node’s neighbors. With commonly used mean
aggregation as an example, the aggregated information for node 𝑣
is computed as follows where𝑊 is the weight matrix and 𝜎 is the
activation function:

ℎ𝑙𝑣=𝜎 (𝑊 𝑙−1 ·𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑙−1𝑣 ,𝑀𝑒𝑎𝑛𝐴𝑔𝑔 (ℎ𝑙−1𝑢 :𝑢∈N(𝑣) ) ) )

Graph IsomorphismNetwork (GIN).GIN [51] uses a parametrized
aggregation function that can capture the graph structure by con-
sidering both the node itself and its neighbors. The update rule is
defined as follows where 𝜖 is a learnable parameter and𝑀𝐿𝑃 is a
multi-layer perceptron:

ℎ𝑙𝑣=𝑀𝐿𝑃
(𝑙−1) ( (1+𝜖 (𝑙−1)𝑣 ) ·ℎ (𝑙−1)𝑣 +∑𝑢∈N(𝑣) ℎ (𝑙−1)𝑢 )

3 Attack Methodology
3.1 Threat Model
Graph Structure and GNN Specification. In our setting, the
service provider maintains a private graph, where nodes represent
entities for classification and edges denote relationships or interac-
tions. The service provider has exclusive access to the entire graph,
including all nodes and connections, while users are restricted to
accessing only the nodes relevant to them. The graph is dynamic,
reflecting updates such as new interactions, profile changes, or
the creation of new accounts, ensuring it stays aligned with real-
world behavior. These updates inherently introduce opportunities
for graph manipulation, as users, by design, can interact with the
graph to influence its structure within the scope of their access.

Formally, the graph is modeled as a series of snapshots, each rep-
resenting a static state: G = 𝐺1,𝐺2, . . . ,𝐺𝑇 , where 𝐺𝑇 is the most
recent snapshot. The service provider determines the update fre-
quency—whether weekly, daily, hourly, or in real time—depending
on the required freshness and relevance of the data. The model
operates on the most current snapshot.

This framework reflects the practical applications of GNNs across
various domains, such as financial networks [37, 40, 41, 49], med-
ical networks [3, 18], and intrusion detection systems [5, 50]. In
these settings, graphs are constructed directly from raw data, leav-
ing them vulnerable to manipulation. Adversaries can exploit this
process by introducing new nodes, edges, or features, mimicking
legitimate user interactions. For example, with the growing adop-
tion of relational deep learning [30], which transforms relational
databases into graphs, adversaries can indirectly manipulate the
graph by injecting new rows into the underlying database.

We conduct experiments in both static and dynamic graph sce-
narios to examine this issue thoroughly. Here, static and dynamic
refer to whether external changes to the graph occur while the
adversary is conducting an attack. Formally, it depends on whether
the service provider updates 𝐺𝑇 to 𝐺𝑇+1 based solely on the ad-
versary’s behavior or includes changes made by others. The static
scenario becomes possible if the adversary can pinpoint a time
when no other changes are being made to the graph, or if they
can execute their attack swiftly during real-time updates, assum-
ing that no other significant changes to the graph will happen in
that interval. On the other hand, a dynamic scenario prepares for
the worst-case situation by assuming that the graph may change
significantly during the attack, i.e., in between the attack steps.

Previous research has focused exclusively on static scenarios
[14, 27, 43]. Table 1 shows the comparison of the threat models.We
are the first to investigate GNN edge inference attacks within dynamic
graph contexts.

In this work, we focus on inductive GNNs in dynamic scenarios,
building on prior methodologies [27, 43]. Inductive GNNs are well-
suited for dynamic graphs as they generalize to unseen nodes and
adapt to evolving structures without retraining. This adaptability
makes them a dominant choice in dynamic applications, including
those at Amazon [21], LinkedIn [7], and Kumo.ai [30].

Following the inductive approach [12, 38, 51], the GNN model is
first trained on a foundational graph populated with labeled nodes
(the training phase). It is then utilized on the continually evolving
graph (the inference phase). All users have only black-box access
to the GNN model, meaning they can observe the outputs but not
the internal workings of the model. The model makes predictions
based on the private graph and provides the users with prediction
probabilities (node outputs).
Adversary’s Goal. The adversary aims to ascertain whether a
connection exists between two nodes, a goal that holds practical
relevance across numerous real-world scenarios. For example, in
financial networks, stakeholders might need to uncover the con-
nections of a specific entity to grasp the essential relationships
influencing its financial activities.
Adversary’s Capability. The adversary acts as a user during the
inference phase and possesses the following capabilities:
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Attack Attacker’s Knowledge Attacker’s Capability Who Modifies the GraphNode Outputs Node Features
Link Stealing Attack (𝐿𝑆𝐴) [14] All All Query GNN model on all nodes None
LinkTeller Attack (𝐿𝑇𝐴) [43] All All Query GNN model on all nodes, modify all nodes Only Adversary

Infiltration Inference Attack (𝐼 𝐼𝐴) [27] Limited Limited Add/modify limited nodes, add/remove edges Only Adversary
Our proposed attacks Limited Limited Add/modify limited nodes, add edges Everyone

Table 1: Comparison of threat models among our and state-of-the-art edge inference attacks on GNNs.

• Access to auxiliary nodes: The adversary can introduce or
control specific nodes within the graph, referred to as auxiliary
nodes (𝐴).

• Establish new edges: The adversary can create edges between
auxiliary nodes 𝐴 and other nodes in the graph, mimicking actions
such as new transactions or interactions.

•Modify node features: The adversary can alter the features of
nodes in 𝐴, simulating profile updates or similar changes.

• Query the model: The adversary can query the GNN model for
predictions on nodes in 𝐴.

These capabilities align with typical user interactions in dy-
namic environments where inductive GNNs are deployed [7, 27, 30],
such as social networks or healthcare networks. For instance, on
LinkedIn [7], an attacker could pose as an alumnus of a specific
institution to establish connections. Unlike prior works assuming
static graphs or full adversarial control [27, 43], our model considers
more realistic conditions where benign user actions also contribute
to graph evolution.
Adversary’s Extra Knowledge. Prior works [14, 27, 43] either as-
sume extra knowledge, such as subgraph density or shadow dataset,
for threshold selection or fail to provide explicit methods for set-
ting thresholds. To address this gap, we propose a dual approach:
leveraging extra knowledge when available or deriving thresholds
directly from the adversary’s capabilities. This ensures a practical
and flexible solution, accommodating both knowledge-rich and
knowledge-limited scenarios, as detailed in Section 3.5.

Algorithm 1 General Pipeline of Our Attacks
Input: GNN model𝐺𝑁𝑁 ( ·) , Target node 𝑡 , Candidate node set𝐶 , estimated degree of target node

𝑑 , Attack method𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 ( )
Output: A boolean vector for nodes in the candidate set, indicating the presence of an edge between

𝑡 and each 𝑐 ∈ 𝐶
1: for each node 𝑐 ∈ 𝐶 do
2: 𝐿𝑃𝑆 [𝑐 ] ← 𝐴𝑡𝑡𝑎𝑐𝑘𝑀𝑒𝑡ℎ𝑜𝑑 (𝐺𝑁𝑁, 𝑡, 𝑐 )
3: end for
4: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← (𝑑 + 1)-th largest value in LPS
5: 𝑅𝑒𝑠 ← [True if 𝐿𝑃𝑆 [𝑐 ] ] > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 else False for 𝑐 ∈ 𝐶 ]
6: return 𝑅𝑒𝑠

3.2 Methodological Limitations of Existing
Works and Key Tasks to Solve

Prior works face several challenges that limit their applicability and
reliability. Our methodology is designed to address these limitations
by solving the following key tasks:

• Limitation 1 (L1): Existing attacks operate at a low granularity,
focusing on distinguishing connected node pairs from unconnected
ones rather than directly determining if a specific pair is connected.
This approach addresses a less granular version of the problem
and bypasses the true challenge: differentiating directly connected
nodes from closely related but unconnected ones, which is critical
for real-world applicability. This issue is compounded by flawed

experimental setups that rely on random sampling for negative
samples. Since most node pairs in a graph are far apart, even simple
attacks can easily classify them as unconnected. The true challenge
lies in distinguishing directly connected pairs from those closely
related ones, but such closely related pairs are underrepresented
in random sampling. This leads to inflated performance metrics,
even when attacks fail in these cases. To address this limitation,
attacks should target the harder task of distinguishing directly con-
nected pairs from close but unconnected ones to ensure meaningful
connection inference.

Task 1 (T1): Reframe the problem to focus on inferring the exis-
tence of an edge between 2 nodes rather than simply distinguishing
connected from unconnected pairs, ensuring that the methodology
and evaluation are robust to node pair selection.

• Limitation 2 (L2): Poor Generalization Across GNN Archi-
tectures. Existing methods often perform well on specific GNN
architectures (e.g., GCNs) but fail on others, such as GATs, limiting
their adaptability. This lack of generalization reduces their applica-
bility in diverse real-world scenarios where a variety of GNNs are
deployed.

Task 2 (T2): Ensure that the proposed method performs consis-
tently across a wide range of GNN models.

•Limitation 3 (L3): Limited Robustness Against Dynamic Graphs.
Prior works often assume static graphs during attacks, even when
allowing adversarial modifications. These approaches fail to ac-
count for real-world conditions where graphs evolve dynamically
due to benign changes made by other users or systems.

Task 3 (T3): Develop a robust attack methodology capable of
adapting to evolving graph structures, reflecting realistic deploy-
ment scenarios.

3.3 Proposed Attacks
Key Intuitions. Our attack leverages the message aggregation
mechanism inherent in GNNs, where the flow of information is a
two-way street: nodes absorb information from their neighbors and,
in turn, impart their data back into the network. This bidirectional
flow serves dual purposes in our strategy. In a scenario where two
nodes, 𝑣 and 𝑢, are interconnected. Node 𝑣 assimilates information
from 𝑢 through message aggregation, enabling us to learn insights
about 𝑢’s private attributes by analyzing 𝑣 ’s output. This helps
us solve the lack of direct access to the target nodes. Moreover,
the messages exchanged between 𝑣 and 𝑢 navigate along specific
paths within the graph. As a message progresses along a path, it is
transformed by each node it encounters, which means that the final
message received by each node is influenced by the specific paths
it has traversed. Therefore, even if the same initial message is sent
to different nodes, the final messages they receive will differ due
to variations in their respective paths. Consequently, the message
received by node 𝑢 from node 𝑣 will contain information reflective
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of the path between them. This observation provides a way to infer
information about the path between nodes. We provide a formal
justification about our intuition in Appendix C.1.
Overall Attack Design.We organize our attack into two phases:

• Information Extraction (P1): Extract information from the target
model to assign a score to each node pair, where a higher score
reflects closer proximity between nodes. This phase addresses T2
and T3 by ensuring adaptability across GNN architectures and
dynamic graphs.

• Threshold Determination (P2): Establish a threshold based on
the scores to identify whether a node pair is connected. This phase
addresses T1 by reframing the problem to focus on direct edge
inference.

3.4 Attack Phase 1: Extracting Statistics
In Phase 1, we identify a statistic to distinguish connected from
unconnected node pairs, forming the basis for Phase 2. The adver-
sary adopts a node-centric approach, introducing auxiliary nodes
(A) and connecting them to the target node (t) and candidate nodes
(𝑐 ∈ 𝐶 , nodes the adversary tests for connection to the target node).
By querying the GNN and analyzing prediction probability vectors
from auxiliary nodes, the adversary computes a Link Possibility
Score (LPS) for each target-candidate pair. This LPS serves as a mea-
sure of proximity. Our key intuitions lead to the design of multiple
attacks, all adhering to the same pipeline depicted in Algorithm 1.

?

c ac

att

(a) SIM and INF

c

ac

att

aanchor

?

(b) INF–DIR and INF–MAG

Figure 2: GNNBleed attacks: 𝑡 , 𝐶, and 𝑎𝑛 represent the target
node, the candidate set, and the auxiliary nodes, respectively.
Black dashed lines represent existing edges within the graph,
concealed from the adversary’s knowledge, and red lines
indicate edges introduced by the adversary.

Attack Strategies. Our goal is to infer information about the paths
connecting two nodes by analyzing the exchange of messages be-
tween them. The key idea is that the influence one node exerts
on others provides a means to observe how messages propagate
along these paths. Specifically, we track how changes to a node’s
features affect the predictions of its neighbors, using this influence
to estimate the flow of information between nodes. To illustrate this
concept, consider two nodes, 𝑢 and 𝑣 . If an adversary modifies the
features of node 𝑢 by a perturbation factor of 𝛼 , making it (1+ 𝛼)𝑢,
this will impact the output probabilities of 𝑣 if 𝑣 can receive in-
formation from 𝑢. By observing 𝑣 ’s predicted probability before
(𝑝𝑣) and after (𝑝′𝑣) this change, the adversary can determine the
resulting difference in 𝑣 ’s output probability, quantified as 𝑝𝑣 − 𝑝′𝑣 .
This difference can be used to infer the properties of the message
path between 𝑢 and 𝑣 . In this work, influence is generated through
such perturbations across all methods. In this work, we treat the
perturbation factor as a simple yet effective measure of adversarial

influence. Rather than focusing on how to generate these perturba-
tions, our primary goal is to analyze how model outputs respond
to adversarial changes in node features. This perspective is also
adopted by [43], where similar perturbation-based approaches are
used. Different methods—such as modifying categorical node fea-
tures or altering the graph structure—can be employed to generate
influence depending on the scenario. For further details on influ-
ence generation, see Appendix A.1.

Prior research [27, 43] focuses on the magnitude of influence be-
tween nodes, typically measuring the L2 norm of changes in output
probabilities and correlating these with the distance between nodes.
These methods identify nodes with high-magnitude influence on
each other as connected. However, they face two key challenges:

1. Aggregation Mechanism Dependence: The magnitude of in-
fluence in GNNs does not always correlate with node distance.
Message aggregation mechanisms, such as GCN’s mean function,
average messages along paths, causing influence to diminish over
distance. This explains the success of prior methods on GCNs. How-
ever, their effectiveness drops against models like GAT, which use
attention-based mechanisms to selectively weigh nodes. For exam-
ple, close nodes with low attention weights may exhibit minimal
influence, contradicting assumptions based on proximity.

2. Dynamic Graph Scenarios: In real-world dynamic graphs, re-
lying solely on influence magnitude is insufficient. When multiple
agents modify the graph, high influence magnitudes can result
from any nearby influence source, not necessarily the adversary.
This makes it harder to isolate adversarial effects in evolving graph
environments.

To solve these problems, we employ two distinct methodolo-
gies. The first attack, named the Magnitude-based Influence Attack,
focuses on the degree of change in the output probabilities. This
attack is tailored to be effective across various GNNs with different
message aggregation methods, making it well-suited for scenarios
where the graph is relatively static. The second attack, theDirection-
based Influence Attack, centered on analyzing the patterns of output
probability changes, demonstrating its resilience in dynamic graph
scenarios.
Magnitude-Based Influence Attack (𝐼𝑁 𝐹–𝑀𝐴𝐺) This attack
strategy relies on the correlation between the distance between
two nodes and the magnitude of influence one node exerts on the
other. Appendix A.2 illustrates this relationship, showing that as
distance increases, the magnitude of change decreases. To improve
accuracy across different GNN architectures, we propose a method
that accounts for variations in message aggregation mechanisms,
ensuring the magnitude of influence becomes a more reliable indi-
cator of node proximity. As in prior works, we quantify influence
using the L2 norm of changes in output probabilities. The challenge
lies in mitigating the variability introduced by GNN-specific ag-
gregation weights, which can distort the magnitude of influence.
To address this, we introduce an auxiliary node termed the anchor
node, 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 , which is used to help estimate the weight. The anchor
node shares identical features with 𝑎𝑡 and 𝑎𝑐 and is directly con-
nected to the candidate node 𝑐 (depicted in Figure 2b). Because 𝑎𝑐
and 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 are connected to the 𝑐 , their distance would always be
2. However, the response of 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 to changes in 𝑎𝑐 ’s features can
differ based on the varying weights associated with 𝑎𝑐 , even though
their distance remains constant. A strong influence of 𝑎𝑐 on 𝑎𝑎𝑛𝑐ℎ𝑜𝑟
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(𝐼 (𝑎𝑐 , 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )) suggests a great weight of 𝑎𝑐 , thus 𝑎𝑐 would have
a strong influence on all the other nodes aggregate information
from it. This setup allows us to calibrate the influence of 𝑎𝑐 on 𝑎𝑡
relative to the change observed in 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ’s output. We calculate
the LPS as 𝐿𝑃𝑆 =

𝐼 (𝑎𝑐 ,𝑎𝑡 )
𝐼 (𝑎𝑐 ,𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ) . This metric adjusts the perceived

influence of 𝑎𝑐 on 𝑎𝑡 based on the relative influence on 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ,
thereby accounting for the variations in weight and providing a
more accurate measure of connectivity strength.

Algorithm 2 𝐼𝑁 𝐹–𝑀𝐴𝐺
Input: GNN API𝐺𝑁𝑁 ( ·) , target node 𝑡 , candidate node 𝑐
Output: LPS, which quantifies the likelihood that 𝑡 and 𝑐 are connected
1: 𝐺 ′ ← 𝐺 update the API internal graph with modifications as follows:
2: – Add nodes 𝑎𝑡 , 𝑎𝑐 , 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 .
3: – Establish edges: (𝑡, 𝑎𝑡 ) , (𝑐, 𝑎𝑐 ) and (𝑐, 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ) .
4: 𝑝𝑎𝑡 , 𝑝𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ← 𝐺𝑁𝑁 (𝑎𝑡 ),𝐺𝑁𝑁 (𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )
5: 𝐺 ′′ ← 𝐺 ′ perturb the feature of 𝑎𝑐
6: 𝑝′𝑎𝑡 , 𝑝

′
𝑎𝑎𝑛𝑐ℎ𝑜𝑟

← 𝐺𝑁𝑁 (𝑎𝑡 ),𝐺𝑁𝑁 (𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )
7: 𝐿𝑃𝑆 ← 𝐼 (𝑎𝑐 , 𝑎𝑡 )/𝐼 (𝑎𝑐 , 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )
8: return 𝐿𝑃𝑆

Implementation. To get the 𝐿𝑃𝑆 for a node pair (𝑡, 𝑐), we ini-
tially insert three auxiliary nodes {𝑎𝑡 , 𝑎𝑐 , 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 } as depicted in
Figure 2b. We then obtain their initial outputs, denoted 𝑝𝑎𝑡 and
𝑝𝑎𝑎𝑛𝑐ℎ𝑜𝑟 . Following this, we alter the feature of 𝑎𝑐 using 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

′
𝑎𝑐

=

(1+𝛼) 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑎𝑐 and subsequently acquire the updated outputs 𝑝′𝑎𝑡
and 𝑝′𝑎𝑎𝑛𝑐ℎ𝑜𝑟 . Next, we calculate the LPS score as 𝐿𝑃𝑆 =

𝐼 (𝑎𝑐 ,𝑎𝑡 )
𝐼 (𝑎𝑐 ,𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ) ,

where 𝐼 (𝑎𝑐 , 𝑎𝑡 ) = ∥𝑝′𝑎𝑡−𝑝𝑎𝑡 ∥2. Higher𝐿𝑃𝑆 values indicate a stronger
likelihood of an edge, and lower values suggest otherwise. Algo-
rithm 2 demonstrates the attack steps.
Direction-Based Influence Attack (𝐼𝑁 𝐹–𝐷𝐼𝑅) Direction-Based
Influence Attack is based on the principle that nodes nearby typ-
ically exhibit similar reactions to external influences due to their
shared topology. This common context causes these nodes to pro-
cess information from the influence source similarly, resulting in
comparable updates to their output probabilities. Consequently,
when two nodes exhibit similar patterns of output changes, it sug-
gests they are near each other in the graph. This principle allows
the method to remain effective in dynamic scenarios, even with
multiple sources of influence. When two nodes are close to each
other, they are likely to receive information from a similar set of
sources, thereby exhibiting similar changes in their output proba-
bilities. Appendix A.2 illustrates this relationship, showing that as
distance increases, the similarity of change decreases.

Algorithm 3 𝐼𝑁 𝐹–𝐷𝐼𝑅
Input: GNN API𝐺𝑁𝑁 ( ·) , target node 𝑡 , candidate node 𝑐
Output: LPS, which quantifies the likelihood that 𝑡 and 𝑐 are connected
1: 𝐺 ′ ← 𝐺 update the API internal graph with modifications as follows:
2: – Add nodes 𝑎𝑡 , 𝑎𝑐 , and 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 .
3: – Establish edges: (𝑡, 𝑎𝑡 ) , (𝑐, 𝑎𝑐 ) , and (𝑐, 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ) .
4: 𝑝𝑎𝑡 , 𝑝𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ← 𝐺𝑁𝑁 (𝑎𝑡 ),𝐺𝑁𝑁 (𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )
5: 𝐺 ′′ ← 𝐺 ′ perturb the feature of 𝑎𝑐
6: 𝑝′𝑎𝑡 , 𝑝

′
𝑎𝑎𝑛𝑐ℎ𝑜𝑟

← 𝐺𝑁𝑁 (𝑎𝑡 ),𝐺𝑁𝑁 (𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )
7: 𝐿𝑃𝑆 ← 1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (𝑝′𝑎𝑡 − 𝑝𝑎𝑡 , 𝑝

′
𝑎𝑎𝑛𝑐ℎ𝑜𝑟

− 𝑝𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )
8: return 𝐿𝑃𝑆

Implementation Details. This attack involves inserting three
auxiliary nodes: 𝑎𝑡 , connected to the target node 𝑡 , and the other
two, 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 and 𝑎𝑐 , connected to the candidate node 𝑐 (depicted
in Figure 2b). Here, 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 is a reference node, indicating how

nodes two hops away from the influence source 𝑎𝑐 respond to
changes. Nodes exhibiting reactions similar to 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 are likely in
a similar context, suggesting proximity to both 𝑎𝑎𝑛𝑐ℎ𝑜𝑟 and 𝑎𝑐 . We
record the output probabilities both before (𝑝𝑎𝑡 , 𝑝𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ) and after
(𝑝′𝑎𝑡 , 𝑝

′
𝑎𝑎𝑛𝑐ℎ𝑜𝑟

) the feature changes. The LPS is then computed as
𝐿𝑃𝑆 = 1−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (𝑝′𝑎𝑡 −𝑝𝑎𝑡 , 𝑝

′
𝑎𝑎𝑛𝑐ℎ𝑜𝑟

−𝑝𝑎𝑎𝑛𝑐ℎ𝑜𝑟 ). A smaller
distance and a higher LPS value imply a likely edge between 𝑡 and 𝑐 .
Our experiment utilizes eight different distance metrics, including
Cosine, Euclidean, Correlation, Chebyshev, Bray-Curtis, Canberra,
Manhattan, and Square-Euclidean distances, to identify the most
effective for this analysis. The detailed execution of this attack is
described in Algorithm 3.
FurtherAdaptedDirection-Based InfluenceAttack (𝐼𝑁 𝐹–𝐷𝐼𝑅∗)
Graphs that evolve unpredictably introduce noise between queries,
complicating analysis. To address this, we extend the 𝐼𝑁 𝐹–𝐷𝐼𝑅
approach by performing multiple queries and analyzing trends
in output changes over time. This longitudinal analysis mitigates
transient noise from random graph fluctuations while preserving
consistent adversarial influence.
Implementation Details. This multi-query attack collects data
by repeating the influence generation process after node injection,
recording output changes as lists: 𝑃𝐶𝐿𝑎 for the anchor node and
𝑃𝐶𝐿𝑡 for the target node. These changes are then preprocessed
using one of four techniques:

• Concatenation: Combine all components in each 𝑃𝐶𝐿.
•Mean/Median: Calculate the mean or median for each dimen-

sion across the vectors in 𝑃𝐶𝐿.
• PCA: Reduce dimensionality by projecting concatenated vec-

tors onto a lower-dimensional space.
The preprocessed vectors, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑎𝑡 and 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑎𝑎𝑛𝑐ℎ𝑜𝑟 , are

then compared using the formula:

𝐿𝑃𝑆 = 1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑎𝑡 , 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑎𝑎𝑛𝑐ℎ𝑜𝑟 )
A smaller distance implies a higher LPS, indicating a likely edge
between the target and anchor nodes.

3.5 Attack Phase 2: Threshold Selection.
Building on Phase 1, where we distinguish between connected and
unconnected node pairs, Phase 2 transforms this into the task of
determining whether two specific nodes are connected. To achieve
this, we adopt a node-centric approach tailored to each node’s
unique influence distribution.
What makes a good threshold? A good threshold should ac-
count for variability in influence distributions across nodes, shaped
by degree, neighborhood structure, and aggregation. High-degree
nodes aggregate weaker individual signals, while low-degree nodes
are more sensitive to changes. Attention further amplifies these
differences.

Figure 3 shows that low-degree nodes experience larger magni-
tude changes, while high-degree nodes exhibit weaker signals. No-
tably, 2-hop neighbors of low-degree nodes resemble 1-hop neigh-
bors of high-degree nodes, making a global threshold ineffective.
It would misclassify weakly connected nodes around low-degree
targets as “connected” while missing real connections around high-
degree targets.

Thus, threshold selection should be node-specific. A formal jus-
tification is in Appendix C.4.
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Figure 3: Magnitude of influence for nodes with different de-
gree distributions in the LastFM dataset using a GCN model.

How to derive a node-centric threshold? To determine a thresh-
old for a target node, the adversary requires insight into the node’s
influence distribution. Specifically, they need a reference point to
understand what threshold value would effectively distinguish con-
nected from unconnected nodes for that particular target. Using the
statistics obtained from Phase 1, the adversary can set a threshold
by identifying what scores indicate true connections for the target
node. This information can be derived from a shadow dataset or
directly inferred from the target graph.

Based on the GNN model’s implementation and the adversary’s
interaction capabilities, we propose two approaches for threshold
selection:

• In-Graph Thresholding: If the adversary has knowledge of some
connections to the target node, they can use the scores of these
known connected nodes to construct a score distribution and set
an accurate threshold. In the worst-case scenario, where no such
knowledge exists, the adversary can establish a direct connection
to the target node via auxiliary nodes. By observing the scores of
these auxiliary nodes, the adversary can infer a threshold based on
the observed influence. This approach leverages the adversary’s
ability to interact directly with the target graph.

• Extra Knowledge-Based Thresholding: The key idea is to lever-
age additional knowledge to approximate the threshold distribution
for different nodes. If the adversary has access to shadow data or par-
tial properties of the target node (e.g., degree or feature attributes),
this information can be used to estimate the score distribution for
connected nodes. By migrating the threshold distribution from
nodes with similar properties or from shadow datasets, the adver-
sary can define more accurate thresholds. This approach aligns
with existing methods that utilize extra knowledge for threshold
determination [43].
Threshold Selection in This Work. In our experiments, we take
a simple heuristic approach by using the lowest score among those
derived via the above methods as the threshold. This choice stems
from the intuition that higher scores indicate genuine connections,
and thus setting a lower bound is a conservative way to label edges.
We emphasize that we are demonstrating possible ways of thresh-
olding rather than prescribing a single optimal solution. Further
discussion on threshold design and rationale can be found in Ap-
pendix B.8.

Mapping Threshold Selection to Pairwise Connectivity.Given
a node pair, we can address the question of whether they are con-
nected by selecting one as the target node and the other as the
candidate node. By comparing the candidate’s influence against the
threshold tailored to the target node’s unique distribution, we can
determine if a connection exists.

4 Evaluation
Our experiments span two scenarios: static and dynamic, each
requiring unique designs and dataset selections. We first outline
the common setups for both scenarios, followed by scenario-specific
details and datasets.

4.1 Common Experiment Setup
Models. We evaluate the attacks on four types of GNN models:
GAT [38], GCN [19], GIN [51], and GraphSAGE [12]. Unless oth-
erwise specified, results in the main paper are based on a 4-layer
architecture. The rationale for selecting a 4-layer setup, along with
results from attacks on 3-layer models, is provided in Appendix A.3.
Metrics. We evaluate the attacks using precision (the ratio of con-
nected nodes among the ones recognized as true), recall (the ratio
of identified connected nodes to all connected nodes), F1-score
(the harmonic mean of precision and recall), and ROC-AUC (a
threshold-independent metric evaluating the discriminatory power
of classification tasks). Due to space constraints in the main paper,
we primarily present results for the F1-score and ROC-AUC.
Auxiliary Node Feature. The features of the auxiliary nodes are
randomly sampled from the target graph to simulate a scenario
where the adversary joins the graph as a regular user.
Baseline Attacks. We compare our attacks with three state-of-
the-art attacks, as described below. While these attacks operate
under different threat models, we include them in our evaluation
to provide a comprehensive performance comparison:
Link Stealing Attack (LSA) [14]: For our baseline, we use LSA-0, as
it most closely aligns with our threat model. This approach utilizes
the correlation distance between nodes’ output probabilities to infer
the existence of edges.
LinkTeller Attack (LTA) [43]: LTA discerns links by analyzing the
magnitude of influence one node exerts on others. The influence is
generated by changing a node’s feature.
Infiltration Inference Attack (IIA) [27]: IIA examines the influence
exerted by a newly added node with a zero feature vector. However,
IIA is ineffective against models like GIN that use sum for message
aggregation. Since a node with a zero feature vector does not alter
the overall sum of aggregated features, it fails to exert any influence,
rendering the attack ineffective.

We also introduce two baseline attacks that adapt LSA and LTA
to our threat model (depicted in Figure 2a):
Similarity Attack (SIM): This attack determines the existence of
edges by computing the correlation distance between the output
probabilities of auxiliary nodes.
Naive Influence Attack (INF): This attack infers connections by ex-
amining the magnitude of the influence exerted by one auxiliary
node on others.
Threshold Selection. We evaluate our attack using two threshold
selection methods: one for fair comparison with existing works

67



Proceedings on Privacy Enhancing Technologies 2025(3) Zeyu Song, Ehsanul Kabir, and Shagufta Mehnaz

and another for assessing performance under different threshold
selection methods.
Uniform Threshold for Fair Comparison. To ensure a fair com-
parison with prior works, which lack robust thresholding methods
[14, 27], we use a standardized approach. Following [43], we adopt
a top-𝑘 selection method, where 𝑘 is set to the ground truth number
of connected node pairs. This approach evaluates the distinguisha-
bility of the generated scores.
Threshold Selection forDeterminingConnections.This thresh-
old selection evaluates the attack’s effectiveness in directly deter-
mining whether two nodes are connected. We compare the methods
proposed in Section 3.5, emphasizing their feasibility and perfor-
mance across different scenarios.
Test Set Construction. To evaluate the performance of link infer-
ence attacks and ensure practical applicability, we adopt a node-
centric test set design:

• We randomly sample 100 target nodes, 𝑇 .
• For each target node 𝑡 ∈ 𝑇 , we construct node pairs (𝑡, 𝑐),

where 𝑐 ∈ 𝐶𝑡 , with the candidate set 𝐶𝑡 defined as:
Positive Samples — Directly connected neighbors of 𝑡 .
Negative Samples — Nodes within a two-hop distance from 𝑡 ,

but not directly connected. Specifically, for each target node, we
include all its direct connections as positive samples, while negative
samples consist of all nodes within two hops that are not direct
neighbors. This results in a test set whose size corresponds to the
number of two-hop neighbors per target node.

Problem with Random Sampling: Existing works [14, 27, 43] pri-
marily use random sampling for negative samples, often resulting in
distant nodes outside the GNN’smessage-passing range. Such nodes
show no influence changes, making them trivially separable from
connected nodes. This inflates performance metrics by simplifying
the task to identifying outliers rather than detecting meaningful
connections. By relying on simplistic setups, these evaluations fail
to test attack robustness in distinguishing directly connected nodes
from nearby unconnected nodes—arguably the core challenge in
link inference. This oversight leads to flawed experimental designs
that poorly reflect real-world scenarios.
Theoretical Justification for Using 2-Hop Nodes as Negative
Samples.Weuse 2-hop nodes as negative samples to better evaluate
attack robustness, as they are the most challenging to distinguish
from directly connected neighbors. This difficulty arises from two
factors:

• Proximity-Based Scoring: GNNs propagate stronger influence
to closer nodes, leading to higher scores for 2-hop nodes that are
spatially close to the target.

• Shared Structure: 2-hop nodes often share neighbors with the
target, causing their scores to closely resemble those of directly
connected nodes.

This setup tests an attack’s ability to differentiate direct connec-
tions from close-but-unconnected nodes, demonstrating robustness
in more realistic scenarios. Success in such stringent conditions
validates the method’s generalizability to less restrictive setups,
where negative samples are easier to distinguish due to weaker
influence and reduced structural similarity. Detailed theoretical
justification can be found in Appendix C.3.

4.2 Static Graph Scenario
Datasets. We evaluate our attacks on seven datasets: Flickr [55],
LastFM [33], and Twitch-DE, EN, FR, PT, RU [32]. Flickr is an image
relationship dataset, while LastFM and Twitch are social network
datasets. Appendix A.5 presents them in detail.
Target Node Selection. We randomly chose 100 nodes for each
dataset as target nodes, and all results in the later sections represent
the average across these nodes.
Perturbation Factor. We set the perturbation factor 𝛼 = 0.1 for
LTA and our attacks. In static scenarios, the exact value of 𝛼 is less
critical as long as it introduces noticeable changes in the model
output since the adversary is the sole source of perturbations.
Results. The F1-scores for all attack methods are illustrated in
Figure 4, and the AUCs are reported in Table 2. Due to space con-
straints, only the AUCs for influence-based attacks are included in
the main paper. Additional results are detailed in Appendix B.2. For
SIM and 𝐼𝑁 𝐹–𝐷𝐼𝑅, in which we require using distance metrics, we
present their results only with the best-performing metrics, cor-
relation distance for SIM and Bray–Curtis distance for 𝐼𝑁 𝐹–𝐷𝐼𝑅,
due to space limitations. Refer to Appendix B.3 for full results.

Reviewing the results, similarity-based attacks like LSA and SIM
consistently perform poorly, with F1-scores around 0.2. This is due
to their reliance on the assumption that nodes in close proxim-
ity share similar features and, therefore, similar output probabili-
ties—an assumption that often fails across diverse datasets. While
LTA shows good results with GCN (F1-score surpassing 0.8), it
demonstrates diminished efficacy against GAT (F1-score drops to
∼0.5). The results are anticipated because LTA does not account for
variations in message aggregation methods. While GCNs use mean
as the aggregation function, which aligns with the premises of this
work, this approach is not supported by GATs, which aggregate
messages differently. Similarly, IIA performs well against GCN but
fails against GIN and shows suboptimal results against GAT. These
outcomes suggest that both attacks struggle to adapt to models
employing diverse message aggregation mechanisms. INF, though
use the same methodology as LTA, is less effective due to its lack of
direct access to target node pairs. This shows that simply extending
LTA’s method to our more challenging threat model is inadequate.

Our 𝐼𝑁 𝐹–𝐷𝐼𝑅 attack demonstrates greater consistency and supe-
rior performance than LTA and IIA. It performswell when evaluated
against GCN and GIN (F1-score surpassing 0.8 and AUC surpassing
0.95) and maintains its effectiveness when tested with GAT (F1-
score around 0.8 and AUC surpassing 0.95). These results highlight
the potential of investigating the pattern of output changes.

The 𝐼𝑁 𝐹–𝑀𝐴𝐺 attack consistently surpasses competing strate-
gies in terms of performance, demonstrating superiority across
various model architectures and datasets. It reliably secures F1-
scores exceeding 0.8 and frequently surpasses 0.9 in several tests.
Moreover, it attains AUC scores as high as 0.99 in most evalua-
tions. This robust performance is primarily credited to its strategic
neutralization of weight impacts. By utilizing an anchor node, the
𝐼𝑁 𝐹–𝑀𝐴𝐺 attack effectively minimizes the influence of weights,
thereby accentuating distance as the key determinant in the influ-
ence’s magnitude.

Existing methods occasionally match our performance on certain
model–dataset combinations, particularly with GCNs. As discussed
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𝑆𝐼𝑀 𝐼𝑁𝐹 𝐼𝑁𝐹–𝐷𝐼𝑅 𝐼𝑁𝐹–𝑀𝐴𝐺 𝐿𝑇𝐴 𝐿𝑆𝐴 𝐼𝐼𝐴
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Figure 4: Comparative analysis of attack performances: the graph illustrates average F1-scores from all attacks, computed
across seven datasets and four types of GNN models. Each score is averaged from attacks on 100 target nodes.

Table 2: AUC metrics for various attacks: rows signify datasets, while columns illustrate attacks against different models.

Dataset INF INF–DIR INF–MAG LTA IIA

GCN SAGE GAT GIN GCN SAGE GAT GIN GCN SAGE GAT GIN GCN SAGE GAT GIN GCN SAGE GAT GIN

LastFM 0.81 0.76 0.79 0.77 0.98 0.98 0.98 0.97 0.99 0.99 0.99 0.97 0.98 0.98 0.92 0.86 0.98 0.98 0.91 -
Flickr 0.98 0.97 0.97 0.95 0.99 0.99 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.94 0.98 0.99 0.93 -
Twitch-EN 0.98 0.97 0.97 0.90 0.99 0.99 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.90 0.99 0.98 0.92 -
Twitch-DE 0.91 0.64 0.82 0.84 0.99 0.93 0.94 0.99 0.99 0.96 0.97 0.98 0.93 0.93 0.76 0.91 0.95 0.95 0.88 -
Twitch-FR 0.98 0.97 0.97 0.70 0.99 0.99 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.89 0.99 0.99 0.95 -
Twitch-PT 0.98 0.97 0.97 0.71 0.99 0.99 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.95 0.99 0.99 0.94 -
Twitch-RU 0.91 0.77 0.79 0.71 0.99 0.96 0.95 0.99 0.99 0.99 0.99 0.99 0.91 0.96 0.79 0.95 0.96 0.96 0.85 -

in Limitation 2 (Section 3.2), these methods do not account for the
per-node weights during aggregation, making them less general.
However, in settings where graph edges are evenly distributed and
the model is a GCN using mean aggregation, each node’s weight
is also relatively uniform. Under these conditions, methods that
ignore weights can still yield strong results. More broadly, this
illustrates that specific model–dataset pairings may be especially
vulnerable to attack, allowing even simple techniques to accurately
infer edges.

We provide attack results averaged over 500 target nodes in
Appendix B.1, which show a similar pattern to those presented in
the main paper.

4.3 Dynamic Graph Scenario
Datasets. We use two real-world dynamic graph datasets—tgbl-
flight [16] and Dgraph-fin [17]—converted into weekly static graph
snapshots. tgbl-flight represents flight data, with nodes as airports
and edges as airline connections, while Dgraph-fin is a financial
dataset with nodes as users and edges representing emergency
financial connections. These datasets primarily capture structural
changes, such as the addition of edges. Further details are provided
in Appendix A.5.

To analyze dynamic scenarios, we create synthetic datasets by
introducing artificial changes into static graphs (LastFM and Twitch-
EN). This setup includes node- and structure-level dynamics, en-
abling controlled experiments. These synthetic graphs provide
deeper insights into how adversarial modifications interact with
natural graph evolution and test attack robustness under diverse
conditions.

Synthetic Dynamics Design. The evolution rate (𝑒) determines
the extent of changes, adjusting node features within [𝑥 (1 − 𝑒),
𝑥 (1 + 𝑒)] and proportionally adding nodes and edges within the
target node’s neighborhood. In the experiment, we apply global
node feature changes, meaning all nodes in the graph experience
random feature modifications. Structural changes are restricted to
the 2-hop neighborhood to ensure they occur near the target node,
directly impacting its local structure.
Target Node Selection. For the synthetic datasets, we randomly
select 100 target nodes. For real-world datasets, we sample 100
nodes near structural changes, ensuring the tests reflect realistic
dynamic conditions rather than static graph scenarios.
Baseline Attacks.We benchmark 𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗ against influence-
based attacks, including LTA, IIA, 𝐼𝑁 𝐹 −𝑀𝐴𝐺 , and 𝐸𝑉𝑂 , which
follows 𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗’s methodology but excludes adversarial influ-
ence generation. Similarity-based attacks are excluded due to their
ineffectiveness in static settings and limited relevance in dynamic
environments. To evaluate query frequency, we tested 𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗
and 𝐸𝑉𝑂 with up to 15 queries, as discussed in Section 6. The main
paper presents the best performance metrics of 𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗ us-
ing Concatenation preprocessing, with full results and variations
available in Appendix B.4. For fairness, LTA, IIA, and 𝐼𝑁 𝐹 −𝑀𝐴𝐺
were adapted to use 15 queries, summing scores across queries,
and are denoted as LTA∗, IIA∗, and 𝐼𝑁 𝐹 −𝑀𝐴𝐺∗. All queries were
conducted with natural graph updates, aligning adversarial manipu-
lations with real-time graph evolution. More queries also introduce
additional noise from the graph’s natural changes.
Evalution Method: Signal-to-Noise Ratio.We evaluate attack
performance in dynamic scenarios using a Signal-to-Noise Ratio
(SNR) framework, which quantifies the effectiveness of adversarial
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perturbations (signal) against natural graph evolution (noise). Nat-
ural changes in dynamic graphs can obscure or mimic adversarial
modifications, complicating the isolation of attack impacts. By treat-
ing the perturbation rate as the signal and the graph change rate as
noise, the SNR framework systematically analyzes the robustness
of attack methods under varying dynamics. Experiments varied
three key parameters:

• Perturbation Rate: With the feature change rate fixed at 0.02
and the local structural change rate at 0.2, the perturbation rate
was adjusted (e.g., 0.1–1.1). For feature perturbation attacks, this
defines the magnitude of changes to the target node’s features. For
edge addition attacks (e.g., IIA), it corresponds to the fraction of
new edges added relative to the target node’s degree.

• Feature Change Rate: With the perturbation rate fixed at 1 and
the local structural change rate at 0.2, the feature change rate varied
(e.g., 0.00001–0.05).

• Structural Change Rate: With the perturbation rate fixed at 1
and the feature change rate at 0.02, the local structural change rate
varied (e.g., 0.1–0.6).
Signal-to-Noise Ratio Analysis. Figure 5 presents the SNR analy-
sis results on GCN using the LastFM dataset (full results in Ap-
pendix B.5), with similar trends observed across other models.
Magnitude-based methods show potential for effectiveness at very
high SNR levels, where adversarial signals dominate natural noise.
However, achieving such a high SNR requires excessive perturba-
tions, which compromise stealth and destabilize the graph, render-
ing these methods impractical in real-world scenarios. In contrast,
direction-based attacks consistently demonstrate robustness across
all SNR levels. By leveraging stable patterns in output changes, they
remain effective even in noisy and dynamic environments, proving
their reliability and practicality for evolving graph scenarios.

Figure 5 A (Varying Perturbation Rate): Magnitude-based meth-
ods perform poorly at all perturbation rates, as higher perturbations
amplify noise and risk detection without improving performance.
Direction-based attacks consistently outperform magnitude-based
ones, requiring fewer perturbations to remain effective.

Figure 5 B (Varying Feature Change Rate): Direction-based at-
tacks generally outperform magnitude-based methods. Magnitude-
based methods show good performance at very low feature change
rates, consistent with their strong performance in static scenarios.
This is because structural changes are sparse (rate of 0.2), affecting
only a subset of nodes, while feature changes are global, impact-
ing all nodes. Limited structural noise enables magnitude-based
attacks to performwell initially, but as feature change rates increase,
noise overshadows adversarial signals, causing degradation, while
direction-based attacks remain robust.

Figure 5 C (Varying Structural Change Rate): At high structural
change rates, all attacks degrade significantly as excessive struc-
tural changes overshadow adversarial influence. However, direction-
based methods still outperform magnitude-based ones, maintaining
higher F1-scores (down to 0.4) despite the noise from widespread
structural changes.
Performance Evaluation onReal-World and SyntheticDatasets.
Building on the insights from the SNR analysis, we extended our
evaluation to a broader set of real-world and synthetic datasets to
assess the generalizability of our findings. Here we only show the
result for 𝐼𝑁 𝐹 − 𝑀𝐴𝐺∗, LTA∗, and IIA∗ for space limitation and

for they outperform the original version. For synthetic graphs, we
used a feature change rate of 0.02, a structural change rate of 0.2
and fixed the perturbation rate at 1. These values align with the
controlled conditions in the SNR analysis, providing a consistent
baseline for evaluating attack performance. Figure 6 shows the
F1-scores. Other metrics can be found in Appendix B.6.

In real-world datasets, where only structural changes occur,
𝐼𝑁 𝐹 −𝑀𝐴𝐺∗, LTA∗, and IIA∗ appear to perform well, consistent
with the SNR analysis where static node features support strong
attack performance. However, this performance is misleading as it
lacks stability. To investigate further, we evaluated attack perfor-
mance exclusively on nodes undergoing structural changes. The
results, shown in Figure 7, reveal poor performance for magnitude-
based attacks. In contrast, 𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗ remains robust, effectively
handling structural noise. The full result can be found in Appen-
dix B.7. For synthetic graphs, 𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗ continues to perform
robustly across all models, demonstrating adaptability and effec-
tiveness even in highly dynamic environments. Magnitude-based
attacks, however, fail under these conditions, which is consistent
with the SNR analysis.

In conclusion, the effectiveness of magnitude-based attacks heav-
ily depends on whether target nodes are affected by natural graph
changes. Nodes unaffected by changes maintain performance com-
parable to static scenarios. However, for nodes undergoing changes,
magnitude-based attacks fail, highlighting their lack of robustness.
Adversaries would need prior knowledge of target node stability
to achieve consistent results. In contrast, direction-based attacks
remain reliable and effective, showcasing resilience under evolving
graph conditions.

Table 3: Performance of 𝐼𝑁 𝐹–𝑀𝐴𝐺 (static scenario) and
𝐼𝑁 𝐹–𝐷𝐼𝑅∗ (dynamic scenario) with different threshold se-
lections on the LastFM dataset.

Threshold Model Static Dynamic

Recall Precision Recall Precision

In-graph

GCN 0.65 0.99 0.67 0.63
SAGE 0.68 0.99 0.66 0.54
GAT 0.68 0.94 0.67 0.54
GIN 0.70 0.99 0.65 0.80

Knowledge

GCN 0.76 0.96 0.67 0.88
SAGE 0.96 0.90 0.66 0.82
GAT 0.92 0.88 0.57 0.74
GIN 0.86 0.92 0.66 0.92

4.4 Threshold Selection Methods
Table 3 presents attack performance using in-graph and knowledge-
based thresholds for both the static (𝐼𝑁 𝐹–𝑀𝐴𝐺) and dynamic (𝐼𝑁 𝐹–
𝐷𝐼𝑅*) scenarios on the LastFM dataset.

We stress that these two thresholding approaches rely on differ-
ent assumptions about the adversary’s knowledge, so the goal is
not to rank or directly compare them, but rather to demonstrate
that each can yield a usable threshold for an attack. For in-graph
thresholds, we assume the adversary knows scores for 20% of the
target’s connected nodes. By contrast, knowledge-based thresholds
select an optimal threshold derived from model-output similarity to
the target node, leveraging the idea that GNN embeddings encode
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Figure 5: Signal-to-Noise Ratio analysis on GCN with the LastFM Dataset.
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Figure 6: F1-score of attacks in dynamic scenarios.
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Figure 7: F1-score of attacks in dynamic scenarios with neg-
ative samples constrained to nodes undergoing structural
changes on GCN.

structural properties, so nodes with similar outputs often share
comparable local structures—and thus require similar thresholds.

As expected, static scenarios yield strongermetrics, aligningwith
previous findings that static graphs are generally more vulnerable
to attacks. In dynamic scenarios, however, the attack shows lower
performance due to the inherent challenges in handling evolving
graph structures. These observations underscore that an effective
attack must not only reliably extract information from the model
but also employ a robust method for threshold selection.

Additional experiments and analyses—covering an even more
constrained scenario with no extra knowledge for in-graph thresh-
olding and results on the Twitch/EN dataset—are provided in Ap-
pendix B.8. Future work includes refining threshold selection tech-
niques to handle a wider range of adversarial assumptions and
threat models.

5 Evaluation Against Defenses
To assess the resilience of our attacks, we implement two cutting-
edge defense approaches based onDifferential Privacy (DP), EdgeRand
[43] and LapGraph [43], which introduce noise into the graph to
obscure its actual structure. These methods are well-suited for gen-
eral GNN architectures, unlike defenses such as GAP and LPGNet
[20, 34], which require specific model designs, or Grid [23], which
targets the training phase rather than inference-time attacks like
ours. Specifically, EdgeRand disrupts the adjacency matrix by ran-
domly flipping its entries based on a Bernoulli distribution, while
LapGraph employs the Laplacian mechanism to modify the entire
adjacency matrix, ensuring that the graph’s overall density is pre-
served. For LapGraph, we varied the privacy budget 𝜖 between 2
and 10. For EdgeRand, the budget ranged from 5 to 10, as using
a budget below 5 resulted in out-of-memory issues. We trained
various models on these perturbed graphs and evaluated the effec-
tiveness of our attack against them. Note that particular attention
should be given to the attack performance when the privacy budget
is 8 or higher, as models in this range outperform an MLP that relies
solely on node features for predictions. The model utility and more
discussion about the defense can be found in Appendix B.9.
Static Graph Scenario. Figure 8 presents a comparative evalu-
ation of our 𝐼𝑁 𝐹 − 𝑀𝐴𝐺 attack and LTA, for a range of privacy
budgets on the LastFM Dataset. The results highlight the difficulty
in balancing model utility and privacy. When the privacy budget
is low (𝜖 < 6), attack performance is poor. However, at higher
privacy budgets (𝜖 ≥ 8), the models’ utility improves, but so does
the effectiveness of attacks, indicating a weak defense. LTA and
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Figure 8: Evaluating 𝐼𝑁 𝐹–𝑀𝐴𝐺 attack performance on LastFM dataset using EdgeRand and LapGraph defenses.
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Figure 9: F1 score of 𝐼𝑁 𝐹–𝐷𝐼𝑅∗ against DP on LastFM.

our attacks operate under different threat models. Note that the de-
fense adds noise to the message passing in the graph, which affects
each attack differently. Our method relies on indirect analysis with
longer node distances, leading to more accumulated noise but still
demonstrating robust performance. In contrast, LTA’s analysis is
typically two hops shorter, so it experiences less accumulated noise.
When the model is still sufficiently accurate (i.e., the defense uses a
higher privacy budget), both methods exhibit similar performance,
underlining the robustness of our approach.
Dynamic Graph Scenario. In this setup, we apply DP to the
latest snapshot. The impact of these DP-based defenses on the
LastFM dataset is detailed in Figure 9. The result indicates that our
𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗ attack remains effective in scenarios where the model
is operational, especially when the privacy budget exceeds 8.
Possible Defense.We propose integrating defenses into the mes-
sage aggregation process to counter adversarial manipulations. As
shown in Section A.6, a simple node sampling mechanism can
disable magnitude-based attacks and significantly reduce the effec-
tiveness of direction-based attacks by ignoring adversarial nodes. In-
dustry practices, such as selective message aggregation [7], demon-
strate that full aggregation is unnecessary, enabling security en-
hancements without sacrificing utility. The approach dynamically
adjusts aggregation using adaptive filtering and anomaly detection
to mitigate adversarial influence. Further details and defense strate-
gies, including a discussion on combining graph manipulation and
node sampling for defense, are provided in Appendix A.7.

6 Discussion
Scalability The scalability of our approach can be analyzed in two
dimensions:

Graph Expansion Scalability: Our method introduces only three
auxiliary nodes, which are reusable across different attacks. The

number of added edges scales as 𝑂 (3𝑛), where 𝑛 represents the
number of target node pairs.

Computational Scalability: The attack requires 𝑂 (𝑛) queries to
obtain model outputs, followed by statistical analysis.
Perturbation’s Impact onModel Utility.The perturbations intro-
duced in the graph influence the messages propagated to neighbor-
ing nodes, which can degrade the model’s performance. Figure 10
illustrates the effect of perturbations on model utility. As expected,
1-hop neighbors suffer the greatest decline in accuracy, as they
directly absorb the modified information. 2-hop nodes experience
a moderate degradation in accuracy, while 3-hop and 4-hop nodes
remain largely unaffected. These findings align with our theoretical
expectations—nodes closer to the perturbation source are more vul-
nerable to its effects. Higher influence rates worsen performance
as randomly added auxiliary nodes disrupt the graph structure.

Figure 10: Impact of perturbation on neighboring nodes’ per-
formance. Accuracy degradation is highest for 1-hop nodes.
Results are averaged over all nodes in the LastFM dataset
using GCN.

Imperceptibility of Adversary’s Actions. Our attack involves
perturbing the graph during the inference phase, making stealth a
critical aspect. We evaluate imperceptibility across two dimensions:
changes to nodes/edges and alterations to node features. Full results
and detailed discussion are in Appendix B.10.
Node/Edge Imperceptibility. Traditional graph attack methods
rely on fixed perturbation budgets to maintain stealth, which is
insufficient in dynamic graphs. Using model explanation techniques
like GNNExplainer [53] and PGExplainer [24], we find that adver-
sarially inserted nodes rarely rank among the top influencers for
target nodes, demonstrating their stealth.
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Feature Change Imperceptibility.Our experiments reveal that ef-
fective attacks often require perturbations exceeding natural graph
evolution rates. Distributing changes across multiple nodes could
improve concealment, a direction we reserve for future work.
Advanced Influence Generation Method. One of our future
directions is to develop methods for generating distinct patterns
that achieve strong performance at lower SNRs. Preliminary exper-
iments reveal that in GAT models, auxiliary nodes with features
similar to the target node receive higher weights, enhancing their
influence (see Appendix A.1).
Impact of Node Sampling on Attacks. Node sampling is imple-
mented in industrial GNN applications [7, 30] to improve scalability
and efficiency. Thus we explore how node sampling impacts our
attacks. Magnitude-based attacks fail when the adversary’s nodes
are not consistently sampled, as their influence cannot propagate
effectively. Direction-based attacks show greater robustness across
scenarios but degrade at very low sampling rates due to limited
shared information. Introducing unpredictable sampling or exclud-
ing adversarial nodes can reduce attack effectiveness, though sys-
tems remain vulnerable if adversaries manipulate the sampling
process. The result can be found in Appendix A.6
Number of Queries. We evaluated our adapted attacks (𝐼𝑁 𝐹 −
𝑀𝐴𝐺∗ and 𝐼𝑁 𝐹 −𝐷𝐼𝑅∗) by varying the number of queries from 1 to
15. For magnitude-based attacks, increasing the number of queries
does not improve performance; instead, it amplifies noise, further
degrading results. In contrast, 𝐼𝑁 𝐹 −𝐷𝐼𝑅∗ outperforms magnitude-
based methods even with one query, with performance improving
as queries increase, leveraging richer informational patterns. Full
results are in Appendix B.11.
Hard-label scenario. Our attack methodology can be extended to
the hard-label scenario by analyzing the magnitude or pattern of
perturbations required to decisively change a node’s output.
Limitation. Our threat model is not universally applicable to all
scenarios; however, it represents a realistic and common setting
where participants in a graph can act imperceptibly as benign users
while performing attacks [7]. This aligns with practical cases in
dynamic graphs, where adversaries can exploit the system’s natural
interactions to manipulate connections or features. By focusing
on this scenario, our work highlights vulnerabilities that can arise
in widely used graph-based systems, ensuring the threat model
remains both practical and relevant.

7 Related Work
GNN attacks are broadly categorized into adversarial [6, 8, 25, 28,
39, 47, 59] and privacy attacks [9, 14, 15, 27, 42, 43, 57]. Adversarial
attacks are designed to undermine the accuracy of GNN classifica-
tions, typically through poisoning a portion of the training data or
executing evasion attacks that alter the graph during the inference
phase. Privacy attacks, however, focus on revealing confidential
graph information. These attacks vary in scope, including graph-
level attacks which seek to infer properties or even reconstruct
entire graphs [9, 42, 57, 60], node/edge level attacks which target
the disclosure of specific nodes or edges [13–15, 27, 43, 45], and
model level attacks that focus on the underlying model’s character-
istics [36, 62]. Our research is focused explicitly on edge inference
attacks, reviewing relevant literature within this area.

Edge Inference Attacks. He et al. [14] developed an attack to de-
duce connections in training graphs of transductive GNNs based on
the premise that connected nodes exhibit similar features and out-
put probabilities. However, their approach lacks robustness across
various datasets due to specific assumptions about the dataset char-
acteristics. Meanwhile, Wu et al. [43] introduced the LinkTeller
Attack (LTA), which explores how changes to a node’s features
impact its neighbors’ output probabilities to infer all the edges in
a subgraph. LTA fails to generalize to GNNs with different mes-
sage aggregation mechanisms, showing strong performance against
GCNs but fails against GATs. Moreover, LTA operates under a sce-
nario where the adversary has complete control over all nodes in
the graph, including access to all predictions and the ability to mod-
ify node features, which differs from our setup. Meng et al. [27]
introduced the Infiltration Inference Attack (IIA), which shares a
similar intuition as LTA. However, while it proposes a threat model
that accommodates a dynamic graph, allowing the adversary to
change the graph, the attack’s effectiveness diminishes in scenarios
where the graph is actively modified by others, highlighting its
limitations in truly dynamic environments. Recent works [13, 45]
build on these approaches but inherit similar limitations.
Privacy Preservation in GNN Models. Various strategies have
been introduced to protect the privacy of GNN models, among
which Differential Privacy (DP) is notably prevalent. Originating
from the foundational work of Dwork et al. [10], DP provides a
systematic method to uphold privacy, particularly pertinent to
machine learning models. It asserts that the outputs of a model
when trained on adjacent datasets (those diverging by a single data
point at most), should be nearly identical. Typically, DP is achieved
by adding calibrated noise to the result of a function computed on
the data. Various forms of DP have been proposed to extend it to a
graph context. Two principal methods to embed DP within GNN
for edge privacy are identified: Firstly, incorporating DP noise into
the graph [23, 43], and secondly, introducing DP noise to internal
layers of the GNN model [20, 34].

8 Conclusion
This paper introduces a novel threat model and attacks for edge
inference in GNNs, showing that an adversary with black-box ac-
cess can infer a node’s neighbors without direct graph access. Our
approach addresses two major limitations of prior work: lack of
generalization across GNN architectures and ineffectiveness in dy-
namic graph scenarios. By leveraging directional patterns in mes-
sage aggregation, our method remains robust against noise and
graph evolution. Additionally, we reformulate the problem at a
finer granularity, directly determining connections between nodes.
Extensive evaluations on nine datasets and four GNN architectures
validate its effectiveness, highlighting critical GNN vulnerabilities
in evolving environments.

Acknowledgments
This research received no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors.

References
[1] 1996. Health Insurance Portability and Accountability Act (HIPAA) of 1996,

Privacy Rule. U.S. Department of Health and Human Services. https://www.hhs.

73

https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/index.html


Proceedings on Privacy Enhancing Technologies 2025(3) Zeyu Song, Ehsanul Kabir, and Shagufta Mehnaz

gov/hipaa/for-professionals/privacy/index.html
[2] Chirag Agarwal, Marinka Zitnik, and Himabindu Lakkaraju. 2022. Probing gnn

explainers: A rigorous theoretical and empirical analysis of gnn explanation
methods. In International Conference on Artificial Intelligence and Statistics. PMLR,
8969–8996.

[3] David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton
Fookes, and Lars Petersson. 2021. Graph-based deep learning for medical diag-
nosis and analysis: past, present and future. Sensors 21, 14 (2021), 4758.

[4] Akash Anil, Víctor Gutiérrez-Basulto, Yazmín Ibañéz-García, and Steven Schock-
aert. 2023. Inductive Knowledge Graph Completion with GNNs and Rules: An
Analysis. arXiv:2308.07942 [cs.AI]

[5] Tristan Bilot, Nour El Madhoun, Khaldoun Al Agha, and Anis Zouaoui. 2023.
Graph Neural Networks for Intrusion Detection: A Survey. IEEE Access (2023).

[6] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial attacks on
node embeddings via graph poisoning. In International Conference on Machine
Learning. PMLR, 695–704.

[7] Fedor Borisyuk, Shihai He, YunboOuyang,Morteza Ramezani, PengDu, Xiaochen
Hou, Chengming Jiang, Nitin Pasumarthy, Priya Bannur, Birjodh Tiwana, et al.
2024. Lignn: Graph neural networks at linkedin. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 4793–4803.

[8] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2018. Adversarial attack on graph structured data. In International conference on
machine learning. PMLR, 1115–1124.

[9] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. 2020. Quantifying Privacy
Leakage in Graph Embedding. In MobiQuitous 2020 - 17th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services.
ACM. https://doi.org/10.1145/3448891.3448939

[10] Cynthia Dwork. 2006. Differential privacy. In International colloquium on au-
tomata, languages, and programming. Springer, 1–12.

[11] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[13] Haoyu He, Isaiah J King, and H Howie Huang. 2024. Maui: Black-Box Edge
Privacy Attack on Graph Neural Networks. Proceedings on Privacy Enhancing
Technologies (2024).

[14] Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhenqiang Gong, and Yang Zhang.
2021. Stealing Links fromGraph Neural Networks. InUSENIX Security Symposium
(USENIX Security). USENIX.

[15] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. 2021.
Node-Level Membership Inference Attacks Against Graph Neural Networks.
arXiv:2102.05429 [cs.CR]

[16] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua
Hu, Emanuele Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau,
and Reihaneh Rabbany. 2023. Temporal graph benchmark for machine learning
on temporal graphs. Advances in Neural Information Processing Systems (2023).

[17] Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang,
Jiarong Xu, Lei Chen, and Michalis Vazirgiannis. 2022. Dgraph: A large-scale
financial dataset for graph anomaly detection. Advances in Neural Information
Processing Systems 35 (2022), 22765–22777.

[18] Anees Kazi, Soroush Farghadani, Iman Aganj, and Nassir Navab. 2023. Ia-gcn:
Interpretable attention based graph convolutional network for disease prediction.
In International Workshop on Machine Learning in Medical Imaging. Springer,
382–392.

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[20] Aashish Kolluri, Teodora Baluta, Bryan Hooi, and Prateek Saxena. 2022. LPGNet:
Link Private Graph Networks for Node Classification. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. 1813–1827.

[21] Arun Kumar. 2023. Imen Grida Ben Yahya and Charles Ivie and Ross McWalter
and Soji Adeshina. https://aws.amazon.com/blogs/industries/transforming-
network-management-graph-gnn-and-generative-ai-on-aws/

[22] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.
In International conference on machine learning. PMLR, 3734–3743.

[23] Jiadong Lou, Xu Yuan, Rui Zhang, Xingliang Yuan, Neil Gong, and Nian-Feng
Tzeng. 2024. GRID: Protecting TrainingGraph from Link StealingAttacks onGNN
Models. In 2025 IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 59–59.

[24] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. 2020. Parameterized explainer for graph neural network.
Advances in neural information processing systems 33 (2020), 19620–19631.

[25] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Towards more practical
adversarial attacks on graph neural networks. Advances in neural information
processing systems 33 (2020), 4756–4766.

[26] Chengsheng Mao, Liang Yao, and Yuan Luo. 2022. MedGCN: Medication recom-
mendation and lab test imputation via graph convolutional networks. Journal of
Biomedical Informatics 127 (2022), 104000.

[27] Lingshuo Meng, Yijie Bai, Yanjiao Chen, Yutong Hu, Wenyuan Xu, and Haiqin
Weng. 2023. Devil in Disguise: Breaching Graph Neural Networks Privacy
through Infiltration. In Proceedings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security. 1153–1167.

[28] Jiaming Mu, Binghui Wang, Qi Li, Kun Sun, Mingwei Xu, and Zhuotao Liu.
2021. A hard label black-box adversarial attack against graph neural networks. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 108–125.

[29] Susie Xi Rao, Shuai Zhang, Zhichao Han, Zitao Zhang, Wei Min, Zhiyao Chen,
Yinan Shan, Yang Zhao, and Ce Zhang. 2021. xFraud. Proceedings of the VLDB
Endowment 15, 3 (nov 2021), 427–436. https://doi.org/10.14778/3494124.3494128

[30] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro
Dobles, Matthias Fey, Jan E Lenssen, Yiwen Yuan, Zecheng Zhang, et al. 2024.
RelBench: A Benchmark for Deep Learning on Relational Databases. arXiv
preprint arXiv:2407.20060 (2024).

[31] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:
Towards Deep Graph Convolutional Networks on Node Classification. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=Hkx1qkrKPr

[32] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed
node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.

[33] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic functions on graphs:
Birds of a feather, from statistical descriptors to parametric models. In Proceedings
of the 29th ACM international conference on information & knowledge management.
1325–1334.

[34] Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-
Perez. 2023. GAP: Differentially Private GraphNeural Networkswith Aggregation
Perturbation. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX
Association, Anaheim, CA.

[35] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2021. Interpreting
Graph Neural Networks for {NLP} With Differentiable Edge Masking. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
WznmQa42ZAx

[36] Yun Shen, Xinlei He, Yufei Han, and Yang Zhang. 2022. Model stealing attacks
against inductive graph neural networks. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 1175–1192.

[37] Ivan Sukharev, Valentina Shumovskaia, Kirill Fedyanin, Maxim Panov, and
Dmitry Berestnev. 2020. EWS-GCN: Edge Weight-Shared Graph Convolutional
Network for Transactional Banking Data. arXiv:2009.14588 [stat.ML]

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Con-
ference on Learning Representations (2018). https://openreview.net/forum?id=
rJXMpikCZ

[39] Binghui Wang, Meng Pang, and Yun Dong. 2023. Turning strengths into weak-
nesses: A certified robustness inspired attack framework against graph neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 16394–16403.

[40] Daixin Wang, Zhiqiang Zhang, Jun Zhou, Peng Cui, Jingli Fang, Quanhui Jia,
Yanming Fang, and Yuan Qi. 2021. Temporal-aware graph neural network for
credit risk prediction. In Proceedings of the 2021 SIAM International Conference on
Data Mining (SDM). SIAM, 702–710.

[41] JianianWang, Sheng Zhang, Yanghua Xiao, and Rui Song. 2021. A review on graph
neural network methods in financial applications. arXiv preprint arXiv:2111.15367
(2021).

[42] Xiuling Wang and Wendy Hui Wang. 2022. Group property inference attacks
against graph neural networks. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. 2871–2884.

[43] Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. 2022. Linkteller: Recovering private
edges from graph neural networks via influence analysis. In 2022 IEEE Symposium
on Security and Privacy (SP). IEEE, 2005–2024.

[44] Tong Wu, Yunlong Wang, Yue Wang, Emily Zhao, and Yilian Yuan. 2021. Lever-
aging graph-based hierarchical medical entity embedding for healthcare applica-
tions. Scientific reports 11, 1 (2021), 5858.

[45] Yixin Wu, Xinlei He, Pascal Berrang, Mathias Humbert, Michael Backes,
Neil Zhenqiang Gong, and Yang Zhang. 2024. Link Stealing Attacks Against
Inductive Graph Neural Networks. arXiv preprint arXiv:2405.05784 (2024).

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[47] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
30th USENIX Security Symposium (USENIX Security 21). 1523–1540.

[48] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2022.
Self-supervised learning of graph neural networks: A unified review. IEEE trans-
actions on pattern analysis and machine intelligence 45, 2 (2022), 2412–2429.

74

https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
https://arxiv.org/abs/2308.07942
https://doi.org/10.1145/3448891.3448939
https://arxiv.org/abs/2102.05429
https://aws.amazon.com/blogs/industries/transforming-network-management-graph-gnn-and-generative-ai-on-aws/
https://aws.amazon.com/blogs/industries/transforming-network-management-graph-gnn-and-generative-ai-on-aws/
https://doi.org/10.14778/3494124.3494128
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=WznmQa42ZAx
https://openreview.net/forum?id=WznmQa42ZAx
https://arxiv.org/abs/2009.14588
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ


GNNBleed: Inference Attacks to Unveil Private Edges in Graphs with Realistic Access to GNN Models Proceedings on Privacy Enhancing Technologies 2025(3)

[49] Bingbing Xu, Huawei Shen, Bingjie Sun, Rong An, Qi Cao, and Xueqi Cheng.
2021. Towards consumer loan fraud detection: Graph neural networks with
role-constrained conditional random field. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4537–4545.

[50] Jiacen Xu, Xiaokui Shu, and Zhou Li. 2023. Understanding and Bridging the Gap
Between Unsupervised Network Representation Learning and Security Analytics.
In 2024 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
12–12.

[51] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[52] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International conference on machine learn-
ing. PMLR, 5453–5462.

[53] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating explanations for graph neural networks. Ad-
vances in neural information processing systems 32 (2019).

[54] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. Advances in neural information processing systems 31 (2018).

[55] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning Method.
In International Conference on Learning Representations. https://openreview.net/
forum?id=BJe8pkHFwS

[56] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in neural information processing systems 31 (2018).

[57] Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. 2022.
Inference Attacks Against Graph Neural Networks. In 31st USENIX Security Sym-
posium (USENIX Security 22). USENIXAssociation, Boston, MA, 4543–4560. https:
//www.usenix.org/conference/usenixsecurity22/presentation/zhang-zhikun

[58] Ziwei Zhang, Peng Cui, andWenwuZhu. 2020. Deep learning on graphs: A survey.
IEEE Transactions on Knowledge and Data Engineering 34, 1 (2020), 249–270.

[59] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2021. Back-
door attacks to graph neural networks. In Proceedings of the 26th ACM Symposium
on Access Control Models and Technologies. 15–26.

[60] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu,
and Enhong Chen. 2021. GraphMI: Extracting Private Graph Data from Graph
Neural Networks. In Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21. 3749–3755. https://doi.org/10.24963/ijcai.2021/516
Main Track.

[61] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1 (2020), 57–81.

[62] Yuanxin Zhuang, Chuan Shi, Mengmei Zhang, Jinghui Chen, Lingjuan Lyu, Pan
Zhou, and Lichao Sun. 2024. Unveiling the Secrets without Data: Can Graph
Neural Networks Be Exploited through Data-Free Model Extraction Attacks?
(2024).

Appendix
A Additional Information
A.1 Node Feature and Influence Generation
Auxiliary nodes play two critical roles in our experiments: 1. They
determine the type of influence generated since influence is cre-
ated by reweighting node features, with different initial features
representing various kinds of influence. 2. We analyze the model’s
output for the auxiliary node; variations in node features can lead
to distinct reactions to the same influence.

We consider five distinct strategies to set the features of auxiliary
nodes:

✦ Random: The features are picked randomly.
✦ Target Node Duplication: Same as the target node.
✦ Mean: Average of all nodes’ features.
✦ Typical: The features of the node having the shortest Euclidean

distance to the mean are adopted.
✦ Median: Median of all nodes’ features.
In the static scenario, the results of 𝐼𝑁 𝐹 -𝑀𝐴𝐺 with various

auxiliary node feature selections are presented in Table 7. Due

to space constraints, we only display the AUC score for the GAT
model, as the outcomes across different models are consistent. The
results indicate that different node feature selection strategies do
not significantly affect the attack’s performance.

In the dynamic scenario, which is more challenging, we further
explored the different combinations of auxiliary node features to
explore possible ways to improve the attack. We conducted experi-
ments assuming the adversary knows the features of the target and
candidate nodes. We tested three different strategies for setting the
features of the auxiliary nodes: 1. SAME, where all inserted nodes
share identical features; 2. DIFF1, where the anchor node and the
node linked to the target share features; and 3. DIFF2, where the an-
chor node and the node linked to the candidate share features. The
results indicate that the 𝐼𝑁 𝐹–𝐷𝐼𝑅∗ performs consistently across
these different configurations. We have not included detailed results
due to space constraints.

Influence Generation. We tested various influence generation
methods as mentioned in the main paper. The results indicate that
while influence generation has a minimal impact in static scenar-
ios, it shows potential in dynamic environments. This outcome
aligns with our methodological focus on exploring how influence
traverses different candidate nodes. Essentially, for our analysis, we
only require an influence that can lead to changes in node output
probabilities. The specific method of generating this influence and
its characteristics are not crucial. Whether the magnitude of the
source influence is 1 or 10,000 does not affect the relative ranking of
LPS calculated for each candidate node as all the candidate nodes are
under the same influence, and thus does not impact the inference
results. In dynamic scenarios, where external noise complicates
the detection of adversarial influence, the key advantage of a spe-
cific influence generation method lies in its ability to distinguish
the adversary’s influence from random noise. Crafting a strategy
that produces detectable output changes, which are noticeable to
the adversary but remain undetected by the model owner, poses
a significant challenge. This challenge is vital for improving the
effectiveness of attacks in environments where random fluctuations
may mask malicious activities. Exploring more effective ways to
generate influence will be the focus of our future work.

A.2 Intuition
Figure 11a illustrates as distance increases, the similarity of change
decreases. Figure 11b illustrates that as distance increases, the simi-
larity of change decreases.

A.3 Choice of 4-layer GNN architecture
Our choice for a 4-layer architecture stems from the pivotal role the
number of layers, represented as l, plays in GNNs. The parameter l
sets the cap for how many layers of deep information can traverse
within the GNN. Consequently, any alterations to the feature of a
node will resonate across its l-hop neighbors. To illustrate, consider
two nodes, 𝑣 and 𝑢, with an edge in between. Our attacks introduce
two new nodes, 𝑎𝑡 and 𝑎𝑐 , linked to 𝑣 and 𝑢, respectively, forming
edges (𝑎𝑡 , 𝑣) and (𝑎𝑐 , 𝑢), resulting in 𝑎𝑡 and 𝑎𝑐 ’s distance to be 3,
as illustrated in Figure 2b. This suggests that our influence attacks
would be most effective when the number of layers is 3, as in this
case, the message change would happen between 𝑎𝑡 and 𝑎𝑐 only
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(a) Magnitude of change de-
creases with distance.

(b) Closer nodes exhibit higher
similarity in change.

Figure 11: Impact of distance on perturbation effects in GCN
(LastFM dataset). We perturb each node in the graph and
measure the resulting changes in its neighbors at different
hop distances. The results are averaged over all nodes, using
each as an influence source. The findings indicate that both
the similarity and magnitude of change can be used to infer
the distance between nodes.

when the candidate node is connected to the target node. When the
number of layers of the model increases, our attack would show
degradation in performance as the message would change between
𝑎𝑡 and 𝑎𝑐 when the target node pair is not connected. To main-
tain a balanced evaluation, we have utilized GNNs with 4 layers.
Additionally, using four-layer models complicates the attack in dy-
namic scenarios, as each node can aggregate information frommore
nodes. This increased connectivity introduces more noise, further
challenging the attack’s effectiveness. Previous attacks [14, 27, 43],
primarily using 2-layer and 3-layer GNNs to evaluate their attack.
However, this choice potentially oversimplifies their attack scenario.
In the case of [27] which uses 2-layer GNNs for the experiment, the
nodes analyzed for influence are spaced at least three hops apart,
which mirrors the setup in our work. However, utilizing a 2-layer
model restricts the flow of information, making it impossible for
data to propagate from one node to another if they are three hops
away. Consequently, the influence score between any two such
nodes would always be zero. We lack access to their code, but from
a theoretical standpoint, this approach appears problematic.

We also have the result of our attack’s performance on 3-layer
GNN in Figure 12. Overall attacks show similar performance on
3-layer and 4-layer GNNs.

A.4 Test Set Construction
In this work, we primarily evaluate attack performance using 2-hop
node pairs as negative samples. This choice is deliberate: success in
this challenging setup can extend to more relaxed scenarios while
including distant negative samples (beyond the GNN’s message-
passing range) risks inflating performance metrics artificially. In
static scenarios, distant negative samples show no observable in-
fluence changes, making them trivially easy to distinguish. As a
result, random sampling hides the true difficulty of the task. For
example, if the test set includes both randomly sampled negatives
and 2-hop pairs, an attack labeling all 2-hop pairs as connected
could still achieve high metrics because random samples contribute
little to the challenge.

Why Success in This Setup Extends to More Relaxed Setups.
Success in distinguishing directly connected nodes from 2-hop un-
connected nodes demonstrates attack robustness under challenging
conditions. This generalizes to more relaxed setups because:

•Weaker Influence for Distant Nodes: In relaxed setups, negative
samples farther from the target node receive weaker influence,
creating a clearer distinction between connected and unconnected
nodes.

• Simpler Structural Patterns: Distant negative samples often
lack shared neighbors or structural overlap with the target node,
further reducing the similarity in influence scores and simplifying
separation.

• Real-World Relevance: Many real-world datasets inherently
include distant nodes as negatives. Success in distinguishing close-
but-unconnected nodes directly validates the attack’s ability to
handle practical scenarios and less challenging alternatives.

By focusing on 2-hop negatives, our evaluation rigorously ad-
dresses the core challenge of link inference: distinguishing mean-
ingful connections from topologically similar alternatives. This
approach ensures that demonstrated robustness in this setup trans-
lates to confidence in the attack’s generalizability to broader and
less stringent scenarios.

A.5 Dataset
We experiment with the following datasets:
Twitch contains six separate graphs, each reflecting data from a
distinct country. Users represent nodes, while edges represent fol-
lower connections. Node features correspond to the embeddings
of games played by users. The dimensions of the features remain
the same across different graphs. The task is binary classification
to predict whether a user streams mature content.
Flickr is an image relationship dataset where each node represents
an image. The features of each node are characterized by bag-of-
words models derived from their descriptions, while the edges
between them indicate common attributes shared by the images.
The task is to classify the images into one of the 7 classes.
LastFM is a social network graph where nodes symbolize LastFM
users from Asia, and the edges represent friendships between these
users. The node features are extracted based on the artists liked by
the users. The task in this dataset is to predict the users’ nationality.
tgbl-flight This dataset is a crowd-sourced international flight net-
work from 2019 to 2022. The airports are modeled as nodes, while
the edges are flights between airports on a given day. The task is to
predict whether a flight will happen between two specific airports
on a future date.
Dgraph-fin Dgraph-fin dataset source from Finvolution users. The
node feature derived from the basic personal profile is a vector with
17 dimensions. Each dimension of the node attribute corresponds
to a distinct element of the personal profile, such as age and gender.
The edges between nodes represent emergency contact records.
The task of this dataset is to find malicious users.

For the Twitch dataset, we train the GNN model on the Twitch-
ES dataset and then apply it to the graphs of the other five countries.
For both the Flickr and LastFM datasets, we randomly partition the
data into training, validation, and test sets using ratios of 70%, 15%,
and 15%, respectively. The model accesses the subgraph composed
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Figure 12: F1-score of attacks in dynamic scenarios on 3-layer GNNs.

of only the training nodes during training. During testing and
validation, predictions are made based on the entirety of the graph.
For the tgbl-flight and Dgraph-fin datasets, we first preprocess the
data from its original format into a series of weekly snapshots.
We then select the 50th snapshot to serve as the base graph and
apply the same settings used for static graphs to train the model.
We generated labels based on the traffic volume for the tgbl-flight
dataset, which is designed for link prediction tasks. Nodes with
traffic in the top 50% are labeled as ’busy’, while the remaining
nodes are labeled as ’not busy’. We provide the dataset statistics in
Table 4.

Dataset Nodes Edges Features Classes
Twitch-DE 9,498 315,774 128 2
Twitch-EN 7,126 77,774 128 2
Twitch-ES 4,648 123,412 128 2
Twitch-FR 6,551 231,883 128 2
Twitch-PT 1,912 64,510 128 2
Twitch-RU 4,385 78,993 128 2

Flickr 89,250 899,756 500 7
LastFM 7,624 55,612 128 18

tgbl-flight 18,143 67,169,570 20 2
Dgraph-fin 3,700,550 4,300,999 17 2

Table 4: Dataset statistics

A.6 Impact of Node Sampling on Attacks.
To improve both accuracy and efficiency, many modern GNNs em-
ploy node sampling techniques, enabling each node to aggregate
information from only a subset of its neighbors, rather than all
of them. In industrial applications, methods such as Personalized
PageRank [7] and time-based sampling [30] are commonly used.
This sampling introduces a new dynamic for adversaries: their
nodes may or may not be sampled. In this paper, we explore the
impact of node sampling on attack performance. We investigate
three key scenarios: (1) when the adversary’s nodes are always
included in the sample, (2) when they are excluded, and (3) when
the adversary’s nodes may or may not be included. We vary the
sampling rate, defined as the proportion of neighbors sampled, be-
tween 10% and 50%. By examining these cases, our analysis reveals
how different sampling strategies can either enhance or mitigate

adversarial influence in GNNs, providing insights into the vulner-
abilities and robustness of GNNs under varying node sampling
conditions.

Here we evaluate the attacks in dynamic scenarios, as in static
scenarios the adversary is the sole agent of influence, thus if their
nodes are not selected none of the attacks would work as the model
output would not change. For simplicity, we use the single version of
the attack for evaluation. In Figure 13 we show the result of attacks
on GraphSage with the LastFM dataset. The result demonstrates
that all magnitude-based attacks fail when the adversary’s node is
not sampled for message aggregation. This outcome is expected, as
these attacks rely on the adversary’s influence to alter the model’s
inference process. When this influence is absent, the attack natu-
rally becomes ineffective. Conversely, when the adversary’s node is
included in the sample, we observe improved attack performance at
lower sampling rates. This is because lower sampling rates reduce
the inclusion of external noise, allowing the adversary’s influence
to become more pronounced. However, in scenario (3), where nodes
are sampled randomly, the attack remains ineffective. This is be-
cause the success of the attack hinges on the adversary’s node being
sampled consistently across two consecutive rounds—something
the adversary cannot predict or control.

In summary, for magnitude-based attacks to succeed, the adver-
sary’s node must be consistently sampled during message aggrega-
tion, and if the sampling mechanism is explored by the adversary,
the system would be more vulnerable.

In contrast, direction-based attacks demonstrate greater robust-
ness across all scenarios. When the nodes are sampled, the attack
performs better at lower sampling rates due to reduced external
noise. In scenarios (2) and (3), where the adversary’s node is either
excluded from sampling or sampled randomly, the attack perfor-
mance remains strong. This is because direction-based attacks can
capture the natural evolution and these scenarios are close to our
𝐸𝑉𝑂 attack where no adversary influence is involved. However,
as the sampling rate decreases further in scenarios (2) and (3), at-
tack performance degrades. With lower sampling rates, each node
aggregates information from only a small number of neighbors, re-
ducing the likelihood that the target node pairs receive information
from the same set of sources, leading to divergence in their model
outputs.
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In summary, direction-based attacks show promise when node
sampling occurs, but excluding the adversary’s node from mes-
sage aggregation can still degrade their effectiveness. If adversaries
can manipulate the sampling process, they can enhance their at-
tack performance, particularly when their nodes are consistently
sampled.

A.7 Possible Defense
A.7.1 Combine node sampling and graph perturbation as

defense

Why Perturbations and Stochastic Sampling Share the Same Intu-
ition. Graph perturbations (e.g., adding/removing edges, modi-
fying node features) and stochastic node sampling (randomly
selecting neighbors during training) both revolve around the same
principle:

They alter or randomize the information flow that each
node receives, preventing over-reliance on specific neigh-
bors or edges.

Graph Perturbations.

• Concept: Small random (or structured) changes to the graph,
such as EdgeDrop, prevent dependence on a fixed structure.
• Effect: TheGNN encountersmultiple “versions” of the graph,
reducing overfitting and limiting an attacker’s ability to ex-
ploit specific edges.

Stochastic Node Sampling.

• Concept: Instead of aggregating from all neighbors, ran-
domly sample a subset (e.g., GraphSAGE).
• Effect: Random neighbor selection injects variability, pre-
venting the model from fixating on specific adjacency struc-
tures.

Thus, both techniques introduce controlled randomness into
the aggregation process, making the GNNmore resistant to targeted
attacks.

Combining Perturbations and Stochastic Sampling. Since both
methods share a common foundation—introducing randomness
and reducing fixed adjacency reliance—they can be combined:

Approach: Perturbation at Data Level + Sampling at Model Level.

• Data-Level Perturbation: Periodically randomize adjacency
or features (e.g., DropEdge, edge flipping).
• Model-Level Sampling: Apply stochastic neighbor sam-
pling (GraphSAGE-style) in the forward pass.

Advantages.

• Double Layer of Defense: Even if an attacker influences
edges, random sampling may ignore them.
• Distributed Risk: Structural noise and sampling diffuse
attacks, requiring widespread manipulation to be effective.

Tradeoffs.

• Computational Overhead: Frequent perturbations can be
costly.
• Hyperparameter Tuning: Noise levels (edgemodifications)
and sampling rates must be tuned per dataset.

Conclusion. In summary, graph perturbations and stochas-
tic node sampling both introduce controlled randomness into
GNN aggregation, reducing reliance on fixed structures and
improving robustness. By combining these strategies, GNNs can
achieve stronger defenses against adversarial attacks, provided
the computational costs remain manageable.

A.7.2 More potential defenses

To effectively defend against influence-based attacks on GNNs,
it is essential to enhance the robustness of the message aggregation
process. The core idea is to modify the message aggregation process
in GNNs to dynamically identify and mitigate the influence of
potentially adversarial nodes or edges. This can be achieved by
integrating adaptive filtering mechanisms and anomaly detection
into the aggregation step, ensuring that only reliable and consistent
information is propagated through the network. Here are some
outlines of different types of possible defenses:

(1) DynamicWeighting: Implement an adaptiveweighting scheme
where messages from neighbors are weighted based on their
reliability. Reliable neighbors contribute more to the ag-
gregation, while suspicious or inconsistent ones are down-
weighted or ignored.

(2) Attention-Based Filtering: Enhance existing attention mech-
anisms to incorporate robustness. For instance, use robust
attention scores that can identify and reduce the influence
of outlier nodes exhibiting abnormal behavior.

(3) Anomaly Detection in Message Passing: Integrate statistical
methods to monitor the distribution of incoming messages.
Messages that significantly deviate from the norm can be
flagged as anomalies and excluded from aggregation.

(4) Consensus-Based Aggregation with Multiple Aggregators:
Utilize multiple aggregation functions (e.g., mean, median,
max) and require consensus among them for updating node
representations.

B Additional Results
B.1 Result with more target node
Figure 14 presents the attack results on LastFM, averaged over 500
nodes, while Figure 15 shows the results for Twitch-EN.

B.2 ROC-AUC of similarity-based attacks in
static graph

AUC of Similarity-based attacks are shown in Table 5.

Table 5: AUC metrics for Similarity-based attacks.

Dataset SIM LSA

GCN SAGE GAT GIN GCN SAGE GAT GIN

LastFM 0.81 0.76 0.79 0.72 0.91 0.91 0.91 0.83
Flickr 0.73 0.64 0.74 0.67 0.76 0.64 0.74 0.68
Twitch-EN 0.73 0.64 0.74 0.59 0.76 0.64 0.74 0.58
Twitch-DE 0.58 0.58 0.58 0.59 0.57 0.59 0.57 0.69
Twitch-FR 0.73 0.64 0.74 0.65 0.76 0.64 0.74 0.65
Twitch-PT 0.73 0.64 0.74 0.57 0.76 0.64 0.74 0.66
Twitch-RU 0.58 0.59 0.59 0.57 0.59 0.61 0.59 0.66
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Figure 13: Attack performance when node sampling method is used in GraphSAGE on LastFM dataset.
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Figure 14: F1-score of attacks on LastFM averaged over 500
target nodes.
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Figure 15: F1-score of attacks on Twitch/EN averaged over
500 target nodes.

B.3 Result for SIM and INF-DIR Using Different
Distance Metrics in Static Graph Scenario

The results are available in Table 6.

B.4 Different version of 𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗
The result with Different Distance Metrics is illustrated in Table 9.

The results of 𝐼𝑁 𝐹–𝐷𝐼𝑅∗ with different data preprocessing meth-
ods are presented in Table 8. Concatenation delivered the best
performance among these techniques, while PCA was the least
effective. This outcome underscores the value of high-dimensional

Table 6: F1-score of 𝑆𝐼𝑀 and 𝐼𝑁 𝐹 − 𝐷𝐼𝑅 attack with different
distance metrics in static scenario

Dataset Metric SIM INF-DIR

GCN SAGE GAT GIN GCN SAGE GAT GIN

LastFM

Cosine 0.55 0.39 0.45 0.37 0.73 0.67 0.67 0.97
Euclidean 0.44 0.33 0.39 0.34 0.64 0.60 0.59 0.97
Correlation 0.55 0.40 0.47 0.37 0.96 0.83 0.74 0.97
Cheybyshev 0.51 0.35 0.43 0.35 0.62 0.60 0.61 0.97
Bray-Curtis 0.42 0.30 0.36 0.31 0.93 0.89 0.84 0.97
Canberra 0.44 0.30 0.35 0.31 0.96 0.95 0.89 0.97
Manhattan 0.42 0.30 0.38 0.33 0.64 0.60 0.59 0.97
Square-Euclidean 0.44 0.30 0.39 0.34 0.64 0.60 0.59 0.97

Flickr

Cosine 0.31 0.19 0.34 0.24 0.83 0.76 0.84 1.0
Euclidean 0.29 0.18 0.35 0.23 0.70 0.70 0.67 1.0
Correlation 0.32 0.19 0.33 0.23 0.84 0.76 0.83 1.0
Cheybyshev 0.29 0.18 0.35 0.24 0.70 0.69 0.67 1.0
Bray-Curtis 0.28 0.20 0.34 0.22 0.99 0.83 0.99 1.0
Canberra 0.28 0.18 0.37 0.23 0.99 0.95 0.99 1.0
Manhattan 0.28 0.18 0.34 0.22 0.70 0.70 0.67 1.0
Square-Euclidean 0.29 0.18 0.35 0.23 0.70 0.70 0.67 1.0

data in preserving rich information, which is crucial when assessing
the similarity of vectors for our attack.

B.5 More result for Signal-to-Noise Rate
analysis.

The result can be found at GAT (Figure 17), GIN (Figure 18), and
GraphSage (Figure 19).

B.6 Result of Dynamic Scenarios
ROC-AUC of the attack in dynamic scenarios on 4-layer GNNs can
be found in Table 10.

B.7 Attack Performance on Structural Changed
Nodes

Figure 20 shows the full result if attack performance against nodes
undergoes structural change.
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Table 7: AUC of the 𝐼𝑁 𝐹–𝑀𝐴𝐺 with varied inserted node features.

Model Node Feature LastFM Flickr Twitch-DE Twitch-RU Twitch-PT Twitch-FR Twitch-EN

GAT

Random 0.938 1.0 0.899 0.961 0.996 0.959 0.976
Typical 0.966 1.0 0.981 0.986 0.996 0.987 0.976
Duplication 0.969 1.0 0.944 0.953 0.996 0.954 0.976
Mean 0.963 0.999 0.960 0.988 0.996 0.959 0.940
Median 0.963 0.999 0.979 0.961 0.996 0.968 0.994
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Figure 16: Model performance on LastFM dataset: The x-axis illustrates privacy budgets, and the y-axis shows accuracy.
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Figure 17: Signal-to-Noise Ratio analysis on GAT with the LastFM Dataset.
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Figure 18: Signal-to-Noise Ratio analysis on GIN with the LastFM Dataset.

B.8 Threshold Selection.
More Advanced Threshold Selection. As discussed in the main
paper, determining the optimal threshold requires detailed knowl-
edge about individual nodes. The adversary’s capabilities can in-
clude access to a shadow dataset, partial knowledge of the target
node’s properties, or direct information from the target graph (e.g.,

knowledge of some connections of the target node to infer addi-
tional connections). After getting this knowledge, the adversary
needs more methods to use them for threshold selection.

Beyond these capabilities, more advanced threshold selection
strategies could be explored:
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Figure 19: Signal-to-Noise Ratio analysis on GraphSage with the LastFM Dataset.
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Figure 20: F1-score of attacks in dynamic scenarios with negative samples constrained to nodes undergoing structural changes.

Table 8: F1-score for 𝐼𝑁 𝐹–𝐷𝐼𝑅∗ with different data prepro-
cessing method.

Dataset Concatenation Mean Median PCA

GCN SAGE GAT GIN GCN SAGE GAT GIN GCN SAGE GAT GIN GCN SAGE GAT GIN

LastFM 0.85 0.65 0.54 0.78 0.58 0.50 0.42 0.70 0.60 0.48 0.41 0.67 0.15 0.17 0.18 0.22
Twitch-EN 0.68 0.67 0.55 0.80 0.40 0.42 0.40 0.72 0.45 0.32 0.42 0.67 0.21 0.14 0.20 0.22

Table 9: F1-score of 𝐼𝑁 𝐹–𝐷𝐼𝑅∗ attack with different distance
metrics

Dataset Metric GCN SAGE GAT GIN

LastFM

Cosine 0.85 0.65 0.46 0.74
Euclidean 0.49 0.31 0.35 0.67
Correlation 0.85 0.65 0.46 0.74
Cheybyshev 0.37 0.23 0.32 0.66
Bray-Curtis 0.71 0.54 0.54 0.78
Canberra 0.68 0.47 0.43 0.77
Manhattan 0.53 0.33 0.32 0.66
Square-Euclidean 0.49 0.31 0.35 0.34

Twitch-EN

Cosine 0.68 0.67 0.53 0.66
Euclidean 0.26 0.19 0.35 0.71
Correlation 0.66 0.59 0.53 0.66
Cheybyshev 0.22 0.21 0.33 0.70
Bray-Curtis 0.50 0.39 0.55 0.80
Canberra 0.54 0.28 0.47 0.79
Manhattan 0.36 0.18 0.36 0.70
Square-Euclidean 0.23 0.17 0.35 0.71

• Score Distribution Modeling: By analyzing score distributions
from shadow datasets or similar nodes, the adversary can approxi-
mate thresholds tailored to each node. This method accounts for
variations in node influence patterns caused by factors like degree
and neighborhood diversity.

Attacks LastFM EN Flight Dgraph

𝐼𝑁 𝐹 − 𝐷𝐼𝑅∗
GCN 0.98 0.92 0.97 0.98
SAGE 0.91 0.91 0.95 0.96
GAT 0.88 0.86 0.91 0.95
GIN 0.92 0.95 0.95 0.98

𝐼𝑁 𝐹 −𝑀𝐴𝐺∗
GCN 0.67 0.64 0.88 0.91
SAGE 0.60 0.62 0.87 0.89
GAT 0.66 0.59 0.85 0.82
GIN 0.61 0.61 0.86 0.84

𝐿𝑇𝐴∗
GCN 0.63 0.61 0.88 0.85
SAGE 0.59 0.61 0.89 0.85
GAT 0.62 0.58 0.79 0.82
GIN 0.61 0.57 0.73 0.85

𝐼 𝐼𝐴∗
GCN 0.65 0.61 0.88 0.85
SAGE 0.62 0.59 0.86 0.85
GAT 0.67 0.59 0.82 0.82
GIN - - - -

Table 10: AUC for attacks against evolving graph on 4-layer
GNNs.

• Dynamic Threshold Adjustment: In dynamic scenarios, thresh-
olds could be updated iteratively as the graph evolves, ensuring the
threshold remains relevant despite structural or feature changes.

• Hybrid Approaches: Combining knowledge from partial obser-
vations (e.g., known neighbors) with learned patterns from similar
graphs or datasets could improve threshold accuracy.

• Robust Statistical Techniques: Leveraging statistical models
to identify outliers in the score distribution could help the adver-
sary distinguish true connections from noise, even in cases where
individual scores are uncertain or influenced by natural graph dy-
namics.
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Additional result of threshold selection methods. Table 11
presents the attack performance for in-graph threshold selection
under varying levels of adversarial knowledge. The "Single" setup
represents the scenario where the adversary has no knowledge
of the target node’s true neighbors and uses the score of their
auxiliary node as the threshold. The 20% and 50% setups denote the
percentage of ground truth scores accessible to the adversary.

In the "Single" setup, the attack demonstrates high precision
but low recall, as the limited knowledge leads to the misclassifica-
tion of many connected nodes as unconnected, particularly when
the auxiliary node’s score is high within the distribution. As the
adversary’s knowledge level increases, the attack achieves more
balanced metrics, benefiting from a more informed understanding
of the optimal threshold.

Table 12 shows the performance of threshold selection on the
Twitch-EN dataset.

Table 11: Performance of 𝐼𝑁 𝐹–𝑀𝐴𝐺 (static scenario) and
𝐼𝑁 𝐹–𝐷𝐼𝑅∗ (dynamic scenario) with different threshold se-
lections on the LastFM dataset.

Threshold Model Static Dynamic

Recall Precision Recall Precision

In-graph(Single)

GCN 0.61 0.99 0.58 0.62
SAGE 0.62 0.99 0.58 0.54
GAT 0.61 0.95 0.62 0.69
GIN 0.60 0.99 0.66 0.79

In-graph(20%)

GCN 0.65 0.99 0.67 0.63
GCN 0.65 0.99 0.67 0.63
SAGE 0.68 0.99 0.66 0.54
GAT 0.68 0.94 0.67 0.54
GIN 0.70 0.99 0.65 0.80

In-graph(50%)

GCN 0.84 0.99 0.84 0.58
SAGE 0.85 0.99 0.80 0.48
GAT 0.84 0.93 0.85 0.50
GIN 0.83 0.99 0.84 0.76

Table 12: Performance of 𝐼𝑁 𝐹–𝑀𝐴𝐺 (static scenario) and
𝐼𝑁 𝐹–𝐷𝐼𝑅∗ (dynamic scenario) with different threshold se-
lections on the Twitch-EN dataset.

Threshold Model Static Dynamic

Recall Precision Recall Precision

In-graph(Single)

GCN 0.58 0.99 0.67 0.57
SAGE 0.61 0.98 0.63 0.53
GAT 0.62 0.94 0.71 0.57
GIN 0.61 0.99 0.63 0.79

In-graph(20%)

GCN 0.69 0.99 0.67 0.60
SAGE 0.68 0.98 0.71 0.51
GAT 0.68 0.94 0.68 0.65
GIN 0.70 0.99 0.69 0.78

In-graph(50%)

GCN 0.84 0.99 0.85 0.56
SAGE 0.85 0.96 0.84 0.52
GAT 0.87 0.91 0.83 0.62
GIN 0.84 0.99 0.88 0.75

Performance of attacks with deviated threshold. To analyze
the impact of threshold selection, we follow the approach in [43]
and vary the threshold method. Using top-𝑘 selection, where 𝑘 = 𝑑

represents the ground truth number of positive samples (i.e., con-
nected nodes), we evaluate performance in the static scenario. Given

the ground truth degree 𝑑 , we incorporate three approximations
for evaluation: 0.8𝑑 , 𝑑 , and 1.2𝑑 . This range is selected because,
at 𝑘 = 0.8𝑑 , the precision reaches 1, and at 𝑘 = 1.2𝑑 , the recall
reaches 1, making further exploration less meaningful. Table 13
illustrates the 𝐼𝑁 𝐹–𝑀𝐴𝐺 attack’s efficacy with different estimated
degrees. We observe that with precise degree estimation (where
𝑑 = 𝑑), 𝐼𝑁 𝐹–𝑀𝐴𝐺 consistently exhibits high precision and recall.
When the density estimation deviates, the attack remains robust.
It’s important to highlight that with an estimated degree of 1.2𝑑 ,
the attack still shows excellent precision on the GIN model because
we avoid labeling nodes with an LPS of 0, which is common in this
scenario.
Performance of attacks on target node with different degree.
In our study, we categorize target nodes across various datasets
based on their degree of connectivity:Unconstrained Subset: We
include nodes from the complete testing set. Specific Degree Subsets:
For LastFM, nodes with a degree of 5 or less are considered low
degree, whereas those with a degree of 10 or more are deemed high
degree. For Flickr, we categorize nodes with up to 15 connections
as low degrees and those with 30 or more as high degrees.

Table 13 illustrates the efficacy of the 𝐼𝑁 𝐹–𝑀𝐴𝐺 attack under
varying conditions. We observe no significant performance change
across different node degree distributions.

Table 13: Performance of 𝐼𝑁 𝐹–𝑀𝐴𝐺 on target nodes with
different degree distributions and threshold estimation.

𝑑 Model Low Degree Unconstrained High Degree

Recall Precision Recall Precision Recall Precision

⌊0.8𝑑 ⌋
GCN 0.686 0.952 0.717 0.966 0.796 0.995
SAGE 0.686 0.952 0.717 0.966 0.798 0.998
GAT 0.676 0.940 0.704 0.949 0.783 0.98
GIN 0.686 0.952 0.717 0.966 0.798 0.998

𝑑

GCN 0.966 0.966 0.976 0.976 0.992 0.992
SAGE 0.966 0.966 0.976 0.976 0.998 0.998
GAT 0.934 0.934 0.938 0.938 0.966 0.966
GIN 0.966 0.966 0.976 0.976 0.998 0.998

⌈1.2𝑑 ⌉
GCN 1.0 0.789 1.0 0.801 1.0 0.833
SAGE 1.0 0.782 1.0 0.795 1.0 0.833
GAT 0.986 0.771 0.989 0.787 0.998 0.831
GIN 1.0 0.782 1.0 0.795 1.0 0.833

(a) LastFM

𝑑 Model Low Degree Unconstrained High Degree

Recall Precision Recall Precision Recall Precision

⌊0.8𝑑 ⌋
GCN 0.757 0.999 0.758 0.999 0.789 0.993
SAGE 0.757 1.0 0.757 0.999 0.792 0.990
GAT 0.757 1.0 0.757 0.998 0.785 0.981
GIN 0.757 1.0 758 1.0 0.80 1.0

𝑑

GCN 0.999 0.999 0.999 0.999 0.985 0.985
SAGE 0.996 0.996 0.992 0.992 0.986 0.986
GAT 0.999 0.999 0.999 0.999 0.979 0.979
GIN 1.0 1.0 1.0 1.0 1.0 1.0

⌈1.2𝑑 ⌉
GCN 1.0 0.825 1.0 0.829 0.999 0.888
SAGE 1.0 0.830 1.0 0.839 1.0 0.903
GAT 1.0 0.825 1.0 0.829 1.0 0.891
GIN 1.0 1.0 1.0 1.0 1.0 1.0

(b) Flickr
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Table 14: Top 5 influencer rate of auxiliary nodes for target
nodes according to explanation methods on LastFM

Explainer GCN SAGE GAT GIN

GNNExplainer 0.01 0.01 0.01 0.04
PGExplainer 0.01 0.01 0.01 0.05
GraphMask 0.01 0.01 0.01 0.04

B.9 Model Utility With Differential Privacy
We train and test our model with the implementation of DP. For
EdgeRand, we varied the privacy budget 𝜖 between 5 and 10. And
for LapGraph, we varied the privacy budget 𝜖 between 2 and 10.
The model utility is depicted in Fig. 16. The findings indicate that
a privacy budget exceeding 8 enables the model to surpass the
performance of MLP, which makes predictions without utilizing
edge information.]

B.10 Imperceptibility of Malicious Behaviors
Our attack includes perturbing the graph during the inference
phase, emphasizing the importance of maintaining the stealth of
the adversary’s actions. We evaluate the imperceptibility of our
attacks on two fronts: changes to nodes/edges and alterations to
node features.
Node/Edge Imperceptibility. Previous graph attack methods rely
on fixed perturbation budgets to limit changes and maintain stealth,
assuming actions like node insertion are imperceptible below a
threshold [6, 28]. However, these metrics are inadequate in dy-
namic environments where graphs continuously evolve. To address
this, we leverage model explanation techniques [2, 24, 35, 53] to
assess the noticeability of adversarial behavior by analyzing each
node’s influence on the model’s decisions. Using tools like GN-
NExplainer [53], PGExplainer [24], and GraphMask [35], we find
that adversarially inserted nodes rarely rank among the top influ-
encers for any target node, demonstrating their stealth. The result
is depicted in Table 14.
Feature Change Imperceptibility. Our experiments indicate that
adversaries typically need to introduce perturbations that surpass
the graph’s natural evolution rate to achieve effective influence. To
mitigate this, adversaries could adopt a subgraph-based approach
instead of targeting a single node. By distributing modifications
across multiple nodes, their activities become better concealed.
In this study, we focus on analyzing the potential of influence-
based attacks, while minimizing the necessary perturbation rate is
reserved for future work.

B.11 Attack Query Numbers
The result can be found in Figure 21.

C Theoretical Justification
C.1 Why do influence-based attacks work?
This section formally presents the ideas of our work, showing how
both the magnitude of influence and the pattern of influence
can encode distance information between two nodes 𝑖 and 𝑗 in a
multi-layer GNN-style aggregator.
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Figure 21: F1-score of 𝐼𝑁 𝐹–𝐷𝐼𝑅∗ on LastFM with different
number of queries.

C.1.1 Magnitude-Based Distance Inference

Notation & Setup.
• Let 𝐺 = (𝑉 , 𝐸) be an undirected graph with 𝑛 = |𝑉 | nodes.
• Let 𝐴 ∈ R𝑛×𝑛 be the adjacency matrix (possibly with self-
loops 𝐴𝑖𝑖 = 1).

• Let 𝐴 = 𝐷
− 12𝐴𝐷−

1
2 , where 𝐷 is the diagonal degree matrix

of 𝐴.
• In a 𝐾-layer GCN (Kipf & Welling, 2017), each layer can be
viewed (in simplified form) as

𝐻 (ℓ+1) = 𝜎
(
𝐴𝐻 (ℓ )𝑊 (ℓ )

)
, ℓ = 0, . . . , 𝐾 − 1,

with 𝐻 (0) = 𝑋 (initial node features), weight matrices𝑊 (ℓ ) ,
and nonlinearities 𝜎 .
• After 𝐾 layers, node 𝑖’s embedding is h𝑖 ∈ R𝑑𝐾 .

We define the (i, j) “aggregator coefficient” (or “influence weight”)
to be approximately:

𝐴𝐾𝑖 𝑗 =
(
𝐴𝐴 · · · 𝐴︸     ︷︷     ︸
𝐾 times

)
𝑖 𝑗
.

In practice, the GCN also includes nonlinearity and weights𝑊 (ℓ ) ,
but 𝐴𝐾𝑖 𝑗 suffices to illustrate how distance affects magnitude.

Proposition 1 (Magnitude Grows with Proximity). Claim: If the
shortest path distance 𝑑 (𝑖, 𝑗) between nodes 𝑖 and 𝑗 is smaller,
then𝐴𝐾𝑖 𝑗 (and thus themagnitude of 𝑗 ’s contribution to 𝑖) is larger
on average than if 𝑑 (𝑖, 𝑗) is bigger.
Arguments Sketch:

(1) Distance and Powers of 𝐴:
• Recall 𝑑 (𝑖, 𝑗) is the minimum number of edges in a path
from 𝑖 to 𝑗 . If 𝑑 (𝑖, 𝑗) ≤ 𝐾 , then there exists a path of length
≤ 𝐾 . In 𝐴𝐾 , each path contributes a product of terms 𝐴𝑢𝑣
along that path.

(2) 𝐴𝑢𝑣 Is Positive for Edges:
• If (𝑢, 𝑣) ∈ 𝐸, then 𝐴𝑢𝑣 = 1√

deg(𝑢 ) deg(𝑣)
> 0. A single path

of length ℓ ≤ 𝐾 from 𝑗 to 𝑖 yields a positive term in 𝐴ℓ𝑖 𝑗 .
(3) Shorter Paths =⇒ Fewer Normalizing Factors:
• Each hop in the pathmultiplies by 1√

deg( ·) deg( ·)
. A shorter

path means fewer such factors, tending to yield larger
overall product. Conversely, a longer path accumulates
more dividing factors ≤ 1.
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(4) Comparing Distances:
• If 𝑑 (𝑖, 𝑗) = 1, then 𝐴𝑖 𝑗 itself is typically 1√

deg(𝑖 ) deg( 𝑗 )
.

• If 𝑑 (𝑖, 𝑗) = 2, then 𝐴2
𝑖 𝑗 =

∑
𝑢 𝐴𝑖𝑢𝐴𝑢 𝑗 . Each term introduces

two normalizing denominators.
• The more hops, the smaller (in aggregate) 𝐴𝐾𝑖 𝑗 tends to
be because of repeated division (though multiple parallel
paths can partially offset this, it still rarely exceeds the
single-hop scenario on average).

Hence, nodes with fewer hops between them (smaller 𝑑 (𝑖, 𝑗)) tend
to have larger 𝐴𝐾𝑖 𝑗 . In a GCN, that translates directly into a larger
magnitude of the feature vector from 𝑗 that arrives at node 𝑖 .
Take Away (Magnitude):

By measuring or estimating𝐴𝐾𝑖 𝑗—or equivalently, how
large ∥Δh𝑖 ∥ is when node 𝑗 ’s feature changes—we
can distinguish smaller from larger distances. If the
magnitude of influence from 𝑗 to 𝑖 is large, 𝑗 is likely
topologically closer.

C.1.2 Pattern-Based Distance Inference

In addition to magnitude, we can also examine which nodes or
edges are involved in conveying information from 𝑗 to 𝑖 . This can
be seen as the “pattern” of multi-hop aggregation.

Formalizing “Pattern”.

• Expanding 𝐴𝐾 : One can write

(𝐴𝐾 )𝑖 𝑗 =
∑︁

𝜋∈P𝑖→𝑗 (𝐾 )

|𝜋 | ≤𝐾∏
ℓ=1

𝐴𝜋ℓ ,𝜋ℓ+1 ,

where P𝑖→𝑗 (𝐾) is the set of all walks (paths, possibly repeat-
ing nodes) of length up to 𝐾 from 𝑗 to 𝑖 . Each walk 𝜋 is a
sequence of nodes 𝜋1 = 𝑗, 𝜋2, . . . , 𝜋𝑚 = 𝑖 .
• The pattern here refers to which nodes or edges appear in
these walks and with what weight. If a path 𝜋 does not exist
(i.e., no edge connecting certain nodes), that walk contributes
0. If it does exist, we see a product of adjacency factors.

Proposition 2 (Pattern Discloses Hop Distance). Claim: If 𝑑 (𝑖, 𝑗) ≤
𝐾 , then the set of aggregator paths from 𝑗 to 𝑖 has an identifiable
“short-path signature” that does not appear for distant nodes.
Observing the aggregator pattern (which neighbors or edges con-
tribute) lets us distinguish smaller distances from larger ones.

Argument Sketch:

(1) Presence/Absence of Certain Walks:
• If 𝑑 (𝑖, 𝑗) = 1, there is a direct edge (𝑖, 𝑗). Hence in the final
aggregator, we see a “direct neighbor” contribution from
𝑗 to 𝑖 .
• If 𝑑 (𝑖, 𝑗) = 2, the aggregator from 𝑗 to 𝑖 must pass through
some intermediate 𝑢. So node 𝑢 is common in every path
from 𝑗 to 𝑖 .
• For larger 𝑑 (𝑖, 𝑗), the aggregator paths require more in-
termediates.

(2) Graph Convolutional Aggregation:

• In a standard 2-layer GCN, node 𝑖’s embedding is

h(2)
𝑖

= 𝜎

( ∑︁
𝑢∈N(𝑖 )

1√︁
deg(𝑖) deg(𝑢)

𝜎

( ∑︁
𝑤∈N(𝑢 )

x𝑤𝑊 (1)√︁
deg(𝑢) deg(𝑤)

)
𝑊 (2)

)
.

The aggregator pattern varies depending onwhether node
𝑗 is a direct neighbor ( 𝑗 ∈ N (𝑖)) or a 2-hop neighbor (via
some 𝑢), affecting summation terms and 𝑗 ’s role in the
nested sums.

(3) Distinct Subgraph Structures:
• If 𝑗 is truly 3 or more hops away, there is no 1- or 2-hop
aggregator route. The pattern of summation (which nodes
feed into 𝑖) differs from if 𝑗 were 1 or 2 hops away.
• Thus, the set of edges used in the aggregator for node 𝑖
(the “pattern of influence”) encodes how short or direct
the paths from 𝑗 to 𝑖 are.

Take Away (Pattern):

Observing which nodes or edges actively relay 𝑗 ’s fea-
tures into 𝑖 (i.e., the aggregator path) can reconstruct
whether 𝑗 is 1 hop, 2 hops, or more. Hence, the pat-
tern alone can identify approximate distance—even
ignoring the numerical magnitude of those aggregator
coefficients.

C.1.3 Take away

• Magnitude: Shorter 𝑑 (𝑖, 𝑗) =⇒ fewer normalizing factors
1√

deg( ·) deg( ·)
, higher aggregator coefficients, and a larger

overall impact on h𝑖 .
• Pattern: The presence or absence of certain “neighbor routes”
from 𝑗 to 𝑖 in the aggregator clearly distinguishes small hop
distances from large ones. This is a structural property: you
can read off the local subgraph that contributed to node 𝑖’s
update.

By separately examining (A) the magnitude (how large h𝑖
changes due to 𝑗 ) and (B) the pattern (which edges/neighbors are
used in the aggregator from 𝑗 to 𝑖), we obtain two complementary
indicators of distance between nodes 𝑖 and 𝑗 .

• Magnitude is a quantitativemeasure, often correlated with
the number of hops and how heavily normalized edges are.
• Pattern is a more qualitative or structural signature of
which specific paths carry information from 𝑗 to 𝑖 .

Hence, both provide theoretically sound signals that can reveal
node distances in GNNs.

C.2 How to design a good Magnitude-Based link
inference

Many link or distance inference attacks use a threshold on themag-
nitude of how much a perturbation to node 𝑖’s features changes
node 𝑗 ’s final embedding. Concretely, they measure something like:

∥Δ 𝑗 (𝑖)∥ =




h(𝐿)𝑗 (x𝑖 + 𝛿) − h(𝐿)
𝑗
(x𝑖 )




 or







 𝜕h
(𝐿)
𝑗

𝜕x𝑖







 .
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Idea: A large magnitude indicates that 𝑖 heavily influences 𝑗 , sug-
gesting a short distance (e.g., a direct connection). A small (or zero)
magnitude suggests that 𝑗 is far from 𝑖 .

C.2.1 How GNNWeights Affect the Magnitude

Aggregator Weights and Attention Coefficients. Most GNNs (GCN,
GraphSAGE, GAT, etc.) include weight-like factors in their message-
passing. For instance:
• Normalized Adjacency: 𝛽𝑢,𝑣 = 𝐴𝑢,𝑣 (e.g., �̂�−1/2𝐴�̂�−1/2 in
GCN).
• Mean Aggregation: 𝛽𝑢,𝑣 = 1

|N (𝑢 ) | .
• GAT Attention: 𝛽𝑢,𝑣 = 𝛼𝑢,𝑣 , which can vary widely among
edges.

These 𝛽𝑢,𝑣 can differ significantly across edges, even if the nodes
are equally close in graph distance. For example, one edge might
have high attention (𝛼 = 0.9), while another similar edge might
have low attention (𝛼 = 0.1).

Layer Weight Matrices and Activation Non-Linearities. Each GNN
layer has a weight matrix𝑊 (ℓ ) and a non-linear activation 𝜎 (·). The
operator norm ∥𝑊 (ℓ ) ∥ can scale or shrink vectors, and saturating
activations can dampen or vanish gradients. Over multiple layers,
these factors multiply in complicated ways that may overshadow
the simple “distance = number of hops” effect.

Hence, two equally distant node pairs (𝑖– 𝑗 vs. 𝑖– 𝑗 ′) could yield
very different magnitudes if, for example, the aggregator or atten-
tion assigns a high weight to 𝑗 but not to 𝑗 ′. This can cause an
inference method based purely on magnitude to misjudge which
pair is truly “closer” in the underlying graph.

C.2.2 WhyWeNeed toMitigate orNormalizeWeight Effects

(1) MagnitudeCanReflect BothDistance and LargeWeights:
• If an edge (𝑖, 𝑗) is assigned a very large aggregator or
attention weight, the partial derivative ∥Δ 𝑗 (𝑖)∥ may spike,
even if 𝑗 is 2 or 3 hops away (via a path that has large
weights at each hop).
• Conversely, if an edge (𝑖′, 𝑗 ′) has low aggregator weights—
even if 𝑖′ and 𝑗 ′ are in the same or fewer hops—its overall
gradient magnitude may appear smaller.

(2) Misidentification of True Distance:
• Anode pair with artificially high aggregator weightsmight
“look closer” than it actually is.
• A pair with the same topological distance but smaller
aggregator weights might “look farther.”

Thus, if the goal is purely to infer the structural closeness or distance
(e.g., distinguishing 1-hop vs. 2-hop neighbors), the raw magnitude
combines both the “distance effect” and the “scaling effect” from
the GNN’s learned or fixed weights.

C.2.3 Take Away

In short, it is necessary to mitigate or normalize out the ef-
fect of GNN weights (aggregator factors, learned attention, large
or small parameter norms) when using magnitude-based analy-
sis to infer true node-to-node distance. Otherwise, large aggregator

or model weights can amplify the partial derivative and confound
the simple question of whether these nodes are close in the graph.

A raw gradient magnitude often combines both the “distance
effect” and the “scaling effect,” so normalizing or factoring out the
aggregator weighting is crucial to obtain a more direct measure of
topological proximity.

C.3 Why experiment with 2-hops neighbors
Below is a higher-level theoretical explanation of why the link
inference attack (based on how node feature perturbations affect
other nodes’ embeddings) is especially compelling for distinguishing
1-hop vs. 2-hop neighbors, and how the same argument generalizes
to nodes that are 𝑘-hops away.

C.3.1 Why 1-Hop (Edges) vs. 2-Hop Is a Crucial Test Case

Theoretical Chain Rule Through 𝐿 Layers. Consider an 𝐿-layer
GNN. The representation of node 𝑗 at the final layer, h(𝐿)

𝑗
, can be

written as
h(𝐿)
𝑗

= 𝐹 𝑗

(
{h(𝐿−1)𝑣 : 𝑣 ∈ N ( 𝑗)}

)
,

with each h(ℓ )𝑣 itself depending on the representations of its neigh-
bors in the previous layer. Ultimately, one obtains

𝜕h(𝐿)
𝑗

𝜕x𝑖
=

∑︁
paths 𝑖→···→𝑗

(
product of aggregator and layer weights

)
.

1-Hop (Direct Edge (𝑖, 𝑗)):
A 1-hop path 𝑖 → 𝑗 contributes directly to the sum. This typi-
cally yields larger partial derivatives because there is only one
aggregator step from 𝑖 to 𝑗 .
2-Hop (Via an Intermediate Node𝑤 ):
There is no direct 1-hop path, but there exists a 2-hop path 𝑖 →
𝑤 → 𝑗 . The partial derivative now involves two aggregator mul-
tiplications (one from 𝑖 to 𝑤 and one from 𝑤 to 𝑗 ). Each step can
scale or dampen the influence, so the overall derivative from 𝑖 to 𝑗 is
typically smaller than that from a direct edge, though still nonzero.

Thus, from a pure chain-rule perspective, 1-hop neighbors exert
the strongest direct influence, whereas 2-hop neighbors exhibit a
weaker (but nonzero) influence. Distances greater than 2 usually
further diminish the influence since each extra hop introduces
another multiplicative factor.

C.3.2 2-Hop Negatives Are Harder (But More Revealing)

• Negative Samples with Distance ≥ 3:
If negative samples are chosen from node pairs that are 3 hops or
more apart, the partial derivative (or influence) is often extremely
small — or even zero if the nodes lie outside the GNN’s receptive
field.
• 2-Hop Pairs:
Since 2-hop pairs are the closest non-adjacent nodes, they serve
as a “hard negative” test set, making it more challenging (and
more revealing) to discriminate between direct adjacency and
near adjacency.
In summary, 2-hop vs. 1-hop is used in our experiments because:
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• These cases are commonly confused (since the nodes are “close”
in the graph).
• They require the method to demonstrate fine-grained discrimi-
nation between direct connections and connections through an
intermediate node.

C.3.3 Generalization to Larger Distances

Negative Pairs with Distance > 1. If negative samples consist of
any pair of nodes with distance greater than 1, the same reasoning
applies:
• If dist(𝑖, 𝑗) = 𝑘 (with 𝑘 ≥ 2 and 𝑘 ≤ 𝐿), the partial derivative





 𝜕h

(𝐿)
𝑗

𝜕x𝑖








is the product of 𝑘 aggregator/activation factors, each typically
≤ 1. This yields a smaller influence than that from direct (1-hop)
neighbors.
• If 𝑘 > 𝐿, then in many standard message-passing GNNs there is
no computational path from 𝑖 to 𝑗 (i.e., 𝑗 does not aggregate any
information from 𝑖); hence, the partial derivative vanishes.

Attack “Easier” for Larger Distances. When the distance is larger
(e.g., 3, 4, or more hops), the difference in influence relative to 1-hop
neighbors typically increases:
• For distances ≥ 𝐿 + 1, the partial derivative becomes exactly
zero in an 𝐿-layer GNN, since node 𝑗 does not aggregate any
information from nodes beyond 𝐿 hops.
• Hence, from a theoretical viewpoint, it is easier for the attack to
classify such pairs as not being neighbors.
While negative samples could be defined as any pair with dis-

tance ≥ 2, choosing 2-hop pairs is particularly interesting because
they represent the borderline case where some influence might still
exist (given typical GNN depths). Distinguishing 1-hop from 2-hop
adjacency is therefore the core challenge in local edge detection.

C.3.4 Take Away

• 1-hop vs. 2-hop is the most challenging local classification prob-
lem; pairs with distance ≥ 3 are generally easier to detect as
negatives because their mutual influence is much weaker or zero.
• The same chain-rule argument — tracking how perturbations to
x𝑖 propagate through the aggregator layers — applies to any pair
of nodes with distance greater than 1. More hops typically result
in a smaller or zero derivative, simplifying classification.
• Thus, while the approach generalizes naturally, focusing on 2-
hop negative samples serves as a standard benchmark to ensure
the attack can truly distinguish between direct adjacency and
near adjacency, which is central to link inference attacks.

C.4 Why node centric threshold selection
Below is a conceptual and (sketch of a) theoretical explanation for
why the distribution of “influence scores” can vary signifi-
cantly across different “source” nodes 𝑖 , and thuswhy a single
global threshold for deciding whether 𝑖 is connected to 𝑗 may
be suboptimal. In other words, each node 𝑖 can exhibit its own

scale or pattern of scores toward other nodes 𝑗 , implying we might
need a node-specific threshold for link inference.

C.4.1 Setting

We consider a GNN with 𝐿 layers on a graph𝐺 . Each node 𝑢 has
initial features x𝑢 . The final layer’s embedding for node 𝑢 is h(𝐿)𝑢 .
An influence score or sensitivity of node 𝑗 ’s embedding with respect
to node 𝑖’s features is measured by:

𝑆 (𝑖 → 𝑗) =







 𝜕h
(𝐿)
𝑗

𝜕x𝑖







 .
A link inference attack uses 𝑆 (𝑖 → 𝑗) to decide whether 𝑖 and 𝑗
share an edge, or are “very close,” etc. Concretely, an attacker might
say “If 𝑆 (𝑖 → 𝑗) is above some threshold 𝜏 , guess that (𝑖, 𝑗) is an
edge.”

C.4.2 Why a Single Global Threshold Might Be Inappropri-
ate

Different Nodes Have Different “Local GNN Dynamics”
❒ Neighborhood Size / Degree Effects.

If node 𝑖 has a large degree, the aggregator (e.g., in a standard GCN
or GraphSAGE) may average or normalize across many neighbors.
This tends to dampen the partial derivatives from 𝑖 to each neigh-
bor. Conversely, a low-degree node might yield higher per-edge
sensitivities. Hence, even for true edges, the magnitude of 𝑆 (𝑖 → 𝑗)
can differ drastically depending on node 𝑖 and how the aggregator
normalizes or distributes attention across neighbors.

❒ Attention Coefficients.
In a GAT-style model, each node 𝑖 learns a distinct set of attention
weights {𝛼𝑖,𝑘 } over its neighbors 𝑘 . If node 𝑖 is “dominant” in certain
substructures, the GAT might assign large attention to some edges.
Another node 𝑖′ might have a completely different attention pattern.
Thus, the overall scale of partial derivatives from 𝑖 to others can be
larger or smaller than from 𝑖′ to others.

❒ Node-Specific Learned Weights / Features.
Although GNN layers typically share parameters globally (e.g., a
weight matrix𝑊 (ℓ ) or an attention transform), the effective trans-
formation depends on each node’s features. For example, if the
activation function saturates for certain node feature values, the
gradient can vanish or saturate. Different nodes can thus systemat-
ically exhibit different gradient magnitudes to their neighbors.

Consequence: Because each node 𝑖 (1) may have a different local
degree, (2) can have different adjacency or attention patterns, and
(3) might lie in regions of the graph where the learned function
saturates or amplifies differently, the distribution

{𝑆 (𝑖 → 𝑗)} 𝑗≠𝑖
can vary significantly from that of another node 𝑖′.

C.4.3 Theoretical Sketch: Chain Rule Bounds and Node-
Specific Scaling

Below is a bounding argument that suggests per-node scaling
factors can appear in the partial derivatives.
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A Simple Layer-Wise Expression. Consider an 𝐿-layer GNN. The
representation of node 𝑗 at the final layer, h(𝐿)

𝑗
, can be written as

h(𝐿)
𝑗

= 𝐹 𝑗

(
{h(𝐿−1)𝑣 : 𝑣 ∈ N ( 𝑗)}

)
,

with each h(ℓ )𝑣 itself depending on the representations of its neigh-
bors in the previous layer. Ultimately, one obtains

𝜕h(𝐿)
𝑗

𝜕x𝑖
=

∑︁
paths 𝑖→···→𝑗

(
product of aggregator and layer weights

)
.

Per-Node Aggregation & Normalization Terms. Assume, for sim-
plicity, that each layer’s aggregator uses a factor 𝛽 (ℓ )𝑢,𝑣 to scale neigh-
bor 𝑣 ’s embedding in node 𝑢’s update. For example:

GCN: 𝛽
(ℓ )
𝑢,𝑣 = �̃�𝑢,𝑣,

GraphSAGE (mean): 𝛽
(ℓ )
𝑢,𝑣 = 1

|N (𝑢 ) | ,

GAT: 𝛽
(ℓ )
𝑢,𝑣 = 𝛼

(ℓ )
𝑢,𝑣 .

Then the partial derivative can be bounded by:





 𝜕h
(𝐿)
𝑗

𝜕x𝑖







 ≤ ∑︁
𝑝∈Π𝑖→𝑗

∏
ℓ∈𝑝




𝑊 (ℓ )


 · max
(𝑢,𝑣) ∈𝑝

{𝛽 (ℓ )𝑢,𝑣 } · max{𝜎 ′},

where Π𝑖→𝑗 denotes the set of all layer-by-layer paths from 𝑖 to 𝑗 .
Notice that 𝛽 (ℓ )𝑢,𝑣 depends on the node/edge pair (𝑢, 𝑣). Therefore,
for node 𝑖 the magnitude of 𝛽 (ℓ )

𝑖,· and the aggregator structure may
differ from that of another node 𝑖′.

Node-Specific “Scaling” Factor. Define, for example,

Γ(𝑖) = max
𝑣∈N(𝑖 )
ℓ=1,...,𝐿

𝛽
(ℓ )
𝑖,𝑣
,

which represents the maximum aggregator weight from 𝑖 to any of
its neighbors (across all layers). Since degrees, attention distribu-
tions, and normalization factors differ, Γ(𝑖) can vary significantly
from node to node. Consequently, node 𝑖 might produce systemati-

cally larger or smaller partial derivatives




 𝜕h(𝐿)𝑗𝜕x𝑖 



. In other words:

(1) The distribution {𝑆 (𝑖 → 𝑗)} 𝑗 may be shifted or scaled by
Γ(𝑖).

(2) Another node 𝑖′ may have a very different Γ(𝑖′), shifting its
score distribution accordingly.

Thus, a global threshold 𝜏 applied uniformly to all




 𝜕h(𝐿)𝑗𝜕x𝑖 



 might

misclassify edges for nodes with particularly high or low Γ values.

C.4.4 Empirical & Practical Consequences

• DifferentNeighborhood Sizes→Different ScoreRanges:
A node with 50 neighbors may have its gradient “diluted”
due to normalization, so even true edges produce a smaller
partial derivative magnitude. Conversely, a node with only 2
neighbors may yield a larger derivative for each edge. Thus,
using a single global threshold 𝜏 may cause many false nega-
tives for high-degree nodes or false positives for low-degree
nodes.

• Different Learned Attention Patterns:
If a node’s neighborhood is heterogeneous (with some edges
receiving high 𝛼𝑢,𝑣 and others low), the range of partial de-
rivative magnitudes may be wide. Another node may exhibit
a more uniform distribution. Each node, therefore, can have
a different mean and variance in its {𝑆 (𝑖 → 𝑗)} distribution.
• Nonlinear Activations:
A node’s hidden representation might fall in the saturated
region of a nonlinearity, yielding a small gradient flow, while
another node may operate in a near-linear region, yielding
a larger gradient. This again results in node-specific differ-
ences in influence scores.

For link inference attacks (or any gradient-based adjacency de-
tection), a single universal threshold is often too crude. A per-node
threshold — for example, one based on normalizing or standardizing
the distribution {𝑆 (𝑖 → 𝑗)} for each node 𝑖 — may better separate
true edges from non-edges.

C.4.5 Take Away

Analyzing the chain rule in message-passing GNNs shows that
aggregator weights 𝛽 (ℓ )𝑢,𝑣 and activation functions can induce node-
specific scaling effects in the partial derivatives from node 𝑖 to node
𝑗 . Each node 𝑖 ends up with its own distribution of influence scores
{𝑆 (𝑖 → 𝑗)} 𝑗 . This distribution may have a different mean and
variance from that of another node 𝑖′, so a single global threshold 𝜏
may be too high for some nodes and too low for others. To improve
the accuracy of link inference attacks (or any gradient-based edge
detection), it may be beneficial to adopt a node-specific threshold —
for instance, by normalizing the scores {𝑆 (𝑖 → 𝑗)} per node — in
order to better distinguish true edges from non-edges.
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