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Abstract
Postal voting is a frequently used alternative to on-site voting.

Traditionally, its security relies on organizational measures, and

voters have to trust many entities. In the recent years, several

schemes have been proposed to add verifiability properties to postal

voting, while preserving vote privacy.

Postal voting comes with specific constraints. We conduct a

systematic analysis of this setting and we identify a list of generic

attacks, highlighting that some attacks seem unavoidable. This

study is applied to existing systems of the literature.

We then propose Vote&Check, a postal voting protocol which

provides a high level of security, with a reduced number of authori-

ties. Furthermore, it requires only basic cryptographic primitives,

namely hash functions and signatures. The security properties are

proven in a symbolic model, with the help of the ProVerif tool.

1 Introduction
Electronic voting and voting in general aim at two main security

properties, namely vote secrecy and verifiability of integrity. Vote

secrecy guarantees that no one learns information about how a

certain voter voted while verifiability allows to check that the result

corresponds to the actual votes of the eligible voters.

Internet voting has attracted a lot of attention in the past two

decades. Several countries use Internet voting for legally binding

elections, such as Estonia [32], Australia [23], Switzerland [36], or

France [19]. Many academic systems have been proposed as well,

such as the simple protocol Helios [2], used by the IACR (Interna-

tional Association for Cryptologic Research), or more advanced

protocols that aim at achieving higher guarantees such as coercion

resistance (e.g. Civitas [14, 25] or VoteAgain [31]). Another form of

remote voting is postal voting. Its advantage is its simplicity: voters

do not need any computer to cast a vote, they simply send a paper

ballot by mail. This is a common practice in many countries: it is

used by 90% of the voters in Switzerland [34] and 46% of the votes

were cast via mail ballot in the 2020 US presidential election [42].

Surprisingly, while postal voting is used for high stake elections,

it has deserved much less attention than Internet voting and its

security level is typically low. For example, in the United States,
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the voters simply fill-in their ballot and manually sign the return

envelop that contains their ballot. Not only this is a weak form

of authentication but the authorities need to be trusted for vote

privacy: they may open the envelope and read the vote right after

having authenticated the voter. Verifiability is not provided either.

Once the ballots are received, they need to be securely stored until

the tally. Any person having access to them may remove or replace

them. Moreover, when ballots travel through postal services, post-

men may selectively drop ballots that come from some area known

to vote for a certain candidate. A study in Switzerland [26] shows

that postal voting is actually complex and involves many parties.

There has been some recent effort to improve the security of

postal voting. STROBE [3] makes a significant first step by introduc-

ing verifiability. An entity, called the printer, prepares the voting

material, prints it, and sends it to voters. Roughly speaking, the

voting sheet contains the name of the candidate in clear but also

its encrypted version. The voter selects their favourite candidate

and can then check that the corresponding encryption appears on

some public board after the tally. In order to verify that the ballots

have been correctly generated, each voter actually receives two

ballots and randomly selects one for audit: the printer must prove

that it was encrypted correctly by providing the corresponding

randomness. RemoteVote and SAFE Vote [18] further improve this

approach in terms of usability, so that the voter no longer receives

two ballots. An important drawback of these systems however is

that they improve verifiability at the cost of sacrificing privacy. In-

deed, an honest but curious printer knows perfectly well to whom

it has sent the ballots and it also knows the correspondence be-

tween candidates and encrypted ballots. Hence, after the tally, it

can simply read the accepted ballots from the public board and

deduce who voted what, for the entire population. We explain this

attack in more detail in Section 2. Another recent work is the sys-

tem by Devillez et al. [22]. An additional authority is introduced,

the verification server, that the voters should contact to verify that

their ballot has been correctly counted. Indeed, there is no public

bulletin board where the voters can look at to find for their bal-

lot. While this system has better security properties than STROBE,

RemoteVote and SAFE Vote, specially regarding privacy, it only

provides proxy-verifiability instead of the usual stronger notion of

universal verifiability.

Design choices. While being called postal voting, all these sys-

tems make use of Internet. In particular, voters need to access a

public bulletin board or a verification server and they may need

to perform cryptographic checks. However, such systems remain

333

https://orcid.org/0009-0003-1651-3927
https://orcid.org/0000-0001-5610-1765
https://orcid.org/0000-0001-8263-8101
https://orcid.org/0009-0001-5400-8951
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0101


Proceedings on Privacy Enhancing Technologies 2025(3) Véronique Cortier, Alexandre Debant, Pierrick Gaudry, and Léo Louistisserand

paper-based in the sense that voters still cast their vote without any

devices. They can then optionally use devices for verifiability. We

believe that such a design is a promising approach that may ease

the replacement of old style (insecure) postal voting: voters may

still vote as usual and they cast a vote for the candidate they see
printed on the ballot. Of course, voters who do not verify get less

guarantees but the fact that a proportion of voters will verify may

be sufficient to incentivize the authorities to behave as expected,

because dropping or modifying ballots becomes more risky. More-

over, proposing two simultaneous systems (postal and Internet)

would be more expensive.

Our contributions. We first provide a list of attack scenarios, that

are applicable to most postal voting systems. Whether the attack is

successful then depends on the analysed system and of course, other

attacks may exist. One of our generic attacks is the full privacy

breach scenario that we mentioned above: the printer (or another

authority) records all the data it has provided to voters. Then given

the public information available after tally (e.g., the bulletin board),

it looks for identifying data such as encrypted votes, which may

allow it to deduce the vote of each voter. We apply our attack

scenarios to the STROBE protocol and we unveil several flaws,

beyond the weaknesses that were acknowledged by the author in

the paper. In addition to the privacy attack, we showhow authorities

can manipulate the votes. Interestingly, some of our attacks seem

inherent to postal voting and hence will probably apply to any

system. For example, complaints may be used to break privacy.

Indeed, if the authority in charge of collecting the ballots drops one

ballot that votes for candidate A, then a voter will complain, and

the authority will learn that this voter voted for A. This applies to

other Internet voting protocols such as Selene [38] or sElect [29].

We further study whether our attack scenarios successfully apply

to RemoteVote, SAFE vote, and Devillez et al.’s protocols.

Our second and main contribution is the design of Vote&Check,

a simple postal voting system that aims at providing vote privacy

against a dishonest printer and any other dishonest authority (but

not against a collusion of them). The idea is simple: the voter re-

ceives a voting sheet that contains a credential 𝑐 from the printer,

the list of candidates in clear, and some authentication data. The

voter selects their candidate and sends back their ballot, with the

credential. Then the vote will appear in clear on the bulletin board,

next to a public tracker 𝑤 = ℎ(𝑐, 𝑡) that is obtained by hashing

𝑐 with a tracker 𝑡 that the voter can obtain by connecting to an

external authority, the Tracker Server. This protects the voter from

privacy attacks from both the printer and the Tracker Server, un-

less they collude. Vote&Check also guarantees provides individual

and universal verifiability, without having to rely on a proxy. A

voter can check on a public bulletin board that their vote intent

has been counted. Furthermore, anyone can check that the result

corresponds to the votes on the bulletin board. Indeed, since the

votes are provided in clear, it is sufficient to count. Finally, the fact

that votes only come from legitimate voters (eligibility verifiability)

is guaranteed as soon as one authority is honest and up to the fact

that a dishonest printer may always cast a ballot for an absentee

voter. This is due to the fact that the material received by post

solely suffices to cast a vote. This is also one of our generic attack

scenarios that we describe in the first part of our work.

Interestingly, our protocol achieves a higher degree of security

than previous systems relying only on basic standard cryptographic

primitives: it only requires hash functions and standard digital sig-

natures, available in almost all cryptographic libraries (OpenSSL,

libsodium, WolfCrypt, etc) and/or secure devices (e.g., HSM). ElGa-

mal encryption, which is widely used in electronic voting, is less

ubiquitous; in general, it would require simple, but specific develop-

ment based on cryptographic libraries APIs. Furthermore, ElGamal

encryption often comes with a distributed, and often thresholdized,

key generation and decryption in order to distribute trust among

several authorities. This comes at a cost: it imposes organisational

constraints, but also computation and communication overheads

for the participants.

Another simplicity aspect of Vote&Check comes from the num-

ber of independent authorities that are required. It is customary to

increase the number of authorities, in order to share the trust and

avoid giving too much power to a single entity, and in that sense,

there is a tradeoff between security and simplicity. Since there is no

encryption in Vote&Check, it does not need independent decryption

authorities as in the previous systems, which simplifies the orga-

nization of elections. More generally, we claim that Vote&Check

provides a good balance between a number of authorities that is

manageable, and high security guarantees. Vote&Check requires a

public bulletin board, but this is a rather simple version of it, since

it is not used during the voting phase. A webpage containing the

data signed by all authorities at the end of the setup and at the end

of the tally is enough for implementing it.

Furthermore, a nice feature of our protocol compared to STROBE

and other verifiable postal voting systems that we are aware of, is

that it supports complex counting systems based on ranking the

candidates or giving them a grade (STV, Condorcet, etc).

Security proof. We formally prove the security of Vote&Check us-

ing ProVerif [7], a popular tool for the analysis of security protocols.

While the cryptographic primitives are very simple and hence easy

to model, we had to account for particular physical channels such as

postal voting where the attacker can send a mail to a targeted voter

but it cannot open their mailbox (at least in some threat models).

For privacy, we had to handle the fact that complaints break privacy,

as indicated by one of our generic attacks. We instead show that our

protocol preserves privacy provided that complaints can be made

anonymously, for example through a trusted third party (a judge).

For verifiability, we use the recently proposed framework [15] de-

veloped for ProVerif. We unveiled a limitation of the framework,

that implicitly assumes that each ballot can be identified and linked

to a voter. However, in Vote&Check, there is no identifying data.

Instead, we show how to use the credential and the tracker, with a

flexible association that can depend on the trust assumptions. We

also had to circumvent the fact that ProVerif cannot easily reason on

“else” branches and we introduced a new axiom, for which we pro-

vide a proof of correctness. We believe that these proof techniques

can be used for other voting protocols.

Related work. The closest works are the protocols STROBE [3],

RemoteVote and SAFE Vote [18], and Devillez et al.’s [22] that we

already discussed. We conduct a more thorough analysis of them in

Section 2. In brief, the main difference with STROBE, RemoteVote
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and SAFE Vote is that we wish to prevent an authority from learn-

ing the votes of the entire population, without being detected. The

security guarantees offered by Devillez et al.’s are closer to our

system, although we also protect against some less severe attacks

such as clash attacks [28]. Moreover, this protocol involves a larger

number of independent authorities, namely four independent au-

thorities plus 𝑛 talliers, where we only require three independent

authorities (the Printer, the Tracker Server and the Election Office)

as well as a public bulletin board.

Other approaches [4, 33] are also called postal voting as voters

cast their ballot by post but they need a computer to generate the

voting material and they also need to print the material themselves.

Hence, even if they help a lot to avoid breaking voter’s privacy,

they are closer to Internet voting.

Finally Prêt-à-Voter [39] and Pretty Good Democracy (PGD) [40]

are voting systems where voters can vote using only paper ballots.

However, these protocols are designed for on-site voting, which

leads to a different threat model. It is not obvious to turn them

into (remote) postal voting. Vote&Check belongs to the family of

tracker-based voting systems. In particular, it borrows to sElect [29]

and Selene [38] the idea that the voter will see their vote in clear on

the public board, aside a tracker that they can recognize. These two

systems strongly assume that the voter uses an electronic device to

cast their vote and are not directly applicable to postal voting.

2 Attack scenarios
Verifiable postal voting systems have a common structure. Voters

receive some material by post, that has been issued by one or

several authorities (among them, the printer). Voters then select

their candidate and send back their selection, possibly retaining

some part of the voting material. At the end of the election, voters

typically have access to some additional data, for example on a

public bulletin board, and they can perform some checks to verify

that their vote has been properly counted.

2.1 Generic attack scenarios
We list generic attacks against privacy and verifiability which may

apply to any system which does not implement dedicated coun-

termeasures. For each property, we consider several corruption

scenarios and mention possible countermeasures if they exist.

2.1.1 Threat model. The list of parties involved in a postal voting

system varies across the systems but typically contains at least: the

voters; a printer, that prints and sends the voting material; a ballot

collector; and a bulletin board. The ballot collector is in charge

of collecting the ballots sent by voters and announcing the result,

possibly publishing some data on a bulletin board. While voters,

printer, and ballot collector may all be dishonest, the bulletin board

is typically assumed to be a secure, public, and append-only board

that anyone can see in an authenticated manner.

In what follows, we list potential attacks against privacy and veri-

fiability, when at most one of these parties is corrupted. Some postal

voting systems involve other parties, that may also be corrupted

but these system specific scenarios are not considered here.

2.1.2 Privacy.
Targeted privacy attack (corrupted voters).A dishonest voter

Charlie gives his material to Alice (e.g., drops his material in Alice’s

mailbox) and keeps a copy. Alice uses this material instead of hers.

Then Charlie uses the verification mechanism to learn Alice’s vote.

Amore powerful variant is when Charlie can actually generate valid

ballots by himself, which allows him to attack privacy of several

voters, while keeping his right to vote.

Possible countermeasures: by signing the material (or part of it),

one can prevent Charlie from generating valid ballots by himself.

Moreover, if this signature binds the identity of the voter it could

prevent Charlie from switching his material with Alice’s. However,

it introduces a new trusted party (the signer). Of course the trust

can be put elsewhere, e.g., assuming the presence of secure channels

between the voter and some authorities/parties. This is mechanism

used in [22] and, to some extent, in Vote&Check as well.

Full privacy breach (corrupted printer). Some authority, typ-

ically the printer, knows the link between the voter and some iden-

tifying data (e.g., an authentication token). This identifying data

may appear on the bulletin board, next to the vote in clear. In that

case, the authority (honest but curious) breaks vote privacy of all

voters. A variant of the attack is when the authority generates all

possible encrypted votes for a voter and the selected encrypted

ballot appears on the bulletin board. The ballot identifies the voter

and hence vote privacy is broken again.

This is a powerful attack since the privacy of all voters is broken

w.r.t. this authority, without any detection.

Possible countermeasures: a trivial countermeasure is to keep

the bulletin board secret (of course it raises other challenges for

verifiability). Another approach is to distribute the generation of

the identifying data as done in Vote&Check.

Privacy breach by complaints (corrupted ballot collector).
When votes appear in clear on the paper ballot, the authority col-

lecting the ballots may alter or remove a vote (without knowing

who voted for it) and see who complains.

Such an attack also applies to pure Internet voting schemes as

well, such as sElect [29], Selene [38], or Hyperion [37]. This attack

is detectable, by construction, but a few complaints may not draw

attention. This attack was not detected in their respective privacy

proofs [13, 29] because they assume that the collecting authority

behaves honestly w.r.t. the honest voters.

Possible countermeasures: at the time of writing, we don’t know

how to prevent such attacks in practical system.

2.1.3 Verifiability.
Ballot stuffing and vote flooding attacks (external attack-

ers). In some systems, anyone may create a fake ballot and vote,

which leads to ballot stuffing. This is typically avoided by authen-

ticating some part of the voting material. A weaker form of this

attack is when an attacker may find sufficient information (e.g., on

the bulletin board) such that they can cast a vote without knowing

for whom they voted. This allows to artificially increase the turnout

and change the proportion of votes for each party, allowing e.g., a

party to reach a certain quorum. We call this attack vote flooding.
Possible countermeasure: binding each ballot to a unique identifier

prevents these attacks. However, this binding must remain secret

until it is used to prevent flooding attacks. This binding can be

ensured by different authorities (like in [22] or Vote&Check) to

avoid single point of failures.
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Weak eligibility attack (corrupted printer). An authority

(typically the printer) can keep copies of the voting material and

vote for absentees.

Possible countermeasure: Such an attack seems unavoidable if

the printed material is solely sufficient to cast a vote.

Clash attack (corrupted printer). An authority (typically the

printer) may send the same ballot to two voters that vote the same

way (this can be guessed easily for some voters). Then only one

of the two votes is counted. Such an attack leaves traces since the

ballot collector will typically receive duplicated ballots. However, it

is hard to decide what to do when two identical ballots are received

since some (dishonest) voters may also try to vote twice by reusing

their material. Hence, it is hard to identify who misbehaved.

Possible countermeasure: binding the ballots (or voters) to a unique
identifier prevents this attack. However, it requires that injective-

ness of the mapping is guaranteed by an authority other than the

printer (who is assumed to be compromised).

Alter votes of non-verifying voters (corrupted ballot collec-
tor).Not all voters perform the verification steps. For non-verifying

voters, an authority may try to flip their vote. Note that the collect-

ing authority may always drop the vote (since the voters do not

verify) but flipping the vote yields a more powerful attack.

Possible countermeasure: while there are techniques to prevent

vote flipping in Internet voting protocols, we are not aware of a

technique that is usable for postal voting since they require crypto-

graphic operations performed by the voter/voting device.

2.2 Example of the STROBE protocol
The STROBE [3] voting scheme is a postal voting scheme designed

by Josh Benaloh. It aims to provide verifiability while staying as

close as possible to traditional vote by mail. The different entities

involved are the printer, the postal service, the cast officer, the

voters, and a set of trustees. There is a public board where the

printer, the cast officer and the trustees can write any message.

2.2.1 Protocol. STROBE uses probabilistic homomorphic encryp-

tion (for example ElGamal) under the public key of the set of

trustees. For each voter, the printer encrypts the votes, i.e. the

identity matrix of size the number of candidates (blank vote is en-

coded as a candidate named “None”). Each line of the encrypted

matrix is hashed, only the last byte of the hash is kept as a short

code (shown on Figure 1a). This is repeated until all short codes

are different. Lines of the matrix are permuted such that the short

codes increase. The identifier of this ballot is the hash of the per-

muted matrix. The permuted matrix, the short codes and the ballot

identifier are published on the board, as well as zero-knowledge

proofs (produced by the printer) that this matrix is the encryption

of a permutation (cf Figure 1c). Ballots (shown on Figure 1b) are

paired and the pairings are made public. Each voter receives by

postal mail two paired ballots. They can verify that the ballots are

well-formed by looking if the information on the board corresponds

to what they have received. Then they simply choose one of the

ballots, tick the box of their choice and send it by postal mail to

the cast officer. The cast officer publishes the ballot identifier and

the chosen short code, that a conscientious voter can verify. Finally,

the trustees multiply all the selected encryptions and decrypt the

product, giving the result of the election. The printer also reveals

the random numbers used to encrypt the unused ballots; auditors

can then check that they were well-formed.

2.2.2 Instantiation of the attacks. Most of the generic attacks apply

to the STROBE protocol, in different threat models.

Full privacy breach. The printer is supposed to not retain the link

between voters and ballots. However, there is no way to verify that

a dishonest printer indeed deleted it and if they have not, then they

can learn the correspondence between plaintext votes and voters,

by looking at the selection code and recalling to which candidate it

corresponds.

Targeted privacy breach. If Charlie is a dishonest voter and wants
to learn Alice’s vote, he can copy his ballot and drop the original one

in Alice’s mailbox. In STROBE, ballots are all similar and unrelated

to the voters, so that Alice has no way to distinguish her ballot

from Charlie’s. If she votes with the latter, Charlie will learn her

vote by reading the selection code on the public board.

Privacy breach by complaints. The cast officer collects all the

ballots. They know all plaintext votes, but they do not know the

link between those votes and the voters. A compromised officer can

willingly drop ballots for a specific candidate. Then, they can deduce

that all the voters who complain have voted for this candidate.

Vote flooding. Using the public information from Figure 1c, an

attacker can produce fake ballots, indistinguishable from real ones.

They just have to rank the selection codes in a random order and

send the forged ballot to the polling station to have it counted. This

will artificially raise the turnout, as well as the score of the smaller

candidates.

Alter votes of non-verifying voters. The cast officer receives all

plaintext votes and have to record the corresponding selection

codes on the public board. A compromised officer can drop the

ballots they dislike or record other selection codes instead. This

will be undetected if the corresponding voters do not verify.

Among all of these, Full privacy breach and Alter non-verifying

voters are acknowledged in the STROBE paper: it is made very clear

by the author that the printer is assumed to be honest, and there is

no claim of verifiability if the voter does not verify. The other three

attacks seem to have been overlooked by the author.

2.3 Other protocols
RemoteVote and SAFE Vote [18] are two postal voting schemes

inspired by STROBE. The goal was to gain everlasting privacy as

well as some usability. The approach proposed in [22] by Devillez et

al. still relies on return codes, but goes further away from STROBE.

It has the highest security features among the 3.

2.3.1 RemoteVote. The main difference between STROBE and Re-

moteVote is that each voter receives a single ballot instead of two, to

improve usability. The ballot contains the two columns of selection

codes that would have been on the two STROBE ballots. Similarly,

one of these columns is spoiled after the election for verification

while the second is used for tallying. But unlike in STROBE, it is

not the voter who arbitrarily chooses which column is audited, but

it is the result of a computation with the data of the ballot and a

nonce randomly chosen after the election by a third party. This

makes a clash attack possible, that we now describe.
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Candidate Encryption Code

Alice (enc(1), enc(0), enc(0), enc(0), enc(0) ) Q4

Bob (enc(0), enc(1), enc(0), enc(0), enc(0) ) D6

Charlie (enc(0), enc(0), enc(1), enc(0), enc(0) ) L7

None (enc(0), enc(0), enc(0), enc(0), enc(1) ) E1

(a) Structure of the encryption

Alice □ Q4

Bob □ D6

Charlie □ L7

None □ E1

1960-857c-c5db-

3939-2711-95e3

(b) Paper ballot

Encryption Code

(enc(0), enc(1), enc(0), enc(0), enc(0) ) D6

(enc(0), enc(0), enc(0), enc(0), enc(1) ) E1

(enc(0), enc(0), enc(1), enc(0), enc(0) ) L7

(enc(1), enc(0), enc(0), enc(0), enc(0) ) Q4

Ballot code : 1960-857c-c5db-3939-2711-95e3

(c) Information published on the board

Figure 1: Voting material in the STROBE protocol.

STROBE [3]

RemoteVote /

SAFE Vote [18]

Devillez et al. [22]

Vote&Check

(this work)

# of authorities (excl. post and auditor) 2 + 1 2 + 1 4 + 1 3

public board yes yes no yes

pr
iv
ac
y

at
ta
ck
s targeted privacy breach ✘new ✘new ✔ ✔

full privacy breach ✘ ✘ ✔ ✔

privacy breach by complaints
new ✘ ✘ ✘ ✘

ve
ri
fia

bi
lit
y

at
ta
ck
s

ballot stuffing ✔ ✘new ✔ ✔

vote flooding ✘new ✘new ✔ ✔

weak eligibility
new ✘ ✘ ✘ ✘

clash attack ✔ ✘new ✔∗ ✔

alter non-verifying voters ✘ ✘ ✘ ✘

universal verifiability ✔ ✔ proxy ✔

Table 1: Application of the generic attacks to postal voting schemes. For the number of authorities, we indicate with a bold font “+ 1”,
when one authority is actually a set of thresholdized authorities, typically the decryption trustees. The symbol ✔ means we did not find this

kind of attack on the protocol, while the symbol ✘ indicates that the protocol is subject to this attack. The symbol
new

means that this attack

is our finding; otherwise, it was part of the threat model of the authors of the said protocol. When the symbol qualifies a property, it means

that this is a refined security property that we introduce in this paper. Finally, for [22], we marked the symbol with
∗
, because a verification

step required for this property is left implicit in the description of the protocol.

If the printer suspects several voters to cast the same vote, they

may provide them with the same ballot. The polling station cannot

distinguish this from one voter sending multiple copies of their

ballot. Since which column is spoilt is the result of an unpredictable

but deterministic computation, it is the same for all the copies of the

ballot, so each voter will be able to conduct the verifiability even if

only one vote has been recorded for all of them. This attack would

have been detected in STROBE, where the voters with the same

two ballots would have cast either one or the other. The polling

station would have accepted only one of them and the voters that

used the other one could have detected it.

Another major difference with STROBE is that, in RemoteVote,

there is no permutation. Hence, from the data that is published,

anyone can create a fake ballot, and vote for the candidate of their

choice. Therefore, the vote flooding attack that was present in

STROBE becomes a more powerful ballot stuffing attack.

2.3.2 SAFE Vote. In this variant, each ballot contains a single col-

umn of selection codes. The randomness that allows to perform the

audit for this ballot is printed directly on the ballot, but is concealed

behind a scratch-off surface.

This does not really change the situation. The clash attack by

the printer works exactly the same as in RemoteVote. Also, since

the audit is not performed by the authorities, anyone can use the

public data to create fake ballot, putting random values behind the

scratch-off. We therefore have the same ballot stuffing attack as in

RemoteVote.

2.3.3 Devillez et al.’s protocol. In this protocol, the printer gener-

ates all the voting material to be sent to voters, together with the

associated cryptographic data to be sent to other parties. The paper

ballots received by the voters contain one selection sheet, that is

very similar to a classical paper ballot, with the only addition of

a random token tk. The voter ticks the boxes near the candidates
they select, and they send back this sheet by post. They also receive

from the printer a list of return codes, 2 for each candidate, corre-

sponding to whether or not they selected this candidate. They also

get the value hash(tk).
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After the result is announced, the voters can contact (electroni-

cally) a verification server, send them hash(tk), and theywill receive
back the return codes corresponding to their choices.

In order to make this process secure, the verification server does

not receive directly the return codes from the printer. Instead, the

printer will send them encrypted to talliers, who share the decryp-

tion key. These talliers operate after the tally; they collectively

decrypt only the relevant return codes and send them to the verifi-

cation server.

We skip many important details, but the outcome is that the

scheme is claimed to be secure as soon as there is no collusion

between two authorities, nor between one authority and the post.

However, we noticed a path to a clash attack when the printer

colludes with the post. If the printer suspects that two voters will

vote in the same way, it can send them exactly the same voting

material, and send to the authorities the same cryptographic data for

these voters. In this attack, the post will drop one of the ballots sent

by those two voters. Based on the cryptographic material received

from the election office, the verification server will answer correctly

to both voters, unless they check that there are no duplicates in the

data they received from the printer. While this check is not present

in the description of the protocol, the authors had this verification

in mind, because the security proof explicitly relies on it.

Compared to our Vote&Check protocol, other more fundamental

drawbacks of the protocol by Devillez et al. are the following. First,

it is not really universally verifiable; one has to trust authorities for

this property. Furthermore, it uses more advanced cryptographic

tools, such as a distributed threshold key generation, for the talliers.

Finally, it requires more authorities than in Vote&Check, which

might be a problem for practical deployment.

3 Vote&Check
3.1 High level description
3.1.1 Participants. The Vote&Check protocol involves the follow-

ing participants:

• Printer. This entity is responsible for sending by postal mail

the voting material to the voters.

• Tracker Server. This server provides a tracker to each voter,
to let voters check that their ballot is counted.

• Election Office. This entity receives the postal ballots from

the voters, and in the end publishes the votes in clear, to-

gether with verification data.

• Public board. A publicly readable place, that contains the

result and verifiability data.

• Auditors. One or several entities who perform consistency

checks of what is written on the board.

• Voters. The voters are assumed to have a valid postal address,

and, for verifiability, an electronic way to receive securely

data from the Tracker Server, and to read the public board.

In the description of Vote&Check and in its security analysis,

we will often separate the (honest) voters in two groups: those

who perform all the optional verifications steps, thus requiring

an electronic device which is able to scan QR-codes and which is

connected to the Internet, and those who stick to the traditional

steps that require only pen and paper. Voters in the first group are

called conscientious, and the others are called offline.

3.1.2 Protocol phases. The protocol is divided into several phases:

setup, vote, tally and verification, as shown on Figure 2. During the

setup, authorities send material to voters: they get voting material

(right part of Figure 2), by post, from the Printer and (optionally)

receive electronically verification material from the Tracker Server.

The Tracker Server also sends tracking information to the Election

Office. During the voting phase, voters fill in their paper ballot with

a pen, and send them, by post, to the Election Office. During the

tallying phase, the Election Office performs some validity checks

and publishes every valid vote next to the corresponding tracking

information. During the verification phase, voters can verify that

their vote has been recorded using their verification material.

3.2 Detailed description
The details of each phase of the protocol, with the flow of messages

between the participants, are summarized in Figure 3.

3.2.1 Channels and authentication. The protocol relies on secure

channels between the participants, which guarantee integrity, au-

thenticity, and confidentiality of all messages. The exceptions are

that reading the board does not require authentication and that

the postal channels are anonymous. Writing on the board requires

authentication and we assume that each piece of data on the board

is available together with the identity of the writer of this data,

which could be implemented by each writer signing the data that

they put on the board. We let these implicit, because we consider

them as part of the public board functionality.

Furthermore, the Printer needs to sign some material that is sent

to the voter, and this is made explicit in the protocol. Any classical

signature scheme, like Schnorr or ECDSA, can be used, as long as it

fits in a QR-code. The public key of Printer is assumed to be known

by all parties. We denote by sig the Printer’s signature function,

and we omit the key. We also omit the fact that the signature

must be bound to a precise election, so that it can not be replayed,

for instance if there are two rounds of elections with the same

participants. Therefore, the notation sig(𝑥) that we will use from
now must be understood as sigsk(Printer) (context, 𝑥). The protocol
will also use a cryptographic hash function, denoted by hash.

3.2.2 Setup phase. Let V = {𝑉𝑖 , 𝑖 ∈ I} be the set of all 𝑛 voters,

where I = [1, 𝑛]. We assumeV is known by all the authorities.

First, for every voter 𝑉𝑖 , the Tracker Server generates a pseu-

donym 𝑎𝑖 (a nonce) and a tracker 𝑡𝑖 (another nonce). The Tracker

Server sends their pseudonym and tracker (𝑎𝑖 , 𝑡𝑖 ) to each voter

𝑉𝑖 over an electronic channel. The Tracker Server also sends the

permuted list {(𝑎𝜋 (𝑖 ) , 𝑡𝜋 (𝑖 ) ), 𝑖 ∈ I} to the Election Office, where 𝜋

is the permutation over I that sorts the 𝑎𝑖 alphabetically. Finally,

the Tracker Server sends the list ((𝑉𝑖 , 𝑎𝑖 ), 𝑖 ∈ I) to the Printer.

The Printer checks that the pseudonyms are pairwise distinct

and that the identities match the already published list V . If it is

the case, they generate for each voter 𝑉𝑖 a credential 𝑐𝑖 and send

to 𝑉𝑖 over the postal channel a ballot containing 𝑎𝑖 , 𝑐𝑖 , sig(𝑎𝑖 ) and
sig(𝑎𝑖 , 𝑐𝑖 ) in a QR-code, plus a sheet that contains sig(𝑎𝑖 , 𝑐𝑖 ,𝑉𝑖 ). This
last signature is sent to the voter in a separate sheet so that the

Election Office will not receive it, to protect voter’s privacy. This

signature is there to guarantee the voter that they are the intended
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Alice □
Bob □
Charlie □
David □
None □

Figure 2: Vote&Check protocol overview (left part). A different colour is assigned to each phase: red for the setup phase, blue for the

voting phase, green for the tally phase, and violet for the verification phase. Dotted lines are optional: voters can still vote if they are offline.

Example of a ballot (right part). The QR-code contains the voters’ pseudonym 𝑎𝑖 , the ballot’s credential 𝑐𝑖 , and signatures by the Printer.

The empty box is for the voter to write their nonce 𝑛𝑖 .

recipient of this voting material and protect against targeted pri-

vacy breach. It also serves as a way for the voter to keep the value

𝑐𝑖 for the verification phase. Finally, the Printer publishes the list

A = (𝑎𝜋 (𝑖 ) , 𝑖 ∈ I) on the board, where 𝜋 is the same sorting per-

mutation as before. The other authorities, namely the Printer and

the Election Office, verify that this list matches their own view. The

Auditors check that the list contains the correct number of items.

3.2.3 Voting phase. Each voter receives by post the two sheets

of paper sent by the Printer: their paper ballot and the additional

paper with just a signature. Each conscientious voter, with their

verification device, also receives their verification material from the

Tracker Server and verifies that the three signatures on the ballot

and on the additional paper are correct and consistent, that their

name appears (signed) on the additional sheet, and that the pseu-

donym on the ballot matches the one on the verification material

and that this pseudonym is present in the list A from the board.

The voting procedure itself, done by both conscientious and

offline voters involves just pen and paper. They pick a short nonce

𝑛𝑖 and write it on their ballot. Then, they tick the box corresponding

to their vote 𝑣𝑖 and send the ballot to the Election Office via the

post. Combining the handwritten and the electronic data contained

in the QR-code, the ballot contains (𝑎𝑖 , 𝑐𝑖 , 𝑣𝑖 , 𝑛𝑖 , sig(𝑎𝑖 ), sig(𝑎𝑖 , 𝑐𝑖 )).
The nonce 𝑛𝑖 is chosen and written by the voter and must

therefore be short. However, it must be large enough to ensure

that a clash attack will go undetected with only a small (but non-

negligible) probability. We typically suggest a 3-digit number.

3.2.4 Tally phase. The Election Office controls the signatures on

the received ballots and discards those with incorrect ones. They

also discard ballots with a pseudonym 𝑎𝑖 that does not belong to

A, as seen on the board. Lastly, they discard every ballot using

a pseudonym that has already been used. The Election Office is

responsible for ensuring these three properties. For every remaining

ballot (𝑎𝑖 , 𝑐𝑖 , 𝑣𝑖 , 𝑛𝑖 , sig(𝑎𝑖 ), sig(𝑎𝑖 , 𝑐𝑖 )), the Election Office finds the

corresponding couple (𝑎𝑖 , 𝑡𝑖 ) in the list received from the Tracker

Server during setup, and inserts (hash(𝑐𝑖 , 𝑡𝑖 ), 𝑣𝑖 , 𝑛𝑖 ) in the list B
of valid votes and (𝑎𝑖 , sig(𝑎𝑖 )) in the list P of used pseudonyms.

To publish the result, the Election Office publishes the shuffled

list of valid votes B = {(hash(𝑐𝜌 (𝑖 ) , 𝑡𝜌 (𝑖 ) ), 𝑣𝜌 (𝑖 ) , 𝑛𝜌 (𝑖 ) )}𝑖 where 𝜌

sorts the hash(𝑐𝑖 , 𝑡𝑖 ) in alphabetical order. The index 𝑖 belongs to

Ieff = [1, 𝑛eff] where 𝑛eff is the size of B. The Election Office also

publishes the list of used pseudonyms P = {(𝑎𝜋 ′ (𝑖 ) , sig(𝑎𝜋 ′ (𝑖 ) ))}𝑖 ,
where, as for A, 𝜋 ′

sorts the 𝑎𝑖 in alphabetical order.

The Printer and the Tracker Server can each reconstruct the

voter list by checking which pseudonyms 𝑎𝑖 have been used.

3.2.5 Verification phase. Auditors verify that the lists of used pseudo-
nyms and of valid votes have the same length, that each pseudonym

is signed and belong toA, and thatA has a size equal to the number

of registered voters. Each conscientious voter computes hash(𝑐, 𝑡)
from 𝑐 and 𝑡 received resp. from the Printer and Election Office and

checks that it appears on B next to their vote 𝑣 and nonce 𝑛.

3.3 Security claims
As usual in analyzing the security of voting systems, we assume

that at least one of the Auditors is honest and will raise an alert

if something goes wrong. Also, we allow several voters to be dis-

honest and to help the attacker in attacking privacy and individual

verifiability of honest voters.

3.3.1 Privacy. Vote secrecy is guaranteed as long as at least two

authorities among the Tracker Server, the Printer and the Election

Office are honest. The key to this is that the information published

on the board can not be tracked back to voters without data coming

from both the Tracker Server and the Printer.

Not surprisingly, as soon as two authorities collude, they can

break privacy, as we now explain briefly. If the Tracker Server

and the Printer collude, they hold all the information that voters

use to perform the verification: the Tracker Server knows (𝑉𝑖 , 𝑡𝑖 ),
the Printer knows (𝑉𝑖 , 𝑐𝑖 ) and on the board stands (hash(𝑐𝑖 , 𝑡𝑖 ), 𝑣𝑖 ).
Similarly, the Election Office knows (𝑡𝑖 , 𝑣𝑖 ) and (𝑐𝑖 , 𝑣𝑖 ) so they may

collude either with the Tracker Server or the Printer to break the

confidentiality.

Moreover, Vote&Check is subject to privacy breach by com-

plaints as introduced in Section 2.1: if the Election Office removes a

ballot for candidate 𝐴, it can then observe who complains: the com-

plaining voter has voted for 𝐴. This can be scaled to several voters

339



Proceedings on Privacy Enhancing Technologies 2025(3) Véronique Cortier, Alexandre Debant, Pierrick Gaudry, and Léo Louistisserand

Tracker Server Printer Voter Election Office Board Auditors

{(𝑉𝑖 , 𝑎𝑖 ), 𝑖 ∈ I}

(𝑎𝑖 , 𝑡𝑖 )

A = {𝑎𝜋 (𝑖 ) , 𝑖 ∈ I}

AAA

check consistency check consistency check consistency

A

check sig

pseudonyms consistency

𝑎𝑖 ∈ A

pick 𝑛𝑖 ∈ N

check sig

remove invalid pseudonyms

remove duplicate pseudonyms

P

B,PB

(hash(𝑐𝑖 , 𝑡𝑖 ), 𝑣𝑖 , 𝑛𝑖 ) ∈ B #B = #P
P ⊆ A

Setup phase

Voting phase

Tally phase

Verification

phase

{(𝑎𝜋 (𝑖 ) , 𝑡𝜋 (𝑖 ) ), 𝑖 ∈ I}

(𝑎𝑖 , 𝑐𝑖 , sig(𝑎𝑖 ), sig(𝑎𝑖 , 𝑐𝑖 ))

sig(𝑎𝑖 , 𝑐𝑖 ,𝑉𝑖 )

(𝑎𝑖 , 𝑐𝑖 , 𝑣𝑖 , 𝑛𝑖 , sig(𝑎𝑖 ), sig(𝑎𝑖 , 𝑐𝑖 ))

B = {(hash(𝑐𝜌 (𝑖 ) , 𝑡𝜌 (𝑖 ) ), 𝑣𝜌 (𝑖 ) , 𝑛𝜌 (𝑖 ) ), 𝑖 ∈ Ieff}

P = {(𝑎𝜋 ′ (𝑖 ) , sig(𝑎𝜋 ′ (𝑖 ) )), 𝑖 ∈ Ieff}

Figure 3: Vote&Check protocol. Dotted lines and boxes represent optional steps for the voter. The conscientious voters perform them,

while the offline voters do not. Reading the Board is possible at any time, but we emphasize some natural moments for reading it with

double-tipped arrows.
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by removing several ballots for 𝐴. Instead, Vote&Check ensures

privacy in the context of anonymous complaints, where we assume

that complaining voters can anonymously contact a third party

(a judge for example). In practice, a voter will lose privacy if they

complain publicly, for example on a social network. But they will

more reasonably be instructed to contact some dedicated authority

that does not know which ballots have been removed.

3.3.2 Verifiability. Vote verifiability covers four main properties:

cast-as-intended, i.e., the ballot cast by the voter contains their

intended vote; individual verifiability, i.e., the ballot registered in

the ballot box is the ballot cast by the voter; universal verifiability,
i.e., the result corresponds to the ballots in the ballot box; eligibility
verifiability the ballots only come from legitimate voters.

These properties are intuitive but they assume a particular set-

ting (e.g., a global ballot box) and they may miss some attacks such

as clash attacks [28] where two voters agree on the same ballot.

Moreover, they do not cover the case of voters who do not verify,

while it corresponds to the most frequent case. Hence, a more gen-

eral notion of end-to-end verifiability has been proposed [17]. It

guarantees that the result of the election is the disjoint union of:

• all the votes of conscientious voters. This combines the indi-
vidual verifiability property and no clash attack.

• a subset of votes of honest voters who did not verify their

votes (called offline voters). Intuitively, an attacker may al-

ways drop such votes hence at best a subset of these votes

will be counted.

• a set of votes corresponding to the corrupted voters (as many

as the number of corrupted voters).

In Vote&Check some properties come for free: the voter sees
their vote on their ballot hence they are guaranteed that their ballot

contains their intended vote. Moreover, anyone can count the votes

on the ballot box since they appear in clear.

Since every conscientious voter can verify that their vote stands

on the board next to their tracker hash(𝑐𝑖 , 𝑡𝑖 ) and their anti-clash

number𝑛𝑖 , then individual verifiability is guaranteed in Vote&Check,

even if all authorities are dishonest. To obtain end-to-end verifia-

bility, one must also control that no votes can be added for offline

voters (or absentee voters). In Vote&Check, end-to-end verifiability

is guaranteed only if both the Printer and the Election Office are

honest. Let us explain why this is the case. If the Printer is com-

promised, since they have all the voting material, they can vote in

place of absentees. Also, if the Election Office is corrupted, they

can record every cast vote 𝑣𝑖 into another vote 𝑣 ′𝑖 . If the voter 𝑉𝑖
does not perform the verification, this will be undetected. However,

this attack no longer works if every voter that cast a ballot verifies.

In order to show that these are the only obstructions to end-to-

end verifiability, we introduce a variant of end-to-end verifiability,

called weak verifiability that now tolerates that votes from offline

voters can be modified. Then Vote&Check guarantees weak verifia-

bility as long as the Printer is honest.

4 Security analysis
To conduct a formal security analysis of Vote&Check, two main

techniques exist: computational proofs (game-based or Universal

composability) and symbolic proofs. These are complementary ap-

proaches: computational proofs allow an in-depth analysis of the

underlying cryptographic primitives, while symbolic proofs allow

to consider more subcases of the protocol and various corruption

scenarios. Symbolic and computational proofs are both required by

the Swiss Chancellery to get an Internet voting system approved

for use in federal elections [41]. We chose to conduct a symbolic

analysis using the state-of-the-art tool, ProVerif [7]. ProVerif demon-

strated its ability to analyse (i.e., find flaws or prove security) com-

plex protocols such as TLS [6], Signal [27], or LAKE-EDHOC [24],

and in particular e-voting protocols Swiss Post [35], CHVote [5].

Moreover, a specialized framework [15] for proving verifiability of

voting protocols has been designed based on ProVerif.

4.1 ProVerif
ProVerif analyses the security properties in a symbolic model where

messages are modelled with terms, roles by processes, and the

network by input/output on communication channels. We recall

here the main features of the tool. Interested reader can refer to

ProVerif documentation [9, 11] to get further details.

Terms are inductively defined as atomic values, e.g., n,m,k, or

function symbols, representing cryptographic primitives, applied to

terms, e.g., f(t1,...,tn). Rewriting rules and/or equational theories

equip terms to model the functional properties of the primitives.

More concretely, a digital signature is modelled as follows: we

define a symbol pk() of arity one that produces a public verification

key from a secret signing key sk, and a symbol sign of arity 2 that

produces a signature from a message m and a key sk. Checking a

signature is modelled by a symbol check and a rewriting rule that is,

for all m and sk, the term check(sign(m,sk),m,pk(sk)) rewrites as

true. By default, ProVerif defines true and false two atomic value

modelling boolean values. Moreover, it defines rewriting rules to

model logical operations such as conjunction (b1 && b2), and dis-

junction (b1 || b2).

Communication channels are declared public or private. In the

former case, the attacker has full control over it. It can read, inter-

cept, modify, or inject messages. On the contrary, when private, the

channel guarantees confidentiality, integrity, and authenticity.

Finally, the different roles of the protocol are modelled by pro-

cesses that describe the actions done by each agent. The command

new n allows to create a fresh nonce. These are atomic values, un-

known from the attacker and indistinguishable from each other.

Communications are modelled by input and output: in(c,x) in-

puts a message on channel c; the variable x being instantiated by

the input message upon reception. The command out(c,m) outputs

message m on channel c. Agents can perform tests with the com-

mand if b then P else Q. For instance, the term b can be of the

form check(...)which is expected to reduce to truewhen the check
succeeds, or simply an equality test, m1 = m2. Another command

can be used to perform tests: let (a,b) = m in P allows to test

whether m is a pair and in that case extracts its two components.

Using tables ProVerif can model stateful protocols that rely on

an append-only memory. Given a table tbl, a process can insert an

element m using the command insert tbl(m). It can then look for

a specific entry using the command get tbl(x) suchthat b in P

else Q. This command executes to P if there is an entry m in the

table such that b (where occurrences of x are replaced by m) reduces
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to true. Otherwise, it executes to Q. Tables are extensively used

in the verifiability framework we are building on, to record data

generated during the initialization of the protocol.

Finally, ProVerif allows to verify security protocols in rich scenar-

ios by defining concurrent and replicable processes. The command

P|Q denotes the concurrent execution of P and Q, and !P denotes

that P can be replicated as often as desired. Concretely, !P can be

rewritten as P|!P and is used, for instance, to model that there is

an arbitrary number of voters or elections.

4.2 Model
Most actors are modelled in a natural way. For example, the role

of the Voter is represented by the process depicted in Figure 4.

The voter receives their voting material in their postbox, modelled

by the voter_letterbox(voter) channel. The material includes in

particular their pseudonym a and their credential c. They then check

that the material is valid in order to avoid targeted privacy breach,

as defined in Section 2.1. This is modelled here by checking the

cryptographic signature to represent the fact that the voter receives

some authenticated material. In practice, we can assume that the

voters made a visual inspection of the received material, looking

for example for an official stamp. The case where the voter may be

fooled into using fake voting material is modelled by considering

a dishonest Printer. Then the (conscientious) voter contacts the

Tracker Server in order to get its pseudonym and tracker, and it

checks that it corresponds to the pseudonym received from the

Printer. This check is optional and won’t be made by offline voters.

The voter then simply selects their vote v and writes some (small)

random number n on their voting sheet and send it by mail to the

Election Office. This is modelled by sending a, c, sig1, sig2, v,

n on the channel deposit_letterbox. Finally, once the election is

tallied, the conscientious voter checks that their hashed tracker

hash(c, t), their vote v and their random n appear on the ballot

box. They raise a complaint otherwise. Note that in case of success,

the process executes an event Happy(voter). In ProVerif, events

play the role of “trace annotations” which are then used to express

security properties (see Section 4.4). They do not interfere with the

semantics of the process.

Physical channels. Because our protocol relies on physical chan-

nels, we have to model the postbox. For voters, this is a special

channel voter_letterbox(V) where anyone can write (anyone can

send a letter to a dedicated voter) but only the voter V can read

(only the voter can open their postbox). This is modelled by defining

voter_letterbox as a private function (that the attacker cannot use)

but we let the attacker posts any message with an explicit process

that writes anything on Alice’s mailbox:

!(in(public, x: bitstring); out(voter_letterbox(Alice), x))

Dishonest authorities. Since Vote&Check involves 3 authorities

(Tracker Server, Printer, Election Office), we consider multiple cor-

ruption scenario (2
3 = 8 in total) depending on who is honest. In

most cases, this is easy to model: a corrupted party simply gives

all its secrets to the adversary who can then send the messages

they want on their behalf. The case of the Election Office requires

more care. Indeed, when it is honest, it is in charge of writing on

the Bulletin Board (BB). When dishonest, it can then freely control

1 let Voting(voter, v) =

2 in(voter_letterbox(voter), (a, c, sig1, sig2, sig3)); (* The

voter gets their ballot in their postbox *)

3 if check(sig1, a, pk(sk_Pri)) then

4 if check(sig2, (a, c), pk(sk_Pri)) then

5 if check(sig3, (a, c, voter), pk(sk_Pri)) then

6 in(trackerserver_to_voter(voter), (a', t)); (* Get the

verification material from the Tracker Server *)

7 if a = a' then (* Check that the identifier is correct *)

8 new n;

9 new date_sent;

10 out(deposit_letterbox, ((a, c, sig1, sig2, v, n), date_sent)); (*

Send their ballot *)

11 in(bulletin_board, (hashv, =v, =n));

12 if hashv = hash(c, t) then event Happy(voter)

13 else out(public, complaint).

Figure 4: Process for the voter. This is a simplified version: for

privacy the verification steps have to be modified (see Section 4.3)

and for verifiability, the use of the framework imposes some changes

as well (see Section 4.4).

the content of BB, up to the fact that BB is monitored by Auditors.

The Auditors check in particular that the number of accepted votes

corresponds to the number of valid signatures. We model this by

letting a dishonest Election Office write on BB only if it can first

produce a pseudonym 𝑎 that is properly signed by the Printer. This

lets the Election Office add one element in B. To ensure that the

Election Office does not reuse the same signed pseudonym several

times, during the setup phase, the Printer outputs all 𝑎𝑖 on a private

channel token_list and the Election Office needs to input the 𝑎𝑖
from this channel, consuming them one by one.

4.3 Privacy
Intuitively, vote privacy is preserved if an attacker cannot distin-

guish the case where Alice votes 0 and Bob votes 1 from the case

where the two votes are swapped [20]. This can be written

Voter(Alice,0) |Voter(Bob,1) |𝑆 ≈ Voter(Alice,1) |Voter(Bob,0) |𝑆

where 𝑆 represents the overall system that runs in parallel with the

processes of Alice and Bob. The relation 𝑃 ≈ 𝑄 is an observational

equivalence [1] that intuitively states that an adversary cannot

distinguish 𝑃 from 𝑄 . The privacy property can equivalently be

written in ProVerif as follows

Voter(Alice,choice[0,1]) | Voter(Bob,choice[1,0]) | 𝑆

in a way that highlights the only few differences from the two

processes. If ProVerif returns true, then the process instantiated

with the left part of the choice operator is observationally equivalent

to the process instantiated with the right part of the choice operator.

Anonymous complaints. As explained in Section 3.3.1, Vote&Check
is subject to privacy breach by complaints: the Election Office or

the postman in charge of delivering the cast ballots could destroy

some ballots for a certain candidate 𝐴 and observe who complains.

We hence prove privacy under the assumption that voters complain

anonymously. This is modelled by a “double complaint”: in the same

way that the vote of Alice is protected by Bob voting in another way,

the privacy of a complaining Alice is protected by a complaining
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Bob voting in another way. Hence, we remove the lines 11 to 13

of the process Voter presented in Figure 4 and we replace it by a

process Verification where Alice and Bob simultaneously check

their ballots and a complaint is raised if any of the two checks fail,

without letting the attacker knows which test failed.

1 let Verification =

2 in(voter_to_verifier(Alice), (hashA, vA, nA));

3 in(voter_to_verifier(Bob), (hashB, vB, nB));

4 in(bulletin_board, (hash0, v0, n0));

5 in(bulletin_board, (hash1, v1, n1));

6 if (hashA, vA, nA) = (hash0, v0, n0) &&

7 (hashB, vB, nB) = (hash1, v1, n1)

8 ||

9 (hashA, vA, nA) = (hash1, v1, n1) &&

10 (hashB, vB, nB) = (hash0, v0, n0)

11 then event Happy(Alice); event Happy(Bob)

12 else out(public, complaint).

The verification done by Alice and Bob is simulated by looking at

the Bulletin Board and using with their respective data received on

channels voter_to_verifier(Alice) and voter_to_verifier(Bob).

The disjunction in lines 7-10 handles the fact that the ballots of

Alice and Bob may appear in any order on the Bulletin Board.

Offline voters. Voters may not want to contact the Tracker Server

before casting their vote. In that case, they may be subject to a

targeted privacy attack if the Printer is dishonest. Indeed, assume

that the attacker wants to learn Alice’s vote. A dishonest Printer

could print official voting material with Alice’s name on it but with

Charlie’s pseudonym a’. Then the dishonest voter Charlie could

use his own verification mechanism, and in particular his tracker

t’ to find out Alice’s vote that will be associated to hash(c,t’). We

show however that this is the only additional risk w.r.t. privacy

for offline voters. That is, we prove privacy for offline voters when

the Printer is honest and either the Tracker Server or the Election

Office is honest. Offline voters are easily modelled by removing all

optional checks (process Verification and line 7 of process Voting).

Multiple permutations. In Vote&Check, vote privacy is not en-

sured through cryptographic mechanisms such as encryption. In-

stead, it relies on multiple shuffles:

• the ballots are implicitly shuffled by the postal services when

the voters send back their ballots to the Election Office. This

prevents the Election Office from learning who sent what;

• the Printer and the Tracker Server shuffle respectively the

𝑎𝑖 and the (𝑎𝑖 , 𝑡𝑖 ) (possibly by sorting them alphabetically).

This prevents the Election Office from linking the ballots to

the actual identities;

• the Election Office handles B and P separately, with a dif-

ferent shuffle, which prevents the Tracker Server and the

Printer from linking the votes to the voting material.

All these shuffles need to be properly modelled to prove privacy.

This can be easily done taking advantage of the non-determinism in

ProVerif. For example, the following process receives two messages

on a channel 𝑐 and outputs them in some non-deterministic order:

in(c,x1);in(c,x2); (out(c,x1) | out(c,x2)).

An attacker does not know, a priori, if 𝑥1 is output first or second.
The issue is that ProVerif actually does not prove observational

equivalence but diff-equivalence [8], a stronger notion that checks,

step by step that the two processes take exactly the same action.

In particular, if ProVerif has to prove 𝑃1 | 𝑃2 ≈ 𝑄1 | 𝑄2, it will

instead try to prove that any action of 𝑃1 can be mapped to an

action of 𝑄1 (and not 𝑄2) and that any action of 𝑃2 can be mapped

to an action of 𝑄2 (and not 𝑄1). Intuitively, ProVerif chooses an

arbitrary scheduler to resolve non-determinism when proving diff-

equivalence. Even if this proof strategy is sound, it may lead to false

attacks. One can try to solve this issue by asking ProVerif to prove

𝑃1 | 𝑃2 ≈ 𝑄2 | 𝑄1 instead, if one thinks that the resulting mapping

will prevent reaching false attack. This swapping technique (𝑄1 and

𝑄2 are swapped) was firstly introduced by Delaune et. al. [21] and

then proved sound by Blanchet and Smyth [10]. We isolated the

two voter processes of Alice and Bob (for which privacy is proved)

and applied swaps when necessary. We let the other voter processes

unchanged (since they are not critical to prove vote secrecy and

thus do not lead to false attacks).

4.4 Verifiability
End-to-end verifiability has been informally defined in Section 3.3.2.

It can be stated as correspondence properties between events, which
are process annotations used to identify specific steps of the proto-

col. The main difficulty lies in the fact that the definition requires to

count the votes, which is a difficult task for most of the verification

tools in the symbolic setting.

Verifiability framework. A framework has been recently devel-

oped [15] in order to prove end-to-end (E2E) verifiability. The au-

thors of [15] leverage injective correspondence queries [7] (a refine-
ment of correspondence properties supported by ProVerif) to en-

code E2E verifiability. They show that proving E2E verifiability is

equivalent to proving the following two properties:

• individual verifiability: all votes of voters who verified should

be counted.

event(Finish()) && inj-event(Verified(v_id,v)) ==>

inj-event(Counted(v))

• universal verifiability: counted votes come from honest vot-

ers that did cast these votes, plus a set of valid votes, whose

size is bounded by the number of dishonest voters

event(Finish()) && inj-event(Counted(v)) ==>

inj-event(HV(v_id)) && event(Verified(v_id,v))

|| inj-event(HNV(v_id)) && event(Voted(v_id,v))

|| inj-event(Corrupt(v_id))

The events are placed as expected: Counted(v) is emitted as soon as

a vote is counted during the tally phase; Finish() occurs once the

tally is over, events Voted(v_id,v) and Verified(v_id,v) happen

respectively when voter v_id has sent their ballot, resp. has verified

their vote on the bulletin board. The events HV(v_id) comes from

the framework’ terminology and distinguish respectively between

the conscientious voters, the offline voters, and the dishonest voters.

Vote&Check achieves E2E verifiability, that is individual and

universal verifiability, when both the Printer and the Election Office

are honest.

Weak universal verifiability. Unfortunately, universal verifiability
no longer holds when the Election Office is dishonest. Indeed, when

receiving a ballot from an offline voter, it could easily modify the

candidate’ name. Note that the Election Office does not know the
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origin of a ballot, so it has to bet that the corresponding voter will

not check. We therefore consider a weaker version of universal

verifiability, where an attacker is allowed to modify the votes of

voters who do not verify. This notion of verifiability is considered

in [30] for example.

event(Finish()) && inj-event(Counted(v)) ==>

inj-event(HV(v_id)) && event(Verified(v_id,v))

|| inj-event(HNV(v_id)) && event(Voted(v_id,v')) (*v' instead of v*)

|| inj-event(Corrupt(v_id))

Vote&Check achieves weak universal verifiability as soon as the

Printer is honest. Conversely, a dishonest Printer can always vote in

the name of absentees and hence break weak universal verifiability.

Finally, individual verifiability is preserved in all cases: voters

who verify are guaranteed that their votes will be counted. When

all parties are corrupted, individual verifiability relies solely on the

nonce chosen by the voters. However, if either the Printer or the

Tracker Server is honest, we show that individual verifiability holds

even if voters all use an empty nonce.

Identifying public identifiers. We had to adapt our model to make

it fit into the framework. In particular, the verifiability framework

assumes that each voter can be associated to a public identifier and
that this public identifier can then be extracted from a ballot. The

public identifier is typically the signing key of the voter or another

form of voting credential. However, in Vote&Check, there is no such

public identifier. A natural candidate is the credential 𝑐 provided

by the Printer. However, there are immediately two issues. First,

𝑐 cannot be read from a ballot of the form ℎ, 𝑣, 𝑛 since it is hidden

by the hash. Second, when the Printer is dishonest, the credential

can no longer be trusted. Indeed, a dishonest Printer could give the

same credential to several voters, in order to try to perform a clash

attack (see Section 2.1.3). Instead, one could reason on the tracker 𝑡

provided by the Tracker Server. But again, the tracker cannot be

trusted if the Tracker Server is compromised. Actually, when both

the Printer and the Tracker Server are compromised, only the fresh

nonce chosen by the voter still provide some verifiability.

To circumvent this issue, we proceed in two steps:

(1) We define as public identifier all material that is used by the

voter, namely 𝑎, hash(𝑐, 𝑡), 𝑛. Note that it also includes 𝑛, the
nonce generated by the voter. This identifier is added in a

table public_identifier by the framework.

(2) We provide a dynamic association between ballots and public

identifiers, depending on the honesty status of each party. In-

tuitively, this association is computed “magically”, knowing

all the private information of (honest) participants.

We believe that our approach is rather systematic and could be ap-

plied on other voting contexts, when the notion of public identifier

is a blurry concept.

In Vote&Check, we compute this association through the func-

tion get_ident_from_ballot that associates an identifier to a ballot

𝑎, hash(𝑐, 𝑡), 𝑣, 𝑛. Note that 𝑎 and hash(𝑐, 𝑡), 𝑣, 𝑛 are published sep-

arately on the bulletin board. When all parties behave honestly,

get_ident_from_ballot returns 𝑎, hash(𝑐, 𝑡), 𝑛 as expected. When

the Printer is honest and the other parties might be dishonest, given

a ballot 𝑎1, hash(𝑐, 𝑡1), 𝑣, 𝑛1, we look for a voter that used the cre-

dential 𝑐 provided by the Printer, with an identifier of the form

𝑎2, hash(𝑐, 𝑡2), 𝑣, 𝑛2 and we return 𝑎2, hash(𝑐, 𝑡2), 𝑣, 𝑛2 since this bal-
lot must have been built by the voter that received 𝑐 , hence identifier

by 𝑎2, hash(𝑐, 𝑡2), 𝑣, 𝑛2. In case no such voter exist (for example, 𝑐

has been given to a dishonest voter), then we return the identifier

associated to 𝑎1, This is our default case: any accepted ballot can be

associated to one of the 𝑎’s since the number of accepted ballots is

bounded by the number of (signed) 𝑎’s. This property is enforced

by the Auditors.

1 letfun get_ident_from_ballot(bal) =

2 let ballot_of_bit((a1,h1, v,n)) = bal in

3 let c1 = getc(h1) in (* returns c such that h1=h(c,_) *)

4 if printer_status = honest

5 then (

6 get public_identifier(_, ident_of_triplet(a2, h2, n2)) suchthat

c1 = getc(h2) in

7 ident_of_triplet(a2, h2, n2)

8 else

9 get public_identifier(_, ident_of_triplet(a2, h2, n2)) suchthat

a1 = a2 in

10 ident_of_triplet(a2, h2, n2)

11 else dummy_ident ) (* this should never happen *)

12 else ... (* all other cases of corruption *)

13 else

14 get public_identifier(_, ident_of_triplet(a2, h2, n2)) suchthat

a1 = a2 in

15 ident_of_triplet(a2, h2, n2)

16 else dummy_ident (* this should never happen *)

Proving verifiability. The verifiability framework [15] comeswith

a library of lemmas that take care of proving individual and uni-

versal verifiability, two injective properties, thanks to a variety of

counters and temporal constraints. However, we detected a small

discrepancy in the framework, acknowledged by the authors. The

framework distinguishes between three types of voters: conscien-

tious voters, honest voters that do not verify (called here offline

voters), and dishonest voters. However, this was inaccurately mod-

elled by first generating a voter and then, later on, assigning it

to one of the three types, at the adversary’s choice. This actually

led to a fourth type of voters: voters that were not yet assigned

to any category but that the adversary could try to use to vote on

their behalf. We corrected this issue by requiring that all voters are

assigned to one of the three types.

Then a remaining issue is caused by our complex function

get_ident_from_ballot that calls the table public_identifier mul-

tiple times, with many else branches. Due to its internal trans-

lations into first order logic, ProVerif does not properly capture

the fact that, whenever a else branch is considered, the previous

conditions in the if branches must be falsified. In particular, if

some term 𝑡 has been inserted in a table tab and if the term 𝑡

satisfies some condition 𝐷 that appears in a branch of the form

get tab(x) suchthat D ... else event E then the event E can no

longer be emitted in the trace. We prove this implication and we

add as an axiom the conclusion of the implication, as soon as the

assumptions can be proved by ProVerif (as a set of lemmas). This is

formally stated and proved in Appendix B.4.

4.5 Results
All our ProVerif files are available as supplementary material in [16].

The verifiability framework [15] requires to use a special version

of the ProVerif prover. We used the commit cc4f8cde5 of the
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Corruption scenario Privacy Verifiability
Tracker

server
Printer

Election

office

Offline

voters

Conscientious

voters

Common

lemmas
Universal Weak univ. Individual

H H H ✔ (12.3 s) ✔ (12.3 s) ✔ (9.0 s) ✔ (0.5 s) ✔ (0.6 s) ✔ (0.4 s)

C H H ✔ (15.7 s) ✔ (15.6 s) ✔ (9.5 s) ✔ (0.4 s) ✔ (0.5 s) ✔ (0.3 s)

H C H ✘ ✔ (2.1 s) ✔ (26.4 s) ✘ ✘ ✔ (0.3 s)

H H C ✔ (0.4 s) ✔ (0.4 s) ✔ (39.6 s) ✘ ✔ (3.9 s) ✔ (0.5 s)

H C C ✘ ✘ ✔ (6.2 s) ✘ ✘ ✔ (0.2 s)

C H C ✘ ✘ ✔ (45.0 s) ✘ ✔ (2.9 s) ✔ (0.6 s)

C C H ✘ ✘ ✔ (32.3 s) ✘ ✘ ✔ (0.2 s)

C C C ✘ ✘ ✔ (8.1 s) ✘ ✘ ✔ (0.2 s)

Figure 5: Security properties. Each line gives a corruption scenarios, where H means that the entity is honest, and C means that it colludes

with the attacker. For each property, the ✔ symbol means that it has been proven in ProVerif, in the given amount of time; the ✘ means that

we know that there is an attack. The special ✔ symbol means that in this case, the individual verifiability holds only if different voters uses

different 𝑛, which is weak, since 𝑛 is short. Privacy holds no matter if 𝑛 is short or long.

improved_scope_lemma branch, from the official development repos-

itory. All experiments were run on a standard laptop equipped with

a 4-core Intel i7-8665U CPU, with 16 GB of RAM; the running times

are given for this machine. The resulting analysis is displayed in

Figure 5 and confirms our security claims. The common lemmas

refer to the lemmas provided by the framework, meant to help

proving verifiability, and our own lemmas needed to infer our new

axiom, as explained in Section 4.4.

Vote&Check preserves vote privacy when no more than one au-

thority is corrupted. It always provides individual verifiability: the

votes of conscientious voters are counted. Full end-to-end verifiabil-

ity, that is, votes of offline voters can only be dropped, requires an

honest Printer and Election Office. If we relax to weak verifiability

(votes of offline voters may be changed), then we only need that

the Printer is honest. Indeed, the Printer possesses the entire voting

material hence it can always vote for absentee voters.

5 Discussion
Vote&Check achieves a better level of verifiability and privacy than

STROBE, RemoteVote and SAFE Vote, while keeping a similar infras-

tructure: all protocols require a printer and a collecting authority

(the Election Office). In Vote&Check, we introduce a Tracker Server,

that replaces the set of decryption authorities used in STROBE, Re-

moteVote and SAFE Vote. Compared to Devillez et al, the security

level is similar However, we reduce significantly the number of

independent authorities (from 4 + a set of decryption authorities to

3) and we recover full universal verifiability (no proxy).

Vote&Check remains however subject to several attacks.

Privacy breach by complaints. This attack seems unavoidable as

soon as the votes are sent in clear, which is an important feature

for usability. The Election Office can selectively remove ballots that

vote for a certain candidate A and see who complains. To circum-

vent this issue, one would need to provide a complaint mechanism

that preserves vote privacy, e.g., encouraging voters to launch false

complaints to hide true ones. But this also requires a robust account-

ability mechanism to avoid accepting wrong complaints. So in short,

there is no easy solution to prevent privacy breach by complaints.

Weak eligibility. The printer in charge of printing and sending

the material to voters may vote in place of absentees. To improve

on this, one could use several printers that each sends a part of

the voting material. Such an approach has cost and usability issues.

Alternatively, voters may be requested to write down some authen-

tication token, obtained for example through a mobile application.

This however means that the solution is no longer purely paper

based, which may cause some usability issue.

Alter votes of non verifying voters. The Election Officemay always

drop some ballots. If the corresponding voters do not check, this will

remain undetected. This is indistinguishable from the case where

the corresponding voters did not vote. However, in Vote&Check

as well as all the other protocols under study, the Election Office

may not only drop but also change a vote for another candidate.

Here, there could be a room for improvement, for example biding

an authenticated secret data to each voting option. The Election

Office would not know the secret associated to another vote. This

should be carefully design to preserve vote privacy (and usability).

Limitations. As many existing voting schemes, Vote&Check is

not accountable: when a voter detects an issue, there is no mecha-

nism to identify who misbehaved. Such mechanisms exist in some

protocols (e.g., sElect [29], Themis [12]) but, they still have limita-

tions: they only identify which authority misbehaved, assuming

the voter behaves honestly. When considering cast-as-intended,

a voter may lie (pretend to have voted for 𝐵 while having voted

for 𝐴) Given that voters typically cannot apply any cryptographic

mechanism (only their possibly corrupted device may perform such

operations), it is hard to distinguish between an honest voter who

has been attacked and a dishonest voter who wishes to diminish

the trust in the election. Such an issue is very challenging and still

largely unaddressed, even for Internet voting protocols.

Another limitation of Vote&Check is that it is subject to coercion

attacks. Indeed, a coerced voter may be instructed to choose a

particular value 𝑛 to be written on their ballot and to vote for 𝐴.

Then the coercer expects to see 𝐴,𝑛 on the Board. Resisting against

vote selling is difficult in the context of postal voting. Indeed, a

voter may typically provide their voting material to the coercer.

One possible direction would be to design a protocol such that the

voters can forge voting material, whose corresponding votes will,

undetectably, be removed during the tally.
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A Recommended size for the data in
Vote&Check

To ensure security, some data must be large enough, but others

don’t need to be, and other can’t be, because they involve human

interactions.

• The role of the 𝑎𝑖 is to be a pseudonym in order to provide

vote secrecy with respect to the Election Office. The only

requirement is that they are all distinct. They could, in prin-

ciple be taken as integers in the interval [1, #V].
• The 𝑐𝑖 ’s and the 𝑡𝑖 ’s must be hard to guess. Furthermore,

all the hash(𝑐𝑖 , 𝑡𝑖 ) must be distinct (with high probability),

and this can not be checked during setup. Taking them as

uniformly random bit strings of 128 bits makes the result

of the hash function also uniformly random as soon as the

Tracker Server and the Printer are not both dishonest, in the

random oracle model. The probability of collision is then

negligible.

• The nonce 𝑛𝑖 is chosen and written by the voter and must

therefore be short. On the other hand, it must be large enough

to ensure that a clash attack will go undetected with only a

small (but non-negligible) probability. We suggest 𝑛𝑖 to be a

3-digit number.

This is summarized in Table 2.

B Soundness of the axiom
In this section we formally state and prove the soundness of the

axiom, informally mentioned in Section 4.4, and used in the ProVerif
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Notation Role Created by Size (bits)

𝑎𝑖 pseudonym Tracker Server log(#V)
𝑐𝑖 credential Printer 128

𝑡𝑖 tracker Tracker Server 128

𝑛𝑖 voter’s nonce Voter 10

Table 2: Elements involved in a ballot and its verification.

models to prevent the tool from deriving false attacks by over-

approximating else branches.We first recall parts of ProVerif theory

needed to establish our result.

While ProVerif defines an operational semantics between con-

figurations, for sake of simplicity and understandability, we only

consider abstract traces made of events and predicates that high-

light specific actions. Mapping executions in ProVerif semantics to

our abstract traces shall be straightforward. Interested readers can

refer to [7] for a comprehensive description of ProVerif theory.

B.1 Terms
Messages are modelled with terms that can either be a variable

𝑥 ∈ X, a name 𝑛 ∈ N , or a function symbol applied to terms,

i.e. 𝑓 (𝑡1, . . . , 𝑡𝑛) where 𝑡1, . . . , 𝑡𝑛 are terms and 𝑓 /𝑛 ∈ Σ a function

symbol of arity 𝑛. The set of function symbols Σ is split in two

disjoint subsets: Σ𝑐 that contains constructor symbols, and Σ𝑑 the

destructor symbols. Without loss of generality, we assume that

{true, false} ⊆ Σ𝑐 and that they represent the two boolean values.

The set of messages is denoted T (Σ,X ∪ N). A term is said

destructor-free if it is does not contain destructor symbols. A ground
term 𝑡 is a term that does not contain variables, i.e that belongs

to T (Σ,N). We denote 𝑣𝑎𝑟𝑠 (𝑡) the set of variables occurring in 𝑡

(𝑣𝑎𝑟𝑠 (𝑡) = ∅ when 𝑡 is a ground-term). Terms can be instantiated

thanks to substitutions: a substitution 𝜎 is a mapping from variables

to terms, denoted 𝜎 = {𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛}. Given a term 𝑡

and a substitution 𝜎 , if 𝑣𝑎𝑟𝑠 (𝑡𝜎) = ∅, we say that 𝜎 is a grounding
substitution for 𝑡 . We say that a substitution 𝜎 ′

extends 𝜎 if 𝜎 ′ =
𝜎 ∪ {𝑦1 ↦→ 𝑣1, . . . , 𝑦𝑚 ↦→ 𝑣𝑚} and 𝑦𝑖s are distinct from 𝑥𝑖s.

The term algebra is equipped with a finite set R of rewriting

rules. A term 𝑡 can be rewritten in a term 𝑡 ′ if there exists a position
𝑝 in 𝑡 , a rewriting rule 𝑙 → 𝑟 , and a substitution 𝜎 such that 𝑡 |𝑝 = 𝑢,

𝑢 = 𝑙𝜎 , and 𝑡 ′ is equal to 𝑡 in which the term 𝑢 at position 𝑝 has

been replaced by the term 𝑟𝜎 .

We only consider sets of rewriting rules that yield a convergent

system. Given a term 𝑡 , we thus note 𝑡 ⇓ the destructor-free term

obtained after the application of the rewriting rules on 𝑡 . When no

such term exist, we denote 𝑡 ⇓= fail.

B.2 Protocol
A protocol is defined by its (infinite) set of execution traces. We

note E a specific set of function symbols used to define events, and

T𝑏𝑙 a specific set of function symbols used to define tables. For our

reasoning, we only need to consider some particular actions in a

protocol execution.

More precisely, a trace is a finite sequence of actions of the

following form:

𝑡𝑟 := 0 empty trace

| event(𝐸 (𝑒 (𝑢1, . . . , 𝑢𝑛))).𝑡𝑟 event

| insert(𝑡𝑏𝑙 (𝑢1, . . . , 𝑢𝑛)) .𝑡𝑟 table insertion

| getSucc(𝐷, 𝑡𝑏𝑙 (𝑢1, . . . , 𝑢𝑛)) .𝑡𝑟 table get success

| getFail(𝐷, 𝑡𝑏𝑙) .𝑡𝑟 table get failure

where 𝑢1, . . . , 𝑢𝑛 ∈ T (Σ𝑐 ,N), 𝑒 ∈ E is an event symbol, 𝑡𝑏𝑙 ∈ T𝑏𝑙
is a table symbol, and 𝐷 ∈ T (Σ,X ∪N) is a term.

Intuitively, the term𝐷 represents the condition which appears in

the ProVerif command get tbl(x) suchthat D in P else Q. Hence,

𝐷 is a term that is expected to reduce to a boolean value. This is

formally defined now.

An execution trace is a trace tr = tr1 . . . . .tr𝑛 such that for all

𝑖 ∈ {1, . . . , 𝑛} we have:
• tr𝑖 is an event; or

• tr𝑖 is a table insertion; or
• tr𝑖 = getSucc(𝐷, 𝑡𝑏𝑙 (𝑢1, . . . , 𝑢𝑛)) and there exists an index

𝑗 < 𝑖 such that tr 𝑗 = insert(𝑡𝑏𝑙 (𝑢1, . . . , 𝑢𝑛)) and 𝐷{𝑥1 ↦→
𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛}⇓= true where {𝑥1, . . . , 𝑥𝑛} = 𝑣𝑎𝑟𝑠 (𝐷); or

• tr𝑖 = getFail(𝐷, 𝑡𝑏𝑙) and for all indices 𝑗 < 𝑖 if we have

tr 𝑗 = insert(𝑡𝑏𝑙 (𝑢1, . . . , 𝑢𝑛)) then 𝐷{𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→
𝑢𝑛}⇓= fail where {𝑥1, . . . , 𝑥𝑛} = 𝑣𝑎𝑟𝑠 (𝐷).

B.3 Queries
Even if ProVerif supports complex queries we only consider simple

ones in our model. These last are expressive enough to state and

prove our soundness result.

In what follows, we consider only six types of predicates:

• p−event(𝑒 (𝑡1, . . . , 𝑡𝑛))where 𝑒 ∈ E and 𝑡1, . . . , 𝑡𝑛 ∈ T (Σ𝑐 ,X),
• p−insert(𝑡𝑏𝑙 (𝑡1, . . . , 𝑡𝑛)) where 𝑡𝑏𝑙 ∈ T𝑏𝑙 and 𝑡1, . . . , 𝑡𝑛 ∈
T (Σ𝑐 ,X).

• p−getSucc(𝑡𝑏𝑙 (𝑡1, . . . , 𝑡𝑛)) where 𝑡𝑏𝑙 ∈ T𝑏𝑙 and 𝑡1, . . . , 𝑡𝑛 ∈
T (Σ𝑐 ,X).

• p−getFail(𝐷, 𝑡𝑏𝑙) where 𝑡𝑏𝑙 ∈ T𝑏𝑙 and 𝐷 ∈ T (Σ,X).
• 𝑢 = 𝑣 where 𝑢, 𝑣 ∈ T (Σ,X).
• 𝑖 > 𝑗 where 𝑖, 𝑗 ∈ V𝑡 , V𝑡 being a specific set of variables

used to model timing annotations
1
.

We consider queries of the form 𝐹1@𝑖𝑖 ∧ . . . ∧ 𝐹𝑛@𝑖𝑛 ⇒ 𝐹@𝑖

where 𝐹, 𝐹1 . . . , 𝐹𝑛 are predicates, and 𝑖, 𝑖1, . . . , 𝑖𝑛 ∈ V𝑡 . Timing

annotations apply to the four first predicates only. When not ap-

plicable or not necessary, timing annotations 𝑖 𝑗 are be omitted.

Moreover, we assume that 𝑣𝑎𝑟𝑠 (𝐹 ) ⊆ ⋃
𝑗=1...𝑛 𝑣𝑎𝑟𝑠 (𝐹 𝑗 ).

We define the satisfaction relation ⊢ as follows: given an execu-

tion trace tr = tr1 . . . . .tr𝑝 and a grounding substitution 𝜎 , tr, 𝜎 ⊢
p−event(𝑒 (𝑡1, . . . , 𝑡𝑛))@𝑖 if tr𝑖𝜎 = event(𝑒 (𝑡1𝜎, . . . , 𝑡𝑛𝜎)). The sat-
isfaction relation is defined similarly for p−insert(·), p−getSucc(·),
and p−getFail(·, ·).

Note that the p−getSucc(·) predicate records only the table ele-

ment used to pass the get. In contrast, to ease the formal develop-

ment, the p−getFail(·, ·) keeps track of the condition 𝐷 .

1
It is important to note that these variables cannot appear in other predicates/events/...
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The satisfaction relation is then extended as expected to conjunc-

tion of predicates and implications following the usual interpreta-

tion of logical operators. More specifically, a protocol P (i.e. a set of

execution traces) satisfies a query 𝜌 = (𝐹1@𝑖1∧. . .∧𝐹𝑛@𝑖𝑛 ⇒ 𝐹@𝑖),
noted P ⊢ 𝜌 if for all execution trace tr ∈ P and for any grounding

substitution 𝜎 such that tr, 𝜎 ⊢ 𝐹1@𝑖1 ∧ . . . ∧ 𝐹𝑛@𝑖𝑛 , there exists a

grounding substitution 𝜎 ′
extending 𝜎 such that tr, 𝜎 ′ ⊢ 𝐹@𝑖 and

𝑖𝜎 ′ ≤𝑚𝑎𝑥 𝑗=1...𝑛 (𝑖 𝑗𝜎).

Encoding from ProVerif models. If events are a standard com-

mand in ProVerif, it is not the case for the specific events that

we have introduced. However, any ProVerif model can be eas-

ily annotated to correspond to the model described just before.

To do so, any command insert tbl(u1,...,un) is preceded by

a specific event Insert(tbl(u1,...,un)) used to record it in the

trace in ProVerif labelled operational semantics. Similarly, an event

getSucc() is placed at the very beginning of the positive branch

of a get command to record the action. Similarly, a specific event

getFail() is placed at the very beginning of the negative branch of

a get command. However, unlike p−getSucc(·) that only record

the entry used to pass the test, p−getFail(·, ·) predicate records the
table but also the test applied to enter in the else branch. Unfortu-
nately, ProVerif does not allow to encode such an element into an

event. For sake on simplicity, we thus simply assume that the spe-

cific event is tagged with a fresh name to uniquely identify the get

command that failed. This extra annotation is easy to implement.

B.4 Soundness result
Intuitively, we state that if two events 𝐹1 and 𝐹2 guarantee that a

tem 𝑡 has been successfully retrieved from a table 𝑡𝑏𝑙 satisfying a

condition 𝐷 , then once 𝐹1 and 𝐹2 are executed in a trace, it is no

longer possible to take the else branch of a command of the form

get tbl(x) suchthat D in P else Q.

Let P be a protocol, i.e. a set of execution traces.

Let 𝜌1 = 𝐹1@𝑖1 ∧ 𝐹2@𝑖2 ⇒ p−getSucc(𝑡𝑏𝑙 (𝑢1, . . . , 𝑢𝑛))@𝑖𝑠 .

Let 𝜌2 = p−getSucc(𝑡𝑏𝑙 (𝑦1, . . . , 𝑦𝑛)) ⇒ 𝐷{𝑥1 ↦→ 𝑦1, . . . , 𝑥𝑛 ↦→
𝑦𝑛}⇓= true.
Let 𝜌3 = 𝐹1@𝑖1 ∧ 𝐹2@𝑖2 ⇒ 𝑖1 > 𝑖2.

Let 𝜌4 = 𝐹1@𝑖1 ∧ 𝐹2 ∧ p−getFail(𝐷, 𝑡𝑏𝑙)@𝑖 𝑓 ⇒ 𝑖1 < 𝑖 𝑓 .

Let 𝑎𝑥 = 𝐹1@𝑖1 ∧ 𝐹2 ∧ p−getFail(𝐷, 𝑡𝑏𝑙)@𝑖 𝑓 ⇒ false.

Proposition B.1. If P ⊢ 𝜌1 ∧ 𝜌2 ∧ 𝜌3 ∧ 𝜌4 then P ⊢ 𝑎𝑥 .

Proof. Let tr ∈ P be an execution trace and 𝜎 a grounding

substitution such that tr, 𝜎 ⊢ 𝐹1@𝑖1 ∧ 𝐹2 ∧ p−getFail(𝐷, 𝑡𝑏𝑙)@𝑖 𝑓 .

Since P ⊢ 𝜌1 we know that there exists a grounding substitution

𝜎 ′
extending 𝜎𝛼 (𝜎𝛼 is equal to 𝜎 up to an 𝛼-renaming of variables

occurring in predicates and timing annotations) such that tr, 𝜎 ′ ⊢
p−getSucc(𝑡𝑏𝑙 (𝑢1, . . . , 𝑢𝑛))@𝑖𝑠 . By definition of the satisfaction of

the predicate, we have that tr𝑖𝑠𝜎 ′ = getSucc(_, 𝑡𝑏𝑙 (𝑢1𝜎 ′, . . . , 𝑢𝑛𝜎 ′))
and 𝑖𝑠𝜎

′ ≤ 𝑚𝑎𝑥 (𝑖1
1
𝜎 ′, 𝑖1

2
𝜎 ′) = 𝑚𝑎𝑥 (𝑖𝑖𝜎, 𝑖2𝜎) (𝑖11 and 𝑖1

2
being the

timing annotation occurring in 𝜌1). By definition of an execution

trace, we know that there exists 𝑖insert ≤ 𝑖𝑠𝜎
′
such that tr𝑖insert =

insert(𝑡𝑏𝑙 (𝑢1𝜎 ′, . . . , 𝑢𝑛𝜎 ′)).
Moreover, because P ⊢ 𝜌2 we have that tr, 𝜎 ′

𝛼 ⊢ 𝜌2 (where 𝜎
′
𝛼 is

equal to 𝜎 ′
, up to, as before, an 𝛼-renaming of variables occurring

in predicates), and thus 𝐷{𝑥1 ↦→ 𝑢1𝜎
′, . . . , 𝑥𝑛 ↦→ 𝑢𝑛𝜎

′}⇓= true.

Let us show that 𝑖 𝑓 𝜎
′ < 𝑖1𝜎 . Applying the definition of the sat-

isfaction relation to tr, 𝜎 ⊢ p−getFail(𝐷, 𝑡𝑏𝑙)@𝑖 𝑓 and considering

the table element 𝑡𝑏𝑙 (𝑢1𝜎 ′, . . . , 𝑢𝑛𝜎 ′) we deduce that
𝑖 𝑓 𝜎

′ < 𝑖insert (def. getFail(·))
< 𝑖𝑠𝜎

′ (def. getSucc(·))
< 𝑚𝑎𝑥 (𝑖1

1
𝜎 ′, 𝑖1

2
𝜎 ′) (def.⇒)

< 𝑚𝑎𝑥 (𝑖1𝜎, 𝑖2𝜎) (def of 𝜎 ′)
< 𝑖1𝜎 (𝑚𝑎𝑥 (𝑖1𝜎, 𝑖2𝜎) = 𝑖1𝜎 by 𝜌3)

We hence derive a contradiction with 𝜌4.

We conclude that 𝑡𝑟, 𝜎 ⊢ 𝑎𝑥 , hence P ⊢ 𝑎𝑥 . □
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