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Abstract
In this paper, we introduce an adaptation of the counting sort al-
gorithm that leverages the data obliviousness of the algorithm to
enable the sorting of encrypted data using Fully Homomorphic
Encryption (FHE). Our approach represents the first known sorting
algorithm for encrypted data that does not rely on comparisons.
The implementation takes advantage of some basic operations on
TFHE’s Look-Up-Tables (LUT). We have integrated these operations
into RevoLUT [3], a comprehensive open-source library built on
tfhe-rs [37]. We demonstrate the effectiveness of our Blind Count-
ing Sort algorithm by developing a top-k selection algorithm and
applying it to privacy-preserving k-Nearest Neighbors classification.
This proves to be approximately 4 times faster than state-of-the-art
methods.
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1 Introduction
As data security becomes increasingly critical in the era of cloud
computing, the need for secure data processing methods has never
been more pressing. Homomorphic encryption, first introduced
by Rivest et al. in 1978 [30], offers a groundbreaking approach to
performing computations on encrypted data without decryption.
This capability is particularly valuable in scenarios where sensitive
data, such as personal health records or financial information, need
to be processed by third-party services while maintaining their con-
fidentiality. Sorting algorithms, such as QuickSort [23], MergeSort
[34], and HeapSort [35], are fundamental building blocks in com-
puter science and are omnipresent in various applications, ranging
from database management to network security. When applied to
encrypted data, sorting becomes a non-trivial task due to the fact
that it is a data-dependent operation. Henceforth, most of the tradi-
tional sorting methods are not directly applicable to encrypted data,
requiring the development of specialized algorithms that can effi-
ciently sort encrypted data. Recent advances in fully homomorphic
encryption schemes have opened the door to practical applications
where sorting on encrypted data is feasible. FHE schemes, such as
TFHE [16], BGV/BFV [7, 21], and CKKS [13], enable the execution
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of arbitrary functions on ciphertexts, including comparisons, which
are essential operations in sorting algorithms. However, compar-
isons remain among the most expansive operations in FHE.

Sorting encrypted data plays a crucial role in privacy-preserving
data analysis, especially within the realm of machine learning. In
this context, sorting is often critical for both secure model training
and prediction, where data must be organized or indexed without
revealing sensitive information. A famous example is the selection
of the k-nearest neighbors (k-NN) from encrypted data [2, 20, 39]
that we also use as an illustration of the effectiveness of our solution.
There are also other innovative applications of sorting encrypted
data in federated learning such as aggregating encrypted gradients
[19]. Moreover, the development of efficient sorting algorithms for
encrypted data also extends to the domain of database management.
Secure databases that operate on encrypted data need sorting to
support queries that involve ordering or range searches. Efficient en-
crypted sorting enhances the functionality of encrypted databases,
enabling more complex queries while ensuring data confidentiality
[28].

Our contribution. This work introduces a novel approach to
sorting encrypted data by harnessing the oblivious properties of
TFHE’s Look-Up-Tables (LUTs). Indeed, by treating LUTs as an
array data structure, we can leverage certain operations in TFHE
that provide efficient blind read and write capabilities. This allows
us to adapt the so-called counting sort algorithm for encrypted data.
This represents, to the best of our knowledge, the first comparison-
free sorting algorithm for encrypted data, eliminating the need
for costly comparison operations that traditionally require extra
precision bits in TFHE. We showcase the practical benefits of our
method by incorporating it into a tournament style top-k selection
algorithm, which we then employ to build an efficient private k-NN
classifier that outperforms the current state of the art.

Outline. In this paper, we delve into the recent advancements
in sorting algorithms for encrypted data using homomorphic en-
cryption. We examine the different methodologies in the literature,
and provide a comprehensive explanation of our approach, and
how it leverages certain operations of the TFHE cryptosystem. The
structure of this paper is as follows: Section 2 introduces the neces-
sary tools and background information on the TFHE cryptosystem.
Section 3 reviews existing techniques and the adaptation of tradi-
tional sorting algorithms to the encrypted context. Section 4 details
our proposed approach with an analysis of both time complexity
and noise analysis. Section 6 presents the experimental results of
our sorting algorithm and its application to private inference on
privacy-preserving machine learning models.
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2 Preliminaries
In this section, after introducing the notation used in the paper, we
present the necessary background on TFHE’s cryptosystem.

2.1 Notation
Let 𝑝 be a power of 2. We denote by Z𝑝 the space of messages and by
⟦𝑚⟧ the TFHE encryption of a message𝑚 ∈ Z𝑝 . We also make use
of the Kronecker delta function 𝛿𝑖, 𝑗 , which equals 1when 𝑖 = 𝑗 and 0
otherwise. Using this notation, we can define the one-hot encoding
of an integer 𝑖 as the bit vector𝛿𝑖 = (𝛿𝑖,0, . . . , 𝛿𝑖,𝑝−1) ∈ {0, 1}𝑝 , which
contains a single 1 at index 𝑖 and 0s elsewhere. Other notations are
defined in the text whenever needed.

2.2 The TFHE Cryptosystem
The TFHE encryption scheme, proposed in 2016 [14, 15], is based
on the security of the Learning With Errors (LWE) problem and its
ring variant, the Ring-LWE (RLWE) problem.

2.2.1 Ciphertext Types. In the TFHE cryptosystem, several types
of ciphertexts are defined depending on the nature of the plaintext
and the encryption method employed. We define here the different
types of ciphertexts along with some notations we use in this paper.

LWE Ciphertexts. A message 𝑚 ∈ Z𝑝 can be encrypted as a
LWE ciphertext ( ®𝑎, 𝑏) such that 𝑏 =

∑𝑛−1
𝑖=0 𝑎𝑖 · 𝑠𝑖 + Δ𝑚 + 𝑒 where

𝑠 = (𝑠0, . . . , 𝑠𝑛−1) ∈ Z𝑛2 is the secret key and 𝑒 is sampled from a
Gaussian distribution of standard deviation 𝜎LWE.

RLWE Ciphertexts. A set of message (𝑚0, . . . ,𝑚𝑁−1) ∈ Z𝑁𝑝 can
be seen as a polynomial message 𝑀 (𝑋 ) and can be encrypted as
an RLWE ciphertext (𝐴(𝑋 ), 𝐵(𝑋 )) such that 𝐵(𝑋 ) = 𝐴(𝑋 ) · 𝑆 (𝑋 ) +
Δ𝑀 (𝑋 ) + 𝐸 (𝑋 ) where the coefficients of 𝐸 are sampled from a
Gaussian distribution of standard deviation 𝜎RLWE.

LUT Ciphertexts. Additionally, [5] introduced Look-Up-Table
(LUT) ciphertexts, which are essentially RLWE ciphertexts with
a redundancy of 𝑁

𝑝
for each coefficient of the polynomial 𝑀 (𝑋 )

as shown in Figure 1. We explain later, in Section 2.2.3, why this
redundancy is important.

Fig. 1. Illustration of a RLWE ciphertext (top) with redundancy shown in
gray boxes, which implements a LUT ciphertext (bottom) where each box
represents an element in Z𝑝 (here 𝑝 = 8).

The Δ term, which we call encoding factor, is used to encode
the messages in the most significant bits of the ciphertext. The
ciphertext modulus 𝑞 is usually instantiated as 𝑞 = 264 and Δ =

𝑞

2𝑝 .
This allow a bit of padding that serves to manage a well known
problem of negacyclity in TFHE. The vector ®𝑎 in the case of LWE
and 𝐴(𝑋 ) in the case of RLWE are commonly called the mask. The
terms 𝑏 in the case of LWE and 𝐵(𝑋 ) in the case of RLWE are
the body. In this paper, ciphertexts are denoted within brackets
to indicate their type. For instance, ⟦𝑀⟧LUT = ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT

represents the message 𝑀 = (𝑚0, . . . ,𝑚𝑝−1) encrypted as a LUT
ciphertext, while ⟦𝑚⟧LWE is an LWE ciphertext and [𝑚]LWE is a
trivially encrypted LWE ciphertext (that is a ciphertext whose mask
and noise are set to 0).

2.2.2 Classical Homomorphic Operations. As in all homomorphic
encryption schemes based on the LWE problem, the basic opera-
tions that can be performed on ciphertexts are as follows. Note that
GLWE (General LWE) indicates that the operation applies to both
LWE and RLWE ciphertexts:

• Addition: (⟦★⟧GLWE, ⟦★⟧GLWE) → ⟦★⟧GLWE. Given two cipher-
texts 𝑐1 = (𝑎1, 𝑏1) and 𝑐2 = (𝑎2, 𝑏2), the addition operation com-
putes a new GLWE ciphertext 𝑐3 = (𝑎3, 𝑏3) where 𝑎3 = 𝑎1 + 𝑎2
and 𝑏3 = 𝑏1 + 𝑏2.
• Absorption: (★, ⟦★⟧GLWE) → ⟦★⟧GLWE. This operation multi-
plies a plaintext value𝑚 with a GLWE ciphertext 𝑐 = (𝑎, 𝑏) by
computing (𝑚 · 𝑎,𝑚 · 𝑏). Note that this is the only multiplication
that can be performed in TFHE (i.e the multiplication of two
GLWE ciphertexts is not supported).

2.2.3 TFHE’s operations. TFHE provides several building blocks
for performing homomorphic operations on ciphertexts. The main
operations used in this paper are:

• Blind Rotation (BR): (⟦★⟧LWE, ⟦★⟧LUT) → ⟦★⟧RLWE. This op-
eration is used to privately rotate the polynomial 𝑀 (𝑋 ) (en-
crypted as an RLWE ciphertext) by ⟦𝑖⟧LWE coefficients.
• Sample Extraction (SE): (★, ⟦★⟧RLWE) → ⟦★⟧LWE.
This operation extracts a coefficient from the polynomial𝑀 (𝑋 ) =∑𝑁−1
𝑖=0 𝑚𝑖𝑋

𝑖 encrypted as an RLWE ciphertext, resulting in an
LWE ciphertext ⟦𝑚 𝑗⟧LWE. The LWE ciphertext is generated by
selecting specific coefficients from the RLWE input.
• Key Switching (KS): ⟦★⟧LWE → ⟦★⟧LWE.
This operation switches the secret key or parameters of an LWE
ciphertext to new ones by homomorphically re-encrypting the
ciphertext with a different key.
• Pub. Functional Key Switch (PFKS): {⟦★⟧LWE} → ⟦★⟧RLWE.
Introduced in [17] (Algorithm 2), this operation allows for the
compact representation of multiple LWE ciphertexts into a single
RLWE ciphertext, effectively packing several LWE ciphertexts
into one.

In our implementation, each blind rotation operation is preceded
by a key switch. We denote 𝑡𝐵𝑅 as the combined execution time
of these two operations, and E𝐵𝑅 as their cumulative impact on
the ciphertext noise variance. Similarly, we use 𝑡𝑃𝐹𝐾𝑆 and E𝑃𝐹𝐾𝑆
to represent the execution time and noise variance impact of the
PFKS operation. We omit the Sample Extraction operation from
this analysis as it has negligible execution time and introduces no
additional noise. These notations are summarized in Table 1.

Table 1: Notation for the time and noise impact of TFHE
operations used in this paper

Operation Time Variance
KS + BR 𝑡𝐵𝑅 E𝐵𝑅
PFKS 𝑡𝑃𝐹𝐾𝑆 E𝑃𝐹𝐾𝑆
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The redundancy in a LUT ciphertext is mainly important to
guarantee the correctness of the bootstrapping operation. Indeed,
the LWE ciphertext used in the Blind Rotation operation serves
as an index to select the correct coefficient from the LUT cipher-
text. However, this LWE ciphertext incorporates a gaussian noise 𝑒
which is bounded by 𝑁 /𝑝 after the so-called Modulus Switching
operation (see [18] for more details). This bound gives exactly the
size of the redundancy of the coefficients in the RLWE ciphertext
implementing the LUT. These sequences of consecutive coefficients
in the RLWE ciphertext implementing a LUT are generally called
boxes. During the (functional) bootstrapping operation, each box
corresponds to a specific message𝑚𝑖 of the LUT ciphertext. When
the Blind Rotation is performed, ⟦𝑖⟧LWE points to the 𝑖-th box con-
taining the message𝑚𝑖 in the LUT. Thus, the redundancy ensures
that, despite the random error present in ⟦𝑖⟧LWE, the Sample Ex-
traction operation will still select the correct message𝑚𝑖 as long as
the noise 𝑒 is smaller than the redundancy.

2.3 Counting Sort and porting challenges
Counting sort is an interesting and well-known sorting algorithm,
historically attributed to [32], that, unlike many other classical
sorting algorithms, is not based on the use of comparisons. As such,
the Ω(𝑛 log𝑛) lower bound on time complexity of comparison-
based sorting does not apply to it [26]. Instead it achieves worst-
case performance (usually noted O(𝑛 + 𝑘)) scaling linearly with
both the size of the input and its range of values. This is ideal since
we use LUT ciphertexts to represent encrypted arrays of 𝑝 integers
modulo 𝑝 , so in our case 𝑛 = 𝑘 = 𝑝 .

To highlight the challenge of porting the counting sort algorithm
to the encrypted domain, we first present it in its classical form
(Algorithm 1). The procedure can be summarized as follows.

(1) Build a count array
(2) Compute its running sum
(3) Reconstruct the sorted array
After step 2, the running sum array effectively tracks for each

𝑖 < 𝑝 how many input elements are less than or equal to 𝑖 . If each
element of the input array were distinct, these would in turn be the
correct indices, starting at 1, where they belong in the sorted array.
To account for duplicates, the running sums are decremented as they
are visited, in reverse, so as to maintain the algorithms’s stability.
The stability property refers to the ability of the sorting algorithm
to maintain the original input order in the output whenever some
of the ordered elements are equal.

It is worth noting that, like sorting networks, counting sort
is, in essence, data oblivious. That means that it may seem FHE
friendly, in the sense that porting the algorithm does not necessarily
require to adapt its control flow. However, keeping its O(𝑛 + 𝑘)
time complexity in an oblivious implementation in the encrypted
domain is a challenge. Indeed, given an array of encrypted values
𝑚0, . . . ,𝑚𝑝−1, the naive implementation of fetching the element
𝑚𝑖 at the encrypted index 𝑖 , or adding the encrypted value 𝑥 to
the encrypted value𝑚𝑖 at encrypted index 𝑖 is inefficient (i.e. O(𝑛)
instead of O(1)).

For the first operation (which we’ll call blind array access), that
would be computing𝑚·𝛿𝑖 =

∑𝑝−1
𝑗=0 𝑚 𝑗𝛿𝑖, 𝑗 , which relies on computing

𝑝 comparisons (one for each 𝛿𝑖, 𝑗 ) and 𝑝 multiplications/additions,

Algorithm 1: Counting Sort
Input : An array [𝑚0, . . . ,𝑚𝑝−1] of length 𝑝
Output :The sorted array

1 𝐶 ← [0, . . . , 0]
// Build the count array

2 for 𝑖 ← 0 to 𝑝 − 1 do
3 𝐶𝑚𝑖

← 𝐶𝑚𝑖
+ 1

4 end
// Compute the running sum

5 for 𝑖 ← 1 to 𝑝 − 1 do
6 𝐶𝑖 ← 𝐶𝑖 +𝐶𝑖−1
7 end
8 𝑅 ← [0, . . . , 0]

// Reconstruct the sorted array

9 for 𝑖 ← 𝑝 − 1 to 0 do
10 𝐶𝑚𝑖

← 𝐶𝑚𝑖
− 1

11 𝑅𝐶𝑚𝑖
←𝑚𝑖

12 end
13 return 𝑅

leading to O(𝑝) FHE operations. Therefore, the total complexity
of the sort becomes O(𝑝2). As for the blind array add operation,
it would require adding the value 𝑥𝛿𝑖, 𝑗 into every𝑚 𝑗 , once again
requiring 𝑝 comparisons and 𝑝 multiplications/additions. Instead, in
the remainder of this paper, wewill show how both these operations
can be implemented using a single Blind Rotation, assuming the
encrypted messages are packed into a LUT ciphertext.

3 Related Work
Oblivious sorting. The problem of sorting encrypted data without

decrypting it has been widely studied for its applications to cloud
computing security and private databases. [12] investigated the
effectiveness of partition-based sorting like quicksort and observed
that, for FHE encrypted data, it performed worse than the much
simpler bubble sort algorithm. This has been attributed to the fact
that both end up making the same number of blind comparisons,
but the quicksort port has more added complexity to become data
oblivious, where bubble sort naturally is. To further reduce time,
they proposed lazy sort, a mix of bubble sort and insertion sort that
needed fewer recrypt operations.

In their review, [12] showed how porting traditional sorting algo-
rithms to FHE affects their time complexities. The main takeaway
is that simple O(𝑛2) sorts like bubble sort or insertion sort per-
form essentially the same, the partition-based sorts like quicksort
and mergesort, originally O(𝑛 log𝑛), degrade when becoming data
oblivious to O(𝑛2), but the already data-oblivious sorting networks,
like Batcher’s odd-even merge sort [6] or the bitonic sort maintain
their O(𝑛 log2 𝑛) time complexity.

Later, Cetin et al. [8–10] introduced the Direct and Greedy sort
algorithms. Their method is designed to reduce the multiplicative
depth of the algorithms, in order to control noise growth, and there-
fore optimize the wall time of otherwise quadratic algorithms by
allowing selection of smaller parameter sizes and therefore perform
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better. Building on this, [25] proposed a faster blind comparison
algorithm, which further improves Direct Sort.

For their work on oblivious top-𝑘 selection, Cong et al. [20]
implemented a truncated version of the batcher’s odd-even merge
sorting network for TFHE using the comparison operator from [39].
Even though their work applies specifically to the top-k problem,
when setting 𝑘 = 𝑛 their implementation is a good reference frame
for Batcher’s odd-even merge sort in TFHE.

Recently, [24] proposed an extension to the 2-way sorting net-
work for a prime 𝑘 , called the 𝑘-way sorting network. Their method
reduces the depth in terms of the comparison operation from
O(𝑙𝑜𝑔22𝑛) to O(𝑘𝑙𝑜𝑔2𝑘𝑛), therefore improving performance for small
𝑘 . Their method scales remarkly well with batching and parallel
processing, but uses an approximate comparison function and is
therefore inherently inexact.

The general trend we can notice from the state of the art is that
algorithms that are naturally designed to be data oblivious tend to
perform better in the encrypted domain. This idea is our motivation
to explore in this paper another well known data oblivious sorting
algorithm, the counting sort.

Table 2: Oblivious Sorting Algorithm comparison

ref algorithm complexity scheme
[8] Direct Sort O(𝑛2) LTV
[25] Direct Sort O(𝑛2) BGV
[20] Odd-Even Merge Sort O(𝑛 log𝑛) TFHE
[24] 𝑘-way Merge Sort O(𝑛 log𝑛) CKKS
Ours Counting Sort O(𝑛) TFHE

Table 2 summarizes the complexity and cryptosystems used by
both the state of the art and our contribution. Please note that
implementations using the LTV, BGV and CKKS cryptosystems
are batched versions of the algorithm and benefit from a SIMD
approach. They therefore sort multiple arrays in better amortized
time but have the disadvantage that they require the same long time
if they only want to sort one array. All the schemes are exact (given
good noise management) except CKKS, which is approximate by
nature.

Private𝑘-Nearest Neighbors. The problem of finding the𝑘 nearest
neighbors of a query vector in a private manner has been widely
studied in the literature [2, 20, 27, 29, 31, 38, 39]. The related works
closest to ours are those of [2, 20, 39] who proposed to leverage fully
homomorphic encryption, and more precisely the TFHE scheme, to
perform private non-interactive k-NN inference. In [39] a method is
introduced to build a matrix of closeness where the (𝑖, 𝑗) elements
of this matrix is set to 1 if the 𝑖-th point of the model is closer than
the 𝑗-th point to the query vector. To build this matrix, the authors
introduced an elegant way to perform distance computation that
we also use in this paper and detail in Section 5.2. This matrix is
then used to compute a score between 0 and 𝑘 where the higher
the score, the closer vector 𝑖 is to the query vector. Based on this
work, [2] proposed a method to compute the most frequent labels
of the 𝑘 nearest neighbors of the query vector through a majority
vote. To do so, they use the sum of the lines of the closeness matrix
as a mask to compute the frequency of each label in the 𝑘 nearest

neighbors of the query vector. But the performance showed in the
paper does not seem to be far from the one of [39]. To this date,
the state of the art for private k-NN inference leveraging FHE is
the work of [20] who unearthed an old sorting algorithm that is
naturally data-oblivious and thus FHE-friendly. However, because
TFHE comparators require additional padding bits, their algorithm
performs worse in practice than it theoretically should.

4 Oblivious sorting algorithm
In this section, we first present read and write primitives developed
in RevoLUT that we will use for building our sorting algorithm.
RevoLUT [3], which stands for Rust Efficient Versatile Oblivious
Look-Up-Tables, is a comprehensive open-source library built on
tfhe-rs [37] for manipulating LUT ciphertexts. RevoLUT leverages
LUTs as first class objects, enabling efficient oblivious operations
such as array access or permutation directly within the table. We
believe that RevoLUT can be of independent interest for the design
of oblivious algorithms. Later in the section, we present our Blind
Counting Sort algorithm, and then detail how we used it as a sub-
routine in our Blind Top-k Selection algorithm for private k-NN
inference.

4.1 Read and Write operations
4.1.1 Blind Array Access. Introduced in [4], Blind Array Access
(BAA) is a first building block that enables access to an encrypted
index in a LUT. This is achieved by using the Blind Rotate procedure,
and then extracting the sample at index 0 from the resulting RLWE
ciphertext.

Algorithm 2: Blind Array Access (BAA)
Input : An encrypted index ⟦𝑖⟧LWE

A LUT ciphertext ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT
Output :A LWE ciphertext ⟦𝑚𝑖⟧LWE

1 ⟦𝑟𝑜𝑡𝑎𝑡𝑒𝑑⟧LUT ← 𝐵𝑅(⟦𝑖⟧LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
2 ⟦𝑚𝑖⟧LWE ← 𝑆𝐸 (0, ⟦𝑟𝑜𝑡𝑎𝑡𝑒𝑑⟧LUT)
3 return ⟦𝑚𝑖⟧LWE

4.1.2 Blind Array Add (BAAdd). This second building block is some
form of blind write operation in the LUT. For this we implemented
Blind Array Add (BAAdd), which adds to the i-th message of the
given LUT the value of x. A Blind Array Assignment could easily
be devised by first using Blind Array Access to fetch the current
value, and subtract it from the given x before running Blind Array
Add. This would double the blind rotation cost and was left aside
since it is not required for our purpose, but could help for some
other algorithms.

A caveat of this approach is that the ⟦𝑥𝛿𝑖⟧LUT is most likely mis-
aligned due to the noise present in the rotation index. This affects
the frontiers of the redundancy boxes present in LUT ciphertexts. A
way to avoid error propagation is to Sample Extract every message
from the LUT and pack them in a fresh LUT.

The time cost of these operations follows directly from that of
Blind Rotate (𝑡𝐵𝑅) and the Public Functional Key Switch (𝑡𝑃𝐹𝐾𝑆 ).
In both cases, the cost is comparatively negligible if the provided
argument is trivially encrypted. That is, the estimated time for
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Algorithm 3: Blind Array Add (BAAdd)
Input : An encrypted index ⟦𝑖⟧LWE

A LUT ciphertext ⟦𝑚⟧LUT
An encrypted value ⟦𝑥⟧LWE

Output :A LUT ciphertext ⟦𝑚 + 𝑥𝛿𝑖⟧LUT
1 ⟦𝑥𝛿0⟧LUT ← 𝑃𝐹𝐾𝑆 (⟦𝑥⟧LWE)
2 ⟦𝑥𝛿𝑖⟧LUT ← 𝐵𝑅(−⟦𝑖⟧LWE, ⟦𝑥𝛿0⟧LUT)
3 return ⟦𝑚⟧LUT + ⟦𝑥𝛿𝑖⟧LUT

Fig. 2. Illustration of 𝐵𝐴𝐴𝑑𝑑 (⟦4⟧LWE, ⟦1, 2, 6, 2, 4, 6, 7, 6⟧LUT, ⟦1⟧LWE )
with 𝑝 = 8. The red areas at the boundaries of the redundancy boxes
represent errors due to the noise in the LWE encryption of ⟦4⟧LWE. If the
noise in the LWE ciphertext were zero, the boxes would be perfectly aligned.
However, since we have no control over this noise, except that it does not
exceed (𝑁 /2𝑝 ) , we can only be certain that the center of the boxes remains
accurate.

BAAdd (𝑡𝐵𝐴𝐴𝑑𝑑 ) and BAA (𝑡𝐵𝐴𝐴) will depend on if the rotation
index is trivially encrypted ([𝑖]LWE) or not (⟦𝑖⟧LWE), and, for BAAdd
specifically, if the added value is trivially encrypted ([𝑥]LWE) or not
(⟦𝑥⟧LWE).

Table 3: Time approximations for Blind Array operations

𝑡𝐵𝐴𝐴𝑑𝑑
𝑡𝐵𝐴𝐴[𝑥]LWE ⟦𝑥⟧LWE

[𝑖]LWE - 𝑡𝑃𝐹𝐾𝑆 -
⟦𝑖⟧LWE 𝑡𝐵𝑅 𝑡𝐵𝑅 + 𝑡𝑃𝐹𝐾𝑆 𝑡𝐵𝑅

4.2 Blind Counting Sort
Building on the previous blind read and write operations, we can
now present the first blind sort algorithm whose number of blind
rotations required (the most expensive basic operation in TFHE)
scaling linearly with the size of the input array.

Algorithm. We propose Algorithm 4, porting the classical count-
ing sort to operate on encrypted arrays represented as LUT cipher-
texts. We can see that it closely follows its classical counterpart,
Algorithm 1, except that the array operations are implemented
using BAA (Algorithm 2) and BAAdd (Algorithm 3).

Time complexity. The algorithm we propose uses primarily Blind
Rotate and PFKS operations, which are the most expensive in TFHE.
So we can approximate its time complexity as, ignoring the Blind
Rotate calls on trivially encrypted indices

4𝑝 · 𝑡𝐵𝑅 + 2𝑝 · 𝑡𝑃𝐹𝐾𝑆

Algorithm 4: Blind Counting Sort (BCS)
Input :A LUT ciphertext ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT
Output :A sorted LUT

1 [𝐶]LUT ← [0, . . . , 0]LUT
2 for 𝑖 ← 0 to 𝑝 − 1 do
3 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)

// 𝐶𝑚𝑖
← 𝐶𝑚𝑖

+ 1
4 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝑚𝑖⟧LWE, ⟦𝐶⟧LUT, [1]LWE)
5 end
6 for 𝑖 ← 1 to 𝑝 − 1 do
7 ⟦𝐶𝑖−1⟧LWE ← 𝐵𝐴𝐴( [𝑖 − 1]LWE, ⟦𝐶⟧LUT)

// 𝐶𝑖 ← 𝐶𝑖 +𝐶𝑖−1

8 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 ( [𝑖]LWE, ⟦𝐶⟧LUT, ⟦𝐶𝑖−1⟧LWE)
9 end

10 , [𝑅]LUT ← [0, . . . , 0]LUT
11 for 𝑖 ← 𝑝 − 1 to 0 do
12 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)

// 𝐶𝑚𝑖
← 𝐶𝑚𝑖

− 1
13 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝑚𝑖⟧LWE, ⟦𝐶⟧LUT, [−1]LWE)

// 𝑅𝐶𝑚𝑖
←𝑚𝑖

14 ⟦𝐶𝑚𝑖
⟧LWE ← 𝐵𝐴𝐴(⟦𝑚𝑖⟧LWE, ⟦𝐶⟧LUT)

15 ⟦𝑅⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝐶𝑚𝑖
⟧LWE, ⟦𝑅⟧LUT, ⟦𝑚𝑖⟧LWE)

16 end
17 return ⟦𝑅⟧LUT

where 𝑡𝐵𝑅 is the time it takes to execute a Blind Rotate, and 𝑡𝑃𝐹𝐾𝑆
the time required for a PFKS.

Box centering. Whenever a LUT gets blindly rotated, it de-centers
the boxes, due to the noise in the index ciphertext. However, in this
algorithm, the blindly rotated LUTs are discarded and not re-used
in further blind rotations, so this error margin does not increase. It
is important to note that upon completion, the resulting LUT is the
sum of many decentered LUTs, and as such a few of its coefficients
at the boxes frontiers are incorrect. To alleviate this issue, the caller
can Sample Extract all boxes and re-pack a freshly centered LUT if
they wish.

Noise growth analysis. In the first loop, the count LUT (initially
noiseless) gets added into 𝑝 times from the result of a blind rotation
over a noiseless LUT, so its noise grows up to 𝑝E𝐵𝑅 . In the second
loop, the count LUT gets added into 𝑝 times from the result of a
packing of a noisy LWE extracted from the previous count LUT.
This gives us a noise growth of order

∑𝑝

𝑖=0 𝑖E𝑃𝐹𝐾𝑆 =
𝑝 (𝑝−1)

2 E𝑃𝐹𝐾𝑆 .
In the third loop, the count LUT, gets added into 𝑝 times in the
same manner as in the first loop (from a noiseless LUT), so it grows
by an additional 𝑝E𝐵𝑅 . Therefore, the total noise of the count LUT
is bounded by

2𝑝E𝐵𝑅 +
𝑝 (𝑝 − 1)

2
E𝑃𝐹𝐾𝑆

The resulting LUT (initially noiseless) gets added into 𝑝 times
from the result of a blind rotation of a packed LUT from an input
LWE. Note that since the noise of a blind rotation is independant
of the noise of its index, the result LUT noise is independant of the
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count LUT noise. Therefore the result LUT noise grows up to(
𝑝∑︁
𝑖=0
E𝑚𝑖

)
+ 𝑝E𝑃𝐹𝐾𝑆 + 𝑝E𝐵𝑅

If we assume that all initial messages are encrypted with the same
standard deviation, i.e., E𝑚𝑖

= 𝜎2LWE for every 𝑖 , then the noise
growth for the sorted LWE ciphertexts using BCS can be expressed
as

𝑝
(
𝜎2LWE + E𝑃𝐹𝐾𝑆 + E𝐵𝑅

)
(1)

Interestingly, the running sum part of the algorithm is the cheap-
est in terms of time complexity but turns out to be the source of
the quadratic noise growth. For 𝑝 large enough, this will require
bootstrapping some count values during the second loop in order
to maintain the correctness of the algorithm.

4.3 Blind Top-k selection
The Blind Top-𝑘 problem asks, given a list of 𝑑 encrypted elements,
to return encryptions of the 𝑘 smallest (or equivalently biggest)
elements. This will be an important building block for our k-NN in-
ference procedure, and so we will implement it using our proposed
sorting algorithm as a sub-routine. For 𝑘 < 𝑝 , we can implement
Blind Top-𝑘 selection in a tournament fashion, using BCS as a
(𝑘, 𝑝)-selector. An illustration of the blind Top-𝑘 selection is given
in Figure 3 and the algorithm is given in Algorithm 5.

Algorithm 5: Blind Top-𝑘

Input :A vector of 𝑑 ciphertexts (⟦𝑚𝑖⟧LWE)𝑑−1𝑖=0 .
A selection length 𝑘 .

Output :A vector of 𝑘 LWE ciphertexts corresponding to
the 𝑘 smallest elements of the input vector

1 𝜂 ← ⌈𝑑
𝑝
⌉ // Number of chunks

2 for 𝑖 ← 0 to 𝜂 − 1 do
// Packing the elements into 𝜂 LUTs ciphertexts

3 ⟦𝐷𝑖⟧LUT ← PFKS(⟦𝑚𝑖𝑝+0⟧LWE, . . . , ⟦𝑚𝑖𝑝+𝑝−1⟧LWE)
// Sorting the LUTs

4 ⟦𝑆𝑖⟧LUT ← BCS(⟦𝐷𝑖⟧LUT) ⊲ or KV-BCS (see Section 5.3)
// Selecting the 𝑘 smallest elements

5 for 𝑗 ← 0 to 𝑘 − 1 do
6 ⟦𝑅𝑖𝑘+𝑗⟧LWE ← BAA( [ 𝑗]LWE, ⟦𝑆𝑖⟧LUT)
7 end
8 end
9 if 𝜂 = 1 then
10 return (⟦𝑅𝑖⟧LWE)𝑘−1𝑖=0
11 end
12 return Blind Top-𝑘 ((⟦𝑅𝑖⟧LWE)𝑘𝜂−1𝑖=0 , 𝑘)

Complexity. The base case for the method is, when given a list
of up to 𝑝 elements, a single call to BCS suffice, and then the first 𝑘
elements of the sorted LUT can be extracted to give the answer. If
more than 𝑝 elements are provided, then a tournament round starts.
The elements are first split into 𝜂 chunks of up to 𝑝 elements, which
are being independantly sorted via BCS and the 𝑘 first elements
are extracted from each chunk. The remaining elements are passed

Fig. 3. Illustration of the Blind Top-𝑘 selection algorithm for 𝑘 = 3 and
𝑝 = 8. The input LWE ciphertexts are first split into chunks of size 𝑝 . Each
chunk is then packed into a LUT through a Public Functional Key Switch
(PFKS) and processed by a Blind Counting Sort (BCS) to select its 𝑘 smallest
elements using multiple Sample Extraction (SE). The selected elements from
each chunk are then recursively processed until only 𝑘 elements remain.

to another tournament round, until less than 𝑝 are left, at which
point splitting is no longer required.

To express this more formally, we start with 𝑢0 = 𝑑 elements.
After completing the first round, the remaining number of elements
𝑢1 is defined by

𝑢1 = 𝑘 ·
⌊
𝑑

𝑝

⌋
+min(𝑘, 𝜏)

where 𝜏 = 𝑑 mod 𝑝 . This leads us to a recursive expression for the
number of elements remaining after the 𝑖-th round:

𝑢𝑖+1 = 𝑘 ·
⌊
𝑢𝑖

𝑝

⌋
+min(𝑘, 𝜏𝑖 )

where 𝜏𝑖 = 𝑢𝑖 mod 𝑝 . Consequently, the total number of BCS calls
is given by

𝑈 =

(
𝑟−1∑︁
𝑖=0

⌊
𝑢𝑖

𝑝

⌋)
+ 1 (2)

where 𝑟 represents the number of rounds required until fewer than
𝑝 elements remain (i.e. 𝑢𝑟 ≤ 𝑝).

Given that we can determine the number of BCS calls, we can
also determine the number of Blind Rotations in Algorithm 5. As
mentioned in Section 4.2, our BCS algorithm requires 4𝑝 BR op-
erations. Therefore, focusing on the number of BR operations, we
get:

𝑁BR =𝑈 · 4𝑝
Next, we also determine the number of PFKS, named 𝑁PFKS in

Algorithm 5. Since our BCS algorithm requires 4𝑝 PFKS operations
and there are𝑈 calls to PFKS, we get:

𝑁PFKS =𝑈 · (4𝑝 + 1)
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Noise growth. If we assume that all initial messages are encrypted
with the same standard deviation 𝜎LWE, then each round of the
tournament will add the noise of a BCS and a PFKS to each elements.
Therefore, the noise’s variance of the 𝑘 resulting ciphertexts for the
blind Top-𝑘 is given by

𝑝𝑟
(
𝜎2LWE + 2E𝑃𝐹𝐾𝑆 + E𝐵𝑅

)
where 𝑟 is the number of rounds in the tournament.

Comparison with related work. Contrary to the sorting network
of [20], our sorting algorithm does not require comparators. How-
ever, the common andmost expensive operations in both algorithms
are Blind Rotation (BR) and Public Functional Key Switch (PFKS),
so here we focus on comparing the number of BR and PFKS in both
algorithms. To date and to the best of our knowledge, there is no
homomorphic comparator with TFHE that requires no extra bit
of precision relative to the size of the data. The comparator used
in [20], which is based on the one in [11], does not evade this limi-
tation. Therefore, when processing 4-bit data (𝑝 = 16), they need
to use 5-bit parameters (𝑝 = 32), which adds practical complexity
to their approach.

In Table 4, we report the running times of the Blind Rotation and
Public Functional Key Switch operations for two different values
of 𝑝 in the tfhe-rs library and in Figure 4 we give the estimated
running time of our blind Top-𝑘 selection algorithm compared
to [20] when processing data with the same precision (i.e. elements
are from Z16).

Table 4: Running times (in ms) of Blind Rotation and PFKS
in tfhe-rs [37] library for 𝑝 = 16 and 𝑝 = 32.

𝑝 Blind Rotate (𝑡𝐵𝑅) Public Functional Key Switch (𝑡𝑃𝐹𝐾𝑆 )
16 18 3
32 43 12

We can notice from the estimated running times in Figure 4 that
our algorithm is very efficient for smaller value of 𝑘 . For instance,
for 𝑘 = 5, our algorithm outperforms the one of [20] with 𝑘 = 3
and 𝑘 = 5 regardeless of 𝑑 .

Limitations. One drawback of our approach is that as 𝑘 increases,
the performance does not scale linearly - the running time grows
more rapidly as 𝑘 approaches 𝑝 . Therefore, our approach isn’t nec-
essarily optimal when 𝑘 ∈ Ω(

√
𝑑) contrarily to [20]. Another limi-

tation arising from the core TFHE cryptosystem is the difficulty to
process integers of more than 8 bits (i.e 𝑝 has to be lower than 28).
Moreover, because the precision and the size of the LUTs are linked
in TFHE, we cannot natively process arrays larger than 256 either
(even 256wouldn’t be practical because of the size of the keys). Note
also that as 𝑝 increases, the noise growth from the running sum of
BCS leads to more errors in the count LUTs if we don’t bootstrap
the count values as explained in the end of Section 4.2. These errors
may accumulate throughout the tournament and could result in an
incorrect top-𝑘 result.

5 Private k-Nearest Neighbors classification
In this section, we present our study of applying the Blind Counting
Sort algorithm to the private classification on k-Nearest Neighbors

Fig. 4. Estimated running time of our blind Top-𝑘 selection algorithm com-
pared to [20] when processing data with the same precision (i.e. elements
are from Z16). Running times are calculated based on the number of PFKS
and BR operations, with current performance metrics shown in Table 4.

use case using the top-k algorithm described in the previous section.
We first describe the pipeline of the private k-Nearest Neighbors
classification and then we detail each step of the pipeline. In this
section, we denote 𝛾 the dimension of the feature vectors and 𝑑 the
number of points in the model.

5.1 Pipeline and threat model
In a classical setting of a Machine-Learning-as-a-Service (MLaaS)
platform, a client who wants to perform a k-NN classification with
a classifier in the cloud will send its data (i.e a vector of features
𝑓 ) to the server. The server owns the model, i.e the set of points
(𝑚1, . . . ,𝑚𝑑 ) and the corresponding labels (𝑙1, . . . , 𝑙𝑑 ). Thus, after
receiving the input data 𝑓 from the client, the server will compute
the distance between 𝑓 and all the points of the model (i.e 𝑑𝑖 =
| |𝑓 −𝑚𝑖 | |). Then, to find the 𝑘-nearest neighbors of 𝑓 , it has to select
the 𝑘 labels corresponding to the 𝑘 smallest distances and return
the most frequent one selected by a majority vote.

To enable privacy-preserving k-NN classification, we must adapt
this pipeline to work with encrypted data, specifically develop-
ing methods to compute distances and select the 𝑘 smallest labels
while operating on an encrypted query vector 𝑓 . Regarding the
distance computation, [20] adapted the method of [39] to compute
the squared distance between an encrypted vectors and a plaintext
vector using the homomorphic properties of the TFHE cryptosys-
tem. This method is detailed in Section 5.2. Once all the distances
have been computed, in order to select the 𝑘 labels associated to
the 𝑘 smallest distances, we use a tweaked versions of the Blind
Counting Sort algorithm to implement a top-k selection on the
encrypted distances and retrieve the 𝑘 corresponding labels. This
is detailed in Section 5.3.

Threat model. In this work, similarly to [2, 20, 39], we are placing
ourselves in a scenario where a client wants to perform a k-NN clas-
sification in the cloud. Following standard assumptions in MLaaS,
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the server is considered honest-but-curious, meaning that it does
not deviate from the protocol although it may try to infer informa-
tion about the client’s data. Moreover, as in [2, 20, 39], the server
deleguates the majority vote at the end of the top-k selection to the
client. Hence, the client learns more information about the server’s
model than in a classical setting. One can argue that if a malicious
client wants to infer information about the server’s model, it would
be better to perform the majority vote on the server side. A simple
way to do it, is to homomorphically count the frequency of each
label in the top-k selection, as done in the first step of Algortihm 4
and then perform an homomorphic argmax on this frequency array.

5.2 Distances computation using TFHE
Before the computation of the distances, the client’s feature vector
𝑓 = (𝑓0, 𝑓1, . . . , 𝑓𝛾−1) must be encoded and encrypted in a particular
way to enable the server to compute the squared distances. Indeed,
as explained in [20], the squared distance between two vectors 𝑓
and𝑚 is given by

𝑑𝑖 = | |𝑓 −𝑚 | |2 = | |𝑓 | |2 − 2⟨𝑓 ,𝑚⟩ + ||𝑚 | |2

This gives a sort of "symmetric" formula where the left term | |𝑓 | |2
is owned by the client and the right term | |𝑚 | |2 is owned by the
server. Thus each party can precompute their part of the formula
independently. The challenge lies in computing the middle term
of the formula, 2⟨𝑓 ,𝑚⟩. This can be done by using a polynomial
multiplication as shown in [20]. More formally, if we set

𝐹 (𝑋 ) =
𝛾−1∑︁
𝑖=0

𝑓𝑖 · 𝑋 𝑖 and𝑀 (𝑋 ) =
𝛾−1∑︁
𝑖=0

𝑚𝛾−𝑖−1 · 𝑋 𝑖

The𝛾−1 coefficient of the polynomial product 𝐹 (𝑋 )·𝑀 (𝑋 ) is exactly
⟨𝑓 ,𝑚⟩ (a more detailed proof is given in the appendix of [39]). To
support that in the encrypted domain, the client produces 𝑐 =

⟦𝐹 (𝑋 )⟧RLWE and sends it to the server. Then, the server performs
an Absorption between 𝑐 and𝑀 (𝑋 ), and SampleExtract the 𝛾 − 1
coefficient of the resulting RLWE ciphertext to get ⟦⟨𝑓 ,𝑚⟩⟧LWE.
The server can then compute the distances by adding the three
terms of the squared distance formula :

⟦𝑑𝑖⟧LWE = ⟦||𝑓 | |2⟧LWE − 2⟦⟨𝑓 ,𝑚⟩⟧LWE + ⟦||𝑚 | |2⟧LWE

This simple method to compute the distance is extremly efficient,
taking less than 1% of the total computation time of the k-NN al-
gorithm. However, for certain datasets where 𝛾 is large, to avoid a
noise explosion we need either to increase the plaintext modulus 𝑝
or to use the method explained in [20] (Section 4.3) to reduce the
precision homomorphically. In a nutshell, if the first computation
made by the server is done using a plaintext modulus 𝑝large (which
is the case with the distance computation), the clients encrypts
it data (from Z𝑝 ) by using the encoding factor Δlarge =

𝑞

𝑝large
in-

stead of Δ =
𝑞

2𝑝 . Then after the computation of the distances, when
the server wants to reduce the plaintext modulus to 𝑝 , it has to
"recenter" the plaintext space by subtracting Δlarge · (𝑟−1)

2 from each
ciphertext. Here 𝑟 =

𝑝large
𝑝

is the precision ratio between the two
moduli. Finally, a bootstrapping operation is performed to reduce
the noise and obtain a ciphertext in the smaller plaintext space. In
our case, since the precision reduction technique is used for the
distance computation only, we will use the notation 𝑝dist to denote

the large plaintext modulus used for the distance computation. This
precision reduction increases the running time of the distance com-
putation as it needs more bootstrapping operations (one for each
distance) but has the advantage of allowing keeping the plaintext
modulus 𝑝 as lower as possible to reduce the computational costs
of the sorting algorithm.

5.3 Selecting the k-Nearest Neighbors: Blind
Sorting Key-Values

Once the distances are computed, we need to select the labels
of the top-k elements. The idea is to use the BCS algorithm as a
subroutine to implement a top-k selection from a (𝑘, 𝑝)−𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 in
a tournament-style fashion. The specificity of this step is that we do
not need to send the 𝑘 smallest distances to the client, but rather the
labels associated with those. However, the top-k selection algorithm
returns the 𝑘 smallest distances, not the labels. To address this issue,
we need to see the sorting process as a permutation of elements
and tweak the BCS algorithm to mirror this permutation onto the
corresponding labels. By doing so, at the end of the tournament,
we obtain the top-𝑘 distances along their associated labels and only
return the labels to the client.

Time complexity. Sorting the first 𝜅 ≤ 𝑝 elements (using the
tweaks from Algorithm 7 in Appendix A) of 𝜆 LUT ciphertexts
(using the tweaks from Algorithm 8 in Appendix B) takes time

(3 + 𝜆)𝜅 · 𝑡𝐵𝑅 + (𝑝 + 𝜆𝜅) · 𝑡𝑃𝐹𝐾𝑆 (3)

We verify that for 𝜆 = 1 and 𝜅 = 𝑝 , this yields the original time
complexity of BCS as presented in Section 4.2. For each round of
our tournament method, 𝜅 will be equal to 𝑝 for all buckets, except
possibly the last, where it will be at most 𝑘 if not null.

Table 5: Number of BR and PFKS for the blind top-𝑘 used in
the private 𝑘-nn inference

𝑘 𝑑 [20] Ours
BR PFKS BR PFKS

3 40 186 372 190 148
175 862 1724 995 668
269 1332 2664 1565 1022
457 2272 4544 2775 1794
1000 4986 9972 6060 3846

5 40 250 500 210 156
175 1196 2392 1215 810
269 1856 3712 1860 1212
457 3172 6344 3200 2054
1000 6970 13940 7225 4582

The numbers for [20] are derived from their reported compara-
tor count, multiplied by the 2 BR and 4 PFKS they use in their
implementation. The numbers for our solution are computed by
tournament simulation plugging in the time complexity formula
(Equation 3) with 𝜆 = 2 and 𝜅 computed on the fly, accounting for
the 2 PFKS before each call to BCS. Even though the number of BR
is slightly lower for [20] for some values of 𝑘 and 𝑑 , recall that we
use smaller parameters and that, henceforth, our Blind Rotations
are much cheaper as shown in Table 4.
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Algorithm 6: Private k-Nearest Neighbors (k-NN)
Input : Encrypted feature vector ⟦𝐹⟧RLWE and its squared

norm ⟦||𝑓 | |2⟧LWE, the 𝑑 model points
(𝑚1, . . . ,𝑚𝑑 ) ∈ (Z𝛾𝑝 )𝑑 and their respective labels
(𝑙1, . . . , 𝑙𝑑 ) ∈ Z𝑑𝑝 , number of neighbors 𝑘

Output :The labels of the 𝑘 nearest neighbors of ⟦𝐹⟧RLWE
encrypted as LWE ciphertexts

// Distance computation in Z𝑝dist

1 for 𝑖 ← 1 to 𝑑 do
2 𝑀𝑖 (𝑋 ) ←

∑𝛾−1
𝑗=0 𝑚𝑖, 𝑗 · 𝑋 𝑗

3 𝑡 ← [||𝑚𝑖 | |2]LWE
4 ⟦⟨𝑓 ,𝑚𝑖⟩⟧LWE ← SE(𝛾 − 1,Absorption(⟦𝐹⟧RLWE, 𝑀𝑖 ))
5 ⟦𝑑𝑖⟧LWE ← ⟦||𝑓 | |2⟧LWE − 2⟦⟨𝑓 ,𝑚𝑖⟩⟧LWE + 𝑡
6 end

// Precision reduction if 𝑝dist > 𝑝

7 if 𝑝 < 𝑝dist then
8 for 𝑖 ← 1 to 𝑑 do
9 𝑟 ← 𝑝dist

𝑝

10 ⟦𝑑𝑖⟧LWE ← ⟦𝑑𝑖⟧LWE − [ Δdist · (𝑟−1)
2 ]LWE

11 ⟦𝑑𝑖⟧LWE ← Bootstrap(⟦𝑑𝑖⟧LWE)
12 end
13 end

// Top-k selection using the Key-Value BCS

14 (𝐷, 𝐿) ←
(
(⟦𝑑𝑖⟧LWE)𝑑𝑖=1, ( [𝑙𝑖 ]LWE)𝑑𝑖=1

)
15 Λ← BlindTopk((𝐷, 𝐿), 𝑘) ⊲ With KV-BCS
16 return Λ

5.4 Noise and complexity analysis
Complexity. The complexity of our k-NN algorithm is essentially

that of our Blind Top-k, as the distance computation is negligible
and does not consume any Blind Rotations, except in the case
𝑝dist > 𝑝 where a bootstrapping is required to reduce the precision
of each distance. In this case, 𝑑 Blind Rotations need to be added to
𝑁BR to obtain the number of BR in the private k-NN described in
Algorithm 6. Additionally, since the Key-Value BCS adds 𝑝 Blind
Rotations to the original BCS, its impact on the Blind Top-k leads
to a total of 𝑁BR (1 + 𝑝) Blind Rotations. To sum up, the number of
Blind Rotations in our private k-NN is

𝑁BR + 𝑝𝑈 + 𝑑

where𝑈 is given in Section 4.3 (Equation 2).

Noise growth. Our algorithm starts with inputs freshly encrypted
by the client, so the variance of the noise are respectively 𝜎2RLWE
for the feature vector ⟦𝐹⟧RLWE and 𝜎2LWE for its squared norm
⟦||𝑓 | |2⟧LWE. Then, the first operation that adds noise is the absorp-
tion of all𝑀𝑖 by ⟦𝐹⟧RLWE, and since this is a Z[𝑋 ]-linear operation,
the noise variance of the results is

| |𝑀𝑖 | |22 · 𝜎2RLWE

as stated in [16], Table 1. Then the next operation adding noise is
the arithmetic operation in line 5 leading to the distances 𝑑𝑖 with
noise variance

𝜎2LWE + 4 ( | |𝑀𝑖 | |2 · 𝜎RLWE)2

Then depending on the value of 𝑝dist, we have two cases, either
𝑝dist > 𝑝 or 𝑝dist = 𝑝 . Lets focus first on the case when 𝑝dist > 𝑝 . In
this case, by design, the precision reduction step uses a bootstrap
on every distance to recenter the plaintext space. This bootstrap
refreshes the noise of the ciphered distances (replacing the vari-
ance of distances’s noise by E𝐵𝑅 ). However, it is important to note
that if the dimension of the data is large (i.e | |𝑀𝑖 | |2 is large), the
noise variance of the distances can be too large to be corrected by
the bootstrap, thus leading to a wrong result. This phenomenon
happens in one of the datasets used in our experiments (see Sec-
tion 6). In the second case (𝑝dist = 𝑝), the precision reduction is not
necessary so the noise variance is the same as before the precision
reduction step. To summarize, at the line 13 of the algorithm, the
distances’s noise variance is given by

E𝑑𝑖 =
{
E𝐵𝑅 if 𝑝dist > 𝑝
𝜎2LWE + 4 ( | |𝑀𝑖 | |2 · 𝜎RLWE)2 if 𝑝dist = 𝑝

Finally, a Blind Top-𝑘 algorithm is performed on the distances’s
noise variance leading to a total noise variance of

𝑝𝑟
(
E𝑑𝑖 + 2E𝑃𝐹𝐾𝑆 + E𝐵𝑅

)
where 𝑟 is the number of rounds in the tournament.

6 Experiments
In this section, we present the experimental results of the Blind
Sort algorithm and its associated private kNN selection. These
experiments were performed on a computer running Ubuntu 24.04
with an Intel i9-11900KF CPU clocked at 3.5GHz and 64GB of RAM.
The Blind Counting Sort algorithm and its prefix-based variant
for blind Top-k selection are implemented and available in the
open-source library RevoLUT [3]. For the 𝑘-NN, the code source is
publicly available on GitHub1.

6.1 Sort algorithm
The Table 6 presents the execution times for the Blind Sorting
algorithm for various 𝑝 denoting both the plaintext modulus and the
array size. In this table, we compare the performances with numbers
taken from both [25] and [20]. For [25], it is a BGV batched version
of [8]’s Direct Sort using their improved comparison operator. It
handles 9352 arrays simultaneously, so the total column records the
wall time their algorithm takes, and the amortized column tracks
the time per array. It is worth noting that, unlike with [20] and BCS,
their method sorts encrypted 8-bits integers regardless of 𝑝 . The
performances of [20] are obtained by running their implementation
of Batcher’s odd-even merge sorting network (not truncated) on the
same hardware as ours. Due to their comparison operator requiring
an extra precision bit, sorting 𝑝 integers modulo 𝑝 actually requires
to work on a plaintext modulus of 2𝑝 , which makes Blind Rotations
and PFKS more expensive comparatively.

Our algorithm performs much better than [25]’s total wall time,
almost catching up to their amortized time. This means that many
arrays (thousands) are needed for the batched method to be more
effective. As for the comparison to [20], we notice that the gap
scales with 𝑝 , from merely 3 times faster to over 40 times faster.

1https://github.com/sofianeazogagh/knn
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Fig. 5. The steps required to perform a private k-NN classification. The first step is the computation of the distances between the client’s feature vector 𝑓 and
the server’s model (𝑚1, . . . ,𝑚𝑑 ) . The illustrated circle expands to encompass the first 𝑘 points (i.e., the 𝑘 nearest neighbors). For example, here, the slightly
darker circle is for 𝑘 = 2, while the lighter one is for 𝑘 = 3. Depending on the dataset, an additional middle step is to reduce the precision of the distances. The
second step is the selection of the 𝑘 smallest distances and their associated labels.

Table 6: Computation times in seconds for sorting 𝑝 elements
in Z𝑝 . The numbers prefixed with ∼ are extrapolated.

[25] [20] BCS
𝑝 total amortized
4 186.28 0.02 ∼0.1 0.1
8 867.46 0.09 0.95 0.32
16 3652.23 0.39 8.65 0.83
32 14769.23 1.579 77.96 3.79
64 60351.02 6.453 833.79 17.76
128 ∼246232 ∼26 ∼8913 125.5

6.2 Private k-Nearest Neighbors inference
In order to assess the performance of our solution for private k-
Nearest Neighbors inference, we compare the execution times of
both our secure 𝑘-NN algorithm and the ones of [39] and [20]
applied to two datasets: Breast Cancer [36] and MNIST [1]. The
breast cancer dataset features come from images of cell nuclei from
a breast mass. These features capture details like size, shape, and
texture of the nuclei, helping to tell apart cancerous from non-
cancerous cells, so it is a binary classification problem. The MNIST
dataset consists of 28x28 pixel images of handwritten digits. Each
pixel can take integer values in the range 0 to 255, representing the
grayscale intensity of the digit. The features of the MNIST dataset
are the pixel values themselves, which are used to classify the digit
into one of ten categories (0-9). For these experiments, we use the
parameters presented in Table 7.

6.2.1 Pre-processing and distances modulus.

2https://docs.zama.ai/tfhe-rs/references/fine-grained-apis/shortint/parameters

Table 7: The parameters used in our experiments for the 𝑘-
NN classification ensuring 128-bit of security2. The TFHE
parameters notations used are the ones in TFHE’s original
paper [16].

Parameter Value

TFHE

LWE dimension (𝑛) 742
RLWE polynomial degree (𝑁 ) 2048
LWE standard deviation (𝜎LWE) 2−40
RLWE standard deviation (𝜎RLWE) 2−2
Decomp params bootstrapping (𝑔, ℓ) (223, 1)
Decomp params KS (𝑔, ℓ) (23, 5)
Decomp params PFKS (𝑔, ℓ) (223, 1)
Ciphertext modulus (𝑞) 264
Plaintext modulus (𝑝) 24

𝑘-NN

Dimension of breast cancer (𝛾 ) 30
Dimension of MNIST (𝛾 ) 64
Distances modulus breast cancer (𝑝dist) 24
Distances modulus MNIST (𝑝dist) 25
Dataset message space breast cancer Z2
Dataset message space MNIST Z2
Size of the dataset breast cancer 569
Size of the dataset MNIST 1797

Pre-processing. Both datasets are binarized as in [20, 39]. Specif-
ically, all the features below 𝑝 are set to 0 and the features above
𝑝 are set to 1. This is a usual pre-processing procedure for k-NN
classification as explained in [33]. For the MNIST dataset, before
binarizing, we reduced the dimension to get a 8x8 pixel image and
then the value of each pixel (the grayscale value) is divided by 300
as it is done in [20, 39].
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Distances modulus. For the breast cancer dataset, as 𝛾 = 30 is
relatively low, we do not need to use the precision reduction tech-
niques mentioned at the end of Section 5.2, thus 𝑝dist = 𝑝 . However,
for the binarized MNIST dataset, as 𝛾 = 64 is higher, we needed
to use this precision reduction technique. In our experiments, it
was sufficient to compute the distances with 𝑝dist = 25 and then
reduce them to 𝑝 = 24 for top-𝑘 selection. Recall that, in our nota-
tion, we do not include the usual padding bits in TFHE to manage
negacyclicity as explained in Section 2.2.1.

6.2.2 Computation time. Hereafter, we detail the performances of
the private 𝑘-NN classification for different values of 𝑘 and 𝑑 for
both the cancer and MNIST datasets, in Tables 8 and 9 respectively.
As shown in the tables, our approach significantly outperforms both
[39] and [20]. This performance improvement is mainly due to our
use of Blind Counting Sort which allows us to work with smaller
TFHE parameters than comparison-based approaches. Indeed, while
[20] needs to double the plaintext modulus to accommodate their
comparison operator, our sorting algorithm operates directly on
the input modulus, making basic operations like Blind Rotate and
PFKS more efficient.

Table 8: Computation time in seconds for the breast cancer
dataset.𝜏 is the number of threads used for the parallelization.
The numbers prefixed with ∼ are extrapolated by the authors
of [20].

𝑘 𝑑 [39] [20] Ours
𝜏 = 4 𝜏 = 1 𝜏 = 4 𝜏 = 1

3 10 4 1.2 2.4 0.79 0.75
30 ∼18 3.7 8.2 1.87 2.77
50 ∼51 5.4 14.1 2.39 4.77
200 ∼830 18.7 56.4 7.55 19.29

5 10 ∼2 1.6 2.9 0.77 0.76
30 ∼18 5.5 12.0 2.16 3.06
50 ∼52 8.3 20.6 3.41 5.75
200 ∼831 29.1 83.9 8.73 23.03

The reason some lines show a performance decrease when multi-
threading versus single-threading in our implementation is that
when 𝑑 ≤ 𝑝 our tournament-style algorithm does not split the input
at all and we only suffer the overhead of multi-threading for no
gain.

6.2.3 Accuracy. To evaluate the accuracy of our private 𝑘-NN clas-
sification, we implemented a simple version of the 𝑘-NN algorithm
working in cleartext. Then, we split the dataset into two sets: one
for selecting the 𝑑 best points of the dataset, i.e. for training, and
one for classifying the query point using the 𝑘 nearest neighbors,
i.e. for testing. In order to select the best 𝑑 points of the dataset,
we performed 100 trials and selected the points that yielded the
best accuracy among these trials. We then compare the accuracy of
our private 𝑘-NN classification to the clear case over 200 randomly
selected queries. The accuracy results reported are averaged over
the 200 clients queries.

For the breast cancer dataset, the accuracy of our private 𝑘-
NN is in line with the clear case for all the values of 𝑘 and 𝑑 we

Table 9: Computation time in seconds for the MNIST dataset.
𝜏 is the number of threads used for the parallelization. The
numbers prefixed with ∼ are extrapolated by the authors of
[20].

𝑘 𝑑 [39] [20] Ours
𝜏 = 4 𝜏 = 1 𝜏 = 4 𝜏 = 1

3 40 30 6.2 12.9 2.41 4.33
175 696 23.5 56.9 6.85 19.03
269 1524 35.6 87.5 10.66 29.31
457 4248 58.6 147.8 17.20 49.44
1000 ∼20837 124.0 323.4 34.81 109.23

5 40 ∼33 8.4 18.3 2.72 4.92
175 ∼636 31.8 81.2 8.50 22.82
269 ∼1505 46.4 125.6 12.96 35.25
457 ∼4351 77.8 212.4 18.88 57.39
1000 ∼20859 164.5 464.2 39.37 125.29

experimented. This is explained by the fact that the noise in the
encrypted labels after prediction is small enough to not change the
result of the majority vote performed by the client compared to the
clear case.

For the MNIST dataset however, the accuracy is in most cases 1-2
percentage points below the clear case. The results are compiled in
Table 10. Interestingly, one can notice that for 𝑘 = 3 and 𝑑 = 40, the
accuracy of our private 𝑘-NNwas higher than in the clear case. This
can be explained by the fact that for some queries, the overflowing
noise in the encrypted labels after prediction changes the result of
the majority vote performed by the client compared to the clear
case, leading to correct classification in these instances. This is
especially true for small values of 𝑘 as it is easier to tip the vote
in those cases. Note that the accuracy can be improved by using
other forms of quantization. For instance, [20] uses a ternarized
version of the MNIST dataset that improves their accuracy over the
binary one we used. Additionally, other quantization techniques,
such as those based on the Diaconis-Freedman rules [22], could
also be adopted to further improve the accuracy. The purpose of
presenting the accuracy of our private 𝑘-NN is to demonstrate how
much its use can degrade the accuracy of the algorithm.

Table 10: Accuracy (in % of correct classifications) of our pri-
vate 𝑘-NN classifications over the MNIST dataset compared
to the clear case.

𝑑

𝑘 Type 40 175 269 457 1000

3 Ours 71.33 85.67 92.33 89.67 93.67
Clear 70.00 86.33 92.67 90.00 95.33

5 Ours 73.33 87.33 88.00 92.00 92.67
Clear 75.67 84.67 88.33 94.67 94.00

Bandwidth. In the scenario we are considering in this paper,
where the server owns the model and the client wishes to perform a
𝑘-NN classification, there is an offline phase during which the client
transmits the necessary cryptographic materials to the server before
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any classification takes place. In this phase, similar to [20], the client
sends three keys: the bootstrapping key (BSK), the keyswitching
key (KSK), and the public functional key switching key (PFKSK).
And in the online phase, the client sends its query composed of
one RLWE ciphertext corresponding to ⟦𝐹 (𝑋 )⟧RLWE and one LWE
ciphertext corresponding to ⟦||𝑓 | |2⟧LWE (see Section 5.2 for more
details). Then, after performing the prediction, the server replies
with 𝑘 LWE ciphertexts corresponding to the labels of the 𝑘 nearest
neighbors. Since we use smaller TFHE parameters than [20], our
key sizes and ciphertext sizes are smaller as pointed out in Table 11.
To give an idea of the total bandwidth for different instanciation of
𝑘 , we provide a comparison in Table 12.

Table 11: Comparison with [20] of key sizes and ciphertext
sizes.

LWE RLWE BSK KSK PFKSK
[20] 6.7 KB 64 KB 106 MB 20.3 MB 32 MB
Ours 5.9 KB 32 KB 47.6 MB 7.5 MB 8 MB

Table 12: Bandwidth consumption during the online phase
for different values of 𝑘 . The offline phase bandwidth con-
sumption is not depending on 𝑘 .

Phase 𝑘 [20] Ours

Online Phase 3 90.8 KB 55.6 KB
5 104.3 KB 67.4 KB

Offline Phase 158.3 MB 63.1 MB

7 Conclusion
In this paper, we introduced the first oblivious sorting algorithm
that operates directly on encrypted data without requiring any com-
parisons between ciphertexts. By leveraging this novel sorting ap-
proach, we developed an efficient top-k algorithm and demonstrated
its effectiveness through a k-nearest neighbors implementation that
significantly outperforms the state-of-the-art. The adaptation of
the counting sort algorithm to the encrypted domain was made
possible through the RevoLUT library and its powerful LUT read
and write operations. The key contribution of our work lies in
eliminating the need for ciphertext comparisons, which removes
the requirement for additional precision bits in the representation.
This allows us to work with exactly the same precision as the input
data, leading to more efficient computations while maintaining the
same level of accuracy. Our experimental results on both the breast
cancer and MNIST datasets demonstrate substantial performance
improvements, with speedups of up to 4x compared to previous
approaches.

Future work. We have presented BCS, an efficient and scalable
oblivious sorting algorithm. However, our implementation is cur-
rently limited to work with 𝑝 integers modulo 𝑝 , for 𝑝 a small power
of two. The asymptotic gain of our linear time algorithm over the
state of the art linearithmic time is only beneficial if the method
can operate on larger arrays. The first step towards that would

be to decouple the size of the array and element bit-width, as is
typically done in the classical counting sort algorithm. Here are
some research trails on how to tackle these limitations but those
will be the object of future work. One way to handle larger array
size could be using BCS as a comparison building block (or sub-sort
routine) to build a bigger sorting network. As for the element size
scaling, that would require decomposing each element into multiple
smaller messages. Together, these ideas would pave the way for
porting the radix sort algorithm by, for instance, representing 8-bit
integers as pairs of blocks (or digits) of 4-bit messages, and sorting
lexicographically by digits.
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A Prefix Blind Counting Sort
We decribe in Algorithm 7 a way to tweak the Blind Counting Sort
algorithm to sort only the first 𝜅 elements of a given LUT. This
prefixed version of the Blind Counting Sort algorithm is essentially
the same, except the first and last loops are truncated. This version
requires approximately 4𝜅 · 𝑡𝐵𝑅 + (𝜅 + 𝑝) · 𝑡𝐾𝑆 time.

Algorithm 7: Prefix Blind Counting Sort (PBCS)
Input :A LUT ciphertext ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT

A prefix length 𝜅
Output :A LUT whose 𝜅 first elements are sorted

1 ⟦𝐶⟧LUT ← ⟦0, . . . , 0⟧LUT
2 for 𝑖 ← 0 to 𝜅 − 1 do

// 𝐶𝑚𝑖
← 𝐶𝑚𝑖

+ 1
3 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
4 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝑚𝑖⟧LWE, ⟦𝐶⟧LUT, [1]LWE)
5 end
6 for 𝑖 ← 1 to 𝑝 − 1 do

// 𝐶𝑖 ← 𝐶𝑖 +𝐶𝑖−1

7 ⟦𝑥⟧LWE ← 𝐵𝐴𝐴( [𝑖 − 1]LWE, ⟦𝐶⟧LUT)
8 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 ( [𝑖]LWE, ⟦𝐶⟧LUT, ⟦𝑥⟧LWE)
9 end

10 ⟦𝑅⟧LUT ← ⟦0, . . . , 0⟧LUT
11 for 𝑖 ← 𝜅 − 1 to 0 do

// 𝐶𝑚𝑖
← 𝐶𝑚𝑖

− 1
12 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
13 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝑚𝑖⟧LWE, ⟦𝐶⟧LUT, [−1]LWE)

// 𝑅𝐶𝑚𝑖
←𝑚𝑖

14 ⟦𝑚𝑖⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚0, . . . ,𝑚𝑝−1⟧LUT)
15 ⟦𝐶𝑚𝑖

⟧LWE ← 𝐵𝐴𝐴(⟦𝑚𝑖⟧LWE, ⟦𝐶⟧LUT)
16 ⟦𝑅⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝐶𝑚𝑖

⟧LWE, ⟦𝑅⟧LUT, ⟦𝑚𝑖⟧LWE)
17 end
18 return ⟦𝑅⟧LUT

B Key-value Blind Counting Sort
We describe in Algorithm 8 a way to tweak the Blind Counting
Sort algorithm to sort any array of tuples by their first element.
More precisely, it can be used to sort a set of 𝜆 vectors of size 𝑝 by
the elements of first vector. This tensorized version of the Blind
Counting Sort algorithm is basically the same as the original one,
except in the last loop where we need to apply the permutation on
all the other elements of the tuples represented as LUT ciphertexts.
This version requires (4 + 𝜆)𝑝 · 𝑡𝐵𝑅 + (2 + 𝜆)𝑝 · 𝑡𝐾𝑆 time.

Algorithm 8: Key-value Blind Counting Sort (KV-BCS)
Input :A vector of 𝜆 LUT ciphertexts(

⟦𝑚0
0, . . . ,𝑚

0
𝑝−1⟧LUT, . . . , ⟦𝑚𝜆−1

0 , . . . ,𝑚𝜆−1
𝑝−1⟧LUT

)
Output :A vector of 𝜆 LUT ciphertexts sorted by the first

one(
⟦𝑚0

𝜋0 , . . . ,𝑚
0
𝜋𝑝−1⟧LUT, . . . , ⟦𝑚

𝜆−1
𝜋0 , . . . ,𝑚

𝜆−1
𝜋𝑝−1⟧LUT

)
1 ⟦𝐶⟧LUT ← ⟦0, . . . , 0⟧LUT
2 for 𝑖 ← 0 to 𝑝 − 1 do

// 𝐶𝑚𝑖
← 𝐶𝑚𝑖

+ 1
3 ⟦𝑚0

𝑖 ⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚0
0, . . . ,𝑚

0
𝑝−1⟧LUT)

4 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝑚0
𝑖 ⟧LWE, ⟦𝐶⟧LUT, [1]LWE)

5 end
6 for 𝑖 ← 1 to 𝑝 − 1 do

// 𝐶𝑖 ← 𝐶𝑖 +𝐶𝑖−1

7 ⟦𝑥⟧LWE ← 𝐵𝐴𝐴( [𝑖 − 1]LWE, ⟦𝐶⟧LUT)
8 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 ( [𝑖]LWE, ⟦𝐶⟧LUT, ⟦𝑥⟧LWE)
9 end

10 for 𝑗 ← 0 to ℓ − 1 do
11 ⟦𝑅 𝑗⟧LUT ← ⟦0, . . . , 0⟧LUT
12 end
13 for 𝑖 ← 𝑝 − 1 to 0 do

// 𝐶𝑚𝑖
← 𝐶𝑚𝑖

− 1
14 ⟦𝑚0

𝑖 ⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚0
0, . . . ,𝑚

0
𝑝−1⟧LUT)

15 ⟦𝐶⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝑚0
𝑖 ⟧LWE, ⟦𝐶⟧LUT, [−1]LWE)

// 𝑅𝐶𝑚𝑖
←𝑚𝑖

16 ⟦𝐶𝑚0
𝑖
⟧LWE ← 𝐵𝐴𝐴(⟦𝑚0

𝑖 ⟧LWE, ⟦𝐶⟧LUT)
17 for 𝑗 ← 0 to 𝜆 − 1 do
18 ⟦𝑚 𝑗

𝑖
⟧LWE ← 𝐵𝐴𝐴( [𝑖]LWE, ⟦𝑚 𝑗

0, . . . ,𝑚
𝑗

𝑝−1⟧LUT)
19 ⟦𝑅 𝑗⟧LUT ← 𝐵𝐴𝐴𝑑𝑑 (⟦𝐶𝑚0

𝑖
⟧LWE, ⟦𝑅 𝑗⟧LUT, ⟦𝑚 𝑗

𝑖
⟧LWE)

20 end
21 end
22 return (⟦𝑅0⟧LUT, . . . , ⟦𝑅𝜆−1⟧LUT)
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