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Abstract
We revisit the privacy and security analyses of FIDO2, a widely
deployed standard for passwordless authentication on the Web.
We discuss previous works and conclude that each of them has at
least one of the following limitations: (i) impractical trusted setup
assumptions, (ii) security models that are inadequate in light of
state of the art of practical attacks, (iii) not analyzing FIDO2 as a
whole, especially for its privacy guarantees. Our work addresses
these gaps and proposes revised security models for privacy and
authentication. Equipped with our new models, we analyze FIDO2
modularly and focus on its component protocols, WebAuthn and
CTAP2, clarifying their exact security guarantees. In particular, our
results, for the first time, establish privacy guarantees for FIDO2
as a whole. Furthermore, we suggest minor modifications that can
help FIDO2 provably meet stronger privacy and authentication
definitions and withstand known and novel attacks.
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1 Introduction
The fast-growing adoption of FIDO2 [14], actively supported by
software giants Microsoft, Google and Apple, makes it a de-facto
standard for passwordless authentication. FIDO2 is maintained by
the FIDO (Fast IDentity Online) Alliance1, a community of stake-
holders that manages the specifications of the protocol and pro-
motes its adoption.

The basic flows of FIDO2 are shown in Figure 1, inspired by the
corresponding figure in [3]. At its core, FIDO2 is composed of two
sub-protocols: WebAuthn (W3C’s Web Authentication) [24, 25] and
CTAP2 (Client to Authenticator Protocol version 2.x) [1, 13].
∗Affiliated with both the Research Institute of Trustworthy Autonomous Systems and
the Department of Computer Science and Engineering
1https://fidoalliance.org
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Figure 1: The simplified FIDO2flow adapted from Fig. 2 in [3],
where the CTAP2 authorized command is highlighted in blue.
The dashed line means the communication with the server
is established through the client.

WebAuthn specifies how a user can register a credential (a public
signature verification key) at a server—associating it to a new or
an existing account—and later rely solely on the corresponding
private signing key for passwordless authentication. A user, in this
context, normally refers to a human, who uses a client (typically a
browser) to interact with the server. Cryptographically, an authenti-
cation run consists of a challenge-response exchange, in which the
server issues a challenge and then checks if this challenge has been
correctly digitally signed (along with relevant public metadata)
by a public key that identifies the user. The private signing keys
associated with WebAuthn credentials are often stored in secure
hardware devices called authenticators (or tokens). Registration runs
allow a user to create a server-specific public-key and associate
it with an account at the server. New credentials uploaded to the
server may also be signed using a (long-term) attestation private
key that guarantees that the credential has indeed been generated
by a secure device. This process is referred to as attestation and
WebAuthn supports several different attestation modes.

CTAP2 (simply referred to as CTAP in this paper) specifies an
access-control protocol that allows a client to issue authorized com-
mands to unlock a FIDO2 authenticator with a set of permissions,
which may allow creating a new credential for registration or using
an existing credential for authentication. Access is granted only af-
ter human intervention, e.g., providing a PIN to the client, pressing
a button on the token (known as user presence), providing biometric
information to the token (known as user verification), etc.
Known security results and open problems. The design ra-
tionale and threat model for FIDO2 are described informally by
the FIDO Alliance in [14]. The privacy properties of FIDO2 have
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been formally analyzed in [7, 16, 17] but they, so far, focus only
on WebAuthn. A formal view of FIDO2’s authentication properties
has been established by a sequence of research papers that focused,
first on the provable security of WebAuthn [16] and, more recently,
on the overall FIDO2 as composed by WebAuthn and CTAP [3, 6].
While these works offered comprehensive studies of FIDO2’s prov-
able security, there are still gaps in the results they provided, both
for privacy and authentication goals.
Results on FIDO2 privacy. User privacy is one of the key features
claimed by FIDO, but it has received less attention from researchers
compared to authentication. Hanzlik et al. [17] formally defined
privacy (unlinkability) to analyze the WebAuthn component. Their
definition assures that different registrations do not reveal if they
are performed using the same token, and hence different interac-
tions of the tokens are unlinkable. They proved that WebAuthn
provides user privacy. Their work focused on non-resident keys—a
variant of the protocol where the token keeps only a symmet-
ric key and re-generates a signing key whenever it is needed for
authentication—and does not consider attestation. Bindel et al. [7]
extended their privacy results to cover several attestation modes
and focused on resident keys, i.e., the case where the token stores
authentication signing keys securely. However, their work also
considered privacy guarantees of WebAuthn only.

We stress that at this point, to the best of our knowledge, there
is no prior analysis of FIDO2 that considered the potential impact
of the CTAP component on user privacy2. It was acknowledged in
[17] that metadata can be used to link interactions of the token, but
the authors do not consider data exchanged outside of WebAuthn.
This means that, for example, it is not immediately clear whether
CTAP preserves user privacy, given that a user may reuse the same
PIN across different tokens. Moreover, the communication with
the token may reuse meta-information or cryptographic material,
potentially breaking unlinkability.
Results on FIDO2 authentication. On the authentication front,
a recent work [4] demonstrated several man-in-the-middle attacks
on FIDO2 USB tokens that are launched by wrapping the system
library that the client browser uses to exchange messages with the
hardware token. The attacks are deployed using a simple malware
that does not require privileged access to the user’s machine. In one
type of attacks called rogue key attacks, only the final token-to-client
message in a registration run is replaced, causing an uncompromised
client (also called an honest client) to send to the server a public
key that is actually under the attacker’s control. Such attacks are
possible because FIDO2 credentials sent from a token to a client are
not cryptographically protected. Even more recently, the authors
in [9] demonstrated successful message injection attacks on a USB
bus by another USB device. Interestingly, the reported attacks coin-
cide exactly with what is needed to launch a rogue key attack on
FIDO2: first, monitor USB communication until the very end of the
protocol and, second, override the final message sent by the target
USB authenticator back to the host machine.

How can the existing provable security results for FIDO2 co-
exist with rogue key attacks? The work [3] assumed that each
2Kepkowski et al. [19] identified a timing attack that links user accounts across services,
exploiting implementation flaws on hardware tokens. This is an attack on a full
implementation of FIDO2. However, since it is based on side-channel analysis, is does
not directly relate to the cryptographic notions of unlinkability we consider here.

token has a unique attestation private key, whose paired attesta-
tion public key is known to the servers a priori, so that rogue key
attacks do not apply. However, this assumption does not reflect
the practical setup: either no attestation is used, or many tokens
share the same long-term attestation key pair (which is an impera-
tive to prevent tracking and guarantee some form of user privacy).
The work [6] considered only attackers that are passive during
registration, which is not realistic as the aforementioned attacks
demonstrate. The work [7] considered only the WebAuthn protocol,
which means that the security of client-token communications is
not considered. Finally, the full version of [3] considered only batch
attestation (also known as Basic attestation mode), where many
tokens share the same attestation key pair. However, in this case, a
server cannot distinguish tokens from the same batch, which leaves
open the possibility for an attacker to launch a rogue key attack
with a valid token from the same batch as the user’s token.
Our contributions.Our work closes the gaps we identified in prior
work. For both security goals of privacy and authentication, our
analysis is modular: we provide the security models and proofs for
CTAP and WebAuthn separately, and then show how they compose
to imply the security of the whole FIDO2. Our detailed contributions
are listed as follows.
Privacy.We present the following new results on FIDO2 privacy:
• We propose a new security model for user privacy (anonymity).
The goal of privacy is to ensure that multiple registrations involv-
ing the same token cannot be linked together, in order to avoid
tracking. Unlike prior works [7, 17], we consider a more powerful
attacker, which can compromise the servers and moreover, col-
laborate with local network attackers working at the CTAP level.
Our security model allows to capture scenarios where an attacker
can access and manipulate CTAP communications (e.g., when
the token is lost, stolen or inserted into a corrupt USB hub or an
untrusted machine) and wants to determine if it has observed
some protocol execution that involved this authenticator or even
has interacted with it in the past. Moreover, this attacker could
be in collusion with a malicious server.
• We analyze FIDO2 in our privacy model. We observe that,
formally, its privacy could be compromised by the reuse of
ephemeral cryptographic parameters (Diffie-Hellman shares).
This can happen when users register or authenticate multiple
accounts without rebooting the token (by remaining plugged-in
and not putting the computer to sleep). Our privacy definitions
also highlight potential risks to user privacy that may be enabled
by meta-information that is exposed by the token to the client,
in excess of what CTAP specifies. For example, leakage of the
contents in error messages or device identification information
may lead to trivial breaks of the privacy guarantees of FIDO2 in
our model.
• We prove that, with minor protocol changes that prevent the
above Diffie-Hellman (DH) share reuse and by enforcing no leak-
age of the above meta-information, the cryptographic design of
FIDO2 indeed guarantees strong privacy properties for the user,
even considering local network attackers. We also show that the
current FIDO2 guarantees privacy, as long as the attacker does
not observe CTAP traces where a token reuses the same DH share
when interacting with clients to register multiple accounts. The
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take-away message from these results is that the cryptographic
traces produced by CTAP do not undermine privacy as long as
DH shares are not repeated between usages. We do not argue
that the concrete attack scenarios where DH share reuse could
be exploited to break privacy are a significant reason for concern.
Our claim here is that our results establish the first leakage up-
per bound for CTAP (and FIDO2 as a whole): if CTAP privacy
attacks contribute to compromise FIDO2 privacy, then it can
only be due to DH share reuse. Additionally, our results show
that CTAP authentication security also plays a crucial role in the
overall privacy guarantees of FIDO2. Intuitively, CTAP access
control prevents tokens from being unlocked and then tracked,
e.g., an attacker could unlock a stolen token and check if any
of its stored signing keys is associated with a given credential
observed elsewhere.

Authentication. We present the following new results on FIDO2
authentication:
• We present a counterexample to the security claim for CTAP
in [6] in the form of an attack that breaks the protocol in the
security model for authentication adopted by [6]. The attack
highlights a subtle oversight in their security proof and effectively
shows that their model is too strong, and that FIDO2 can only be
proved secure in a slightly weaker model.
• We fix the security definitions under which the current version
of FIDO2 can be proved to provide passwordless authentication.
Our model is similar to that of [3, 6] and guarantees the following:
(i) a server registers only credentials generated by valid physical
authenticators, (ii) if the server successfully authenticates a reg-
istered credential, then the token that generated that credential
must be involved in the authentication, and (iii) if a token is
interacting with an honest client, then it will only answer regis-
tration/authentication requests if the client unlocks this token
using the correct user PIN.3 We give a detailed proof of FIDO2
authentication security in this model that addresses the short-
comings we identified in prior work. Our proof applies to the
attestation modes most commonly used by USB tokens: None,
Self and Basic.
• We propose a stronger variant of the authentication model that
captures rogue key attacks and USB injection attacks demon-
strated in [4, 9]. Intuitively, this stronger model further guaran-
tees that (iv) if a server successfully registers or authenticates a
credential via an honest client, then the user must have autho-
rized that specific client to unlock the token that generated that
credential. Crucially, this model does not assume TOFU: the client
(browser) plays a role in ensuring the server (and to the user)
that, if the server is talking to a client through an authenticated
channel (e.g., a TLS connection), then only a token unlocked by
this specific client can successfully register a credential.
• We propose a simple fix to CTAP that appends a message au-
thentication code (MAC) to the token responses before they are
sent to the client (and then delivered to the server). We then
prove that, with this fix, FIDO2 is provably resistant to rogue key

3Note that, as in prior work and due to the lack of token-to-client authentication,
FIDO2 guarantees only that the same token is used in registration and authentication.
However, it does not ensure that the token used in authentication is bound to the
(user-controlled) client through which the authentication run is carried out, even when
assuming trust on first use (TOFU), i.e., the attacker was passive during registration.

attacks and meets our stronger security. Again, our results apply
to the aforementioned attestation modes: None, Self and Basic.

Responsible disclosure. We communicated our findings to the
FIDO Alliance.
Structure of this paper. In the next section we expand on the
background and relation to prior work. Then, we describe the formal
protocol syntax that captures CTAP, as most of our contributions
focus on CTAP analyses. In Section 4 we start with the analysis
of authentication properties of FIDO2, since our privacy results
depend on it. In Section 5 we focus on the privacy properties of the
protocol. In Section 6 we discuss the practical implications of our
proposed fixes. Section 7 concludes our work.

2 Background
Before deep diving into the definitions and proofs, we explain the
big picture, introduce some terminology, and further clarify the
relation to prior work.
Notation. Throughout the paper, {0, 1}𝑛 represents the set of all
𝑛-length bit strings and {0, 1}∗ the set of all finite length bit strings,
including the empty string 𝜖 . We write 𝑥 ← 𝐹 (resp. 𝑥 $← 𝐹 ) to
denote that 𝑥 is the return value of a deterministic (resp. proba-
bilistic) algorithm 𝐹 , 𝑥 ← 𝑦 to assign 𝑦 to variable 𝑥 , and 𝑥 $← S
to assign an element from S, chosen uniformly at random (unless
specified otherwise), to 𝑥 . When initializing an empty set L, we
write L ← ∅. We use⊥ to denote any uninitialized variable, as well
as the return value from an algorithm that executes incorrectly.
Security Games. We follow closely [6] in our approach to for-
malizing security games. The games are presented in code form
and they offer the adversary a number of oracles that allow it to
animate arbitrary executions of the target protocols, in which it can
select participants from four sets of entities: servers, human users,
tokens and clients. Human users are represented in the model by
the PIN they use to configure FIDO2 authenticators. We adopt here
the typical approach to modelling password-based primitives in the
cryptographic literature: users are represented by their identity and
an associated PIN sampled from some (low entropy) distribution.
The oracles allow the adversary to emulate the process of a user
inserting its PIN via a client: the adversary identifies the client and
the user in the oracle call, and the game then executes the client
code on the user’s PIN. The actions of other parties are captured by
running the code prescribed by the protocol on their internal states
and adversary-provided inputs, if any: different oracles capture
different phases in the protocol execution, where the output of an
oracle typically signals some event or information transfer that is
visible to the adversary, and therefore may be used by the adversary
in launching the next phase of its attack.

The games keep complex state to guarantee an accurate model of
reality, and also to keep track of whether the adversary succeeded
in breaking the protocol. In authentication games, breaking the
protocol means that the adversary activated a winning condition: it
caused some party to accept a message that allows the adversary to
impersonate another party. In privacy games, breaking the protocol
means that the adversary is able to link two protocol executions
that should appear unrelated given the adversary’s knowledge of
the internal states of parties.
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PlA and PACA. Barbosa et al. [3] defined the syntax and authen-
tication security of FIDO2 by introducing two primitives called
Passwordless Authentication (PlA) and PIN-Based Access Control for
Authenticators (PACA). WebAuthn is cast as an instance of PlA, and
CTAP as an instance of PACA. This terminology is also adopted
by Bindel et al. [6], where the authors refined the syntax and se-
curity models to more closely reflect the structure (and various
versions) of the FIDO2 specification. Bindel et al. [6] focused on
settings where no long-term attestation keys are used and hence
assumed passive attackers in registration flows. Later, Bindel et
al. [7] continued the work of [6], focusing only on WebAuthn, but
considered various attestation modes and extended the analysis to
privacy guarantees. More detailed background is summarized next.

Server 𝑆 (id𝑆 , gpars) Client 𝐶 ( ˆid𝑆/ ¯id𝑆 ) Authenticator𝑇 (rc𝑇 )
Registration
𝑚rch

$← rChal(id𝑆 , tb,UV)
𝑚rch−−−−→
(𝑚rcl,𝑚rcom) ← rCom( ˆid𝑆 , tb,𝑚rch)

𝑚rcom−−−−−→
(𝑚rrsp, rc𝑇 , cid, sid, agCon)

$← rRsp(𝑇,𝑚rcom)
𝑚rcl,𝑚rrsp

←−−−−−−−−−−−−−−−−−−−
(𝑏, rc𝑆 , cid, sid, agCon) ← rVrfy(id𝑆 ,𝑚rcl,𝑚rrsp, gpars)
Authentication
𝑚ach

$← aChal(id𝑆 , tb,UV)
𝑚ach−−−−→
(𝑚acl,𝑚acom) ← aCom( ¯id𝑆 , tb,𝑚ach)

𝑚acom−−−−−−→
(𝑚arsp, rc𝑇 , cid, sid, agCon)

$← aRsp(𝑇,𝑚acom)
𝑚acl,𝑚arsp

←−−−−−−−−−−−−−−−−−−−
(𝑏, rc𝑆 , cid, sid, agCon) ← aVrfy(id𝑆 ,𝑚acl,𝑚arsp)

Figure 2: The WebAuthn protocol (see Appendix A for com-
plete descriptions of the algorithms). For attestation mode
Basic, attestation material is generated by the group initial-
ization algorithm (gpars, rc) $← GInit, which for our purposes
can be thought of as a signature key generation algorithm
where gpars contains the attestation verification key vk, c.f.,
Appendix G). The token’s registration context rc𝑇 is initial-
ized as rc, which contains the attestation private key ak; the
server inputs its identity id𝑆 and attestation info gpars. For
attestationmodesNone and Self, both rc𝑇 and gpars are empty.

WebAuthn and PlA.We depict the WebAuthn protocol (with at-
testation mode Basic) in Figure 2 by following the descriptions
in [6, 7]. As in [7], our WebAuthn description captures the crypto-
graphic core of both the current stable version WebAuthn 2 [24]
and a working draft for WebAuthn 3 [25], so we henceforth simply
refer to this protocol as WebAuthn4.

WebAuthn has two challenge-response flows, one for registering
a new credential at the server (with algorithms rChal, rCom, rRsp,
and rVrfy) and one for authenticating under a previously registered
credential (with algorithms aChal, aCom, aRsp, and aVrfy).

On registration, the authenticator (token) generates a new key
pair (𝑝𝑘, 𝑠𝑘) and, unless the attestation mode is None, it signs the
new credential 𝑝𝑘 , received random challenge and other relevant

4WebAuthn 3 [25] introduces new features to enhance usability (e.g., support for cross-
origin iFrames), expand API functionality (e.g., support for passkey authenticators),
etc., but its cryptographic core (as abstracted in our work and [7]) is not changed.

metadata. When using attestation mode Basic, the attestation pa-
rameters gpars allow the server to verify the signature and ensure
that 𝑝𝑘 was indeed generated by a secure hardware device; de-
pending on the application, the server may have different ways
to validate the attestation public keys vk used to verify the above
attestation signatures but here, for simplicity, we assume the server
can extract the valid vk from the input gpars. In attestation mode
Self, the attestation signing key is the credential’s associated pri-
vate key 𝑠𝑘 itself, so this mode can be viewed as the same as None
with an extra proof by the token that it knows the signing key
for the freshly generated credential. In an authentication run, the
process is similar, but the token now always uses 𝑠𝑘 to sign the
challenge and metadata. Note that, in cases where the client can
verify the identity of the server (e.g., through a TLS connection),
the user can rely on the client to abort any WebAuthn runs where
the metadata sent to the token does not encode the correct intended
server identity ˆid𝑆/ ¯id𝑆 .

The PlA authentication security models in [3, 6, 7] capture the
following server-side guarantee of WebAuthn: if a server instance
accepts an authentication run, then it is uniquely partnered with a
token instance. Crucially, partnership in this setting guarantees that
the response issued by the token can be linked back to a unique
registration flow between the same server and token. In practice,
the guarantee that a registered credential was indeed generated
in a physical authenticator is achieved only if tokens can store
long-term attestation keys.

We adopt the PlA authenticationmodel of [7] with small changes:
we simplify the model by removing attestation modes that are not
commonly used in FIDO2 tokens, and we slightly modify the win-
ning conditions for the adversary in order to clarify the overall
guarantees provided by FIDO2. More precisely, we take the part-
nership definition from [3], which is more restrictive and therefore
makes the model stronger. The details are in Appendix G, where
we discuss the model differences to [7] and explain why the proofs
in [7] actually still apply to our stronger model. We do not claim
novelty at the PlA level, except for clarifying the security experi-
ments and the implications of prior proofs.

CTAP 2.1 and PACA. The structure of the CTAP 2.1 protocol [1]
is shown in Figure 3 (with details in Appendix B). Here, we outline
CTAP 2.1 instantiated with the so-called PIN/UV Auth Protocol 2,
denoted by puvProtocol, and omit the other PIN/UV Auth Protocol
1 instantiation that is essentially the legacy protocol in a previous
version CTAP 2.0 [13]. Their core differences are highlighted in
Appendix B, where we present the details of CTAP protocols.

With CTAP 2.1, a client can set up, bind to, and unlock an au-
thenticator (token) with a user PIN (pin). In addition to the possi-
bility that the token may be rebooted and then regenerate some
ephemeral cryptographic parameters, the protocol has two phases.

The Setup phase is typically executed once and is independent
of WebAuthn operations; it is used to configure the token with a
hash of the user pin. More precisely, the client first obtains some
information about the token’s capabilities and informs it that Setup
is about to start; the token then returns a DH share 𝑝𝑘𝑇 . The client
completes Setup by sending its own DH share 𝑐 along with an
authenticated encryption (𝑐𝑝 , 𝑡𝑝 ) of the user pin. The token stores
only the hash of the pin, named pinHash.
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Client 𝐶 (pin𝑈 ) Authenticator 𝑇
Reboot

authPowerUp-T(st𝑇 )
Setup

info←−−−−−−− info← getInfo-T(𝜋𝑖
𝑇
)

puvProtocol
$← obtainSharedSecret-C-start(𝜋 𝑗

𝐶
, info)
puvProtocol
−−−−−−−→ 𝑝𝑘𝑇

$← obtainSharedSecret-T(𝜋𝑖
𝑇
, puvProtocol)

𝑐
$← obtainSharedSecret-C-end(𝜋 𝑗

𝐶
, 𝑝𝑘𝑇 )

𝑝𝑘𝑇←−−−−−−−

(𝑐𝑝 , 𝑡𝑝 )
$← setPIN-C(𝜋 𝑗

𝐶
, pin𝑈 )

𝑐, 𝑐𝑝 , 𝑡𝑝
−−−−−−−→ status← setPIN-T(𝜋𝑖

𝑇
, puvProtocol, 𝑐, 𝑐𝑝 , 𝑡𝑝 )

Bind
Bind-C Bind-T

if 𝜋 𝑗
𝐶
.stexe =⊥:

info←−−−−−−− info← getInfo-T(𝜋𝑖
𝑇
)

puvProtocol
$← obtainSharedSecret-C-start(𝜋 𝑗

𝐶
, info)
puvProtocol
−−−−−−−→ if 𝜋𝑖

𝑇
.stexe =⊥:

if 𝜋 𝑗
𝐶
.stexe = waiting :

𝑝𝑘𝑇←−−−−−−− 𝑝𝑘𝑇 ← obtainSharedSecret-T(𝜋𝑖
𝑇
, puvProtocol)

𝑐
$← obtainSharedSecret-C-end(𝜋 𝑗

𝐶
, 𝑝𝑘𝑇 )

𝑐𝑝ℎ
$← obtainPinUvAuthToken-C-start(𝜋 𝑗

𝐶
, pin𝑈 )

𝑐, 𝑐𝑝ℎ
−−−−−−−→ if 𝜋𝑖

𝑇
.stexe = waiting :

𝑐𝑝𝑡
$← obtainPinUvAuthToken-T(𝜋𝑖

𝑇
, puvProtocol, 𝑐, 𝑐𝑝ℎ)

if 𝜋 𝑗
𝐶
.stexe = bindStart :

𝑐𝑝𝑡
←−−−−−−−

obtainPinUvAuthToken-C-end(𝜋 𝑗
𝐶
, 𝑐𝑝𝑡 )

Auth-C Validate-T

if 𝜋 𝑗
𝐶
.stexe = bindDone :

𝑀, 𝑡−−−−−−−→ if 𝜋𝑖
𝑇
.stexe = bindDone :

(𝑀, 𝑡) $← auth-C(𝜋 𝑗
𝐶
, 𝑀) status← validate-T(𝜋𝑖

𝑇
, 𝑀, 𝑡, 𝑑)

Validate-C Auth-T

if 𝜋 𝑗
𝐶
.stexe = bindDone :

𝑅, 𝑡←−−−−−−− if 𝜋𝑖
𝑇
.stexe = bindDone :

status← validate-C(𝜋 𝑗
𝐶
, 𝑅, 𝑡) (𝑅, 𝑡) $← auth-T(𝜋𝑖

𝑇
, 𝑅)

Figure 3: The CTAP 2.1 protocol (black), our fixed CTAP 2.1+
protocol (with red-colored block), and our fixed CTAP 2.1++
protocol (where the token’s DH share 𝑝𝑘𝑇 is regenerated in ev-
ery obtainSharedSecret-T execution). Complete descriptions
of the algorithms are shown in Appendix B.

When the user wants to register a new credential or authenticate
to a server using an existing one, the client executes a sequence
of Bind, Auth-C and Validate-T subprotocols. Bind starts with a
Diffie-Hellman key exchange as the one performed in Setup (where
the token might reuse its DH share generated from Setup but the
client always regenerates a fresh DH share); then, rather than trans-
mitting an authenticated encryption of the pin, the client transmits
an unauthenticated CBC encryption 𝑐𝑝ℎ of the pinHash. The token
completes Bind by transmitting back a CBC encryption of 𝑝𝑡 , the
so-called pinToken5, using the same symmetric key that encrypted
the pinHash. The pinToken is simply a fresh MAC key that can be
used by the client in Auth-C to send authorized commands to the
token, which then validates them in Validate-T. These commands
are WebAuthn requests (challenges) for registration or authentica-
tion operations. Token responses are sent back to the client, but
not cryptographically protected at the CTAP level.

The PACA authentication security model in [3] assumes the
adversary to be passive during Setup, as there is no prior common
context between the client and token. This trust assumption is
adopted by all subsequent works. Furthermore, the adversary is
not allowed to actively attack the client during Bind, since CTAP
uses unauthenticated Diffie-Hellman key exchange. However, the
adversary is allowed to actively try to establish new bindings to
the token. Additionally, the adversary can ask client instances that
completed a binding to authorize commands of its choice, and its
goal is to forge one such authorized command. A forgery here is

5In CTAP 2.1, the full name of 𝑝𝑡 is pinUvAuthToken, which we simply call pinToken.

defined as having a token instance accept a command that was not
transmitted by its unique binding partner (a client instance).

The PACA model given in [6] refines the one in [3] in a number
of ways, in order to more closely capture CTAP 2.1 operations.
Furthermore, their model was strengthened such that it allows a
limited active attack on clients during Bind: in the concrete case
of the CTAP 2.1 protocol, this means that the attacker now has
the power to control the last message sent from the token back to
the client, which contains the encrypted pinToken. We show that
this strengthened model gives too much power to the adversary,
by identifying an attack that renders CTAP 2.1 insecure in such a
model, invalidating the security claim made in [6]. The attack and
our fix are discussed in detail in Section 4.2.
Composing PlA and PACA. The authentication security of FIDO2
as a whole is captured in [3, 6] by a composed model that considers
the joint operation of PlA and PACA protocols. In this model, the
adversary has access to all the PACA oracles that model Setup and
Bind. Additionally, it can run PlA+PACA challenge-response inter-
actions that involve client and token instances that it may have set
up in arbitrary ways: formally, the PlA registration and authentica-
tion oracles are replaced by PlA+PACA oracles that model the need
for authorizing and validatingWebAuthn requests (and in this work
also WebAuthn responses) with CTAP operations in the full FIDO2.
The goal of the adversary is to break the guarantees we described
in our authentication results (second bullet) in the Introduction.
Results in [3, 6] show that the only way to break these guarantees
is to break either the underlying PlA or PACA primitive.

Crucially, the above models assume that the attacker has the
power to feed the server arbitrary responses to its challenges during
authentication (and registration) runs, which reflects the choice of
FIDO2 to confer no protection to responses when they are transmit-
ted from tokens back to clients. However, neither of them captures
security against rogue-key attacks.The model in [6] focuses on at-
testation mode None, so it explicitly disallows active attacks during
registration and calls this assumption trust on first use. When at-
testation mode Basic is in use, the model in the full version of [3]
allows active attacks in registration, but it cannot prevent rogue
key attacks since the attacker can successfully register with a valid
token from the same batch as the user’s token.

In the next section we specify the syntax for PIN-based access
control for authenticators (PACA) protocols that capture CTAP, and
refer to Appendix G for the syntax and security models for pass-
wordless authentication (PlA) protocols.

3 (m)PACA Protocol Syntax
Our PACA syntax closely follows [6], which itself follows [3]. To
capture our authentication fix of CTAP, we later extend PACA to
an mPACA protocol, where the leading “m” stands for “mutually
authenticated”.

A PACA protocol is an interactive protocol between 3 parties: a
client𝐶 , an authenticator (or token)𝑇 and a user𝑈 . It comprises five
subprotocols: Reboot, Setup, Bind, Auth-C and Validate-T. Below,
when we say a protocol takes as input 𝐶 and/or 𝑇 , we mean the
states of them, which are updated during the protocol execution.
Reboot: inputs a token 𝑇 and initializes (or refreshes) its state,
to prepare for the execution of the other PACA subprotocols.
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This subprotocol powers up the token and always requires user
interaction (e.g., a USB token being plugged out and then plugged
in to a machine).

Setup: inputs a token 𝑇 , client 𝐶 , and user 𝑈 who participates
by providing a pin to 𝐶 . During this subprotocol execution, 𝐶
securely transmits pin to 𝑇 , then 𝑇 saves information about this
pin (e.g., a hash thereof) in its static storage (i.e., not affected by
Reboot) such that later it can be used by𝑈 to authorize clients
access to𝑇 . This subprotocol is typically executed once per token.

Bind: inputs a token 𝑇 , client 𝐶 , and user 𝑈 who again provides
𝐶 with a pin. This subprotocol aims to create an authenticated
channel from 𝐶 to 𝑇 . It can be expressed as multiple runs of
client-side and token-side processing Bind-C and Bind-T. Bind-C
inputs 𝐶 ,𝑈 and a message𝑚 and outputs a message𝑚′. Bind-T
inputs𝑇 and a message𝑚 and outputs a message𝑚′. Depending
on the stage of execution of Bind-C or Bind-T,𝑚 and𝑚′ will
represent different types of information.

Auth-C: inputs a client𝐶 , command𝑀 , and outputs (𝑀, 𝑡), where 𝑡
is a tag that authorizes command𝑀 . This subprotocol authorizes
commands that 𝐶 sends to token 𝑇 (using the authenticated
channel established from Bind).

Validate-T: inputs a token 𝑇 , command𝑀 , tag 𝑡 and user decision
bit 𝑑 . This subprotocol validates command𝑀 given tag 𝑡 and user
decision bit 𝑑 , and outputs a bit as the result of the validation.
We extend the PACA syntax with a function Public(𝑇 ) that mod-

els the information a user or an attacker can learn about the current
public state of token 𝑇 (e.g., the token version). This information
must be properly defined for the analyzed protocol.

Correctness imposes that a client-authorized command is ac-
cepted by the token if and only if a user approves the command
(𝑑 = 1); the formal definition is essentially the same as that in [3]
and omitted here.
Syntax for mPACA protocols. An mPACA protocol extends the
syntax of PACA with two additional subprotocols:
Auth-T: inputs a token𝑇 , command𝑀 , and outputs (𝑀, 𝑡), where
𝑡 is a tag that authorizes command𝑀 . This subprotocol autho-
rizes responses that 𝑇 sends to client 𝐶 (using the authenticated
channel established from Bind).

Validate-C: inputs a client 𝐶 , command𝑀 and tag 𝑡 . This subpro-
tocol validates command𝑀 given tag 𝑡 and outputs a bit as the
result of the validation.

Correctness is extended to further impose that a token-authorized
command is accepted by the client.
Session oracles and states. We consider two types of session
oracles 𝜋𝑖

𝑇
and 𝜋 𝑗

𝐶
to specify the 𝑖𝑡ℎ and 𝑗𝑡ℎ instance of token𝑇 and

client 𝐶 , respectively. An (m)PACA protocol implements certain
states for client and tokens. Client session oracles are completely
independent from each other and maintain no global state for any
given 𝐶 . Session oracles of token 𝑇 each share a global state st𝑇 ,
which contains the associated user identifier st𝑇 .user, some infor-
mation about the pin, and some initialization data st𝑇 .initialData;
the latter includes static configuration data like the supported proto-
col versions, and other protocol-specific states like a public counter
that limits the maximum number of failed PIN tries. 𝜋𝑖

𝑇
and 𝜋 𝑗

𝐶

have a binding state bs, session identifier sid and execution state
stexe ∈ {⊥,waiting, bindStart, bindDone}. Here ⊥ indicates that

the session (oracle) is not yet initialized, in which case we sim-
ply write 𝜋𝑖

𝑇
=⊥ or 𝜋 𝑗

𝐶
=⊥. When describing CTAP protocols as

(m)PACA instances in this paper, following prior work, we use
session oracles to simplify presentation and model the fact that an
incoming message is processed in the context of a specific session.

4 Authentication Properties
We start with the goal of authentication, because this was the main
focus of previous works and, as mentioned in the Introduction, our
privacy analysis relies on the authentication results.

4.1 (m)PACA Authentication Model
We closely follow [6] to define our authentication security model
for PACA protocols, and extend it to capture mPACA security. As
presented in Figures 4, 5, the authentication security of a PACA
protocol PACA is defined with a security experiment ExptSUF-tPACA
executed between a challenger and an adversary A. The security
notion is called strong unforgeability with trusted-binding (SUF-t),
which ensures that a token can only accept a command that was
authorized by a client bound to the token under user permission.
Trust model. The model assumes a fully authenticated channel
for all communications between clients and tokens during Setup.
It also assumes that no active attacks can be carried out against
any client during the whole execution of Bind, while fully active
attacks on tokens are allowed. As stated in the Background, this
is the same assumption made in [3], which differs from the model
in [6] that allows for stronger adversaries that may carry out active
attacks against clients at the end of Bind. We later expand on the
impossibility of achieving this stronger security in Section 4.2.
Experiment-specific boolean variables. Each session (oracle)
has a isValid variable stating if this session is available for inter-
action with the adversary. Additionally, each token session has a
𝜋𝑖
𝑇
.pinCorr variable determining if the pin associated with token 𝑇

has been corrupted, and each client session has a 𝜋 𝑗
𝐶
.compromised

variable determining if its internal state has been compromised.
Experiment oracles. We showcase the ExptSUF-tPACA oracles in Fig-
ure 5, which closely follow the code-based description in [6]. NewT
and NewU generate new tokens and new users, respectively. In this
model, a user is simply a holder of a pin, which can then be used to
run Setup with multiple tokens. CorruptUser permanently corrupts
a user 𝑈 (by flagging it as corrupt) and returns his/her pin to A.
The Setup oracle performs a full Setup subprotocol run between
two sessions 𝜋 𝑗

𝐶
and 𝜋𝑖

𝑇
with user 𝑈 ’s pin, and returns the trace

of communications to A. Likewise, Execute performs a full Bind
subprotocol run between two sessions 𝜋 𝑗

𝐶
and 𝜋𝑖

𝑇
, using the pin that

was stored in 𝑇 , invalidating all of 𝑇 ’s previous sessions; the full
trace of communications is then given to A. Compromise returns
a client session’s binding state 𝜋 𝑗

𝐶
.bs and permanently marks this

session as compromised. Reboot on a token session 𝜋𝑖
𝑇
calls Reboot

subprotocol on 𝑇 and marks all of 𝑇 ’s sessions as invalid. Auth-C
authorizes a message 𝑀 on a client session 𝜋 𝑗

𝐶
using its binding

state and outputs the same message and a tag 𝑡 . Validate-T inputs
a message 𝑀 , tag 𝑡 and user decision bit 𝑑 on a token session 𝜋𝑖

𝑇

and outputs a boolean response. Finally, Send-Bind-T allows A
to send a message 𝑚 to a token session 𝜋𝑖

𝑇
to initiate, continue
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tokenBindPartner (𝑇, 𝑖):
1: if ∃(𝐶, 𝑗 ) s.t. 𝜋𝑖

𝑇
.sid = 𝜋

𝑗

𝐶
.sid then

2: return (𝐶, 𝑗 )
3: return (⊥,⊥)
ExptSUF-tPACA (A):
1: LauthC ← ∅
2: win-SUF-t← 0
3: ( ) $← AO (1𝜆 )
4: return win-SUF-t

Token-Win-SUF-t (𝑇, 𝑖,𝑀, 𝑡, 𝑑):
1: if 𝑑 ≠ accepted then return 1
2:
3: if ∃(𝐶1, 𝑗1 ), (𝐶2, 𝑗2 )
𝑠.𝑡 . (𝐶1, 𝑗1 ) ≠ (𝐶2, 𝑗2 ) and 𝜋 𝑗1

𝐶1
.stexe =

𝜋
𝑗2
𝐶2
.stexe = bindDone

and 𝜋 𝑗1
𝐶1
.sid = 𝜋

𝑗2
𝐶2
.sid then return 1

4:
5: if ∃(𝑇1, 𝑖1 ), (𝑇2, 𝑖2 ) 𝑠.𝑡 . (𝑇1, 𝑖1 ) ≠

(𝑇2, 𝑖2 ) and 𝜋𝑖1𝑇1
.stexe = 𝜋

𝑖2
𝑇2
.stexe =

bindDone
and 𝜋𝑖1

𝑇1
.sid = 𝜋

𝑖2
𝑇2
.sid then return 1

6:
7: (𝐶, 𝑗 ) ← tokenBindPartner(𝑇, 𝑖 )
8: if (𝐶, 𝑗,𝑀, 𝑡 ) ∉ LauthC then
9: if (𝐶, 𝑗 ) = (⊥,⊥) or

𝜋
𝑗

𝐶
.compromised = false then

10: if 𝜋𝑖
𝑇
.pinCorr = false then

11: return 1
12: return 0

clientBindPartner (𝐶, 𝑗 ):
1: if ∃(𝑇, 𝑖 ) s.t. 𝜋 𝑗

𝐶
.sid = 𝜋𝑖

𝑇
.sid then

2: return (𝑇, 𝑖 )
3: return (⊥,⊥)
ExptSUF-tmPACA (A):
1: LauthC, LauthT ← ∅
2: win-SUF-t← 0
3: ( ) $← AO (1𝜆 )
4: return win-SUF-t

Client-Win-SUF-t (𝐶, 𝑗,𝑀, 𝑡 ):
1: if ∃(𝐶1, 𝑗1 ), (𝐶2, 𝑗2 )
𝑠.𝑡 . (𝐶1, 𝑗1 ) ≠ (𝐶2, 𝑗2 ) and 𝜋 𝑗1

𝐶1
.stexe =

𝜋
𝑗2
𝐶2
.stexe = bindDone

and 𝜋 𝑗1
𝐶1
.sid = 𝜋

𝑗2
𝐶2
.sid then return 1

2:
3: if ∃(𝑇1, 𝑖1 ), (𝑇2, 𝑖2 )
𝑠.𝑡 . (𝑇1, 𝑖1 ) ≠ (𝑇2, 𝑖2 ) and 𝜋𝑖1𝑇1

.stexe =

𝜋
𝑖2
𝑇2
.stexe = bindDone

and 𝜋𝑖1
𝑇1
.sid = 𝜋

𝑖2
𝑇2
.sid then return 1

4:
5: (𝑇, 𝑖 ) ← clientBindPartner(𝐶, 𝑗 )
6: if (𝑇, 𝑖,𝑀, 𝑡 ) ∉ LauthT then
7: if 𝜋 𝑗

𝐶
.compromised = false then

8: if 𝜋𝑖
𝑇
.pinCorr = false then

9: return 1
10: return 0

Figure 4: (m)PACA authentication security experiments and
winning conditions. Code in red only for the mPACA model.
O denotes all oracles available toA, as shown in Figure 5. The
winning conditions are checked in Validate-T and Validate-C.

or complete Bind; in the latter case, it also invalidates all of 𝑇 ’s
previous sessions, including 𝜋𝑖

𝑇
if the query caused 𝑇 to reboot.

Session partnership.We say sessions 𝜋 𝑗
𝐶
and 𝜋𝑖

𝑇
are partners if,

and only if, they completed Bind and agree on the session identi-
fier sid. The concrete instantiation of sid depends on the concrete
protocol to be analyzed. In our analysis of CTAP 2.1, we take the
sid to be the full trace of the Bind run.

Winning conditions. For a PACA protocol PACA, we say that
an adversary A against the security experiment ExptSUF-tPACA wins if
it gets a message-tag pair (𝑀, 𝑡) accepted by a token session 𝜋𝑖

𝑇

through the Validate-T oracle and one of the following holds: (i) the
user decision bit 𝑑 ≠ 1, (ii) two token sessions complete Bind with
the same sid, (iii) two client sessions complete Bind with the same
sid, or (iv) 𝑇 ’s pin was not corrupted and either 𝜋𝑖

𝑇
has no partner

or its partner was not compromised and did not output (𝑀, 𝑡). This
is captured by the winning condition Token-Win-SUF-t in Figure 4,
which is checked whenever the adversary queries Validate-T.

Security for mPACA protocols. The mPACA authentication
model extends the PACA authentication model with two additional
oracles Auth-T and Validate-C as shown in Figure 5 that provide the
adversary with the power to observe token-authorized commands
and check validity of such commands. The winning conditions for
the mPACA security experiment ExptSUF-tmPACA (shown in Figure 4)
is also extended to reflect the additional attack vectors: an addi-
tional winning condition Client-Win-SUF-t is checked whenever
the adversary queries Validate-C.

NewT (𝑇 , initialData):
1: if st𝑇 ≠⊥ then return ⊥
2: st𝑇 .initialData← initialData
3: Reboot(st𝑇 )
4: return

CorruptUser (𝑈 ):
1: if Lvalid [𝑈 ] =⊥ then return ⊥
2: Lcorrupt [𝑈 ] ← true
3: pin← Lvalid [𝑈 ]
4: return pin

Reboot (𝑇 ):
1: if st𝑇 =⊥ then return ⊥
2: for all 𝑖 𝑠.𝑡 . 𝜋𝑖

𝑇
≠⊥ do

3: 𝜋𝑖
𝑇
.isValid← false

4: Reboot(st𝑇 )
5: return

Send-Bind-T (𝑇, 𝑖,𝑚):
1: if st𝑇 =⊥ then return ⊥
2: if 𝜋𝑖

𝑇
=⊥ then

3: 𝜋𝑖
𝑇
← st𝑇

4: if 𝜋𝑖
𝑇
.stexe = bindDone or 𝜋𝑖

𝑇
.isValid = false

then return ⊥
5: 𝜋𝑖

𝑇
.pinCorr← Lcorrupt [st𝑇 .user]

6: if 𝜋𝑖
𝑇
.stexe = waiting then

7: 𝑚𝑇 ← Bind-T(𝜋𝑖
𝑇
,𝑚)

8: 𝑐𝑝𝑡 | | calledReboot←𝑚′

9: if calledReboot = true then
10: for all 𝑖′ 𝑠.𝑡 . 𝜋𝑖

′
𝑇

≠⊥ do

11: 𝜋𝑖
′

𝑇
.isValid← false

12: else if 𝜋𝑖
𝑇
.stexe = bindDone then

13: for all 𝑖′ ≠ 𝑖 and 𝜋𝑖
′

𝑇
≠⊥ do

14: 𝜋𝑖
′

𝑇
.isValid← false

15: else
16: 𝑚𝑇 ← Bind-T(𝜋𝑖

𝑇
,𝑚)

17: Lbd
ch
∪← {(𝑇, 𝑖 ) }

18: return𝑚𝑇

NewU (𝑈 ):
1: if Lvalid [𝑈 ] =⊥ then

2: pin
D← P

3: Lvalid [𝑈 ] ← pin
4: Lcorrupt [𝑈 ] ← false
5: return

Setup (𝑇, 𝑖,𝐶, 𝑗,𝑈 ):
1: pin← Lvalid [𝑈 ]
2: if st𝑇 =⊥ or 𝜋𝑖

𝑇
≠⊥ or 𝜋 𝑗

𝐶
≠⊥ or pin =⊥ then

return ⊥
3: 𝜋𝑖

𝑇
← st𝑇

4: trans
$← Setup(𝜋𝑖

𝑇
, 𝜋

𝑗

𝐶
, pin)

5: 𝜋𝑖
𝑇
.isValid, 𝜋 𝑗

𝐶
.isValid← false

6: st𝑇 .user← 𝑈
7: return trans

Compromise (𝐶, 𝑗 ):

1: if 𝜋 𝑗

𝐶
=⊥ or 𝜋 𝑗

𝐶
.stexe ≠ bindDone then return

⊥
2: 𝜋 𝑗

𝐶
.compromised = True

3: Lcorr
∪← {(𝐶, 𝑗 ) }

4: return 𝜋 𝑗

𝐶
.bs

Execute (𝑇, 𝑖,𝐶, 𝑗 ):
1: pin← Lvalid [st𝑇 .user]
2: if st𝑇 =⊥ or 𝜋𝑖

𝑇
≠⊥ or 𝜋 𝑗

𝐶
≠⊥ or pin =⊥ then

return ⊥
3: 𝜋𝑖

𝑇
← st𝑇

4: trans,𝑚𝐶 ,𝑚𝑇 ←⊥
5: while 𝜋 𝑗

𝐶
.stexe ≠ bindDone do

6: 𝑚𝑇
$← Bind-T(𝜋𝑖

𝑇
,𝑚𝐶 )

7: 𝑚𝐶
$← Bind-C(𝜋 𝑗

𝐶
,𝑈 ,𝑚𝑇 )

8: trans← trans | |𝑚𝑇 | |𝑚𝐶

9: for all 𝑖′ ≠ 𝑖 and 𝜋𝑖
′

𝑇
≠⊥ do

10: 𝜋𝑖
′

𝑇
.isValid← false

11: Lbd
ch
∪← {(𝑇, 𝑖 ), (𝐶, 𝑗 ) }

12: return trans
Auth-C (𝐶, 𝑗,𝑀 ):

1: if 𝜋 𝑗

𝐶
=⊥ or 𝜋 𝑗

𝐶
.stexe ≠ bindDone or

𝜋
𝑗

𝐶
.isValid = false then return ⊥

2: (𝑀, 𝑡 ) $← auth-C(𝜋 𝑗

𝐶
, 𝑀 )

3: LauthC
∪← {(𝐶, 𝑗,𝑀, 𝑡 ) }

4: Lop
ch
∪← {(𝐶, 𝑗 ) }

5: return (𝑀, 𝑡 )

Auth-T (𝑇, 𝑖,𝑀 ):
1: if 𝜋𝑖

𝑇
=⊥ or 𝜋𝑖

𝑇
.stexe ≠ bindDone or

𝜋𝑖
𝑇
.isValid = false then return ⊥

2: (𝑀, 𝑡 ) $← auth-T(𝜋𝑖
𝑇
, 𝑀 )

3: LauthT
∪← {(𝑇, 𝑖,𝑀, 𝑡 ) }

4: Lop
ch
∪← {(𝑇, 𝑖 ) }

5: return (𝑀, 𝑡 )

Validate-T (𝑇, 𝑖,𝑀, 𝑡, 𝑑):
1: if 𝜋𝑖

𝑇
=⊥ or 𝜋𝑖

𝑇
.stexe ≠ bindDone or

𝜋𝑖
𝑇
.isValid = false then return ⊥

2: status← validate-T(𝜋𝑖
𝑇
, 𝑀, 𝑡, 𝑑 )

3: if status = accepted then win-SUF-t←
Token-Win-SUF-t(𝑇, 𝑖,𝑀, 𝑡, 𝑑 )

4: Lop
ch
∪← {(𝑇, 𝑖 ) }

5: return status

Validate-C (𝐶, 𝑗,𝑀, 𝑡 ):

1: if 𝜋 𝑗

𝐶
=⊥ or 𝜋 𝑗

𝐶
.stexe ≠ bindDone or

𝜋
𝑗

𝐶
.isValid = false then return ⊥

2: status← validate-C(𝜋 𝑗

𝐶
, 𝑀, 𝑡 )

3: if status = accepted then win-mSUF-t←
Client-Win-SUF-t(𝐶, 𝑗,𝑀, 𝑡 )

4: Lop
ch
∪← {(𝐶, 𝑗 ) }

5: return status

Figure 5: Oracles for (m)PACA security experiments. Changes
from [6] in blue. Code in red only for mPACA introduced
later. Code in teal only for privacy described in Figure 7.

Advantage measures. For protocol prot ∈ {PACA,mPACA}, the
authentication advantage of A is defined as:

AdvSUF-tprot (A) = Pr[ExptSUF-tprot (A) = 1] .

Differences to [6]. Our security model modifies the Execute and
Send-Bind-T oracles from [6] back to the modeling approach of [3],
in order to exclude active attacks on clients. Thismeans that Execute
captures a full Bind execution between two sessions 𝜋 𝑗

𝐶
and 𝜋𝑖

𝑇
,

whereas Send-Bind-T allows the adversary to arbitrarily attempt to
bind with a token session 𝜋𝑖

𝑇
. We remove the Send-Bind-C oracle

defined in [6], which further allows the adversary to behave actively
when completing Bind on the client side.
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Another minor difference is that we modify the Execute oracle’s
input, which no longer includes the user 𝑈 . Therefore, Execute
always uses the configured PIN information stored in the involved
token. Not doing so, as in [6], implies that the adversary could
always convince another user to interact with a token, and trivially
win the game if the PINs coincide. This adds to the advantage of
the adversary a non-negligible term that depends on the number of
passive protocol executions, which is non-standard in the modeling
of low-entropy secrets such as passwords and PINs.

4.2 Authentication Security of CTAP 2.1
While the proof in [6] gives undoubtedly a valuable and compre-
hensive security analysis of CTAP 2.1 that broadens the coverage
and corrects some aspects in the initial proof given in [3], it still
has some shortcomings that we fix in this paper. In the follow-
ing, we first briefly discuss the main issue with the proof and its
implications—with further details and proof fixes described in Ap-
pendix F—then show our security results.
Active attacks against clients during Bind. The problem lies
in step of the proof of CTAP 2.1 [6, Appendix I, Game 16] that
justifies removing PIN hashes from CBC encryptions during Bind.
There, it is argued that CBC security guarantees that an attacker
delivering a mauled ciphertext back to the client in the final step of
the Bind subprotocol has no information on the resulting decrypted
pinToken. We show that this is not true by presenting a simple
attack, inspired by CBC padding oracle attacks [8]. Recall that the
adversary obtains a CBC encryption 𝑐𝑝ℎ of the pinHash in the last-
but-one flow of Bind, and that the client is expecting to receive back
a pinToken encrypted under the same symmetric key in the final
flow. The attacker can therefore take the CBC encryption of the
pinHash and echo it back to the client, who will recover a pinToken
that encodes the hash of the user pin—see Appendix F for a detailed
flow. When the client issues a command under this pinToken, the
adversary immediately obtains enough information to perform an
offline dictionary attack and recover the user pin.

We draw two conclusions from our attack: (i) the strongest model
in which one can prove authentication security of CTAP 2.1 must
assume the adversary to be passive against clients during Bind, and
(ii) this gives further evidence that the Bind subprotocol of CTAP
2.1 should better be modified to withstand active attacks as rec-
ommended in [3]. As mentioned in the background Section 2, the
current version of CTAP cannot be proved secure if the adversary
can actively attack clients during Bind, because Bind uses unauthen-
ticated Diffie-Hellman key exchange.6 Nevertheless we note that, as
noted in [9], man-in-the-middle atacks are much harder to launch
over an USB channel than the final message injection required for
a rogue-key attack. In what follows we will therefore propose a
minimal change to CTAP that mitigates rogue-key injection only.
We do not propose further patches to Bind to thwart more powerful
man-in-the-middle attacks, and refer the interested readers to [3]
for a (much more intrusive) solution to this problem based on a
standard PAKE.
CTAP 2.1 security. Now, we state our authentication security
result for the PACA protocol, CTAP 2.1 instantiated with PIN/UV

6Using authenticated encryption during Bind would eliminate the specific attack we
describe, but active attacks against clients in other part of Bind are still possible.

Auth Protocol 2, which is described in Figure 3 and Appendix B.
Though we do not formally analyze its PIN/UV Auth Protocol 1
instantiation here, in Appendix E we present how its security can
be proved by adapting our proof for Theorem 1 shown below.

We assume that every user pin is sampled according to some
distribution D with min-entropy ℎD over the set P of all valid pins.
We also assume that HKDF-SHA-256 [20] is modeled as a random
oracleH2. Then, for other CTAP 2.1 building blocks, hash function
H outputs the leftmost 128 bits of the SHA-256 digest, 𝑞 is the prime
order of the underlying elliptic-curve Diffie-Hellman (ECDH) group
(for NIST curve P-256) [18], the underlying symmetric encryption
scheme SKE denotes AES-256 in CBC mode with random IV [10],
and the message authentication codeMAC denotes HMAC-SHA-
256 with 256-bit keys [5]. A query to Send-Bind-T on a session 𝜋𝑖

𝑇

is considered to be active, ifA delivers a DH share 𝑐 and ciphertext
𝑐𝑝ℎ to 𝜋𝑖𝑇 and (𝑐 , 𝑐𝑝ℎ) was not output by any client session that was
involved in a previous Execute query with a token session using
the same token DH share. The following theorem states the SUF-t
security of CTAP 2.1.

Theorem 1. For every efficient adversary A that makes at most
𝑞S, 𝑞E, 𝑞Send, 𝑞NT and 𝑞R queries to Setup, Execute, Send-Bind-T, NewT
and Reboot, and at most 𝑞actSend active queries to Send-Bind-T, there
exist efficient adversaries B1, B4, B5, B6 and B10 such that:

AdvSUF-tCTAP 2.1 (A) ≤ 𝑞
act
Send/2

ℎD + (𝑞S + 𝑞E + 𝑞Send) AdvsCDHECDH (B1)
+ (𝑞S + 𝑞E + 𝑞NT + 𝑞R + 2𝑞Send)2/(2𝑞) + AdvcollH (B4)
+ 𝑞S AdvIND-1$PA-LHPCSKE (B5) + 𝑞E AdvIND-1$PA-LPCSKE (B6)

+ (𝑞E + 𝑞Send)2/(22𝜆+1) + (𝑞E + 𝑞Send) AdvSUF-CMA
MAC (B10) .

We provide security definitions of the underlying primitives used
in the theorem in Appendix C, the proof sketch in Appendix D.1
and the full code-based proof in the full version [2].

4.3 Authentication Security of FIDO2
Recall that the latest version of FIDO2 consists of WebAuthn and
CTAP 2.1. WebAuthn has been proved in [7] to offer PlA authentica-
tion security. We reuse these results with minor modifications, and
the syntax and security model of PlA protocols in Appendix G. We
now briefly discuss what we obtain in terms of composed security
for FIDO2. These results follow along the lines of those outlined
in [6], with natural adaptations due to our fixes to their CTAP 2.1
results. As we do not claim significant novelty for these results, we
summarize the core ideas here and leave more details in Appendix I.
Then, we explain rogue key attacks and how they affect the model.
Composed authentication of FIDO2. The composed model in
which the current version of FIDO2 in attestation modes None and
Self can be proved secure requires assuming trust on first use (TOFU),
i.e., the adversary is passive during the full registration run. Under
this restriction, we can show that the server gets all the guarantees
provided by PlA in these attestation modes. In attestation mode
Basic, one can lift the TOFU assumption and guarantee the server
that the accepted registered credentials is generated by valid tokens
from the attested batch, as guaranteed by the PlA primitive. This
is to be expected. But what does PACA provide, in addition to PlA
security? As discussed at the end of Appendix I, PACA guarantees
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Server/Client (vk, 𝑝𝑡𝑐 ) Attacker (𝑝𝑡𝑎𝑡 ) Tokens
𝑐ℎ ←− rChal User Token (ak)

𝑡𝑐 ←− auth-C(𝑝𝑡𝑐 , 𝑐ℎ)
𝑐ℎ−−→
𝑡𝑐

𝑐ℎ−−→
𝑡𝑐

𝑐ℎ−−→
𝑡𝑐

token checks user presence

(𝑝𝑘, 𝜎𝑐 )←−−−−−−− 𝜎𝑐 ←− Sign(ak, (𝑝𝑘, 𝑐ℎ))
Attacker Token (ak)

𝑡𝑎𝑡 ←− auth-C(𝑝𝑡𝑎𝑡 , 𝑐ℎ)
𝑐ℎ−−→
𝑡𝑎𝑡

token checks user presence

1←− Ver(vk, (𝑝𝑘★, 𝑐ℎ), 𝜎𝑎𝑡 )
(𝑝𝑘★, 𝜎𝑎𝑡 )←−−−−−−−−−

(𝑝𝑘★, 𝜎𝑎𝑡 )←−−−−−−−−−
(𝑝𝑘★, 𝜎𝑎𝑡 )←−−−−−−−−− 𝜎𝑎𝑡 ←− Sign(ak, (𝑝𝑘★, 𝑐ℎ))

Figure 6: The rogue key attack (against a registration run)
in Basic attestation. Right arrows represent commands for
requesting a credential and left arrows are the respective
responses. Procedures are simplified for better presentation.

that no attacker can authenticate under a credential stored in the
user’s token, unless it breaks the PACA access-control mechanism
(modeled by compromising the client connected to the user’s token),
or simply corrupts the user pin.

Note here that the main differences to the result in [6] are that
we further clarify what composed authentication security means
for attestation modes None, Self and Basic, and that we highlight
the need to assume that the composed model must still disallow
active attacks against clients during Bind of the PACA protocol.
At the end of Appendix I, we also remark that the authentication
guarantee of FIDO2 can be strengthened if the server is looking
a priori for a specific credential identifier that is associated with
the authenticating user. Otherwise, although the attacker cannot
impersonate the user due to the PACA protection captured by the
composed model, it is still possible for the attacker to launch an
attack similar to rogue key attacks, but here targeting an authentica-
tion run; this may allow an attacker to authenticate the user under
a credential that is under the attacker’s control. I.e., if the user is
authenticating via an honest client, the best the attacker can do is
to log the user in to an account that is under the attacker’s control.
Our proposed fixes to the protocol also eliminate this attack.

Rogue key attacks. In Figure 6 we recall the setting described
in [4] in which an attacker manages to register a rogue key 𝑝𝑘★
instead of the user’s legitimate credential 𝑝𝑘 . To launch the attack
in attestation modes None or Self, the attacker doesn’t need any
special equipment and can just create the rogue credential by itself.
However, if using attestation mode Basic and the server has infor-
mation that allows recognizing a target batch (or group), then the
attacker must have access to its own token, from the same batch as
the user’s token (and hence sharing the same attestation private
key ak). The figure shows this latter case.

In the top part of Figure 6, the server issues a challenge 𝑐ℎ for
the registration run, which is authorized with pinToken 𝑝𝑡𝑐 by the
client and then sent to the user’s token. The attacker can easily
observe the challenge because it is not encrypted. If this attacker
is able to inject a message that replaces the response sent by the
user’s token to the client, as described in [4, 9], then it can perform
the actions shown in the bottom part of the figure: it takes the same
challenge and uses its own token (using some other pinToken 𝑝𝑡𝑎𝑡
to access it) to generate and sign a new credential. This malicious
credential will be accepted by the server, since the attacker’s token
is from the same batch as the user’s token and uses the same ak.

Failure to capture rogue key attacks formally. The security
model in [6] and our composed model sketched above do not cap-
ture rogue key attacks, because in the entire registration flow it
is assumed that the adversary is passive. If this was not the case,
then the rogue key attack would lead to a break of the protocol in
these models because the messages sent by the token to the client
are not authenticated (formally in Appendix H it is captured by
the setting in which Validate-C always returns true). This means
that an adversary can simply use its PACA oracles in the security
experiment to gain control over some other token, use it to generate
a credential for the challenge created by the target server, and feed
it to the honest client who will pass it along to the server.

As a side note, we recall the observation in [4] that if the server
knows a priori a unique attestation public key for the user’s token
(e.g., it is in a batch of size 1), as assumed in [3], then the adversary
will never be able to find a token that allows launching the attack.
So, the model could be strengthened to prevent rogue key attacks
by restricting the batch size as 1, but this hypothesis is not realistic.

4.4 CTAP 2.1+ for Stronger Authentication
In this section, we capture rogue key attacks by removing the re-
striction that the adversary cannot be active during the registration
run. Clearly, this security is unachievable for the current version of
FIDO2, so we investigate how to fix it to resist rogue key attacks.
CTAP 2.1+ and its authentication security. We propose a mod-
ification to CTAP 2.1, the fixed protocol called CTAP 2.1+, that
achieves SUF-t security in our stronger mPACA authentication
model and, therefore, provides protection against rogue key attacks.
Our CTAP 2.1+ modifications are highlighted in red in Figure 3,
with detailed descriptions provided in Appendix B.

As with CTAP 2.1, CTAP 2.1+ still authorizes a client-to-token
command 𝑀 with Auth-C and validates a client-authorized com-
mand (𝑀, 𝑡) with Validate-T; moreover, CTAP 2.1+ introduces two
more algorithms Auth-T and Validate-C to authorize a token-to-
client response 𝑅 and validate a token-authorized response (𝑅, 𝑡).
Regarding low-level functions, our CTAP 2.1+ protocol stops using
the pinToken provided by the token directly as a MAC key, but uses
a key derivation function KDF to expand it to two MAC keys, and
use them to authorize commands in both directions.

The following theorem states our result for CTAP 2.1+, with the
above KDF modeled as a random oracleH3.

Theorem 2. For every efficient adversary A that makes at most
𝑞S, 𝑞E, 𝑞Send, 𝑞NT and 𝑞R queries to Setup, Execute, Send-Bind-T, NewT
and Reboot, at most 𝑞actSend active queries to Send-Bind-T, and at most
𝑞H3 queries to H3, there exist efficient adversaries B1, B4, B5, B6,
B11 and B12 such that:

AdvSUF-tCTAP 2.1+ (A) ≤ 𝑞
act
Send/2

ℎD + (𝑞S + 𝑞E + 𝑞Send)AdvsCDHECDH (B1)
+ (𝑞S + 𝑞E + 𝑞NT + 𝑞R + 2𝑞Send)2/(2𝑞) + AdvcollH (B4)
+ 𝑞S AdvIND-1$PA-LHPCSKE (B5) + 𝑞E AdvIND-1$PA-LPCSKE (B6)

+ (𝑞E + 𝑞Send)2/(22𝜆+1) + 𝑞H3 (𝑞E + 𝑞Send)/22𝜆

+ (𝑞E + 𝑞Send) AdvSUF-CMA
MAC (B11) + 𝑞E AdvSUF-CMA

MAC (B12) .

We provide the proof sketch in Appendix D.2 and the full code-
based proof in the full version [2].
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Composing CTAP 2.1+ and WebAuthn. The composed model
in which we analyze the composition of an mPACA protocol with
a PlA protocol is given in Appendix H. At the high level, the main
differences to the model in [6] are that we consider active attackers
during registration and that we formally cover, not only attestation
mode None, but also Self and Basic. Recall that uncompromised
CTAP 2.1+ client sessions will only accept messages transmitted
by a unique token session to which they are bound and that, in the
composed model, honest client sessions are assumed to be uniquely
bound to a server session (e.g., via a TLS connection).

In summary, we state and prove two theorems in Appendix I
that establish the following intuitive results:
• For attestation modes None and Self one must consider that
registration is carried out via an honest client, as otherwise one
gets no PlA guarantees. In particular, the server would not even
be assured that the credential comes from a hardware token.
• For attestation mode Basic we can guarantee PlA security even
if the server is interacting with a compromised client. However,
rogue key attacks are still possible in this setting.
• For all attestation modes, if a token is interacting with an honest
client, then the tokenwill only reply to challenges if it is unlocked
by a client or attacker using the correct user PIN.
• For all attestation modes, if an interaction with the server occurs
via an honest client session (be it in authentication or registra-
tion), then the composed PlA+mPACA security guarantees that
the server session connected to that honest client session will
only ever accept a PlA session originating in the unique token
session bound to that client session via mPACA. This means in
particular that we guarantee security against rogue key attacks.

5 Privacy Properties
User privacy is an important security goal for FIDO2. Informally,
privacy means that different registrations do not reveal whether
they are linked to the same or different tokens, and hence users. In
this section, we provide the first formal provable privacy analysis
of CTAP 2.1 and FIDO2 as a whole, then propose a simple fix to
achieve a natural stronger privacy guarantee.

5.1 (m)PACA Privacy Model
We start by defining PACA privacy, a property that guarantees a
strong form of unlinkability between PACA sessions. The adver-
sarial capabilities are modeled similarly to those in the model for
PACA authentication and our privacy model inherits the same trust
model, but here the adversarial goal is different. Figure 7 shows our
privacy security experiment ExptprivPACA, associated with an adversary
A and a PACA protocol PACA. Our privacy definitions follow the
style of PlA privacy definition presented in [7, 17] and recalled and
adapted in Appendix G.3.
Experiment phases and oracles. The experiment ExptprivPACA has
3 phases. In Phase 1, we let the adversary freely interact with the
oracles available in the PACA authentication experiment ExptSUF-tPACA
(see Figure 5). This is captured via the O oracle notation. In the chal-
lenge phase Phase 2, the adversary specifies two (not necessarily
distinct) uncorrupted “challenge” tokens 𝑇0 and 𝑇1, two clients 𝐶0
and 𝐶1, and two users𝑈0 and 𝑈1. The challenger then calls InitRL,
which will sample a random bit 𝑏 and use (𝑇𝑏 ,𝐶𝑏 ) and (𝑇1−𝑏 ,𝐶1−𝑏 )

Expt(w)privPACA/mPACA (A) :

1: Lcorr ← ∅, Lbd
ch ← ∅, L

bd
lr ← ∅, L

op
ch ←

∅, Lop
lr ← ∅, pb← 1, freshDH← 1

2: st1
$← AO (1𝜆 ) // Phase 1

3: 𝑇0,𝑇1,𝐶0,𝐶1,𝑈0,𝑈1, st2 ← A(1𝜆, st1 ) //
Phase 2

4: 𝑏 ← InitRL(𝑇0,𝑇1,𝐶0,𝐶1,𝑈0,𝑈1)
5: O′ ← (O\{NewT})
6: 𝑏′ ← AO′,LEFT,RIGHT (1𝜆, st2 ) // Phase 3
7: 𝑟

$← {0, 1}
8: if Check-priv-PACA()=1 then return𝑏 = 𝑏′

9: else return 𝑟

Check-priv-PACA():

1: for all (𝑇ch, 𝑖 ) ∈ Lbd
ch , (𝑇lr, 𝑗 ) ∈ L

bd
lr do

2: if 𝑇ch =𝑇lr and no Reboot is performed
between (𝑇ch, 𝑖 ) and (𝑇lr, 𝑗 ) then

3: freshDH← 0
4: for two consecutive queries 𝑞𝑛 , 𝑞𝑚 do
5: if 𝑞𝑛 is LEFT/RIGHT query and 𝑞𝑚

is regular query, or vice versa and
Public(𝑇0 ) ≠ Public(𝑇1) after 𝑞𝑛 then

6: pb← 0
7: Check ← 𝑇0 .pinCorr = false and
𝑇1 .pinCorr = false and Lbd

lr ∩ Lcorr = ∅
8: S← (Lbd

ch ∩L
op
lr ) ∪ (L

op
ch ∩L

bd
lr ) ∪ (L

bd
ch ∩

Lbd
lr )

9: if S = ∅ and Check and pb = 1 and
freshDH = 1 then return 1

10: else return 0

InitRL(𝑇0,𝑇1,𝐶0,𝐶1,𝑈0,𝑈1):

1: 𝑏
$← {0, 1}

2: Initialize LEFT and RIGHT oracles
3: return 𝑏

Setup-LEFT𝑇𝑏,𝐶𝑏 ,𝑈𝑏
(𝑖, 𝑗 ) :

1: return Setup(𝑇𝑏 , 𝑖,𝐶𝑏 , 𝑗,𝑈𝑏 )
Setup-RIGHT𝑇1−𝑏 ,𝐶1−𝑏 ,𝑈1−𝑏 (𝑖, 𝑗 ) :
1: return Setup(𝑇1−𝑏 , 𝑖,𝐶1−𝑏 , 𝑗,𝑈1−𝑏 )
Bind-LEFT𝑇𝑏,𝐶𝑏

(𝑖, 𝑗 ) :

1: Lbd
lr
∪← {(𝑇0, 𝑖 ), (𝐶0, 𝑗 ) }, Lbd

lr
∪←

{(𝑇1, 𝑖 ), (𝐶1, 𝑗 ) }
2: return Execute(𝑇𝑏 , 𝑖,𝐶𝑏 , 𝑗 )
Bind-RIGHT𝑇1−𝑏 ,𝐶1−𝑏 (𝑖, 𝑗 ) :

1: Lbd
lr
∪← {(𝑇0, 𝑖 ), (𝐶0, 𝑗 ) }, Lbd

lr
∪←

{(𝑇1, 𝑖 ), (𝐶1, 𝑗 ) }
2: return Execute(𝑇1−𝑏 , 𝑖,𝐶1−𝑏 , 𝑗 )

Send-LEFT𝑇𝑏 (𝑖,𝑀 )

1: Lbd
lr
∪← {(𝑇0, 𝑖 ) }, Lbd

lr
∪← {(𝑇1, 𝑖 ) }

2: return Send-Bind-T(𝑇𝑏 , 𝑖, 𝑀 )
Send-RIGHT𝑇1−𝑏 (𝑖,𝑀 )

1: Lbd
lr
∪← {(𝑇0, 𝑖 ) } , Lbd

lr
∪← {(𝑇1, 𝑖 ) }

2: return Send-Bind-T(𝑇1−𝑏 , 𝑖, 𝑀 )
Auth-C-LEFT𝐶𝑏

(𝑗, 𝑀):

1: Lop
lr
∪← {(𝐶0, 𝑗 ) }, Lop

lr
∪← {(𝐶1, 𝑗 ) }

2: (𝑀, 𝑡 ) ← Auth-C(𝐶𝑏 , 𝑗, 𝑀 )
3: return (𝑡, 𝜋 𝑗

𝐶𝑏
.bs)

Auth-C-RIGHT𝐶1−𝑏 (𝑗, 𝑀):

1: Lop
lr
∪← {(𝐶0, 𝑗 ) }, Lop

lr
∪← {(𝐶1, 𝑗 ) }

2: (𝑀, 𝑡 ) ← Auth-C(𝐶1−𝑏 , 𝑗, 𝑀 )
3: return (𝑡, 𝜋 𝑗

𝐶1−𝑏
.bs)

Validate-T-LEFT𝑇𝑏 (𝑖,𝑀, 𝑡, 𝑑):

1: Lop
lr
∪← {(𝑇0, 𝑖 ) }, Lop

lr
∪← {(𝑇1, 𝑖 ) }

2: 𝑑 ← Validate-T(𝑇𝑏 , 𝑖, 𝑀, 𝑡, 𝑑 ) .
3: return (𝑑, 𝜋𝑖

𝑇𝑏
.bs)

Validate-T-RIGHT𝑇1−𝑏 (𝑖,𝑀, 𝑡, 𝑑):

1: Lop
lr
∪← {(𝑇0, 𝑖 ) }, Lop

lr
∪← {(𝑇1, 𝑖 ) }

2: 𝑑 ← Validate-T(𝑇1−𝑏 , 𝑖, 𝑀, 𝑡, 𝑑 ) .
3: return (𝑑, 𝜋𝑖

𝑇1−𝑏
.bs)

Auth-T-LEFT𝑇𝑏 (𝑖,𝑀):

1: Lop
lr
∪← {(𝑇0, 𝑖 ) }, Lop

lr
∪← {(𝑇1, 𝑖 ) }

2: (𝑀, 𝑡 ) ← Auth-T(𝑇𝑏 , 𝑖, 𝑀 )
3: return (𝑡, 𝜋𝑖

𝑇𝑏
.bs)

Auth-T-RIGHT𝑇1−𝑏 (𝑖,𝑀):

1: Lop
lr
∪← {(𝑇0, 𝑖 ) }, Lop

lr
∪← {(𝑇1, 𝑖 ) }

2: (𝑀, 𝑡 ) ← Auth-T(𝑇1−𝑏 , 𝑖, 𝑀 )
3: return (𝑡, 𝜋𝑖

𝑇1−𝑏
.bs)

Validate-C-LEFT𝐶𝑏
(𝑗, 𝑀, 𝑡, 𝑑):

1: Lop
lr
∪← {(𝐶0, 𝑗 ) }, Lop

lr
∪← {(𝐶1, 𝑗 ) }

2: 𝑑 ← Validate-C(𝐶𝑏 , 𝑗, 𝑀, 𝑡, 𝑑 ) .
3: return (𝑑, 𝜋 𝑗

𝐶𝑏
.bs)

Validate-C-RIGHT𝐶1−𝑏 (𝑗, 𝑀, 𝑡, 𝑑):

1: Lop
lr
∪← {(𝐶0, 𝑗 ) }, Lop

lr
∪← {(𝐶1, 𝑗 ) }

2: 𝑑 ← Validate-C(𝐶1−𝑏 , 𝑗, 𝑀, 𝑡, 𝑑 )
3: return (𝑑, 𝜋 𝑗

𝐶1−𝑏
.bs)

Figure 7: (m)PACA privacy security experiments. ExptprivPACA
for PACA privacy (without red or blue parts), Exptwpriv

PACA
for PACA weak privacy (without red parts), ExptprivmPACA for
mPACA privacy (without blue parts), Exptwpriv

mPACA for mPACA
weak privacy (with everything). AO indicates that the adver-
saryA has access to all PACA authentication oracles denoted
by O (defined in Figure 5).

to respectively initialize oracles with suffixes LEFT and RIGHT.
Finally, in Phase 3, the adversary can continue interacting with or-
acles in O as in Phase 1, but cannot create new tokens. However, it
can query LEFT and RIGHT oracles. We note that it is necessary for
the experiment to have challenge clients, in addition to challenge
tokens: the state of clients, which may be leaked to the server, could
also leak information that compromises privacy.

Winning conditions. In order to win the experiment, the adver-
saryA has to guess the secret random bit 𝑏, meaning being able to
distinguish the interaction between (𝑇0,𝐶0) and (𝑇1,𝐶1).
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To avoid trivial wins, we follow the PlA privacy models [7, 17] to
perform context separation checks. Check-priv-PACA will return
1 if all checks are passed, the experiment then proceeds to return
1 if adversary guess the bit correctly, and 0 otherwise. If at least
one check fails, Check-priv-PACA will return 0 and the experiment
will ignore bit 𝑏′ output by advasary, and output a random bit 𝑟 .
Now we get into the details of Check-priv-PACA. Intuitively, after
a particular Bind run between sessions 𝜋𝑖

𝑇
and 𝜋 𝑗

𝐶
, suppose that

A could specify (𝑇0,𝐶0) as (𝑇,𝐶) and (𝑇1,𝐶1) as some pair such
that 𝜋𝑖

𝑇1
and 𝜋 𝑗

𝐶1
do not have a matching Bind state; then A could

trivially identify (𝑇0,𝐶0) by asking the challenge clients to authorize
a command on session 𝑗 or asking the challenge tokens to validate
an authorized command on session 𝑖 , because only 𝜋𝑖

𝑇0
and 𝜋 𝑗

𝐶0
have

a binding state. Therefore, we require that, ifA queries an Execute
oracle, the involved sessions cannot be queried to a LEFT/RIGHT
oracle for Auth-C or Validate-T; this also applies to the converse
case. The above is captured by requiring (Lbd

ch ∩L
op
lr ) ∪ (L

op
ch ∩L

bd
lr )

to be empty. Additionally, we require thatA cannot query the same
sessions via both regular oracles and LEFT/RIGHT oracles for Bind
runs. Otherwise, A can, for instance, query regular Execute on
token𝑇0 with some session index 𝑖 , and later query Bind-LEFTwith
the same session index 𝑖 . If Bind-LEFT uses𝑇0, the oracle will return
failure, otherwise, it runs Bind and returns success. This is captured
by requiring empty Lbd

ch ∩ L
bd
lr .

Recall that each token 𝑇 may have public information that is
available upon request, e.g., token version, number of remaining
allowed failed PIN retries, and whether 𝑇 has been set up. This is
captured by Public(𝑇 ) defined in Section 3. To avoid trivial wins,
we require Public(𝑇0) = Public(𝑇1) holds whenever A makes a
LEFT/RIGHT query after a regular query, or vice versa. Furthermore,
the Check flag ensures that challenge tokens are not corrupted and
challenge client sessions are not compromised.
Privacy for mPACA protocols. The privacy model for mPACA
protocols is the same, except that we extend the experiment or-
acles to include Auth-T and Validate-C, and extend the winning
conditions accordingly. See ExptprivmPACA in Figure 7.
Advantage measures. For protocol prot ∈ {PACA,mPACA}, the
privacy advantage of A is defined as:

Advprivprot (A) = |2 Pr[Exptprivprot (A) = 1] − 1| .

5.2 Privacy of CTAP 2.1 and CTAP 2.1+
Privacy attacks against CTAP 2.1 and CTAP 2.1+. We observe
that neither CTAP 2.1 nor CTAP 2.1+ meets our privacy definitions.
The reason is that tokens do not generate a fresh Diffie-Hellman
share for each key exchange. Formally, in our model an adversary
can observe repeated DH shares sent by a token to break privacy,
e.g., the adversary first observes a token session in Phase 1 to collect
its DH share used in Setup, then chooses this same token in Phase 2,
and finally in Phase 3 checks if the trace returned by the Bind-LEFT
oracle repeats the DH share or not. This attack is formalized in
Appendix J, where we describe an efficient adversary A such that:

Advprivprot (A) = 1 − 1/𝑞 ≈ 1 − 2−2𝜆 ,

where prot ∈ {CTAP 2.1,CTAP 2.1+}, 𝑞 is the order of the underly-
ing ECDH group, and 𝜆 = 128.

For the above attack, we do not claim that it has significant
practical implications. Nevertheless, our tests show that, when a
USB token is used to register or authenticate to multiple accounts
without rebooting (by remaining plugged-in and not putting the
computer to sleep), the token will reuse its DH share. This can
allow a malicious server (that can access the CTAP communica-
tion, e.g., via malware with low-privilege access installed on the
computer [4]) to link accounts (perhaps for different servers) of the
same user, especially when multiple users share the same machine
(e.g., a corporate or public computer). As we will show shortly, this
potential privacy leak can be easily fixed by enforcing DH shares
to be always refreshed on the token.
Weak privacy of CTAP 2.1 and CTAP 2.1+. In order to analyze
the privacy guarantees achieved by CTAP 2.1 and CTAP 2.1+, we
define weak privacy notions for both PACA and mPACA protocols.
Figure 7 defines experiments ExptwprivPACA and ExptwprivmPACA. The only
difference introduced in these weak privacy notions is an additional
flag freshDH, which rules out the trivial win where no Reboot is
performed to a token involved in any pair of queries to a regular
oracle and a LEFT/RIGHT oracle for Bind runs. For protocol prot ∈
{PACA,mPACA}, the weak privacy advantage of A is defined as:

Advwprivprot (A) = |2 Pr[Exptwprivprot (A) = 1] − 1| .

For CTAP 2.1 and CTAP 2.1+, Public(𝑇 ) in particular contains
the token version, supported PIN/UV Auth Protocol list and PIN
retry counter. The following theorem shows that CTAP 2.1 achieves
PACA weak privacy and CTAP 2.1+ achieves mPACA weak privacy.

Theorem 3. For every efficient adversary A that makes at most
𝑞S, 𝑞E, 𝑞Send, 𝑞NT and 𝑞R queries to Setup, Execute, Send-Bind-T, NewT
and Reboot, and at most 𝑞actSend active queries to Send-Bind-T, for some
PIN-sampling distribution D with minimum entropy ℎD , there exist
efficient adversaries B1, B4, B5, B6 such that:

Advwprivprot (A) ≤ 2 · [𝑞actSend/2
ℎD + (𝑞S + 𝑞E + 𝑞Send) AdvsCDHECDH (B1)

+ (𝑞S + 𝑞E + 𝑞NT + 𝑞R + 2𝑞Send)2 / (2𝑞) + AdvcollH (B4)
+ 𝑞S AdvIND-1$PA-LHPCSKE (B5) + 𝑞E AdvIND-1$PA-LPCSKE (B6)] ,

where prot ∈ {CTAP 2.1,CTAP 2.1+}.

Intuitively, this theorem shows that privacy is achieved if the
attacker does not observe CTAP traces where a token reuses the
same DH share when interacting with clients to register multiple
accounts. We give main ideas of the proof here, and delay the full
proof to until Theorem 4, as proofs for these two theorems are
identical. Interestingly, the proof reuses many of the arguments
used to prove the authentication properties of the protocol. This is
the case because the access control mechanism of the token, which
is crucial to guarantee authentication, also safeguards the token
from interactions that might reveal its long-term state (in practice
this includes the credentials it stores inside). Therefore, when we
follow similar footsteps of authentication proof to switch tokens’
PIN to all 0, and pintokens to be random, the two challenged tokens
are essentially indistinguishable if we enforce tokens do not reuse
DH shares across different phases (freshDH check) and exclude
other trivial attacks. We also remark that, as shown in the proof,
the additional mPACA token-to-client authentication in CTAP 2.1+
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does not affect privacy and hence the privacy security bounds for
CTAP 2.1 and CTAP 2.1+ are the same.

5.3 CTAP 2.1++ for Stronger Privacy
We propose a small modification in CTAP 2.1+ so that procedure
obtainSharedSecret-T always regenerates and outputs a freshDiffie-
Hellman share. We refer to this modified protocol as CTAP 2.1++,
with modification details formally shown in Figure 12. We then
prove its privacy guarantees.7 Here the Public function is the same
as that for CTAP 2.1 and CTAP 2.1+. The following theorem states
the result. Its proof is in Appendix D.3.

Theorem 4. For every efficient adversary A that makes at most
𝑞S, 𝑞E, 𝑞Send, 𝑞NT and 𝑞R queries to Setup, Execute, Send-Bind-T, NewT
and Reboot, and at most 𝑞actSend active queries to Send-Bind-T, for some
PIN-sampling distribution D with minimum entropy ℎD , there exist
adversaries B1, B4, B5, B6 such that:

AdvprivCTAP 2.1++ (A) ≤ 2 · [𝑞actSend/2
ℎD + (𝑞S + 𝑞E + 𝑞Send) AdvsCDHECDH (B1)

+ (𝑞S + 𝑞E + 𝑞NT + 𝑞R + 2𝑞Send)2 / (2𝑞) + AdvcollH (B4)
+ 𝑞S AdvIND-1$PA-LHPCSKE (B5) + 𝑞E AdvIND-1$PA-LPCSKE (B6)] .

We remark that the above theorem also applies to CTAP 2.1 once
the same modification with respect to token’s DH share regenera-
tion is introduced to the protocol.

5.4 Composed Privacy of FIDO2 and of
WebAuthn and CTAP 2.1++

PlA privacy model and WebAuthn privacy. In Appendix G.3
we recall the PlA privacy model from [7], discuss how we slightly
strengthen and generalize it, and define PlA privacy advantage
AdvprivPlA . Theorem 7 in Appendix G.3 states the WebAuthn privacy
result, for which the proof from [7] still applies. It shows that for
any A, AdvprivWebAuthn (A) = 0, for all attestation modes we consider.
Composed privacy model. We define privacy for the composi-
tion of PlA and (m)PACA, denoted by PlA+(m)PACA, in order to
assess the composed privacy guarantees provided by FIDO2 and the
protocol composed with WebAuthn and CTAP 2.1++. The security
experiments Exptcom-priv

PlA+PACA, Expt
com-priv
PlA+mPACA are shown in Figure 8.

The composed privacy experiments give the adversary access
to all (m)PACA privacy oracles except those Auth and Validate
oracles and to all PlA oracles except rResp, aResp, r/aLEFT and
r/aRIGHT. Similar to the composed authentication model shown
in Appendix H, the above PlA oracles are modified to perform
additional (m)PACA token validation before creating the token’s
PlA response, and perform token authorization before returning
the response. Such changes are colored in blue in Figure 8.

At the end of the experiments, the adversary outputs its guess
𝑏′, and the experiment checks both conditions for the underlying
PlA and (m)PACA privacy. In particular, the composed check is
the conjunction of Check-priv-PlA (defined in Appendix G.3) and
Check-priv-PACA (defined in Figure 7).

7Note that CTAP 2.1++ still achieves mPACA authentication security. The only change
to the proof given in Appendix D.2 is in bound |Pr2 − Pr3 | , which becomes (2𝑞S +
2𝑞E+𝑞NT+𝑞R+2𝑞Send )2 / (2𝑞) . This captures the slight increase in the total number
of fresh Diffie-Hellman shares generated in Setup and Execute.

Exptcom-(w)priv
PlA+PACA/PlA+mPACA (A) :

1: LPlA
corr ← ∅, Lr

ch ← ∅, L
r
lr ← ∅, L

a
ch ←

∅, La
lr ← ∅, L

PACA
corr ← ∅, Lbd

ch ← ∅,
Lbd

lr ← ∅, L
op
ch ← ∅, L

op
lr ← ∅, pb← 1,

freshDH← 1
2: st1

$← AO (1𝜆 ) // Phase 1
3: 𝑇0 ,𝑇1 ,𝐶0,𝐶1,𝑈0,𝑈1, 𝑆𝐿, 𝑆𝑅 , st2 ←
A(1𝜆, st1 ) // Phase 2

4: 𝑏 ←InitRL(𝑇0,𝑇1,𝐶0,𝐶1,𝑈0,𝑈1, 𝑆𝐿, 𝑆𝑅 )
5: O′ ← O\{NewT,NewToken}
6: 𝑏′ ← AO′,LEFT,RIGHT (1𝜆, st2 ) // Phase 3
7: 𝑟

$← {0, 1}
8: if Check-priv-PlA() ∧ Check-(w)priv-

PACA() then return 𝑏 = 𝑏′

9: else return 𝑟

InitRL(𝑇0,𝑇1,𝐶0,𝐶1,𝑈0,𝑈1, 𝑆𝐿, 𝑆𝑅 ):

1: 𝑏
$← {0, 1}

2: Initialize r/aLEFT𝑇𝑏,𝑆𝐿 , r/aRIGHT𝑇1−𝑏 ,𝑆𝑅
3: Initialize (m)PACA LEFT/RIGHT oracles
4: return 𝑏

rResp’ ((𝑇, 𝑗 ), 𝑗 ′,𝑚, 𝑡cl, 𝑑): // helper function

1: status
$← validate-T(𝜋 𝑗 ′

𝑇
,𝑚rcom, 𝑡cl, 𝑑 )

2: if status ≠ accepted then return ⊥
3: if �̃� 𝑗

𝑟 ,𝑇
≠⊥ or𝑇 .gid =⊥ then return ⊥

4: (𝑚rrsp, rc𝑇 , cid, sid, agCon)
$←

rRsp(�̃� 𝑗

𝑟 ,𝑇
,𝑚rcom )

5: (𝑚rrsp, 𝑡tk )
$← auth-T(𝜋 𝑗 ′

𝑇
,𝑚rrsp )

6: Lr
lr
∪← {cid},Lop

lr
∪← {(𝑇, 𝑗 ′ ) }

7: return (𝑚rrsp, 𝑡tk )
aResp’ ((𝑇, 𝑗 ), 𝑗 ′,𝑚, 𝑡cl, 𝑑): // helper function

1: status
$← validate-T(𝜋 𝑗 ′

𝑇
,𝑚acom, 𝑡cl, 𝑑 )

2: if status ≠ accepted then return ⊥
3: if �̃� 𝑗

𝑎,𝑇
≠⊥ or𝑇 .gid =⊥ then return ⊥

4: (𝑚arsp, rc𝑇 , cid, sid, agCon)
$←

aRsp(�̃� 𝑗

𝑎,𝑇
,𝑚acom )

5: (𝑚arsp, 𝑡tk )
$← auth-T(𝜋 𝑗 ′

𝑇
,𝑚arsp )

6: La
lr
∪← {cid}, Lop

lr
∪← {(𝑇, 𝑗 ′ ) }

7: return (𝑚arsp, 𝑡tk )

rResp (𝑇, 𝑗, 𝑗 ′,𝑚rcom, 𝑡cl, 𝑑):

1: status
$← validate-T(𝜋 𝑗 ′

𝑇
,𝑚rcom, 𝑡cl, 𝑑 )

2: if status ≠ accepted then return ⊥
3: if �̃� 𝑗

𝑟 ,𝑇
≠⊥ or𝑇 .gid =⊥ then return ⊥

4: (𝑚rrsp, rc𝑇 , cid, sid, agCon)
$←

rRsp(�̃� 𝑗

𝑟 ,𝑇
,𝑚rcom )

5: (𝑚rrsp, 𝑡tk )
$← auth-T(𝜋 𝑗 ′

𝑇
,𝑚rrsp )

6: Lr
ch
∪← {cid},Lop

ch
∪← {(𝑇, 𝑗 ′ ) }

7: return (𝑚rrsp, 𝑡tk )
aResp (𝑇, 𝑗, 𝑗 ′,𝑚acom, 𝑡cl, 𝑑):

1: status
$← validate-T(𝜋 𝑗 ′

𝑇
,𝑚acom, 𝑡cl, 𝑑 )

2: if status ≠ accepted then return ⊥
3: if �̃� 𝑗

𝑎,𝑇
≠⊥ or𝑇 .gid =⊥ then return⊥

4: (𝑚arsp, rc𝑇 , cid, sid, agCon)
$←

aRsp(�̃� 𝑗

𝑎,𝑇
,𝑚acom )

5: (𝑚arsp, 𝑡tk )
$← auth-T(𝜋 𝑗 ′

𝑇
,𝑚arsp )

6: if tokenBindPartner(𝑇, 𝑗 ′ ) ≠ ⊥ then
7: (𝐶, 𝑗 ) ← tokenBindPartner(𝑇, 𝑖 )
8: if (𝐶, 𝑗,𝑚acom, 𝑡cl ) ∈ LauthC then
9: La

ch
∪← {cid},Lop

ch
∪←

{(𝑇, 𝑗 ′ ) }
10: return (𝑚arsp, 𝑡tk )
r/aLEFT𝑇𝑏,𝑆𝐿 (𝑗

′,𝑚, 𝑡cl, 𝑑)
1: Obtains intended server 𝑆 from𝑚
2: if 𝑆 ≠ 𝑆𝐿 then return ⊥
3: 𝑗 ← 0, while 𝜋 𝑗

𝑇𝑏
≠ ⊥: 𝑗 ← 𝑗 + 1

4: return rResp’ ((𝑇𝑏 , 𝑗 ), 𝑗 ′,𝑚, 𝑡cl, 𝑑) // in
rLEFT

5: return aResp’ ((𝑇𝑏 , 𝑗 ), 𝑗 ′,𝑚, 𝑡cl, 𝑑) // in
aLEFT

r/aRIGHT𝑇1−𝑏 ,𝑆𝑅 (𝑗
′,𝑚, 𝑡cl, 𝑑)

1: Obtains intended server 𝑆 from𝑚
2: if 𝑆 ≠ 𝑆𝑅 then return ⊥
3: 𝑗 ← 0, while 𝜋 𝑗

𝑇1−𝑏
≠ ⊥: 𝑗 ← 𝑗 + 1

4: return rResp’ ((𝑇1−𝑏 , 𝑗 ), 𝑗 ′,𝑚, 𝑡cl, 𝑑) //
in rRIGHT

5: return aResp’ ((𝑇1−𝑏 , 𝑗 ), 𝑗 ′,𝑚, 𝑡cl, 𝑑) //
in aRIGHT

Figure 8: Composed privacy experiments Exptcom-priv
PlA+mPACA

(with red code) and Exptcom-priv
PlA+PACA (without red code). They

each also has a “weak” privacy version, Exptcom-wpriv
PlA+mPACA and

Exptcom-wpriv
PlA+PACA , which capture (m)PACA weak privacy. O con-

tains all (m)PACA privacy oracles (Figure 7) except those
Auth and Validate oracles and all PlA oracles (Figure 19 in
Appendix G) except rResp, aResp, r/aLEFT and r/aRIGHT.
These PlA oracles are re-defined for composed model, where
rResp’, and aResp’ are internal helper functions called inside
r/aLEFT and r/aRIGHT; differences are highlighted in blue.

Figure 8 also shows experiments Exptcom-wpriv
PlA+PACA, Expt

com-wpriv
PlA+mPACA

that define the weak composed privacy for PlA+(m)PACA protocols
to capture (m)PACA weak privacy, where the winning conditions
of (m)PACA weak privacy is written asWin-wpriv-PACA.
Advantage measures. For notion ∈ {com-priv, com-wpriv} and
prot ∈ {PlA + PACA, PlA +mPACA} we define the advantages as

Advnotionprot (A) = |2 Pr[Exptcom-priv
prot (A) = 1] − 1| .

Authentication in composed privacy. As described above, our
composed model naturally combines privacy models for PlA and
(m)PACA. Here we highlight that it also captures the following
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privacy attack related to (m)PACA authentication. An adversary can
break privacy by first breaking (m)PACA authentication to unlock
a token and then ask it to respond to any server authentication
requests; this could link the token to its prior registrations. In
practice, this means an attacker can steal a token and then try to
break into it to correlate its internal state with previously observed
FIDO2 runs. As we will show in our theorems, protection against
this attack is ensured by (m)PACA authentication security.

Formally, to capture such attacks, we add additional checks inside
aResp as shown in Figure 8 also colored in blue (lines 6-9) such
that context separation is only enforced when the adversary is
interacting with the tokens via an honest client. That is, if the
adversary can forge an authorized command to trick the aResp
oracle to accept and respond, then it breaks (m)PACA authentication
nontrivially and hence the context separation is not enforced.
Composed privacy of WebAuthn and CTAP 2.1++. The follow-
ing theorem states our composition privacy result for PlA+mPACA,
with the proof in Appendix D.4. It shows that composed privacy of
PlA+mPACA reduces to the authentication and privacy of (m)PACA
and the privacy of PlA.

Theorem 5. For every efficient A, there exist efficient adversaries
B1, B2 and B3 such that:

Advcom-priv
PlA+mPACA (A) ≤ AdvSUF-tmPACA (B1) + AdvprivmPACA (B2) + AdvprivPlA (B3) .
The composed privacy of WebAuthn+CTAP 2.1++ follows from

the above Theorem 5, together with Theorem 2 adapted to CTAP
2.1++ (CTAP 2.1++ achieves mPACA authentication), Theorem 4
(CTAP 2.1++ achieves mPACA privacy), and Theorem 7 (WebAuthn
achieves PlA privacy, shown in Appendix G.3).
Composed privacy of FIDO2. In order to analyze privacy of
the original FIDO2, we derive a similar composition theorem for
PlA+PACA. with proof (omitted for simplicity) essentially the same
as that of Theorem 5, by replacing mPACA results with PACA ones.

Theorem 6. For every efficient A, there exist efficient adversaries
B1, B2 and B3 such that:

Advcom-wpriv
PlA+PACA (A) ≤ AdvSUF-tPACA (B1) + AdvwprivPACA (B2) + AdvprivPlA (B3) .

The composed privacy of the current version of FIDO2 follows
from the above Theorem 6, together with Theorems 1 (CTAP 2.1
achieves PACA authentication) , Theorem 3 (CTAP 2.1 achieves
PACA weak privacy), and Theorem 7 (WebAuthn achieves PlA
privacy, shown in Appendix G.3). The result implies that the un-
modified FIDO2 achieves privacy as long as the attacker does not
observe CTAP traces where a token reuses the same DH share when
interacting with clients to register multiple accounts.
Remark. Again, we note that our results highlight an interesting
correlation between privacy and authentication. The results show
that the authentication properties of CTAP 2.1 play a crucial role in
the privacy properties of FIDO2 as a whole. Intuitively, CTAP 2.1
enforces an access control mechanism that prevents everyone other
than the user who can unlock the token to use the secret signing
keys locked inside. If this was not the case, then any process in
any machine to which the token is connected could check if a
given credential is associated with one of the signing keys stored in
the token. To the best of our knowledge, this correlation between
privacy and authentication has not been formalized before.

6 Practical considerations
We briefly justify our claim that the fix we propose to CTAP 2.1
has minimal impact in practical implementations, which is why we
argue that the security benefits it brings could be easily brought to
real-world applications.

We have implemented our modifications to CTAP 2.1 in forks
([11, 12]) of two popular open-source implementations of FIDO2,
one for token-side operations and the other for client-side opera-
tions. These implementations are respectively maintained by Ni-
trokey [22] and Mozilla [21]. Our implementations was introduced
as a new version of the CTAP protocol, which can be reported as
supported by the token and recognized by the client. The new im-
plementation co-exists naturally with previous versions. In terms
of changes to the cryptographic cores on both sides of the protocol,
we needed to add a new symmetric key expansion step on both
sides, plus MAC generation on the token-side and MAC verification
on the client-side. However, the impact on the code footprint is very
small (0.35% increase in the binary size for the token) because we
can reuse pre-existing key expansion and MAC computation code.
The bandwidth increase is 32-bytes in token-to-client responses,
and the impact on round trip time is 13.4% (the difference is in the
range of 0.09 seconds). Note that these results were obtained over
a naive adaptation of the code, without any attempt to perform
non-trivial optimizations.

Finally, we also investigated the impact of our proposed modi-
fication to token-side code to improve privacy, where we require
the token to always use a fresh DH share. We implemented the
most naive solution, which is to generate the new DH share just
before it is transmitted to the client, and measured the impact on
round-trip time. We measured the overhead at around 0.6% (less
than 0.01 seconds), which is imperceptible to human users.

7 Conclusion
We revisit the privacy and security of FIDO2 by focusing on the role
of the CTAP component. We look for the first time at the impact
of CTAP on privacy, and we clarify the contribution of CTAP on
authentication properties. We show that, by improving CTAP, one
can mitigate rogue key attacks and other related attacks. For this,
we propose a simple fix that has very limited impact on code base
and performance: adding a symmetric key expansion step to obtain
two MAC keys instead of one, and an extra MAC computation to
protect messages sent from the token to the client. On the privacy
front, we show that the only thing that can compromise security
is the reuse of DH shares, and this can be prevented with a simple
CTAP protocol change or by the user ensuring that the token is
rebooted between registrations.

Acknowledgments
Shan Chen was supported by the research start-up grant from
the Southern University of Science and Technology. Alexandra
Boldyreva and Kaishuo Cheng were supported by the National
Science Foundation under Grant No.1946919. Luís Esquível was
supported by Fundação para a Ciência e Tecnologia (FCT), Portugal
- 2021.07225.BD.

316



Privacy and Security of FIDO2 Revisited Proceedings on Privacy Enhancing Technologies 2025(3)

References
[1] FIDO Alliance. 2022. Client to Authenticator Protocol (CTAP) – Proposed

Standard. https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-
authenticator-protocol-v2.1-ps-errata-20220621.html.

[2] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, Kaishuo Cheng, and Luís
Esquível. 2025. Privacy and Security of FIDO2 Revisited. Cryptology ePrint
Archive, Paper 2025/459. https://eprint.iacr.org/2025/459

[3] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. 2021.
Provable Security Analysis of FIDO2. In Advances in Cryptology - CRYPTO 2021
(Lecture Notes in Computer Science, Vol. 12827). Springer, 125–156. https://doi.
org/10.1007/978-3-030-84252-9_5 Full version: https://eprint.iacr.org/2020/756.

[4] Manuel Barbosa, André Cirne, and Luís Esquível. 2023. Rogue key and im-
personation attacks on FIDO2: From theory to practice. In Proceedings of the
18th International Conference on Availability, Reliability and Security, ARES 2023,
Benevento, Italy, 29 August 2023- 1 September 2023. ACM, 14:1–14:11. https:
//doi.org/10.1145/3600160.3600174

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1996. Keying hash functions for
message authentication. In CRYPTO 1996. Springer, 1–15.

[6] Nina Bindel, Cas Cremers, andMang Zhao. 2023. FIDO2, CTAP 2.1, andWebAuthn
2: Provable security and post-quantum instantiation. In 2023 IEEE Symposium on
Security and Privacy (SP). IEEE, 1471–1490.

[7] Nina Bindel, Nicolas Gama, Sandra Guasch, and Eyal Ronen. 2023. To attest or
not to attest, this is the question–Provable attestation in FIDO2. In ASIACRYPT
2023. Springer, 297–328.

[8] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. 2003.
Password Interception in a SSL/TLS Channel. InAdvances in Cryptology - CRYPTO
2003 (Lecture Notes in Computer Science, Vol. 2729). Springer, 583–599. https:
//doi.org/10.1007/978-3-540-45146-4_34

[9] Robert Dumitru, Daniel Genkin, Andrew Wabnitz, and Yuval Yarom. 2023. The
Impostor Among US(B): Off-Path Injection Attacks on USB Communications.
In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 5863–5880. https://www.usenix.org/conference/usenixsecurity23/
presentation/dumitru

[10] M Dworkin. 2001. Recommendation for Block Cipher Modes of Operation.
Methods and Techniques (2001).

[11] Luís Esquível. 2025. authenticator-rs-fork. https://github.com/esquivel71/
authenticator-rs_fork.

[12] Luís Esquível. 2025. nitrokey-3-firmware-fork. https://github.com/esquivel71/
nitrokey-3-firmware_fork.

[13] FIDO Alliance. 2019. Client to Authenticator Protocol (CTAP) – Proposed
Standard. https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-
authenticator-protocol-v2.0-ps-20190130.html.

[14] FIDO Alliance. Accessed August 2024. User Authentication Specifications
Overview. https://fidoalliance.org/specifications/.

[15] Marc Fischlin and Arno Mittelbach. 2021. An Overview of the Hybrid Argument.
Cryptology ePrint Archive, Report 2021/088. https://eprint.iacr.org/2021/088.

[16] Iness Ben Guirat and Harry Halpin. 2018. Formal verification of the W3C web
authentication protocol. In 5th Annual Symposium and Bootcamp on Hot Topics in
the Science of Security. ACM, 6.

[17] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. 2023. Token meets wallet: For-
malizing privacy and revocation for FIDO2. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 1491–1508.

[18] Kevin Igoe, David McGrew, and Margaret Salter. 2011. Fundamental Elliptic
Curve Cryptography Algorithms. RFC 6090. https://doi.org/10.17487/RFC6090

[19] Michal Kepkowski, Lucjan Hanzlik, Ian D Wood, and Mohamed Ali Kaafar. 2022.
How Not to Handle Keys: Timing Attacks on FIDO Authenticator Privacy. Pro-
ceedings on Privacy Enhancing Technologies (2022).

[20] Dr. Hugo Krawczyk and Pasi Eronen. 2010. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869. https://doi.org/10.17487/RFC5869

[21] Mozilla. 2025. authenticator-rs. https://github.com/mozilla/authenticator-rs.
[22] Nitrokey. 2025. nitrokey-3-firmware. https://github.com/Nitrokey/nitrokey-3-

firmware.
[23] Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security

proofs. Cryptology ePrint Archive, Paper 2004/332. https://eprint.iacr.org/2004/
332

[24] W3C. 2021. Web Authentication: An API for accessing Public Key Credentials
Level 2 – W3C Recommendation. https://www.w3.org/TR/2021/REC-webauthn-
2-20210408/.

[25] W3C. 2023. Web Authentication: An API for accessing Public Key Credentials
Level 3 – W3C Recommendation. https://www.w3.org/TR/webauthn-3/.

A Description of WebAuthn
This section describes the protocol algorithms of WebAuthn, as
shown in Figure 9, which follows the descriptions presented in [6, 7].

For better presentation, we omit some details that are irrelevant to
the attestation modes considered in this work: None, Self, Basic.

Recall that, as shown in Figure 2, WebAuthn has two challenge-
response flows, one for registering a new credential with the server,
with algorithms rChal, rCom, rRsp, and rVrfy, and one for authen-
ticating under a previously registered credential, with algorithms
aChal, aCom, aRsp, and aVrfy.

On registration, the server runs rChal, which inputs the server
identity id𝑆 , token binding state tb and user verification condition
UV (indicatign whether the user should be verified with PIN or
biometrics), and samples a new random challenge ch𝑆 and user
identifier uid𝑆 . All these variables, except the token binding state,
compose the challenge message𝑚rch, which is output and delivered
to the client 𝐶 . 𝐶 then runs rCom, which inputs the server domain
ˆid𝑠 , the token binding state tb and the challenge message 𝑚rch,
and first checks if the received server id𝑆 identity in𝑚rch matches
ˆid𝑠 . If it does, then it combines the server challenge ch and the
token binding state tb into a client message 𝑚rcl, which is then
hashed. The digest ℎ, along with the server identity id𝑆 , the user
identifier uid and the user verification condition UV, are grouped
into a command message𝑚rcom, which is output and sent to the
authenticator 𝑇 . The authenticator runs rRsp, which inputs𝑚rcom

and generates a new assertion key pair (𝑝𝑘, 𝑠𝑘), samples a new
credential identifier cid and sets the signature counter 𝑛 to zero.
Next, it combines the received id𝑆 , the signature counter 𝑛, the cid,
the new public key 𝑝𝑘 and the received UV into a message𝑚 and,
depending on the attestation mode required by relying party (Basic
in Figure. 2), produces a new attestation signature 𝜎att on𝑚 and ℎ
(the hash of𝑚rcl) using the authenticator’s private attestation ak.
The authenticator then sets, in its registration context rc𝑇 , and for
the server identity id𝑆 , the received user identifier uid, the sampled
cid, the assertion secret key 𝑠𝑘 and the signature counter 𝑛, and
also sets the id𝑆 , ℎ, cid, 𝑛, 𝑝𝑘 , UV and attestation mode used as the
agreed content agCon (data that must be the same both from the
perspective of the server and the token). Finally, it sets the hash of
id𝑆 , the cid and the signature counter as the session identifier sid,
and returns the token response message𝑚rrsp, composed by𝑚 and
(optionally) 𝜎att back to the client, which in turn forwards𝑚rrsp and
its own𝑚rcl to the server. To conclude the registration, the server
runs rVrfy, which inputs id𝑆 ,𝑚rcl,𝑚rrsp and public parameters gpars,
and then checks if the information that came from the token and
client is correct, including the server identity id𝑆 , the token binding
state tb𝑆 , the sampled challenge ch𝑆 , the user verification condition
UV𝑆 , the signature counter 𝑛 (which must be zero) and, depending
on the attestation mode, the attestation signature 𝜎att. If everything
is correct, it sets the agreed content agCon and the session identifier
id𝑆 identically to the token, sets the user identifier uid𝑆 , the token
assertion public key 𝑝𝑘 and the public signature counter 𝑛 in its
registration context rc𝑆 , for the specified cid, and finishes by returns
successfully.

On authentication, the procedure is very similar. The server
starts with aChal, which is identical to rChal except that it does not
sample a new uid𝑆 , which is therefore excluded from the output
server message 𝑚ach. The same is true of the aCom algorithm,
which differs only in the output message 𝑚acom that no longer
contains uid. The token, upon receiving𝑚acom, runs aRsp, which
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rChal(id𝑆 , tb,UV) :
1: ch𝑆

$← {0, 1}≥𝜆, tb𝑆 ← tb

2: UV𝑆 ← UV, uid𝑆
$← {0, 1}≤4𝜆

3: 𝑚rch ← (id𝑆 , ch𝑆 , uid𝑆 ,UV𝑆 )
4: return𝑚rch

aChal(id𝑆 , tb,UV) :
1: ch𝑆

$← {0, 1}≥𝜆, tb𝑆 ← tb
2: UV𝑆 ← UV
3: 𝑚ach ← (id𝑆 , ch𝑆 ,UV𝑆 )
4: return𝑚ach

rCom( ˆid𝑆 , tb,𝑚rch ) :
1: (id𝑆 , ch, uid,UV) ←𝑚rch
2: if id𝑆 ≠ ˆid𝑆 then
3: abort
4: 𝑚rcl ← (ch, tb)
5: ℎ ← H(𝑚rcl )
6: 𝑚rcom ← (id𝑆 , uid, ℎ,UV)
7: return (𝑚rcl,𝑚rcom )

aCom( ¯id𝑆 , tb,𝑚ach ) :
1: (id𝑆 , ch,UV) ←𝑚ach
2: if id𝑆 ≠ ¯id𝑆 then
3: abort
4: 𝑚acl ← (ch, tb)
5: ℎ ← H(𝑚acl )
6: 𝑚acom ← (id𝑆 , ℎ,UV)
7: return (𝑚acl,𝑚acom )

rRsp(𝑇,𝑚rcom ) :
1: (id𝑆 , uid, ℎ,UV) ←𝑚rcom

2: (𝑝𝑘, 𝑠𝑘 ) $← KG( ), cid $← {0, 1}≥𝜆, 𝑛 ← 0
3: 𝑚 ← (H(id𝑆 ), 𝑛, cid, 𝑝𝑘,UV)
4: 𝜎att

$← Sign(rc𝑇 .ak, (𝑚,ℎ) )
5: 𝑚rrsp ← (𝑚,𝜎att )
6: rc𝑇 [id𝑆 ] ← (uid, cid, 𝑠𝑘, 𝑛)
7: agCon← (id𝑆 , ℎ, cid, 𝑛, 𝑝𝑘,UV, basic)
8: sid← (H(id𝑆 ), cid, 𝑛)
9: return (𝑚rrsp, rc𝑇 , cid, sid, agCon)

aRsp(𝑇,𝑚acom ) :
1: (id𝑆 , ℎ,UV) ←𝑚acom

2: rc𝑇 [id𝑆 ] .𝑛 ← rc𝑇 [id𝑆 ] .𝑛 + 1
3: 𝑎𝑑 ← (H(id𝑆 ), rc𝑇 [id𝑆 ] .𝑛,UV)
4: 𝜎 ← Sign(rc𝑇 [id𝑆 ] .𝑠𝑘, (𝑎𝑑,ℎ) )
5: 𝑚arsp ← (rc𝑇 [id𝑆 ] .cid, 𝑎𝑑, 𝜎, rc𝑇 [id𝑆 ] .uid)
6: agCon← (id𝑆 , ℎ, rc𝑇 [id𝑆 ] .𝑛,UV)
7: sid← (H(id𝑆 ), rc𝑇 [id𝑆 ] .cid, ℎ, rc𝑇 [id𝑆 ] .𝑛)
8: return (𝑚arsp, rc𝑇 , cid, sid, agCon)

rVrfy(id𝑆 ,𝑚rcl,𝑚rrsp, gpars) :
1: (ch, tb) ←𝑚rcl, (𝑚,𝜎att ) ←𝑚rrsp

2: (ℎ,𝑛, cid, 𝑝𝑘,UV) ←𝑚

3: if ch𝑆 ≠ ch ∨ tb𝑆 ≠ tb ∨ ℎ ≠

H(id𝑆 ) ∨ UV𝑆 ≠ UV ∨ 𝑛 ≠ 0 ∨
Ver(gpars.vk, (𝑚,H(id𝑆 ) ), 𝜎att ) = 0 then

4: return (0, rc𝑆 ,⊥,⊥,⊥)
5: agCon← (id𝑆 ,H(𝑚rcl ), cid, 𝑛, 𝑝𝑘,UV, basic)
6: rc𝑆 [cid] ← (uid𝑆 , 𝑝𝑘,𝑛)
7: sid← (H(id𝑆 ), cid, 𝑛)
8: return (1, rc𝑆 , cid, sid, agCon)

aVrfy(id𝑆 ,𝑚acl,𝑚arsp ) :
1: (ch, tb) ←𝑚acl, (cid, 𝑎𝑑, 𝜎, uid) ←𝑚arsp

2: (ℎ,𝑛,UV) ← 𝑎𝑑

3: if ch𝑆 ≠ ch ∨ tb𝑆 ≠ tb ∨ ℎ ≠

H(id𝑆 ) ∨ UV𝑆 ≠ UV ∨ 𝑛 ≤ rc𝑆 [cid] .𝑛 ∨
Ver(rc𝑆 [cid] .𝑝𝑘, (𝑎𝑑,H(𝑚acl ) ), 𝜎 ) = 0 then

4: return (0, rc𝑆 ,⊥,⊥,⊥)
5: agCon← (id𝑆 ,H(𝑚acl ), 𝑛,UV)
6: rc𝑆 [cid] .𝑛 ← 𝑛

7: sid← (ℎ, cid,H(𝑚acl ), 𝑛)
8: return (1, rc𝑆 , cid, sid, agCon)

Figure 9: WebAuthn protocol functions.

first increments the signature counter 𝑛 stored in its registration
context. Next, the hashed server identity id𝑆 , along with 𝑛, the user
verification condition UV and the hashed𝑚acl client message ℎ are
signed using the assertion secret key 𝑠𝑘 generated in the previous
registration run to produce a signature 𝜎 . Then, it sets the id𝑆 , ℎ,
𝑛 and UV as the agreed content agCon and the hashed id𝑆 , the
cid (sampled and stored in the previous registration run), ℎ and
𝑛 as the session identifier sid. Finally, it sets the cid, the hashed
𝑖𝑑𝑆 , 𝑛, UV, the assertion signature 𝜎 and the user identifier uid as
the response message𝑚arsp, which is returned to the client, and
then forwarded, along with the client message𝑚acl, to the server.
The aVrfy algorithm is also similar to rVrfy. It inputs𝑚acl and𝑚arsp

and verifies if the information received is correct, with the major
difference being that it now verifies the assertion signature 𝜎 using
the previously stored assertion public key 𝑝𝑘 , and also checks if the
signature counter received is not greater than the counter stored
in the previous registration/authentication session. If everything is
correct, it sets the agCon and sid identically to the token, updates
the signature counter 𝑛, and returns successfully.

B Descriptions of CTAP 2.1, CTAP 2.1+, CTAP
2.1++

High-level flow of CTAP 2.1.We refer here to Figure 3 for the
high-level flow of the protocol, which proceeds as follows.

Reboot is performed via the authPowerUp-T function, which in-
puts the state of the token st𝑇 and freshly samples a new ECDH key
pair and pinToken for each supported protocol. It also resets the con-
secutive pin attempts counter st𝑇 .𝑚. The variable st𝑇 .initialData
contains the token version and supported PIN/UV Auth Protocol

list, and is used only the first time authPowerUp-T is called (for a
token 𝑇 ) to set st𝑇 .version and st𝑇 .puvProtocolList.

During the Setup phase, the authenticator 𝑇 first outputs its
info, which contains the list of supported PIN/UV Auth Protocol
(max. 2) and sends it to the client 𝐶 . 𝐶 runs obtainSharedSecret-C-
start, which selects the protocol it is going to use and outputs it to
𝑇 . 𝑇 then runs obtainSharedSecret-T, sets its puvProtocol chosen
by 𝐶 and outputs its ECDH share 𝑝𝑘𝑇 back to 𝐶 . At this stage, 𝐶
runs two different functions. First, it executes obtainSharedSecret-
C-end, which runs the puvProtocol function encapsulate. This
function derives the shared secret 𝐾 from the client’s ECDH share
and the received share 𝑝𝑘𝑇 from the token, and outputs 𝑐 , which
is the client’s ECDH share. Then, 𝐶 runs setPIN-C, which inputs
the user pin, encrypts it with 𝐾 to create ciphertext 𝑐𝑝 , and then
authenticates 𝑐𝑝 to create 𝑡𝑝 . In the end,𝐶 sends 𝑐, 𝑐𝑝 , 𝑡𝑝 to the token.
Finally, after receiving this data, the token executes setPIN-T, which
runs puvProtocol function decapsulate to derive the same shared
secret 𝐾 , and uses it to verify and decrypt 𝑐𝑝 . The resulting pin is
then hashed and stored in the token’s static storage st𝑇 . The token’s
retry counter st𝑇 .pinRetries is also initialized to pinRetriesMax
(which is at most 8).

The Bind phase is essentially identical to Setup until the execu-
tion of obtainSharedSecret-C-end on the client’s side. Afterwards,
𝐶 runs obtainPinUvAuthToken-C-start, which encrypts the hash of
the user pin, and sends its ECDH share and the resulting ciphertext
𝑐 and 𝑐𝑝ℎ to token𝑇 . The token executes obtainPinUvAuthToken-T,
which, as long as st𝑇 .pinRetries is not 0, runs decapsulate to obtain
𝐾 , decrements st𝑇 .pinRetries, decrypts 𝑐𝑝ℎ and then verifies if the
result matches the saved pinHash from Setup. If it does not, then it
regenerates the token’s ECDH share for the currently in use puvPro-
tocol, decrements the token’s consecutive tries counter st𝑇 .𝑚 and,
if st𝑇 .𝑚 reaches 0, forces a token reboot. If verification succeeds,
then it samples a new pinToken for every supported PIN/UV Auth
Protocol, sets the correct pinToken as its binding state, encrypts it
with 𝐾 and sends the resulting ciphertext 𝑐𝑝𝑡 to the client. Finally,
𝐶 runs obtainSharedSecret-C-end, which decrypts 𝑐𝑝𝑡 and sets the
result as its binding state.

After a client 𝐶 and token 𝑇 have finished Bind, 𝐶 can use its
binding state 𝜋 𝑗

𝐶
.bs as the key to authenticate a command 𝑀 by

running auth, which outputs 𝑀 and a tag 𝑡 , and then the token
can validate (𝑀, 𝑡) with the same binding state 𝜋𝑖

𝑇
.bs by running

validate.
We present the full code-based description of all CTAP 2.1 func-

tions in Figure 12.

Session and protocol variables. As in [6], we specify here the
relevant variables for tokens and clients specific for CTAP 2.1. All
variables defined for PACA are inherited in CTAP 2.1. A token’s
internal state st𝑇 is composed of: (i) a token version st𝑇 .version
(e.g., CTAP2.0 or CTAP2.1), (ii) a list of available PIN/UV protocols
st𝑇 .puvProtocolList, (iii) the currently selected PIN/UV protocol
st𝑇 .puvProtocol, (iv) the counter for the maximum amount of pin
failed attempts st𝑇 .pinRetries, (v) the counter for the number of
consecutive pin failed attempts st𝑇 .𝑚 and (vi) the stored hashed
pin st𝑇 .pinHash. Both tokens and clients (i.e. all session oracles 𝜋 𝑗

𝐶

and 𝜋𝑖
𝑇
) share: (i) the binding state bs which is set as the pinToken

and (ii) the session identifier sid, which is defined as the full trace
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initialize ():
1: regenerate()
2: resetPuvToken()

getPublicKey ():
1: return 𝑝𝑘

expand (𝑝𝑡 ):
1: 𝑝𝑡𝑒 ← H3 (𝑝𝑡 )
2: Parse(𝐾𝐶 , 𝐾𝑇 )← 𝑝𝑡𝑒 , s.t. |𝐾𝐶 | = 2𝜆
3: return (𝐾𝐶 , 𝐾𝑇 )

regenerate ():

1: (𝑝𝑘, 𝑠𝑘 ) $← ECDH.KG()

resetPuvToken ():

1: 𝑝𝑡
$← {0, 1}2𝜆

encrypt (𝐾,𝑚):
1: Parse(𝐾1, 𝐾2)← 𝐾 , s.t. |𝐾1 | = 2𝜆
2: 𝑐 ← SKE.Enc(𝐾2,𝑚)
3: return 𝑐

decrypt (𝐾,𝑐):
1: Parse(𝐾1, 𝐾2)← 𝐾 , s.t. |𝐾1 | = 2𝜆
2: 𝑚 ← SKE.Dec(𝐾2, 𝑐)
3: return𝑚

encapsulate (𝑝𝑘 ′):
1: 𝑍 ← XCoordinateOf(𝑠𝑘 · 𝑝𝑘 ′)
2: 𝐾1 ← H2 (𝑍, ”CTAP2 HMAC KEY”)
3: 𝐾2 ← H2 (𝑍, ”CTAP2 AES KEY”)
4: 𝐾 ← (𝐾1, 𝐾2 )
5: 𝑐 ← 𝑝𝑘

6: return (𝑐, 𝐾 )

decapsulate (𝑐):
1: 𝑍 ← XCoordinateOf(𝑠𝑘 · 𝑐)
2: 𝐾1 ← H2 (𝑍, ”CTAP2 HMAC KEY”)
3: 𝐾2 ← H2 (𝑍, ”CTAP2 AES KEY”)
4: 𝐾 ← (𝐾1, 𝐾2 )
5: return 𝐾

authenticate (𝐾 ′,𝑚):
1: Parse(𝐾 ′1, 𝐾

′
2)← 𝐾 ′ , s.t. |𝐾 ′1 | = 2𝜆

2: 𝑡 ← MAC(𝐾 ′1,𝑚)
3: return 𝑡

verify (𝐾 ′,𝑚, 𝑡 ):
1: Parse(𝐾 ′1, 𝐾

′
2)← 𝐾 ′ , s.t. |𝐾 ′1 | = 2𝜆

2: 𝑡 ← MAC(𝐾 ′1,𝑚)
3: return [ [𝑡 = 𝑡 ′ ] ]

Figure 10: Pin UV Auth Protocol 2. All original functions are
presented as shown in [6], with our proposed addition of
expand for CTAP 2.1+ in blue.

encrypt (𝐾,𝑚):
1: 𝑐 ← SKE.Enc(𝐾,𝑚)
2: return 𝑐

decrypt (𝐾,𝑐):
1: 𝑚 ← SKE.Dec(𝐾,𝑐)
2: return𝑚

resetPuvToken ():

1: 𝑝𝑡
$← {0, 1}𝜇𝜆

encapsulate (𝑝𝑘 ′):
1: 𝑍 ← XCoordinateOf(𝑠𝑘 · 𝑝𝑘 ′)
2: 𝐾 ← H1 (𝑍 )
3: 𝑐 ← 𝑝𝑘

4: return (𝑐, 𝐾 )

decapsulate (𝑐):
1: 𝑍 ← XCoordinateOf(𝑠𝑘 · 𝑐)
2: 𝐾 ← H1 (𝑍 )
3: return 𝐾

authenticate (𝐾 ′,𝑚):
1: 𝑡 ← MAC(𝐾 ′,𝑚)
2: return 𝑡

verify (𝐾 ′,𝑚, 𝑡 ):
1: 𝑡 ← MAC(𝐾 ′,𝑚)
2: return [ [𝑡 = 𝑡 ′ ] ]

Figure 11: PIN/UV Auth Protocol 1. Only functions that are
different from PIN/UV Auth Protocol 2 are shown.

of Bind. Client sessions have: (i) the selected PIN/UV protocol
𝜋
𝑗

𝐶
.puvProtocol, and (ii) the ephemeral session key derived from

ECDH 𝜋
𝑗

𝐶
.K. Additionally, we added a new 𝜋𝑖

𝑇
.canValidate variable

to token sessions, which we explain later in this section.
Low-level CTAP 2.1 description. The original CTAP 2.1 proto-
col specifies an abstract PIN/UV Auth Protocol, which provides
an interface for a set of lower level cryptographic functions, and
provides two distinct instantiations, referred to as PIN/UV Auth
Protocol 1 and PIN/UV Auth Protocol 2 (seen in Figures 11 and 10
respectively).8 We start by first describing PIN/UV Auth Protocol
2, which is the protocol we considered for our CTAP 2.1 security
analysis and results, and thus adapted for CTAP 2.1+, and then
describe PIN/UV Auth Protocol 1 for completeness.

The initialize function, which is called by a token on reboot or
a client when starting a new Bind run, generates a fresh ECDH
key pair over the NIST P-256 curve and a fresh 2𝜆-bit pinToken
(with 𝜆 = 128). Both actions can also be executed separately via
regenerate and resetPuvToken, respectively. The generated ECDH
share can then be obtained (but not regenerated) via getPublicKey.

8For CTAP 2.1+, we extend only PIN/UV Auth Protocol 2 (which we simply call PIN/UV
Auth Protocol) by adding a new function expand.

authPowerUp-T(st𝑇 ):
1: if st𝑇 .version =⊥ ∧ st𝑇 .puvProtocolList =⊥ then
2: (version, puvProtocolList) ← st𝑇 .initialData
3: st𝑇 .version← version
4: st𝑇 .puvProtocolList← puvProtocolList
5: for all puvProtocol ∈ st𝑇 .puvProtocolList do
6: st𝑇 .puvProtocol.initialize( )
7: st𝑇 .𝑚 ← 3

obtainSharedSecret-C-start(𝜋 𝑗

𝐶
, info):

1: Parse(version, puvProtocolList) ← info
2: if version = 2.0 then return ⊥
3: select puvProtocol← puvProtocolList
4: 𝜋 𝑗

𝐶
.puvProtocol← puvProtocol

5: 𝜋 𝑗

𝐶
.puvProtocol.initialize( )

6: 𝜋 𝑗

𝐶
.stexe ← waiting

7: 𝜋 𝑗

𝐶
.sid← 𝜋

𝑗

𝐶
.sid | | info | | puvProtocol

8: return puvProtocol

obtainPinUvAuthToken-C-start(𝜋 𝑗

𝐶
, pin):

1: pinHash← H(pin)
2: 𝑐𝑝ℎ

$← 𝜋
𝑗

𝐶
.puvProtocol.encrypt(𝜋 𝑗

𝐶
.K, pinHash)

3: 𝜋 𝑗

𝐶
.stexe ← bindStart

4: 𝜋 𝑗

𝐶
.sid← 𝜋

𝑗

𝐶
.sid | | 𝑐𝑝ℎ

5: return 𝑐𝑝ℎ

obtainPinUvAuthToken-C-end(𝜋 𝑗

𝐶
, 𝑐𝑝𝑡 ):

1: 𝜋 𝑗

𝐶
.bs← 𝜋

𝑗

𝐶
.puvProtocol.decrypt(𝜋 𝑗

𝐶
.K, 𝑐𝑝𝑡 )

2: 𝜋 𝑗

𝐶
.stexe ← bindDone

3: 𝜋 𝑗

𝐶
.sid← 𝜋

𝑗

𝐶
.sid | | 𝑐𝑝𝑡 | | false

4: return

setPIN-C(𝜋 𝑗

𝐶
, pin𝑈 ):

1: if pin𝑈 ∉ P then return ⊥
2: 𝑐𝑝

$← 𝜋
𝑗

𝐶
.puvProtocol.encrypt(𝜋 𝑗

𝐶
.K, pin𝑈 )

3: 𝑡𝑝
$← 𝜋

𝑗

𝐶
.puvProtocol.authenticate(𝜋 𝑗

𝐶
.K, 𝑐𝑝 )

4: return (𝑐𝑝 , 𝑡𝑝 )

setPIN-T(𝜋𝑖
𝑇
, puvProtocol, 𝑐, 𝑐𝑝 , 𝑡𝑝 ):

1: if puvProtocol ∉ st𝑇 .puvProtocolList ∨
st𝑇 .pinHash ≠⊥ then

2: return ⊥
3: 𝐾 ← st𝑇 .puvProtocol.decapsulate(𝑐 )
4: if 𝐾 =⊥ ∨st𝑇 .puvProtocol.verify(𝐾,𝑐𝑝 , 𝑡𝑝 ) =

false then
5: return ⊥
6: pin← st𝑇 .puvProtocol.decrypt(𝐾,𝑐𝑝 )
7: if pin ∉ P then return ⊥
8: st𝑇 .pinHash← H(pin)
9: st𝑇 .pinRetries← pinRetriesMax
10: return accepted

auth-C (𝜋 𝑗

𝐶
, 𝑀):

1: 𝑡
$← 𝜋

𝑗

𝐶
.puvProtocol.authenticate(𝜋 𝑗

𝐶
.bs, 𝑀 )

2: return (𝑀, 𝑡 )
— CTAP 2.1+ below
auth-C (𝜋 𝑗

𝐶
, 𝑀):

1: (𝐾authC, _) ← 𝜋
𝑗

𝐶
.puvProtocol.expand(𝜋 𝑗

𝐶
.bs)

2: 𝑡
$← 𝜋

𝑗

𝐶
.puvProtocol.authenticate(𝐾authC, 𝑀 )

3: return (𝑀, 𝑡 )

validate-C (𝜋 𝑗

𝐶
, 𝑀, 𝑡 ):

1: (_, 𝐾authT ) ← 𝜋
𝑗

𝐶
.puvProtocol.expand(𝜋 𝑗

𝐶
.bs)

2: if 𝜋 𝑗

𝐶
.puvProtocol.verify(𝐾authT, 𝑀, 𝑡 ) = true

then return accepted
3: return rejected

getInfo-T(𝜋𝑖
𝑇
):

1: info← (st𝑇 .version, st𝑇 .puvProtocolList)
2: 𝜋𝑖

𝑇
.sid← 𝜋𝑖

𝑇
.sid | | info

obtainSharedSecret-T(𝜋𝑖
𝑇
, puvProtocol):

1: if puvProtocol ∉ st𝑇 .puvProtocolList then return
⊥

2: st𝑇 .puvProtocol.regenerate( )
3: 𝑝𝑘𝑇 ← st𝑇 .puvProtocol.getPublicKey( )
4: 𝜋𝑖

𝑇
.stexe ← waiting

5: 𝜋𝑖
𝑇
.sid← 𝜋𝑖

𝑇
.sid | | puvProtocol | | 𝑝𝑘𝑇

6: return 𝑝𝑘𝑇

obtainSharedSecret-C-end(𝜋 𝑗

𝐶
, 𝑝𝑘𝑇 ):

1: (𝑐, 𝐾 ) ← 𝜋
𝑗

𝐶
.puvProtocol.encapsulate(𝑝𝑘𝑇 )

2: 𝜋 𝑗

𝐶
.K← 𝐾

3: 𝜋 𝑗

𝐶
.sid← 𝜋

𝑗

𝐶
.sid | | 𝑝𝑘𝑇 | | puvProtocol | | 𝑐

4: return 𝑐

obtainPinUvAuthToken-T(𝜋𝑖
𝑇
, puvProtocol, 𝑐, 𝑐𝑝ℎ ):

1: if puvProtocol ∉ st𝑇 .puvProtocolList ∨
st𝑇 .pinRetries = 0 then

2: return (⊥, false)
3: 𝐾 ← st𝑇 .puvProtocol.decapsulate(𝑐 )
4: if 𝐾 =⊥ then return (⊥, false)
5: st𝑇 .pinRetries← pinRetries − 1
6: pinHash← st𝑇 .puvProtocol.decrypt(𝐾,𝑐𝑝ℎ )
7: if pinHash ≠ st𝑇 .pinHash then
8: st𝑇 .puvProtocol.regenerate( )
9: st𝑇 .𝑚 ← st𝑇 .𝑚 − 1
10: if st𝑇 .𝑚 = 0 then
11: authPowerUp-T(st𝑇 )
12: return (⊥, true)
13: else
14: return (⊥, false)
15: st𝑇 .𝑚 ← 3
16: st𝑇 .pinRetries← pinRetriesMax
17: for all puvProtocol’ ∈ st𝑇 .puvProtocolList do
18: st𝑇 .puvProtocol’.resetPuvToken( )
19: 𝜋𝑖

𝑇
.bs← 𝜋𝑖

𝑇
.puvProtocol.𝑝𝑡

20: 𝑐𝑝𝑡
$← st𝑇 .puvProtocol.encrypt(𝐾, 𝜋𝑖𝑇 .bs)

21: 𝜋𝑖
𝑇
.stexe ← bindDone

22: 𝜋𝑖
𝑇
.canValidate← true

23: 𝜋𝑖
𝑇
.sid← 𝜋𝑖

𝑇
.sid | | puvProtocol | | 𝑐 | | 𝑐𝑝ℎ | | 𝑐𝑝𝑡 | |

false
24: return (𝑐𝑝𝑡 , false)

validate-T (𝜋𝑖
𝑇
, 𝑀, 𝑡, 𝑑):

1: if st𝑇 .puvProtocol.verify(𝜋𝑖𝑇 .bs, 𝑀, 𝑡 ) = true then
2: return 𝑑
3: return rejected

— CTAP 2.1+ below
auth-T (𝜋𝑖

𝑇
, 𝑀):

1: (_, 𝐾authT ) ← 𝜋
𝑗

𝐶
.puvProtocol.expand(𝜋𝑖

𝑇
.bs)

2: 𝑡
$← st𝑇 .puvProtocol.authenticate(𝐾authT, 𝑀 )

3: return (𝑀, 𝑡 )
validate-T (𝜋𝑖

𝑇
, 𝑀, 𝑡, 𝑑):

1: (𝐾authC, _) ← 𝜋
𝑗

𝐶
.puvProtocol.expand(𝜋𝑖

𝑇
.bs)

2: if 𝜋𝑖
𝑇
.canValidate = true then

3: if st𝑇 .puvProtocol.verify(𝐾authC, 𝑀, 𝑡 ) = true
then

4: 𝜋𝑖
𝑇
.canValidate← false

5: return 𝑑
6: return rejected

Figure 12: CTAP 2.1 protocol functions. The current auth-C
and validate-T functions aremarked in red. Code below corre-
sponds to CTAP 2.1+, where we highlight in blue the changes
to the current version of the protocol: deriving two MAC
keys instead of one and using them for bi-directional au-
thentication. Additionally, we mark in orange our proposed
CTAP 2.1++ modification of the token always sampling a
fresh ECDH share.

The encrypt and decrypt functions both input a 4𝜆-bit key 𝐾 and
a message𝑚 or ciphertext 𝑐 , then take the last 2𝜆 bits as 𝐾2, and
use 𝐾2 to respectively encrypt𝑚 or decrypt 𝑐 , using the underlying
encryption scheme SKE, instantiated as AES-256 in CBC-mode
with random IV. authenticate inputs a key 𝐾 , which can be 2𝜆 or
4𝜆 bits long (depending on whether the pinToken is the key or if a
session key from Setup is used instead) and a message𝑚, and uses
the first 2𝜆 bits as a key to authenticate𝑚, producing a tag 𝑡 using
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the underlying MAC. verify is almost identical, but also inputs a
tag 𝑡 and simply outputs if 𝑡 is a valid tag for 𝑚 or not. In both
cases, the underlying MAC is HMAC-SHA-256 using a 256-bit key.
The encapsulate and decapsulate functions perform the ECDH key
exchange and then produce 𝐾1 and 𝐾2 by passing the ECDH result
through a KDF (modeled byH2), instantiated as HKDF-SHA-256. In
encapsulate, which is only executed by a client, both 𝐾 = (𝐾1, 𝐾2)
and the ECDH share 𝑐 are output, while in decapsulate, which is
only executed by the token, only 𝐾 is returned.

PIN/UV Auth Protocol 1 is identical to PIN/UV Auth Protocol 2
in the initialize, getPublicKey and regenerate functions. The reset-
PuvToken is almost identical, but can sample a fresh pinToken that
is 𝜆-bit or 2𝜆-bit in length. encrypt and decrypt receive a 2𝜆-bit
key 𝐾 and use it directly to encrypt or decrypt the input𝑚 or 𝑐 .
SKE is instantiated as AES-256 in CBC-mode with zero IV. authen-
ticate and verify use a key 𝐾 (which can be the same key used for
encrypt or decrypt) to authenticate a message𝑚, producing a 𝜆-bit
tag 𝑡 . In practice, 𝑡 is the result of truncating the leftmost 𝜆 bits
from the HMAC-SHA-256 2𝜆-bit output. Finally, encapsulate and
decapsulate perform the same ECDH key exchange, but pass the
ECDH shared secret through SHA-256 (modeled byH1) to produce
a single, 2𝜆-bit symmetric key 𝐾 .

Remark. While we generally maintained the CTAP 2.1 descrip-
tion as close as possible to the original work in [6], we do propose
another modification to the description, which we also include in
CTAP 2.1+. We include a new flag 𝜋𝑖

𝑇
.canValidate set to true in the

protocol function obtainPinUvAuthToken-T. This flag determines
if validate-T can verify the received tag or not for a given token
session 𝜋𝑖

𝑇
. This modification to the protocol description aims at

more closely following the CTAP 2.1 protocol specifications, which
state that any command sent to a token which requires user pres-
ence (modeled by the bit 𝑑) and verifies correctly cause the token
to revoke permissions from the currently in use binding state, effec-
tively removing the possibility of validating more commands using
the same binding state after the first successful validation.

CTAP 2.1+ description. For CTAP 2.1+, we propose a PIN/UV
Auth Protocol which is identical to PIN/UV Auth Protocol 2 from
CTAP 2.1 but with the addition of a new function expand, which
inputs a 2𝜆-bit pinToken 𝑝𝑡 (binding state), produces a 4𝜆-bit ex-
panded pinToken 𝑝𝑡𝑒 with a key derivation function modeled by
H3 and then parses 𝑝𝑡𝑒 into two 2𝜆-bit keys, to be used for authen-
ticating client-to-token and token-to-client messages. In practice,
H3 could be instantiated with HKDF-SHA-256 called twice with
two labels distinct from those in CTAP 2.1, similar to how (𝐾1, 𝐾2)
are derived, or simply instantiated with SHA-512. The CTAP 2.1+
protocol is identical to CTAP 2.1 until Bind is finished. The modi-
fications can be seen in Figures 3, 12 and 10. After a client 𝐶 and
token 𝑇 have finished Bind, 𝐶 runs auth-C, which expands the
binding state 𝜋 𝑗

𝐶
.bs to produce a new authentication key 𝐾authC,

and uses 𝐾authC to produce a tag 𝑡 on message𝑀 . Afterwards, the
token can validate (𝑀, 𝑡) with the same binding state by running
validate-T, which obtains 𝐾authC and verifies (𝑀, 𝑡). After validat-
ing (𝑀, 𝑡) the token runs auth-T, which expands the binding state
𝜋𝑖
𝑇
.bs into a new authentication key 𝐾authT (different from 𝐾authC)

and uses it to produce a new tag 𝑡 on its response 𝑅. Finally, the
client receives (𝑅, 𝑡) and runs validate-C, which obtains 𝐾authT and

verifies (𝑅, 𝑡). Notice that the reason we expand the binding state
during authentication is to minimize as much as possible the mod-
ifications needed to achieve mutual authentication in CTAP 2.1+.
This expansion allows us to ensure that every part of CTAP 2.1
up until the authentication of commands and responses is exactly
the same, including the pinToken transmission from a token to the
client.
CTAP 2.1++ description. CTAP 2.1++ is identical to CTAP 2.1+
with the exception of function obtainSharedSecret-T, where a fresh
ECDH share is now always sampled by calling regenerate from
the underlying PIN/UV Auth Protocol before obtaining it with
getPublicKey.

C Preliminary Definitions
Definition 1. Let H : K ×D → R be a family of functions such

that H(𝑘, ·) = H𝑘 (·) is efficient for all 𝑘 . We say that H is collision
resistant if the advantage of any efficient adversary A defined below
is negligible.

AdvcollH (A) =Pr[𝑘
$← K, (𝑚1,𝑚2 )

$← A(𝑘 ) :𝑚1 ≠𝑚2

∧ H𝑘 (𝑚1 ) = H𝑘 (𝑚2 ) ] .

Definition 2. Let G be a cyclic group of prime order 𝑞 and gener-
ator 𝑔. The Strong Computational Diffie-Hellman (sCDH) assumption
states that given 𝑎, 𝑏

$← Z𝑞 , 𝑔,𝑔𝑎, 𝑔𝑏 , and an oracle O𝑎 which, for
any group elements 𝑌, 𝑍 ∈ G checks if 𝑌𝑎 = 𝑍 , it is computationally
infeasible for any efficient adversary A to compute 𝑔𝑎𝑏 . That is, the
advantage of any efficient adversary A defined below is negligible.

AdvsCDHG (A) = Pr[𝑔𝑎𝑏 ← A(G, 𝑔, 𝑔𝑎, 𝑔𝑏 , O𝑎 ) ] .

Definition 3. For any message authentication code MAC =

(Kg,Auth,Ver), we say MAC is SUF-CMA secure if for any efficient
adversary A against the security experiment ExptSUF-CMA

MAC (Fig. 13),
the advantage of A defined below is negligible.

AdvSUF-CMA
MAC (A) = Pr[ExptSUF-CMA

MAC (A) = 1] .

ExptSUF-CMA
MAC (A) :

𝐾
$← MAC.KG( )

𝑆 ← ∅
(𝑚, 𝑡 ) $← AOAuth,OVer ( )
return OVer (𝑚, 𝑡 ) ∧ (𝑚, 𝑡 ) ∉ 𝑆

OAuth(𝑚):
𝑡 ← MAC(𝐾,𝑚)
𝑆 ← 𝑆 ∪ (𝑚, 𝑡 )
return 𝑡

OVer(𝑚, 𝑡 ):
𝑡 ′ ← MAC(𝐾,𝑚)
return 𝑡 ′ = 𝑡

Figure 13: SUF-CMA Challenger and corresponding oracles
OAuth and OVer.

Definition 4. Let P be a set of all keyed functions F : {0, 1}𝑙 ×
{0, 1}𝑚 → {0, 1}𝑚 , where F is bijective and there exists an efficient
algorithm to compute F(𝑘, ·) and F−1 (𝑘, ·), ∀𝑘 ∈ {0, 1}𝑙 . Let F be the
set of all truly random permutations on {0, 1}𝑚 . Then, we say F is a
pseudo-random permutation if, for all efficient adversary A and all
𝑘 ∈ {0, 1}𝑙 , its advantage defined below is negligible.

AdvprpF (A) = Pr[F $← P : AF(𝑘,·) ( ) = 1] − Pr[f $← F : Af( ·) ( ) = 1] .

Definition 5. For any symmetric encryption scheme SKE =

(Kg, Enc,Dec), we say SKE is IND-1$PA secure if for any efficient
adversary A against the security experiment ExptIND-1$PASKE (Fig. 14),
the advantage of A defined below is negligible.

AdvIND-1$PASKE (A) =
�� 2 Pr[ExptIND-1$PASKE (A) = 1] − 1

�� .
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Definition 6. For any symmetric encryption scheme SKE =

(Kg, Enc,Dec), we say SKE is IND-1$PA-LPC secure if for any effi-
cient adversary A against the security experiment ExptIND-1$PA-LPCSKE
(Fig. 15), the advantage of A defined below is negligible.

AdvIND-1$PA-LPCSKE (A) =
�� 2 Pr[ExptIND-1$PA-LPCSKE (A) = 1] − 1

�� .
Definition 7. For any symmetric encryption scheme SKE =

(Kg, Enc,Dec), we say SKE is IND-1$PA-LHPC secure if for any effi-
cient adversary A against the security experiment ExptIND-1$PA-LHPCSKE
(Fig. 16), the advantage of A defined below is negligible.

AdvIND-1$PA-LHPCSKE (A) =
�� 2 Pr[ExptIND-1$PA-LHPCSKE (A) = 1] − 1

�� .
Definition 8. For any symmetric encryption scheme SKE =

(Kg, Enc,Dec), we say SKE is IND-1$PA-LHPC-H secure if for any effi-
cient adversaryA against the security experiment ExptIND-1$PA-LHPC-HSKE
(Fig. 17), the advantage of A defined below is negligible.

AdvIND-1$PA-LHPC-HSKE (A) =
�� 2 Pr[ExptIND-1$PA-LHPC-HSKE (A) = 1] − 1

�� .

ExptIND-1$PASKE (A) :

𝑏
$← {0, 1}

𝐾
$← SKE.KG( )

state← 0
(𝑚0,𝑚1 )

$← A()
𝑐chal

$← OLR (𝑚0,𝑚1 )
𝑏′

$← AOLR,ORAND (𝑐chal )
return (𝑏 = 𝑏′)

OLR(𝑚0,𝑚1):
if state ≠ 0 then

return ⊥
if | 𝑚0 | ≠ | 𝑚1 | then

return ⊥
𝑐chal

$← SKE.Enc(𝐾,𝑚𝑏 )
state← 1
return 𝑐chal

ORAND(𝑙 ):

𝑚′0,𝑚
′
1

$← {0, 1}𝑙

𝑐′
$← SKE.Enc(𝐾,𝑚′

𝑏
)

return (𝑚′0,𝑚′1, 𝑐′ )

Figure 14: IND-1$PA Challenger, and corresponding Left-
Right oracle OLR and RAND oracle ORAND.

ExptIND-1$PA-LPCSKE (A) :

𝑏
$← {0, 1}

𝐾
$← SKE.KG( )

state← 0
(𝑚0,𝑚1 )

$← A()
𝑐chal

$← OLR (𝑚0,𝑚1 )
𝑏′

$← AOLR,ORAND,OLPC (𝑐chal )
return (𝑏 = 𝑏′)

OLR(𝑚0,𝑚1):
if state ≠ 0 then

return ⊥
if | 𝑚0 | ≠ | 𝑚1 | then

return ⊥
𝑐chal

$← SKE.Enc(𝐾,𝑚𝑏 )
state← 1
return 𝑐chal

ORAND(𝑙 ):

𝑚′0,𝑚
′
1

$← {0, 1}𝑙

𝑐′
$← SKE.Enc(𝐾,𝑚′

𝑏
)

return (𝑚′0,𝑚′1, 𝑐′ )

OLPC(𝑐):
if 𝑐 = 𝑐chal then

return ⊥
return𝑚0 = SKE.Dec(𝐾,𝑐 )

Figure 15: IND-1$PA-LPC Challenger, and corresponding
Left-Right oracle OLR, RAND oracle ORAND and LPC oracle
OLPC.

ExptIND-1$PA-LHPCSKE (A) :

𝑏
$← {0, 1}

𝐾
$← SKE.KG( )

state← 0
(𝑚0,𝑚1 )

$← A()
𝑐chal

$← OLR (𝑚0,𝑚1 )
𝑏′

$← AOLR,ORAND,OLHPC (𝑐chal )
return (𝑏 = 𝑏′)

OLR(𝑚0,𝑚1):
if state ≠ 0 then

return ⊥
if | 𝑚0 | ≠ | 𝑚1 | then

return ⊥
𝑐chal

$← SKE.Enc(𝐾,𝑚𝑏 )
state← 1
return 𝑐chal

ORAND(𝑙 ):

𝑚′0,𝑚
′
1

$← {0, 1}𝑙

𝑐′
$← SKE.Enc(𝐾,𝑚′

𝑏
)

return (𝑚′0,𝑚′1, 𝑐′ )

OLHPC(𝑐):
if 𝑐 = 𝑐chal then

return ⊥
return H(𝑚0 ) = SKE.Dec(𝐾,𝑐 )

Figure 16: IND-1$PA-LHPC Challenger, and corresponding
Left-Right oracle OLR, RAND oracle ORAND and LHPC oracle
OLHPC.

ExptIND-1$PA-LHPC-HSKE (A) :

𝑏
$← {0, 1}

𝐾
$← SKE.KG( )

state← 0
(𝑚0,𝑚1 )

$← A()
𝑐chal

$← OLR (𝑚0,𝑚1 )
𝑡chal

$← H(𝐾,𝑐chal )
𝑏′

$← AOLR,ORAND,OLHPC (𝑐chal, 𝑡chal )
return (𝑏 = 𝑏′)

OLR(𝑚0,𝑚1):
if state ≠ 0 then

return ⊥
if | 𝑚0 | ≠ | 𝑚1 | then

return ⊥
𝑐chal

$← SKE.Enc(𝐾,𝑚𝑏 )
state← 1
return 𝑐chal

ORAND(𝑙 ):

𝑚′0,𝑚
′
1

$← {0, 1}𝑙

𝑐′
$← SKE.Enc(𝐾,𝑚′

𝑏
)

return (𝑚′0,𝑚′1, 𝑐′ )

OLHPC(𝑐):
if 𝑐 = 𝑐chal then

return ⊥
return H(𝑚0 ) = SKE.Dec(𝐾,𝑐 )

Figure 17: IND-1$PA-LHPC-HChallenger, and corresponding
Left-Right oracle OLR, RAND oracle ORAND and LHPC oracle
OLHPC.

We present the full proof for the IND-1$PA-LHPC security of
CBC in the full version [2], assuming AES is a pseudo-random
permutation.

D Security Proofs
Our proofs follow the game-based technique (see [23] for a tutorial)
and some proofs require a hybrid argument (see [15] for a tutorial).

D.1 Proof of Theorem 1
Before showing the proof of this theorem, we note that it can be
expressed differently if the adversary’s queries are counted in a
different way, which may lead to more relevant bounds for different
threat models. As expected, the adversary has negligible advantage,
except if it actively interacts with a token via Send-Bind-T enough
times to guess a user pin. As stated, the theorem captures an adver-
sary that is not constrained in its number of attempts, except by
an arbitrary upper bound 𝑞actSend. In practice, however, the attacker
may have more restrictions and our bound can be adapted to reflect
them, as we remark at the end of the proof.

Proof. (Sketch.) Let Pr𝑖 denote the probability that Game 𝑖 out-
puts 1.
Game 0. This is the original experiment. Therefore,
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Pr0 = AdvSUF-tCTAP 2.1 (A) .
Game 1. In this game, we replace every symmetric session key 𝐾1
and 𝐾2 calculated in encapsulate and decapsulate from Fig. 10 as
𝐾1 ← H2 (𝑍, ·) and 𝐾2 ← H2 (𝑍, ·), where 𝑍 is the ECDH shared
secret derived by a client session 𝜋 𝑗

𝐶
and token session 𝜋𝑖

𝑇
in a Setup

or Execute query, with independent random values 𝐾1 and 𝐾2. We
define bad as the event that, at some point during the game, 𝜋 𝑗

𝐶
and

𝜋𝑖
𝑇
are involved in a Setup or Execute and A queriesH2 with 𝑍 ,

and bound the probability of bad by constructing an adversary B1
against the sCDH security of the underlying ECDH group, such
that if A causes bad, B1 wins the sCDH game. Since token public
keys are only given to A in Setup, Execute and Send-Bind-T
oracles, we have |Pr0 − Pr1 | ≤ (𝑞S + 𝑞E + 𝑞Send) AdvsCDHECDH (B1).
Game 2. In this game, in every Setup query, the pin is no longer
stored in the token state st𝑇 , instead being stored in a new stru-
cuture accessible only by the challenger. Since this model never
allows A to corrupt any token, Games 1 and 2 are functionally
identical. Therefore, Pr1 = Pr2.
Game 3. In this game,A immediately loses if the challenger samples
two identical ECDH public keys from a client or token. Given that
client ECDH public keys are sampled only in Setup and Execute
queries, and token ECDH public keys are sampled inNewT,Reboot
and Send-Bind-T queries, we have |Pr2 − Pr3 | ≤ (𝑞S + 𝑞E + 𝑞NT +
𝑞R + 2𝑞Send)2 / (2𝑞).
Game 4. In this game, A loses if a collision occurs on some
output of H when called by the challenger. Since H is assumed
to be collision resistant, there exists an adversary B4 such that
|Pr3 − Pr4 | ≤ AdvcollH (B4).
Game 5. This game replaces every encrypted pin in Setup queries
with an encrypted constant pin 0000. Additionally, if the ECDH
client and token public keys used in Setup are used again in Send-
Bind-T, the token encrypts and outputs a random pinToken 𝑝𝑡
while setting the real pinToken as its binding state. We bound the ad-
vantage of A against Game 5 by reduction to the IND-1$PA-LHPC
security of the underlying encryption scheme SKE. Therefore, we
construct an adversary B5 against the IND-1$PA-LHPC security of
SKE such that |Pr4 − Pr5 | ≤ 𝑞S AdvIND-1$PA-LHPCSKE (B5).
Game 6. This game replaces every encrypted hashed pin H(pin) and
pinToken 𝑝𝑡 in Execute queries with an encrypted hashed constant
H(0000) and a random pinToken 𝑝𝑡 respectively. We bound the
advantage ofA against Game 6 by reduction to the IND-1$PA-LPC
security of the underlying encryption scheme SKE. Therefore, we
construct an adversary B6 against the IND-1$PA-LPC security of
SKE such that |Pr5 − Pr6 | ≤ 𝑞E AdvIND-1$PA-LPCSKE (B6).
Game 7. In this game, user pins are no longer sampled in NewU,
being sampled instead only when relevant to answer to some query
fromA, which happens only inCorrupt and Send-Bind-T queries.
Since every pin is independently sampled from D , it is independent
from anything that happens during the experiment, and thusGames
6 and 7 are functionally identical. Therefore, Pr6 = Pr7.
Game 8. In this game, the challenger rejects any attempt from A
to actively guess the correct pin, unless the pin for the target token
has been corrupted. By considering 𝑞actSend the maximum number
of active queries to Send-Bind-T, where A actively attempts at

guessing the pin, and 1/2ℎD as the maximum probability that A
can guess the pin in any query, we have |Pr7 − Pr8 | ≤ 𝑞actSend/2

ℎD .
Game 9. In this game, A loses if two pinTokens that are sent to
the adversary in either an Execute or Send-Bind-T query col-
lide. Since, at most, one pinToken is generated and given to A
in each Execute or Send-Bind-T query, we have |Pr8 − Pr9 | ≤
(𝑞E + 𝑞Send)2 / 22𝜆+1.
Game 10. In this game, whenA queriesValidate-Twithmessage𝑀
and a tag 𝑡 on a token session 𝜋𝑖

𝑇
that finished Bind passively (which

happens only in Execute and passive Send-Bind-T queries), such
that (𝑀, 𝑡) would constitute a valid forgery, the challenger still
rejects (recall that A cannot win against any token session 𝜋𝑖

𝑇

that was actively attacked in Send-Bind-T queries, since after
Game 8 this means𝑇 ’s pinmust have been corrupted). We consider
this bad event and bound the advantage of A by reducing to the
SUF-CMA security of the underlying MAC, by constructing an
efficient adversaryB10 against the SUF-CMA security ofMAC such
that if bad happens, B10 wins the SUF-CMA game. Therefore, we
have |Pr9 − Pr10 | ≤ (𝑞E + 𝑞Send) AdvSUF-CMA

MAC (B10).
Final analysis. After the modifications in Game 10, A can no
longer win. Indeed, for A to win, it must satisfy at least one of the
four conditions in Token-Win-SUF-t. The first condition is always
false, since 𝑑 = 1 must always be true for any Validate-T query
to accept a tag 𝑡 . The second and third conditions are also always
false. Collisions between sid values in client sessions have been
ruled out in Game 3, by avoiding client public key collisions, while
collisions between sid values in token sessions have been ruled out
in Game 9, by removing collisions between any pinToken that is
encrypted and sent to A. Therefore, it can never be the case that
two different client or token sessions have the same sid. Finally,
A can never win via the last condition, because in Game 10 every
valid forgery attempt against any token session via a Validate-T
query is rejected by the challenger. Therefore, it is always true that
Pr10 = 0. Note that the running times of all adversaries are close to
that of A. □

Remark. In Game 8, we bound A’s advantage as a function of
𝑞actSend, i.e., how many active attacks A makes against any token.
This captures the worst case scenario where A can always reset
pinRetries by executing a passive Bind for any token (i.e., the ad-
versary may have access to any user from any token to input the
correct pin). However, it is also reasonable to consider the case
where A has access to an arbitrary number of tokens but not to
their users, which limits the amount of active attacks on any token
to pinRetriesMax. Considering 𝑞actNT as the number of tokens created
that are actively attacked by A during the experiment, we could
write the bound as |Pr7 − Pr8 | ≤ pinRetriesMax · 𝑞actNT/2

ℎD .

D.2 Proof of Theorem 2
The proof of security of CTAP 2.1+ is identical to the proof of CTAP
2.1 (as sketched in Appendix D.1) until Game 9. We summarize the
modifications and extra steps next.
Game 10. In this game, A loses if it queries random oracle H3
with any pinToken generated throughout the experiment and set
as the binding state of a token or client session, but for which
the adversary has no information. These pinTokens correspond to
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sessions where the adversary behaved passively, which includes
all of the Execute queries, and possibly some of the Send-Bind-T
queries. The two games are identical until bad, and so we have
|Pr9 − Pr10 | ≤ 𝑞H3 (𝑞E +𝑞Send)/22𝜆 . After this game, the MAC keys
used by these sessions to authenticate commands are information
theoretically hidden from the adversary.

Game 11. In this game, when A queries Validate-T with message
𝑀 and a tag 𝑡 on a token session 𝜋𝑖

𝑇
that finished Bind passively

(which happens only in Execute and passive Send-Bind-T queries),
such that (𝑀, 𝑡) would constitute a valid forgery, the challenger
still rejects (recall that A cannot win against any token session
𝜋𝑖
𝑇
that was activelly attacked in Send-Bind-T queries, since after

Game 8 this means𝑇 ’s pinmust have been corrupted). We consider
this bad event and bound the advantage of A by reducing to the
SUF-CMA security of the underlying MAC, by constructing an
efficient adversaryB11 against the SUF-CMA security ofMAC such
that if bad happens, B11 wins the SUF-CMA game. Therefore, we
have |Pr10 − Pr11 | ≤ (𝑞E + 𝑞Send) AdvSUF-CMA

MAC (B11).

Game 12. In this game, when A queries Validate-C with message
𝑀 and a tag 𝑡 and a client session 𝜋 𝑗

𝐶
that finished Bind (which

happens only in Execute queries), such that (𝑀, 𝑡) would constitute
a valid forgery, the challenger still rejects. Much like in Game 11,
we bound the advantage of A against Game 11 via reduction to
the SUF-CMA security of MAC. Therefore, there exists an efficient
adversary B12 such that |Pr11 − Pr12 | ≤ 𝑞E AdvSUF-CMA

MAC (B12).

Final analysis. After the modifications in Game 12, A can no
longer win. Indeed, for A to win, it must satisfy at least one of the
four conditions in Token-Win-SUF-t or one of the three conditions
inClient-Win-SUF-t. The reasoning forA not being able to win via
Token-Win-SUF-t is identical to the reasoning used for the previous
CTAP 2.1 security proof. Additionally, A cannot win Game 12 via
the conditions from Client-Win-SUF-t. Indeed, the first and second
conditions are identical to the second and third conditions from
Token-Win-SUF-t, and are therefore always false, since no collisions
between client session sid values and token session sid values can
occur after Games 3 and 9 respectively. A can also never win
via the third condition in Client-Win-SUF-t, because in Game 12
every valid forgery attempt against any client session viaValidate-C
query is rejected by the challenger. Therefore, it is always true that
Pr12 = 0. Note that the running times of all adversaries are close to
that of A.

D.3 Proof of Theorem 4
Let G0 be the original experiment ExptprivCTAP 2.1++ (A). We consider a
series of hybrid games analogous to the proof of Theorem 2 (authen-
tication of CTAP 2.1+). To save space, we briefly mention what each
hybrid does without providing details. G1 replaces every symmet-
ric session key 𝐾1 and 𝐾2 with independent random keys. G2 will
store PIN in a new structure instead of token state. G3 will remove
collisions in sampled ECDH shares. G4 removes hash collisions
of H. G5 will replace encrypted PIN with encrypted constant PIN
0000. In G6, we switch encryption of hashed PIN and encryption
of pintoken to be encryption of H(0000) and encryption of random
pintoken during Execute in Phase 1. In G7, we will sample PIN
only when adversary queries CorruptUser or Send-Bind-T. In G8,

we will reject attempts from A to actively guess the PIN through
Send-Bind-T operations.

SupposeA that makes at most𝑞S,𝑞E,𝑞Send,𝑞NT and𝑞R queries to
Setup, Execute, Send-Bind-T, NewT and Reboot, and at most 𝑞actSend
active queries to Send-Bind-T. Then there exist efficient adversaries
B1, B4, B5, B6 such that the following claims hold: (where Pr𝑖
denote the probability that G𝑖 outputs 1)

Pr0 = AdvprivCTAP 2.1++ (A)/2 + 1/2 (1)

Pr0 − Pr8 ≤ (𝑞S + 𝑞E + 𝑞Send) AdvsCDHECDH (B1)
+ (𝑞S + 𝑞E + 𝑞NT + 𝑞R + 2𝑞Send)2 / (2𝑞)
+ AdvcollH (B4)
+ 𝑞S AdvIND-1$PA-LHPCSKE (B5)
+ 𝑞E AdvIND-1$PA-LPCSKE (B6)

+ 𝑞actSend/2
ℎD

(2)

Pr8 = 1/2 (3)

The above claims are justified as follows. Equation (1) is by defini-
tion of AdvprivCTAP 2.1++ (A). Inequality (2) follows from the mPACA
security proof of CTAP 2.1+ (proof of Theorem 2 in Section 4.4).

To justify equality (3), we note that adversary’s view includes
public information of different tokens and communications within
each session. In ExptprivCTAP 2.1++ (A), we require that two challanged
token’s users cannot be corrupted. Therefore, by G8, we have
swapped encryption of pin and pin hashes to be encryption of
0000 and H(0000). Diffe-Hellman shares are also freshly generated.
Therefore, the attacker’s view is almost independent of the actual
bit b. Special care is needed to prevent trivial attacks. Suppose
b is 0, and attacker makes a LEFT query. If the attacker queries
regular query 𝑇0 on the same index, token 𝑇0 will reject (while 𝑇1
will accept). If the LEFT query is bind, and attacker queries regu-
lar Auth/Validate on 𝑇0 on the same index, it will accept (while 𝑇1
will reject). If the LEFT query is Setup, and attacker makes regular
queries on𝑇0, it will accept (while𝑇1 will reject). If attacker inputs a
wrong PIN in LEFT query, the pinRetry of𝑇0 will decrease by 1. We
addresses these subtleties specifically and carefully by introducing
different checks. Therefore, either the attacker has broken these
checks, which automatically fails (the gamewill return a random bit,
which gives attacker advantge 0), or it can only guess the challenge
bit with probability 1/2.

D.4 Proof of Theorem 5
Let Pr𝑖 be the probability that Game 𝑖 outputs 1.
Game 0. This is the original composed privacy experiment
Exptcom-priv

PlA+mPACA when the underlying challenge bit 𝑏 = 0.
Game 1. This game is identical to Game 0 except that in
aResp, the oracle will always add cid to La

ch and add (𝑇, 𝑗 ′)
to Lbd

ch . We can introduce a new flag bad, and set bad← true
when tokenBindPartner(𝑇, 𝑗 ′) is ⊥, or if the binding partner is
(𝐶, 𝑗),(𝐶, 𝑗,𝑚acom, 𝑡cl) ∉∈ LauthC, which means message, tag pair
(𝑚acom, 𝑡cl) is not output by client session 𝜋 𝑗

𝐶
.

Now, Pr0 − Pr1 = Pr[bad← true]. We claim that there exists a
mPACA authentication adversary B1 such that Pr[bad← true] ≤
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AdvSUF-tmPACA (B1). B1 samples bit 𝑏, and simulates mPACA oracles us-
ing its own oracles provided in mPACA authentication experiment.
B1 then internally initializes PlA oracles and LEFT and RIGHT
challenge oracles. In Game 1, if bad is true, then composed unlinka-
bility adversary A has let mPACA token session (𝑇, 𝑗 ′) to accept a
command where either (𝑇, 𝑗 ′) does not have a binding partner, or
the command is not authorized by the partner. Both cases are win-
ning conditions for mPACA authentication experiment. Since B1
forwards all mPACA operations to its own oracles, it will trigger the
winner conditions in Token-Win-Auth in mPACA authentication
experiment. Therefore, Pr[bad← true ≤ AdvSUF-tmPACA (B1).
Game 2. Game 2 is identical to Game 1, except that two helper
functions rResp’ and aResp’ that are used in r/aLEFT and r/aRIGHT,
will take in both tokens𝑇0 and𝑇1 ( the order is permuted depending
on whether it is called inside LEFT or RIGHT). rResp’ and aResp’
will use the first token to perform authorization, just like Game
1, but will use the other token to get PlA response through rRsp
or aRsp. Essentially, LEFT (RIGHT) oracle will now use Token 𝑇1’s
(𝑇0’s) PlA response, but authorizing it using 𝑇0’s(𝑇1’s) binding state.

We claim that there exists a PlA privacy adversary B2 such that
| Pr1 − Pr2 | ≤ AdvprivPlA (B2). We construct B2 such that it queries
its own PlA oracles to get token responses, and will sample corre-
sponding mPACA instances to simulate the rest of mPACA queries.
In the PlA privacy game that B2 is playing, when the underlying
bit 𝑏PlA is 0, B2 is simulating Game 0; while when 𝑏PlA is 1, C is
simulating Game 1.

Game 3. This is the original composed privacy game Exptcom-priv
PlA+mPACA

when the underlying challenge bit 𝑏 = 1.
We claim that there exists an mPACA privacy adversary B3

such that | Pr2 − Pr3 | ≤ AdvprivmPACA (B3). We construct B3 such that
it simply queries its own oracle provided in the mPACA privacy
experiment for all mPACA queries. For queries to the PlA oracles,
B3 simulate PlA oracles, and always use 𝑇1’s PlA response in LEFT,
and 𝑇0’s PlA response in RIGHT, just like Game 2. Now, in the
mPACA privacy game that B3 is playing, when the underlying bit
𝑏mPACA is 0, B is simulating Game 2; while when 𝑏mPACA is 1, B is
simulating Game 3.

Final analysis. The proof is concluded as follows:

Advcom-priv
PlA+mPACA (A) =| Pr0 − Pr3 |

≤| Pr0 − Pr1 | + | Pr1 − Pr2 | + | Pr2 − Pr3 |

≤AdvSUF-tmPACA (B1) + AdvprivmPACA (B2)

+AdvprivPlA (B3) .

E CTAP 2.1 Security for PIN/UV Auth Protocol 1
We present a brief overview of the CTAP 2.1 security proof when
instantiated with PIN/UV Auth Protocol 1, by outlining its differ-
ences from the CTAP 2.1 proof when using PIN/UV Auth Protocol
2.

Most games from the CTAP 2.1 security proof that was presented
in Section 4 remain unchanged, since they are not affected from
which protocol is instantiated. Therefore, we focus only on Games
5, 9 and 10, which differ when CTAP 2.1 is instantiated with PIN/UV
Auth Protocol 1.

Game 5. This game replaces all encrypted pins on Setup with con-
stant values, and then also replaces all pinTokens sent during Bind
with random values only when using the same symmetric key used
on Setup. When considering PIN/UV Auth Protocol 1, we can no
longer reduce to the IND-1$PA-LHPC security of the underlying
encryption scheme SKE, because during Setup the same symmetric
key 𝐾 is used to encrypt H(0000) into 𝑐𝑝 and then to authenticate
𝑐𝑝 by producing a tag 𝑡𝑝 . Therefore, we must reduce to a variant of
this security definition, which we call IND-1$PA-LHPC-H.

Game 9. This game eliminates collisions between pinTokens that
are sent toA in Execute or Send-Bind-T queries. When considering
PIN/UV Auth Protocol 1, each pinToken has size 𝜇𝜆, for 𝜇 ∈ {1, 2},
which means the upper bound for the probability that a collision
between two pinTokens occurs is 1/𝜆. Therefore, we have |Pr8 −
Pr9 | ≤ (𝑞E + 𝑞Send)2/2𝜆+1.

Game 10. In this game, each tag 𝑡 corresponds to the leftmost 𝜆 bits
from the 2𝜆-bit output of MAC, instantiated as HMAC-SHA-256.
The reduction is the same, under the assumption that the truncated
output of HMAC-SHA-256 is still a secure MAC.

F Proof Shortcomings in Nina et al. [6]
We show the shortcomings of the CTAP 2.1 proof in Nina et al. [6]
as follows.

Active binding attacks against clients are too strong. We
present here a more detailed explanation of the attack that an
adversary can perform during Bind if allowed to be active when
delivering the final message containing the encrypted pinToken
from the token to the client.

CTAP 2.1 with PIN/UV Auth Protocol 2 uses AES-256 in CBC
mode with random IV to encrypt the 128-bit pinHash that is sent
from a client to a token during Bind and, immediately after that, to
encrypt the 256-bit pinToken back to the client. Crucially, both
encryptions use the same symmetric key (this is true for both
PIN/UV Auth Protocol versions). Consider a ciphertext 𝑐𝑝ℎ =

IV | | AES(IV⊕pinHash), generated by a client session 𝜋 𝑗
𝐶
. If the hash

of the PIN checks out, 𝜋𝑖
𝑇
will accept and output a ciphertext 𝑐𝑝𝑡 : this

is a CBC encryption with a fresh IV and two blocks encoding a pin-
Token to be decrypted by 𝜋 𝑗

𝐶
. Now, A can create a new ciphertext

𝑐𝑝𝑡 = IV | | AES(IV⊕pinHash) | | AES(IV⊕pinHash) and deliver 𝑐𝑝𝑡
to 𝜋 𝑗

𝐶
. Since AES in CBC mode is not an authenticated encryption

scheme, 𝜋 𝑗
𝐶
always decrypts 𝑐𝑝𝑡 , recovering a mauled pinToken of

the form: 𝜋 𝑗
𝐶
.bs = pinHash | | IV ⊕ pinHash ⊕ AES(IV ⊕ pinHash).

Formally, and this is where the proof in [6] is incorrect, this means
that the recovered pinToken can actually depend on the user’s PIN.
In practice, this means that when the client issues a command
authenticated with this mauled pinToken, producing a tag 𝑡 , the
adversary can use the MAC verification algorithm to perform an
offline dictionary attack, by hashing values in the PIN space and
checking if they produce an identical tag on the same command
issued by the client. This is possible because the pinHash is the only
part of the mauled pinToken the adversary does not know. This
will allow the adversary to win the game with probability close to
1, and so there is no hope of proving CTAP 2.1 secure in such a
model.

324



Privacy and Security of FIDO2 Revisited Proceedings on Privacy Enhancing Technologies 2025(3)

IND-1CPA is not enough.We also identified a minor oversight in
the proof in [6] (Appendix I, Game 12) that applies only to unlikely
cases where tokens do not refresh their DH shares after Setup. We
explain this next.

The reduction to the security of the symmetric encryption
scheme used to communicate with tokens has been improved in [6]
compared to [3]. In particular, it was shown that, during Bind, a
stronger (plaintext-checking) assumption was needed to deal with
active attacks on the token. However, this was considered to be
unnecessary during Setup, which is not the case if DH shares are
reused by the token. Indeed, while it is true that a query to Setup
always results in a new Diffie-Hellman key exchange between 𝜋 𝑗

𝐶

and 𝜋𝑖
𝑇
, it cannot be said, even when excluding collisions between

DH shares and symmetric keys, that the symmetric key used to
encrypt the pin sent to 𝜋𝑖

𝑇
will not be used again later in the ex-

periment. Since every Setup trace is given to A, the adversary
can attempt to start a Bind run with another token session 𝜋𝑖′

𝑇
of

the same token, using a DH share that was previously used by 𝜋 𝑗
𝐶

during Setup. If 𝑇 did not regenerate its DH share, then it will de-
rive the same symmetric key that was used in Setup, and therefore
might encrypt a pinToken with the same key used to encrypt the
pin in Setup. Therefore, the encryption scheme that encrypts the
user pin during Setup must be IND-1$PA-LHPC secure (defined in
Appendix C), rather than only IND-1CPA. This is a minor change
to the proof, which we handle, and it will not be necessary if the
token is guaranteed to reset its state (via Reboot) after Setup.

G PlA Models and WebAuthn Analysis
G.1 PlA Protocol Syntax
We closely follow [6, 7] to define the syntax for passwordless au-
thentication (PlA) protocols. Our syntax is very similar to the ePlA
protocol defined in [6] and the ePlAA protocol defined in [7]; we
simply call our PlA primitive a PlA protocol.

A PlA protocol PlA consists of two phases Register and
Authenticate:

Register: a two-pass challenge-response protocol run among a to-
ken 𝑇 , a client 𝐶 , and a server 𝑆 , which is run at most once per
tuple (𝑇, 𝑆). At the end of Register, both 𝑇 and 𝑆 hold registra-
tion contexts, which are relevant for subsequent authentications.
Register can be decomposed into the following algorithms:
𝑚rch

$← rChal(𝑆, tb,UV): inputs a server 𝑆 ,9 a token binding
state tb, and a user verification condition UV ∈ {T, F}, and
outputs a challenge message𝑚rch. It does not change the state
of the server 𝑆 .
(𝑚rcl,𝑚rcom)

$← rCom(id𝑆 ,𝑚rch, tb): run by the stateless client;
it inputs the intended server identity id𝑆 , a challenge mes-
sage𝑚rch, and a token binding state tb, and outputs a client
message𝑚rcl and a command message𝑚rcom.

9When we say an algorithm inputs a server, a client, or a token, we mean all of its
state. The outputs of the algorithm make it explicit which parts of the state may be
changed that are relevant for the security game.

(𝑚rrsp, rc𝑇 , cid, sid, agCon)
$← rRsp(𝑇,𝑚rcom): inputs a token𝑇

and a command message𝑚rcom and outputs a response mes-
sage𝑚rrsp, the token-side registration context rc𝑇 , a creden-
tial identifier cid, a session identifier sid, and agreed contents
agCon from the perspective of the token 𝑇 .
(𝑏, rc𝑆 , cid, sid, agCon)

$← rVrfy(𝑆,𝑚rcl,𝑚rrsp, gpars): inputs a
server 𝑆 , a client message 𝑚rcl, a response message 𝑚rrsp,
and attestation group parameters gpars, and outputs a bit
𝑏 ∈ {0, 1} to indicate whether the registration request was
accepted. It also outputs the server-side context rc𝑆 , a creden-
tial identifier cid, a session identifier sid, and agreed contents
agCon from the perspective of the server 𝑆 .

Authenticate: a two-pass challenge-response protocol run among
a token 𝑇 , a client 𝐶 , and a server 𝑆 after a successful run of
Register, in which both 𝑇 and 𝑆 generated their registration
contexts. At the end of Authenticate, 𝑆 either accepts or rejects
the authentication attempt. Similarly to Register, Authenticate
can be decomposed into four algorithms:
𝑚ach

$← aChal(𝑆, tb,UV): inputs a server 𝑆 , a token binding
state tb, and a user verification condition UV ∈ {T, F}, and
outputs a challenge message𝑚ach. This algorithm does not
change the state of the server 𝑆 .
(𝑚acl,𝑚acom)

$← aCom(id𝑆 ,𝑚ach, tb): run by the stateless
client; it inputs the intended server identity id𝑆 , a challenge
message 𝑚ach, and a token binding state tb, and outputs a
client message𝑚acl and a command message𝑚acom.
(𝑚arsp, rc𝑇 , cid, sid, agCon)

$← aRsp(𝑇,𝑚acom): inputs a token
𝑇 , and a command message𝑚acom, and outputs a response
message𝑚arsp, the updated token-side registration context
rc𝑇 , a credential identifier cid, a session identifier sid, and
agreed contents agCon from the perspective of the token 𝑇 .
(𝑏, rc𝑆 , cid, sid, agCon)

$← aVrfy(𝑆,𝑚acl,𝑚arsp): inputs a server
𝑆 , a client message𝑚acl, and a response message𝑚arsp, and
outputs a bit 𝑏 ∈ {0, 1} indicating whether the authentication
request was accepted. It also outputs the updated server-side
registration context rc𝑆 , a credential identifier cid, a session
identifier sid, and agreed contents agCon from the perspective
of the server 𝑆 .

Attestationmodes.Unlike [7], our model captures only attestation
modes None, Self, and Basic (also known as batch attestation), as
the other modes attCA and anonCA are not as commonly used and,
in particular, they are not used for USB tokens that rely on CTAP,
the main focus of this work.

Therefore, for simplicity, we deviate from [7] and define a group
initialization algorithm (gpars, rc) $← GInit that creates a new
group, which is cryptographically defined by some public group
parameters gpars and a private registration context rc. This public
gpars is taken as input by the servers and the private rc is taken as
input by tokens in the same group as their initial registration con-
text. For attestation modes None and Self, such attestation material
gpars and rc are empty; while for the Basic mode, GInit uses a key
generation algorithm to output an attestation key pair, then assign
the private key to rc and assign the public key (with potentially
other public parameters) to gpars.
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G.2 PlA Authentication Model and WebAuthn
Authentication

Again, we closely follow [6, 7] to define our authentication security
model for PlA protocols. Our model is very similar to the ePlA
model defined in [6] and the ePlAA model defined in [7], with some
important changes that we discuss in this subsection below.

Trust model. For attestation modes None and Self, we assume
that the PlA adversary is passive during registration, since the
server has no prior knowledge of attestation material stored in the
specific token of interest. Indeed, if the adversary can be active
during registration, it is impossible to prove WebAuthn secure
for these modes, as noted in [7]. For mode Basic, and as in [7],
we can prove PlA security even with active registration, because
the guarantee provided to the server is merely that the credential
has been created by some token in the target group. However,
the server does not know which token in the group produced the
credential and, in fact, we know from our discussion of rogue key
attacks and known unlinkability results that it is impossible for
the server to know if this token is owned by a given user or by
an adversary. As mentioned in the introduction, our fix to CTAP
allows us to strengthen this authentication guarantee and assure the
server that the token generating an attested credential is actually
cryptographically bound to a specific client. We allow groups to
be dynamically generated by the adversary. For attestation mode
Basic, this corresponds to creating a new batch. The adversary is
allowed to create as many groups as it wants and to assign tokens
to these groups at will. (Note that in modes None and Self there
is only one group.) Then, the adversary is allowed to corrupt the
attestation material of all tokens except the tokens in the target
batch of interest. Fine-grained credential corruption (not including
the attestation material) is still allowed within the batch. This is a
strengthening of the model in [7]; meanwhile it does not have a
significant impact on the WebAuthn security proof and simplifies
the description of the model.

Session oracles and registration contexts. To model concur-
rent or sequential PlA protocol instances (i.e., sessions) of a server
S (associated with id𝑆 ) and sequential PlA sessions of a token
𝑇 , we use 𝜋𝑖

𝑟,𝑆
and 𝜋

𝑗

𝑟,𝑇
to denote their 𝑖-th and 𝑗-th registra-

tion instances, and 𝜋𝑖
𝑎,𝑆

and 𝜋 𝑗
𝑎,𝑇

to denote their 𝑖-th and 𝑗-th au-
thentication instances. The execution status of a session oracle
𝜋𝑘
𝑝ℎ,𝑃

(𝑝ℎ ∈ {𝑟, 𝑎}, 𝑃 ∈ {𝑆,𝑇 }), denoted by 𝜋𝑘
𝑝ℎ,𝑃

.stexe, is either
of {⊥, running, accepted}; here ⊥ means the session oracle is not
yet initialized, in which case we simply write 𝜋𝑘

𝑝ℎ,𝑃
=⊥. Session

identifiers sid and agreed contents agCon are specific to a session.
Registration contexts rc𝑆 , rc𝑇 are global to a server or token, re-
spectively, and we abuse notation to allow them to be indexed by
the (unique) identity of a token or server, respectively, as rc𝑆 [𝑇 ] or
rc𝑇 [𝑆]. This is well defined as we impose a single registration run
between a given pair (𝑆,𝑇 ).

Session partnership. We say that a server registration session
𝜋𝑖
𝑟,𝑆

partners with a token registration session 𝜋 𝑗
𝑟,𝑇

if and only
if 𝜋𝑖

𝑟,𝑆
.sid = 𝜋

𝑗

𝑟,𝑇
.sid. We define partnership for authentication

sessions as 𝜋𝑖
𝑎,𝑆
.sid = 𝜋

𝑗

𝑎,𝑇
.sid, and, furthermore, we require that

they can be associated to unique partnered registration sessions

𝜋𝑖
′
𝑟,𝑆
.sid = 𝜋

𝑗 ′

𝑟,𝑇
.sid such that 𝜋𝑖

𝑎,𝑆
.cid = 𝜋𝑖

′
𝑟,𝑆
.cid. In other words,

authentication partnership guarantees that there is unique registra-
tion partnership between the same server and token that establish
the (unique) credential identifier that the server recovers at the end
of the authentication run. Many authentication runs can, of course,
be bound to the same registration sessions.

Looking ahead, with the above session partnership, our model
is stronger than the models in [6, 7], in the sense that our model
further guarantees that authentication binds the user to a unique
registration that took place before between the same server/token
pair, identified by a credential identifier cid. This also allows us
to capture the typical scenario where cid is used by the server to
identify the correct application-specific identifier. Note that our
session partnership definition is, in the above sense, the same as [3].
Advantage measure. For a PlA protocol PlA, its advantage (with
respect to the security experiment Exptpla-authPlA shown in Figure 18)
is defined for any adversary A as

Advpla-authPlA (A) = Pr[Exptpla-authPlA (A) = 1]

Authentication security of WebAuthn. We do not restate the
authentication security of WebAuthn in this model, as it has been
proved in [3]. Indeed, the security proofs given in [3] suffice to
show that WebAuthn satisfies the PlA authentication notion we
consider here: the proof begins by excluding collisions in credential
identifiers, and then relies on the uniqueness of credential identi-
fiers to pinpoint a unique registration session that established the
public key under which the authentication took place. For attesta-
tion modes None, Self in which no hardcoded attestation material
is used, the proof holds when the adversary is restricted only to pas-
sive registration attacks and can create only one group for which
the attestation parameters are empty. For batch attestation the
adversary can create an arbitrary number of groups. Rather than
fixing a group a priori, we just allow the adversary to choose the
target group adaptively, but this is of no consequence to the proof:
as stated in [3], the only way the attacker could succeed in register-
ing a key that is outside of the group fixed by a server verification
run would be to either corrupt the group or forge an attestation
signature.
Differences to prior work. As discussed above, our model in-
troduces two differences to [6, 7], in order to capture a guarantee
provided by FIDO2, which was captured by the original model
in [3] but lost in the more recent works [6, 7]: a separation be-
tween registration and authentication sessions for modeling the
partnership between them, and the explicit handling of credential
identifiers and group identifiers.10 As mentioned before, we sim-
plify our model to capture the simplest attestation modes, as they
are the most commonly used modes in practical USB-based tokens
today and handling all possible attestation modes is not our focus.
In particular, there is no interactive set-up of a token, which is
required for the more complicated certification-based attestation
modes. Instead, we tailor our definition to the settings where there
is no attestation (or just simple Self attestation) or where batch
attestation is used. For this, we let the server registration verifica-
tion algorithm input some group parameters, and impose that the

10For simplicity, we also keep the algorithm negotiation parts of PlA implicit in the
experiment code.
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Partnerships(𝑆, 𝑖, cid) :
1: if ∃𝑖′ such that 𝜋𝑖

′
𝑟,𝑆
.cid = cid then

2: Retrieve (𝑆, 𝑖′, gid, cid) from Lreg

3: if ∃𝑇, 𝑗 ′ such that 𝜋𝑖
′

𝑟,𝑆
.sid = 𝜋

𝑗 ′
𝑟,𝑇
.sid then

4: if ∃ 𝑗 such that 𝜋𝑖
𝑎,𝑆
.sid = 𝜋

𝑗

𝑎,𝑇
.sid then

5: return (gid, 𝑖′,𝑇 , 𝑗 ′, 𝑗 )
6: else return (gid, 𝑖′,𝑇 , 𝑗 ′,⊥)
7: else return (gid, 𝑖′,⊥,⊥,⊥)
8: return (⊥,⊥,⊥,⊥,⊥)

Exptpla-authPlA (A):
1: Lreg ← ∅; Lcorr ← ∅;
LcorrG ← ∅;𝐺 ← ∅; gid←
0

2: win-auth← 0
3: ( ) $← AO (1𝜆 )
4: return win-auth

Win-auth (𝑆, 𝑖, cid):
1: if ∃(𝑆1, 𝑖1, 𝑝ℎ1 ) ≠ (𝑆2, 𝑖2, 𝑝ℎ2 ) s.t. 𝜋𝑖1𝑝ℎ1,𝑆1

.sid = 𝜋
𝑖2
𝑝ℎ2,𝑆2

.sid ≠⊥ then return 1

2: if ∃(𝑇1, 𝑗1, 𝑝ℎ1 ) ≠ (𝑇2, 𝑗2, 𝑝ℎ2 ) s.t. 𝜋 𝑗1
𝑝ℎ1,𝑇1

.sid = 𝜋
𝑗2
𝑝ℎ2,𝑇2

.sid ≠⊥ then return 1

3: if ∃(𝑆1, 𝑖1 ) ≠ (𝑆2, 𝑖2 ) s.t. 𝜋𝑖1𝑟,𝑆1
.cid = 𝜋

𝑖2
𝑟,𝑆2

.cid ≠⊥ then
4: return 1

5: if ∃(𝑆 ′, 𝑖′, 𝑝ℎ′ ), (𝑇 ′, 𝑗 ′, 𝑝ℎ′ ) s.t. 𝜋𝑖′
𝑝ℎ′,𝑆′ .sid = 𝜋

𝑗 ′
𝑝ℎ′,𝑇 ′ .sid ≠⊥ and (𝑆 ′,𝑇 ′ ) ∉ Lcorr and

𝑇 ′ .gid ∉ LcorrG and 𝜋𝑖
′

𝑝ℎ′,𝑆′ .agCon ≠ 𝜋
𝑗 ′
𝑝ℎ′,𝑇 ′ .agCon then return 1

6: (gid, _,𝑇 , _, 𝑗 ) ← Partnerships(𝑆, 𝑖, cid)
7: // Attestation broken: wrong group or no registration partner
8: if gid =⊥ or (gid ∉ LcorrG and (𝑇 =⊥ or𝑇 .gid ≠ gid)) then
9: return 1
10: else
11: // Authentication broken: no authentication partner
12: if gid ∉ LcorrG then
13: if (𝑆,𝑇 ) ∉ Lcorr and 𝑗 =⊥ then return 1
14: return 0

Reg ( (𝑆, 𝑖 ), (𝑇, 𝑗 ), tb,UV, gid) :
1: // This oracle replaces the rChall, rResp, rCompl oracles

in the passive registration mode
2: if 𝑇 .gid =⊥ or 𝜋𝑖

𝑟 ,𝑆
≠⊥ or 𝜋 𝑗

𝑟 ,𝑇
≠⊥ or rc𝑇 [𝑆 ] ≠⊥ or

𝐺 [gid] =⊥ then return ⊥
3: 𝑚rch

$← rChal(𝜋𝑖
𝑟 ,𝑆
, tb,UV)

4: (𝑚rcom,𝑚rcl ) ← rCom(id𝑆 ,𝑚rch, tb)
5: (𝑚rrsp, rc𝑇 , cid, sid, agCon)

$← rRsp(𝜋 𝑗

𝑟 ,𝑇
,𝑚rcom )

6: (𝑑, rc𝑆 , cid, sid, agCon)
$←

rVrfy(𝜋𝑖
𝑟 ,𝑆
,𝑚rcl,𝑚rrsp,𝐺 [gid] .gpars)

7: Lreg ← Lreg ∪ { (𝑆, 𝑖, gid, cid) }
8: return (𝑑,𝑚rch,𝑚rcl,𝑚rcom,𝑚rrsp )

NewGroup ( ) :

1: (gpars, rc) $← GInit
2: 𝐺 [gid] ← (gpars, rc)
3: gid← gid + 1

NewToken (gid,𝑇 ) :
1: if 𝐺 [gid] =⊥ then return ⊥
2: if 𝑇 .gid ≠⊥ then return ⊥
3: 𝑇 .gid← gid
4: rc𝑇 ← 𝐺 [gid] .rc

rChall ( (𝑆, 𝑖 ), tb,UV) :
1: if 𝜋𝑖

𝑟 ,𝑆
≠⊥ then return ⊥

2: 𝑚rch
$← rChal(𝜋𝑖

𝑟 ,𝑆
, tb,UV)

3: return𝑚rch

Corrupt (𝑆,𝑇 ) :
1: if rc𝑇 [𝑆 ] =⊥ then return ⊥
2: Lcorr ← Lcorr ∪ { (𝑆,𝑇 ) }
3: return rc𝑇 [𝑆 ]

rCompl ( (𝑆, 𝑖 ),𝑚rcl,𝑚rrsp, gid) :
1: if 𝜋𝑖

𝑟 ,𝑆
=⊥ or 𝜋𝑖

𝑟 ,𝑆
.stexe ≠ running or𝐺 [gid] =⊥ then

return ⊥
2: (𝑑, rc𝑆 , cid, sid, agCon)

$←
rVrfy(𝜋𝑖

𝑟 ,𝑆
,𝑚rcl,𝑚rrsp,𝐺 [gid] .gpars)

3: if 𝑑 = 1 then Lreg ← Lreg ∪ { (𝑆, 𝑖, gid, cid) }
4: return 𝑑

rResp ( (𝑇, 𝑗 ),𝑚rcom ) :
1: if 𝜋 𝑗

𝑟 ,𝑇
≠⊥ or𝑇 .gid =⊥ then

return ⊥
2: (𝑚rrsp, rc𝑇 , cid, sid, agCon)

$←
rRsp(𝜋 𝑗

𝑟 ,𝑇
,𝑚rcom )

3: Lr
ch ← L

r
ch ∪ {cid}

4: return𝑚rrsp

aChall ( (𝑆, 𝑖 ), tb,UV) :
1: if 𝜋𝑖

𝑎,𝑆
≠⊥ then return ⊥

2: 𝑚ach
$← aChal(𝜋𝑖

𝑎,𝑆
, tb,UV)

3: return𝑚ach

CorruptGroup (gid) :
1: if 𝐺 [gid] =⊥ then return ⊥
2: LcorrG ← LcorrG ∪ {gid}
3: return𝐺 [gid]

aCompl ( (𝑆, 𝑖 ),𝑚acl,𝑚arsp ) :
1: if 𝜋𝑖

𝑎,𝑆
=⊥ or 𝜋𝑖

𝑎,𝑆
.stexe ≠ running then return ⊥

2: (𝑑, rc𝑆 , cid, sid, agCon)
$← aVrfy(𝜋𝑖

𝑎,𝑆
,𝑚acl,𝑚arsp )

3: if 𝑑 = 1 and win-auth = 0 then
4: win-auth← Win-auth(𝑆, 𝑖, cid)
5: return 𝑑

aResp ( (𝑇, 𝑗 ),𝑚acom ) :
1: if 𝜋 𝑗

𝑎,𝑇
≠⊥ or𝑇 .gid =⊥ then

return ⊥
2: (𝑚arsp, rc𝑇 , cid, sid, agCon)

$←
aRsp(𝜋 𝑗

𝑎,𝑇
,𝑚acom )

3: La
ch ← L

a
ch ∪ {cid}

4: return𝑚arsp

Figure 18: Security experiment, winning conditions, and ora-
cle definitions for PlA authentication security experiment.
Code in blue represents the added modifications with respect
to [6, 7]. Code in teal is unique to the PlA privacy experiment
as defined in Figure 19. We let O denote the set of all of the
security experiment oracles that are available toA. The win-
ning condition procedureWin-auth is called in the aCompl
oracle whenever the server authentication session accepts.

server can only accept registrations from tokens whose attestation
material is consistent with a given set of group parameters.

G.3 PlA Privacy Model and WebAuthn Privacy
Our privacy PlA model closely follows [7]. Except for the changes
in PlA oracles and picking the attestation group that are already
explained in Section G.2, we change how context separation is
checked. Instead of adding token and indices to L, we decide to
follow [17] and add credential id cid to L instead. Compared to
[7] adding token itself to L, this has two advantages: 1) We allow
tokens to be registered and authenticated multiple times in Phase 1
and Phase 3, and we only prohibit authentications on the particu-
lar registration request that is done via LEFT/RIGHT oracles. [7]
prohibits all regular authentication requests, if the challenge token
is ever registered via LEFT/RIGHT oracles. 2) This prevents trivial
attack caused by index colliding. Consider the scenario: an attacker
can perform Register-LEFT, then perform a regular authenticate on
token 𝑇0 (suppose two challenge tokens are 𝑇0 and 𝑇1 ). In [7], this
will be allowed. However, the attacker can identify which token is
used by Register-LEFT. If Register-LEFT uses𝑇0, the authentication
will succeed (although the attacker loses eventually), if Register-
LEFT uses 𝑇1, the authentication will fail, and the attacker thus
conclude the bit 𝑏 is 1.

Additionally, [17] requires instance freshness, which prohibits
the attacker from querying regular oracles on the 𝑗-th instace of
challenge token if the 𝑗-th instance of corresponding token is
used in LEFT/RIGHT oracles. We strengthen that requirement to
prohibit the attacker from querying regular oracle on j-th instance
of either challenge tokens, if the 𝑗-th instance of at least one
token is used inside LEFT/RIGHT oracle. Consider the following
scenario: an attacker can query Register-LEFT, then query regular
Register(𝑇0, 0). If Register-LEFT uses 𝑇0, the registration will fail
(and the attacker loses eventually), if Register-LEFT uses 𝑇1, the
registration will succeed, and the attacker thus conclude the bit b is
1. We stress that the above two attacks are not real-world attacks,
and do not refute privacy results in [7] [17]. They are merely “model
attacks” caused by collision of indices. Nonetheless, we fix them in
our model.

We provide the privacy experiment in detail in Figure 19. For
any adversary A, its advantage is defined as

AdvprivPlA (A) = |2 Pr[ExptprivPlA (A) = 1] − 1| .

We remark that in [7] the advantage is incorrectly defined as the
probability of the experiment returning 1. With such definition, an
adversary randomly guessing the challenge bit will have advantage
1/2, which is non-negligible. In [17] the advantage is defined as how
we define it above, but the experiment returns 0 if the adversary
does not follow the rules. But then the advantage of such adversary
will be 1. In our definition, the experiment returns a random bit in
case the adversary misbehaves, yielding advantage 0, as expected.

We then establish the following theorem:

Theorem 7. For any adversary A, we have that

AdvprivWebAuthn (A) = 0

We note that the proofs in [7] still work for the stronger model.
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ExptprivPlA (A) :
1: Lcorr ← ∅,Lr

ch ← ∅, L
a
lr ← ∅, L

a
ch ←

∅, Lr
lr ← ∅

2: 𝑠𝑡1
$← AO (1𝜆 ) // Phase 1

3: 𝑇0,𝑇1, 𝑆𝐿, 𝑆𝑅 , 𝑠𝑡2
$← A(1𝜆, 𝑠𝑡1 ) // Phase

2
4: 𝑏 ← InitRL(𝑇0,𝑇1, 𝑆𝐿, 𝑆𝑅 )
5: O′ ← (O\{NewToken})
6: 𝑏′ ← AO′,LEFT,RIGHT (1𝜆, 𝑠𝑡2 ) // Phase 3
7: 𝑟

$← {0, 1}
8: if Check-priv-PlA() then return 𝑏 = 𝑏′

9: else return 𝑟

Check-priv-PlA(𝑏,𝑏′):
1: S← (Lr

ch ∩L
a
lr ) ∪ (L

a
ch ∩L

r
lr ) ∪ (L

r
ch ∩

Lr
lr )

2: if 𝑏 = 𝑏′ and S = ∅ and
(𝑆𝐿,𝑇0 ), (𝑆𝑅 ,𝑇1 ), (𝑆𝐿,𝑇1 ), (𝑆𝑅 ,𝑇0 ) ∉
Lcorr and𝑇0 .gid=𝑇1 .gid then

3: return 1
4: else
5: return 0

InitRL(𝑇0,𝑇1, 𝑆𝐿, 𝑆𝑅 ):

1: 𝑏
$← {0, 1}

2: Initialize oracles r/aLEFT𝑇𝑏,𝑆𝐿 and
r/aRIGHT𝑇1−𝑏 ,𝑆𝑅

3: return 𝑏

r/aLEFT𝑇𝑏,𝑆𝐿 (𝑚)
1: Obtains intended server S from m
2: if 𝑆 ≠ 𝑆𝐿 then
3: return ⊥
4: 𝑗 ← 0 while 𝜋 𝑗

𝑇𝑏
≠ ⊥:

5: 𝑗 ← 𝑗 + 1
6: return rResp’ ( (𝑇𝑏 , 𝑗 ),𝑚) // in 𝑟LEFT
7: return aResp’ ( (𝑇𝑏 , 𝑗 ),𝑚) // in 𝑎LEFT
r/aRIGHT𝑇1−𝑏 ,𝑆𝑅 (𝑚)
1: Obtains intended server S from m
2: if 𝑆 ≠ 𝑆𝑅 then
3: return ⊥
4: 𝑗 ← 0 while 𝜋 𝑗

𝑇1−𝑏
≠ ⊥:

5: 𝑗 ← 𝑗 + 1
6: return rResp’ ( (𝑇1−𝑏 , 𝑗 ),𝑚) // in 𝑟RIGHT
7: return aResp’ ( (𝑇1−𝑏 , 𝑗 ),𝑚) // in
𝑎RIGHT

rResp’ ( (𝑇, 𝑗 ),𝑚acom ) : // helper function
1: if 𝜋 𝑗

𝑇
≠ ⊥or𝑇 .gid =⊥ then

2: return ⊥
3: (𝑚rrsp, rc𝑇 , cid, sid, agCon)

$←rResp
( (𝑇, 𝑗 ),𝑚acom )

4: Lr
lr
∪← {cid}

5: return𝑚rrsp

aResp’ ( (𝑇, 𝑗 ),𝑚acom ) : // helper function
1: if 𝜋 𝑗

𝑇
≠ ⊥ or𝑇 .gid =⊥ then

2: return ⊥
3: (𝑚arsp, rc𝑇 , cid, sid, agCon)

$←aResp
( (𝑇, 𝑗 ),𝑚acom )

4: La
lr
∪← {cid}

5: return𝑚rrsp

Figure 19: Experiment ExptprivPlA for PlA privacy with oracles
O defined in Fig.18. Similar to Fig.18 , code in blue represents
the added modifications with respect to [7].

H Composed Authentication Model
We introduce our composed model for authentication security,
based on the PlA authentication security model presented in Ap-
pendix G and the proposed mPACA model from section 4.

Following the approach from [3, 6], we consider a security exper-
iment ExptuaPlA+mPACA, presented in figures 21, 20, which is executed
between a challenger and an adversary A against the ua (user
authentication) security of PlA+mPACA.

Trust model. Like in [3, 6], we assume the communication channel
between servers and clients is authenticated in the sense that the
client is assured as to the identity of the server (capturing the
guarantees of a secure connection, e.g., established by TLS). We
maintain the trust model from mPACA unchanged, which means
any client session can only complete Bind passively. However, we
now allow active composed model adversaries during registration
runs, regardless of the attestation mode, whereas in the PlA model
we can only deal with active registration when using Basic (batch)
attestation. Indeed the only difference between attestation modes
None/Self with respect to mode Basic is that for the former we do
not allow mPACA clients to be compromised during registration,
whereas for the latter we can allow this. We note that this is a
stronger model than that adopted in [6], in that we can deal with
active attacks during registration, because we have upgraded PACA
to mPACA to provide a bidirectional authenticated channel.

Session oracles and partnership.We maintain the session ora-
cles defined for PlA and mPACA, as well as all protocol variables,
internal states and partnership definitions, but follow the approach
from [6] by using �̃� and 𝜋 to refer to PlA and mPACA sessions
respectively.

Experiment oracles. The ua experiment gives the adversary ac-
cess to all of the SUF-t experiment’s oracles except for Auth-C,
Validate-T, Auth-T and Validate-C. Furthermore, the adversary also
has access to all unchanged oracles from the pla-auth experiment,
except for rChall, rResp, rCompl, aChall, aResp and aCompl, which
are redefined for this experiment in Figure 20, and except for Reg,
which is absent due to the assumption that A can always actively
interfere with any registration session. The rChall oracle now addi-
tionally takes a client session as input, which prepares the message
from the server session �̃�𝑖

𝑟,𝑆
by calling rCom to produce a client

message𝑚rcl and a command𝑚rcom. This command is then authen-
ticated using the mPACA oracle Auth-C, producing a tag 𝑡cl. In
addition to𝑚rch, both messages output by rCom and 𝑡cl are given
to A. The changes to aChall are analogous. The rResp oracle now
additionally inputs an mPACA token session, a tag 𝑡cl and a user de-
cision bit 𝑑 . It starts by querying the Validate-T oracle on the𝑚rcom

message and tag 𝑡cl, aborting if the status is not accepted. Then, it
authenticates the PlA token response𝑚rrsp via the mPACA oracle
Auth-T, producing a tag 𝑡tk, which is also given to A. The changes
to aResp are analogous. Finally, the rCompl oracle additionally
receives a tag 𝑡tk, fetches the client session associated with the cur-
rent server session, and queries Validate-C on the token response
𝑚rrsp and 𝑡tk, failing if the status is not accepted. The changes to
aCompl are analogous, with the addition that it now calls Win-ua
(described below) to verify the winning conditions whenever �̃�𝑖

𝑎,𝑆

accepts. We also define two lists Lpla-paca-S and Lpla-paca-T to, re-
spectively, link every PlA server session with its associated mPACA
client session in rChall and aChall, and every PlA token session
with its associated mPACA token session in rResp and aResp.
Winning conditions and advantage measure. The winning con-
ditions specified in Win-ua (see Figure 21) intuitively guarantee
that PlA and mPACA sessions can be uniquely identified by their de-
rived session identifiers and, furthermore, as in the PlA experiments,
that registration sessions obtain unique credential identifiers. Then,
the adversary wins if it breaks the PlA authentication security at
any point, regardless of whether it is using compromised mPACA
clients or not. Furthermore, when using uncompromised mPACA
clients, the adversary also wins if it can convince the PlA server to
pair with a registration or authentication session that is hosted by
some other token than the one bound to the unique client that it
communicates with. For a composed PlA+mPACA protocol, its ua
advantage is defined for any adversary A as

AdvuaPlA+mPACA (A) = Pr[ExptuaPlA+mPACA (A) = 1]

Differences to prior work. We adopt the style of presentation
of [6], but our composed model expresses the winning condition
in a way that is closer to the one defined in [3]: we express the
adversary’s advantage purely as a function of its probability of
breaking a server-side authentication guarantee and we do not
include PACA-specific command forgery checks.11 We can do this
because we establish a stronger result based on mPACA. A win-
ning condition closer to the one in [6] needs to be considered to
capture the composed security of the current version current of
FIDO2, as discussed at the end of Appendix I. Furthermore, our
11The authors in [3] also consider user-side guarantees, which are also provided by
FIDO2, but we do not consider them here and leave clarifying and expanding the study
of these guarantees as future work.
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rChall (𝑆 , 𝑖 ,𝐶 , 𝑘 , tb,𝑈𝑉 ):
1: if �̃�𝑖

𝑟 ,𝑆
≠⊥ then return ⊥

2: 𝑚rch
$← rChal(�̃�𝑖

𝑟 ,𝑆
, tb,UV)

3: (𝑚rcl,𝑚rcom )
$← rCom(id𝑆 ,𝑚rch, tb)

4: resp
$← Auth-C(𝐶,𝑘,𝑚rcom )

5: if resp =⊥ then return ⊥
6: (𝑚rcom, 𝑡cl ) ← resp
7: Lpla-paca-S ← Lpla-paca-S ∪
{ (reg, 𝑆, 𝑖,𝐶, 𝑘 ) }

8: return (𝑚rch,𝑚rcl,𝑚rcom, 𝑡cl )

aChall (𝑆 , 𝑖 ,𝐶 , 𝑘 , tb, UV):
1: if �̃�𝑖

𝑎,𝑆
≠⊥ then return ⊥

2: 𝑚ach
$← aChal(�̃�𝑖

𝑎,𝑆
, tb,UV)

3: (𝑚acl,𝑚acom )
$← aCom(id𝑆 ,𝑚ach, tb)

4: resp
$← Auth-C(𝐶,𝑘,𝑚acom )

5: if resp =⊥ then return ⊥
6: (𝑚acom, 𝑡cl ) ← resp
7: Lpla-paca-S ← Lpla-paca-S ∪
{ (auth, 𝑆, 𝑖,𝐶, 𝑘 ) }

8: return (𝑚ach,𝑚acl,𝑚acom, 𝑡cl )
rResp (𝑇 , 𝑗 , 𝑗 ′ ,𝑚rcom , 𝑡cl , 𝑑):
1: if �̃� 𝑗

𝑟 ,𝑇
≠⊥ or𝑇 .gid =⊥ then return ⊥

2: status
$← Validate-T(𝑇, 𝑗 ′,𝑚rcom, 𝑡cl, 𝑑 )

3: if status ≠ accepted then return ⊥
4: (𝑚rrsp, rc𝑇 , cid, sid, agCon)

$←
rRsp(�̃� 𝑗

𝑟 ,𝑇
,𝑚rcom )

5: (𝑚rrsp, 𝑡tk )
$← Auth-T(𝑇, 𝑗 ′,𝑚rrsp )

6: Lpla-paca-T ← Lpla-paca-T ∪
{ (reg,𝑇 , 𝑗, 𝑗 ′ ) }

7: return (𝑚rrsp, 𝑡tk )

aResp (𝑇 , 𝑗 , 𝑗 ′ ,𝑚acom , 𝑡cl , 𝑑):
1: if �̃� 𝑗

𝑎,𝑇
≠⊥ or𝑇 .gid =⊥ then return ⊥

2: status
$← Validate-T(𝑇, 𝑗 ′,𝑚acom, 𝑡cl, 𝑑 )

3: if status ≠ accepted then return ⊥
4: (𝑚arsp, rc𝑇 , cid, sid, agCon)

$←
aRsp(�̃� 𝑗

𝑎,𝑇
,𝑚acom )

5: (𝑚arsp, 𝑡tk )
$← Auth-T(𝑇, 𝑗 ′,𝑚arsp )

6: Lpla-paca-T ← Lpla-paca-T ∪
{ (auth,𝑇 , 𝑗, 𝑗 ′ ) }

7: return (𝑚arsp, 𝑡tk )
rCompl (𝑆 , 𝑖 ,𝑚rcl ,𝑚rrsp , gid, 𝑡tk):
1: if �̃�𝑖

𝑟 ,𝑆
=⊥ or �̃�𝑖

𝑟 ,𝑆
.stexe ≠ running or

𝐺 [gid] =⊥ then return ⊥
2: Retrieve (reg, 𝑆, 𝑖,𝐶, 𝑘 ) from Lpla-paca-S
3: status← Validate-C(𝐶,𝑘,𝑚rrsp, 𝑡tk )
4: if status ≠ accepted then return ⊥
5: (𝑑, rc𝑆 , cid, sid, agCon)

$←
rVrfy(�̃�𝑖

𝑟 ,𝑆
,𝑚rcl,𝑚rrsp,𝐺 [gid] .gpars)

6: if 𝑑 = 1 then
7: Lreg ← Lreg ∪ { (𝑆, 𝑖, gid, cid) }
8: return 𝑑

aCompl (𝑆 , 𝑖 ,𝑚acl ,𝑚arsp , 𝑡tk):
1: if �̃�𝑖

𝑎,𝑆
=⊥ or �̃�𝑖

𝑎,𝑆
.stexe ≠ running then

return ⊥
2: Retrieve (auth, 𝑆, 𝑖,𝐶, 𝑘 ) from Lpla-paca-S
3: status← Validate-C(𝐶,𝑘,𝑚arsp, 𝑡tk )
4: if status ≠ accepted then return ⊥
5: (𝑑, rc𝑆 , cid, sid, agCon)

$←
aVrfy(�̃�𝑖

𝑎,𝑆
,𝑚acl,𝑚arsp )

6: if 𝑑 = 1 and win-ua = 0 then
7: win-ua← Win-ua(𝑆, 𝑖, cid)
8: return 𝑑

Figure 20: Oracle definitions for ua security experiment for
the composed model. Code in blue highlights the differences
to the PlA oracles shown in G. Differences that are specific
from mPACA are colored in red.

composed model inherits from our mPACA and PlA definitions the
strengthenings we introduced for each of these primitives, namely
the ability to dynamically choose attestation groups and the explicit
guarantee that a PlA authentication session is bound to a unique
registration session in the same token. Finally, the main novelty is
that we explicitly deal with active attacks in the composed model
for the registration phase, even for attestation modes None and
Self, even though in these settings we need to restrict ourselves to
uncompromised clients in registration.

I Authentication Security of FIDO2
Here we first present our main result for composed security relying
on mPACA and later explain the weaker guarantees provided by
current FIDO2.

Composed security of PlA+mPACA. The following theorem
shows that mPACA guarantees a strong form of composed security
than in prior works, since we can allow partial active attacks (the
realistic model when using USB tokens as discussed in the intro-
duction) during both registration and for all modes even without
attestation. The intuition here is that the composed model speaks
only about the guarantees provided to servers that are uniquely
bound to honest clients that are out of the adversary’s control:
excluding a break of mPACA, we know that such clients (if uncom-
promised) will be communicating with a unique token instance
via a bi-directional secure channel, which means that we do not

ExptuaPlA+mPACA(A):
1: Lreg ← ∅; Lcorr ← ∅; LcorrG ← ∅;𝐺 ← ∅; gid← 0 // From PlA
2: LauthC, LauthT ← ∅ // From mPACA
3: Lpla-paca-S, Lpla-paca-T ← ∅ // For grouping PlA and mPACA sessions
4: win-ua← 0
5: ( ) $← AO (1𝜆 )
6: return win-ua
Win-ua (𝑆, 𝑖, cid):
1: // If there exists any collision between server or token PlA sessions, A wins
2: if ∃(𝑆1, 𝑖1, 𝑝ℎ1 ) ≠ (𝑆2, 𝑖2, 𝑝ℎ2 ) s.t. �̃�

𝑖1
𝑝ℎ1,𝑆1

.sid = �̃�
𝑖2
𝑝ℎ2,𝑆2

.sid ≠⊥ then return 1

3: if ∃(𝑇1, 𝑗1, 𝑝ℎ1 ) ≠ (𝑇2, 𝑗2, 𝑝ℎ2 ) s.t. �̃�
𝑗1
𝑝ℎ1,𝑇1

.sid = �̃�
𝑗2
𝑝ℎ2,𝑇2

.sid ≠⊥ then return 1
4:
5: // If there exists any collision between client or token mPACA sessions, A wins

6: if ∃(𝐶1, 𝑘1 ), (𝐶2, 𝑘2 ) 𝑠.𝑡 . (𝐶1, 𝑗1 ) ≠ (𝐶2, 𝑗2 ) and 𝜋
𝑘1
𝐶1
.stexe = 𝜋

𝑘2
𝐶2
.stexe = bindDone

and 𝜋𝑘1
𝐶1
.sid = 𝜋

𝑘2
𝐶2
.sid then return 1

7: if ∃(𝑇1, 𝑗 ′1 ), (𝑇2, 𝑗 ′2 ) 𝑠.𝑡 . (𝑇1, 𝑗 ′1 ) ≠ (𝑇2, 𝑗 ′2 ) and 𝜋
𝑗 ′1
𝑇1
.stexe = 𝜋

𝑗 ′2
𝑇2
.stexe = bindDone

and 𝜋
𝑗 ′1
𝑇1
.sid = 𝜋

𝑗 ′2
𝑇2
.sid then return 1

8:
9: // If there exist two distinct server sessions with the same cid, A wins
10: if ∃(𝑆1, 𝑖1 ) ≠ (𝑆2, 𝑖2 ) s.t. �̃�

𝑖1
𝑟,𝑆1

.cid = �̃�
𝑖2
𝑟,𝑆2

.cid ≠⊥ then return 1
11:
12: // If there exists a server session and a token session that agree on the sid but not on the agCon, A wins.

This captures a rogue key attack by registering a key from another batch.

13: if ∃(𝑆′, 𝑖′, 𝑝ℎ′ ), (𝑇 ′, 𝑗 ′, 𝑝ℎ′ ) s.t. �̃�𝑖′
𝑝ℎ′,𝑆′ .sid = �̃�

𝑗 ′
𝑝ℎ′,𝑇 ′ .sid ≠⊥ and (𝑆′,𝑇 ′ ) ∉ Lcorr and

𝑇 ′ .gid ∉ LcorrG and �̃�𝑖
′
𝑝ℎ′,𝑆′ .agCon ≠ �̃�

𝑗 ′
𝑝ℎ′,𝑇 ′ .agCon then return 1

14:
15: // If the server session �̃�𝑖

𝑎,𝑆
that accepted has no corresponding server registration session, A wins. If A

never corrupted the token group associated with �̃�𝑖
′

𝑟,𝑆
, and �̃�𝑖

𝑎,𝑆
has no registration partner𝑇 , or �̃�𝑖

𝑎,𝑆

registered with the wrong gid, A wins. If �̃�𝑖
𝑎,𝑆

is not partnered with one of𝑇 ’s authentication sessions,
and A never corrupted𝑇 , A wins

16: (gid, 𝑖′,𝑇 , 𝑗 ′, 𝑗 ) ← Partnerships(𝑆, 𝑖, cid)
17: if gid =⊥ or (gid ∉ LcorrG and (𝑇 =⊥ or𝑇 .gid ≠ gid)) then return 1
18: else
19: if gid ∉ LcorrG then

20: // The PlA registration token session �̃� 𝑗 ′
𝑟,𝑇

that is partnered with �̃�𝑖
′

𝑟,𝑆
is associated with an mPACA

token session 𝜋𝑙
′

𝑇
that is the Bind partner of a client session 𝜋𝑘1

𝐶1
that is partnered with �̃�𝑖

′
𝑟,𝑆

(unless 𝜋𝑘1
𝐶1

was compromised).

21: Retrieve (reg,𝑇 , 𝑗 ′, 𝑙 ′ ) from Lpla-paca-T // Because we know at this point that �̃� 𝑗 ′
𝑟,𝑇

has completed

a registration with �̃�𝑖
′

𝑟,𝑆
(from Partnerships), we know from the code in rResp that mPACA session

𝜋𝑙
′

𝑇
must exist in the list

22: Retrieve (reg, 𝑆, 𝑖′,𝐶𝑆 , 𝑘𝑆 ) from Lpla-paca-S
23: (𝐶𝑇 , 𝑘𝑇 ) ← tokenBindPartner(𝑇, 𝑙 ′ )
24: // The client𝐶𝑇 to which the token𝑇 is bound is not the same as𝐶𝑆 , which is the client linked to

the server session �̃�𝑖
𝑆

25: if (𝐶𝑆 , 𝑘𝑆 ) ≠ (𝐶𝑇 , 𝑘𝑇 ) then
26: (𝑇𝑆 ,𝑚) ← clientBindPartner(𝐶𝑆 , 𝑘𝑆 )
27: if 𝜋

𝑘𝑆
𝐶𝑆

.compromised = false and 𝜋𝑚
𝑇𝑆
.pinCorr = false then return 1

28: if ((𝐶𝑇 , 𝑘𝑇 ) = (⊥,⊥) or 𝜋
𝑘𝑇
𝐶𝑇

.compromised = false) and 𝜋𝑙
′

𝑇
.pinCorr = false then return

1
29: if (𝑆,𝑇 ) ∉ Lcorr and 𝑗 =⊥ then return 1
30: else if (𝑆,𝑇 ) ∉ Lcorr then
31: // The PlA authentication token session �̃� 𝑗

𝑎,𝑇
that is partnered with �̃�𝑖

𝑎,𝑆
is associated with an

mPACA token session 𝜋𝑙
𝑇

that is the Bind partner of a client session 𝜋𝑘2
𝐶2

that is partnered

with �̃�𝑖
𝑎,𝑆

(unless 𝜋𝑘2
𝐶2

was compromised).

32: Retrieve (auth,𝑇 , 𝑗, 𝑙 ) from Lpla-paca-T // Because we know at this point that �̃� 𝑗

𝑎,𝑇
has

completed an authentication with �̃�𝑖
𝑎,𝑆

, we know from the code in aResp that mPACA session

𝜋𝑙
𝑇

must exist in the list
33: Retrieve (auth, 𝑆, 𝑖,𝐶′

𝑆
, 𝑘′

𝑆
) from Lpla-paca-S

34: (𝐶′
𝑇
, 𝑘′

𝑇
) ← tokenBindPartner(𝑇, 𝑙 )

35: if (𝐶′
𝑆
, 𝑘′

𝑆
) ≠ (𝐶′

𝑇
, 𝑘′

𝑇
) then

36: (𝑇 ′
𝑆
,𝑚′ ) ← clientBindPartner(𝐶𝑆 , 𝑘𝑆 )

37: if 𝜋
𝑘′
𝑆

𝐶′
𝑆

.compromised = false and 𝜋𝑚
′

𝑇 ′
𝑆

.pinCorr = false then return 1

38: if ((𝐶′
𝑇
, 𝑘′

𝑇
) = (⊥,⊥) or 𝜋

𝑘′
𝑇

𝐶′
𝑇

.compromised = false) and 𝜋𝑙
𝑇
.pinCorr = false then

return 1
39: return 0

Figure 21: The ua security experiment and winning condi-
tions for the PlA+mPACA composed model. We call O the
set of all of the security experiment’s oracles that are avail-
able toA. The winning condition procedureWin-ua is called
in the aCompl oracle whenever the server session accepts.
Composed model-specific winning conditions are in blue.
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need to consider an active PlA attacker in the analysis of composed
model security.

We provide two theorems, which intuitively capture the security
guarantees for different attestation modes.

Theorem 8. (Attestation none and self) Consider the setting in
which the adversary is only allowed to create a single attestation
group and forbid the possibility to compromise clients involved in
registration sessions.

Then, if there exists an adversaryA against the composed security
of an mPACA protocol mPACA and a PlA protocol PlA, then there
exist adversaries B1 and B2 such that:

AdvuaPlA+mPACA (A) ≤ AdvSUF-tmPACA (B1) + Advpla-authPlA (B2) .

Furthermore, B2 only requires access to a passive PlA registration
oracle.

Proof. (Sketch.) Our proof proceeds in two game hops. In the
first hop, we modify the composed security model to declare the ad-
versary a loser whenever it breaks the mPACA security guarantee
when interacting with oracles rResp, rCompl, aResp or aCompl
(seen in Fig. 22). Any adversaryA for which the probability of win-
ning the composed security game varies visibly can be transformed
into an mPACA attacker B1 with the same advantage via a trivial
reduction. Note that B1 controls all the details of the PlA protocol
in this reduction. Also observe that, after this hop, and because we
disallow the compromise of clients involved in registration runs,
the adversary is now restricted to passive behavior when dealing
with these sessions.

In the second hop, we declare the adversary a loser if it breaks
a PlA guarantee (seen in Fig. 23). We reduce any distinguishing
advantage between the two games by constructing a reductionB2 to
PlA security. Note here that we need to argue that we can program
the trace of a passive registration run into the composed model
oracles, where the adversary has some active attacking power. Here
is how the reduction can do this:
• when the adversary calls rChall, there are two cases. Either the
client has a unique token partner, or it does not have any binding
state: this is guaranteed by passive binding and the mPACA
winning guarantees. If the client has no binding state, then note
that the authentication oracle Auth-C will fail and so will the
rChall oracle. Otherwise, the reduction can pinpoint the unique
token and choose an unused PlA registration session to use its
own PlA registration oracle and obtain a registration trace. The
first message in this trace is programmed into the output of
rChall.
• when the adversary calls rResp, it is either the case that it is
delivering the message to the unique mPACA oracle associated
with some prior registration query or not. If not, then the mPACA
validate condition will fail and there is nothing to do. Otherwise,
the reduction maps the 𝑗-th token session in the composed model
to the token session in the PlA model that it prehemptively chose
to obtain the registration trace. The secondmessage of the passive
registration trace is programmed in the output of the oracle.
• when the adversary calls rCompl, the reduction simply needs
to check if the message received comes from an mPACA token
session that is linked with the PlA token session that is the

rResp (𝑇 , 𝑗 , 𝑗 ′ ,𝑚rcom , 𝑡cl , 𝑑):
1: if �̃� 𝑗

𝑟 ,𝑇
≠⊥ or𝑇 .gid =⊥ then return ⊥

2: status
$← Validate-T(𝑇, 𝑗 ′,𝑚rcom, 𝑡cl, 𝑑 )

3: if status ≠ accepted then return ⊥
4: if Token-Win-SUF-t(𝑇, 𝑗 ′,𝑚rcom, 𝑡cl, 𝑑 ) =

1 then
5: game ends returning 0

6: (𝑚rrsp, rc𝑇 , cid, sid, agCon)
$←

rRsp(�̃� 𝑗

𝑟 ,𝑇
,𝑚rcom )

7: (𝑚rrsp, 𝑡tk )
$← Auth-T(𝑇, 𝑗 ′,𝑚rrsp )

8: Lpla-paca-T ← Lpla-paca-T ∪
{ (reg,𝑇 , 𝑗, 𝑗 ′ ) }

9: return (𝑚rrsp, 𝑡tk )

aResp (𝑇 , 𝑗 , 𝑗 ′ ,𝑚acom , 𝑡cl , 𝑑):
1: if �̃� 𝑗

𝑎,𝑇
≠⊥ or𝑇 .gid =⊥ then return ⊥

2: status
$← Validate-T(𝑇, 𝑗 ′,𝑚acom, 𝑡cl, 𝑑 )

3: if status ≠ accepted then return ⊥
4: if Token-Win-SUF-t(𝑇, 𝑗 ′,𝑚acom, 𝑡cl, 𝑑 ) =

1 then
5: game ends returning 0

6: (𝑚arsp, rc𝑇 , cid, sid, agCon)
$←

aRsp(�̃� 𝑗

𝑎,𝑇
,𝑚acom )

7: (𝑚arsp, 𝑡tk )
$← Auth-T(𝑇, 𝑗 ′,𝑚arsp )

8: Lpla-paca-T ← Lpla-paca-T ∪
{ (auth,𝑇 , 𝑗, 𝑗 ′ ) }

9: return (𝑚arsp, 𝑡tk )
rCompl (𝑆 , 𝑖 ,𝑚rcl ,𝑚rrsp , gid, 𝑡tk):
1: if �̃�𝑖

𝑟 ,𝑆
=⊥ or �̃�𝑖

𝑟 ,𝑆
.stexe ≠ running or

𝐺 [gid] =⊥ then return ⊥
2: Retrieve (reg, 𝑆, 𝑖,𝐶, 𝑘 ) from Lpla-paca-S
3: status← Validate-C(𝐶,𝑘,𝑚rrsp, 𝑡tk )
4: if status ≠ accepted then return ⊥
5: if Client-Win-SUF-t(𝐶,𝑘,𝑚rcom, 𝑡tk ) =

1 then
6: game ends returning 0

7: (𝑑, rc𝑆 , cid, sid, agCon)
$←

rVrfy(�̃�𝑖
𝑟 ,𝑆
,𝑚rcl,𝑚rrsp,𝐺 [gid] .gpars)

8: if 𝑑 = 1 then
9: Lreg ← Lreg ∪ { (𝑆, 𝑖, gid, cid) }
10: return 𝑑

aCompl (𝑆 , 𝑖 ,𝑚acl ,𝑚arsp , 𝑡tk):
1: if �̃�𝑖

𝑎,𝑆
=⊥ or �̃�𝑖

𝑎,𝑆
.stexe ≠ running then

return ⊥
2: Retrieve (auth, 𝑆, 𝑖,𝐶, 𝑘 ) from Lpla-paca-S
3: status← Validate-C(𝐶,𝑘,𝑚arsp, 𝑡tk )
4: if status ≠ accepted then return ⊥
5: if Client-Win-SUF-t(𝐶,𝑘,𝑚acom, 𝑡tk ) =

1 then
6: game ends returning 0

7: (𝑑, rc𝑆 , cid, sid, agCon)
$←

aVrfy(�̃�𝑖
𝑎,𝑆
,𝑚acl,𝑚arsp )

8: if 𝑑 = 1 and win-ua = 0 then
9: win-ua← Win-ua(𝑆, 𝑖, cid)
10: return 𝑑

Figure 22: First hop of the composed model proof. Code in
red represents the changes to the code correspoding to the
first hop. The changes inWin-ua are redundant, because if
the game reaches this function, then it must have passed
through mPACA and triggered the same conditions inside
Client-Win-SUF-t. We show them only for keeping changes
consistent.

registration partner of the server session that was involved in
the initial rChall oracle.

The remaining part of the behavior of 𝐵2 is a simple reduction
where it uses its own oracles to answer the queries placed by A.

At this point the composed model adversary can only win if it
breaks a composed-model specific condition: the server accepts an
authentication run, but the bound PlA oracles are not residing in
the token that is bound to the correct mPACA client.

This can only happen when at least one of the conditions in
lines 27, 28, 37 or 38 from Fig. 23 is true, which requires that
the client session bound to the token that completed the registra-
tion/authentication run is not the same as the client session linked
to the server session that finished that registration/authentication
run. Also note, if these winning conditions were activated, it is at
a point in the experiment where we can always find the unique
relationship between registration and authentication sessions of
servers and tokens, via the Partnerships method. We now explain
why this cannot occur.

The condition in line 27 models the rogue key attack scenario:
the adversary is able to register a key generated by a token PlA
session that is not protected by the mPACA session of the client
that is connected to the server, and this mPACA session is not com-
promised. Note that for the server to have accepted the registered
key, the client connected to it must have accepted the message
containing that key. However, this would have implied an mPACA
break which we excluded in hop 1.
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Win-ua (𝑆, 𝑖, cid):

1: if ∃(𝑆1, 𝑖1, 𝑝ℎ1 ) ≠ (𝑆2, 𝑖2, 𝑝ℎ2 ) s.t. �̃�
𝑖1
𝑝ℎ1,𝑆1

.sid = �̃�
𝑖2
𝑝ℎ2,𝑆2

.sid ≠⊥ then game ends

returning 0

2: if ∃(𝑇1, 𝑗1, 𝑝ℎ1 ) ≠ (𝑇2, 𝑗2, 𝑝ℎ2 ) s.t. �̃�
𝑗1
𝑝ℎ1,𝑇1

.sid = �̃�
𝑗2
𝑝ℎ2,𝑇2

.sid ≠⊥ then game ends

returning 0

3: if ∃(𝐶1, 𝑘1 ), (𝐶2, 𝑘2 ) 𝑠.𝑡 . (𝐶1, 𝑗1 ) ≠ (𝐶2, 𝑗2 ) and 𝜋
𝑘1
𝐶1
.stexe = 𝜋

𝑘2
𝐶2
.stexe = bindDone

and 𝜋𝑘1
𝐶1
.sid = 𝜋

𝑘2
𝐶2
.sid then return 1

4: if ∃(𝑇1, 𝑗 ′1 ), (𝑇2, 𝑗 ′2 ) 𝑠.𝑡 . (𝑇1, 𝑗 ′1 ) ≠ (𝑇2, 𝑗 ′2 ) and 𝜋
𝑗 ′1
𝑇1
.stexe = 𝜋

𝑗 ′2
𝑇2
.stexe = bindDone

and 𝜋
𝑗 ′1
𝑇1
.sid = 𝜋

𝑗 ′2
𝑇2
.sid then return 1

5:
6: if ∃(𝑇1, 𝑗 ′1 ), (𝑇2, 𝑗 ′2 ) 𝑠.𝑡 . (𝑇1, 𝑗 ′1 ) ≠ (𝑇2, 𝑗 ′2 ) and 𝜋

𝑗 ′1
𝑇1
.stexe = 𝜋

𝑗 ′2
𝑇2
.stexe = bindDone

and 𝜋
𝑗 ′1
𝑇1
.sid = 𝜋

𝑗 ′2
𝑇2
.sid then game ends returning 0

7:
8: if ∃(𝑆1, 𝑖1 ) ≠ (𝑆2, 𝑖2 ) s.t. �̃�

𝑖1
𝑟,𝑆1

.cid = �̃�
𝑖2
𝑟,𝑆2

.cid ≠⊥ then game ends returning 0

9:
10: if ∃(𝑆′, 𝑖′, 𝑝ℎ′ ), (𝑇 ′, 𝑗 ′, 𝑝ℎ′ ) s.t. �̃�𝑖′

𝑝ℎ′,𝑆′ .sid = �̃�
𝑗 ′
𝑝ℎ′,𝑇 ′ .sid ≠⊥ and (𝑆′,𝑇 ′ ) ∉ Lcorr

and𝑇 ′ .gid ∉ LcorrG and �̃�𝑖
′
𝑝ℎ′,𝑆′ .agCon ≠ �̃�

𝑗 ′
𝑝ℎ′,𝑇 ′ .agCon then game ends returning 0

11:
12: (gid, 𝑖′,𝑇 , 𝑗 ′, 𝑗 ) ← Partnerships(𝑆, 𝑖, cid)
13: if gid =⊥ or (gid ∉ LcorrG and (𝑇 =⊥ or𝑇 .gid ≠ gid)) then game ends returning 0
14: else
15: if gid ∉ LcorrG then
16: Retrieve (reg,𝑇 , 𝑗 ′, 𝑙 ′ ) from Lpla-paca-T
17: Retrieve (reg, 𝑆, 𝑖′,𝐶𝑆 , 𝑘𝑆 ) from Lpla-paca-S
18: (𝐶𝑇 , 𝑘𝑇 ) ← tokenBindPartner(𝑇, 𝑙 ′ )
19: if (𝐶𝑆 , 𝑘𝑆 ) ≠ (𝐶𝑇 , 𝑘𝑇 ) then
20: (𝑇𝑆 ,𝑚) ← clientBindPartner(𝐶𝑆 , 𝑘𝑆 )
21: if 𝜋

𝑘𝑆
𝐶𝑆

.compromised = false and 𝜋𝑚
𝑇𝑆
.pinCorr = false then return 1

22: if ((𝐶𝑇 , 𝑘𝑇 ) = (⊥,⊥) or 𝜋
𝑘𝑇
𝐶𝑇

.compromised = false) and 𝜋𝑙
′

𝑇
.pinCorr = false

then return 1
23: if (𝑆,𝑇 ) ∉ Lcorr and 𝑗 =⊥ then game ends returning 0
24: else if (𝑆,𝑇 ) ∉ Lcorr then
25: Retrieve (auth,𝑇 , 𝑗, 𝑙 ) from Lpla-paca-T
26: Retrieve (auth, 𝑆, 𝑖,𝐶′

𝑆
, 𝑘′

𝑆
) from Lpla-paca-S

27: (𝐶′
𝑇
, 𝑘′

𝑇
) ← tokenBindPartner(𝑇, 𝑙 )

28: if (𝐶′
𝑆
, 𝑘′

𝑆
) ≠ (𝐶′

𝑇
, 𝑘′

𝑇
) then

29: (𝑇 ′
𝑆
,𝑚′ ) ← clientBindPartner(𝐶𝑆 , 𝑘𝑆 )

30: if 𝜋
𝑘′
𝑆

𝐶′
𝑆

.compromised = false and 𝜋𝑚
′

𝑇 ′
𝑆

.pinCorr = false then return 1

31: if ((𝐶′
𝑇
, 𝑘′

𝑇
) = (⊥,⊥) or𝜋

𝑘′
𝑇

𝐶′
𝑇

.compromised = false) and𝜋𝑙
𝑇
.pinCorr = false

then return 1
32: return 0

Figure 23: Second hop of the composed model proof. Code in
red represents the changes to the code correspoding to the
second hop.

The condition in line 28 models the scenario where A is suc-
cessful in registering a key generated by a token that is out of its
control: the adversary, controlling a possibly compromised client
that is connected to the server, registers a key generated by a token
PlA session in an uncorrupted token mPACA session that has no
relation to the client controlled by the adversary. This would imply
the adversary was able to break mPACA by breaking into this token
and convincing it to answer a response request, which we excluded
in hop 1.

The justification for the winning conditions in lines 37 and 38
being unreachable is the same as above, but these lines correspond
to different practical attack scenarios that are excluded by our proof.
In line 37, the adversary would be hijacking an authentication
session established via an uncorrupted client and authenticating
using its own token. In line 38, the adversary is able to break into the

user’s token and impersonate the user in an authenticated session
that it controls.

This leaves only one last option for A to try to win, which
is through the conditions in lines 3 and 4. However, these are
also never reached, since they mean that A wins by breaking the
mPACA guarantees regarding uniqueness of sid values in client
and token sessions, which is not also possible after hop 1.

Therefore, at this pointA can never win the game, and the proof
is concluded. □

Theorem 9. (Attestation basic) If there exists an adversary A
against the composed security of an mPACA protocol mPACA and a
PlA protocol PlA, then there exist adversaries B1 and B2 such that:

AdvuaPlA+mPACA (A) ≤ AdvSUF-tmPACA (B1) + Advpla-authPlA (B2) .

The proof of this theorem is similar to the previous one, only
that the reduction to PlA security is now simpler given the adaptive
power of the adversary.

Note that the results we give in Section 4 for the mPACA security
of CTAP 2.1+ and in Appendix G for the security of WebAuthn
in various attestation modes imply that these composed security
results apply to this improved version of FIDO2. We next discuss
how our results capture rogue key attacks.
Rogue key attacks. The rogue key attack against the current
instantiation of FIDO2 is possible because the client has no way of
verifying the origin of a token response (in CTAP 2.1) and because
the server may not have any information that uniquely identifies
the token from which is expects a response (in WebAuthn). That is
indeed the case for the most common attestation modes None, Self
and Basic.

To see how our result addresses rogue key attacks above, in
all attestation modes, consider the scenario where an active at-
tacker is trying to launch a rogue key attack against the composed
PlA+mPACA protocol, but it does not have the ability to corrupt the
client that the user is relying on. Then, our results above guarantee
that the server will only accept a credential generated by the token
that is uniquely bound to that client, which in turn is uniquely
bound by a TLS connection to the server. As soon as the client is
under the adversary’s control this guarantee no-longer holds, and
rogue key attacks can take place. We note that this is only true for
the upgraded version of mPACA that we proposed in this paper.
We discuss next what these results mean for the current version of
FIDO2.
Composed security for current FIDO2.When considering the
current version of FIDO2 we can no longer rely on its PACA compo-
nent CTAP 2.1 to resolve the problem of rogue key attacks. However,
we can consider a weaker security model in which composed se-
curity holds: trust on first use. In this setting one assumes that the
composed protocol adversary is fully passive during registration,
as in [6].

However, even in this case, the adversary can try to take ad-
vantage of the lack of authentication in messages going from the
authenticator back to the client that is bound to the server. The com-
posed model guarantee for current FIDO2 is therefore much weaker
than what we have presented above. We describe the implications
in detail next.
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First of all, one cannot guarantee that the server only accepts an
authentication response that comes from the token that is PACA-
bound to the client. Indeed, the attacker could potentially convince
the client to send back to the server a response that comes from
his own maliciously-controlled token, thereby leading the server to
log-in the user under a different account. The implications of such
an attack could be similar to those of Cross-Site Request Forgery
(CSRF) attacks.12

Second, even though such an attack is still possible, the role of
PACA in composed FIDO2 security is still relevant: it guarantees
that, if the user’s token is not compromised and only interacts with
honest clients, then the attacker cannot break into the token and
impersonate the user. Formally this can be captured by taking the
approach in [6] to composed model security: one requires that the
attacker cannot break PlA security and, furthermore, that tokens
bound to honest clients only issue responses to PlA authentication
requests if these requests come from their unique PACA partner.

Finally, we remark that we could strengthen the composed model
guarantees for current FIDO2 with a different use of credential iden-
tifiers. Indeed, assuming trust on first use, the server will record a
unique credential identifier cid for each credential. Hence, if this is
associated with a server-side user identifier, the server could po-
tentially impose a priori a cid when authenticating the user. In this
case, the attack we described above will not work, as the attacker’s
credential will be rejected because it does not match the cid that the
server is looking for. We expect that, in this setting, FIDO2 meets
the stronger notion of composed security for authentication runs
we propose here, but we do not pursue this line of analysis because
this does not seem to be the common use case for cids.

J Formal CTAP Privacy Attacks
Figure 24 describes the adversary A that breaks PACA privacy
(defined in Section 5.1) of CTAP 2.1 and CTAP 2.1+ by taking advan-
tage of the reuse of ECDH shares on the authenticator side. Since
each ECDH share 𝑝𝑘𝑇 is sampled randomly, A will identify the
correct token with probability 1 − 1/𝑞, where 𝑞 is the prime order
of the underlying ECDH group (from curve P-256).

Apriv
CTAP 2.1/CTAP 2.1+ (𝜆) :

For some distinct tokens𝑇0,𝑇1 , some clients𝐶0,𝐶1 , and some user𝑈
1: Phase 1: trans0 ← Setup(𝑇0, 1,𝐶0, 1,𝑈 ), trans1 ← Setup(𝑇1, 1,𝐶1, 1,𝑈 )
2: Extract token𝑇 ’s DH share 𝑝𝑘0 from trans0 and DH share 𝑝𝑘1 from trans1
3: Phase 2: Outputs𝑇0,𝑇1,𝐶0,𝐶1,𝑈 ,𝑈
4: Phase 3: trans← Bind-LEFT𝑇0,𝐶0 (2, 2)
5: Extract token𝑇 ’s DH share 𝑝𝑘 from trans
6: if 𝑝𝑘 = 𝑝𝑘0 then
7: return 0
8: else
9: return 1

Figure 24: Privacy adversary for CTAP 2.1 and CTAP 2.1+.

12https://owasp.org/www-community/attacks/csrf
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