Teaching an Old Dog New Tricks: Verifiable FHE Using
Commodity Hardware

Jules Drean Fisher Jepsen G. Edward Suh
MIT CSAIL MIT CSAIL NVIDIA / Cornell University
Srinivas Devadas Aamer Jaleel Gururaj Saileshwar
MIT CSAIL NVIDIA University of Toronto

Abstract

We present Argos, a simple approach for adding verifiability to fully
homomorphic encryption (FHE) schemes using trusted hardware.
Traditional approaches to verifiable FHE require expensive crypto-
graphic proofs, which incur an overhead of up to seven orders of
magnitude on top of FHE, making them impractical.

With Argos, we show that trusted hardware can be securely
used to provide verifiability for FHE computations, with minimal
overhead relative to the baseline FHE computation. An important
contribution of Argos is showing that the major security pitfall
associated with trusted hardware, microarchitectural side channels,
can be completely mitigated by excluding any secrets from the CPU
and the memory hierarchy. This is made possible by focusing on
building a platform that only enforces program and data integrity
and not confidentiality (which is sufficient for verifiable FHE, since
all data remain encrypted at all times). All secrets related to the
attestation mechanism are kept in a separate coprocessor (e.g., a
TPM)—inaccessible to any software-based attacker. Relying on a
discrete TPM typically incurs significant performance overhead,
which is why (insecure) software-based TPMs are used in practice.
As a second contribution, we show that for FHE applications, the
attestation protocol can be adapted to only incur a fixed cost.

Argos requires no dedicated hardware extensions and is sup-
ported on commodity processors from 2008 onward. Our prototype
implementation introduces 3% overhead for FHE evaluation, and
8% for more complex protocols. In particular, we show that Argos
can be used for real-world applications of FHE, such as private
information retrieval (PIR) and private set intersection (PSI), where
providing verifiability is imperative. By demonstrating how to com-
bine cryptography with trusted hardware, Argos paves the way
for widespread deployment of FHE-based protocols beyond the
semi-honest setting, without the overhead of cryptographic proofs.

Keywords

Fully homomorphic encryption, trusted execution environment,
transient execution attacks, microarchitectural side channels

1 Introduction

Fully homomorphic encryption (FHE) [35, 40, 53, 63] makes it pos-
sible to evaluate any logical circuit directly on encrypted data. In

This work is licensed under the Creative Commons Attribu- @
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(3), 282-303

© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0099

the client-server setting, it can be used to build other powerful
cryptographic primitives such as private set intersection (PSI) [4,
42,72, 95, 96], private information retrieval (PIR) [34, 36, 42, 77] or
multi-party computation (MPC) [9, 48]. FHE also has many practi-
cal use cases including private contact discovery [99], private smart
contracts [122], or private inference [102]. Reducing performance
overhead (currently 3 to 7 orders of magnitudes over non-private
computation) has been the main focus of the last decade of research,
but other limitations of FHE are now becoming more relevant.

At the forefront of these issues, the fact that FHE-schemes are not
secure when considering a malicious evaluator, or that existing FHE
schemes lack notions of integrity, are significant limitations for real-
world deployment [10, 31, 131]. First, if a malicious server is able to
supply malformed ciphertext for a client to decrypt, it can mount
key recovery attacks [38, 69] and break all security (if the attacker
recovers the private key, it can now decrypt the client’s private
requests). Second, if FHE enables delegation of computation on con-
fidential data to an untrusted party, existing constructions cannot
help the user verify that the correct function was evaluated. In other
words, FHE schemes always assume honest-but-curious attackers.
In the case of smart contracts, for instance, a malicious evaluator
can completely change the functionality of the contract, with the
option to even reveal confidential inputs and violate privacy. A
straightforward solution is to add a layer of verifiable computation
on top of the FHE scheme. Unfortunately, existing solutions suffer
from major limitations. Cryptographic proofs incur an overhead of
4 to 6 orders of magnitude on top of FHE [131]. Another solution is
to replicate the evaluation across several non-colluding parties, but
distributed-trust setups are often impractical in the real world [87].

Trusted execution environments (TEEs) or secure enclaves [39,
46, 110, 121] have also been considered as a potential solution
[81, 102, 131]. These technologies implement remote attestation,
providing processors the capability to attest the code they are run-
ning, even in the presence of a privileged software attacker. TEEs
offer better performance than cryptographic proofs, but come with
weaker security guarantees: an attacker does not need to break a
cryptographic assumption to forge a proof. Instead, the attacker
needs to hack the platform or steal the attestation key. Still, these
platforms initially seemed to offer a reasonable compromise. Unfor-
tunately, a long series of published attacks (the SoK of Li et al. [85]
covers 43 of them) quickly revealed that they were extensively vul-
nerable to microarchitectural side channels and transient execution
attacks [33, 65, 118, 127, 129, 137]. These powerful attacks can be
mounted in software and exploit microarchitectural structures and
speculative mechanisms present in modern processors to extract se-
crets from trusted environments, not only violating confidentiality

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0099

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

of the protected programs but also extracting keys used for attes-
tation. New microarchitectural side channels are discovered every
year [97, 133] and the current consensus is that it will take many
years of research to build software and hardware defense mech-
anisms that can efficiently eliminate these threats from modern
processors. On top of this existential threat, the availability of TEEs
is also limited. Modern platforms require dedicated hardware and
are only available on server-grade processors, limiting adoption.

This Work. We present Argos, the first enclave platform specif-
ically designed to build maliciously-secure and verifiable FHE. As
observed in previous work [81, 102, 125, 131], for use cases where
all application data is encrypted, such as in FHE, the only secrets
exposed on the server are those used for attestation. We go further
and show how this is a unique opportunity to rethink TEE architec-
ture and design integrity-only enclaves that focus on data and code
integrity without offering any confidentiality guarantee. Lessening
the requirements for enclaves gives us the opportunity to 1) com-
pletely eliminate microarchitectural side channels by secluding all
secret key material in a physically-separated coprocessor (such as
a trusted platform module or TPM), 2) use a hypervisor-based TEE
architecture that offers better performance and hardware compat-
ibility, and 3) build a simplified attestation scheme that makes it
possible to easily prove the security of our construction and amor-
tize the cost of relying on a slow coprocessor for key operations.

Eliminating Microarchitectural Side Channels. An impor-
tant observation we make is that side-channel attacks are “read-
only” gadgets and can be eliminated simply by excluding any secrets
from the CPU and the memory hierarchy (see Figure 1). Software-
mounted side channels require an attacker program to share hard-
ware resources with the victim programs in order to extract secrets.
If all secrets are secluded on a separate chip, such as a physical
trusted platform module (TPM) or a secure coprocessor [6, 44, 75],
no attacker program can ever share microarchitectural resources
with the cryptographic algorithm and extract secrets. Leveraging
this insight, we design Argos to store all attestation secrets inside
a discrete TPM and delegate all sensitive operations to outside of
the CPU. This simple principle makes Argos secure by construc-
tion against side-channels. The only (side) channel left between
the secluded cryptographic keys and a potential attacker is com-
pletion time [98] which is addressed through using constant-time
cryptography in the TPM (see our threat model in Section 2).

Rehabilitating Hypervisor-based TEEs. Argos relies on a
hypervisor-based TEE design. A security monitor runs with hyper-
visor privilege and provides code integrity and isolation to enclave
programs. Such TEEs were introduced by TrustVisor [93] and are
still widely used by cloud vendors to implement confidential com-
puting [7]. These architectures are usually considered less secure
than dedicated hardware platforms such as Intel SGX or AMD-SEV
as they do not encrypt main memory and offer no security against
Coldboot [70], one of the most practical physical attacks (see Ta-
ble 7). In our context, this is not an issue as no secrets are ever
exposed to main memory. As a result, despite our strong threat
model, Argos can adapt this architecture to bring compatibility
with most commodity hardware. In terms of performance, existing
platforms typically rely on virtual TPMs [115]—one per execution
environment—that are endorsed by the root TPM but executed on

283

Proceedings on Privacy Enhancing Technologies 2025(3)

CPU [12, 14]. While this approach avoids the performance bot-
tleneck of a single physical TPM [93], it makes them vulnerable
to microarchitectural side-channels. In contrast, Argos prefers a
secure-by-design approach, centered on the discrete TPM.

Performance Optimization With a Discrete Chip. Relying
on a single discrete TPM can have a significant impact on per-
formance [94]. Nevertheless, we can still virtualize most TPM re-
sources in the security monitor, trusted code that runs at hypervisor
privilege level, as measurement (e.g., hashing) does not require any
secret manipulation. Our use case also excludes the use of the TPM
“sealed” secret storage. That means we only use the TPM as a “sign-
ing oracle”. This can still be expensive, especially when considering
interactive cryptographic protocols that require repeated and at-
tested message exchanges.

Simple and Efficient Attestation Scheme. We show that for
our FHE applications, we can build a simple attestation scheme
that only ever requires one TPM signature. Unlike in other enclave
platforms, the remote user does not need to see any attestation
proof before sending its sensitive data, as it will always stay en-
crypted. This also applies to intermediate protocol messages that
do not need to be attested but simply added to a transcript whose
hash is extended in the security monitor. At the end of the FHE
computation (or more precisely, before any FHE ciphertext needs
to be decrypted), the transcript’s hash will be signed using the TPM.
We show how our simplified transcript-based attestation can be
model as a proof system, and show that it is sufficient to achieve
malicious security needed for verifiable FHE. We also show how Ar-
gos can be extended to support batched verifiable FHE. As a result,
the overhead of using a physical TPM becomes a fixed cost, and per-
formance becomes similar to that of a virtual TPM, while enforcing
security-with-abort in the presence of a malicious attacker [64].

Extending Argos to FHE-Based Applications. Circuit-level
security sometimes differs from application-level security. In many
FHE-based applications, a malicious server can provide corrupted
inputs and gain some information from how the client behaves fol-
lowing decryption. This can have devastating downstream security
implications. We show how Argos can easily be extended to support
complex protocols in the malicious setting, such as authenticated
PIR or authenticated PSI with almost no overhead compared to the
semi-honest schemes.

Implementation and Evaluation. We implement and evaluate
Argos on real hardware!. Our prototype runs on Intel x86 platforms,
but Argos is easily adaptable to other vendors and architectures (e.g.,
AMD X86, ARM or RISC-V) and compatible with most commodity
machines past 2008. To guarantee the TCB integrity at boot-time,
we use commodity hardware root-of-trust technologies. Our proto-
type uses a TPM, but our architecture is adaptable to other hardware
roots of trust and secure coprocessors such as the Apple Secure En-
clave [6] or Open Titan [75]. Our security monitor is an open source
fork of Tyche [30], modified to support our attestation scheme and
remove side-channel protections, but our approach is also compati-
ble with other micro-hypervisors like seL4 [78]. We implement a
custom minimal runtime for FHE and the SEAL library [35], emu-
lating system calls and providing randomness through a hardware
random number generator (i.e., RDRAND instructions) that is not

!https://github.com/mit-enclaves/argos

https://github.com/mit-enclaves/argos

Proceedings on Privacy Enhancing Technologies 2025(3)

under OS control. For more complex applications that require a
broader class of system calls, Gramine [126] can be used for better
compatibility, at the price of a larger TCB and some performance
overhead (5x slower startup time, for example). Argos has a lim-
ited attack surface with a minimal trusted code base (TCB) of less
than 18KLOC, plus the target FHE application (= 50KLOC). Our
evaluation shows that Argos is 80 times faster than previous work
leveraging Intel SGX for FHE integrity [131] with a minimal aver-
age performance overhead of 3% for FHE evaluation. We show that
Argos can be used to implement more complex protocols such as
attested PIR and attested PSI with performance overheads under 8%
and without the significant offline communication costs incurred
by cryptographic solutions.

Contribution. Argos is the first TEE-based platform to enable
maliciously-secure verifiable FHE while being secure against all
known microarchitectural side channels, all at minimal overheads.
Prior to this work, it was not obvious that TEEs in commodity hard-
ware could achieve such strong security guarantees. Existing TEEs
suffer from insecurity due to the fact that their remote attestation
mechanisms are vulnerable to microarchitectural side channels (see
Section 9.7). As a result, TEEs have thus far remained undesirable for
cryptographic applications such as verifiable FHE. Argos is carefully
designed such that only the TPM contains unencrypted secrets. The
TPM uses a simple microarchitecture and is microarchitecturally
isolated from the CPU, blocking all known microarchitectural side
channels. This means that we can leverage the TPM as a "signing
oracle" to design a simple, efficient, and secure remote attestation
scheme. Furthermore, this simple solution addresses an important
problem: the efficient deployment of FHE in real-world scenarios
with malicious security.

To summarize, our main contributions are:

o Argos, the first integrity-only enclave platform designed to build
maliciously-secure verifiable FHE;

e Argos can be used to build fully malicious and authenticated PSI
and PIR schemes;

e Argos is secure by construction against microarchitectural side
channels and transient execution attacks;

e Argos requires no specialized hardware and is compatible with
commodity processors from 2008 onward; and

e Argos only incurs 3% average performance overhead for FHE
computation, less than 8% performance overhead for complex
protocols, and virtually no communication overhead;

2 Threat model

Our goal is to ensure integrity of the data and computation running
inside our enclave environment. Most importantly, we do not pro-
tect confidentiality of our programs, nor do we protect them against
denial of service. We assume a strong adversary collocated on the
server that has compromised the majority of the software stack in-
cluding the OS, and can mount any microarchitectural side-channel
and transient execution attacks. Because Argos is secure against
all software-mounted side channels that underlie known transient
execution attacks, we will refer to all these attacks as “microarchi-
tectural side channels” throughout the rest of the paper. Our trusted
computing base (TCB) consists only of a security monitor (18 KLOC)
and our application, both assumed to be bug-free. We assume that

284

Drean et al.

the hardware is functionally correct and that the TPM’s cryptog-
raphy is properly implemented with constant-time programming.
Rowhammer and fault injection attacks are not as practical and are
considered out of scope. We also protect against the majority of
physical attacks (cold boot, BIOS tampering, physical side channels)
on the main processor and DRAM, but for the rest of this paper,
we will focus on software-mounted attacks and consider physical
attacks out of scope. A primer on microarchitectural and physical
attacks can be found in Appendix B. A detailed discussion on the
remaining attack surface can be found in Section 9.7.

3 Background & Motivation
3.1 FHE Schemes And Client-Server Setup

We consider a client-server setup where a server evaluates a logical
circuit on some client ciphertext obtained using an FHE scheme.
An FHE scheme is usually defined as a tuple of algorithms (€.Gen,
&.Enc, &.Eval, &.Dec). The client generates a key pair using £.Gen
and encrypts some input x using &.Enc. The server then uses &.Eval
to evaluate a circuit f on the ciphertext c, and sends the resulting
ciphertext ¢, back to the client to decrypt using &.Dec. Concretely:

e &.Gen(1*) — (pk, sk)

o S.Enciey(x) — cx

o E.Evalpi(cy, f) — ¢y where y = f(x)
o EDecs(cy) =y

FHE schemes must enforce the following properties (see Appen-
dix C.1 for formal definitions):

Correctness. A scheme is correct if any honest computation will
decrypt to the expected result (i.e., Decg(cy) = f(x) with high
probability).

Security. All FHE schemes are secure against chosen plaintext
attacks, which means that an attacker with the public key cannot
distinguish between the encryption of two different messages of
its choice.

3.2 Semi-Honest vs. Malicious Security

In a honest-but-curious or semi-honest setting, an attacker is al-
lowed to observe intermediate messages and passively infer in-
formation in order to break security, but cannot deviate from the
agreed-upon protocol. In a malicious setting, the attacker is much
more powerful and allowed to deviate arbitrarily from the protocol,
e.g., to lie to the victim or tamper with messages. The semi-honest
setting is often used in theory, but has limited viability in a de-
ployment context where assuming a malicious attacker is more
realistic.

3.3 Why Does FHE Need Verifiability?

Most state-of-the-art FHE schemes are insecure to use in real-world
settings [35, 40, 53, 63] where malicious security is generally re-
quired. Because these schemes are not CCA-secure [18], if an at-
tacker is able to supply malformed ciphertexts and observe de-
cryption outcomes (for example, by observing client behavior), it
can mount key recovery attacks and completely compromise pri-
vacy [32, 38, 57, 69]. Beyond the “circuit-level” security, the absence
of integrity for FHE schemes also has implications for FHE-based
applications. A malicious server can arbitrarily modify the circuit

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

Proceedings on Privacy Enhancing Technologies 2025(3)

Baseline Dynamic Hypervisor-Based SGX Argos
Root of Trust
App App App
o =
: 0s 0s 0s
0os 0s
Caption 3 @ FHE
1 Side-Channels HYPERVISOR B HYPERVISOR
) ; FIRMWARE| —
[Trusted Code Base ‘ FIRMWARE < FIRMWARE FIRMWARE FIRMWARE
Software MICROCODE
Hardware | [| [t oM [t
) CPU CPU CPU CPU CcPU
[Side-Channels
CACHES CACHES CACHES CACHES CACHES

Figure 1: Evolution of the attack surface on TEE platforms. Enc: enclave program, Att: attestation enclave.

they evaluate on the encrypted data. Attacks on correctness are
an obvious issue, but these can also translate to attacks on privacy
at the application level. Let us take the example of private contact
discovery. Alice wants to discover who among her contacts is using
a private messaging service [99]. Alice encrypts her address book,
which contains all of her contacts’ private information, and sends it
to the server. The server now has access to Alice’s encrypted set of
contacts. If malicious, it could simply return the entire set to Alice.
This could mislead Alice into thinking that one of her friends (Bob)
uses the messaging service. Consequently, Alice contacts Bob via
the service, leaking his phone number. This would violate Bob’s
privacy and defeat the use of private contact discovery.

3.4 Why Do We Need a New TEE Platform?

Trusted execution environments (TEEs) provide hardware-based
isolation for confidential programs while minimizing the trusted
code base (see Figure 1). The existing TEE landscape spans from
platforms that protect small “enclave” programs [11, 46, 110] to
those that implement confidential computing for entire virtual
machines [7, 39, 86, 121]. However, the discovery of numerous
microarchitectural side channel and transient execution attacks
has severely compromised their confidentiality guarantees. Side
channel attacks exploit shared microarchitectural structures such
as memory caches [25, 65], translation look-aside buffers (TLB) [66],
branch predictors [1, 56], and DRAM controllers [132] to enable
information leakage between security domains.

TEEs also provide integrity guarantees through remote attes-
tation, allowing a remote client to verify the authenticity of the
hardware and the initial state of the execution environment. How-
ever, even these attestation mechanisms have proven vulnerable
to side-channel attacks that can extract secret keys used by plat-
forms to sign attestation reports [33, 118, 129], leading the cryp-
tographic community to lose faith in TEEs. On the other hand,
discrete trusted platform modules (TPMs) and associated dynamic
root of trust (DRoT) have long served as dedicated hardware for plat-
form integrity and secure storage against software-based attackers.
However, their discrete nature also creates a severe performance

285

bottleneck when attesting multiple security domains (Flicker [94]
incurs 2-3 orders of magnitude overhead). Although TPM virtual-
ization [12, 14, 93, 115] can address these performance issues, in
turn, they expose sensitive key material to microarchitectural side
channels (see Section 10 for a more detailed comparison of Argos
and other platforms).

To rebuild trust in hardware security primitives, we must develop
new systems that are both inherently secure against microarchi-
tectural side channels and capable of outperforming functionally
equivalent cryptographic solutions. We address this challenge by fo-
cusing specifically on FHE applications and building a TEE platform
that only enforces integrity of the enclave program, which is suffi-
cient for verifiable FHE since data remains end-to-end encrypted
throughout the computation.

4 Insights & Design Principles
4.1 FHE Applications Do Not Expose Secrets

In FHE applications, no sensitive data is ever manipulated in clear.
This has several implications that can help simplify the design of a
TEE platform and the attestation protocol.

No Secrets Exposed. In a standard TEE platform, a central feature
is to enforce the confidentiality of the execution environment. In
FHE, all data is encrypted. As a result, the contents of our enclave
program (i.e., the state of &.Eval) is public. This means our appli-
cation is not vulnerable to side channels, and we do not need to
harden the execution environment against the usual threats.

No Long-Term Secret Storage. In typical TEE platforms, an im-
portant feature is the ability for an enclave program to seal secrets
and recover them later. This property is usually tied to the identity
(or the measurement) of the enclave program, and a secret can only
be unsealed by a program that matches the correct measurement.
This is, for instance, what is used in Bitlocker to only ever release
the disk encryption key to a correctly booted system. TPMs and
TEE platforms such as SGX all offer a seal operation. FHE evalua-
tion does not require long-term secret storage, which significantly
reduces the features required by the TEE.

Proceedings on Privacy Enhancing Technologies 2025(3)

No Need To Pre-Establish Trust Before Sending Inputs. In
usual remote attestation protocols, the remote client first needs to
verify the TEE attestation to establish trust. Only once it trusts the
TEE to have been correctly setup will it send its encrypted private
input. This is because the inputs will then be decrypted inside of
the TEE. In our case, inputs are never decrypted, which means that
the remote client does not need to establish trust before sending
the encrypted input. This makes it possible to amortize the cost of
attestation by only signing the final transcript of program inputs
and outputs (see Section 5).

4.2 Eliminating Microarchitectural Side
Channels Using A Physical TPM

Because our FHE-applications do not expose secrets, the only secret
ever present on the server is the private signing key used in the
attestation scheme. This is a much smaller attack surface than in
usual TEE systems. We can take advantage of that opportunity to
completely eliminate microarchitectural side channels by placing
the signing key in a microarchitecturally-isolated physical TPM.
Because no secrets are left on the CPU or in main memory, this
effectively makes our platform completely secure against microar-
chitectural side channels.

Side Channels Are Read-Only. One important element to keep
in mind is that side channels are “read-only” gadgets and can only
extract secrets from a victim program. Specifically, a side channel
cannot modify the state of a victim’s program memory or change
its control flow.

Side Channels Require Shared Resources. To mount a microar-
chitectural side channel, an attacker needs to trigger a transmitter
that will access the secret and modulate a channel to transmit in-
formation to a receiver under the attacker’s control. That means
the transmitter and receiver programs need to share some microar-
chitectural state in order for the transmission to be possible.
Physical TPMs Are Microarchitecturally Isolated. TPMs are
commonly implemented on a discrete chip or as firmware on a se-
cure co-processor (we cannot secure software TPM running on the
CPU). They communicate with the main CPU using a hardware bus.
They do not share cache, nor any processor resources, with the CPU.
They use their own private resources, like private memory and reg-
isters, that are only accessible to the TPM. As a result, if the secret
key is kept in a physical TPM, it is microarchitecturally-isolated
from the attacker and there is no possibility for the secret to be ex-
tracted through a CPU microarchitectural side channel. In addition,
the microarchitecture of TPMs and secure co-processors is inten-
tionally kept simple, avoiding features like caches or out-of-order
execution. This prevents the existence of indirect microarchitec-
tural side channels such as NetSpectre [120]. Intrusive physical
attacks might still be possible but are outside of our threat model
(see Section 9.7).

4.3 System Overview

Our system is composed of several hardware and software elements
(see Figure 1). The security monitor is a small (18 KLOC) trusted
piece of code running at the hypervisor privilege level. It is in charge
of enforcing isolation between the different security domains and
integrity of the enclave programs. Isolation is enforced by hardware

286

Drean et al.

mechanisms (see Section 8.2) and integrity is enforced through our
attestation scheme (Section 5). The security monitor does not ma-
nipulate any secret key material and delegates all cryptographic
operations that require a key to the physical TPM. Integrity of the
security monitor is enforced by the dynamic root-of-trust mecha-
nism (Section 8.1). Running on top of the security monitor, a large
untrusted operating system is in charge of all resource allocations.
It contains all the complex logic, for instance, for memory allo-
cation or scheduling. It also provides many services for (enclave)
applications such as networking, or I/O.

Running an Enclave Program. To setup a trusted execution en-
vironment and securely run an enclave program, the untrusted OS
interacts with the security monitor through vmecalls to the hyper-
visor. On behalf of the OS, the security monitor will reclaim some
resources (memory and cores) and allocate them to the enclave.
Thanks to the isolation mechanisms under the control of the se-
curity monitor, the OS is now unable to modify the state of the
enclave memory. The security monitor will also enforce some in-
variants (setting the page table correctly and zeroing regions where
no content is loaded), ensure the correct binary is loaded, and attest
the enclave initial state (see Section 5.4). Once loaded, the enclave
can be started. The remote client sends inputs over the network.
They are received by the OS and placed in shared memory so that
the enclave can access them. Inputs are systematically copied to
enclave’s private memory before being used. Any output is also
copied to shared memory and sent back to the client by the OS.

5 The Argos Attestation Scheme
5.1 Existing Attestation Protocols

Attestation schemes are generally interactive protocols that involve
several rounds of communication between a client and a server.
First, before any sensitive data is sent, trust needs to be established
between the execution environment running on the server side and
the remote client. The client will send a challenge and receive an
attestation report, endorsed by the manufacturer and attesting thata
genuine piece of hardware has been correctly set up to instantiate a
trusted execution environment. Once trust has been established, the
enclave program and the remote client can perform key exchange
and establish a trusted communication channel. They can then
start communicating and running the expected application. Any
message coming out of the enclave needs to be encrypted and
attested using the private key generated inside of the enclave to
prevent a malicious attacker from observing or tampering with the
content of the messages. Similarly, every message from the remote
client needs to be decrypted and its integrity verified.

5.2 Overhead of Using a Discrete TPM

One of Argos’s design principles dictates that no secret key material
should ever be present on the main CPU. This means that each en-
clave would need to delegate all key operations to a single physical
TPM. Even if only considering integrity protection (signature of
messages and attestation protocol), this implies that the TPM be-
comes a serious bottleneck for the platform. Performing a signature
using a discrete TPM takes approximately 196 ms, and the numbers
are similar for integrated TPMs. This can potentially be a signif-
icant overhead for any application that requires several rounds

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware Proceedings on Privacy Enhancing Technologies 2025(3)

Naive Virtual TPM Argos
Server Client Server Client Server Client
oM Bl Ao M i} VIPM SM+App M SM + FHE

o Hash Binary VI key |t

P —— sign Signature Hash

P — —_— Binary .

—_

— 4/

—_—

Binary [

— —

sign | ————| — -, sign —
Private Inpu e ‘ Hash MessaqesI
+ Outputs
Message (s)

— | |

| == | Fimed Tremeorigt
Output

"_d‘ [@f M‘ ‘ Sign |mm— \,‘

— | Sl

Figure 2: Evolution of remote attestation protocols. The naive approach with a secure co-processor is inefficient as it requires
several back and forth communications with the discrete chip. The virtual TPM approach is insecure as it manipulates sensitive
keys in the CPU, exposing them to microarchitectural side channels. The Argos protocol is both secure and efficient.

of communication. However, Argos’s focus on FHE applications
allows us to minimize much of this overhead.

5.3 Attested Transcript for FHE Applications

Trust does not need to be established before sending encrypted data.
Because intermediate results are also encrypted, privacy cannot be
compromised until a ciphertext is decrypted. That means integrity
only needs to be checked just before decrypting an output (see Sec-
tion 6 for our security analysis). In other words, each message of the
FHE application does not need to be individually attested. Instead,
the integrity-protected security monitor can keep a transcript of all
relevant data (i.e., all application inputs, intermediate results, and
final output), and, only perform a single TPM signature over that
transcript. This simplifies the attestation scheme and drastically
reduces the cost of using a physical TPM as remote attestation is
now a simple fixed cost (see Figure 2).

5.4 Argos Attestation Scheme

Measured Boot. Upon boot, the hardware dynamic root of trust
(DRoT) is used to derive a measurement of the Argos security
monitor (see Section 8.1). This measurement is securely stored in
the TPM registers (PCRs).

Enclave Setup. When a new enclave is initialized, the security
monitor will allocate some of its private memory to the enclave
transcript. During enclave setup, the security monitor measures the
enclave binary and stores it in the transcript. In our specific case,
the binary contains the FHE circuit, small public inputs (e.g., FHE
parameters), alongside the logic to evaluate the circuit (the SEAL
library in our case). It also contains the rest of the application logic.
All the values of the relevant architectural registers that represent
the initial state of the execution environment are also added to this
measurement. For instance, the enclave initial program counter,
page tables, the stack pointer and the addresses of shared memory
used to communicate with the OS. The measurement of the binary
and initial state unambiguously represent a function that takes
inputs from shared memory and outputs results to it.

287

Enclave Lifetime. During the lifetime of the enclave, the transcript
is appended with hashes of the data received and sent by the enclave.
This includes all inputs and outputs.

Attesting the Transcript. Once the final output has been gener-
ated and the transcript extended with it, the application performs
a special vmcall to the security monitor to request the attested
transcript. The security monitor then leverages the TPM to obtain
a signature over the transcript. The application will then be able to
transmit the attested transcript to the remote client, along with the
final output.

Client Verification. Upon receiving the result(s) and the attested
transcript, the client first verifies the attestation. The verification
of the attestation goes as follows: First, the client verifies that the
key used to sign the transcript belongs to a genuine TPM (see
Section A for more details). It then checks that the measurement for
the security monitor contained in the transcript signature matches
areference measurement that is known to be correct (see Section 9.7
on how such a reference measurement can be obtained). Finally, it
checks that the binary reference in the transcript corresponds to
the correct FHE application and that it was evaluated on the input
it provided. If all checks are satisfied, the verification is successful.
In case of a verification failure, the server is behaving maliciously
and the client aborts.

Output Decryption. If and only if verification succeeds, the client
decrypts the FHE output.

5.5 Remote Attestation as a Proof System

Our simplified attestation scheme is now functionally equivalent
to a proof system. We can formalize it as a tuple (I.Gen, II.Prove,
I1.Verify). The server runs I1.Gen to generate a key pair. It can
then use the private key to run II.Prove and generate an attested
transcript (7,) over some client input x, an application g (formally
a function, in practice a binary and an initial state for the execution
environment), and the resulting output y. Given the public key, the
client can then run IT.Verify to verify that the attested transcript
Ty is correct, that is, y = g(x). In summary, we have:

Proceedings on Privacy Enhancing Technologies 2025(3)

e I1.Gen(1%) — (pk, sk)

o I1.Provey (x,g) — (v, my) where y = g(x)

o ILVerify, (y, x, my) — true/false where the client accept the
output is true

Additionally, our scheme satisfies these two properties (see Appen-
dix C.2 for formal definitions):

Completeness. The system is complete if I1.Verify will always
accept a honestly computed result, i.e., a correctly formed transcript
where y = g(x).

Soundness. The system is sound if an adversary cannot make
I1.Verify accept an incorrect answer i.e., a transcript where y #

g(x).

Modeling Several Rounds of Communication. For applications
that require several rounds of communication, we only generate
one attested transcript at the end (see Section 5.3). That means x is
the concatenation of all client inputs/messages. Our specific imple-
mentation simply shares intermediate results (the server messages)
with the client. It also caches some internal state for IT.Prove (such
as the measurement of g) so it can efficiently generate the final
attested transcript once provided with all client inputs.

Security Analysis. Completeness of our attestation scheme re-
duces to the correctness of the underlying signature scheme used
in the TPM. Soundness is more complex to establish, as it requires
informally laying down all of our system security. First, as we ex-
plained earlier, an attacker (as described in our threat model) is not
able to extract the private key from the TPM. Second, the security
of our DRoT guarantees that the security monitor was correctly
loaded and its integrity cannot be compromised. Third, our as-
sumption of the TCB tells us that the security monitor is correctly
implemented and bug-free. As a result, attested transcripts will
only be generated for enclaves that are correctly set up, loaded, and
executed. Our assumption on the underlying hardware isolation
mechanisms (execution modes and nested page tables) guarantees
that the integrity of the enclave code and data is maintained over
the course of its lifetime. Finally, the functional correctness of the
hardware guarantees that when an enclave is run that implements
functionality f on input x, the resulting output y = f(x). With all
of this in place, the soundness of our attestation scheme reduces to
the soundness of the TPM signature scheme.

6 Circuit-Level Verifiable FHE

We first show how, using Argos, we can take a semi-honest FHE
scheme and build a circuit-level verifiable FHE scheme that achieves
malicious security. In Section 7, we show how we can extend Argos
to satisfy application-level security.

In our client-server setup, all state-of-the-art FHE schemes [35,
40, 53] are insecure when considering a malicious server. Let us take
a simple example where a client wants to outsource some sensitive
computation to a server using FHE. Here, the server might be able
to infer information regarding the decryption of a ciphertext by
observing the client reaction. For instance, in FHE, if the noise in
the ciphertext overflows a given threshold, client-side decryption
might fail, which could lead to the client emitting a new request

288

Drean et al.

to the server. This is not a problem if assuming an honest-but-
curious server. However, if the server is malicious, it can tweak the
response to the client in arbitrary ways and observe its reaction.
This is equivalent to providing our attacker with access to a (limited)
decryption oracle that outputs “success” or “failure” for ciphertexts
under the attacker’s control. This is already enough to mount key-
recovery attacks [38, 69] and break security of the FHE scheme
(if the attacker recovers the private key, it can now decrypt the
client’s private requests). In fact, this is much more problematic than
a simple “correctness” issue where the client would just get a wrong
output. In this simple outsourcing scenario, enforcing integrity at
the FHE-circuit-level is enough, as it prevents the attacker from
providing malformed ciphertexts to be decoded. When the client
receives the response from the Argos server, it will first verify the
attested transcript to ensure that the correct circuit was evaluated
on the correct inputs. If verification fails, the client aborts, does
not decrypt the ciphertext, and detects malicious behavior from the
server. If and only if verification succeeds, the client may decrypt
the ciphertext with the guarantee that it was correctly formed.

6.1 Definition

Inspired by the formalism of Viand et. al. [131], we define circuit-
level verifiable FHE (vVFHE) as follow. A vFHE scheme is defined
as a tuple of algorithms (Gen, Enc, Eval, Verify, Dec). The client is
equipped with a key pair (pk,, sk.) and the server with (pk,, sks).
The client uses Enc to encrypt some input x and obtains a ciphertext
cx. Using Eval, the server evaluates a circuit f over c, and generates
an encrypted output ¢, along with an attested transcript 7,. When
the client receives the output, it will first verify the transcript is
correct (¢ = f(cy)) and if and only if it is, use Dec to decrypt c,
and recover y. In summary:
o Gen(1) = ((pk, ske). (pk,. sk))
o Encpi (x) — cx
o Evalyi sk, (cx, f) — (cy, my) where y = f(x)
° Verifypks (cy, cx, my) —— true/false where the client accept if

true, aborts otherwise.
e Decy,(cy) >y

Formal properties can be found in Appendix C.3. Correctness is
defined identically to a semi-honest FHE scheme (see Section 3.1).
Security differs as our attacker is now malicious and can send
arbitrary ¢, values. We also add two properties compared to the
vanilla FHE-scheme.
Completeness. A vFHE scheme is complete if Verify will always
accept an honestly computed result.
Soundness. Finally, a scheme is sound if an adversary cannot make
Verify accept an incorrect answer.

6.2 Putting Everything Together

Let’s consider an FHE scheme (E.Gen, &.Enc, E.Eval, &.Dec) and
our remote attestation scheme (II.Gen, II.Prove, II.Verify). Argos’
construction is as follows:
« Gen(1%) — ((pkg, ske). (pkyy skn))

with (pkg, skg) = &.Gen(1%) and (pkyp, skn) = I1.Gen(1%)
e Enc(x) — ¢, with ¢, = E.Enc(x)
e Eval(cy, f) — (cy, my) with (cy, my) = IL.Prove(cy, E.Eval(., f))
o Verify(cy, cx, my) — b with b = IL.Verify(cy, cx,).

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

e Dec(cy) — y with y = E.Dec(cy)

The key here is to use the attestation mechanism to attest the cor-
rect execution of &.Eval(., f) represented by the binary and initial
state of the execution environment.

Security Proof — Sketch. Correctness of our construction reduces
to the correctness of the initial FHE scheme. Similarly, completeness
and soundness directly derive from the completeness and sound-
ness of the attestation scheme. Security is more subtle. Remember
that our initial FHE scheme is not secure if provided with mal-
formed ciphertexts. That means we can only rely on the security
of the underlying FHE scheme if our attacker cannot gain control
over the ciphertexts. This is enforced by the verification step. If
the client runs Dec on an output received from the server, that
means the output and the transcript had to successfully pass Verify.
If this is true and the attacker was able to supply a ciphertext of its
choice, i.e., cy # &E.Eval(cy, f), that means the attacker was able to
break the soundness of the underlying attestation system, which
is a contradiction. As a result, our construction is secure, and we
have successfully built a circuit-level verifiable FHE scheme. The
full proof can be found in Appendix D.

Batching FHE Evaluations. Running II.Prove is expensive (it
requires a TPM sign operation). Because evaluations of different
FHE circuits are independent, we can batch them for performance
optimization and only produce one attested transcript for all these
evaluations. Enc, Verify, and Dec are the same, and security still
holds as long as Dec is never run if verification was not successful.

7 Extending Argos to FHE-Based Applications

Circuit-level security sometimes differs from application-level secu-
rity. For instance, attacks on correctness can escalate to attacks on
privacy (Section 3.3). Additionally, the security of our FHE schemes
breaks if a malicious server is able to supply malformed ciphertexts
for decryption (Section 3.3). This is potentially dangerous when, in
many FHE-applications, the server itself can provide public or pri-
vate inputs and act as a party in the computation. We explore two
such applications, 1) private information retrieval, and 2) private
set intersection. For each application, we discuss the challenges
in deploying FHE-based schemes in a real-world setting and show
how Argos can be extended to enforce malicious security.

7.1 Malicious Private Information Retrieval

Private information retrieval (PIR) allows a client to retrieve an
element from a public database hosted on a remote server, without
the server learning which element was requested by the client. PIR
has many applications such as public-key directory [41], certificate
transparency logs [72, 119], private web search [71] or private
analytics [67]. PIR can be instantiated in a multi-server or single-
server setting using a range of cryptographic primitives, but in this
paper we focus on the state-of-the-art for single-server PIR which
are FHE-based schemes [4, 72, 95, 96].

Most schemes assume a honest-but-curious server; however, this
is not a realistic setup for real-world deployment. Furthermore,
circuit-level integrity alone is not enough to enforce malicious
security. A malicious server can always modify the values in the

289

Proceedings on Privacy Enhancing Technologies 2025(3)

database, which could break not only the correctness (send the
wrong answer for a given query), but most importantly security (i.e.,
privacy of client input) by mounting selective failure attacks [82]. We
show how Argos can be extended to secure semi-honest FHE-based
PIR scheme in a malicious setting.

Defending Against Selective Failure Attacks. In these attacks,
a malicious server chooses an entry in the database and replaces
the entry with a value that it knows will cause a decryption failure.
This is possible because in FHE, using an input that is not in the
correct plaintext space (for instance, an integer that is too large)
can lead to a malformed ciphertext, which will not decrypt properly.
Because our attacker might be able to observe the client reaction to
decrypting the output (e.g., the client will send the request again),
if decryption fails, the attacker can infer with high probability that
the client queried the malformed entry.

Circuit integrity is not enough here. Argos also needs to prepro-
cess the public database and check that the server’s public inputs
belong to the plaintext space. If a check fails, Argos should abort
the server execution and not serve any client request. Formally,
this is equivalent to allowing server inputs w for f, and in our
construction, wrapping &.Eval in a function that evaluates &.Eval
if and only if w is well formed and aborts otherwise.

Authenticated PIR. So far, our malicious PIR scheme is only able
to guarantee that the server performed the protocol using a well-
formed database, but not a specific one. Adding authenticity to a
PIR scheme is a desirable property and might be essential for some
real-world deployments. For instance, in the case of a transparency
log or a public-key directory, it might be essential to guarantee the
correct database was queried. We take inspiration from previous
work and solve this problem by having the server initially commit
to the database. This assumes a reference commitment is available
for the client to fetch out-of-band.? Argos can easily be extended
to support this functionality by adding a fresh commitment to the
database (i.e., a hash or the root of a Merkle tree) to the attestation
transcript. When receiving the response to its query, a client should
first verify the attestation transcript, including that the database
commitment matches the reference one. If the verification fails, it
should abort. If (and only if) it succeeds, it should then decrypt
the response and proceed. In our formalism, this is equivalent to
extending Verify to take a reference commitment H(w) as an input,
and tweaking soundness to ensure an adversary cannot make Verify
accept a transcript 7, that does not contain the correct commitment.
A detailed security argument can be found in Appendix E.

7.2 Malicious Private Set Intersection

Private set intersection (PSI) allows two distrusting parties with
some private sets to compute the intersection of these sets without
learning more information than the intersection itself. PSI has many
applications, such as private contact discovery [99] or compromised
credential checking [106].

Most efficient PSI protocols do not achieve (full) malicious secu-
rity [34, 36, 42, 77]. Some constructions do [50, 103, 109, 114, 116,

2This assumption is made by Authenticated PIR [41] but recent works [49, 52] have
also shown how using a limited number of “validation queries”, the client can verify
with high probability that the committed database is correct.

Proceedings on Privacy Enhancing Technologies 2025(3)

117, 123] but at the price of high offline communication cost (see
Section 9.5). Using a state-of-the-art semi-honest PSI [42] scheme
based on FHE, we show how Argos can be extended to make the
scheme fully secure against a malicious server. Here, the main dif-
ference from the PIR setup is that the server inputs are not public,
but private. State-of-the-art FHE schemes are not circuit private.
That means that the client might be able to learn information re-
garding the server’s private input by looking at the noise contained
in the output. FHE-based PSI schemes mask the server’s input using
oblivious pseudo random functions (OPRFs) to provide privacy for
the server even in the presence of malicious clients. Moreover, the
security of the FHE scheme is argued to also provide privacy for the
client, even in the presence of a “malicious” server. This is because
the ideal PSI functionality considered in these works assumes a
limited attacker with no observability of the client reactions [34].
However, this might not hold in a real-world deployment, as we
explained before.

Verifiable PSI. Once deployed in a real-world setting, the attacker
might be able to observe some of the client’s reactions. Attacks on
correctness might have serious security implications, sometimes
translating to attacks on privacy (see example of private contact
discovery in Section 3.3). Fortunately, circuit-level integrity—as
provided by Argos—can guarantee verifiable PSI, which means
that verification of the attestation transcript succeeds if and only
if the server correctly executed the PSI circuit on a private set.
Nevertheless, for full malicious security, we still need to ensure that
the server evaluates PSI over the correct set.

Authenticated PSI. If the server’s input set is not authenticated,
a malicious server can arbitrarily modify the dataset without de-
tection. This can have serious security implications in deployment.
For instance, in the case of compromised credential checking, Alice
reaches out to Mozilla’s server to ensure that her passwords were
not compromised and are safe to use. If Alice indeed uses some
compromised credential and the server is malicious, it could evalu-
ate the PSI circuit on her private set, but using a malicious input set,
crafted server side, ensuring no intersection is found. This might
lead Alice to use her compromised credentials.

Similarly to Authenticated PIR, Argos can be extended to include
a commitment to the dataset (e.g., a Merkle tree or hash-based com-
mitment scheme) in the attestation transcript. Here too, a public
commitment needs to be made available out-of-band to the client,
through a transparency log, for instance. Upon receiving a response
to its request, the client first verifies the transcript and aborts if it
does not match the correct commitment. Formally, the extensions
we made for PIR are almost sufficient, we just need to tweak the
wrapper function over &.Eval to match our PSI functionality. In-
stead of only checking that w is well formed, the wrapping function
should compute the corresponding OPRF values for w. The server’s
privacy is guaranteed by the OPRF, the soundness of the attesta-
tion scheme, and the fact that commitment schemes are hiding i.e.,
they do not leak information about the server’s set. The security
argument can be found in Appendix F.

290

Drean et al.

8 Implementation Details
8.1 Security Monitor

Our security monitor is based on the X86 version of Tyche [30], a
Rust micro-hypervisor that exposes hardware resources and iso-
lation primitives to better protect trust domains. Note that other
“small” hypervisors such as XEN [17] are at least one order of magni-
tude larger or closed source. We implement our attestation scheme
on top of Tyche, including support for the hardware TPM and the
interface to manage attested transcripts. We are also able to sim-
plify some aspects of the platform, for instance, by removing side
channel protections from Tyche (e.g., cache and CPU flush). One of
the implementation challenges was to adapt Tyche and the Linux
driver to support large (i.e., several GBs) enclaves with our custom
runtime and manage memory allocation accordingly. To enforce the
integrity of the security monitor, we use the TPM and a dynamic
root of trust (e.g., Intel TXT or AMD DRMT [60, 104]) to implement
standard measure boot (see primer in Section A). At the end of
this process, two TPM registers (PCRs) are set with hash values
that uniquely identify the security monitor binary. Later, when the
security monitor needs to attest an application transcript, it will
load the transcript hash in a third PCR and request a TPM Quote (a
signature over select PCRs).

8.2 Memory Isolation Primitives

We use hardware extensions for virtualization to enforce isola-
tion between security domains [128]. Extended or nested page
tables [20], as implemented by Intel VT-x or AMD-V, make it pos-
sible for a guest domain to have an entire address space available
and create a level of indirection for memory management that is
exclusively under the control of the hypervisor. That means no ex-
ecution domain can access other execution domains’ address space
nor modify its content. Other virtualization technologies such as
AMD-Vi and Intel VT-d make it possible to protect domains from
arbitrary DMA accesses. We use these technologies in Argos to
enforce memory isolation for our enclave programs.

8.3 Custom Runtime

The execution environments provided by Argos are similar to bare-
metal environments with no OS support. That means no syscalls,
no program loader, no memory allocation, nor access to shared
libraries. A runtime is required to support programs and modern li-
braries like SEAL that leverage many services from the OS. Gramine
[126] is such a runtime and is already supported by Tyche. It was
conceived to securely run off-the-shelf applications on Intel SGX.
As a result, it implements all Linux syscalls and also has extensive
support for shared library and memory management. However,
because of its versatility, it is rather large (20KLOC) and adds some
non-negligible overhead [112]. In order to reduce the TCB and im-
prove performance, we implement our own custom runtime. It is
minimal (870LOC) and consists of a simple memory allocator [108]
and a handful of syscall handlers required by our application. For
instance, we implement our own open and read syscalls to supply
randomness from RDRAND when an application attempts to read
/dev/urandom. We write our runtime to interface with MUSL [101]
by interposing on system calls and providing our own handlers.

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

Component LOC
BIOS 1.5M
Linux 28M
Security Monitor 18K
Runtime (Custom / Gramine) 870 / 20K
SEAL Library [35] 20K
Application 1K—20K

Table 1: Software Components and TCB Breakdown.
Red columns are excluded from the TCB.

Setup | Attest | Term
Platf Ti
atlorm | ITime SGXz | 953 7 274
Software 42 3759 1)
vIPM 136 Argos+G | 466 | 196 5
rgos+G
TP 1 2 -
T b(li ZNé' - 9575 Argos 85 196 10
avie & 181INE OPET™ Tuble 3: Fixed-cost operations on a
ation (us).

1GB enclave (ms).

That means all applications and libraries (including SEAL [35]) need
to be compiled statically and linked using our MUSL library, which
requires some engineering effort to port applications but makes it
possible to obtain high performance and a very light runtime.

9 Evaluation

9.1 Testbench

We prototype Argos on a local Dell Optiplex machine from 2017
equipped with an Intel Core i7-7700 processor clocked at 3.6GHz, a
discrete TPM 2.0, and 8GB of RAM. We run our security monitor
(adapted from Tyche [30] see Section 8.1) directly on the hardware
and evaluate our benchmarks using our custom SEAL runtime or
Gramine [126]. We run Ubuntu 22.04 with the Linux kernel v6.2
and SEAL 4.1 with the BFV scheme [23]. All benchmarks are single-
threaded, compiled using clang++ with the O3 optimization level.

We compare Argos with two other TEE platforms that have the
following specs. SGXv2 running on an Azure server equipped with
an Intel Xeon Platinum 8370C CPU with a frequency of 2.80GHz.
AWS Nitro Enclaves [11] running on an equipped with
an Intel Xeon Platinum 8259CL CPU with a frequency of 2.50GHz.
The SGXv2 setup uses Gramine as a runtime while Nitro Enclave
uses a docker container environment that runs its own Linux kernel.
Note that under our threat model, both SGXv2 and AWS Nitro
Enclaves are insecure and are only used as comparison points for
performance. See Table 7 for a more complete comparison. All
numbers are obtained by averaging values over 10 runs.

9.2 TCB Evaluation

Detailed count for lines of code (LOCs) can be found in Table 1. Our
TCB is small with a minimum of 40KLOC for our PIR application
and a total of 60KLOC for our PSI application. Note that we did
not account for SMM code, the microcode used in the DRoT, or the
TPM as it is not public information, and we consider these elements
as part of the hardware. This should be compared to other TEEs
and system projects that try to keep a small footprint. For instance,

291

Proceedings on Privacy Enhancing Technologies 2025(3)

Nitro Enclaves include an entire Linux kernel which blows up their
TCB in the range of MLOC, several orders of magnitude bigger
than our TCB. On the other hand, SGX would not include the SMM
code or the security monitor (18KLOC), but relies on a significant
amount of microcode. As a point of comparison, XEN [17] (a popular
mini-hypervisor), and Coreboot [21] (a minimal BIOS) each total
200KLOC. On the other hand, micro-kernels such as SeL4 [78] are
in a similar size range with tens of thousands of lines of code.

9.3 Microbenchmarks

TPM Sign Operation. We evaluate the cost of signing a 32-byte
message (i.e., a hash) using a physical TPM. We also compare the
incurred overhead with two insecure baselines: 1) software signa-
ture in the application and 2) software signature performed by the
security monitor (vTPM). Results can be found in Table 2. The vIPM
signature requires a vmcall and a context switch to the security
monitor, which incurs a small overhead (about 100us) compared to
the application-level signature. Operations with the physical TPMs
are comparatively slow: we measure 196ms to perform a signature
(which in our case boils down to loading the hash value in a PCR and
requesting a TPM quote). This is 3 orders of magnitude slower than
a vITPM. Some modern chipset-integrated hardware TPMs are faster
than discrete TPMs and are still microarchitecturally isolated from
the CPU. However, they are only 5X faster than the discrete TPM
at best. These results hint at the importance of Argos’ optimized
attestation scheme, which only requires at most one signature per
FHE evaluation and even less when using batching.

Enclave Fixed Costs. We evaluate the different fixed costs of dif-
ferent operations over the lifetime of an enclave. To obtain measure-
ments, we instrument a dummy enclave for which we allocate 1GB
of memory. Setup time is measured between the time a command
line program requests the operating system to start an enclave and
when execution reaches the main function of the enclave appli-
cation. This means it includes the allocation of enclave resources,
loading of the binary, page table setup, binary measurement, and
runtime initialization. We can see that Nitro Enclaves have the high-
est setup time mostly due to the fact that they contain an entire
Linux kernel that needs to be booted. SGXv2 also presents some
large startup time. This is mostly due to all the special instructions
required to start an enclave and the time it takes Gramine to ini-
tialize. As indicated in Gramine’s documentation, initialization can
initiate more than 200 OCALLs, which all incur expensive context
switches with architectural flushes (CPU caches and state) that
cost 8,000 — 12,000 cycles each [112]. This overhead can also be
observed when running Argos with Gramine. In comparison, our
custom runtime is initialized with minimal overhead, which might
be essential for latency-sensitive applications.

Attestation time is the time it takes for an enclave to request
an attestation quote. For SGXv2, support for remote attestation
service by Intel is deprecated [45] so we use the analogue Microsoft
Azure Attestation [111] scheme. Once provisioned, signing of the
attestation quote is performed locally by the quoting enclave, hence
the high performance similar to using a vIPM. For Nitro Enclaves,
the attestation is performed by the hypervisor using a vIPM [12]

Proceedings on Privacy Enhancing Technologies 2025(3)

which also explains the high performance. Due to Argos’s reliance
on a physical TPM, we have a comparably slow attestation time.
Termination time is measured between when the enclave main
function exits and when the control returns to the command-line
program that launched the enclave. It includes all the time required
to deallocate, clear resources, and return them to the OS. For SGX,
that also implies a lot of cleanup at the hardware level. For Nitro
Enclaves, it requires to wait for Linux to shutdown, which also
adds delay. In Argos, since all sensitive data is encrypted, mem-
ory does not need to be sanitized before being reallocated to the OS.

Transcript Size. Our transcript is quite small and composed of 2
PCR values used by the DRoT, the initial value of some key registers
for the execution environment, the hash of our binary, the hash of
messages exchanged by the application, the hash of some server
input if needed. It also contains the signature and the TPM public
key along with the TPM certificates endorsed by the manufacturer.
Concretely, we measure a small transcript size of only 1,407 bits,
negligible in front of the size of an FHE ciphertext (=500KB).

9.4 FHE Evaluation

We evaluate the overhead of circuit-level vFHE in Argos compared
to semi-honest FHE. Results can be seen in Table 4. We use the same
benchmarks as previous work on vFHE [131] and compile and eval-
uate the different circuits using the SEAL library [35]. The results
from Viand. et al. highlight the impractical performance overheads
when using cryptographic proofs such as Bulletproofs [29], Au-
rora [19], Groth16 [68] or Rinocchio [61], to build vFHE: between 6
and 7 orders of magnitude, with the exception of Rinocchio for the
Tiny benchmark. Their semi-honest baseline is also relatively slow,
hinting that they might have disabled hardware acceleration. Their
implementation of FHE-in-TEE also shows poor performance proba-
bly due to the limitation of SGXv1 (limited 128MB EPC memory and
unreliable timers). For a fair comparison, we run the benchmarks
of SGXv2 and Nitro Enclaves. We compiled the benchmarks on one
machine and used the same binary across or different setups. Here,
the performance looks much better with single-digit overheads
and even small speedups for Nitro Enclaves. Indeed, once setup,
running a program in an enclave is equivalent to running it with
bare-metal performance. We tried to keep the runtime as similar as
possible between the different configurations, but small differences
might explain these results. For Argos, we evaluate two different
configurations. One using the Gramine runtime (Argos+G) and one
using our custom runtime. Our custom runtime performs better
than Gramine. This might be for a couple reasons including that the
MUSL library tends to be faster than Glibc, our custom runtime sim-
ply ignores interrupts sent by the OS scheduler (the enclave is not
de-scheduled), and our custom syscall handlers handle less corner
cases and are more efficient (for instance, to allocate memory). In
conclusion, Argos shows performance comparable to commercial
TEEs while offering better security. Our custom runtime makes it
possible to reduce the TCB and improve performance at the cost of
some engineering effort to port applications.

292

Drean et al.
l Platform [Tiny Small [Medium]

Baseline [131] 2ms 11ms 14ms
Bulletproofs [29] 7569s 3957s 8697s
Aurora [19] 1554s 3750s 5028s
Groth16 [68] 196s 473s 634s
Rinocchio [61] 320ms 305s 443s
SGXv1 [131] 154ms 1100ms 1260ms
Baseline Azure 283us 1727us 3170us
SGXv2 Azure 290us (+3%) 1840us (+7%) | 3638us (+15%)

324us 1889us 3456us

317us (2%) | 1827us (37%) | 3450us (0%)

Baseline Local 351us 2341us 4376us
Argos+G 392us (+12%) | 2702us (+16%) | 5202us (+19%)
Argos 352us (+0%) | 2480us (+6%) | 4447us (+2%)

Table 4: Time for FHE evaluation for three circuits. Baseline
is always semi-honest FHE without integrity. Greyed values
are reported from [131]. We indicate the overhead compared
to the baseline on the same machine.

Per Enclave Per Query Per Batch
Setup | Pre-Proc. | Hash | Proc. | Hash Attest.
Baseline 3 2835 N/A | 1593 | N/A N/A
Argos+G 1559 3192 465 1812 1 196
Argos 158 2821 465 1610 1 196

Table 5: Breakdown of end-to-end execution times for au-
thenticated private information retrieval (ms).

Enclave Query Batch
#C | Setup | Pre-Proc. | Hash | Proc. | Hash | Attest.

Baseline 1 4 40351 N/A | 3231 | N/A N/A
Argos+G 1 1576 44530 132 3732 187 196
Argos 1 179 37054 105 3354 148 196
Baseline | 3K 4 40348 N/A | 3276 | N/A N/A
Argos+G | 3K 1530 44467 131 3740 187 196
Argos 3K 175 36933 104 3403 148 196

Table 6: Breakdown of end-to-end execution times for private
set intersection (ms). #C: size of the client set.

9.5 Authenticated Private Information Retrieval

We evaluate the overhead of authenticated PIR using Argos com-
pared to semi-honest unauthenticated PSI. We use the SealPIR
library from Angel et. al. [4]. We use the BFV scheme with poly-
nomials of degree 4096. The plaintext modulus is set to 20. We
evaluate performance for a database of size 220 ~ 1M where each
element measures 128 bytes. We allocate 4GB of static memory to
our enclave. We instrument the code to hash the database, queries,
and responses and to attest the final transcript once all queries
have been processed. Results can be found in Table 5. We com-
pare two configurations for Argos. One using the Gramine runtime
(Argos+G) and one using our custom runtime. For Argos+G, the
server setup —which is a fixed cost- shows an overhead of +83%
mostly due to overhead setting up the enclave (+55%) and hashing
the database (+16%). For query processing, we measure an overhead
of 13% for fetching one element. Here, hashing the response before
sending it to the client takes a negligible amount of time. Taking

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

into account the signing of the final transcript, the overhead goes
up to 26% for retrieving one element. Batching queries here would
amortize costs down to a minimum of 13% for numerous queries.
For Argos using our custom runtime, overhead goes down to 21%
for setup (mostly due to hashing of the batabase) and 1% for query
processing. This is due to our more efficient handling of system calls.
The only cost left is attestation that can be amortized by batching
requests (see Section 6.2). Once again, our custom runtime offers
better performance than Gramine. For all setups, Argos’s transcript
incurs negligible (>1%) communication overhead.

Recent work on single-server authenticated PIR using crypto-
graphic constructions by Colombo. et al., while providing better
security guarantees, show a performance overhead of 30-100x [41].
Other recent work, VeriSimplePIR [49], shows more reasonable
online overheads (13%-20%) but incurs significant offline communi-
cation of the same order of magnitude as the database itself (2GiB
communication for a 4GiB dataset). This also makes updating the
database extremely difficult, while our scheme only requires updat-
ing a Merkle tree and communicating the commitment.

9.6 Authenticated Private Set Intersection

We evaluate the overhead of authenticated PSI using Argos com-
pared to semi-honest non-attested PSI. We use the APSI library
compatible with SEAL that implements the state-of-the-art FHE-
based scheme from Cong et. al. [42]. We use the BFV scheme with
parameters 8192 for the polynomial degree modulus and the coeffi-
cient modulus. The plaintext modulus is set to 65537. We evaluated
the performance of the unlabeled scheme with a server set size of
220 ~ 1M. We allocate 4GB of static memory to our enclave. We in-
strument the code to hash the database, queries, and responses and
to attest the final transcript once all queries have been processed.
Results can be found in Table 6. For Argos+Gramine, the server
setup phase, we measure an overhead of 15% mainly due to prepro-
cessing operations, but with our custom runtime, we see a speedup
of 8% due to our fast handling of memory allocation, and other
syscalls. Hashing the database is negligible here. For query time, we
see +16% and +8% overhead for Gramine and our custom runtime,
respectively. For all setups, Argos incurs negligible communication
(>1%). In comparison, the state-of-the-art for malicious PSI using a
cryptographic construction [114] shows a 19% performance over-
head and a 67% communication overhead compared to their own
semi-honest construction for a dataset of 22° elements. However,
they cannot guarantee that the server uses the same dataset across
clients and require to compute and transfer a large commitment
for each client.

Attested Transcript. Our remote attestation scheme makes it pos-
sible to amortize the cost of attestation over messages and queries.
In the PSI scheme we use, each query requires two rounds of com-
munication (one round for OPRF, and one for the query itself),
plus one initial attestation, which would bring the overhead for
one query to +27%. Instead, we only need to pay the cost of one
attestation operation per batch. The PSI scheme we use already
supports batching, but only up to a certain client set size (this is
a limitation of FHE-based PSI schemes). For our given server set
size, we empirically measure a non-negligible failure rate for client
set size above 3000 elements. A client who would want to compute

293

Proceedings on Privacy Enhancing Technologies 2025(3)

the intersection of a bigger set would have to do so using several
queries. That means that the maximum overhead of 15% for a client
set size of 1 can be amortized for larger client set sizes. For instance,
for a client set size of 30,000, computing the complete intersec-
tion would take 10 queries and overhead would be reduced back to
8%. This phenomenon would be heightened for more efficient PSI
schemes as the cost of TPM signing is constant.

9.7 Analysis of the Remaining Attack Surface

Argos primarily defends against microarchitectural side channels,
which constitute the vast majority of TEE attacks so far (43 pub-
lished according to [85]). While Argos is vulnerable to fault injec-
tion [76, 100, 113] and Rowhammer attacks (less studied on TEEs),
these threats are not fatal — software can be hardened against fault
injections [26], and no Rowhammer attacks have demonstrated the
capabilities needed to compromise Argos (gaining hypervisor privi-
lege on a hardware VM). Regarding physical attacks, Argos protects
against ColdBoot [70] and physical side channels on the CPU [83],
but remains vulnerable to physical fault injection attacks [27, 37].
The TPM only exposes a minimal attack surface for physical side
channels, and modern TPMs are now directly integrated into the
SoC, significantly raising the bar for these attacks [74]. Indeed, in-
tegrated TPMs do not implement modern features such as DVFS or
RAPL, making all known software attacks such as Hertzbleed [133]
or PLATYPUS [89] and others [140] impossible. Other physical
attacks are out-of-scope, but would still be significantly less practi-
cal: 1) CPU-noise most likely masks signals from small integrated
TPM, 2) TPM cryptography is assumed constant-time, thwarting
simple power and EM attacks [62, 92], 3) for constant-time code, side
channels are sometimes due to advanced circuit optimizations [88],
unlikely in a small integrated co-processor. Finally, our TCB might
still contain bugs, and attacks that exploit implementation mis-
takes have been demonstrated on the Intel DRoT and the associated
secure coprocessor [28, 43, 55, 135, 136]. However, these implemen-
tation errors can be patched when discovered —unlike vulnerabilities
to microarchitectural side channel attacks.

10 Related Work

TPMs and Hypervisor-based TEEs. Trusted platform modules
(TPMs) combined with dynamic root-of-trust technologies have
long served as dedicated hardware to enforce platform integrity.
Flicker [94] proposes to use these two technologies combined to
isolate and attest small pieces of application logic, or PALs while
reducing the software TCB to a handful of lines of code. No keys
ever leave the TPM in Flicker, which gives it the same resistance to
microarchitectural side channels as Argos (even if not discussed in
the paper at the time). However, their complete reliance on hard-
ware mechanisms creates significant overheads, i.e., 2-3 orders of
magnitude. Virtualization technologies (making their appearance
in processors around 2008) aim at isolating different trusted do-
mains in the form of virtual machines (VMs). They create a new
privileged execution mode dedicated to the hypervisor and provide
hardware primitives such as extended (or nested) page tables to en-
force memory isolation between different security domains. These
technologies identified the opportunity to virtualize the TPM [107]
and provide confidentiality and integrity for trusted domains with

Proceedings on Privacy Enhancing Technologies 2025(3) Drean et al.
Security Usability Performance
= ; =
< g
TEE Platform Su =% 2 &51=E% E* =
SH|° o= AR ! :
) ol |xmol| &g Q S Dedic. .
TCB | = %) = @ | Availability HW Implementation Setup | Attest. | Comp.
ZK Proofs Null P P P P P SW SW Open Source - ---=]----
Nitro Enclaves Large A% Y Y \% \ Yes Closed Source - - + o+ ++
Arm TrustZone Small A% Vv Y \% \% High Yes HW Closed Source + + -
Intel SGX V1 Small \4 P \4 \4 \4 Deprecated Yes HW Closed-Source -- + --
Intel SGX V2 Small \4 I3 \4 \4 \% Yes HW Closed-Source -- + +
AMD SEV Large A% P Y \% \% Yes HW Closed-Source | - - - + ++
Intel TDX Large \4 P \4 \4 \4 Coming Yes HW Closed-Source | - - - + + o+
ARM CCA Large \4 P \4 \4 \4 Coming Yes HW Closed-Source | - - - + ++
TrustVisor[93] Small Y% Vv A \% \% Deprecated No Open Source - ++ ++
Flicker [94] Tiny P P P \4 \4 Deprecated No Open Source -—- -—- -— -
Argos Small P P P Vv \ High No Open Source + - ++

Table 7: Comparison of TEE Platforms across Security, Usability and Performance.
SC: Side Channel, P: Protected, V: Vulnerable. +’s and -’s represent relative (and subjective) measure of performance.

minimal performance overhead. TrustVisor [93] is the first work
to introduce this hypervisor-based architecture, which was even-
tually adopted by cloud providers such as AWS for their Nitro
Enclaves [11]. Virtual TPMs are also the standard for trusted com-
puting in modern clouds [12, 14, 115]. As a result, all these architec-
tures are insecure under our threat model as they expose sensitive
key material to microarchitectural side channels.

Hardware TEE Platforms. All commercial hardware TEE plat-
forms are vulnerable to microarchitectural side channels. This in-
cludes, but is not limited to, Intel SGX [46], Intel TDX [39], AMD
SEV-SNP [121], ARM TrustZone [110] and ARM CCA [86]. Secrets
and key material are sometimes stored on secure co-processors,
such as Intel ME [44], AMD PSP [28], or the Apple secure en-
clave [6]. However, to our knowledge, all existing designs expose
some secret material on the CPU such as platform-level secrets for
Intel SGX/TDX [46], vIPM key material for AMD SEV-SNP [5] or
application-level keys for Apple Private Cloud Compute [8]. Be-
yond their vulnerability to side channels, commercial platforms
also suffer from availability issues as they require dedicated hard-
ware and are not available on consumer-grade processors. For ex-
ample, Intel announced that SGX would be deprecated on non-
server-grade processors [73] and also deprecated its remote at-
testation service [45]. A comprehensive comparison of existing
platforms with Argos can be found in Table 7. Academic plat-
forms [13, 16, 24, 47, 51, 58, 58, 59, 84, 130, 134] are limited in
terms of how much hardware customization they can perform to
defend against microarchitectural side channels. As a result, the
vast majority simply consider side channels out of scope, with the
exception of Sanctum [47] and MI6 [22] which are built on top of
an open-source RISCV processor.

Combining Cryptography and TEEs. Previous work has identi-
fied that protecting remote attestation mechanisms alone against
microarchitectural side channels was easier than enforcing con-
fidentiality of entire enclave programs [125]. Some even suggest
to combine trusted hardware with cryptography to build hybrid
mechanisms, but all show important performance overheads, use

(insecure) SGX and are vulnerable to microarchitectural side chan-
nels. CrypTFlow [81] looks at secure inference and proposes to
build maliciously-secure MPC from semi-honest MPC schemes
using SGX. They show a 3Xx performance overhead over the semi-
honest scheme. Chex-Mix [102] leverages SGX with FHE to build
secure inference, but considers microarchitectural side channels out
of scope and even relies on SGX confidentiality for the privacy of
the model weights. They show a 142% performance overhead com-
pared to semi-honest FHE and consider key recovery attacks out of
scope. Viand et. al. [131] introduces many useful formalisms that
inspired Argos. Their paper primarily focuses on combining FHE
with cryptographic proofs but they also consider an FHE-in-TEE
approach and design a special protocol to optimize its performance.
Nevertheless, they use SGX, do not adapt their formalism to the
FHE-in-TEE approach, and their results show an 80X performance
overhead when compared to Argos. In contrast, Argos presents
a new TEE design for malicious and verifiable FHE with a dedi-
cated remote attestation scheme. Argos is secure by design against
microarchitectural side channels and shows minimal performance
overhead compared to semi-honest baselines.

11 Conclusion

We present Argos, the first integrity-only enclave platform designed
to build maliciously-secure verifiable FHE. Argos is secure by design
against microarchitectural side channels and transient execution
attacks and can be used to build fully malicious and authenticated
PSI and PIR schemes. It requires no specialized hardware and is
compatible with commodity processors from 2008 onward. Argos
only incurs 3% average performance overhead for FHE computation,
less than 8% performance overhead for complex protocols, and
no communication overhead. By demonstrating how to combine
cryptography with trusted hardware, Argos paves the way for
widespread deployment of FHE-based protocols beyond the semi-
honest setting, without the overhead of cryptographic proofs.

294

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

Acknowledgments

The authors thank Charly Castes, Adrien Ghosn, Neelu S. Kalani,
and the authors of Tyche [30] for providing early access to their
code and for their invaluable assistance in setting up Tyche on our
hardware and adapting the platform to our needs. We thank Sacha
Servan-Schreiber for helpful discussions on fully homomorphic
encryption and useful feedback. The authors used Claude to revise
the text in most of this paper to correct for typos, grammatical
errors, and awkward phrasing. This research was supported in
part by NSF contracts 2330065, 2115587 and 1955270, and Natural
Sciences and Engineering Research Council of Canada (NSERC)
under funding reference number RGPIN-2023-04796, and an NSERC-
CSE Research Communities Grant under funding reference number
ALLRP-588144-23. Any research, opinions, or positions expressed
in this work are solely those of the authors and do not represent
the official views of the Communications Security Establishment
Canada or the Government of Canada.

References

[1] Onur Aciicmez, Cetin Kaya Kog, and Jean-Pierre Seifert. 2006. Predicting secret
keys via branch prediction. In Topics in Cryptology—CT-RSA 2007: The Cryptog-
raphers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February 5-9,
2007. Proceedings. Springer, 225-242.

Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Rohatgi. 2003.

The EM side—channel (s). In Cryptographic Hardware and Embedded Systems-

CHES 2002: 4th International Workshop Redwood Shores, CA, USA, August 13-15,

2002 Revised Papers 4. Springer, 29-45.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Francois Dupressoir, and
Michael Emmi. 2016. Verifying {Constant-Time} Implementations. In 25th
USENIX Security Symposium (USENIX Security 16). 53-70.

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with
compressed queries and amortized query processing. In 2018 IEEE symposium
on security and privacy (SP). IEEE, 962-979.

[5] Pedro Antonino, Ante Derek, and Wojciech Aleksander Woloszyn. 2023. Flexible
remote attestation of pre-SNP SEV VMs using SGX enclaves. IEEE access 11
(2023), 90839-90856.

[6] Apple. 2022. Apple Platform Security. https://help.apple.com/pdf/security/en_
US/apple-platform-security-guide.pdf. Accessed on 28.04.2023.

[7] Apple. 2024. Private Cloud Compute: A new frontier for Al privacy in the cloud.
https://security.apple.com/blog/private-cloud-compute/.

[8] Apple. 2024. Private Cloud Compute Security Guide. https://security.apple.com/
documentation/private-cloud-compute.

[9] Gilad Asharov, Abhishek Jain, Adriana Lopez-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. 2012. Multiparty computation with low com-

munication, computation and interaction via threshold FHE. In Advances in

Cryptology-EUROCRYPT 2012: 31st Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,

2012. Proceedings 31. Springer, 483-501.

Shahla Atapoor, Karim Baghery, Hilder VL Pereira, and Jannik Spiessens. 2024.

Verifiable FHE via Lattice-based SNARKs. Cryptology ePrint Archive (2024).

AWS. 2024. AWS Nitro Enclaves Documentation. https://docs.aws.amazon.com/

enclaves/latest/user/nitro-enclave html.

AWS. 2024. AWS Nitro TPM Documentation. https://aws.amazon.com/blogs/

compute/deep-dive-into-nitrotpm-and-uefi-secure-boot-support-in-amazon-

ec2/.

Ahmed M Azab, Peng Ning, and Xiaolan Zhang. 2011. Sice: a hardware-level

strongly isolated computing environment for x86 multi-core platforms. In Pro-

ceedings of the 18th ACM conference on Computer and communications security.

375-388.

Azure. 2024. Virtual TPMs in Azure confidential VMs. https:

//learn.microsoft.com/en-us/azure/confidential- computing/virtual-tpms-

in-azure-confidential-vm.

Michael Backes, Markus Diirmuth, Sebastian Gerling, Manfred Pinkal, Caroline

Sporleder, et al. 2010. Acoustic {Side-Channel} attacks on printers. In 19th

USENIX Security Symposium (USENIX Security 10).

Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias

Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security

Architecture with CUstomizable and Resilient Enclaves.. In USENIX Security

Symposium. 1073-1090.

o)

[10

[11

[12

[13

[14

[15

[16]

295

Proceedings on Privacy Enhancing Technologies 2025(3)

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. ACM SIGOPS operating systems review 37, 5 (2003), 164-177.
Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. 1998. Rela-
tions among notions of security for public-key encryption schemes. In Advances
in Cryptology—CRYPTO’98: 18th Annual International Cryptology Conference
Santa Barbara, California, USA August 23-27, 1998 Proceedings 18. Springer,
26-45.

Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P Ward. 2019. Aurora: Transparent succinct arguments
for R1CS. In Advances in Cryptology—EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I 38. Springer, 103-128.
Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating two-dimensional page walks for virtualized systems. In Proceedings
of the 13th international conference on Architectural support for programming
languages and operating systems. 26-35.

Anton Borisov. 2009. Coreboot at your service! Linux Journal 2009, 186 (2009),
1.

Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and Srinivas
Devadas. 2019. Mi6: Secure enclaves in a speculative out-of-order processor. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 42-56.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)
fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014), 1-36.

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves.. In NDSS.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure:{SGX}
cache attacks are practical. In 11th USENLX workshop on offensive technologies
(WOOT 17).

[26] Jakub Breier and Xiaolu Hou. 2022. How practical are fault injection attacks,
really? IEEE Access 10 (2022), 113122-113130.

Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
2021. One glitch to rule them all: Fault injection attacks against amd’s secure
encrypted virtualization. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2875-2889.

Robert Buhren, Christian Werling, and Jean-Pierre Seifert. 2019. Insecure until
proven updated: analyzing AMD SEV’s remote attestation. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security.
1087-1099.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE symposium on security and privacy (SP). IEEE, 315-334.
Charly Castes, Adrien Ghosn, Neelu S Kalani, Yuchen Qian, Marios Kogias,
Mathias Payer, and Edouard Bugnion. 2023. Creating Trust by Abolishing
Hierarchies. In Proceedings of the 19th Workshop on Hot Topics in Operating
Systems. 231-238.

Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,
Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody, Travis Morrison,
et al. 2017. Security of homomorphic encryption. HomomorphicEncryption. org,
Redmond WA, Tech. Rep (2017).

Bhuvnesh Chaturvedi, Anirban Chakraborty, Ayantika Chatterjee, and Debdeep
Mukhopadhyay. 2022. A practical full key recovery attack on tfhe and fhew by
inducing decryption errors. Cryptology ePrint Archive (2022).

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from sgx enclaves via spec-
ulative execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142-157.

Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI
from fully homomorphic encryption with malicious security. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1223-1237.

Hao Chen, Kim Laine, and Rachel Player. 2017. Simple encrypted arithmetic
library-SEAL v2. 1. In Financial Cryptography and Data Security: FC 2017 Inter-
national Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta,
April 7, 2017, Revised Selected Papers 21. Springer, 3-18.

Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast private set intersection from
homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. 1243-1255.

Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and
Flavio D Garcia. 2021. {VoltPillager }: Hardware-based fault injection attacks
against Intel {SGX} Enclaves using the {SVID} voltage scaling interface. In
30th USENIX Security Symposium (USENIX Security 21). 699-716.

[18]

[19

[20

[21]

[22

[23

[24

[25

[27

[28

[29

[30

[31

[32

[33

[34]

[35]

[36

[37

https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://security.apple.com/blog/private-cloud-compute/
https://security.apple.com/documentation/private-cloud-compute
https://security.apple.com/documentation/private-cloud-compute
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html
https://aws.amazon.com/blogs/compute/deep-dive-into-nitrotpm-and-uefi-secure-boot-support-in-amazon-ec2/
https://aws.amazon.com/blogs/compute/deep-dive-into-nitrotpm-and-uefi-secure-boot-support-in-amazon-ec2/
https://aws.amazon.com/blogs/compute/deep-dive-into-nitrotpm-and-uefi-secure-boot-support-in-amazon-ec2/
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-tpms-in-azure-confidential-vm
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-tpms-in-azure-confidential-vm
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-tpms-in-azure-confidential-vm

Proceedings on Privacy Enhancing Technologies 2025(3)

(38]

(39

(40

N
fury

(42

(43

[44

'S
&

[46

[47

[48

[51

[52

(53]

o
=

[55

[56

(57

[58

[59

(60

(1]

[62

Massimo Chenal and Qiang Tang. 2015. On key recovery attacks against ex-
isting somewhat homomorphic encryption schemes. In Progress in Cryptology-
LATINCRYPT 2014: Third International Conference on Cryptology and Information
Security in Latin America Florianopolis, Brazil, September 17-19, 2014 Revised
Selected Papers 3. Springer, 239-258.

Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu
Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2024. Intel tdx
demystified: A top-down approach. Comput. Surveys 56, 9 (2024), 1-33.

Tlaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. 2020.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1(2020), 34-91.

Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David] Wu, and Bryan
Ford. 2023. Authenticated private information retrieval. In 32nd USENIX security
symposium (USENIX Security 23). 3835-3851.

Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg. 2021. Labeled PSI from homomor-
phic encryption with reduced computation and communication. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
1135-1150.

Intel Corporation. 2019. Intel CSME, Intel SPS, Intel TXE, Intel ‘DAL, and Intel
AMT 2019.1 QSR advisory. https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00213.html.

Intel Corporation. 2022. Intel® Converged Security and Management Engine
(Intel® CSME) Security. https://www.intel.com/content/dam/www/public/us/
en/security-advisory/documents/intel- csme- security- white- paper.pdf.

Intel Corporation. 2024. Intel® Software Guard Extensions Attestation
Service Using Intel® Enhanced Privacy Identification End-of-Life Time-
line. https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/resources/sgx-ias-using-epid-eol-timeline. html.
Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology
ePrint Archive (2016).

Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX Security
Symposium (USENIX Security 16). 857-874.

Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-Baptiste
Orfila, Dragos Rotaru, Nigel P Smart, Samuel Tap, and Michael Walter. 2023.
Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding. In Proceedings of the
11th Workshop on Encrypted Computing & Applied Homomorphic Cryptography.
35-46.

Leo de Castro and Keewoo Lee. 2024. VeriSimplePIR: verifiability in simplePIR
at no online cost for honest servers. Cryptology ePrint Archive (2024).
Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. 2010. Linear-complexity
private set intersection protocols secure in malicious model. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 213-231.

Liang Deng, Qingkai Zeng, Weiguang Wang, and Yao Liu. 2014. EqualVisor:
Providing memory protection in an untrusted commodity hypervisor. In 2014
IEEE 13th International Conference on Trust, Security and Privacy in Computing
and Communications. IEEE, 300-309.

Marian Dietz and Stefano Tessaro. 2024. Fully malicious authenticated PIR. In
Annual International Cryptology Conference. Springer, 113-147.

Léo Ducas and Daniele Micciancio. 2015. FHEW: bootstrapping homomorphic
encryption in less than a second. In Annual international conference on the theory
and applications of cryptographic techniques. Springer, 617-640.

Alexander Ermolov. 2016. Safeguarding rootkits: Intel BootGuard. Remote
access (01 Sep 2021): https://2016. zeronights. ru/wp-content/uploads/2017/03/Intel-
BootGuard. pdf (2016).

Mark Ermolov and Maxim Goryachy. 2017. How to hack a turned-off computer,
or running unsigned code in intel management engine. Black Hat Europe (2017).
Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. 2018. Branchscope: A new side-channel attack on directional
branch predictor. ACM SIGPLAN Notices 53, 2 (2018), 693-707.

Prastudy Fauzi, Martha Norberg Hovd, and Havard Raddum. 2022. On the
IND-CCA1 security of FHE schemes. Cryptography 6, 1 (2022), 13.

Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the {PENGLAI}
Enclave. In 15th { USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 21). 275-294.

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno.
2017. Komodo: Using verification to disentangle secure-enclave hardware from
software. In Proceedings of the 26th Symposium on Operating Systems Principles.
287-305.

William Futral and James Greene. 2013. Intel Trusted Execution Technology for
Server Platforms: A Guide to More Secure Datacenters. Springer Nature.

Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. 2023. Rinocchio:
SNARKS for ring arithmetic. Journal of Cryptology 36, 4 (2023), 41.

Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off my
laptop: physical side-channel key-extraction attacks on pcs: Extended version.

Drean et al.

Journal of Cryptographic Engineering 5 (2015), 95-112.

Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In
Proceedings of the forty-first annual ACM symposium on Theory of computing.
169-178.

Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any
mental game, or a completeness theorem for protocols with honest majority. In
Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser
and Silvio Micali. 307-328.

Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller. 2017.
Cache attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security. 1-6.

Ben Gras, Kaveh Razavi, Herbert Bos, Cristiano Giuffrida, et al. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks..
In USENIX Security Symposium, Vol. 216.

Matthew Green, Watson Ladd, and Ian Miers. 2016. A protocol for privately
reporting ad impressions at scale. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security. 1591-1601.

Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
May 8-12, 2016, Proceedings, Part II 35. Springer, 305-326.

Qian Guo, Denis Nabokov, Elias Suvanto, and Thomas Johansson. 2024. Key
Recovery Attacks on Approximate Homomorphic Encryption with Non-Worst-
Case Noise Flooding Countermeasures. In Usenix Security.

J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W
Felten. 2009. Lest we remember: cold-boot attacks on encryption keys. Commun.
ACM 52, 5 (2009), 91-98.

Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs, and Nickolai
Zeldovich. 2023. Private web search with Tiptoe. In Proceedings of the 29th
symposium on operating systems principles. 396-416.

Alexandra Henzinger, Matthew M Hong, Henry Corrigan-Gibbs, Sarah Meikle-
john, and Vinod Vaikuntanathan. 2023. One Server for the Price of Two: Simple
and Fast {Single-Server} Private Information Retrieval. In 32nd USENIX Security
Symposium (USENIX Security 23). 3889-3905.

Intel. 2024. Core Processors. Deprecated Technologies. https:
//edc.intel.com/content/www/us/en/design/ipla/software-development-
platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-
processors-datasheet-volume- 1-of-2/004/deprecated-technologies/.

Hans Niklas Jacob, Christian Werling, Robert Buhren, and Jean-Pierre Seifert.
2023. faulTPM: Exposing AMD fTPMs’ Deepest Secrets. In 2023 IEEE 8th
European Symposium on Security and Privacy (EuroS&P). IEEE, 1128-1142.
Scott Johnson, Dominic Rizzo, Parthasarathy Ranganathan, Jon McCune, and
Richard Ho. 2018. Titan: enabling a transparent silicon root of trust for cloud.
In Hot Chips: A Symposium on High Performance Chips, Vol. 194. 10.

Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-Reza
Sadeghi. 2020. {VOLTpwn}: Attacking x86 processor integrity from software.
In 29th USENIX Security Symposium (USENIX Security 20). 1445-1461.

Agnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and Benny Pinkas. 2017.
Private set intersection for unequal set sizes with mobile applications. In Privacy
Enhancing Technologies Symposium. De Gruyter, 177-197.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 207-220.
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
2020. Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7
(2020), 93-101.

Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and
Nael B Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the
Return Stack Buffer.. In WOOT@ USENIX Security Symposium.

Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 336-353.

Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is not needed: Single
database, computationally-private information retrieval. In Proceedings 38th
annual symposium on foundations of computer science. IEEE, 364-373.

Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada Popa.
2020. An {Off-Chip} attack on hardware enclaves via the memory bus. In 29th
USENIX Security Symposium (USENIX Security 20).

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovi¢, and Dawn
Song. 2020. Keystone: An open framework for architecting trusted execution
environments. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1-16.

Mengyuan Li, Yuheng Yang, Guoxing Chen, Mengjia Yan, and Yingian Zhang.
2024. SoK: Understanding Design Choices and Pitfalls of Trusted Execution

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00213.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00213.html
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel-csme-security-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/security-advisory/documents/intel-csme-security-white-paper.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/deprecated-technologies/

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

Environments. In Proceedings of the 19th ACM Asia Conference on Computer and

Communications Security. 1600-1616.
(86

and Implementation (OSDI 22). 465-484.
[87

deployment-dilemma.html.

%
&

22). 643-660.
(89

(SP). IEEE.
[90

and privacy. IEEE, 605-622.
[91

ing Systems Principles. 417-433.
[92

Springer, 218-239.
[93

(94

Systems 2008. 315-328.

[95] Samir Jordan Menon and David] Wu. 2022. Spiral: Fast, high-rate single-server
PIR via FHE composition. In 2022 IEEE Symposium on Security and Privacy (SP).

IEEE, 930-947.

[96] Samir Jordan Menon and David] Wu. 2024. YPIR: High-Throughput Single-

Server PIR with Silent Preprocessing. Cryptology ePrint Archive (2024).

[97] Daniel Moghimi. 2023. Downfall: Exploiting speculative data gathering. In 32nd

USENIX Security Symposium (USENIX Security 23). 7179-7193.

[98] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. 2020.
TPM-FAIL:TPM meets Timing and Lattice Attacks. In 29th USENIX Security

Symposium (USENIX Security 20). 2057-2073.

)
0,

//signal.org/blog/private-contact-discovery/. Accessed on 28.04.2023.

[100] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466—

1482.
[101] musl. 2024. Musl Libc. https://musl.libc.org.

[102

Archive (2021).
[103

Computer and Communications Security. 1151-1165.
[104

Seminar on Network Security. Citeseer.
[105

2005. Proceedings. Springer, 1-20.
[106

305-320.

[108] James L Peterson and Theodore A Norman. 1977. Buddy systems. Commun.

ACM 20, 6 (1977), 421-431.
[109

Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and verification of the arm confidential
compute architecture. In 16th USENIX Symposium on Operating Systems Design

Yehuda Lindell, David Cook, Tim Geoghegan, Sarah Gran, Rolfe Schmidt, Ehren
Kret, Darya Kaviani, and Raluca Ada Popa. 2023. The deployment dilemma:
Merits & challenges of deploying MPC. https://mpc.cs.berkeley.edu/blog/

Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. {AMD} prefetch attacks
through power and time. In 31st USENIX Security Symposium (USENIX Security

Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power
Side-Channel Attacks on x86. In 2021 IEEE Symposium on Security and Privacy

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on security

Kevin Loughlin, Jonah Rosenblum, Stefan Saroiu, Alec Wolman, Dimitrios Skar-
latos, and Baris Kasikci. 2023. Siloz: Leveraging DRAM isolation domains to
prevent inter-VM rowhammer. In Proceedings of the 29th Symposium on Operat-

Heiko Mantel, Johannes Schickel, Alexandra Weber, and Friedrich Weber. 2018.
How secure is green IT? The case of software-based energy side channels. In
Computer Security: 23rd European Symposium on Research in Computer Secu-
rity, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part I 23.

Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-
gil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB reduction and
attestation. In 2010 IEEE Symposium on Security and Privacy. IEEE, 143-158.

Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi
Isozaki. 2008. Flicker: An execution infrastructure for TCB minimization. In
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer

moxie0. 2017. Technology preview: Private contact discovery for Signal. https:

Deepika Natarajan, Andrew Loveless, Wei Dai, and Ronald Dreslinski. 2021.
Chex-mix: Combining homomorphic encryption with trusted execution envi-
ronments for two-party oblivious inference in the cloud. Cryptology ePrint

Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, fast malicious multiparty
private set intersection. In Proceedings of the 2021 ACM SIGSAC Conference on

Cong Nie. 2007. Dynamic root of trust in trusted computing. In TKK T1105290

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of AES. In Topics in Cryptology—CT-RSA 2006: The Cryp-
tographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17,

Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke Valenta,
Tara Whalen, Christopher Wood, Thomas Ristenpart, and Rahul Chatterjee.
2022. Might I get pwned: A second generation compromised credential checking
service. In 31st USENIX Security Symposium (USENIX Security 22). 1831-1848.

[107] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. 2006. vIPM: virtualizing
the trusted platform module. In Proc. 15th Conf. on USENIX Security Symposium.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:
fast, malicious private set intersection. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 739-767.

297

[110]

[111]

[112]

[113

[114]

[115

[116

[117

[118

[119

[120

[121

[122

[123

[124

[125

[126

[127

[128

[129

[130

[131

[132

[133

[134

[135

Proceedings on Privacy Enhancing Technologies 2025(3)

Sandro Pinto and Nuno Santos. 2019. Demystifying arm trustzone: A compre-
hensive survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 1-36.

Gramine Project. 2024. Gramine Documentation. Microsoft Azure Attestation
(MAA) Integration. https://github.com/gramineproject/contrib/tree/master/
Integrations/azure/ra_tls_maa.

Gramine Project. 2024. Gramine Documentation. Performance tuning and
analysis. https://gramine.readthedocs.io/en/stable/performance html.

Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. 2019. VoltJockey:
Breaking SGX by software-controlled voltage-induced hardware faults. In 2019
Asian Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 1-6.
Srinivasan Raghuraman and Peter Rindal. 2022. Blazing fast PSI from improved
OKVS and subfield VOLE. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 2505-2517.

Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul
England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,
et al. 2016. fTPM: A Software-Only Implementation of a TPM Chip.. In USENIX
Security Symposium, Vol. 16. 841-856.

Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: fast OPRF and circuit-
PSI from vector-OLE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 901-930.

Mike Rosulek and Ni Trieu. 2021. Compact and malicious private set intersection
for small sets. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 1166-1181.

Keegan Ryan. 2019. Hardware-backed heist: Extracting ECDSA keys from
qualcomm’s trustzone. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 181-194.

Mark D Ryan. 2013. Enhanced certificate transparency and end-to-end encrypted
mail. Cryptology ePrint Archive (2013).

Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: Read arbitrary memory over network. In Computer Security—
ESORICS 2019: 24th European Symposium on Research in Computer Security,
Luxembourg, September 23-27, 2019, Proceedings, Part I 24. Springer, 279-299.
AMD SEV-SNP. 2020. Strengthening VM isolation with integrity protection and
more. White Paper, January (2020).

Nigel P Smart. 2023. Practical and Efficient FHE-based MPC. In IMA International
Conference on Cryptography and Coding. Springer, 263-283.

Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao
Wang. 2024. Actively Secure Private Set Intersection in the Client-Server Setting.
Cryptology ePrint Archive, Paper 2024/570. https://eprint.iacr.org/2024/570
Cheng Tan, Lijun Zhang, and Liang Bao. 2020. A Deep Exploration of BitLocker
Encryption and Security Analysis. In 2020 IEEE 20th International Conference on
Communication Technology (ICCT). IEEE, 1070-1074.

Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine
Shi. 2017. Sealed-glass proofs: Using transparent enclaves to prove and sell
knowledge. In 2017 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 19-34.

Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. {Graphene-SGX}: A
practical library {OS} for unmodified applications on {SGX}. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17). 645-658.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with tran-
sient out-of-order execution. In 27th { USENIX} Security Symposium ({ USENIX}
Security 18). 991-1008.

Leendert Van Doorn. 2006. Hardware virtualization trends. In ACM/Usenix
International Conference On Virtual Execution Environments: Proceedings of the 2
nd international conference on Virtual execution environments, Vol. 14. 45-45.
Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020.
SGAxe: How SGX fails in practice.

Thomas Van Strydonck, Job Noorman, Jennifer Jackson, Leonardo Alves Dias,
Robin Vanderstraeten, David Oswald, Frank Piessens, and Dominique Devriese.
2023. CHERI-TrEE: Flexible enclaves on capability machines. In 2023 IEEE 8th
European Symposium on Security and Privacy (EuroS&P). IEEE, 1143-1159.
Alexander Viand, Christian Knabenhans, and Anwar Hithnawi. 2023. Verifiable
fully homomorphic encryption. arXiv preprint arXiv:2301.07041 (2023).

Yao Wang, Andrew Ferraiuolo, and G Edward Suh. 2014. Timing channel
protection for a shared memory controller. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 225-236.
Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning
power {Side-Channel} attacks into remote timing attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22). 679-697.

Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan Man-
gard, and Ahmad-Reza Sadeghi. 2019. Timber-v: Tag-isolated memory bringing
fine-grained enclaves to risc-v.. In NDSS.

Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking intel trusted execution
technology. Black Hat DC 2009 (2009), 1-6.

https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html
https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://musl.libc.org
https://github.com/gramineproject/contrib/tree/master/Integrations/azure/ra_tls_maa
https://github.com/gramineproject/contrib/tree/master/Integrations/azure/ra_tls_maa
https://gramine.readthedocs.io/en/stable/performance.html
https://eprint.iacr.org/2024/570

Proceedings on Privacy Enhancing Technologies 2025(3)

[136] Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. 2009. Another
way to circumvent Intel trusted execution technology. Invisible Things Lab
(2009), 1-8.

Tianhong Xu, Aidong Adam Ding, and Yunsi Fei. 2024. TrustZoneTunnel:
A Cross-World Pattern History Table-Based Microarchitectural Side-Channel
Attack. In 2024 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 01-11.

Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In 23rd { USENIX} Security Symposium
({USENIX} Security 14). 719-732.

Zhi Zhang, Decheng Chen, Jiahao Qi, Yueqiang Cheng, Shijie Jiang, Yiyang Lin,
Yansong Gao, Surya Nepal, Yi Zou, Jiliang Zhang, et al. 2024. SoK: Rowham-
mer on Commodity Operating Systems. In Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security. 436-452.

Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao. 2021. Red alert for power
leakage: Exploiting intel rapl-induced side channels. In Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security. 162-175.
Vincent Zimmer and Michael Krau. 2016. Establishing the root of trust. UEFL
org document dated August (2016).

[137

[138

[139

[140

[141

A Primer on Measured Boot

Measured boot is obtained using a trust chain that binds the mea-
surement of the operating system or hypervisor to a component
that is inherently trusted by the system (the root). Starting from
the root, every element of the chain measures (hashes) and signs
the binary of the next element, ensuring its integrity. This process
is sometimes referred to as secure boot, as, historically, the chain of
trust was composed of the entire boot chain. The root of trust (RoT)
is the base case of this recursive security argument, often a hard-
ware mechanism (e.g. read-only memory) that enforces integrity
for the first instructions executed at boot and which integrity is
supported by a certificate signed by the manufacturer [54, 141].

When elements of the boot chain are measured (for instance,
before any memory can be trusted), these measurements need to
be stored in a secure location where they cannot be tampered with,
for instance, by a compromised BIOS. To provide that functionality,
a small chip or coprocessor, called a trusted platform module (TPM)
will be in charge of securely storing hash-based measurements in
special registers (PCRs). The interface exposed by the TPM is quite
limited. For example, measurements can only be hash-extended
(never reset). TPMs also have other capabilities, like long-term
secrets storage referred to as secret sealing (e.g., a key for disk
encryption [124]) that can only be accessed if the PCRs are in a
specific state, i.e., the correct system has been booted. The TPM
also has attestation capabilities, which will use a private key tied
to the TPM to sign or attest the values of the PCRs and the state of
the system. However, the TPM is merely a subordinate to the RoT
and the software in the chain of trust, as it needs to be instructed
and fed inputs to extend its internal measurements.

Any code measured through that process, up to the final domain,
is considered part of the trusted code base (TCB). Code in the TCB
is critical for the security of the system (it enforces the integrity of
the next step in the chain of trust), and as a result, code in the TCB
is expected to be bug-free. This assumption is practically impossible
to enforce for a TCB that contains millions of lines of code (e.g.,
the Linux kernel with 28MLOC), hence the incentive to exclude
as much code as possible from the TCB. A dynamic root of trust
(DRoT) makes it possible to remove elements of the boot chain from
the chain of trust, hence reducing the TCB. DRoT is implemented as
a hardware extension (e.g., Intel TXT or AMD DRMT [60, 104]) that
can instruct and control the TPM independently of any firmware

298

Drean et al.

or software. However, DRoT and TPM were originally conceived
to attest to one trusted domain (the OS). That means 1) there is
no mechanism to isolate more than one domain at a time 2) TPM
hardware resources (PCRs, key storage, bandwidth) are sized for
one domain and extremely constrained.

B Primer on Microarchitectural and Physical
Attacks

B.1 Side Channel Attacks

In side-channel attacks, an attacker leverages some shared state
(initially not meant for communication) to learn information about
the execution of a victim program and extract victim secrets. There
exist many types of side channels, and they can first be categorized
by the medium or shared state that is exploited by the attacker
to extract information. For example, classic timing side channels
exploit the fact that the program execution time might vary depend-
ing on the value of some secret inputs. It was shown early on [3]
that cryptographic algorithms such as RSA using non-constant-time
implementation (such as square and multiply) were vulnerable to
these types of side channels. Beyond simple timing, other types of
side channel are

o microarchitectural side channels, which exploit shared microarchi-
tectural state. These include memory caches [25, 65], translation
look-aside buffers (TLBs) [66], branch predictors [1, 56], DRAM
controllers [132], or any other shared microarchitecture.

e physical side channels, which exploit physical mediums such as
power consumption [89, 133], electromagnetic emissions [2], or
acoustic noise [15].

Finally, another way to classify physical side channels is (1) if the
attack can be mounted in software or (2) if the attacker requires
physical access to the machine running the victim program. Argos
defend against all types of side channels targeting the CPU and is
vulnerable to physical side-channels targeting the TPM. However,
to our knowledge, no such attack has been published (see Section
9.7).

B.2 Cache Side Channel Attacks

Cache side channels are an example of microarchitectural side chan-
nels. Here, the shared channel is shared caches. The caches are
between the CPU and main memory (see fig. 1) and ensure that the
performance penalty of accessing a location in memory (100 cycles)
can be amortized if the same memory value has been recently ac-
cessed. We usually talk about a cache hierarchy, as a CPU usually
contains a core-private fast (1 cycle) (but small) “L1” cache which is
connected to other larger (but slower, 10 - 100 cycles) caches (“L2” or
“L3”) closer to memory. In principle, only the last level cache (LLC)
is shared among cores, but this is machine-dependent. That means
that caches can be shared between a victim and an attacker program
or temporarily (between context switches on the same core [138])
or spatially (across cores if the cache is shared [90]). To exploit
caches as side channels, the attacker usually exploits the timing
difference of loading a cache and non-cached value from memory.
We will describe (a simplified version) or Prime&Probe [105], a
powerful cache side channel attacks:

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

(1) PRIME: The attacker will access a large array to fill up the
cache with its own data.

(2) WAIT: The attacker will wait for the victim to run and access
the shared cache.

(3) PROBE: The attacker will access the large array again, but
time each memory access.

If a memory access takes longer, that means that the corresponding
value has been evicted from the cache by the victim when running,
and the attacker can infer information regarding the addresses ac-
cessed by the victim in memory. In fact, to remove a piece of data
from a cache entry, the new memory value must have the same set
index, hence sharing some common address bits with the original
entry. These attacks are efficient, but require the victim program to
access memory locations whose addresses depend on a secret. This
is exactly why constant-time programming for cryptographic algo-
rithms does not perform any memory accesses on secret-dependent
addresses.

B.3 Spectre Attacks

Miroarchitectural side channel attacks are limited by the presence
of gadgets in the victim code that can be exploited (e.g., secret de-
pendent memory accesses). These gadgets might exist in the code
but may never be executed under “normal” sequential program ex-
ecution. Unfortunately, attacks from the Spectre family [33, 79, 80]
have demonstrated that such gadgets could be accessed specula-
tively and weaponized into universal read gadgets.

Speculative execution (sometimes called transient execution) is
due to a family of speculative mechanisms for performance opti-
mizations present on modern processors. These include the pattern
history table, the branch target buffer, and the return stack buffer,
which all have their corresponding Spectre variants. They make it
possible to speculatively execute code or load data before knowing
if it corresponds to the correct control / data flow for the pro-
gram. If the microarchitecture guesses right, a lot of precious CPU
cycles have been saved. If the microarchitecture guesses wrong,
some performance penalty needs to be paid to rollback the archi-
tectural state (but not the microarchitectural state) before correct
execution can restart. These optimizations are in large part respon-
sible for the great performance of modern CPUs. Disabling them
altogether would have disastrous performance effects (200-300%
slowdown [22]). However, they make reasoning about the security
of programs especially tricky as there is no clear speculative exe-
cution flow for a given program. In addition, when a speculative
execution path is deemed wrong, the different pieces of microarchi-
tectural states that were modified (e.g., cache) are usually not rolled
back. This has significant security implications, as this potentially
secret-dependent state can now be observed by an attacker using
adequate microarchitectural side channels. Argos defend against
these attacks by eliminating all microarchitectural side channels.

B.4 Spectre V1

As explained above, a large number of Spectre variants can be gen-
erated by combining a mechanism that triggers speculation with
microarchitectural side channels. We will now describe the original
Spectre attack (V1 [79]) that exploits the branch predictor (pattern
history table) and a cache side channel. The branch predictor is one

299

Proceedings on Privacy Enhancing Technologies 2025(3)

of the most common microarchitectural mechanisms for specula-
tion. When the CPU encounters a branch (i.e., if, while, or for
statement), and before the result of the branch condition is known,
the branch predictor guesses the direction of the branch (taken vs.
non-taken) and speculatively executes the corresponding execution
path. A branch predictor is trained using the history of correct
directions for the branch to make its guesses more efficient. That
means that for a simple branch predictor, if a branch has been taken
a dozen times in the same execution context, it will be predicted as
taken in the next run.

Let us now describe the classic Spectre V1 attack. Let us consider
the following pseudo-code located in the victim program:

if(i >0 88 i < 10) {
s = arrayl[il;
b = array2[s];

3

Here, we assume that the attacker can call this code snippet by
interacting through the victim program API Note that double-
memory access is a perfect transmitter for a cache side channel, as
it accesses a memory value s and then leaks its content by accessing
an address that depends on it (array2[s]). However, thanks to the
bound check on index i, the attacker should not be able to access
arbitrary data location in victim memory and load it into s. An
attacker can exploit the branch predictor by first calling the code
snippet repeatedly with inbound indices, training it to predict the
branch on line 1 as non-taken. Subsequently calling the snippet with
an out-of-bounds index causes the branch predictor to incorrectly
speculate, executing both the arbitrary memory access on line 2
and the cache side channel transmission on line 3. This creates
a universal read gadget, which enables arbitrary memory access
within the victim’s address space.

B.5 Cold Boot

Cold boot is a physical attack that requires physical access to the
target machine running the victim program. DRAM is volatile, but
data values may persist for a few seconds / minutes even after a
power switch-off. If an attacker acts swiftly, it has the opportunity
to cold boot the machine with an attacker-controlled operating
system (on a USB disk, for instance) and dump all the memory.
Argos defends against these attacks by never storing sensitive data
in main memory.

B.6 Fault Injection Attacks

Fault injections are a different family of attacks than side channels,
as they do not directly aim at extracting victim secrets, but rather at
modifying the victim control flow or its state by introducing faults
into the system. Typically, such attacks require physical access
to the system. Voltage glitching attacks are an example of such
attacks that consist of lowering the power supply of a system in
order to introduce glitches or faults into a system. When properly
synchronized and timed, changes in the power supply can affect
the propagation of electric currents in the processor and affect the
control or data flow of a program. For instance, instructions can be
skipped and the result of instructions can be affected, resulting in
faulty outputs. Other classic attacks include “voltage/clock glitching,
electromagnetic pulses, and laser-based attacks” [26]. Argos does

Proceedings on Privacy Enhancing Technologies 2025(3)

not protect against such attacks. However, in some cases, they can
be mitigated in software by adding extra checks on the control flow.

B.7 Rowhammer

Rowhammer [139] is a software-mounted fault injection attack that
aims to modify the contents of the victim’s memory. It exploits
undesirable side effects in modern DRAM due to electromagnetic
interference between closely located memory cells. When repet-
itively activating a memory row (hammering the row), adjacent
rows might leak charge from their cells due to the interference and
some of their bit values might flip, even if never directly accessed
by the program. However, these attacks require the attacker to
be able to access a memory row adjacent to the victim. Moreover,
such attacks can be mitigated by Argos by ensuring that different
security domains use distinct memory partitions [91].

C Formal Definitions
We use the formal definitions from Viand et. al. [131].

C.1 FHE Properties

Correctness A scheme is correct if any honest computation will
decrypt to the expected result. More formally, a scheme is correct
if for all functions f, and for all x in the domain of f:

(pk, sk) « &.Gen(1%)
cx — E.Encyey(x)
cy — 8.Evalkey(cx,f)

Pr |E.Decg(cy) = f(x) =1

Security We extend the definition of IND-CPA to our notion. Note
that we do not require an evaluation oracle since Evaly, is public
and can be executed by the adversary directly. Formally, a scheme
is secure if for any PPT adversary A and any function f the advan-

tage Adv'NPCPA[AT (M) = 2 ‘Pr[b = l;] - %) of the attacker in the
following game is negligible in the security parameter A:

IND-CPA for vFHE

(pk, sk) «— &.Gen(1%)

(my, my) — A% (14, f, pk)
(c*, ") « &.Encyi(my)

b — AOCeknc(c*).

Extension for e-approximate FHE schemes Approximate FHE
schemes can be captured by changing the correctness property to
the following: A scheme is correct if for all functions f, and for all
x in the domain of f:

(pk, sk) « &.Gen(1%)
Cy — S.Enckey(x)
¢y < &.Evaliey (cx, f)

where ||| is a scheme-specific norm and € is a scheme-specific
upper bound on the decoding error (which may depend on f, pk,
or other quantities of the scheme). We leave out details on how to
adapt our other definitions and proofs to this setup.

Pr ||Decsk(cy) —f(x)“ <e¢ =1

C.2 Remote Attestation Properties

Completeness A scheme is complete if Verify will always accept
an honestly computed result. More formally, a scheme is complete

300

Drean et al.

if for all functions g, and for all x in the domain of g:

(pk, sk) « I1.Gen(1%)

Pr |II. ify = =1.
o | Vertfyg(yxmy) = Erue |- 2) e TProvey (x, 9)

Soundness A scheme is sound if the adversary cannot make Ver-
ify accept an incorrect answer. Formally, a scheme is sound if for
any PPT adversary and any function g the following probability is
negligible in the security parameter A:

(pk, sk) « I1.Gen(1%)
x — A(pk)

x is in the domain of g
(y my) — Alpk,x)

I1.Verify (y, x, n'y) =1
Pr A
y #g(x)

C.3 vFHE Properties

Correctness A scheme is correct if any honest computation will
decrypt to the expected result. More formally, a scheme is correct
if for all functions f, and for all x in the domain of f:

(pk, sk) « Gen(1%)
cx e Encyey(x)
(cy, my) Evalkey(cx,f)

Pr [Decg(cy) = f(x) =1

Completeness A scheme is complete if Verify will always accept
an honestly computed result. More formally, a scheme is complete
if for all functions f, and for all x in the domain of f:

(pk, sk) « Gen(1%)
cx — Encyey (x)
(cy, my) Evaliey(cx, f)

Pr | Verifyy (cy, cx, my) =1 =1

Soundness A scheme is sound if the adversary cannot make Verify
accept an incorrect answer. Formally, a scheme is sound if for any
PPT adversary A and any function g the following probability is
negligible in the security parameter A:

(pk, sk) « Gen(1%)

X — ﬂOEnc-ODec(pk)

cx Encpey(x)

(Cy> ”y) — AGenc-Oec (cx)

Verifyy (cy, cx, my) =1
Pr A
cy # E.Eval(cy, f)

Note that in the literature [10, 131], soundness is sometimes defined
using the conditional probability of

Verifyy (cy,cx, my) =1 A EDec(cy) # f(x).

This definition is impractical as it allows an attacker to compute a
different circuit that represents the same function. We use a more
restrictive definition instead, even if it requires the &.Eval algo-
rithm to be deterministic (which it is in our case).

Security We extend the definition of IND-CCA1 to our notion.
Note that we do not require an evaluation oracle since Evalpy is
public and can be executed by the adversary directly. Formally, a
scheme is secure if for any PPT adversary A and any function f the

advantage AdVNDCEAT A (1) = 2 |Pr[b = I;] - %’ of the attacker

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

in the following game is negligible in the security parameter A:

IND-CCAL1 for vFHE

(pk, sk) < Gen(1%)

(my, my) — AeneO0ec (14, f, pk)
(c*, ") < Encpy(my)

b — A%enc(c*)

D Extended Proof: Circuit-Level vFHE

Construction Let us consider the vFHE scheme (Gen, Enc, Eval,
Verify, Dec) described in Section 6.1. The construction is as follows:
we take an FHE scheme (E.Gen, &.Enc, E.Eval, &.Dec) and a remote
attestation scheme (I1.Gen, II.Prove, II.Verify).

We then have

e Gen(1) = ((pke, ske). (phy, skir)

with (pkg, skg) = &.Gen(1%) and (pky, ski) = I1.Gen(1%)
Enc(x) — ¢, with ¢, = E.Enc(x)

Eval(cy, f) — (cy, my) with (cy, 1) = IL.Prove(cy, &.Eval(., f))
Verify(cy, Cxs ﬂy) — bwithb = H.Verify(cy, Cx Il'y).

Dec(c,) — y with y = E.Dec(cy)

Correctness Correctness of Decg follows immediately from the
correctness of the underlying FHE scheme. Specifically, we have
that

(pk, sk) « &.Gen(1%)
cx — E.Enciey (x)
¢y < &.Evaliey (cx, f)

and so, rewriting the terms, it follows that

Decsi (¢y) = E.Decsi(cy) = f(x)
with probability 1.

Pr | E.Decg(cy) = f(x) =1.

Completeness Completeness of Verify; follows immediately from
the completeness of the underlying remote attestation scheme.
Specifically, we have that

(pk, sk) « I1.Gen(1%)

Pr | ILVerifyg (g, mg) S trU€ | () 0y Hoproveye(xg) |

and so, rewriting the terms, it follows that Verifysk(cy, Cx, Ty) =
ILVerifyg (cy, cx, my) = true with probability 1.

Security We prove the security of the scheme via a reduction to
the security of the underlying FHE scheme. Consider a probabilistic
polynomial time (PPT) attacker A with oracle access to Enc and Dec
that breaks the semantic security of our vFHE scheme. Formally,
this means that A can produce two messages m, and m; such that
it can distinguish with non-negligible advantage between Enc(mg)
and Enc(m,). We show that we can build a PPT attacker 8 with
only oracle access to &.Enc that runs A to contradict the semantic
security of the FHE scheme with the same advantage.

It is sufficient to show that B can emulate a Dec oracle for
the vFHE scheme without having access to a &.Dec oracle for the
underlying FHE scheme. 8 emulates the Dec oracle by executing
the following sequence of steps:

(1) For each query to Enc issued by A, B makes an oracle re-

quest to its &.Enc oracle and stores the latest x used and the
¢y obtained. It response to A with c,.

301

Proceedings on Privacy Enhancing Technologies 2025(3)

(2) Then, when A sends an oracle request to Ope with a cipher-
text ¢, (along with 7,), B runs I1.Verify(cy, cx, 7y) (which
is a polynomial algorithm) by using the latest c, it stored in
the previous step.

o If I1.Verify(cy, cx, my) = true, then B uses the stored
value of x to compute f(x) (f is a finite circuit) and sends
it to A.

e Otherwise, 8B responds with L.

(3) When A sends the challenge messages (mo, m;), B forwards
them to its own challenger as the challenge tuple.

(4) After the challenge, B continues to respond to the Enc oracle
as before.

(5) Eventually, 8 outputs as A does.

Because the underlying remote attestation scheme is sound,
I1.Verify will only return true (with overwhelming probability)
if ¢, = &.Eval(cy, f), and because the underlying FHE scheme is
correct, Dec(c,) = f(x) with high probability. As a result, Ope.
is exactly a Dec oracle for the vFHE scheme. That means 8 can
successfully emulate the required oracles and use A to distinguish
with non-negligible advantage between Enc(my) and Enc(m;).

This contradicts the security assumption of the underlying FHE
scheme, concluding the proof.

Soundness We now turn to analyzing the soundness property. We
prove the soundness of the scheme via a reduction to the soundness
of the underlying remote attestation scheme. We make use of a
hybrid argument (changes are highlighted).

e HO: For any PPT adversary A and any function g the following
probability is negligible in the security parameter A:

(pk, sk) « Gen(1%)

X — ﬂOEnc,ODec (pk)

cx Encyey(x)

(cy) ”y) — AGenc:Opec (cx)

Verifyg (cy, cx, my) =1
Pr A
¢y # &.Eval(cy, f)

e H1: For any PPT adversary A and any function g the following
probability is negligible in the security parameter A:

(pk, sk) « Gen(1%)
x e A%Dec(pk)

cx Encyey (x)

(cy> ”y) — AOpec (cx)

Verifyy (cy, cx, my) =1
Pr A
cy # E.Eval(cy, f)

e H2: For any PPT adversary A and any function g the following
probability is negligible in the security parameter A:

(pk, sk) « Gen(1%)
x «— A(pk)

cx — Encyey (x)
(Cya ”y) — Alex)

Verifyy (cy, cx, my) = 1
Pr A
¢y # &.Eval(cy, f)

e H3: For any PPT adversary A and any function g the following
probability is negligible in the security parameter A:

(pk, sk) « I.Gen(1%)
x — A(pk)

x is in the domain of g
(y.my) — A(pk,x)

I1.Verify (y, x, ﬁy) =1
Pr A
y #g(x)

Proceedings on Privacy Enhancing Technologies 2025(3)

HO — H1: Let us assume there exists an attacker A with oracle
access to, Enc, and Dec that can win the challenge described in
H1 with non-negligible probability. Because the attacker in H1 has
access to the FHE scheme public key, it can emulate Ogp, and lever-
age A to win H2 with non-negligible probability.

H1 — H2: Let us assume there exists an attacker A with oracle
access to Enc and Dec that can win the challenge described in H1
with non-negligible probability. Similarly to how we proved the
security for our vFHE scheme, the attacker in H2 can emulate Ope.
and leverage A to win H2 with non-negligible probability.

H2 — H3: H3 is exactly H2 after rewriting the terms using the
notation from the remote attestation scheme, and choosing a spe-
cific family of functions for g (functions in the form &.Eval(., f)
for any functions f). Because H3 should hold for any function g,
a PPT adversary that can win H2 with non-negligible probability
can also win H3 with non-negligible probability.

Because H3 is exactly the soundness property of our underlying
remote attestation scheme, this concludes our proof by reduction.

E Security Argument: Auth. PIR

In this section, we sketch how Argos can be used to instantiate
authenticated PIR. The first requirement towards building authen-
ticated PIR is extending Argos to support public inputs.

E.1 Extending vFHE for Public Server Inputs

Accepting public inputs. We extend our vFHE scheme to allow
public server input w for f as follows. We define a function k() that
takes w as input and outputs w if it is “well formed” or halts oth-
erwise. In practice, this is equivalent to type-checking w. We now
define &.Eval’ (cy, w, h, f) that evaluates E.Eval(cy, f (-, h(w))) and

return the output.

Authenticating server inputs. To authenticate server input, we
assume that the server commits to its public database ahead of
time. As in prior work on authenticated PIR, we assume that the
client obtains this commitment out-of-band. We now define a new
family of vFHE schemes defined as (Commit, Gen, Enc, Eval, Verify,
Dec), which is augmented with the new Commit algorithm. The
server uses Commit to commit to its public input w by comput-
ing Commit(w) < C(w). Here, C is a commitment scheme (e.g., a
Merkle tree) that is computationally binding (informally, the proba-
bility to find x # x’ so that C(x) = C(x’) is negligible) and because
the input is public, we do not require the commitment scheme to
be hiding. The server then transmits this commitment to the client
(e.g., by posting it to a public bulletin board).

Putting everything together. We define IT.Prove’ which emulates

I1.Prove, but ensures that on top of a commitment to & .Eval(cy, f (-, -)),

the transcript 7, also contains a commitment to h(x) and C(w).
We use I1.Prove’ to define our new Eval’ function.

e Eval’(cx, f) — IL.Prove’(cy, E.Eval’(., w,h, f)).
We also define Verify” which
(1) takes C(w) as input;

Drean et al.

(2) checks that C(w) matches the commitment included in 7y;
(3) o if commitments match, evaluate the original Verify and
return the output.
o else return false.

In summary, our new VFHE scheme is defined by (Commit, Gen,
Enc, Eval’, Verify’, Dec). Given these changes, adapting the vFHE
properties is straightforward. Using the binding property of the
Commit algorithm, all the security games can be extended to in-
clude the initial execution of Commit by the adversary. We omit
providing the formal properties and proof, since this extension is
straightforward to derive and verify.

E.2 Semi-Honest PIR from FHE

We now consider a simple FHE-based PIR scheme. We note that
this approach can be extended to specific PIR schemes (e.g., [4]) in
natural ways, but for simplicity we restrict ourselves to the FHE-
based approach. More concretely, consider an FHE scheme (E.Gen,
&.Enc, E.Eval, 8.Dec). We construct our PIR scheme by evaluating
(using FHE) the query function f(-, w) that takes an input index x
and returns w|x], i.e., the xth value in the server database. We now
sketch the two required properties for PIR schemes: correctness and
privacy. These will help define authenticated PIR in the next section.

Correctness. Informally, a PIR scheme is correct if, when an hon-
est client interacts with honest servers, the client always retrieves
w|x] (i.e., the xth value in the database w).

Privacy. A PIR scheme satisfies privacy if an honest-but-curious
server does not learn information regarding x.

Security Argument (folklore). It is trivial to check that the cor-
rectness and security of the PIR scheme constructed by having the
server evaluate the circuit that computes w[x] given an encryp-
tion of x under FHE, reduces to the correctness and security of the
underlying FHE scheme.

E.3 Authenticated PIR from vFHE

We now turn to constructing authenticated PIR from verifiable FHE.

Construction. We build an authenticated PIR scheme by using the
same construction of PIR described above, but swapping out the
FHE scheme with our vFHE scheme that supports authenticated
public server input (see Section E.1).

Authenticated PIR properties For authenticated PIR, we sketch
the properties from Colombo et. al. [41]. In the case of authenticated
PIR, the security property is extended to support a malicious server,
and a new integrity property is added. Correctness is the same.

Integrity. An authenticated-PIR scheme preserves integrity if, when
an honest client interacts with a malicious server, the client either:
outputs w|x] if the server followed the protocol or outputs the
error symbol L if the server deviated from the protocol.

Privacy (against malicious servers). An authenticated PIR scheme
satisfies privacy if a malicious server does not learn information

Teaching an Old Dog New Tricks: Verifiable FHE Using Commodity Hardware

regarding x, even if the servers learn whether the client’s output
was the error symbol L during reconstruction.

Security Argument. We now briefly argue why the scheme using
vFHE with authenticated public server input satisfies these proper-
ties. Correctness follows from the correctness of the PIR scheme.
Integrity reduces to the soundness of the underlying vFHE scheme,
while security reduces to the underlying CCA1 security of the vFHE
scheme. We leave out the detailed proofs.

E.4 Extensions to More Complex PIR Schemes

Most FHE-based PIR schemes are not implemented as a simple FHE
circuit and utilize other techniques to optimize performance (e.g.,
cuckoo hashing). These schemes fit into our formalism by extending
h(x) to also contain any server input reprocessing. Because h is
also part of the attested transcript, the resulting PIR scheme run
using Argos is verifiable (and authenticated).

F Security Argument: Authenticated PSI

We now turn to our second application: authenticated PSI. Similarly
to FHE-based PIR schemes, FHE-based PSI schemes can also be for-
malized as the evaluation of a specific circuit under FHE, albeit with
a more complex pre-processing of the server input (in particular to
enforce server privacy). This fits our formalism by extending h(x)
to contain this extra pre-processing of server input. Similarly to au-
thenticated PIR, we could show that our vFHE scheme is sufficient
to enforce analogous properties for authenticated PSI (correctness,

303

Proceedings on Privacy Enhancing Technologies 2025(3)

integrity, client privacy, even if PIR security is often defined using
an ideal functionality). We omit these proofs in the interest of space.
Instead, we focus on the main difference with PIR, which is “server
privacy”

Server Privacy. Informally, for a given x, for two server inputs w
and w’ that result in the same output y, there should be negligible
advantage for a PPT adversary to distinguish between (¢, 7,) and
(cy)

Because most FHE schemes are not circuit-private, the output
¢y can leak some information about the server’s input to the secret
key holder. To achieve server privacy with regard to c,, FHE-based
PSI schemes pre-process and mask server input using an oblivious
pseudo-random function (OPRF) [34]. As explained earlier, this
pre-processing is captured by h(-). This construction was shown by
previous work to be server private with regard to c,. Because our
vFHE scheme does not modify the underlying FHE scheme or PSI
scheme, we inherit this property and only need to ensure that 7,
does not breach the privacy of the server. Given our construction,
it is sufficient for us to choose a commitment scheme C that is
hiding. Informally, 7, contains a commitment to &.Eval(cy, f(-,))
and h(x), which are independent of w, and C(w), which is hiding.
As aresult, our construction is server private with regard to (cy, ﬂ'y)
and combining a PSI scheme with Argos successfully instantiates
an authenticated PSI scheme.

	Abstract
	1 Introduction
	2 Threat model
	3 Background & Motivation
	3.1 FHE Schemes And Client-Server Setup
	3.2 Semi-Honest vs. Malicious Security
	3.3 Why Does FHE Need Verifiability?
	3.4 Why Do We Need a New TEE Platform?

	4 Insights & Design Principles
	4.1 FHE Applications Do Not Expose Secrets
	4.2 Eliminating Microarchitectural Side Channels Using A Physical TPM
	4.3 System Overview

	5 The Argos Attestation Scheme
	5.1 Existing Attestation Protocols
	5.2 Overhead of Using a Discrete TPM
	5.3 Attested Transcript for FHE Applications
	5.4 Argos Attestation Scheme
	5.5 Remote Attestation as a Proof System

	6 Circuit-Level Verifiable FHE
	6.1 Definition
	6.2 Putting Everything Together

	7 Extending Argos to FHE-Based Applications
	7.1 Malicious Private Information Retrieval
	7.2 Malicious Private Set Intersection

	8 Implementation Details
	8.1 Security Monitor
	8.2 Memory Isolation Primitives
	8.3 Custom Runtime

	9 Evaluation
	9.1 Testbench
	9.2 TCB Evaluation
	9.3 Microbenchmarks
	9.4 FHE Evaluation
	9.5 Authenticated Private Information Retrieval
	9.6 Authenticated Private Set Intersection
	9.7 Analysis of the Remaining Attack Surface

	10 Related Work
	11 Conclusion
	Acknowledgments
	References
	A Primer on Measured Boot
	B Primer on Microarchitectural and Physical Attacks
	B.1 Side Channel Attacks
	B.2 Cache Side Channel Attacks
	B.3 Spectre Attacks
	B.4 Spectre V1
	B.5 Cold Boot
	B.6 Fault Injection Attacks
	B.7 Rowhammer

	C Formal Definitions
	C.1 FHE Properties
	C.2 Remote Attestation Properties
	C.3 vFHE Properties

	D Extended Proof: Circuit-Level vFHE
	E Security Argument: Auth. PIR
	E.1 Extending vFHE for Public Server Inputs
	E.2 Semi-Honest PIR from FHE
	E.3 Authenticated PIR from vFHE
	E.4 Extensions to More Complex PIR Schemes

	F Security Argument: Authenticated PSI

