
Client-Efficient Online-Offline Private Information Retrieval
Hoang-Dung Nguyen

Virginia Tech

nhd@vt.edu

Jorge Guajardo

Robert Bosch LLC — RTC

jorge.guajardomerchan@us.bosch.com

Thang Hoang

Virginia Tech

thanghoang@vt.edu

Abstract
Private Information Retrieval (PIR) permits clients to query data

entries from a public database hosted on untrusted servers while

preserving client privacy. Traditional PIR models suffer from high

computation and/or bandwidth overhead due to linear database

processing for privacy. Recently, Online-Offline PIR (OO-PIR) has

been proposed to improve PIR practicality by precomputing query-

independent materials to accelerate online access. While state-of-

the-art OO-PIR schemes (e.g., S&P’24, CRYPTO’23) successfully

reduce online processing cost to sublinear levels, they still impose

substantial bandwidth and storage burdens on the client, especially

when operating on large databases.

In this paper, we propose Pirex, a new two-server OO-PIR with

semi-honest security that offers minimal client inbound bandwidth

and storage cost while retaining the sublinear processing efficiency.

The Pirex design is simple with most operations are naturally low-

cost and streamlined (e.g., XOR, PRF, modular arithmetic). We have

fully implemented Pirex and evaluated its real-world performance

using commodity hardware. Our results showed that Pirex outper-
forms existing OO-PIR schemes by at least two orders of magnitude.

With a 1 TB database, Pirex takes 55ms to retrieve a 4 KB entry,

compared with 9-30s by state-of-the-art. For practical databases

with billions of 4 KB entries, Pirex only takes 16 KB of inbound

bandwidth, which is up to three orders of magnitude more efficient.

Keywords
Private Information Retrieval; Distributed Computation

1 Introduction
Public databases provide the users with seamless access to diverse

data resources, including entertainment (e.g., audio/video), social

(e.g., news media), economic (e.g., stock market), healthcare (e.g.,

medical, pharmaceutical data), geospatial services (e.g., locations,

directions). These databases eliminate the need for local storage

and allow users to retrieve the latest information remotely. While

these databases are not considered sensitive, privacy concerns arise

as the users’ queries on them can still, inadvertently reveal sensitive

information, such as their personal preferences, current location,

health conditions, or revenue streams [55, 56]. A database server can

deliberately misuse the users’ query behaviors (i.e. user locations

[51], search frequency [69]) and expose them to malicious activities

such as price and search discrimination [38, 57].

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(3), 192–212

© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0095

To preserve the user privacy, Chor et. al [26] proposed Private

Information Retrieval (PIR), a cryptographic primitive that permits

users to retrieve an entry in a public database without revealing to

the adversarial server which entry has been accessed. Despite its

strong privacy guarantee, PIR can be costly in terms of bandwidth

and processing overhead. Various studies have managed to reduce

the PIR bandwidth cost in single-server [17, 23, 25, 34, 42, 47, 49] and

multi-server [16, 19–21, 32, 33, 35, 70] setting, but the processing

cost remains a barrier to making PIR practical. Beimel et al. [21]

proved that under the standard computation model, any secure PIR

must incur at least linear processing cost (w.r.t the database size).

Sion et al. [66] showed that, in certain conditions, streaming entire

database is more efficient than such linear server processing.

To be more computationally efficient, PIR has been studied in

different computation models such as preprocessing [21, 22, 24,

28, 29] or batching [17, 21, 40, 48, 54]. Patel et al. [58] proposed

Online-Offline PIR (OO-PIR), a preprocessing paradigm where the

client privately precomputes query-independent hints beforehand

to accelerate online access. Corrigan-Gibbs and Kogan [29] designed

the first OO-PIR schemewithO(
√
𝑁) server computation per online

query. Later works were proposed to improve the OO-PIR efficiency

[41, 44, 72] or optimality [43, 65, 71] and achieved promising results.

Although OO-PIR achieves a sublinear server processing cost, it

poses a serious bandwidth and storage burden to the client. Most

OO-PIR schemes [28, 29, 41, 43, 44, 65, 71, 72] require the client to

store a considerable amount of hints. Specifically, for a database

with𝑁 entries of size 𝐵, the client storage is Ω(𝜆𝐵
√
𝑁) (with 𝜆 is the

security parameter). More critically, to privately read an entry, the

client is required to download from O(𝜆) to O(
√
𝑁) extra entries.

This cost is significant for practical public databases (e.g., [11–13])

with billions of entries, large-scale content distribution systems

(e.g., [36, 37, 63]), or real data platforms (e.g., [1, 2, 5, 8–10, 59])

where the entry or page size granularity can be large (e.g., 4 KB-

1MB). For example, the most efficient OO-PIR scheme to date [72]

requires nearly 160GB of client storage and 525MB of bandwidth

cost to query a 16 KB entry from a database of 2
32
entries.

Given the above limitations in client metrics of existing OO-PIR

designs, we ask the following research question:

Can we design an OO-PIR scheme with low client bandwidth and

storage overhead for large databases while retaining the sublinear

client and server processing efficiency?

1.1 Our Contributions
We answer the question affirmatively by presenting an efficient

two-server OO-PIR framework with semi-honest security called

Pirex, which stands for Private Information Retrieval with Client

Expedience. To our knowledge, Pirex is the first OO-PIR that offers

O(1) client inbound bandwidth blowup, and low client storage

192

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0095

Proceedings on Privacy Enhancing Technologies 2025(3)

Table 1: Our proposed Pirex/Pirex+ schemes vs. prior (semi-honest) OO-PIR schemes.

Scheme #S† #R†
Client Online B/W Online Computation‡ Storage Total Client Offline Computation‡

In Out Client Server Client Server Offline B/W Client Server
CK20 (PRF) [29]

2 1 O(𝜆𝐵)
˜O(𝜆2) O (𝜆𝐵)⊕ + ˜O(𝜆𝑁)p O(𝜆𝐵

√
𝑁)⊕ + O(𝜆

√
𝑁)p

˜O(𝜆𝐵
√
𝑁) O (𝐵𝑁) ˜O(𝜆𝐵

√
𝑁) ˜O(𝜆

√
𝑁)p ˜O(𝜆𝐵𝑁)⊕ + ˜O(𝜆𝑁)p

CK20 (PRP) [29] ˜O(𝜆
√
𝑁) O (𝜆𝐵)⊕ + ˜O(𝜆

√
𝑁)p O(𝜆𝐵

√
𝑁)⊕

Shi et al. [65] 2 1 O(𝜆𝐵) ˜O(𝜆2) O (𝜆𝐵)⊕ + ˜O(𝜆
√
𝑁)p ˜O(𝜆𝐵

√
𝑁)⊕ + ˜O(𝜆

√
𝑁)p ˜O(𝜆𝐵

√
𝑁) O (𝐵𝑁) ˜O(𝜆𝐵

√
𝑁) ˜O(𝜆

√
𝑁)p ˜O(𝜆𝐵𝑁)⊕ + ˜O(𝜆𝑁)p

Checklist [41] 2 1 O(𝐵) ˜O(𝜆) O (𝐵)⊕ + O(𝑁)p O(𝐵
√
𝑁)⊕ + O(

√
𝑁)p O(𝜆𝐵

√
𝑁) O (𝐵𝑁) O (𝜆𝐵

√
𝑁) O (𝜆

√
𝑁)p O(𝜆𝐵𝑁)⊕ + O(𝜆𝑁)p

TreePIR [44] 2 1 O(𝐵
√
𝑁) ˜O(𝜆) O (𝐵)⊕ + ˜O(𝜆

√
𝑁)p O(𝐵

√
𝑁)⊕ + O(

√
𝑁)p O(𝜆𝐵

√
𝑁) O (𝐵𝑁) O (𝜆𝐵

√
𝑁) O (𝜆

√
𝑁)p O(𝜆𝐵𝑁)⊕ + O(𝜆𝑁)p

Piano [72] 1 1 O(𝐵
√
𝑁) ˜O(

√
𝑁) O (𝐵)⊕ + O(𝜆

√
𝑁)p O(𝐵

√
𝑁)⊕ O(𝜆𝐵

√
𝑁) O (𝐵𝑁) O (𝐵𝑁) O (𝜆𝐵𝑁)⊕ +

O(𝜆𝑁)p
—

SinglePass [45] 2 1 O(𝐵
√
𝑁) ˜O(

√
𝑁) O (𝐵

√
𝑁)⊕ + O(

√
𝑁)p O(𝐵

√
𝑁)⊕ O(𝐵

√
𝑁) O (𝐵𝑁) O (𝐵

√
𝑁) O (

√
𝑁)p O(𝐵𝑁)⊕ + O(𝑁)p

Pirex

2

1

O(𝐵)
˜O(
√
𝑁) O (𝐵)⊕ + O(𝜆

√
𝑁)p O(𝐵

√
𝑁)⊕ O(𝜆𝐵

√
𝑁) O (𝐵𝑁) O (𝜆𝐵

√
𝑁) O (𝜆

√
𝑁)p O(𝜆𝐵𝑁)⊕ + O(𝜆𝑁)p

Pirex+ 1

˜O(
√
𝑁) +

O(𝐵) O (𝐵)F/G + O(𝜆
√
𝑁)p O(𝐵

√
𝑁)F + O(𝐵𝜆

√
𝑁)⊕ O(𝜆2

√
𝑁) O (𝐵𝑁) +O(𝜆𝐵

√
𝑁) O (𝜆𝐵

√
𝑁) O (𝜆𝐵

√
𝑁)G+

O(𝜆
√
𝑁)p

O(𝜆𝐵𝑁)F + O(𝜆𝑁)p

‡ ⊕ denotes bitwise XOR operations, F denotes finite field arithmetic operations, p denotes PRF/PRP operations, G denotes group operations. For simplicity, we use the notation

˜O(·) to hide the multiplicative polylog(𝑁) terms in the asymptotic complexity. † #S denotes the number of servers. #R denotes the number of communication rounds.

with sublinear client and server processing time. In particular, Pirex
offers desirable properties as follows:

• Minimal client inbound bandwidth: The main property of

Pirex is the minimal client inbound bandwidth that is independent

of the number of database entries. To retrieve an entry privately,

Pirex only requires the client to download four entries. This cost

is asymptotically (and concretely) lower than the state of the art

(e.g., [44, 72]) which download O(
√
𝑁) entries. The total client

bandwidth of Pirex isO(𝐵+
√
𝑁 log𝑁) compared toO(

√
𝑁 (𝜆+𝐵))

in other OO-PIR schemes [44, 72], with 𝑁 , 𝐵, 𝜆 are the number

of entries, entry size, and security parameter, respectively.

• Low client storage overhead: We present Pirex+, an extended

Pirex scheme that offers the client a low storage cost, which is

desirable for constrained client devices (e.g., mobile). Pirex+ only
requires the client O(𝜆2

√
𝑁) bits for a precomputed hint that is

independent of the entry size 𝐵, compared to
˜O(𝜆𝐵
√
𝑁) in [29]

and O(𝜆𝐵
√
𝑁) in [44, 72]. Prior works [45] also tried to reduce

this cost by 𝜆 factors but requires downloading O(
√
𝑁) entries.

Concretely, for a 1 TB database of 256 KB entries, Pirex+ only

requires 709 KB client storage, compared with 536MB, 11.5 GB

or 1.3 TB in others (i.e., two to six orders of magnitude smaller).

• Sublinear computational overhead: Pirex retains the sublinear
processing efficiency from state-of-the-art OO-PIR. The servers

perform O(𝐵
√
𝑁) low-cost operations (e.g., XOR, modular addi-

tion). The client only invokes sublinear low-cost PRF evaluations

and performs a constant amount of XOR operations.

• Extremely low end-to-end delay: Thanks to the asymptotic

bandwidth and computation costs, Pirex achieves a concretely
low end-to-end delay for public database access. Pirex requires
only simple cryptographic operations (e.g., XOR, PRF, modular

arithmetic). Under real-world settings, Pirex is up to two orders

of magnitudes faster, since it only takes 55ms to privately read

a 4KB entry in a 1 TB database, compared with 9s-30s in other

schemes (see §6 for more comprehensive experiments).

• Technique: Private Partition Retrieval. As a core building
block for Pirex, we design Private Partition Retrieval (PPR), a

protocol that permits private retrieval of an arbitrary entry from

a partitioned database with sublinear complexity. We developed

a concrete instantiation for PPR and formally proved that it

achieves the desired security.

Table 1 summarize the performance of Pirex/Pirex+ compared to

state-of-the-art OO-PIR. We analyzed the security and rigorously

proved they satisfy PIR security definition. We fully implemented

our schemes and intensively evaluated their efficiency on commod-

ity hardware. Experiments showed that Pirex/Pirex+ significantly

outperforms state-of-the-art in all online metrics, especially in large

database settings with large entry sizes. Our implementation source

code is available at https://github.com/vt-asaplab/pirex.

1.2 Technical Highlights
Pirex relies on an elegant OO-PIR blueprint from Corrigan-Gibbs

and Kogan [29] (we call it CK20 for brevity). We briefly present their

high-level idea, along with TreePIR [44] as the follow-up attempt,

and present our ideas to address the drawbacks in their designs.

CK20 [29]. CK20 operates on two non-colluding servers, Left and

Right, with two phases: offline and online. Each server maintains a

replica of a public database DB with 𝑁 entries.

In the offline phase, the client precomputes 𝑀 = ˜O(
√
𝑁) hints

H = (ℎ1, . . . , ℎ𝑀). Each hint ℎ𝑖 = (S𝑖 , 𝜌𝑖) contains a set of random
indices S𝑖 = {𝑠 (𝑖)

0
, . . . , 𝑠

(𝑖)√
𝑁−1

} and a parity 𝜌𝑖 =
⊕√

𝑁−1

𝑗=0
DB[𝑠 (𝑖)

𝑗
] that

is computed by sending the set S𝑖 to the Left server. However,

the storage cost for H is O(𝑁 log
2

𝑁) as it takes O(
√
𝑁 log𝑁) in

space per set. To reduce this cost, each S𝑖 is represented by a 𝜆-bit

PRF/PRP key sk𝑖 , resulting in O(𝑀 (𝜆+𝐵)), with 𝐵 as the entry size.

The offline bandwidth is O(𝑀 (𝜆 + 𝐵)) as 𝑀 keys are sent to the

Left server to receive 𝑀 parities.

To retrieve a desired data entry DB[𝑥] in the online access, the

idea is to recover DB[𝑥] from (S𝑖 , 𝜌𝑖), with 𝑥 ∈ S𝑖 . To do this, the

client sends a punctured set
ˆS = S𝑖 \ {𝑥} to the Right server, which

in turn, replies 𝜌 =
⊕√

𝑁−2

𝑗=0
DB[𝑠 𝑗], with 𝑠 𝑗 ∈ ˆS. To recover DB[𝑥],

the client computes DB[𝑥] = 𝜌 ⊕ 𝜌𝑖 . Since S𝑖 is partially exposed

to both servers, ℎ𝑖 needs to be replaced with a new random hint

ℎ′ = (S′, 𝜌 ′) using a refresh operation. The client samples S′ with
𝑥 ∈ S′ using bias sampling. A new offline parity 𝜌 ′ = DB[𝑥] ⊕ 𝜌 ′
is computed by sending

ˆS′ = S′ \ {𝑥} to the Left server to obtain

𝜌 ′ =
⊕√

𝑁−2

𝑗=0
DB[𝑠′𝑗]. Note that ˆS or

ˆS′ is created by removing the

desired index 𝑥 . Receiving ˆS or
ˆS′, the servers certainly learn that

the entry being accessed is not in
ˆS or

ˆS′, thereby violating PIR

security. Thus, the client performs a probabilistic puncture such

193

https://github.com/vt-asaplab/pirex

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

Figure 1: An illustration of the online phase in our proposed OO-PIR.

that a random index 𝑥 ′ ≠ 𝑥 is removed with probability
(√𝑁−1)

𝑁
,

which results in non-negligible probability of failure. To ensure

correctness, the client executes O(𝜆) protocol instances in parallel.

Note that there exists a trade-off in the online phase of CK20, where

the client overhead depends on if the sets are represented by PRF

or PRP keys. For PRF keys, since the PRF outputs a random index,

it takes O(𝑀
√
𝑁) to find which set containing index 𝑥 , but the out-

bound bandwidth is reduced to O(𝜆 log𝑁) by sending a punctured

PRF key. For PRP keys, the lookup time is O(𝑀 log𝑁), at the cost
of O(

√
𝑁 log𝑁) outbound bandwidth since PRP is not puncturable.

TreePIR [44]. To reduce both the client outbound bandwidth and

lookup time to O(𝜆 log𝑁) and O(𝑀), respectively, Lazzaretti and
Papamanthou proposed a partitioning technique combined with

puncturable PRF. DB is divided into

√
𝑁 partitions (𝑃0, . . . , 𝑃√𝑁−1

),
with 𝑃 𝑗 covers indices in the range (𝑗

√
𝑁, . . . , (𝑗 + 1)

√
𝑁 − 1). The

idea is to have each set S𝑖 = {𝑠 (𝑖)
0
, . . . , 𝑠

(𝑖)√
𝑁−1

} represented by a PRF

key sk𝑖 , where index 𝑠
(𝑖)
𝑗
is generated by an offset 𝛿

(𝑖)
𝑗
← PRF(sk𝑖 , 𝑗)

from partition 𝑃 𝑗 . Thus, an offline set S𝑖 now corresponds to an

offset vector 𝚫𝑖 = (𝛿 (𝑖)
0
, . . . , 𝛿

(𝑖)√
𝑁−1

), with 𝑠 (𝑖)
𝑗
= 𝑗
√
𝑁 + 𝛿 (𝑖)

𝑗
. To check

if 𝑥 ∈ S𝑖 in O(1) for each hint in the online, the client computes

𝑘 =
⌊

𝑥√
𝑁

⌋
, and check if 𝑥 = 𝑘

√
𝑁 + PRF(sk𝑖 , 𝑘). To recover DB[𝑥]

from the offline parity 𝜌𝑖 =
⊕√

𝑁−1

𝑗=0
DB[𝑠 (𝑖)

𝑗
], the client needs the

punctured parity of S𝑖 \ {𝑥} from the Right server. The client sends
a corresponding punctured offset vector 𝚫 = (𝛿0, . . . , 𝛿√𝑁−2

) that
is compressed under a punctured key of size O(𝜆 log𝑁) derived
from sk𝑖 . As 𝚫 has

√
𝑁 − 1 offsets, there are

√
𝑁 possible parities.

For each 𝚫 𝑗∗ = (𝛿0, . . . , 𝛿 𝑗−1, ⊥ , 𝛿 𝑗+1, . . . , 𝛿√𝑁−1
), the Right server

computes 𝜌 𝑗∗=
⊕√

𝑁−1

𝑗≠𝑗∗ DB[𝑗
√
𝑁 + 𝛿 𝑗]. To retrieve 𝜌𝑘 for recovering

DB[𝑥] =𝜌𝑘 ⊕ 𝜌𝑖 , the client can download

√
𝑁 values or execute a

single-server PIR instance (which can be costly). To refresh the hint,

the client samples a new key sk′so that 𝑥 −𝑘
√
𝑁 = PRF(sk′, 𝑘), then

sends the punctured key to the Left server to obtain 𝜌 ′
𝑘
and compute

a new parity 𝜌 ′= DB[𝑥] ⊕ 𝜌 ′
𝑘
. Note that query privacy is ensured

as by observing 𝚫 of

√
𝑁 − 1 random offsets, the servers only know

the partition of 𝑥 with
1√
𝑁
probability. Thus, TreePIR does not need

probabilistic puncture as in CK20. However, the client’s inbound
bandwidth incurs to O(𝐵

√
𝑁) due to

√
𝑁 parities transmission.

Idea 1: Patch the punctured vector using a random offset. To
reduce the client’s inbound bandwidth while retaining the efficient

client lookup, our idea is to patch the punctured vector 𝚫 generated

from PRF to operate on the partitioned database. Figure 1 illustrates

the high-level workflow of our proposed scheme to incorporate this

idea. We observe that although the partitioning technique offers

sublinear client lookup, it incurs high client bandwidth since the

punctured query vector 𝚫 removes one offset from a hidden parti-

tion, which requires the retrieval of

√
𝑁 possible answers to hide

that partition. Thus, we propose to patch 𝚫 with a random offset
¯𝛿

from the hidden partition 𝑘 as 𝚫 = (𝛿0, . . . , 𝛿𝑘−1,
¯𝛿, 𝛿𝑘+1, . . . , 𝛿

√
𝑁−1
)

(Step 2 Figure 1). The query vector now contains

√
𝑁 offsets rather

than

√
𝑁−1 offsets represented by a PRF key. Let 𝑧← 𝑘

√
𝑁+ ¯𝛿 be the

index of the patching offset
¯𝛿 in DB. In this case, the client obtains

one patched parity 𝜌 =
(⊕

𝑗≠𝑘 DB[𝑗
√
𝑁 + 𝛿 𝑗]

)
⊕ DB[𝑧] from the

Right server. While this idea reduces the client inbound bandwidth

to O(1), it also impacts the reconstruction correctness since the

client obtains 𝜌 ⊕ 𝜌𝑖 = DB[𝑥] ⊕ DB[𝑧] instead of DB[𝑥].
Idea 2: Retrieve the random patch with private partition
retrieval. To address the reconstruction correctness issue due to

patching, we need to somehow privately retrieveDB[𝑧] to compute

𝜌 ⊕ 𝜌𝑖 ⊕ DB[𝑧] = DB[𝑥]. As there are
√
𝑁 partitions and the offset

of the patching entry from the desired partition (i.e., the value
¯𝛿 of

𝑧) is arbitrary, our initial idea is to execute the standard XOR-PIR

protocol [26] on a

√
𝑁 -sized “logical” database containing DB[𝑧]

plus

√
𝑁 − 1 entries DB[z] selected randomly from every other

partition of DB (Step 3.i Figure 1). However, it is not trivial to apply

XOR-PIR on this logical database. This is because standard XOR-PIR

requires two servers to maintain the same database to evaluate the

client queries. Thatmeans both serversmust have access to the same

logical database being created for correct evaluation. Meanwhile,

it is insecure to reveal the entire logical database to both servers

since it contains DB[𝑧], which has previously been revealed to the

Right server in the patching step (Idea 1). Thus, after creating the

XOR-PIR queries for the logical database, we perform an additional

processing (Step 3.ii Figure 1) that permits the servers to evaluate

XOR-PIR as usual without disclosing the entire logical database.

We observe that in standard XOR-PIR, only the active bits in

the XOR-PIR bit queries matter as the servers only evaluate the

database entries corresponding to these bits, while omitting all

zero bits. Thus, it suffices to only reveal to each server the selected

entries in the original database that corresponds to the active bits

of XOR-PIR queries created on the logical database. Specifically,

let z = (z1, . . . , z𝑘−1, 𝑧, z𝑘+1, . . . , z√𝑁) be the index of the selected
entries (including the patch 𝑧), e be the unit vector representing the
location (i.e., partition) of 𝑧 in z (i.e., e[𝑘] = 1) and v0,v1∈{0, 1}

√
𝑁

be two random XOR-PIR queries such that v0 ⊕ v1 = e. We create

two sets T0 = {z[𝑖] : v0 [𝑖] = 1} and T1 = {z[𝑖] : v1 [𝑖] = 1} (Step 3.ii

Figure 1). Since v0 and v1 are the same, except the 𝑘-th position, 𝑧

will only appear in either T0 or T1. In this case, we distribute the set

(TL) that contains 𝑧 to the Left server and the other set (TR) to the

Right server (Step 4 Figure 1). This bit-to-set translation strategy

allows each server to obtain a set of uniformly random elements

that are independent to the patching step, thereby hiding what par-

tition is privately retrieved. On receiving the query set, each server

performs XOR-PIR evaluation as usual as𝑤L =
⊕

𝑗∈TL DB[𝑗] and

194

Proceedings on Privacy Enhancing Technologies 2025(3)

𝑤R =
⊕

𝑗∈TR DB[𝑗]. Finally, the client recovers DB[𝑧] by comput-

ing𝑤L ⊕𝑤R = DB[𝑧] (Step 5 Figure 1). Since the set size is O(
√
𝑁),

the cost to privately retrieve DB[𝑧] is O(
√
𝑁) and thus, does not

asymptotically increase the complexity of OO-PIR’s online query

protocol overall. Finally, as the retrieved patch DB[𝑧] is chosen
randomly, we show that DB[𝑧] can further be used to refresh the

consumed hint directly without requiring to send another refresh

query as in prior works [29, 44] (see §4.3).

Idea 3: Remote parities storage via additive homomorphic
encryption and oblivious write. OO-PIR paradigm (e.g., [28, 29,

41, 43–45, 65, 71, 72]) requires the client to store Ω(𝜆
√
𝑁) offline

parities 𝜌𝑖 , the size of each 𝜌𝑖 is equal to the database entry. To re-

duce the client storage, we propose to store the parities 𝜌𝑖 remotely

(under IND-CPA encryption) on the database server. As the number

of 𝜌𝑖 is sublinear, we can utilize the standard XOR-PIR protocol

[26] to privately access any 𝜌𝑖 upon a request, without worsening

the overall complexity much (see the cost of our Pirex+ in Table 1).

The challenge arises when we refresh the parities given that each

parity can be used only once due to the OO-PIR design. To perform

refresh securely, we develop an oblivious refresh buffer based on

[62] that temporarily stores refresh parities and obliviously merges

them with the offline parities over time. Another challenge when

remotely maintaining the parities is to update them according to

changes in the public database. While database updates are not

captured in PIR security model, remote parities must be updated

privately as they are individually formed by aggregating a set of ran-

dom database entries. If an entry changes and the affected parities

are updated insecurely, the server learns the index distribution per

set, compromising the privacy of client’s online queries. To update

the parities obliviously, we use Additive Homomorphic Encryption

to create an encrypted updated vector (i.e., a binary vector with

active bit at update positions), and then delegate the secure update

task to the servers via additive homomorphic property.

Putting it all together. By combining the first two ideas, the client

inbound bandwidth overhead is now minimal since it only contains

a single patched parity 𝜌 and a random DB[𝑧] from the punctured

partition, obtained by adopting the standard XOR-PIR. At the high

level, our OO-PIR design is extremely simple and computationally

efficient as the total server computational cost is still O(
√
𝑁) XOR

operations. We present two OO-PIR schemes. The first scheme

(Pirex) combines the first two ideas. The second scheme (Pirex+) is
an extension that combines all three ideas. Compared with Pirex,
Pirex+ reduces the client storage cost from O(𝜆𝐵

√
𝑁) to O(𝜆2

√
𝑁)

at the cost of having slightly heavier
˜O(
√
𝑁) server computation.

2 Preliminary and Models
Notation. [𝑛] denotes {0, 1, . . . , 𝑛 − 1}. negl(·) refers to negligible

functions and 𝜆 denotes security parameters. 𝑥
$← [𝑛] indicates 𝑥 is

randomly chosen from [𝑛]. PPT refers to Probabilistic Polynomial

Time. We denote ⊕ as the bit-wise XOR operation between two

binary strings 𝑎 and 𝑏 of size 𝑛, such that 𝑐𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 for 𝑖 ∈ [𝑛].
We denote the negation of bit 𝑏 as ¬𝑏. We denote Z𝑛 as the cyclic

group formed by a set of integers modulo 𝑛 under the addition. We

denoteG as an arbitrary cyclic group with the prime order 𝑝 , where

⟨1⟩ ∈ G is a random generator and ⟨𝑥⟩ ∈ G is a group element that

has a discrete logarithm 𝑥 ∈ Z𝑝 with base ⟨1⟩.
Pseudorandom function. We denote PRF : {0, 1}𝜆×[𝑛]→[𝑛] as a
pseudorandom function (PRF). PRF(sk, 𝑠) outputs a pseudorandom
value 𝑦 ∈ [𝑛] given a PRF key sk ∈ {0, 1}𝜆 and a seed 𝑠 ∈ [𝑛]. A
PRF is secure if given security parameter 𝜆, the output 𝑦 ∈ [𝑛] is
computationally indistinguishable from 𝑦′

$← [𝑛].
System model. Our system consists of a client and two servers

S0 and S1. Each server maintains a replica of the database DB of 𝑁

entries (each of size 𝐵) and allows the client to access an arbitrary

entry in DB. Our system is a two-server OO-PIR scheme as follows:

Definition 1. A 2-server OO-PIR scheme is a tuple of PPT algorithms

OO-PIR = (Prep,Query,Answer,Recover):
• H ← Prep(DB, 𝑁): Given database DB, with 𝑁 as the number of

entries, it outputs an offline hintH .

• (𝑄0, 𝑄1,H ∗) ←Query(𝑥,H): Given index 𝑥 and hintH , it out-

puts query 𝑄0 for server S0, 𝑄1 for S1, and an updated hintH ∗.
• R𝑙 ← Answer(𝑄𝑙 ,DB): Given an online query 𝑄𝑙 ∈ {𝑄0, 𝑄1} and
the database DB, it outputs a response R𝑙 .

• (𝑏𝑥 ,H ′) ←Recover(R0,R1,H ∗): Given hintH ∗and responses R0,

R1, it outputs the desired entry 𝑏𝑥 and an updated hintH ′.

Definition 2 (OO-PIR Correctness). A 2-server OO-PIR scheme is correct

if for any DB and H ← Prep(DB, 𝑁), given security parameter 𝜆

and an unbound number of prior queries, there exists a negligible

function negl(𝜆) for any index 𝑥 ∈ [𝑁]:

Pr

𝑏𝑥 ≠ DB[𝑥]

�������
(𝑄0, 𝑄1,H ∗) ←Query(𝑥,H)

R0 ← Answer(𝑄0,DB)
R1 ← Answer(𝑄1,DB)

(𝑏𝑥 ,H ′) ← Recover(R0,R1,H ∗)

 ≤ negl(𝜆)

Threat model. The client is trusted. The servers are semi-honest

and follow the protocol but are curious on the entry being queried

by the client. We consider static corruption, an adversary A can

corrupt either server S0 or S1 but not both, and can not adaptively

switch between two servers during the protocol execution.

Security model. We define the security of our scheme using the

Ideal/Real paradigm, such that an adversaryA statically corrupting

one server learns nothing about the entry being retrieved. Let F be

an ideal functionality that answers the query honestly. Let S be an

ideal simulator that emulates the view of the real-world adversary.

LetZ be the environment that provides inputs for all entities and

receives corresponding outputs.Z can get any adversarial views

at any time. We define the Ideal/Real world as follows:

• Ideal: In the offline, on receiving (DB, 𝑁), F notifies S about the

content of DB. S emulates the adversarial view of offline execu-

tion and replies to F with ok or ⊥. In the online, on receiving

an index 𝑥 ∈ [𝑁], F notifies S about the event (but not 𝑥). S

emulates the adversarial view of online execution and replies to

F with ok or ⊥. If S says ok, F returns the entry DB[𝑥].
• Real: In the offline, on receiving (DB, 𝑁), the client honestly

executesH ← Prep(DB, 𝑁) with two servers to obtain a private

hintH . In the online, on receiving an index 𝑥 , the client honestly

executes (𝑄0, 𝑄1,H ∗) ←Query(𝑥,H) and sends𝑄0 to server S0,

195

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

𝑄1 to server S1. Each server S𝑙 executes R𝑙 ← Answer(𝑄𝑙 ,DB)
and responses R𝑙 . The client obtains the output 𝑏𝑥 by execute

(𝑏𝑥 ,H ′) ← Recover(R0,R1,H ∗).

Definition 3 (OO-PIR Security). A 2-server OO-PIR ΠF is secure in

realizing F if for every PPT real adversaryA, there is a PPT simulator

S, such that for all non-uniform, polynomial-time environmentZ,

the following distributions are computationally indistinguishable:

| Pr[RealΠF ,A,Z (𝜆) = 1] − Pr[IdealF,S,Z (𝜆) = 1] | ≤ negl(𝜆)

3 Private Partition Retrieval
We present Private Partition Retrieval (PPR), a technique that allows

the client to privately read (a random entry from) a DB partition,

without revealing the partition index of interest.

Definition 4 (Private Partition Retrieval). A 2-server PPR scheme is a

tuple of PPT algorithms PPR = (Gen,Ret,Rec):
• (𝑧,T0,T1) ← Gen(𝑚,𝑛, 𝑘): Given the partition size𝑚, the number

of partition 𝑛 and a partition index 𝑘∈ [𝑛], it outputs two partition
queries T0, T1, and a random chosen index 𝑧.

• 𝑟𝑙 ← Ret(T𝑙 ,DB): Given a query T𝑙 ∈ {T0,T1} and the partitioned
database DB, it outputs a response 𝑟𝑙 .

• 𝑏𝑧 ← Rec(𝑟0, 𝑟1): Given two responses 𝑟0 and 𝑟1, it outputs the data

entry 𝑏𝑧 at random index 𝑧 from partition 𝑘 .

We define the PPR security using the Ideal/Real paradigm such

that an adversaryA statically corrupting one server learns nothing

about the partition being accessed. Let F𝑃 be an ideal functionality

that honestly returns an arbitrary entry from the desired partition.

Let S𝑃 be an ideal simulator that emulates the view of the real-

world adversary. Let Z be the environment that provides inputs

for all entities and receives the corresponding outputs.Z can get

the adversarial views at any time.

• Ideal: In the setup, on receiving (DB, 𝑁) and partition parameters

(𝑚,𝑛), F𝑃 notifies S𝑃 about the content of DB and its partition

size. S𝑃 replies to F𝑃 with ok or ⊥. For each read access, on

receiving a partition index 𝑘 , F𝑃 notifies S𝑃 about the event (but

not the partition range). S𝑃 then emulates the adversarial view

of execution and replies to F𝑃 with ok or ⊥. If S𝑃 says ok, then
F𝑃 returns an arbitrary entry DB[𝑧] from partition 𝑘 .

• Real: In the setup, on receiving (DB, 𝑁) and partition parameters

(𝑚,𝑛), the servers divide DB into 𝑛 partitions. For each access,

on receiving a partition index 𝑘 , the client honestly executes

(𝑧,T0,T1) ← Gen(𝑚,𝑛, 𝑘) and sends T0 to server S0, T1 to server

S1. Server S𝑙 executes 𝑟𝑙 ← Ret(T𝑙 ,DB) and responses with 𝑟𝑙 .

The client executes 𝑏𝑧 ← Rec(𝑟0, 𝑟1) to obtain an arbitrary data

entry 𝑏𝑧 from partition 𝑘 .

Definition 5 (PPR Security). A 2-server PPR scheme ΠF𝑃 is secure in

realizingF𝑃 if for every PPT real adversaryA, there is a PPT simulator

S𝑃 , such that for all non-uniform, polynomial-time environmentZ,

the following distributions are computationally indistinguishable:

| Pr[RealΠF𝑃 ,A,Z (𝜆) = 1] − Pr[IdealF𝑃 ,S𝑃 ,Z (𝜆) = 1] | ≤ negl(𝜆)

Protocol details. Figure 2 presents a concrete PPR protocol. Given

the partition parameters (𝑚 offsets, 𝑛 partitions) and the partition

• (𝑧, T0, T1) ← PPR.Gen(𝑚,𝑛,𝑘) :
1: (𝛿0, . . . , 𝛿𝑘 , . . . , 𝛿𝑛−1)

$← [𝑚]𝑛
2: let 𝑧 ← 𝑘 ·𝑚 + 𝛿𝑘
3: (𝑒0, . . . , 𝑒𝑘 , . . . , 𝑒𝑛−1)

$← {0, 1}𝑛
4: (𝑒′

0
, . . . , 𝑒′

𝑘
, . . . , 𝑒′𝑛−1

) ← (𝑒0, . . . , 𝑒𝑘 ⊕ 1, . . . , 𝑒𝑛)
5: T0 ← {𝑒𝑖 · (𝑖 ·𝑚 + 𝛿𝑖) ∀ 𝑖 ∈ [𝑛] }
6: T1 ← {𝑒′𝑖 · (𝑖 ·𝑚 + 𝛿𝑖) ∀ 𝑖 ∈ [𝑛] }
7: return (𝑧, T0, T1)

• 𝑟𝑙 ← PPR.Ret(T𝑙 ,DB) :

8: parse T𝑙 = {𝑝 (𝑙)
1

, . . . , 𝑝
(𝑙)
𝑛′ } with 𝑛′ = | T𝑙 |

9: return 𝑟𝑙 ←
⊕𝑛′

𝑗=1
DB[𝑝 (𝑙)

𝑗
]

• 𝑏𝑧 ← PPR.Rec(𝑟0, 𝑟1) :
10: return 𝑏𝑧 ← 𝑟0 ⊕ 𝑟1

Figure 2: Our proposed PPR protocol.

index 𝑘 ∈ [𝑛] to be accessed, the protocol starts by invoking the

PPR.Gen algorithm to create two queries T0 to server S0 and T1 to
server S1. The client first samples 𝑛 random offsets (line 1), where

offset 𝛿𝑘 is the location of a random entryDB[𝑧] to be read from the

desired partition 𝑘 . It then creates two bit vectors (lines 3-4) where

the only bits of difference is between 𝑒𝑘 and 𝑒′
𝑘
. Given the sampled

offsets, the client translates each bit vector into a corresponding

set of indices (lines 5-6), which only reveals a random offset 𝛿𝑖 to

be accessed in partition 𝑖 if the bit 𝑒𝑖 (or 𝑒
′
𝑖) is active. This is an

important step as only the offset 𝛿𝑘 (of the random entry DB[𝑧])
will be added to one set but not both, which can hide DB[𝑧] from
one random server, allowing PPR to be employed in Pirex for secure
queries. Hence, for each partition 𝑖 ∈ [𝑛], the client adds the index
(𝑖 ·𝑚 + 𝛿𝑖) into the query set T0 (or T1) according to the bit 𝑒𝑖 (or

𝑒′𝑖). If the bit is zero, no index for partition 𝑖 will be added to the

query, and partition 𝑖 will not be accessed by the server. To this end,

the client sends the query T0 to an arbitrary server S𝑙 ∈ {S0, S1}
and query T1 to the remaining server. On receiving a query T𝑙 ,
the server S𝑙 invokes the algorithm PPR.Ret with the public DB.
The server accesses random entries on DB indicated by the set of

indices T𝑙 and aggregates them under XOR operation. To recover

the randomly selected entry DB[𝑧], the client invokes PPR.Rec
with the aggregated results 𝑟0 and 𝑟1 received from the servers.

As the query set difference between T0 and T1 is the only index 𝑧,

combining 𝑟0 and 𝑟1 produces 𝑏𝑧 = DB[𝑧].

Lemma 1. PPR scheme (Figure 2) is secure by Definition 5.

Proof. See Appendix §A.1 □

4 The Proposed Scheme

4.1 Data Structure
Our scheme includes a database DB, and a hint bufferH :

• DB is an array of 𝑁 entries, divided into 𝑛 partitions. Partition 𝑃 𝑗
covers𝑚 indices in range [𝑗 ·𝑚 . . . (𝑗 + 1) ·𝑚 − 1], for 𝑗 ∈ [𝑛].
DB is replicated to 2 servers. For simplicity, we set𝑚 = 𝑛 =

√
𝑁 .

• H includes𝑀 precomputed hints ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜌𝑖 , 𝑌𝑖), where sk𝑖
is a key representing a setS𝑖 = (𝑠0, . . . , 𝑠𝑛−1), 𝜌𝑖 =

⊕𝑛−1

𝑗=0
DB[𝑠 𝑗]

196

Proceedings on Privacy Enhancing Technologies 2025(3)

• H ← Prep(DB, 𝑁) :
1: for 𝑖 = 1 to𝑀 do
2: ℓ𝑖

$← {0, 1} and sk𝑖 ← PRS.Gen(1𝜆)
3: S𝑖 ← PRS.Eval(sk𝑖 ,⊥)
4: 𝜌𝑖 ←

⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] for all 𝑠 𝑗 ∈ S𝑖

5: ℎ𝑖 ← (ℓ𝑖 , sk𝑖 , 𝜌𝑖 , 𝑌𝑖) with 𝑌𝑖 ←⊥
6: return H ← (ℎ1, . . . , ℎ𝑀)

Figure 3: Pirex - offline phase.

Executed by Server Sℓ𝑖
on receiving a PRF key

sk𝑖 from the client

is an offline parity, ℓ𝑖 ∈ {0, 1} denotes server identity (Sℓ𝑖) that
computes the parity 𝜌𝑖 , and 𝑌𝑖 is an auxiliary value.

Pseudorandom set. For efficient storage and substitution of set

elements in our scheme, we use a pseudorandom set (PRS). Given

that the set elements are indices from DB parameterized by (𝑚,𝑛),

our PRS is constructed from PRF : {0, 1}𝜆 × [𝑚] → [𝑚] with the

following algorithms PRS = (Gen, Eval):

• sk← Gen(1𝜆): It outputs a PRF key sk
$← {0, 1}𝜆 .

• S ← Eval(sk, 𝑌): Given a PRF key sk ∈ {0, 1}𝜆 and an auxiliary

𝑌 = (𝑦1, . . . , 𝑦𝑡), it outputs a set S = (𝑠0, . . . , 𝑠𝑛−1) such that 𝑠 𝑗 =

(𝑗 ·𝑚) + PRF(sk, 𝑗) for 𝑗 ∈ [𝑛] and some elements are replaced

by the auxiliary as 𝑠𝛾𝑖 = 𝑦𝑖 , where 𝛾𝑖 =
⌊ 𝑦𝑖
𝑚

⌋
for 𝑖 ∈ [𝑡].

4.2 Offline Phase
Figure 3 illustrates how the offline phase works. Given a database

DB of size 𝑁 , the client runs a one-time setup with server S0 and

S1 to prepare a set H of 𝑀 hints. The idea is to have each hint

ℎ𝑖 ∈ H contain a key sk𝑖 representing a set S𝑖 of 𝑛 indices that has

a corresponding offline parity 𝜌𝑖 . To do this, the client samples𝑀

PRF keys (sk1, . . . , sk𝑀), then sends each key sk𝑖 to a random server

Sℓ𝑖 ∈ {S0, S1} to compute the according parity 𝜌𝑖 . The client selects

a random server identifier ℓ𝑖 (line 2) for processing each hint ℎ𝑖 to

ensure that no server in the online phase can distinguish whether

it receives a query set for recovery purpose or for refresh operation.

On receiving each key sk𝑖 , server Sℓ𝑖 generates the set of indices
S𝑖 = {𝑠0, . . . , 𝑠𝑛−1}, where index 𝑠 𝑗 ∈ 𝑃 𝑗 and 𝑠 𝑗 = (𝑗 ·𝑚) + PRF(sk𝑖 , 𝑗)
(line 3). Given the set S𝑖 , server Sℓ𝑖 computes and returns an offline

parity 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] (line 4). On receiving𝑀 offline parities,

the client finalizes the set of hintsH , where hint ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜌𝑖 , 𝑌𝑖)
denotes server Sℓ𝑖 used the key sk𝑖 to compute the offline parity 𝜌𝑖
(lines 5-6) and𝑌𝑖 is the auxiliary data that stores the index of entries

being queried in the online phase for later hint refresh purposes.

Obviously, as no online query has been made in the offline phase,

the client sets 𝑌𝑖 as empty.

4.3 Online Phase
Figure 4 shows how the online phase works. To privately retrieve an

entry DB[𝑥], the client invokes the Query algorithm that uses the

hintH to create queries𝑄0 and𝑄1 to server S0 and S1, respectively.

The client performs two main actions as follows:

First, the client searches for a hint ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜌𝑖 , 𝑌𝑖) ∈ H where

the parity 𝜌𝑖 and the corresponding PRS setS𝑖 contains information

about the entryDB[𝑥] (line 2). As eachS𝑖 is computed from PRF key

• (𝑄0,𝑄1,H∗) ←Query(𝑥,H) :
1: parse H = (ℎ1, . . . , ℎ𝑀)
2: search ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜌𝑖 , 𝑌𝑖) where 𝑥 ∈ S𝑖 ← PRS.Eval(sk𝑖 , 𝑌𝑖)
3: (𝑧, T, T (𝑧)) ← PPR.Gen(𝑚,𝑛,𝑘) where 𝑘 =

⌊
𝑥
𝑚

⌋
4:

¯S ← S𝑖 \ {𝑥 } ∪ {𝑧}
5: S′ ← PRS.Eval(sk′,⊥) where sk′ ← PRS.Gen(1𝜆)
6: 𝑄ℓ𝑖 ← (S′, T (𝑧)) ,𝑄¬ℓ𝑖 ← (¯S, T)
7: H∗ ← (ℎ1, . . . , ℎ𝑖 , . . . , ℎ𝑀)
8: return (𝑄0,𝑄1,H∗)

Figure 4: Pirex - online phase: query.

sk𝑖 and auxiliary data 𝑌𝑖 , this can be done efficiently by checking

if 𝑥 ∈ 𝑌𝑖 , or if 𝑥
?

= (𝑘 ·𝑚) + PRF(sk𝑖 , 𝑘) and there exists no element

𝑦 in 𝑌𝑖 such that its partition is the same with the partition of 𝑥 ,

i.e., ⌊ 𝑦
𝑚
⌋ = ⌊ 𝑥

𝑚
⌋. Later, we will show that 𝑌𝑖 contains at most one

element (see Lemma 2) so the cost of this membership test is 𝑂 (1).
Second, the client creates two queries 𝑄0 and 𝑄1 based on the

set S𝑖 such that when combining the responses with parity 𝜌𝑖 ,

DB[𝑥] is recovered and the hint bufferH is refreshed to preserve

the hint distribution for future queries (lines 3-10). To recover

DB[𝑥] with (ℓ𝑖 , 𝜌𝑖 ,S𝑖), the client needs a punctured parity 𝜌𝑖 such

that DB[𝑥] = 𝜌𝑖 ⊕ 𝜌𝑖 . Since 𝜌𝑖 =
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗], for 𝑠 𝑗 ∈ S𝑖 , this

only holds when 𝜌𝑖 =
⊕𝑛−2

𝑗=0
DB[𝑠 𝑗], for 𝑠 𝑗 ∈ S𝑖 \ {𝑥}. However,

revealing the punctured set
ˆS = S𝑖 \ {𝑥} (to obtain 𝜌𝑖) permits the

adversary to learn the partition 𝑃𝑘 of 𝑥 . This is because each index

𝑠 𝑗 ∈ S𝑖 is belong to a distinct partition 𝑃 𝑗 . To prevent this leakage,

our idea is to patch
ˆS with a random index 𝑧 ∈ 𝑃𝑘 . This results in a

patched set
¯S = {𝑠1, . . . , 𝑠𝑛} = ˆS ∪ {𝑧} which has a patched parity

𝜌 =
⊕𝑛

𝑗=1
DB[𝑠 𝑗] = 𝜌𝑖 ⊕ DB[𝑧]. To obtain 𝜌𝑖 , the client needs

the patch DB[𝑧]. We will incorporate our PPR protocol to create

queries 𝑄0 and 𝑄1 so that 𝜌 and DB[𝑧] can be securely retrieved

without leaking the partition 𝑃𝑘 as follows.

The client first samples 𝑧 ∈ 𝑃𝑘 and two PPR queries T ,T (𝑧) .
According to PPR, sending T and T (𝑧) to the servers permits the

private retrieval of DB[𝑧]. To obtain 𝜌 , the client also needs to send
the patched set

¯S = ˆS ∪ {𝑧} to a server. Thus, we need to make sure

the three sets T0,T1 and ¯S are distributed securely to two servers.

Let T (𝑧) ∈ {T0,T1} be the PPR query that contains 𝑧 and T be the

other PPR query. Remark that for hint ℎ𝑖 , the identifier ℓ𝑖 ∈ {0, 1}
reflects that server Sℓ𝑖 has observed the set S𝑖 and its offline parity

𝜌𝑖 in the offline phase. Therefore, the client must send the patched

set
¯S to the other server S¬ℓ𝑖 in the online phase for security. Since

𝑧 ∈ ¯S, it is critical to ensure the server S¬ℓ𝑖 will not receive T (𝑧) as
there is a common 𝑧 in ¯S and T (𝑧) . In this case,

¯S must be paired

with T , meaning the server S¬ℓ𝑖 must receive (¯S,T) and the other

server Sℓ𝑖 must receive T (𝑧) . However, a server can distinguish

if it receives (¯S,T) or T (𝑧) . In either case, the servers learn a set

of partitions that are certainly not client interest, which violates

PIR security. Thus, the client must pair T (𝑧) with a dummy set S′
that also contains

√
𝑁 random indexes, thereby making (¯S,T) and

(S′,T (𝑧)) indistinguishable from the server’s perspective. To this

end, the server 𝑆¬ℓ𝑖 receives𝑄¬ℓ𝑖 ← (¯S,T) and the other server 𝑆ℓ𝑖
receives 𝑄ℓ𝑖 ← (S′,T (𝑧)).

197

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

• R𝑙 ← Answer(𝑄𝑙 ,DB) :
1: parse𝑄𝑙 = (S, T)
2: 𝜌 ←

⊕𝑛
𝑗=1

DB[𝑠 𝑗] for all 𝑠 𝑗 ∈ S
3: 𝑤 ← PPR.Ret(T,DB)
4: return R𝑙 ← (𝜌, 𝑤)

Figure 5: Pirex - online phase: answer.

• (𝑏𝑥 ,H′) ← Recover(R0, R1,H∗) :
1: let (𝑧, sk′) be the values from line 3 and 5 in Query algorithm

2: parse H∗ = (ℎ1, . . . , ℎ𝑖 , . . . , ℎ𝑀) , ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜌𝑖)
3: parse R ℓ𝑖 = (𝜌 ′, 𝑤 (𝑧)) , R¬ℓ𝑖 = (𝜌, 𝑤)
4: 𝑏𝑧 ← PPR.Rec(𝑤 (𝑧) , 𝑤)
5: 𝑏𝑥 ← 𝜌𝑖 ⊕ 𝜌 ⊕ 𝑏𝑧
6: search ℎ 𝑗 = (ℓ𝑗 , sk𝑗 , 𝜌 𝑗 , 𝑌𝑗) where 𝑧 ∈ PRS.Eval(sk𝑗 , 𝑌𝑗)
7: 𝜌 𝑗

′ ← 𝜌𝑗 ⊕ 𝑏𝑧 ⊕ 𝑏𝑥
8: 𝑌𝑗

′←𝑌𝑗 ∪ {𝑥 } \ {𝑧}
9: ℎ 𝑗

′ ← (ℓ𝑗 , sk𝑗 , 𝜌 𝑗
′ ,𝑌𝑗
′)

10: ℎ′ ← (ℓ𝑖 , sk′, 𝜌 ′,⊥)
11: H′ ← (ℎ1, . . . , ℎ

′
𝑗 , . . . , ℎ

′, . . . , ℎ𝑀)
12: return (𝑏𝑥 ,H′)

Figure 6: Pirex - online phase: recover.

On receiving a query 𝑄𝑙 = (S,T), each server computes the

parity on S as 𝜌 =
⊕𝑛

𝑗=1
DB[𝑠 𝑗] ∀ 𝑠 𝑗 ∈ S and executes the PPR

retrieval protocol on T to obtain the result𝑤 (lines 2-3 Figure 5).

Each server returns (𝜌,𝑤) to the client. Let (𝜌 ′,𝑤 (𝑧)) and (𝜌,𝑤)
be the answers the client receives from the servers Sℓ𝑖 and S¬ℓ𝑖 ,
respectively. The client can reconstruct the desired entry DB[𝑥] by
executing the PPR reconstruction algorithm on (𝑤 (𝑧) ,𝑤) to obtain

the patched entry 𝑏𝑧 followed by computing 𝜌𝑖 = 𝜌 ⊕ 𝑏𝑧 , and then

DB[𝑥] = 𝜌𝑖 ⊕ 𝜌𝑖 (lines 4-5 Figure 6).
As the set S𝑖 is exposed to both servers, the client must discard

the hint ℎ𝑖 and replace it with another hint ℎ 𝑗
′
to preserve the hint

distribution. As ℎ𝑖 was used to recover DB[𝑥], the new hint ℎ 𝑗
′
to

replace ℎ𝑖 must contain a parity subject to recovering DB[𝑥]. We

show that the client can make use of all the materials in the online

query (i.e., the patching entry DB[𝑧], the random set S′ and its

parity 𝜌 ′) to refresh the hints without sending additional queries

to the servers as prior works [29, 44].

To replace ℎ𝑖 , the client finds a random hint ℎ 𝑗 ∈ H that covers

DB[𝑧] and updates it to make it cover DB[𝑥]. Let S𝑗 be the hint’s
representative set and 𝜌 𝑗 be its parity. As the entries DB[𝑧] and
DB[𝑥] are already obtained, the client can update the parity of

ℎ 𝑗 to 𝜌 𝑗
′ = 𝜌 𝑗 ⊕ DB[𝑧] ⊕ DB[𝑥]. In this case, the updated parity

𝜌 𝑗
′
corresponds to the set S𝑗′ = S𝑗 \ {𝑧} ∪ {𝑥}, thus it can support

the recovery of DB[𝑥] in future online queries. Recall that S𝑗 is
represented by PRF key sk𝑗 in the hint structure for small storage.

Thus, to capture the updated elements in the set S𝑗′ (i.e., replacing
𝑧 with 𝑥), the client adds 𝑥 to the auxiliary data 𝑌𝑗 of hint ℎ 𝑗 and

remove 𝑧 (if any) as 𝑌𝑗
′ = 𝑌𝑗 ∪ {𝑥} \ {𝑧}.

Since 𝑌𝑗 can already contain some indexes from prior protocol

executions, adding 𝑥 may increase the auxiliary size, impacting

the membership test’s time complexity in future queries. In Pirex,
we prove the size of any auxiliary data (denoted 𝑌𝑖) in the average

case is constant regardless of the number of online queries in the

following Lemma 2.

Lemma 2. For every hint ℎ𝑖 = (ℓ𝑖 , sk𝑖 ,𝜌𝑖 ,𝑌𝑖) ∈H , let 𝑋𝑖 be a random

variable denoting the size of auxiliary data 𝑌𝑖 . We have E[𝑋𝑖] = 1.

Proof. See Appendix §B.1 □

Since the client consumes an existing random hint (ℎ 𝑗) in the

hint buffer to replace ℎ𝑖 , the client needs to add a random hint ℎ′

to the hint buffer to retain its size for future queries. This hint can

be created using the dummy set S′ (created by key sk′) with its

corresponding parity 𝜌 ′ returned by the server Sℓ𝑖 from the online

query 𝑄ℓ𝑖 as ℎ
′ = (ℓ𝑖 , sk′, 𝜌 ′,⊥) with an empty auxiliary data.

4.4 Analysis
We state the correctness and security of Pirex as follows.

Theorem 1. By setting the hint buffer size 𝑀 = O(𝛼
√
𝑁), with

𝛼 = min(𝜆, log𝑁), Pirex achieves correctness by Definition 2.

Proof. See Appendix §B.2 □

Theorem 2. Pirex is secure by Definition 3.

Proof. See Appendix §B.3. □

Complexity. We analyze the complexity of Pirex with parameters

including number of DB entries (𝑁), entry size (𝐵) and security

parameter (𝜆). We consider𝑀 = O(𝜆
√
𝑁) for arbitrarily large 𝑁 .

• Offline cost: For communication, the client sends 𝜆
√
𝑁 PRF

keys to the servers for set representation and receives 𝜆
√
𝑁 parities

correspondingly. As each PRF key is 𝜆-bit and each parity is 𝐵-bit,

the client inbound (resp. outbound) bandwidth cost is O(𝐵𝜆
√
𝑁)

(resp. O(𝜆2

√
𝑁)). The cost of sending 𝜆

√
𝑁 keys can be optimized

by sending a single master key and let the server generate 𝜆
√
𝑁

PRF keys, leading to O(𝜆𝐵
√
𝑁) total outbound bandwidth.

For computation, the client performs O(𝜆
√
𝑁) PRS invocations

to generate the PRF keys. For each hint, the server performs O(
√
𝑁)

PRF evaluations and O(
√
𝑁) XOR operations on 𝐵-bit data entries.

Since there are O(𝜆
√
𝑁) hints, the total server offline computation

cost is O(𝜆𝑁) PRF evaluations and O(𝐵𝜆𝑁) XOR operations.

• Online cost: For each online retrieval, the client sends one

query to each server. Each query contains a set of

√
𝑁 indices and

a set of O(
√
𝑁) partition indices. As each index is represented by

O(log𝑁) bits, the client outbound bandwidth is O(
√
𝑁 log𝑁). The

client inbound bandwidth is O(𝐵) as it receives four aggregated
results. The total bandwidth is O(

√
𝑁 log𝑁 + 𝐵).

For computation, the client incurs O(𝜆
√
𝑁) hint searches, each

costs O(1) PRF evaluations and O(1) membership test to check if a

hint ℎ𝑖 contains the desired entry index. To refresh, it also takes the

client O(1) PRS invocation to generate a new PRF key. To recover

the desired entry (and maintain hint structure), the client incurs

O(1) XOR operation on three 𝐵-bit entries. Thus, the client incurs

O(𝜆
√
𝑁) PRF evaluations and O(1) XOR operations.

198

Proceedings on Privacy Enhancing Technologies 2025(3)

Offline Parity Buffer Pleft

𝜌2𝜌1 ... 𝜌x ... 𝜌𝑀

Refresh Parity Buffer Pright

...𝜌 ′x 𝜌 ′3 ... 𝜌 ′1 ...

Offline Parity Buffer Pleft

𝜌2𝜌1 ... 𝜌x ... 𝜌𝑀

Refresh Parity Buffer Pright

...𝜌 ′x 𝜌 ′3 ... 𝜌 ′1 ...

1
Write refresh parity 𝜌 ′x into

Pright (via Deterministic Write)

1 Write refresh parity 𝜌 ′x into

Pright (via Deterministic Write)

2
Move refresh parity 𝜌 ′

1
into Pleft

(via XOR-PIR + Deterministic Write)

2
Move refresh parity 𝜌 ′

1
into Pleft

(via XOR-PIR + Deterministic Write)

1 2 3 4 5 Deterministic

Write Counter

1 2 3 4 5 Deterministic

Write Counter

Se
rv
er

S 0
Se
rv
er

S 1

Figure 7: Remote oblivious refresh (w/ 𝑐 = 1).

On the server side, each query (consisting of O(
√
𝑁) indices)

incurs O(
√
𝑁) XOR operations on 𝐵-bit data entries to obtain two

aggregated results. Thus, the server computation is O(𝐵
√
𝑁).

• Storage cost: The servers take no extra cost besides the O(𝑁𝐵)
DB storage. The client stores O(𝜆

√
𝑁) precomputed hints, each

contains a 𝜆-bit PRF key, a server bit, an offline 𝐵-bit parity, and an

auxiliary with O(1) element. The client storage is O(𝜆
√
𝑁 (𝜆 + 𝐵)).

5 Reducing Client Storage
Although our Pirex offers an efficient bandwidth overhead that is

independent of the entry size, its client storage still depends on the

entry size and thus, is significant. Specifically, the client storage

cost is O(𝜆
√
𝑁 (𝜆 + 𝐵)) because there are O(𝜆

√
𝑁) hint entries,

each contains a 𝜆-bit PRF key and a 𝐵-bit parity. This cost may be

significant for certain applications (e.g., mobile). In this section, we

propose Pirex+, an extended Pirex scheme that provides an option

for storage-limited clients to remotely store the parity components

of the hints at the server, thereby reducing local storage overhead.

Remote parity storage. To reduce client storage, our idea is to

maintain the offline parities (𝜌𝑖) on the server and encrypt them

with an IND-CPA encryption scheme to prevent the server from

learning the private hint sets of indices from the parities in advance.

As there are only O(𝜆
√
𝑁) parities, the standard 2-server XOR-PIR

can be used to privately read a desired parity in the online phase

without much extra cost. Remark that the hint buffer needs to be

refreshed per query so that the pseudorandom distribution of the

sets is preserved. Given the parity parts are stored remotely, the

refresh operation must be performed obliviously for security.

Oblivious refresh. To perform an oblivious refresh, we make use

of oblivious write in [62]. Thus, we make the following changes to

the data structures of the client and server in the Pirex scheme to

support private remote parity maintenance:

• Server: Apart frommaintainingDB as in Pirex, each server stores
an additional replica of a 2𝑀-size parity buffer P = (Pleft, Pright).
Pleft is used to store𝑀 offline parities and Pright can temporarily

store up to𝑀 refresh parities obtained in the online phase.

• Client: The client maintains a hint buffer H = (ℎ1, . . . , ℎ𝑀) as
in Pirex. However, each hint ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝑌𝑖 , 𝜋𝑖) contains a new
component 𝜋𝑖 ∈ [2𝑀] denotes the location of the corresponding

offline parity in the buffer P at the servers.

Let H = (ℎ1, . . . , ℎ𝑀) be the client hint buffer and P be the parity

buffer the servers received after the offline phase. For each hint

ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝑌𝑖 , 𝜋𝑖), the corresponding offline parity 𝜌𝑖 is stored at

P[𝜋𝑖] = Pleft [𝑖] for 𝑖 ∈ [𝑀]. In the online phase, suppose that a

parity 𝜌𝑖 ∈ Pleft [𝑖] corresponding to hint ℎ𝑖 is consumed to recover

a desired data entry. Let 𝜌 ′ be the new parity (line 6 Figure 6). To

replace 𝜌𝑖 with the new 𝜌 ′, the idea is to perform two deterministic

write operations on regions (Pleft, Pright) per each refresh operation.

Let 𝑐 (mod𝑀) be the refresh counter. At the 𝑐-th refresh, the client

temporarily writes Pright [𝑐] ← 𝜌 ′ and stores its location 𝜋𝑖 := 𝑐+𝑀 .

Due to the round-robin schedule, Pright will become full after𝑀

refreshes, making the next refresh overwrite some hints that were

previously stored in Pright. Thus, we let the client perform another

deterministic write on Pleft that obliviously transfers parities from

Pright to Pleft. Specifically, at the 𝑐-th refresh, the client needs to

write to Pleft [𝑐] a parity corresponds to hint ℎ𝑐 = (ℓ𝑐 , sk𝑐 , 𝑌𝑐 , 𝜋𝑐). If
𝜋𝑐 = 𝑐 , it means the parity at P[𝜋𝑐] = Pleft [𝑐] was never refreshed
in prior rounds. If 𝜋𝑐 ≠ 𝑐 , the parity at Pleft [𝑐] was refreshed and it

is now located at P[𝜋𝑐] = Pright [𝜋𝑐 −𝑀]. In either case, the client

deterministically performs XOR-PIR to privately read the parity

from P[𝜋𝑐] and write it to Pleft [𝑐]. To this end, the client updates

the parity location of hint ℎ𝑐 to 𝜋𝑐 := 𝑐 .

The above strategy ensures every refresh parity located in Pright
will be moved to Pleft before it is overwritten. This is because it will

take𝑀 additional refresh operations to revisit the same position in

Pright. By that time, all𝑀 positions in Pleft will have been updated

with the new parities. Thus, for any consumed parity 𝜌𝑖 ∈ Pleft [𝑖],
it will eventually be replaced by a new one 𝜌 ′ after𝑀 rounds. Note

that our scheme requires accessing two hints per online query.

Thus, the client executes XOR-PIR and the oblivious write twice.

Supporting database update. In the real world, a public database

can be updated. Although private database update is not captured

in the PIR security, it is necessary to update the precomputed hints

in OO-PIR to maintain the correctness. In Pirex+, since the parity
buffer P is stored at the server, the update must be done obliviously.

Otherwise, the server learns which parities are associated with the

updated entry. After several updates, the server will learn the index

distribution of each private hint set that constructed the parities,

which violates the OO-PIR security that only holds if the hint sets

are revealed once to each server in the online phase.

To privately update the parities according to database update, a

simple method is to incorporate standard XOR-PIR and oblivious

write similar to the oblivious refresh discussed above. Unlike the

refresh operation which updates only a single parity, a database

update requires multiple parities to be updated since each data

entry contributes in O(𝜆) offline hints. Thus, this method will incur

high computation and communication costs (i.e., O(𝐵𝜆2

√
𝑁) XOR

operations and O(𝐵𝜆) bandwidth). To reduce this overhead, our

solution is to incorporate Additive Homomorphic Encryption (AHE)

so that the client can delegate oblivious update to the server.

Building block: Additive Homomorphic Encryption. AHE

[30] permits the plaintexts to be encrypted such that their cipher-

texts can be homomorphically evaluated. Given a cyclic group G of

order 𝑝 , an AHE scheme over G contains three PPT algorithms:

199

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

• (pk, sk) ← AHE.Gen(1𝜆): Given a security parameter 𝜆, it out-

puts a pair of public and private keys (pk, sk).
• ⟨𝑚⟩ ← AHE.Enc(sk,𝑚): Given a message𝑚 ∈ Z𝑝 and a public

key pk, it outputs a ciphertext ⟨𝑚⟩.
• 𝑚 ← AHE.Dec(sk, ⟨𝑚⟩): Given a ciphertext ⟨𝑚⟩ and the private

key sk, it outputs a plaintext𝑚 ∈ Z𝑝 .

Let ⊞ and � be the group addition and scalar multiplication over

the cyclic group G. Given𝑚,𝑚′ ∈ Z𝑝 , AHE offers the following

additive homomorphic properties:

AHE.Enc(pk,𝑚) ⊞ AHE.Enc(pk,𝑚′) = AHE.Enc(pk,𝑚 +𝑚′)
AHE.Enc(pk,𝑚) � 𝑚′ = AHE.Enc(pk,𝑚 ·𝑚′)

In Pirex+, we employ additive homomorphism in AHE to update

the parities stored in the buffer P w.r.t database update as follows.

Suppose the 𝑥-th entryDB[𝑥] is being updated. As the buffer P is of

size 2𝑀 , the client first creates a binary vector e ∈ {0, 1}2𝑀 , where

e[𝑖] = 1 if DB[𝑥] ∈ P[𝑖], otherwise e[𝑖] = 0. The client encrypts

vector e with the AHE public key pk as ⟨e⟩ ← AHE.Enc(pk, e). Let
⟨p⟩ = (⟨𝜌1⟩, . . . , ⟨𝜌2𝑀 ⟩) be the vector of encrypted parities from

the buffer, with ⟨𝜌𝑖⟩ ← AHE.Enc(pk, P[𝑖]). The client sends the
encrypted vector ⟨e⟩ to the server. Let 𝑏 be the new data payload

and 𝜖 = 𝑏 − DB[𝑥]. The server updates the parity buffer as follows:

⟨p′⟩ := ⟨p⟩ ⊞ ⟨e⟩ � 𝜖

Since ⟨e⟩ contains 2𝑀 group elements, the update bandwidth cost

is O(𝜆2

√
𝑁), independent of the entry size. The server computation

includes O(𝜆
√
𝑁) group additions and scalar multiplications.

Note that to fully incorporate AHE into Pirex+, we need to make

necessary changes to the algebraic operations when computing the

parities. Specifically, XOR operations are replaced with Z𝑝 group

additions. This is because the update 𝜖 is aggregated into a parity

under homomorphic addition, where plaintexts are in Z𝑝 . Due to

space constraints, we present the detailed algorithm of Pirex+ in
Appendix C. Concretely, we instantiate Pirex+ with an efficient

AHE scheme, e.g., Exponential ElGamal [30]. As Exponential ElGa-

mal uses a discrete log solver for decryption, it only permits a small

size of plaintext𝑚 ∈ Z𝑞 with 𝑞 < 𝑝 (e.g., |𝑞 | = 32 bits). This can be

adapted by dividing a parity 𝜌𝑖 into |𝑞 |-bit chunks and separately

encrypting each chunk. Thus, each XOR operation (in Pirex) on
𝐵-bit entry is substituted with

𝐵
𝑞
group additions of data chunks

in Z𝑞 . To encrypt a 𝐵-bit parity, it now takes
𝐵
𝑞
AHE encryption

invocations. As each entry is now |𝑞 |-bit chunks, an update 𝜖 needs

to be computed by |𝑞 |-bit chunks. Since the blocksize 𝐵 is a fixed

value in database settings, the number of chunks is always
𝐵
𝑞
. Each

chunk’s update will reside in Z𝑞 with no overflow and is aggregated

into a parity accordingly under homomorphic addition.

Reducing bandwidth impact of AHE ciphertext expansion. In
Pirex+, although AHE permits the remote update of the encrypted

parity buffer P, its ciphertext expansion can incur the bandwidth

overhead as the client accesses two AHE-encrypted parities per

online query. To mitigate the bandwidth impact of AHE ciphertext

expansion, we can slightly adjust the online query such that it only

accesses one encrypted parity in the buffer. Specifically, to refresh

the parity (𝜌𝑖) that was used to recoverDB[𝑥], the client can directly
sample a new random set S∗ containing 𝑥 and create additional

online queries to obtain the punctured parity 𝜌 ofS∗\ {𝑥}, as similar

to how we create and patch queries to recover DB[𝑥]. To this end,

the client accesses the buffer P once to replace the consumed parity

𝜌𝑖 with 𝜌
′= 𝜌 ⊕ DB[𝑥]. This strategy halves the bandwidth cost of

the oblivious refresh, at the cost of making an extra online query

to the servers (which is not impacted by the ciphertext expansion).

We present the full algorithm of Pirex+ in Appendix C.

Complexity. We analyze the complexity of Pirex+ with constant

chunk size 𝑞. For each offline hint, the server incurs O(
√
𝑁) PRF

evaluations and O(𝐵
𝑞

√
𝑁) group additions (instead of XOR as in

Pirex). The client invokesO(𝐵
𝑞
𝜆
√
𝑁) additional AHE encryptions to

encrypt the parity buffer P. In total, the client incurs O(𝜆
√
𝑁) PRS

invocations and O(𝐵𝜆
√
𝑁) AHE encryption. As P is maintained at

the server, the client incurs O(𝜆
√
𝑁 (𝜆 + 𝐵)) bandwidth to send the

PRF keys and upload the parity buffer to the server.

In the online, each server incurs O(𝐵
𝑞

√
𝑁) group additions per

received set of indices. The server also performs O(𝐵𝜆
√
𝑁) XOR

operations due to the 2-server XOR-PIR for offline parity retrieval.

Meanwhile, the client executes O(𝜆
√
𝑁) random bit generation,

O(𝜆
√
𝑁) PRF evaluations, and O(𝐵

𝑞
) AHE decryptions plus O(𝐵

𝑞
)

group additions (instead of XOR as in Pirex) for data recovery. For
client inbound bandwidth, as Pirex+ uses the above acceleration

technique, it transmits eight aggregated entries to the client, along

with eight additional encrypted parity for oblivious refresh (four

received and sent), which is still O(𝐵) in total. The client can defer

sending the new refreshed encrypted parities for oblivious write

until executing the next online query, which results in one round

for communication in total.

For storage, given the number of offline hints is 𝑀 = 𝜆
√
𝑁 , the

client storage now contains only O(𝜆
√
𝑁) PRF keys, since the client

already offloads the parity part of the offline hints to the servers.

Thus, the total client storage cost is O(𝜆2
√
𝑁). As a tradeoff, the

server storage incurs an additional cost of O(𝐾𝐵𝜆
√
𝑁) for storing

the encrypted parities. Note that Pirex+ only provides this remote

parity storage as an option for clients with limited storage.

For a database update, the client incurs an O(𝜆2

√
𝑁) outbound

bandwidth for sending the AHE-encrypted binary vector. To update

P, the server performs O(𝐵
𝑞
𝜆
√
𝑁) scalar multiplications and group

additions on |𝑞 |-bit parity chunks. The server cost is O(𝐵𝜆
√
𝑁).

Security. We state the security of Pirex+ as follows.

Theorem 3. Pirex+ is secure by Definition 3.

Proof. See Appendix §D.1. □

6 Experimental Evaluation

6.1 Implementation
We fully implemented our schemes in rust. We used libraries from

crates.io to implement functionalities as follows: For PRF, we

used aes crate with low-level AES-NI instruction for parallel block

processing. We used packed_simd crate for XOR operations, which

has SIMD instructions to load a 256-byte chunk onto the register

per single XOR. For efficient memory access on server database and

client storage, we used memmap to map all data files directly into

OS memory. For client-server communication, we used TcpStream

200

Proceedings on Privacy Enhancing Technologies 2025(3)

from std::net module. For Pirex+, we implemented exponential

ElGamal using libsecp256k1 [7], and adopted Shank’s Baby-Step

Giant-Step [64] for discrete log solver. Our code is publicly available

at https://github.com/vt-asaplab/pirex.

6.2 Configuration
Hardware & network setting. For the client side, we used a 2023

MacBook Pro with M2 CPU @ 3.5GHz, 32GB RAM. For the server

side, we created two virtual server instances on a Dell PowerEdge

R750 with 48-core Intel Xeon 8360Y @ 2.4GHz, 1 TB RAM. We only

used a few physical cores for the virtual server process. To simulate

averagemobile LTE [4], we set client-server bandwidth to be around

40Mbps with 11ms round-trip. For a comprehensive comparison,

we also set up various bandwidth rates: 20Mbps - 120Mbps.

Database. To measure the performance, we used databases of sizes

ranging from 1GB to 1TB, with three different entry sizes including

4 KB, 64 KB, and 256 KB. The number of entries 𝑁 varies from 2
12

to 2
28
depending on the total size of the benchmarked database.

Counterpart comparison. We compared Pirex and Pirex+ with

state-of-the-art OO-PIRs including CK20 [29], TreePIR [44], and

Piano [72]. Note that the computation of all OO-PIR counterparts

only involves PRF evaluations (for pseudorandom sets representa-

tion) and XOR-sum (for parity computation during online/offline

queries). Therefore, for a fair comparison, we instantiated PRF in all

OO-PIR counterparts with AES.We then applied the same hardware

acceleration via AES-NI instructions to all schemes and measured

their performance using the same hardware for both client and

servers. For each scheme, we selected the parameters as follows:

• Pirex/Pirex+: We used 128-bit PRF keys. We set the number of

hints𝑀 =
√
𝑁 log𝑁 for correctness (Theorem 1). For Pirex+, we

used standard parameters for secp256k1 curve with 256-bit prime

order and the base field 𝑝 = 2
256 − 2

32 − 977. We divided each

offline parity into 32-bit chunks for homomorphic encryption.

• CK20 [29]: We used 128-bit PRF keys for pseudorandom sets. We

executed 𝜆 = 128 parallel instances of the protocol and set the

number of hints𝑀 =
√
𝑁 log𝑁 for correctness.

• TreePIR [44]: We used 128-bit keys for puncturable PRF and set

the number of hints𝑀 =
√
𝑁 log𝑁 for correctness.

• Piano [72]: We used 128-bit PRF keys. We set the number of pri-

mary hints𝑀1 =
√
𝑁 (ln(2)𝜅 + ln(𝑄)), number of backup hints

𝑀2 = 3

√
𝑁 ln𝑁 (𝜅 = 40 is their statistical security parameter).

Unlike TreePIR, CK20, or Pirex, Piano rebuilds their hints after
𝑄 =

√
𝑁 ln𝑁 queries. We measured their online performance

with the amortized cost of rebuilding offline hints. We also com-

pared with an extended Piano scheme [73] (denoted Pianoext)
that trades additional client storage for reduced online cost.

6.3 Results
Online bandwidth. Figure 8 reports the client online bandwidth
overhead of our schemes comparedwith otherworks. Pirex achieves
the lowest bandwidth among all, where it is around 120×-910×
times smaller than Piano and TreePIR when performing on a 1 TB

database, depending on the chosen entry sizes. This is because

our online inbound bandwidth cost is independent of the number

of entries. The client only downloads a constant of four parities,

which is equivalent to 16/256/1024 KB to access a 4/64/256 KB entry,

respectively. Meanwhile, Piano (resp. TreePIR) requires O(
√
𝑁) par-

ities to be downloaded, which takes from 35MB (resp. 131MB) to

281MB (resp. 1GB) of online bandwidth for a 1 TB database setting

depending on the entry size. Thus, comparing to Piano and TreePIR
in large database settings (2

18
to 2

24
entries of 64 KB, for example),

Pirex saves the client more than 98% of the online bandwidth. For

Pianoext, the bandwidth cost of Pirex is still 24×-54× smaller on

1 TB settings. This is because Pianoext still requires an amortized

cost of O(
√
𝑁 /log𝑁) entries to be downloaded per online query.

For real practical databases with billions of entries, the gap between

Pirex and Piano/TreePIR will be at least three orders of magnitude.

In CK20, although the client downloads a constant of 256 parities

per online query (due to 128 online instances executing in parallel),

its concrete cost is at least 65× larger than Pirex in all test cases.

For DB with large entry sizes (2
18
to 2

24
entries of 64KB, and more),

Pirex reduces around 96% of the client’s inbound bandwidth.

Pirex+ incurs slightly higher bandwidth than Pirex. This is be-
cause the client needs to privately read two offline parities with

XOR-PIR (i.e., one for online access, one for preventing buffer over-

flow) and rewrite a refresh parity to the parity buffer P. Compared

with Pirex, Pirex+ requires transmitting eight extra parities. Similar

to Pirex, the inbound bandwidth cost of Pirex+ is independent of
the number of entries, and thus, is lower than other schemes on

increasing database sizes. Figure 9a reports the online bandwidth

cost of all schemes with varied entry sizes from 4KB to 256KB

on a database of 2
24
entries. Figure 9b further reports the network

delay of all schemes on varied bandwidth rates from 20Mbps to

120Mbps, with a database of 2
24
entries of 64 KB.

Online end-to-end delay. Figure 10 showed the concrete end-to-

end delay of Pirex/Pirex+ compared to CK20, TreePIR, Piano and

Pianoext. Pirex incurs a minimal delay on varied database and entry

sizes. Specifically, Pirex takes only 55ms to retrieve a 4 KB entry

from a DB with 2
28
records. This is around 165×, 565×, and 728×

faster than Piano, TreePIR, and CK20, respectively, taking from

9s (Piano) to more than 30s (TreePIR,CK20). For 1 TB DB with

large entry sizes such as 256 KB, Pirex only takes 260ms of end-to-

end delay. This is around 191×, 845×, and 127× faster than Piano,
TreePIR, and CK20, respectively, which takes more than 30s. For

Pianoext, although the high delay is reduced, it still takes more than

6s. The high delay in Piano and TreePIR is mainly due to retrieving

O(
√
𝑁) entries (compared with O(1) in Pirex/Pirex+). Meanwhile,

CK20 requires executing 128 protocol instances in parallel, which

incurs high bandwidth and computation at both client and server.

For example, with a 1 TB database of 2
22
256 KB entries, our client

and server computation is merely 7.5ms and 31ms, respectively.

CK20 takes more than 1s of client times and 30s of server times. On

average, the client and server computation in Pirex is respectively
100×-150× and 80×-120× faster than CK20.

The end-to-end delay of Pirex+ is at most 17× higher than Pirex,
yet it is 10×, 55×, 16×, 2× (e.g. on 64KB entry size database with

2
24
entries) lower than CK20, TreePIR, Piano, and Pianoext respec-

tively. For increasing database sizes, the gap between Pirex+ and
TreePIR/Piano (or Pianoext) will be more significant. Note that the

differences in delay between Pirex+ and Pirex are due to the extra

201

https://github.com/vt-asaplab/pirex

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

2
18

2
20

2
22

2
24

2
26

2
28

10
2

10
3

10
4

10
5

10
6

DB entries (4 KB)

B
a
n
d
w
i
d
t
h
(
K
B
)

CK20 TreePIR Piano
Pianoext Pirex Pirex+

2
14

2
16

2
18

2
20

2
22

2
24

10
2

10
3

10
4

10
5

10
6

DB entries (64 KB)

CK20 TreePIR Piano
Pianoext Pirex Pirex+

2
12

2
14

2
16

2
18

2
20

2
22

10
3

10
4

10
5

10
6

DB entries (256 KB)

CK20 TreePIR Piano
Pianoext Pirex Pirex+

Figure 8: Client (amortized) online bandwidth cost.

4 8 16 32 64 128 256

10
2

10
3

10
4

10
5

10
6

Entry size (KB)

B
a
n
d
w
i
d
t
h
(
K
B
)

CK20 TreePIR Piano Pianoext Pirex Pirex+

(a) (w/ 2
24

entries)

20 40 60 80 100 120

10
2

10
3

10
4

10
5

10
6

Bit rate (Mbps)

N
e
t
w
o
r
k
d
e
l
a
y
(
m
s
)

CK20

(b) (w/ 2
24

64 KB entries)

Figure 9: (a) Online bandwidth / (b) Network delay.

operations, which include retrieving the offline parities and decrypt-

ing them by solving discrete logs. As each parity is chunked into

32 bits for encryption, Pirex+ takes under 426ms for decrypting

a 256 KB parity (see cost breakdown below). Thus, the difference

mostly stems from the extra four encrypted parities being down-

loaded (using XOR-PIR) and the XOR computation that servers

perform on O(𝑁 log𝑁) encrypted parities.

Cost breakdown. We dissect the end-to-end delay of Pirex and
Pirex+ to investigate which performance factors impact the most.

• Pirex: Figure 11 presents the detailed cost of Pirex from 1GB

to 1 TB DB with 4KB, 64 KB, and 256KB entry sizes, respectively.

The three main factors contributing to the delay of Pirex are the
client computation, the server processing, and the communication

latency. The client overhead in Pirex is efficient, taking up merely

10 ms, thus, only contributing 1%-18% to the total delay. The client

performs threemain operations: (1) looking up a hint, (2) creating an

online query, and (3) recovering the desired entry. Looking up a hint

is fast as the membership testing incurs only one PRF evaluation

for each PRF key, and there are

√
𝑁 log𝑁 keys in total. Recovering

the entry (and refreshing hint) only incurs XOR operations on four

parities responded from the server.

The server processing in Pirex is also efficient. For 100GBDB, the
cost is smaller then 7ms and hence, is hard to observe in Figure 11.

For larger DB (2
24

entries of 64 KB and 2
22

entries of 256 KB), Pirex
only takes 30ms and 60ms, respectively, contributing up to 20% in

average of the online delay. The cost mainly stems from performing

XOR operations on

√
𝑁 data entries. In Pirex, each query contains

one patched set and one partition set with at most

√
𝑁 indices. Thus,

the amount of XOR operations per server is sublinear to the number

of entries and linear to the entry size. For DB with 2
28
entries of

4KB, Pirex takes only 7ms for end-to-end server computation.

Communication is the most dominating factor in the delay. As

Pirex features constant bandwidth, this latency remains constant

for each setting of entry sizes. Under the 40Mbps bandwidth rate,

Pirex takes around 55ms and 225ms to get four parities of 64 KB

and 256 KB, respectively. For the databases with smaller entry sizes

(4 KB), the query size can outweigh the parity transmission size.

With 2
28
entries, the client needs to send 2

14
offsets to get a parity,

where the concrete size of the offsets is approximately 30 KB. Thus,

the communication latency incurs from 10ms to 60ms (respectively

for databases with 2
18
to 2

28
entries).

• Pirex+: Figure 12 illustrates the detailed cost of Pirex+. Unlike
Pirex, the client cost in Pirex+ is noticeable for large entry sizes

(64 KB or 256 KB). This cost is mostly attributed to the re-encryption

of two offline parities, which takes about 120ms for 64 KB parities

and 420ms for 256 KB parities. The server processing cost is the

most dominating factor for entry sizes of 4 KB and 64KB, which

takes from 55ms to 1.6s and attribute from 20% to 70% of the total

delay, due to the extra oblivious refresh on the parity buffer that

two servers perform. The process involves XOR operations on the

encrypted parity buffer of size

√
𝑁 log𝑁 , where each entry is 16×

larger than a database entry size due to AHE ciphertext expansion.

Thus, the amount of data to be processed is 16 log𝑁× larger than

Pirex. However, this gap is constant as shown by a growth with a

small slope. For DB of 256 KB entry, the communication delay out-

weighs the server processing cost since it takes over 2s to download

four extra encrypted parities.

Mobile client computation. To assess the performance of Pirex+
under resource-limited clients, we conducted an experiment using

a 2021 iPad Pro with M1 CPU @ 8GB RAM, and 128GB storage as

the client. Under the database with 2
22
entries of size 256 KB, the

mobile client only incurs an extra 446ms delay over the original

resourceful client. Such overhead mostly stems from executing the

discrete log solver on the mobile CPU.

Storage. We report the client storage of all schemes in Figure 14.

Pirex+ permits extremely low client storage compared with others.

Concretely, for DB of 2
22
256 KB entries, Pirex+ incurs four to six

orders of magnitudes smaller client storage than CK20, TreePIR,
and Piano/Pianoext. The client in Pirex+ only stores 710 KB of PRF

202

Proceedings on Privacy Enhancing Technologies 2025(3)

2
18

2
20

2
22

2
24

2
26

2
28

10
1

10
2

10
3

10
4

10
5

DB entries (4 KB)

D
e
l
a
y
(
m
s
)

CK20 TreePIR Piano
Pianoext Pirex Pirex+

2
14

2
16

2
18

2
20

2
22

2
24

10
2

10
3

10
4

10
5

DB entries (64 KB)

CK20 TreePIR Piano
Pianoext Pirex Pirex+

2
12

2
14

2
16

2
18

2
20

2
22

10
2

10
3

10
4

10
5

10
6

DB entries (256 KB)

CK20 TreePIR Piano
Pianoext Pirex Pirex+

Figure 10: Client (amortized) online end-to-end delay.

2
18

2
20

2
22

2
24

2
26

2
28

0

20

40

DB entries (4 KB)

D
e
l
a
y
(
m
s
)

Client computation Server computation Communication

2
14

2
16

2
18

2
20

2
22

2
24

0

40

80

DB entries (64 KB)

2
12

2
14

2
16

2
18

2
20

2
22

0

100

200

DB entries (256 KB)

Figure 11: Cost breakdown of Pirex (online phase).

2
18

2
20

2
22

2
24

2
26

2
28

0

0.2

0.5

DB entries (4 KB)

D
e
l
a
y
(
s
e
c
)

Client computation Server computation Communication

2
14

2
16

2
18

2
20

2
22

2
24

0

1

2

DB entries (64 KB)

2
12

2
14

2
16

2
18

2
20

2
22

0

2

4

DB entries (256 KB)

Figure 12: Cost breakdown of Pirex+ (online phase).

keys compared with 11GB (in Pirex, TreePIR), 110GB (in Piano,
Pianoext) and 1.3 TB (in CK20) due to the offline parities. In Pirex+,
the extra server storage for the encrypted parities per client is

185GB for 1 TB DB, due to the ciphertext expansion and oblivious

write buffer. Note that Pirex+ provides this remote parity storage

as an option, which is mostly desirable for limited-memory devices.

As server storage is cheap [3, 6] and continually decreasing, the

monthly cost to store these parities remotely is only $3.5-4.5.

Offline cost. Figure 13 reports the offline cost of Pirex/Pirex+with
other counterparts.Pirex features a comparable overhead to TreePIR,
taking from 7s to 2600s to preprocess up to 1 TB DB (with varied

entry sizes). Piano requires entire database streaming to compute

the offline hints and, therefore, its offline delay is 78×-571× higher

than Pirex and TreePIR. CK20 requires 128 instances in parallel so

its preprocessing is 128× slower than Pirex and TreePIR. On the

other hand, Pirex+ incurs 20×-30× higher offline delay than Pirex.
This gap is mainly due to the AHE encryption and the network

delay when sending encrypted offline parities to the server.

Database update. We report the server cost for Pirex+ to privately
update the parity buffer per database entry update. Pirex+ takes

from 4ms to 3s to update each entry chunk in databases with 2
12
to

2
28
entries. In other schemes (e.g., Pirex, Piano, TreePIR), the client

stores the offline parities and thus, the update cost is negligible.

7 Related Work
Standard PIR. Chor et al. were the first to introduce PIR [26]. Their

standard 2-server XOR-PIR achieves information-theoretic security

withO(𝑁) bandwidth cost. To reduce the bandwidth cost toO(𝑁 1

3),
they proposed a variant based on covering codes. To enable single-

server, Kushilevitz et al. [42] proposed an AHE-based PIR scheme

with computational security and achieves O(𝑁 𝜖) bandwidth (𝜖 >

0). While later refinements reduced the bandwidth to sublinear

[23, 25, 34, 47], Sion et al. [66] showed that evaluating AHE is more

expensive than streaming the database itself. To reduce computation

overhead, some lattice-based PIR schemes were proposed [14, 15,

17, 31, 39, 49, 50, 53]. These schemes, however, cannot surpass the

Ω(𝑁) computation lower bound [21] in the standard PIR model.

Global preprocessing PIR. Beimel et al. [21] showed that by

preprocessing an O(𝑁)-sized database to an encoded form of size

O(𝑁 3.2), the server time and communication cost in a 2-server

PIR can be reduced to O(𝑁 0.6). Several single-server PIR schemes

were designed based on secretly permuted Reed-Muller codes [22,

24] which require superlinear server storage to store the encoded

database per designated group of clients that holds a secret key.

Boyle et al. [22] showed how to upgrade the secret-key scheme to

a public-key variant using ideal obfuscation, where the key can

be used by any client to execute the retrieval protocol. All these

schemes do not rely on known standard assumptions. Lin et al. [46]

thus presented a scheme based on standard Ring-LWE, where the

server time and communication cost are polylogarithmic.

Client preprocessing PIR. Patel et al. [58] proposed PSIR, an OO-

PIR model uses precomputed offline hint to achieve online queries

with only linear PRF and sublinear public-key operations. Corrigan-

Gibbs et al. [29] then proposed a two-server OO-PIR with
˜O(𝜆
√
𝑁)

online server cost, and a single-server variant [28] that supports√
𝑁 queries with

˜O(
√
𝑁) bandwidth and O(𝑁 3/4) server time using

linearly HE. To reduce client query bandwidth to polylog(𝑁), other
works leveraged privately puncturable/programmable PRF [43, 65,

71]. The main bottleneck in these schemes is the 𝜆 parallel protocol

instance executions for correctness. Kogan et al. [41] showed a trick

203

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

2
18

2
20

2
22

2
24

2
26

2
28

10
5

10
7

10
9

DB entries (4 KB)

D
e
l
a
y
(
m
s
)

CK20 TreePIR Pianoext
Piano Pirex Pirex+

2
14

2
16

2
18

2
20

2
22

2
24

10
5

10
7

10
9

DB entries (64 KB)

CK20 TreePIR Pianoext
Piano Pirex Pirex+

2
12

2
14

2
16

2
18

2
20

2
22

10
5

10
7

10
9

DB entries (256 KB)

CK20 TreePIR Pianoext
Piano Pirex Pirex+

Figure 13: Client offline end-to-end delay.

2
12

2
14

2
16

2
18

2
20

2
22

10
3

10
6

10
9

DB entries

A
m
o
u
n
t
(
K
B
)

CK20 TreePIR Pianoext Piano
Pirex Pirex+

(log scale)

Figure 14: Client storage cost (𝑩 = 256KB).

to remove the 𝜆 repetitions but requires O(𝑁) storage or O(𝑁)
online time from the client for using non-private puncturable PRF.

Lazzaretti et al. [44] suggested a novel partitioned OO-PIR with

polylog(𝑁) query size in O(𝜆
√
𝑁) client time, but incurs O(

√
𝑁)

parities to be transmitted. Zhou et al. [72] proposed Piano, which
adapts the scheme [44] to a single server setting. To create offline

hints without needing a second server, Piano requires full database

streaming perO(
√
𝑁) queries for hint rebuild. To achieve a constant

online inbound bandwidth comparable to our scheme, Pianomakes

use of the database streaming process to prepare upfront a patching

element per hint. Their amortized inbound bandwidth is O(
√
𝑁).

In contrast, our schemes use PPR to efficiently and privately obtain

a random online patching element with no preprocessing costs, by

utilizing two non-colluding servers for PPR execution. Lazzaretti et

al. [45] further reduces the hint size in [44] by a 𝜆 factor, yielding

smaller preprocessing overhead. Ren et al. [61] recently proposed a

concurrent and independent work that also concretely incurs four

entries on the client’s inbound bandwidth, similar to Pirex. Their
scheme randomly divides each original OO-PIR hint set into two

equal subsets, which requires a double hint size and a probabilistic

median selection value per hint for efficient online hint searching.

Batched PIR. Pioneered by [40], batched PIR permits the server

to process a batch of 𝑄 queries at a time. Using batch codes, the

server time is linear to the number of codewords but will be smaller

than executing a PIR protocol 𝑄 times. As the number of buckets

in existing batch codes [18, 40, 60, 67] incurs a significant response

overhead, Angel et al. [17] proposed a method that costs O(𝑁)
server time for a large batch of size 𝑄 but incurs only O(𝑄) cipher-
text responses. Mughees et al. [54] later proposed a vectorized batch

PIR that can fit as many database entries as a single ciphertext can

hold. Some batched PIR schemes [21, 48] support multiple clients

using efficient matrix multiplication techniques [27, 68].

8 Conclusion
We proposed Pirex, a new OO-PIR framework for large databases

that incurs minimal client inbound bandwidth and storage over-

head, while retaining a sublinear processing cost for the client and

servers. Pirex offers constant client’s inbound bandwidth regardless
of the number of entries in the public database. It also offers clients

the flexibility to securely store and access preprocessing hints re-

motely if necessary. This alleviates client storage requirements, and

therefore, is beneficial to resource-limited clients (e.g., mobile).

Acknowledgments
The authors thank the revision editor and anonymous reviewers

for their insightful comments and constructive feedback on improv-

ing the quality of this work. This work was supported in part by

an unrestricted gift from Robert Bosch, 4-VA, and the Common-

wealth Cyber Initiative (CCI), an investment in the advancement

of cyber R&D, innovation, and workforce development. For more

information about CCI, visit www.cyberinitiative.org.

References
[1] 01. 2024. Amazon DynamoDB - Item Size Limits.

https://aws.amazon.com/dynamodb/faqs/.

[2] 01. 2024. Amazon Elastic Block Store - Block Size.

https://docs.aws.amazon.com/ebs/latest/userguide/volume_constraints.html.

[3] 01. 2024. Amazon S3 Pricing.

https://aws.amazon.com/s3/pricing/.

[4] 01. 2024. Average Mobile Network Speed.

https://www.statista.com/statistics/896779/average-mobile-fixed-broadband-

download-upload-speeds/.

[5] 01. 2024. Azure Blob Storage - Blob Size.

https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets.

[6] 01. 2024. Azure Blob Storage Pricing.

https://azure.microsoft.com/en-us/pricing/details/storage/blobs/.

[7] 01. 2024. Bitcoin Core Secp256k1.

https://github.com/bitcoin-core/secp256k1.

[8] 01. 2024. MongoDB Manual - Document Size Limit.

https://www.mongodb.com/docs/manual/core/document/.

[9] 01. 2024. MySQL Limits - Row Size Limits.

https://dev.mysql.com/doc/refman/8.4/en/innodb-file-space.html.

[10] 01. 2024. PostgreSQL - Database Page Layout.

https://www.postgresql.org/docs/current/storage-page-layout.html.

[11] 01. 2024. Public Centers for Disease Control and Prevention.

https://data.cdc.gov/.

[12] 01. 2024. Public Federal Reserve Economic Data.

https://fred.stlouisfed.org/.

[13] 01. 2024. Public Inter-University Consortium for Political and Social Research.

https://www.icpsr.umich.edu/.

204

www.cyberinitiative.org

Proceedings on Privacy Enhancing Technologies 2025(3)

[14] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trin-

abh Gupta. 2021. Addra: Metadata-Private Voice Communication Over Fully

Untrusted Infrastructure. In 15th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 21).

[15] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,

Karn Seth, and Kevin Yeo. 2021. Communication-Computation Trade-offs in PIR.

In 30th USENIX Security Symposium (USENIX Security 21). 1811–1828.

[16] Andris Ambainis. 1997. Upper Bound on The Communication Complexity of Pri-

vate Information Retrieval. In International Colloquium on Automata, Languages,

and Programming. Springer, 401–407.

[17] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Com-

pressed Queries and Amortized Query Processing. In 2018 IEEE Symposium on

Security and Privacy (SP). IEEE, 962–979.

[18] Sebastian Angel and Srinath Setty. 2016. Unobservable Communication Over

Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 16). 551–569.

[19] Amos Beimel and Yuval Ishai. 2001. Information-Theoretic Private Information

Retrieval: A Unified Construction. InAutomata, Languages and Programming: 28th

International Colloquium, ICALP 2001 Crete, Greece, July 8–12, 2001 Proceedings

28. Springer, 912–926.

[20] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and J-F Raymond. 2002. Breaking The

𝑂 (𝑛1/(2𝑘−1)) Barrier for Information-theoretic Private Information Retrieval.

In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer

Science, 2002. IEEE, 261–270.

[21] Amos Beimel, Yuval Ishai, and Tal Malkin. 2000. Reducing The Servers Compu-

tation In Private Information Retrieval: PIR with Preprocessing. In Advances in

Cryptology—CRYPTO 2000: 20th Annual International Cryptology Conference Santa

Barbara, California, USA, August 20–24, 2000 Proceedings 20. Springer, 55–73.

[22] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. 2017. Can We Ac-

cess a Database both Locally and Privately?. In Theory of Cryptography: 15th

International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,

Proceedings, Part II 15. Springer, 662–693.

[23] Christian Cachin, Silvio Micali, and Markus Stadler. 1999. Computationally Pri-

vate Information Retrieval with Polylogarithmic Communication. In Advances

in Cryptology—EUROCRYPT’99: International Conference on the Theory and Ap-

plication of Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999

Proceedings 18. Springer, 402–414.

[24] Ran Canetti, Justin Holmgren, and Silas Richelson. 2017. Towards Doubly Efficient

Private Information Retrieval. In Theory of Cryptography: 15th International

Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,

Part II 15. Springer, 694–726.

[25] Yan-Cheng Chang. 2004. Single Database Private Information Retrieval with Log-

arithmic Communication. In Information Security and Privacy: 9th Australasian

Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004. Proceedings 9. Springer,

50–61.

[26] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. Journal of the ACM (JACM) 45, 6 (1998), 965–981.

[27] Don Coppersmith and Shmuel Winograd. 1987. Matrix Multiplication via Arith-

metic Progressions. In Proceedings of The Nineteenth Annual ACM Symposium on

Theory of Computing. 1–6.

[28] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. 2022. Single-

Server Private Information Retrieval with Sublinear Amortized Time. In Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques. Springer, 3–33.

[29] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval

with Sublinear Online Time. In Advances in Cryptology–EUROCRYPT 2020: 39th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. Springer,

44–75.

[30] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A Secure and

Optimally Efficient Multi-Authority Election Scheme. European Transactions on

Telecommunications 8, 5 (1997), 481–490.

[31] Alex Davidson, Gonçalo Pestana, and Sofía Celi. 2023. FrodoPIR: Simple, Scalable,

Single-Server Private Information Retrieval. Proceedings on Privacy Enhancing

Technologies 1 (2023), 365–383.

[32] Zeev Dvir and Sivakanth Gopi. 2016. 2-Server PIR With Subpolynomial Commu-

nication. Journal of the ACM (JACM) 63, 4 (2016), 1–15.

[33] Klim Efremenko. 2009. 3-Query Locally Decodable Codes of Subexponential

Length. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing.

39–44.

[34] Craig Gentry and Zulfikar Ramzan. 2005. Single-Database Private Information

Retrieval with Constant Communication Rate. In International Colloquium on

Automata, Languages, and Programming. Springer, 803–815.

[35] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applica-

tions. In Advances in Cryptology–EUROCRYPT 2014: 33rd Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Copen-

hagen, Denmark, May 11-15, 2014. Proceedings 33. Springer, 640–658.

[36] Matthew Green, Watson Ladd, and Ian Miers. 2016. A Protocol For Privately

Reporting Ad Impressions At Scale. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. 1591–1601.

[37] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,

and Michael Walfish. 2016. Scalable and Private Media Consumption with Pop-

corn. In 13th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 16). 91–107.

[38] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wilson.

2014. Measuring Price Discrimination and Steering on E-Commerce Web Sites. In

Proceedings of the 2014 Conference on Internet Measurement Conference. 305–318.

[39] Alexandra Henzinger, Matthew M Hong, Henry Corrigan-Gibbs, Sarah Meikle-

john, and Vinod Vaikuntanathan. 2023. One Server For The Price of Two: Simple

and Fast Single-Server Private Information Petrieval. In Usenix Security, Vol. 23.

[40] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2004. Batch

Codes and Their Applications. In Proceedings of the Thirty-Sixth Annual ACM

Symposium on Theory of Computing. 262–271.

[41] Dmitry Kogan and Henry Corrigan-Gibbs. 2021. Private Blocklist Lookups With

Checklist. In 30th USENIX Security Symposium. 875–892.

[42] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication Is Not Needed: Single

Database, Computationally-Private Information Retrieval. In Proceedings 38th

Annual Symposium on Foundations of Computer Science. IEEE, 364–373.

[43] Arthur Lazzaretti and Charalampos Papamanthou. 2023. Near-Optimal Private

Information Retrieval with Preprocessing. In Theory of Cryptography Conference.

Springer, 406–435.

[44] Arthur Lazzaretti and Charalampos Papamanthou. 2023. TreePIR: Sublinear-Time

and Polylog-Bandwidth Private Information Retrieval from DDH. In Advances in

Cryptology – CRYPTO 2023, Helena Handschuh and Anna Lysyanskaya (Eds.).

284–314.

[45] Arthur Lazzaretti and Charalampos Papamanthou. 2024. Single-Pass Client

Preprocess Private Information Retrieval. In 33rd USENIX Security Symposium.

5967–5984.

[46] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. 2023. Doubly Efficient Private

Information Retrieval and Fully Homomorphic RAM Computation From Ring

LWE. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing.

595–608.

[47] Helger Lipmaa. 2005. An Oblivious Transfer Protocol with Log-Squared Commu-

nication. In Information Security: 8th International Conference, ISC 2005, Singapore,

September 20-23, 2005. Proceedings 8. Springer, 314–328.

[48] Wouter Lueks and Ian Goldberg. 2015. Sublinear Scaling for Multi-Client Private

Information Retrieval. In Financial Cryptography and Data Security: 19th Inter-

national Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised

Selected Papers 19. Springer, 168–186.

[49] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

2016. XPIR: Private Information Retrieval for Everyone. Proceedings on Privacy

Enhancing Technologies (2016), 155–174.

[50] Samir Jordan Menon and David J Wu. 2022. Spiral: Fast, High-Rate Single-Server

PIR via FHE Composition. In 2022 IEEE Symposium on Security and Privacy (SP).

IEEE, 930–947.

[51] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris. 2012.

Detecting Price and Search Discrimination on The Internet. In Proceedings of the

11th ACM workshop on hot topics in networks. 79–84.

[52] Michael Mitzenmacher and Eli Upfal. 2017. Probability and Computing: Random-

ization and Probabilistic Techniques in Algorithms and Data Analysis.

[53] Muhammad Haris Mughees, Hao Chen, and Ling Ren. 2021. OnionPIR: Response

Efficient Single-Server PIR. In Proceedings of the 2021 ACM SIGSAC Conference on

Computer and Communications Security. 2292–2306.

[54] Muhammad Haris Mughees and Ling Ren. 2023. Vectorized Batch Private In-

formation Retrieval. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE,

437–452.

[55] Arvind Narayanan and Vitaly Shmatikov. 2008. Robust De-Anonymization of

Large Sparse Datasets. In 2008 IEEE Symposium on Security and Privacy (SP 2008).

IEEE, 111–125.

[56] Arvind Narayanan and Vitaly Shmatikov. 2010. Myths and Fallacies of Personally

Identifiable Fnformation. Commun. ACM 53, 6 (2010), 24–26.

[57] Andrew Odlyzko. 2003. Privacy, Economics, and Price Discrimination on The

Internet. In Proceedings of the 5th international conference on Electronic commerce.

355–366.

[58] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. 2018. Private Stateful Information

Retrieval. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security. 1002–1019.

[59] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi, Balaji

Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica Manu, Spiro

Michaylov, Rogério Ramos, et al. 2017. Azure Data Lake Store: A Hyperscale

Distributed File Service for Big Data Analytics. In Proceedings of the 2017 ACM

International Conference on Management of Data. 51–63.

[60] Ankit Singh Rawat, Zhao Song, Alexandros G Dimakis, and Anna Gál. 2016.

Batch Codes Through Dense Graphs Without Short Cycles. IEEE Transactions on

Information Theory 62, 4 (2016), 1592–1604.

205

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

[61] Ling Ren, Muhammad Haris Mughees, and I Sun. 2024. Simple and Practical

Amortized Sublinear Private Information Retrieval using Dummy Subsets. In

Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communications

Security.

[62] Daniel S Roche, Adam Aviv, Seung Geol Choi, and Travis Mayberry. 2017. Deter-

ministic, Stash-Free Write-Only ORAM. In Proceedings of The 2017 ACM SIGSAC

Conference on Computer and Communications Security. 507–521.

[63] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas Devadas. 2021. AdVeil: A

Private Targeted Advertising Ecosystem. Cryptology ePrint Archive (2021).

[64] Daniel Shanks. 1971. Class Number, A Theory of Factorization, and Genera. In

Proc. Symp. Math. Soc., 1971, Vol. 20. 415–440.

[65] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce Maggs. 2021.

Puncturable Pseudorandom Sets and Private Information Retrieval with Near-

Optimal Online Bandwidth and Time. In Proceedings of the 41st Annual Interna-

tional Cryptology Conference. Springer, 641–669.

[66] Radu Sion and Bogdan Carbunar. 2007. On The Computational Practicality of

Private Information Retrieval. In Proceedings of The Network and Distributed

Systems Security Symposium. Internet Society Geneva, Switzerland, 2006–06.

[67] Douglas R Stinson, Ruizhong Wei, and Maura B Paterson. 2009. Combinatorial

Batch Codes. Advances in Mathematics of Communications 3, 1 (2009), 13–27.

[68] Volker Strassen et al. 1969. Gaussian Elimination Is Not Optimal. Numerische

Mathematik 13, 4 (1969), 354–356.

[69] Thomas Vissers, Nick Nikiforakis, Nataliia Bielova, and Wouter Joosen. 2014.

Crying Wolf? On The Price Discrimination of Online Airline Tickets. In 7th

Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2014).

[70] Sergey Yekhanin. 2008. Towards 3-Query Locally Decodable Codes of Subexpo-

nential Length. Journal of the ACM (JACM) 55, 1 (2008), 1–16.

[71] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and Elaine Shi. 2023. Optimal

Single-Server Private Information Retrieval. In Annual International Conference

on the Theory and Applications of Cryptographic Techniques. 395–425.

[72] M. Zhou, A. Park, W. Zheng, and E. Shi. 2024. PIANO: Extremely Simple, Single-

Server PIR with Sublinear Server Computation. In 2024 IEEE Symposium on

Security and Privacy. 55–55.

[73] 2024. PIANO: Extremely Simple, Single-Server PIR with Sublinear Server Com-

putation. Cryptology ePrint Archive, Paper 2023/452.

A PPR Deferred Proofs

A.1 Security (Lemma 1)
Proof. We construct a simulator S𝑃 such that no PPT environ-

mentZ can distinguish between its view in the Ideal and Real.Z
can statically corrupt one server to view the execution transcript.

On receiving the notification from the ideal functionality F𝑃 , the
simulator S𝑃 functions as follows:

(1) S𝑃 samples (𝛿0, ..., 𝛿𝑛−1)
$← [𝑚]𝑛 , 𝑞 $← {0, 1}𝑛

(2) S𝑃 outputs T ← {𝑞 [𝑖] · (𝑖 ·𝑚 + 𝛿𝑖) ∀ 𝑖 ∈ [𝑛] ∧ 𝑞 [𝑖] ≠ 0}
In Ideal, the simulatorS𝑃 randomly samples a selection bit string

to simulate a list of partition accesses (to arbitrary indices). For the

PPR protocol (Figure 2) described in Real, the environmentZ can

infer the bit selection when viewing the partition query T0 (or T1),
since each index belongs to a partition. Since bit flipping does not

distort the distribution of random bit string, the partition access (by

using bit selection), is uniformly random for both execution under

the view ofZ. Note that for security, privately accessing a partition

does not require the returned data item to be located at a random

index. It is rather a functionality that we want to achieve. □

B Pirex Deferred Proofs

B.1 Auxiliary Size (Lemma 2)
Proof. LetH = (ℎ1, . . . , ℎ𝑀) be the generated hint buffer of size

𝑀 = O(
√
𝑁 log𝑁). For every hint ℎ𝑖 = (ℓ𝑖 , sk𝑖 ,𝜌𝑖 ,𝑌𝑖) ∈ H , let 𝑋𝑖 be

a random variable that indicates the size of auxiliary 𝑌𝑖 . We present

the operations that affects the state of𝑋𝑖 at each protocol execution

time 𝑡 as follows:

• In the offline: 𝑋
(𝑡)
𝑖

= 𝑋
(0)
𝑖

= 0. Thus, E[𝑋 (0)
𝑖
] = 0.

• In the online:

(1) If ℎ𝑖 is consumed and replaced with a new hint ℎ′𝑖 :

𝑋
(𝑡+1)
𝑖

= 𝑋
(𝑡)
𝑖
− 𝑋 (𝑡)

𝑖
= 0

(2) If ℎ𝑖 is adjusted by expanding its auxiliary data 𝑌𝑖 :

𝑋
(𝑡+1)
𝑖

= 𝑋
(𝑡)
𝑖
+ 1

Let Δ𝑋 (𝑡)
𝑖

=𝑋
(𝑡+1)
𝑖
−𝑋 (𝑡)

𝑖
be the transition from 𝑋

(𝑡)
𝑖

to 𝑋
(𝑡+1)
𝑖

. As

there are two online cases, we have Δ𝑋 (𝑡)
𝑖

= −𝑋 (𝑡)
𝑖

or Δ𝑋 (𝑡)
𝑖

= 1

with an independent probability of
1

𝑀
for each case. Thus:

E[Δ𝑋 (𝑡)
𝑖
] = −E[𝑋 (𝑡)

𝑖
] ∗ 1

𝑀
+ 1

𝑀

We can then obtain a recurrence to compute the expected value

of 𝑋
(𝑡+1)
𝑖

on knowing the prior expected value of 𝑋
(𝑡)
𝑖

:

E[𝑋 (𝑡+1)
𝑖
] = E[𝑋 (𝑡)

𝑖
] + E[Δ𝑋 (𝑡)

𝑖
]

= E[𝑋 (𝑡)
𝑖
] ∗

(
1 − 1

𝑀

)
+ 1

𝑀

By expanding this recurrence (∀ 𝑡 ≥ 1), we have that:

E[𝑋 (𝑡)
𝑖
] = E[𝑋 (0)

𝑖
] ∗

(
1 − 1

𝑀

)𝑡
+ 1

𝑀
∗

𝑡−1∑︁
𝑖=0

(
1 − 1

𝑀

)𝑖
It is easy to see that the summation is a geometric series with

the common ratio |𝑟 | = |1 − 1

𝑀
| < 1, meaning that the series will

converge and E[𝑋𝑖] will reach its steady state when 𝑡 →∞:

E[𝑋𝑖] = E[𝑋 (∞)
𝑖
] = 1

𝑀
∗
∞∑︁
𝑖=0

(
1 − 1

𝑀

)𝑖
=

1

𝑀
∗𝑀 = 1

To this end, we complete our proofs to show that in the average

case, |𝑌𝑖 | = E[𝑋𝑖] = 1 for any auxiliary data 𝑌𝑖 ∈ H . □

B.2 Correctness (Theorem 1)
Proof. To ensure correctness, we must show that:

(1) By building a setH of O(
√
𝑁 log𝑁) offline hints, the client can

find a hint ℎ𝑖 in the online phase that contains its desired query

index 𝑥 with an overwhelming probability.

(2) By replacing the query index 𝑥 in the chosen random hint ℎ𝑖
with another patching index 𝑧, the client can recover the data

item DB[𝑥] with an overwhelming probability.

For the client to find a hint ℎ𝑖 ∈ H that contains 𝑥 , the set H
must cover all 𝑁 indices. Each offline hint is created by aggregating√
𝑁 random indices from

√
𝑁 partitions (one index per partition).

To cover all 𝑁 indices, the offline hints must cover all

√
𝑁 offsets in

each database partition. Since all partitions are independent, we can

apply the classic Coupon Collector Problem [52] to each partition

to prove the expected sampling number is O(
√
𝑁 log

√
𝑁) to cover

all

√
𝑁 offsets within a partition. (Lemma 2.10 in [52]). Therefore, it

suffices to set the number of hints as𝑀 = O(
√
𝑁 log𝑁) to cover all

offsets in all partitions, thereby 𝑁 indices. Lazzaretti et al. (Section

206

Proceedings on Privacy Enhancing Technologies 2025(3)

4.2 of [44]) proved that for large 𝑁 ,𝑀 = O(𝜆
√
𝑁) suffices to cover

all 𝑁 indices except with negligible probability of failure.

To recoverDB[𝑥] successfully, the client combines the following

three components: (1) an existing offline parity 𝜌𝑖 = 𝜌
⊕

DB[𝑥]
containing DB[𝑥] with 𝜌 is a punctured parity, (2) a random entry

DB[𝑧] from the same partition with DB[𝑥], (3) a patched parity

𝜌
⊕

DB[𝑧]. The correctness of data recovery holds when given the

offline parity 𝜌𝑖 that the client already owns, the client can retrieve

the punctured parity 𝜌 to compute DB[𝑥] = 𝜌𝑖
⊕

𝜌 . This is true as

the client combines the patched parity 𝜌
⊕

DB[𝑧] with the random
entry DB[𝑧] to produce the punctured parity 𝜌 . The patched parity
𝜌
⊕

DB[𝑧] is computed from one server by sending the patched set

S𝑖 \ {𝑥} ∪ {𝑧}, where S𝑖 is the hint set previously corresponded to

producing parity 𝜌𝑖 and S𝑖 \ {𝑥} is the punctured set corresponded
to the punctured parity 𝜌 . The random entry DB[𝑧] is recovered
due to the correctness of the PPR protocol. □

B.3 Security (Theorem 2)
Proof. We construct a simulator S in the Ideal such that a PPT

environmentZ cannot distinguish between its view in Ideal and
Real. Note thatZ can statically corrupt one server to get the view

of the transcript, which is either from the simulation by S in Ideal,
or from the protocol execution in Real. We denote the distribution

D𝑛 ← [𝑚]𝑛 as sampling a random set, which draws one random

index from each partition 𝑃𝑘 for 𝑘 ∈ [𝑛]. The simulator S functions

as follows:

Offline: On receiving input (DB, 𝑁):
(1) S samples a random bit string {0, 1}𝑀 , where𝑀0 counts the

bits zero (or one), denoting the number of random sets it

needs to simulate the adversarial view.

(2) S outputs𝑀0 dummy sets (S1, ...,S𝑀0
) $← D𝑀0

𝑛 .

Online: On receiving query notification:

(1) S outputs S∗ $← D𝑛 .

(2) S outputs one partition set T , by invoking S𝑃 from the Ideal
world of PPR.

In Ideal, S∗, T and {S1, . . . ,S𝑀0
} are truly random sets and in-

dependent from each other.

We now define a sequence of hybrid experiments Hyb𝑖 . The
differences between Hyb𝑖 and Hyb𝑖+1

are highlighted in red. We

show that the Real and Ideal are indistinguishable:

| Pr[RealΠF ,A,Z (𝜆) = 1] − Pr[IdealF,S,Z (𝜆) = 1] | ≤ negl(𝜆)

Hybrid 0. We define Hyb
0
experiment as RealΠF ,A,Z with an

adversarialA and an environmentZ. We rewrite the real protocol

of Pirex as in Figure 15.

Hybrid 1. Let Hyb
1
experiment be as in Figure 16. In Hyb

1
, the

difference is that the client samples each set S𝑖 from D𝑛 in the

offline and stores all sets of indices in plain. The client does not use

PRF key with auxiliary data and there is no more PRS evaluation.

We argue that the view ofZ for the offline and online in Hyb
1

and Hyb
0
are computationally indistinguishable. This is because

the distribution of online queries created by any S𝑖 sampled from

either PRS or D𝑛 would have a negligible difference underZ.

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 PRF keys (sk1, . . . , sk𝑀) with PRS.Gen(1𝜆)
(3) On receiving a PRF key sk𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←

⊕𝑛−1

𝑗=0
DB[𝑠 𝑗]

where 𝑠 𝑗 ∈ S𝑖 ← PRS.Eval(sk𝑖 ,⊥)
(4) The client receives parity 𝜌𝑖 from server Sℓ𝑖

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(5) Search ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜌𝑖 , 𝑌𝑖) where 𝑥 ∈ S𝑖 ← PRS.Eval(sk𝑖 , 𝑌𝑖)
(6) (𝑧, T, T (𝑧)) ← PPR.Gen(𝑚,𝑛,𝑘)
(7)

¯S ← S𝑖 \ {𝑥 } ∪ {𝑧}
(8) Sample S′ ← PRS.Eval(sk′,⊥) where sk′ ← PRS.Gen(1𝜆)
(9) Send𝑄ℓ𝑖 ← (S′, T (𝑧)) to server Sℓ𝑖 and receive R ℓ𝑖 = (𝜌 ′, 𝑤 (𝑧))
(10) Send𝑄¬ℓ𝑖 ← (¯S, T) to server S¬ℓ𝑖 and receive R¬ℓ𝑖 = (𝜌, 𝑤)
(11) DB[𝑧] ← PPR.Rec(𝑤 (𝑧) , 𝑤)
(12) DB[𝑥] ← 𝜌𝑖 ⊕ 𝜌 ⊕ DB[𝑧]
(13) Search ℎ 𝑗 = (ℓ𝑗 , sk𝑗 , 𝜌 𝑗 , 𝑌𝑗) where 𝑧 ∈ S𝑗 ← PRS.Eval(sk𝑗 , 𝑌𝑗)
(14) 𝜌 ′𝑗 ← 𝜌𝑗 ⊕ DB[𝑧] ⊕ DB[𝑥]
(15) 𝑌 ′𝑗 ← 𝑌𝑗 ∪ {𝑥 } \ {𝑧}
(16) Replace ℎ 𝑗 with ℎ

′
𝑗 ← (ℓ𝑗 , sk𝑗 , 𝜌 ′𝑗 , 𝑌 ′𝑗)

(17) Replace ℎ𝑖 with ℎ
′
𝑖 ← (ℓ𝑖 , sk

′, 𝜌 ′, 𝑌 ′) with 𝑌 ′ ←⊥

Figure 15: Hyb
0
experiment.

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

(4) The client receives parity 𝜌𝑖 from server Sℓ𝑖

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(5) Search ℎ𝑖 = (ℓ𝑖 , S𝑖 , 𝜌𝑖) where 𝑥 ∈ S𝑖
(6) (𝑧, T, T (𝑧)) ← PPR.Gen(𝑚,𝑛,𝑘)
(7)

¯S ← S𝑖 \ {𝑥 } ∪ {𝑧}
(8) Sample S′ $← D𝑛

(9) Send𝑄ℓ𝑖 ← (S′, T (𝑧)) to server Sℓ𝑖 and receive R ℓ𝑖 = (𝜌 ′, 𝑤 (𝑧))
(10) Send𝑄¬ℓ𝑖 ← (¯S, T) to server S¬ℓ𝑖 and receive R¬ℓ𝑖 = (𝜌, 𝑤)
(11) DB[𝑧] ← PPR.Rec(𝑤 (𝑧) , 𝑤)
(12) DB[𝑥] ← 𝜌𝑖 ⊕ 𝜌 ⊕ DB[𝑧]
(13) Search ℎ 𝑗 = (ℓ𝑗 , S𝑗 , 𝜌 𝑗) where 𝑧 ∈ S𝑗
(14) 𝜌 ′𝑗 ← 𝜌𝑗 ⊕ DB[𝑧] ⊕ DB[𝑥]
(15) S′𝑗 ← S𝑗 ∪ {𝑥 } \ {𝑧}
(16) Replace ℎ 𝑗 with ℎ

′
𝑗 ← (ℓ𝑗 , S′𝑗 , 𝜌 ′𝑗)

(17) Replace ℎ𝑖 with ℎ
′
𝑖 ← (ℓ𝑖 , S′, 𝜌 ′)

Figure 16: Hyb
1
experiment.

Hybrid 2. Let Hyb
2
experiment be as in Figure 17. In Hyb

2
, the

main difference is that in the online, the client finds the hint ℎ𝑖 =

(ℓ𝑖 ,S𝑖 , 𝜌𝑖) but does not use S𝑖 as the input to create the queries as

in Hyb
1
. The client instead uses a newly sampled set S∗ $← D𝑛 ,

with 𝑥 ∈ S∗. Since S∗ is not related to any precomputed offline

parity, the client cannot recover the data item DB[𝑥]. Thus, we
introduce the ideal functionality F , which can return the correct

answer based on the query input 𝑥 fromZ. Since no precomputed

hint is consumed to recover DB[𝑥], the client also does not need

to perform any hint refresh (Step 13-17 as in Hyb
1
).

207

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

(4) The client receives parity 𝜌𝑖 from server Sℓ𝑖

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(5) Search ℎ𝑖 = (ℓ𝑖 , S𝑖 , 𝜌𝑖) where 𝑥 ∈ S𝑖
(6) Sample S∗ $← D𝑛 where 𝑥 ∈ S∗
(7) (𝑧, T, T (𝑧)) ← PPR.Gen(𝑚,𝑛,𝑘)
(8)

¯S ← S∗ \ {𝑥 } ∪ {𝑧}
(9) Sample S′ $← D𝑛

(10) Send𝑄ℓ𝑖 ← (S′, T (𝑧)) to server Sℓ𝑖 and receive R ℓ𝑖 = (𝜌 ′, 𝑤 (𝑧))
(11) Send𝑄¬ℓ𝑖 ← (¯S, T) to server S¬ℓ𝑖 and receive R¬ℓ𝑖 = (𝜌, 𝑤)
(12) DB[𝑥] ← F(𝑥)

Figure 17: Hyb
2
experiment.

We argue that the view ofZ for the offline and online in Hyb
2

has the same distribution as in Hyb
1
. In the offline, the operations

are identical. In the online, using the newly sampled set S∗ yields
the same distribution of queries as using S𝑖 . This is because the
selected set S𝑖 from Hyb

1
is always guaranteed to be S𝑖

$← D𝑛 ,

conditioned on 𝑥 ∈ S𝑖 . Recall that in OO-PIR, when a hint ℎ𝑖 with

set S𝑖 is consumed subject to containing 𝑥 , the client always refresh

it with a new hint that is also subjected to containing 𝑥 to preserve

the total number of hints containing 𝑥 , with respect to the random

distribution D𝑀
𝑛 from the offline phase. In Hyb

1
, the client chose

a random local hint ℎ 𝑗 subject to containing a random element 𝑧

and replaced 𝑧 with 𝑥 , which preserves the total number of hints

containing 𝑥 with respect to the distribution D𝑀
𝑛 , but not preserve

the total number of random hints𝑀 . This is because another hint

ℎ 𝑗 is consumed and this hint is randomly selected based on the

random element 𝑧. Finally, the total number of random hints 𝑀

is preserved by adding a completely new random hint ℎ′𝑖 , which
preserves the distributionD𝑀

𝑛 exactly as it is from the offline phase.

Since the newly sampled set S∗ and the hint set S𝑖 (that was not
previously revealed to the corrupted server in the offline) are indis-

tinguishable, the resulting queries will have the same distribution

under the view ofZ as in Hyb
1
.

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(4) Sample S∗ $← D𝑛 where 𝑥 ∈ S∗ and ℓ∗
$← {0, 1}

(5) (𝑧, T, T (𝑧)) ← PPR.Gen(𝑚,𝑛,𝑘)
(6)

¯S ← S∗ \ {𝑥 } ∪ {𝑧}
(7) Sample S′ $← D𝑛

(8) Send𝑄ℓ∗ ← (S′, T (𝑧)) to server Sℓ∗
(9) Send𝑄¬ℓ∗ ← (¯S, T) to server S¬ℓ∗
(10) DB[𝑥] ← F(𝑥)

Figure 18: Hyb
3
experiment.

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(4) Sample S∗ $← D𝑛 and S′ $← D𝑛

(5) (𝑧, T0, T1) ← PPR.Gen(𝑚,𝑛,𝑘)
(6) Send𝑄0 ← (S′, T0) to server S0

(7) Send𝑄1 ← (S∗, T1) to server S1

(8) DB[𝑥] ← F(𝑥)

Figure 19: Hyb
4
experiment.

Hybrid 3. Let Hyb
3
experiment be as in Figure 18. In Hyb

3
, the

difference is that in the offline, the client only requests server Sℓ𝑖
to compute the parity 𝜌𝑖 (by sending the set S𝑖) but does not store
the returned result. In the online, the client samples a new server

identifier ℓ∗
$← {0, 1} when sampling the new set S∗, instead of

using ℓ𝑖 from the hint ℎ𝑖 .

We argue that the view ofZ for the offline and online in Hyb
3

has the same distribution as in Hyb
2
. In the offline, the corrupted

server (inZ’s view) receives the same distribution of random sets

as in Hyb
2
. In the online, replacing ℓ𝑖 with ℓ

∗
only affects how

the queries are distributed to which server, where the queries are

already independently random and indistinguishable from S𝑖 .
Hybrid 4. Let Hyb

4
experiment be as in Figure 19. In Hyb

4
, the

main difference is that in the online, the client samples two random

sets S∗ and S′ that are entirely independent to the desired index 𝑥 ,

instead of sampling a S∗ ⊃ {𝑥}. The client directly sends them to

the servers without any set modification.

We argue that the view ofZ for the offline and online in Hyb
4

has the same distribution as in Hyb
3
. In the offline, the operations

are identical. In the online, S∗ has the same distribution as the

patched set
¯S. This is because 𝑥 ∈ S∗ is replaced by a random 𝑧

from the same partition, which yields
¯S ← S∗\ {𝑥} ∩ {𝑧} that

matches the distribution D𝑛 , where each element is independently

and uniformly sampled within its partition. For the remaining query

set S′, it is also randomly sampled from D𝑛 . Since both server S0

and S1 have no prior knowledge about S∗ and S′, there is no need

to specify any server identifier (as shown in Hyb
3
) for the security

when distributing the online queries. As the client no longer use 𝑧

for patching, we also do not need to care which PPR query contains

𝑧 and can arbitrarily send them.

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(4) Sample S∗ $← D𝑛 and S′ $← D𝑛

(5) Sample (T0, T1) by invoking S𝑃 from PPR

(6) Send𝑄0 ← (S′, T0) to server S0

(7) Send𝑄1 ← (S∗, T1) to server S1

(8) DB[𝑥] ← F(𝑥)

Figure 20: Hyb
5
experiment.

208

Proceedings on Privacy Enhancing Technologies 2025(3)

Hybrid 5. Let Hyb
5
experiment be as in Figure 20. In Hyb

5
the

only difference is that the client create the partition sets (T0, T1)
using simulator S𝑃 , instead of using the real PPR protocol. In the

view ofZ, this yields the same distribution of partition sets as in

Hyb
4
, according to the PPR security proof in Lemma 1.

Note that Hyb
5
is identical to the simulator S in Ideal, which

shows that Ideal and Real are computationally indistinguishable

under the view ofZ.

The indistinguishability between Ideal and Real underZ’s view

implies that the real-world adversary, given a client’s online query

containing a patched set S and a partition set T , cannot guess
what data entry is being retrieved with probability better than

1

𝑁
for any public database containing 𝑁 data entries, where the

number of partitions𝑛 =
√
𝑁 and the number of entries per partition

𝑚 =
√
𝑁 . The patched set S includes exactly

√
𝑁 random indices,

each is from a distinct partition, so the adversary always see exactly

one random entry being accessed for each partition and cannot

distinguish which random entry index in S is the patching element

to indicate the (punctured) partition of interest. The partition set

T is a query generated by the PPR protocol, which also does not

reveal the partition of interest (see §A.1). Thus, the adversary can

only guess the partition of interest with probability
1√
𝑁
. As there are√

𝑁 indices per partition, the adversary can only guess what index

being queried with probability
1√
𝑁
as random index being accessed

for this partition is independently sampled with no correlation to

the actual index being queried. In overall, the adversary cannot

guess the index being queried with probability better than
1

𝑁
. □

C Pirex+ Detailed Algorithms
The detailed algorithms for Pirex+ is presented in Figure 21, Fig-

ure 22, Figure 23, Figure 24, Figure 25, Figure 26. To enable the

remote storage for offline hint parities, Pirex+ has slightly different
interfaces (marked as blue) over Pirex as follows:

• (H , P) ← Prep(DB, 𝑁): Given a database DB of 𝑁 entries, it

outputs a hintH and an encrypted parity buffer P.
• (𝑄0, 𝑄1,H ∗) ←Query(𝑥,H): Given an entry index 𝑥 and the

hint H , it outputs two online queries 𝑄0, 𝑄1 for server S0, and

S1, respecitvely and an updated hintH ∗.
• R𝑙 ← Answer(𝑄𝑙 ,DB, P): Given a query𝑄𝑙 , the databaseDB and

the parity buffer P, it outputs a response R𝑖 .

• (𝑏𝑥 , ⟨𝜌 ′⟩,H ′) ← Recover(R0,R1,H ∗): Given the hint H ∗ and
two responses R0, R1, it outputs the desired data entry 𝑏𝑥 , an

encrypted refresh parity ⟨𝜌 ′⟩ and an updated hintH ′.

• (H, P) ← Prep(DB, 𝑁) :
1: for 𝑖 = 1 to𝑀 do
2: ℓ𝑖

$← {0, 1} and sk𝑖 ← PRS.Gen(1𝜆)
3: S𝑖 ← PRS.Eval(sk𝑖 ,⊥)
4: 𝜌𝑖 ←

∑𝑛
𝑗=1

DB[𝑠 𝑗] (mod 𝑝) for all 𝑠 𝑗 ∈ S𝑖
5: P[𝑖] ← AHE.Enc(pk, 𝜌𝑖)
6: ℎ𝑖 ← (ℓ𝑖 , sk𝑖 , 𝑖)
7: return (H ← (ℎ1, . . . , ℎ𝑀) , P)

Figure 21: Pirex+ offline phase.

Executedby

ServerSℓ𝑖

• (𝑄0,𝑄1,H∗) ←Query(𝑥,H) :
1: parse H = (ℎ1, . . . , ℎ𝑀)
2: search ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜋𝑖) where 𝑥 ∈ S𝑖 ← PRS.Eval(sk𝑖 ,⊥)
3: (q0, q1) ← XOR-PIR.Gen(𝜋𝑖)
4: (�̂�0, �̂�1) ← SubQuery(𝑥, ℓ𝑖 , S𝑖)
5: sample ℓ ′

$← {0, 1}
6: sample sk′← PRS.Gen(1𝜆) where 𝑥 ∈ S′← PRS.Eval(sk′,⊥)
7: (�̂�0

′, �̂�1

′) ← SubQuery(𝑥,¬ℓ ′, S′)
8: 𝑄0 ← (�̂�0, �̂�0

′, q0) , 𝑄1 ← (�̂�1, �̂�1

′, q1)
9: H∗ ← (ℎ1, . . . , ℎ𝑖 , . . . , ℎ𝑀,ℎ

′) where ℎ′ ← (ℓ ′, sk′,⊥)
10: return (𝑄0,𝑄1,H∗)

• (�̂�0, �̂�1) ← SubQuery(𝑥, ℓ, S) :
1: (𝑧, T, T (𝑧)) ← PPR.Gen(𝑚,𝑛,𝑘) where 𝑘 ←

⌊
𝑥
𝑚

⌋
2:

¯S ← S \ {𝑥 } ∪ {𝑧}
3:

˜S ← PRS.Eval(k,⊥) where k← PRS.Gen(1𝜆)
4: �̂�ℓ ← (˜S, T (𝑧)) , �̂�¬ℓ ← (¯S, T)
5: return (�̂�0, �̂�1)

Figure 22: Pirex+ online phase: query.

• R𝑙 ← Answer(𝑄𝑙 ,DB, P) :
1: parse𝑄𝑙 = ((S, T), (S′, T′), q)
2: 𝜌 ← ∑𝑛

𝑗=1
DB[𝑠 𝑗] for all 𝑠 𝑗 ∈ S

3: 𝜌 ′ ← ∑𝑛
𝑗=1

DB[𝑠′𝑗] for all 𝑠′𝑗 ∈ S′

4: 𝑤 ← PPR.Ret(T,DB)
5: 𝑤′ ← PPR.Ret(T′,DB)
6: 𝑟 ← XOR-PIR.Ret(q, P)
7: return R𝑙 ← ((𝜌, 𝑤), (𝜌 ′, 𝑤′), 𝑟)

Figure 23: Pirex+ online phase: answer.

Additionally, Pirex+ has new interfaces to enable remote offline

parities updates due to refresh and database updates:

• (H ′, P′) ← Rewrite(⟨𝜌 ′⟩,H , P): Given a new encrypted parity

⟨𝜌 ′⟩, the hintH and the buffer P, it outputs a new P′ such that

⟨𝜌 ′⟩ is written into P, and a correspondingly updated hintH ′.
• P′ ← Update(𝑥, 𝑏′𝑥 , P): Given an entry index 𝑥 to be updated, its

new content 𝑏′𝑥 , and the buffer P, it outputs a new buffer P′.

We highlight the difference between Pirex+ and Pirex in blue.

Pirex+ makes use of the following standard 2-server XOR-PIR [26]

XOR-PIR = (Gen,Ret,Rec) on the parity buffer P of size 2𝑀 :

• (q0, q1) ← Gen(𝑥): Given an index 𝑥 ∈ [2𝑀], it samples two bit

vectors sq0, q1 ← {0, 1}2𝑀 such that q0 ⊕ q1 = e, where e is a

unit vector with e[𝑥] = 1.

• 𝑟𝑖 ← Ret(q𝑙 , P): Given query q𝑙 and buffer P, it outputs an XOR

result 𝑟 =
⊕

𝑗∈J P[𝑗] where J = { 𝑗 : q𝑙 [𝑗] = 1}.
• 𝑏𝑥 ← Rec(𝑟0, 𝑟1): Given two results 𝑟0, 𝑟1, it outputs 𝑏𝑥 = 𝑟0 ⊕ 𝑟1.

D Pirex+ Deferred proofs

D.1 Security (Theorem 3)
Proof. We extend the Ideal simulator S from Appendix §B.3:

209

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

• (𝑏𝑥 , ⟨𝜌 ′ ⟩,H′) ← Recover(R0, R1,H) :
1: parse R0 = ((𝜌0, 𝑤0), (𝜌 ′

0
, 𝑤′

0
), 𝑟0) , R1 = ((𝜌1, 𝑤1), (𝜌 ′

1
, 𝑤′

1
), 𝑟1)

2: parse H∗ = (ℎ1, . . . , ℎ𝑖 , . . . , ℎ𝑀,ℎ
′)

3: parse ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜋𝑖) , ℎ′ = (ℓ ′, sk′,⊥)
4: 𝑏𝑧 ← PPR.Rec(𝑤0, 𝑤1)
5: 𝑏′𝑧 ← PPR.Rec(𝑤′

0
, 𝑤′

1
)

6: 𝜌𝑖 ← AHE.Dec(sk, ⟨𝜌𝑖 ⟩) where ⟨𝜌𝑖 ⟩ ← XOR-PIR.Rec(𝑟0, 𝑟1)
7: 𝑏𝑥 ← 𝑏𝑧 + 𝜌𝑖 − 𝜌¬ℓ𝑖 (mod 𝑝)
8: ⟨𝜌 ′ ⟩ ← AHE.Enc(pk, 𝜌 ′) where 𝜌 ′ ← 𝑏𝑥 − 𝑏′𝑧 + 𝜌 ′ℓ ′ (mod 𝑝)
9: ℎ′ ← (ℓ ′, sk′, 𝑐 +𝑀)
10: H′ ← (ℎ1, . . . , ℎ

′, . . . , ℎ𝑀)
11: return (𝑏𝑥 , ⟨𝜌 ′ ⟩,H′)

Figure 24: Pirex+ online phase: recover.

• (H′, P′) ← Rewrite(⟨𝜌 ′ ⟩,H, P) :
Client:

1: parse H = (ℎ1, . . . , ℎ𝑐 , . . . , ℎ𝑀) with ℎ𝑐 = (ℓ𝑐 , sk𝑐 , 𝜋𝑐)
2: (q0, q1) ← XOR-PIR.Gen(𝜋𝑐)

Server: S𝑙 ∈ {S0, S1}
3: return 𝑟𝑙 ← XOR-PIR.Ret(𝑞𝑙 , P)

Client:

4: ⟨𝜌𝑐 ⟩ ← XOR-PIR.Rec(𝑟0, 𝑟1)
5: ⟨𝜌𝑐 ⟩′ ← AHE.Enc(pk, 𝜌𝑐)
6: count 𝑐 ← 𝑐 + 1 (mod𝑀)

7: return H′ ← (ℎ1, . . . , ℎ
′
𝑐 , . . . , ℎ𝑀) with ℎ′𝑐 = (ℓ𝑐 , sk𝑐 , 𝑐)

Server: S𝑙 ∈ {S0, S1}
8: write Pleft [𝑐] = ⟨𝜌𝑐 ⟩′ , Pright [𝑐] = ⟨𝜌 ′ ⟩
9: return P

Figure 25: Pirex+ oblivious refresh.

• P′ ← Update(𝑥,𝑏′𝑥 , P) :
Client:

1: e← {0}2𝑀 , 𝑘 ←
⌊
𝑥
𝑚

⌋
2: for ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜋𝑖) ∈ H do
3: e[𝜋𝑖] = 1 if 𝑥 ∈ PRS.Eval(sk𝑖 ,⊥)
4: for 𝑖 = 1 to 2𝑀 do
5: ⟨𝑒𝑖 ⟩ ← AHE.Enc(sk, e[𝑖])
6: send (⟨𝑒1 ⟩, . . . , ⟨𝑒2𝑀 ⟩) to S0 and S1

Server: S𝑙 ∈ {S0, S1}
7: 𝜖 ← 𝑏′𝑥 − DB[𝑥]
8: for 𝑖 = 1 to 2𝑀 do
9: P[𝑖] ← P[𝑖] ⊞ (⟨𝑒𝑖 ⟩ � 𝜖)
10: return P

Figure 26: Pirex+ remote update parities.

(1) In the offline phase, the simulator S additionally outputs a

dummy encrypted parity buffer P, where P[𝑖] ← ⟨0⟩
(2) In the online phase, the simulator S additionally outputs two

random bit strings q and q′

(3) At 𝑐-th oblivious refresh, S writes into Pleft [𝑐] and Pleft [𝑐] a
dummy encrypted parity value ⟨0⟩

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 PRF keys (sk1, . . . , sk𝑀)
(3) On receiving a PRF key sk𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←

⊕𝑛−1

𝑗=0
DB[𝑠 𝑗]

where 𝑠 𝑗 ∈ S𝑖 ← PRS.Eval(sk𝑖 ,⊥)
(4) The client receives 𝜌𝑖 from Sℓ𝑖 and sets hint ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜋𝑖 = 𝑖)
(5) The client sends parity buffer P to S0, S1 with P[𝑖] = ⟨𝜌𝑖 ⟩

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(6) Search ℎ𝑖 = (ℓ𝑖 , sk𝑖 , 𝜋𝑖) where 𝑥 ∈ S𝑖 ← PRS.Eval(sk𝑖 ,⊥)
(7) (�̂�0, �̂�1) ← SubQuery(𝑥, ℓ𝑖 , S𝑖)
(8) Sample ℓ ′

$← {0, 1}, sk′ $← {0, 1}𝜆where 𝑥 ∈ S′← PRS.Eval(sk′,⊥)
(9) (�̂�0

′, �̂�1

′) ← SubQuery(𝑥,¬ℓ ′, S′)
(10) Send𝑄0 ← (�̂�0, �̂�0

′) to server S0 and receive R0

(11) Send𝑄1 ← (�̂�1, �̂�1

′) to server S1 and receive R1

(12) Read ⟨𝜌𝑖 ⟩ with XOR-PIR on position 𝜋𝑖

(13) Obtain DB[𝑥] using R0, R1, and parity 𝜌𝑖

(14) Obtain parity 𝜌 ′ using R0, R1, and DB[𝑥]

Refresh: On retrieving new parity 𝜌 ′ , the client executes:
(15) Write Pright [𝑐] = ⟨𝜌 ′ ⟩, ℎ′ = (ℓ ′, sk′, 𝜋 ′= 𝑐 +𝑀)
(16) Read ⟨𝜌𝑐 ⟩ with XOR-PIR on position 𝜋𝑐 ∈ ℎ𝑐
(17) Write Pleft [𝑐] = ⟨𝜌𝑐 ⟩′ , ℎ𝑐 = (ℓ𝑐 , sk𝑐 , 𝑐)

Figure 27: Hyb+
0
experiment.

In addition to the online and offline phase, the simulator S can

receive an update command, which outputs an IND-CPA encrypted

random binary vector.

We now define a sequence of hybrid experiments Hyb+𝑖 . The
differences between Hyb+𝑖 and Hyb+𝑖+1

are highlighted in red. We

show that the Real and Ideal are indistinguishable:

| Pr[RealΠF ,A,Z (𝜆) = 1] − Pr[IdealF,S,Z (𝜆) = 1] | ≤ negl(𝜆)

Hybrid 0. We define Hyb+
0
experiment as the RealΠF ,A,Z with

ΠF = Pirex+, adversarial A and environmentZ in Figure 27

Hybrid 1. LetHyb+
1
experiment be as in Figure 28. Similar toHyb

1
,

the client samples a set S𝑗
$← D𝑛 instead of using a PRF key. This

adjustment does not affect the way a client retrieves a parity using

standard XOR-PIR and thus, the view ofZ in Hyb+
1
and Hyb+

0
are

computationally indistinguishable.

Hybrid 2. Let Hyb+
2
experiment be as in Figure 29. From Hyb

2
,

we know that the client uses a set S∗ that is not related to any

offline parity to create the queries. Thus, no offline parity can be

used to recover DB[𝑥] so the F is invoked to obtain DB[𝑥]. The
client still invokes XOR-PIR to maintain the indistinguishability

with Hyb+
1
. Since no offline parities are used in Hyb+

2
, we do not

need to write any new refresh parity in the buffer Pright. Due to the
IND-CPA property of the AHE encryption, the client can write ⟨0⟩
into Pright [𝑐] as a dummy refresh parity, which makes the view of

Z in Hyb+
2
and Hyb+

1
computationally indistinguishable.

Hybrid 3. Let Hyb+
3
experiment be as in Figure 30. In Hyb+

3
, the

additional difference (w.r.t experiment Hyb
3
) is that the client does

not use the offline parities computed by the servers to create the

parity buffer P. The client instead sends a dummy encrypted buffer

P, with P[𝑖] = ⟨0⟩. Since AHE is an IND-CPA encryption,Z cannot

210

Proceedings on Privacy Enhancing Technologies 2025(3)

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

(4) The client receives 𝜌𝑖 from Sℓ𝑖 and set hint ℎ𝑖 = (ℓ𝑖 , S𝑖 , 𝜋𝑖 = 𝑖)
(5) The client sends parity buffer P to S0, S1 with P[𝑖] = ⟨𝜌𝑖 ⟩

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(6) Search ℎ𝑖 = (ℓ𝑖 , S𝑖 , 𝜌𝑖) where 𝑥 ∈ S𝑖
(7) (�̂�0, �̂�1) ← SubQuery(𝑥, ℓ𝑖 , S𝑖)
(8) Sample ℓ ′

$← {0, 1}, S′ $← D𝑛 where 𝑥 ∈ S′
(9) (�̂�0

′, �̂�1

′) ← SubQuery(𝑥,¬ℓ ′, S′)
(10) Send𝑄0 ← (�̂�0, �̂�0

′) to server S0 and receive R0

(11) Send𝑄1 ← (�̂�1, �̂�1

′) to server S1 and receive R1

(12) Read ⟨𝜌𝑖 ⟩ with XOR-PIR on position 𝜋𝑖

(13) Obtain DB[𝑥] using R0, R1, and parity 𝜌𝑖

(14) Obtain parity 𝜌 ′ using R0, R1, and DB[𝑥]

Refresh: On retrieving new parity 𝜌 ′ , the client executes:
(15) Write Pright [𝑐] = ⟨𝜌 ′ ⟩, ℎ′ = (ℓ ′, S′, 𝜋 ′= 𝑐 +𝑀)
(16) Read ⟨𝜌𝑐 ⟩ with XOR-PIR on position 𝜋𝑐 ∈ ℎ𝑐
(17) Write Pleft [𝑐] = ⟨𝜌𝑐 ⟩′ , ℎ𝑐 = (ℓ𝑐 , S𝑐 , 𝑐)

Figure 28: Hyb+
1
experiment.

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

(4) The client receives 𝜌𝑖 from Sℓ𝑖 and set hint ℎ𝑖 = (ℓ𝑖 , S𝑖 , 𝜋𝑖 = 𝑖)
(5) The client sends parity buffer P to S0, S1 with P[𝑖] = ⟨𝜌𝑖 ⟩

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(4) Sample S∗ $← D𝑛 where 𝑥 ∈ S∗
(5) (�̂�0, �̂�1) ← SubQuery(𝑥, ℓ𝑖 , S∗)
(6) Sample ℓ ′

$← {0, 1}, S′ $← D𝑛 where 𝑥 ∈ S′
(7) (�̂� ′

0
, �̂� ′

1
) ← SubQuery(𝑥,¬ℓ ′, S′)

(8) Send𝑄0 ← (�̂�0, �̂�
′
0
) to server S0 and receive R0

(9) Send𝑄1 ← (�̂�1, �̂�
′
1
) to server S1 and receive R1

(10) Invoke XOR-PIR on position 𝜋𝑖

(11) DB[𝑥] ← F(𝑥)

Refresh: With dummy parity 𝜌 ′ = 0, the client executes:

(8) Write Pright [𝑐] = ⟨𝜌 ′ ⟩
(9) Read ⟨𝜌𝑐 ⟩ with XOR-PIR on position 𝜋𝑐 ∈ ℎ𝑐
(10) Write Pleft [𝑐] = ⟨𝜌𝑐 ⟩′ , ℎ𝑐 = (ℓ𝑐 , S𝑐 , 𝑐)

Figure 29: Hyb+
2
experiment.

distinguish between a dummy parity buffer and a buffer contain-

ing the offline parities computed by the servers. In addition, since

there is no encrypted parity to be retrieved in the online phase

for data recovery, the client invokes XOR-PIR on random input.

Therefore, the view ofZ in Hyb+
3
and Hyb+

2
are computationally

indistinguishable.

Hybird 4. Let Hyb+
4
experiment be as in Figure 31. In Hyb+

4
, the

additional difference is that for oblivious refresh, the client already

knows the value to be rewrite must be ⟨0⟩. The client can write

Pleft [𝑐] = ⟨0⟩, regardless of the PIR query produced by XOR-PIR.
To simulate a PIR query in this case, the client can invoke XOR-PIR

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

(4) The client sends parity buffer P to S0, S1 with P[𝑖] = ⟨0⟩

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(3) Sample S∗ $← D𝑛 where 𝑥 ∈ S∗ and ℓ∗
$← {0, 1}

(4) (�̂�0, �̂�1) ← SubQuery(𝑥, ℓ∗, S∗)
(5) Sample ℓ ′

$← {0, 1}, S′ $← D𝑛 where 𝑥 ∈ S′
(6) (�̂� ′

0
, �̂� ′

1
) ← SubQuery(𝑥,¬ℓ ′, S′)

(7) Send𝑄0 ← (�̂�0, �̂�
′
0
) to server S0

(8) Send𝑄1 ← (�̂�1, �̂�
′
1
) to server S1

(9) Invokes XOR-PIR on random input 𝜋 ′

(10) DB[𝑥] ← F(𝑥)

Refresh: With dummy parity = 0, the client executes:

(7) Write Pright [𝑐] = ⟨0⟩
(8) Read ⟨𝜌𝑐 ⟩ with XOR-PIR on position 𝜋𝑐 ∈ ℎ𝑐
(9) Write Pleft [𝑐] = ⟨0⟩

Figure 30: Hyb+
3
experiment.

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

(4) The client sends parity buffer P to S0, S1 with P[𝑖] = ⟨0⟩

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(3) Sample S∗
0

$← D𝑛 and S∗
1

$← D𝑛

(4) (𝑧, T0, T1) ← PPR.Gen(𝑚,𝑛,𝑘)
(5) Sample S′

0

$← D𝑛 and S′
1

$← D𝑛

(6) (𝑧′, T′
0
, T′

1
) ← PPR.Gen(𝑚,𝑛,𝑘)

(7) Send𝑄0 ← ((S∗
0
, T0), (S′

0
, T′

0
)) to server S0

(8) Send𝑄1 ← ((S∗
1
, T1), (S′

1
, T′

1
)) to server S1

(9) Invokes XOR-PIR on random input 𝜋 ′

(10) DB[𝑥] ← F(𝑥)

Refresh: With dummy parity = 0, the client executes:

(7) Write Pright [𝑐] = ⟨0⟩
(8) Invokes XOR-PIR on position 𝜋𝑐 = 𝑐

(9) Write Pleft [𝑐] = ⟨0⟩

Figure 31: Hyb+
4
experiment.

on deterministic counter 𝑐 . By the security of XOR-PIR, under a

statically adversarial view A,Z cannot distinguish between if the

received queries are in a deterministic sequence. Thus, the view of

Z in Hyb+
4
and Hyb+

3
are computationally indistinguishable.

Hybird 5. Let Hyb+
5
experiment be as in Figure 32. In Hyb+

5
, the

additional difference is that the client invokes XOR-PIR on random

input, which is also indistinguishable from PIR query produced in

Hyb+
4
. Thus, the view ofZ in Hyb+

5
and Hyb+

4
are computationally

indistinguishable.

Note that Hyb+
5
is identical to the online and offline phase from

the simulator S in the Ideal. It is left to show that for the parities’

update algorithm, Z cannot distinguish between the encrypted

dummy binary vector from S and the real encrypted update vector

211

Proceedings on Privacy Enhancing Technologies 2025(3) Hoang-Dung Nguyen, Jorge Guajardo, and Thang Hoang

Offline: The servers receive a database DB as input from Z:

(1) The client samples𝑀 identifier bits (ℓ1, . . . , ℓ𝑀)
$← {0, 1}𝑀

(2) The client samples𝑀 sets of indices (S1, . . . , S𝑀)
$← D𝑀

𝑛

(3) On receiving a set S𝑖 , Sℓ𝑖 computes 𝜌𝑖 ←
⊕𝑛−1

𝑗=0
DB[𝑠 𝑗] ∀𝑠 𝑗 ∈ S𝑖

(4) The client sends parity buffer P to S0, S1 with P[𝑖] = ⟨0⟩

Online: On receiving an index 𝑥 ∈ 𝑃𝑘 from Z, the client executes:

(3) Sample S∗
0

$← D𝑛 and S∗
1

$← D𝑛

(4) Sample T0, T1 by invoking S𝑃 from PPR

(5) Sample S′
0

$← D𝑛 and S′
1

$← D𝑛

(6) Sample T′
0
, T′

1
by invoking S𝑃 from PPR

(7) Send𝑄0 ← ((S∗
0
, T0), (S′

0
, T′

0
)) to server S0

(8) Send𝑄1 ← ((S∗
1
, T1), (S′

1
, T′

1
)) to server S1

(9) Invokes XOR-PIR on random input 𝜋 ′

(10) DB[𝑥] ← F(𝑥)

Refresh: With dummy parity = 0, the client executes:

(6) Write Pright [𝑐] = ⟨0⟩
(7) Invokes XOR-PIR on random input 𝜋𝑐

(8) Write Pleft [𝑐] = ⟨0⟩

Figure 32: Hyb+
5
experiment.

from Figure 26, which is true due to the IND-CPA property of

AHE. To this end, the Ideal and Real for Pirex+ are computationally

indistinguishable.

□

212

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Highlights

	2 Preliminary and Models
	3 Private Partition Retrieval
	4 The Proposed Scheme
	4.1 Data Structure
	4.2 Offline Phase
	4.3 Online Phase
	4.4 Analysis

	5 Reducing Client Storage
	6 Experimental Evaluation
	6.1 Implementation
	6.2 Configuration
	6.3 Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A PPR Deferred Proofs
	A.1 Security (Lemma 1)

	B Pirex Deferred Proofs
	B.1 Auxiliary Size (Lemma 2)
	B.2 Correctness (Theorem 1)
	B.3 Security (Theorem 2)

	C Pirex+ Detailed Algorithms
	D Pirex+ Deferred proofs
	D.1 Security (Theorem 3)

