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Abstract
Secure aggregation is the distributed task of securely computing

a sum of values (or a vector of values) held by a set of parties,

revealing only the output (i.e., the sum) in the computation. Existing

protocols, such as Prio (NDSI’17), Prio+ (SCN’22), Elsa (S&P’23), and

Whisper (S&P’24), support secure aggregation with input validation

to ensure inputs belong to a specified domain. However, when

malicious servers are present, these protocols primarily guarantee

privacy but not input validity. Also, malicious server(s) can cause

the protocol to abort.We introduce SCIF, a novelmulti-server secure

aggregation protocol with input validation, that remains secure

even in the presence of malicious actors, provided fewer than one-

third of the servers are malicious. Our protocol overcomes previous

limitations by providing two key properties: (1) guaranteed output
delivery, ensuring malicious parties cannot prevent the protocol

from completing, and (2) guaranteed input inclusion, ensuring no
malicious party can prevent an honest party’s input from being

included in the computation. Together, these guarantees provide

strong resilience against denial-of-service attacks. Moreover, SCIF

offers these guarantees without increasing client costs over Prio

and keeps server costs moderate. We present a robust end-to-end

implementation of SCIF and demonstrate the ease with which it

can be instrumented by integrating it in a simulated Tor network

for privacy-preserving measurement.

Keywords
secure aggregation, multiparty computation, malicious security

1 Introduction
Secure multiparty computation (MPC) allows a group of entities to

securely compute an arbitrary function operating jointly over their

individual inputs with the guarantee that nothing beyond the out-

put of the function is revealed. Secure summation or aggregation
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is one of the simplest functions to compute via MPC, yet it is al-

ready powerful enough to facilitate computation of other aggregate

statistics including MEAN, STDDEV, MAX, MIN, (Boolean) AND,

OR, HISTOGRAMS, and more. A robust MPC implementation can

enable privacy-preserving collection of user travel data for naviga-

tion apps [28], vitals in fitness trackers [24], various statistics from

web browsers, and, more generally, federated learning [13, 35].

In its simplest form, an MPC protocol for aggregation proceeds

as follows: Input parties share their input with compute parties

(which could be external servers or the input parties themselves)

using some linear secret-sharing scheme. The compute parties can

compute the sum of secret shares locally and transmit the results

to the output party who can reconstruct the result. This simple

protocol will guarantee security against semi-honest corruption

of all-but-one clients and up to a threshold of servers (implied by

the underlying secret-sharing scheme). Standard techniques can

be used to boost the security to withstand malicious adversaries.

However, there is a simple attack that can disrupt the protocol,

namely that the parties can give arbitrary values as inputs. This

can completely invalidate the result of the computation (for the

underlying target application).

Toward addressing this drawback, Corrigan-Gibbs and Boneh

designed Prio, one of the first secure aggregation systems with

input validation [20], which has been deployed in various real-

world scenarios by organizations such as Apple, Google, Internet

Services Research Group (ISRG), and Mozilla [19]. In the Prio model,

the task of secure aggregation is delegated to an (external) set of

server nodes where correctness and privacy are guaranteed against

a semi-honest adversary that corrupts up to all but one of the servers.

A crucial ingredient, developed in the Prio work, is a secret-shared

(i.e., distributed) non-interactive proof which allows each client

to certify its input to the servers that only hold secret-shares of

the input while preserving privacy. A non-interactive proof allows

the clients to simultaneously share their input and the proof to all

servers in a single message.

Prio is designed with a strong focus on privacy, ensuring that the

inputs of honest clients remain protected even if all but one server

is malicious. However, its security assumes that servers are only

semi-honestly corrupted. Moreover, if even a single server crashes,

all data is lost, causing the computation to abort.
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In this work, our goal is to design and implement a concretely-

efficient secure aggregation scheme thatmeets the following desider-

ata:

(a) Security in the presence of malicious adversaries: The
security properties and features of the system should hold even in

the presence of a malicious (or active) adversary that can arbitrarily

deviate from the protocol.

(b) Guaranteed output delivery: An adversary that actively at-

tacks the system should not be able to prevent an honest party from

receiving the output. This property is important to prevent denial-

of-service attacks. Properties (a) and (b) together are sometimes

referred to as full security.
(c) Guaranteed input inclusion: The inputs of all honest parties
should be included in the computation even if the adversary tries

to actively attack the system.
1

(d) One-shot client participation: Input clients are required to

participate in at most one round of communication, ensuring re-

silience against unreliable client-side networks.

(e) Input validation: In a robust secure aggregation system, cor-

rupted clients should be prevented from giving “artificial” inputs. If

the underlying domain 𝐷 can be captured via a predicate 𝑃 : F𝑚 →
{0, 1} which outputs 1 on all inputs 𝑥 ∈ 𝐷 and 0 otherwise, then a

simple form of robustness allows aggregation of inputs if and only

if the predicate on its input returns 1 [15, 16, 36].

(f) End-to-end implementation: The full system should be realiz-

able in an end-to-end implementation. The implementation should

be deployable on commodity hardware, be sufficiently scalable to

support a large number of clients and parallel statistics collection

operations, and be sufficiently modular to allow easy integration

with existing software.

The current state of affairs for secure aggregation is that there is
no system that sufficiently meets all the desiderata. Broadly, secure
aggregation has been studied in two settings: (1) the single-server

setting, introduced by Bonawitz et al. [8, 9, 12, 15, 30, 40, 41], in-

volves input parties that also serve as compute parties, organized in

a star network topology, and (2) the multi-server setting, explored

in works such as [1, 7, 20, 38, 39], delegates computation to an

external set of servers, separating the roles of input and compute

parties. However, both settings have limitations in the presence of

malicious servers: the multi-server setting often lacks guaranteed

output delivery, while the single-server setting may compromise

guaranteed input inclusion
2
.

This paper addresses these shortcomings by proposing a practical

secure aggregation protocol that withstands both malicious clients

and servers while fulfilling the above specified desiderata (a) - (f).

1.1 Main Result and Techniques
In this work, we consider a model that is a slight variant of the Prio

model and design a secure aggregation system with input valida-

tion that meets all our requirements. In more detail, we consider

1
Typically, guaranteed output delivery implies guaranteed input inclusion. How-

ever, in scenarios where the input parties can join in a permissionless way and the

adversary controls who can join (as is the case in the single server setting described

later), guaranteed input inclusion does not hold.

2
Also, the single-server setting typically requires multiple rounds of client partic-

ipation, even when the central server is only semi-honest.

a model where security is maintained even if an attacker simulta-

neously corrupts all but one of the (input) clients, at most
1
⁄3 of the

(compute) servers and the output party. We showcase our system

as lightweight via a robust end-to-end implementation.

On a high level, our protocol can be modularly described via

the Verifiable Relation Sharing (VRS) functionality as observed

in a recent work [6]. Introduced in the work by Applebaum et

al. [4], VRS allows a dealer to share a secret with 𝑛 servers with

the guarantee that all (honest) servers either discard the dealer or

output valid shares to a secret that satisfies a predefined relation

𝑅. Given such a primitive for a linear secret sharing scheme, a

robust secure aggregation protocol w.r.t. a predicate 𝑃 meeting our

desiderata can be constructed as follows: (1) Each client acting as a

dealer uses a VRS scheme to secret share its input by relying on the

predicate to instantiate the relation 𝑅. (2) All (honest) servers sum

the secret shares of clients (that were not discarded at the end of

the VRS instance) and send the aggregate to the output party that

reconstructs the secret. (3) To ensure correct output reconstruction

even in the presence of malicious servers, the underlying secret-

sharing scheme must incorporate an error-correction property.

We design a protocol to realize the VRS functionality by reducing

it to the distributed commit and prove functionality (dCP) protocol

following the paradigm introduced in recent work [6]. In a dCP

protocol, a prover holding a secret witness𝑤 wishes to convince

𝑛 verifiers each with individual inputs 𝑥1, . . . , 𝑥𝑛 that 𝑛 relations

R1, . . . ,R𝑛 hold respectively (i.e., R𝑖 (𝑥𝑖 ,𝑤) holds for each 𝑖) w.r.t.
to the same witness𝑤 . This primitive will be useful for the prover

to first give secret shares of its input to 𝑛 servers and then con-

vince them that the secret encoded in the secret shares satisfies

a (certain robustness) predicate 𝑃 . As an independent technical

contribution, we provide a concretely efficient instantiation of the

dCP functionality using the Ligero [3] sublinear zero-knowledge

argument system, which in turn yields the first concretely efficient

implementation of a VRS (and consequently a VSS i.e., Verifiable

Secret Sharing) protocol.

1.2 Implementation
A core contribution of this paper is the development, evaluation,

and concurrent release of privacy-preserving Statistics Collection

with Input validation with Full security (SCIF), a ready-to-use open

source distributed statistics collection platform. SCIF supports se-

cure and private summation on a large number of devices. To our

knowledge, it is the first implemented privacy-preserving statistics

collection system that offers protection against malicious partici-

pants (both client and server), supports input validation, and guar-

antees output delivery and input inclusion. We evaluate SCIF using

a real-world deployment with geographically distributed clients and

demonstrate that SCIF’s computational and networking costs are

minimal: a measurement involving 500 clients, where each client

submits 10
4
inputs, requires less than 10 seconds of processing

time on each client and less than 40 seconds on the server, while

consuming slightly more than 2 MB of network bandwidth per

client and 200 MB between the servers. Even when up to 40% of

the clients behave maliciously, which triggers a share correction

operation, the execution time is less than 90 seconds.
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SCIF is written in Go with scalability and ease-of-use as primary

design goals. It is compatible with a large number of platforms

(our testing used OSX and Linux), and is easily incorporated into

existing systems to enable secure statistics collection. As a proof-of-

concept, we integrate SCIF with a private deployment of Tor [22]—a

popular anonymity service [32]—and show how SCIF can be used

to safely learn information about the behavior of Tor nodes.

SCIF is available for download at https://github.com/GUSecLab/

smc-in-a-box.

2 Related Work

Single-server setting. Initial research developed secure aggrega-

tion protocols in the single-server setting designed to protect the

privacy of client inputs while tolerating potential client dropouts

[9, 12, 30, 40, 41]. However, they fell short in ensuring the correct-

ness of the aggregate when faced with malicious clients who can

bias the results by sending malformed inputs. To mitigate such at-

tacks in statistical contexts, methods include ensuring well-formed

inputs, such as restricting inputs to 0 or 1 in counts, adding only a

value of 1 per histogram bucket, and limiting contributions to multi-

ple histogram buckets. In the federated learning context, bounding

the norms of inputs (e.g., 𝐿2 and 𝐿inf norms) has proven effective

against such attacks. Prior works [7, 8, 15, 17] implemented these de-

fenses using input validationmechanisms
3
to verify that clients sub-

mitted valid inputs, which utilized zero-knowledge proofs. These

protocols offer varying levels of security. Some simply detect mali-

cious clients and abort the protocol upon detection (security with

abort) [8, 15]. Others go further by identifying and excluding misbe-

having clients from the aggregate (full security) [7, 8, 17]. Although

these protocols handle malicious adversaries, they require multi-

ple client-server interactions, which is impractical with unreliable

clients. We aim for full security with just one client round, requiring

only a single message to the server.

Many more secure aggregation methods in the single-server

setting have been studied and utilized in federated learning. For

a comprehensive overview of this literature, see the survey by

Mansouri et al. [34].

Multi-server setting. In the multi-server setting, considerable

research [1, 20, 38, 39] has emerged, employing multi-party compu-

tation techniques for computing aggregate statistics. In this setting,

clients delegate computation tasks to a small set of servers. Differ-

ent threat models exist, depending on whether adversaries corrupt

parties in a semi-honest or malicious manner, and whether there

exists a dishonest or honest majority among the servers.

The seminal work by Corrigan-Gibbs and Boneh [20] introduces

an efficient secure aggregation system called Prio in the multi-

server model where the adversary can semi-honestly corrupt all but

one of the servers and maliciously corrupt the clients. Subsequent

research builds upon this foundation. Notably, the works of [1, 20,

38, 39] enhance the original protocol. Prio+, a system introduced

by [1], improves upon the client computation costs over Prio by

employing boolean secret sharing for input validation, rather than

relying solely on zero-knowledge proofs. Yet another system, Elsa,

3
This is also referred to as input certification, Byzantine resilience, or robustness

in prior work.

proposed by [38], further improves both Prio and Prio+ in a setting

where there are two non-colluding servers and achieves privacy

even when one server is maliciously compromised. Developed by

[39], the Whisper system aims to scale to millions of clients in

a similar two servers setting by improving upon the server-to-

server communication and server storage to be sublinear in the

number of clients (albeit with a slight increase in client-to-server

communication).

On the upside, the aforementioned works in the multi-server

setting can tolerate an adversary corrupting any number of servers

(i.e., a dishonest majority among the servers). However, they have

a limitation: they cannot guarantee output delivery if even a single

server is maliciously corrupted. In contrast, our focus is on achiev-

ing guaranteed output delivery in a different threat model, where

an adversary can only corrupt a minority of the servers maliciously.

Additionally, we aim to ensure guaranteed input inclusion, even

in the presence of malicious corruption of clients and a minority of

the servers. Contrast this with the single-server setting, where the

central server can decide which set of clients to include in the final

aggregate (as long as the set meets a minimum size requirement),

and could potentially discard many honest clients’ inputs. Our work

strives to achieve both guaranteed input inclusion and guaranteed

output delivery while ensuring that clients’ participation remains

limited to a single round.

Comparison with Flag [7]. The Flag secure aggregation system

by Bangalore et al. [7] shows how to achieve input validation and

guaranteed output delivery in the client-server setting where all

parties are connected in a star topology with the output party.

They demonstrate efficiency by benchmarking components of their

system. However, similar to the single-server setting, their work

fails to guarantee input inclusion as the output party can censor

input clients.

Comparison with Prime [6]. Bangalore et al. in Prime [6], intro-

duced dCP and VRS functionalities as abstractions for robust secure

aggregation, focusing on generic theoretical instantiations for these

functionalities with an end goal of achieving provable differential

privacy. In contrast, our work builds upon this abstraction and

building concretely efficient instantiations for dCP and VRS. Specif-

ically, we rely on Ligero to implement dCP and Replicated Secret

Sharing (RSS) for VRS, whereas Prime extends [45] via generic tech-

niques to realize dCP. In more detail, [45] constructs a VSS scheme

using a distributed polynomial commitment scheme (GKR-based),

which can then be adapted to support dCP. Our choice of Ligero

for dCP is motivated by its efficiency and its natural alignment

with the Commit-and-Prove paradigm (due to MPC-in-the-head).

Recent works have demonstrated Ligero’s space efficiency by im-

plementing it on a browser [43] and its proof sizes can be improved

to polylog( |𝐶 |) instead of

√︁
|𝐶 | [11] where |𝐶 | is the circuit size.

For VRS, we opted for RSS because it requires generating only a

single seed in the offline phase, independent of the number of ran-

dom shares needed during the online phase. Finally, we provide an

end-to-end implementation of our system while [6] provides only

asymptotic guarantees.

Comparison with Mario [37]. Concurrent work recently posted

on ePrint, Mario [37], considers a similar setting as ours with honest
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majority assumption among servers
4
and aims to get robustness

against faulty inputs with guaranteed output delivery. However,

the protocol as described currently does not achieve guaranteed

output delivery. The authors have acknowledged this (in private

communication) and are in the process of actively revising their

submission and benchmarks.

Others. Honest-majority MPC protocols that guarantee output de-

livery, such as [23], are generally unsuitable for our requirements.

These protocols are not optimized for lightweight (i.e., bandwidth-

limited) clients as they rely on VSS protocols. Such VSS protocols of-

ten require clients to interact in multiple rounds, rely on public-key

cryptography, or involve higher communication overhead among

servers, making them impractical in our setting.

In FLP [14], the communication for proofs and verification scales

as

√︁
|𝐶 | for both client-to-server and server-to-server interactions,

where |𝐶 | represents the circuit size. Our protocol improves on this

by limiting

√︁
|𝐶 | communication for sending the proof from the

client-to-server, with only a single hash broadcasted among servers

for verification. On the other hand, MVZK’s [44] proof size grows

linearly with the circuit size, even for a constant number of servers.

For predicates larger than the input size, our use of Ligero proofs

offers better scalability.

3 Preliminaries

Basic notation.We denote the set of clients byU = {U1, . . . ,Unc },
servers by S = {S1, . . . ,Sns } and the output party by O. For sim-

plicity, we assume that each clientU𝑖 is also identified by a unique

integer in [nc] and each server S𝑗 is identified by a unique integer

in [ns]. Although an integer may be associated with a client and a

server, we usually specify the type of entity; if not it can be easily

inferred from the letters used to specify the identity. BC(𝑛) rep-
resents the communication cost, measured in the number of field

elements, required to broadcast a message of length 𝑛 bits.

3.1 Our Model
We consider a synchronous network model involving nc clients, ns
servers, and an output partyO. The network assumes point-to-point

secure and authenticated channels between the following parties:

(i) client to server, (ii) server to server, and (iii) server to output

party. This can be facilitated with a public-key infrastructure and

standard cryptographic primitives such as authenticated encryption.

Additionally, we assume the presence of a broadcast channel among

the servers
5
. All parties know the identities (i.e., public keys) of

the other parties they need to communicate with.

Threat model. Both clients and servers can be malicious at any

point in our protocol, meaning they can arbitrarily deviate from the

protocol. We assume at most tc malicious clients and ts malicious

servers. More precisely, the adversary can maliciously corrupt all

but one of the clients i.e., tc < nc and maliciously corrupt up to a

4
Our work assumes a strong honest majority among the servers, with fewer than

one-third of servers being malicious, while [37] assumes a weaker honest majority,

with fewer than half of the servers malicious.

5
In our setting, where fewer than one-third of the servers are maliciously com-

promised, a broadcast channel can be efficiently simulated using point-to-point com-

munication.

threshold of ts < ns/3 servers. Additionally, the adversary can ma-

liciously corrupt the output party. We consider a static and rushing

adversary. A static adversary selects its corrupted parties before

the protocol begins and does not change them during execution. A

rushing adversary observes the messages of honest parties in each

round and then sends its own messages, enabling it to adapt based

on the honest parties’ actions.

3.2 Secure Aggregation
We consider the problem of adding vectors over integers captured

by a large enough field F. Each clientU𝑖 ∈ U has a vector 𝑋𝑖 ∈ Fd
of size d. The servers do not have any inputs, and the output party

receives the final aggregate.

Our MPC protocol aims to implement the ideal functionality

F𝐴𝑔𝑔 for secure aggregation, given in Figure 1. This functionality is

parameterized by nc, the (maximum) number of clients, and d, the
length of the input vector. F𝐴𝑔𝑔 receives the inputs from the clients

and stores these values. The functionality will aggregate the inputs

of the clients that satisfy the predicate 𝑃 (·) and send the result to

the output party.

3.3 Replicated Secret Sharing Scheme
We adopt the notation from [21] to describe the Replicated Secret

Sharing (RSS) Scheme. RSS, introduced by [25], with threshold 𝑡 , is

defined by the following procedures
6
. We let R be any finite ring,

𝜆 =
(𝑛
𝑡

)
and denote by 𝑇1, . . . ,𝑇𝜆 ⊂ [𝑛] all subsets of indices of size

𝑛 − 𝑡 .
• Enc(𝑥): To encode a secret 𝑥 with threshold 𝑡 , first generate

𝜆 random 𝑥𝑇1 , . . . , 𝑥𝑇𝜆 ∈ R under the constraint that 𝑥 =

𝑥𝑇1 + . . . + 𝑥𝑇𝜆 . The share sh𝑖 is a tuple consisting of all 𝑥𝑇𝑗
such that 𝑖 ∈ 𝑇𝑗 . We denote the output of the encoding by

Share = (sh1, . . . , sh𝑛). Sometimes, the randomness used for

Enc, say 𝑟 , is explicitly specified as Enc(𝑥 ; 𝑟 ).
• Dec(Share): For each subset𝑇 holding a value 𝑥𝑇 , obtain all

the values for 𝑥𝑇 repeated across the different share tuple

of the encoding Share; if there exists different values for

𝑥𝑇 , then set the majority value to be 𝑥𝑇 . Finally, 𝑃𝑖 sets 𝑥 =∑
𝑇 ⊆[𝑛]: |𝑇 |=𝑛−𝑡 𝑥𝑇 .

For an encoding of size𝑛 and threshold 𝑡 , there are
(𝑛
𝑡

)
distributed

shares. Each share has

(𝑛−1
𝑡

)
values. We can check that an encoding

is consistent by ensuring the equality of the joint values in each

pair of shares. Note that each pair of shares can check pairwise

consistency of an arbitrarily large number of sharings by comparing

a hash of the string consisting of all their joint values. Refer to [21]

for more details.

Non-interactive Generation of Random RSS Sharings. Let
F = {𝐹𝑘 | 𝑘 ∈ {0, 1}𝜅 , 𝐹𝑘 : {0, 1}𝜅 → F} be a family of pseudo-

random functions. Also, let 𝑘 = 𝑘𝑇1 + . . . + 𝑘𝑇𝜆 where 𝑘𝑇1 , . . . , 𝑘𝑇𝜆
are randomly sampled and are used to form an RSS sharing of 𝑘 .

To generate an RSS sharing of a fresh random value 𝑟 ℓ , we derive

values 𝑟 ℓ
𝑇1
, . . . , 𝑟 ℓ

𝑇𝜆
as follows:

6
Rather than using the standard share and reconstruct terminology, we define RSS

using slightly different terminology: encode Enc( ·) and decode Dec( ·) . This ensures
consistency with the coding scheme notation used in our dCP.
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Functionality FAgg
The functionality FAgg communicates with the set of clients U = {U1, . . . ,Unc }, an output party O and an adversary A. It is parameterized by

𝑃 : Fd → {0, 1}, nc and d, where 𝑃 is the predicate used for certifying the inputs, nc is the number of clients and d is the size of clients’ input vectors.

(1) Upon receiving input ("Input", sid,U𝑖 , 𝑋𝑖 ) from some new client U𝑖 ∈ U where 𝑋𝑖 ∈ Fd, store the client’s input 𝑋𝑖 .

(2) Upon receiving ("Output", O) from the output party O, proceed as follows:

– Compute the aggregate Y =
∑
U𝑖 ∈U 𝑃 (𝑋𝑖 ) ·𝑋𝑖 (note that this is equivalent to aggregating only inputs of clients that satisfy the predicate 𝑃 ).

– Send ("Output", sid, Y) to the output party O and halt.

Figure 1: Ideal Functionality for Secure Aggregation with Input Certification

𝑟 ℓ𝑇 = 𝐹𝑘𝑇 (ℓ)

for each subset 𝑇 in the RSS scheme. The resulting sharing,

denoted by (rshℓ
1
, . . . , rshℓ𝑛), is structured such that the 𝑖𝑡ℎ share

rshℓ𝑖 consists of all 𝑟
ℓ
𝑇𝑗

where 𝑖 ∈ 𝑇𝑗 , as defined in Enc(·).

3.4 Zero-Knowledge Proofs
A Zero-Knowledge Proof (ZKP) is a cryptographic protocol that

enables a prover to convince a verifier of the truth of a statement

without revealing any additional information beyond the validity

of the statement itself. Formally, a ZKP for a relation R consists of

a tuple of probabilistic polynomial-time (PPT) algorithms:

Definition 3.1 (Zero-Knowledge Proof for Distributed Relations).
Let P be a prover andV = {V1, . . . ,V𝑛} be a set of verifiers. The
prover P holds an input 𝑥 and a witness𝑤 , while each verifierV𝑖

possesses a share sh𝑖 . The goal is for P to convince eachV𝑖 that

(sh𝑖 , 𝑥,𝑤) ∈ R𝑖 without revealing additional information about𝑤 .

A ZKP for the distributed relations (R1, . . . ,R𝑛) consists of three
algorithms (Setup, Prove,Verify) defined as follows:

• Setup: Setup(1𝜅 ) → pp: A trusted setup generates the pub-

lic parameters pp based on the security parameter 𝜅.

• Prove: Prove(pp, 𝑥,𝑤) → (com, 𝜋1, 𝜋1

2
, . . . , 𝜋𝑛

2
): Given pub-

lic parameters pp, input 𝑥 , and witness 𝑤 , the prover P
generates a proof consisting of a common component 𝜋1 and

verifier-specific components 𝜋𝑖
2
for each verifierV𝑖 .

For ease of use within dCP, the proof generation is divided

into two steps, Prove = (Prove0, Prove1):
– CommitmentGeneration:Prove0 (pp, 𝑥,𝑤) → (com, st):
The prover first computes a commitment com to its input

𝑥 and witness𝑤 and produces an intermediate state st.
– Proof Generation: Using st, along with 𝑥 and 𝑤 , the

prover generates the proof:

Prove1 (pp, st, 𝑥,𝑤) → (𝜋1, 𝜋1

2
, . . . , 𝜋𝑛

2
) .

where 𝜋1 is the common portion of the proof given to all

verifiers and 𝜋𝑖
2
is a verifier-specific portion given toV𝑖 .

• Verify: Each verifierV𝑖 runs

Verify(pp, sh𝑖 , com, 𝜋1, 𝜋𝑖2) → {0, 1}.

If the output is 1,V𝑖 accepts; otherwise, it rejects.

A valid ZKP for distributed relations must satisfy the following

properties:

• Completeness: If (sh𝑖 , 𝑥,𝑤) ∈ R𝑖 for all 𝑖 ∈ [𝑛], then an

honest prover P can convince all verifiers, i.e.,

Pr
[
Verify(pp, sh𝑖 , com, 𝜋1, 𝜋𝑖2) = 1 ∀𝑖 ∈ [𝑛]

]
= 1.

• Soundness: No computationally bounded adversary (cheat-

ing prover) can convince any honest verifierV𝑖 of (sh𝑖 , 𝑥,𝑤) ∈
R𝑖 unless it is true, except with negligible probability.

• ZeroKnowledge: There exists a simulator that, given access

only to sh𝑖 , 𝑥 , com, and verification keys, can generate proofs

indistinguishable from those of an honest prover, ensuring

no additional information about w is leaked.

Instantiation with Ligero. Ligero is a zero-knowledge proof sys-

tem designed for efficient proof generation and verification using

probabilistically checkable proofs (PCPs). Unlike traditional zk-

SNARKs, Ligero does not require a trusted setup. The proof size

is �̃� (
√︁
|C|) where C is the circuit representation of the relation R.

Due to these properties, Ligero is well-suited for privacy-preserving

applications such as blockchain and secure computation. We use

Ligero to instantiate zero-knowledge proofs for distributed rela-

tions, with further details provided in Appendix B.

4 Secure Aggregation with Input Validation
In this section, we introduce our secure aggregation protocol, which

incorporates input validation and full security. We start with a high-

level overview of the protocol. Similar to standard MPC techniques,

the basic structure consists of two main phases: input sharing and

output reconstruction. In the input sharing phase, each client secret-

shares its input among the servers using a linear secret sharing

scheme (which we instantiate with an RSS scheme). During the out-

put reconstruction phase, the servers aggregate the shares received

from all clients and send the aggregated shares to the output party,

who then reconstructs the final aggregate. By setting the threshold

of the secret-sharing scheme to ts < ns/3, our protocol can tolerate

the malicious corruption of up to ts servers, ensuring guaranteed
output delivery.

Input validation via zero-knowledge proofs. To ensure that

clients submit valid inputs, our protocol employs zero-knowledge

proofs. Clients must demonstrate to each server that their input

is well-formed and that the input shares distributed among the

servers are consistent with this input. This is achieved through

a distributed Commit and Prove (dCP) functionality, detailed in

Section 4.1. The dCP functionality involves two phases. During

the Commit phase, the client commits to its input. Subsequently,

during the Prove phase, the client proves to each server that the

419



Proceedings on Privacy Enhancing Technologies 2025(3) Su et al.

committed input is well-formed with respect to some predicate 𝑃 (·)
and consistent with the input shares distributed among the servers.

Each server then accepts or rejects the proof and outputs the shares

if the proof is accepted. After the dCP, servers need to agree on

a set of valid clients whose inputs will be included in the final

aggregate. Servers broadcast complaints against clients for whom

proof verification failed. Based on the number of complaints, clients

are either discarded if the complaints are too high or included in

the valid set otherwise. We will rely on a zk-SNARK so that only a

single message is required to generate a proof. Our dCP protocol

is inspired by the work of Zhang et al. [45] who rely on a similar

primitive towards designing a VSS protocol.

Ensuring all honest servers possess valid shares. For the final
aggregate to be reconstructible, all honest servers must have valid

input shares from clients in the valid set. If any honest server lacks

valid input shares, it cannot compute its aggregate share. This could

prevent the output party from reconstructing the aggregate if the

number of missing aggregate shares exceeds the reconstruction

threshold. To address this, we employ a verifiable relation sharing

(VRS) scheme that enhances the dCP to ensure that all honest

servers receive valid shares, guaranteeing output delivery.

We begin by discussing our dCP and VRS constructions in Sec-

tions 4.1 and 4.2 respectively and then show how to integrate them

into our secure aggregation protocol with input validation.

4.1 Distributed Commit-and-Prove (dCP)
We construct a dCP protocol involving a prover and 𝑛 verifiers.

This protocol serves as a foundational component in validating the

inputs with respect to a predicate 𝑃 (·). In our scenario the prover

secret-shares its input and demonstrates that both the input and

its shares, distributed among the verifiers, are “well-formed”. To

elaborate, the prover secret-shares its input 𝑥 and sends the share

sh𝑗 to verifierV𝑗 , where (sh1, . . . , sh𝑛) ← Enc(𝑥 ; 𝑟dcp) and 𝑟dcp is
the randomness used by Enc. Subsequently, the prover needs to
prove the following two properties to each verifierV𝑗 ∈ V .

(1) 𝑃 (𝑥) = 1

(2) sh𝑗 = [Enc(𝑥 ; 𝑟dcp)] 𝑗 , indicating that sh𝑗 is a valid share

with respect to input 𝑥 and randomness 𝑟dcp.

We now present a high-level overview of our dCP protocol,

which is based on the Ligero zk-SNARK proof system. First, we

establish the terminology for the circuit that will be used in our dCP
construction. Intuitively, we construct a circuit C for the predicate

𝑃 such that the C outputs the shares of the input 𝑥 if the 𝑥 satisfies

the predicate and otherwise outputs ⊥7. We repeat the definition

verbatim from [6].

Definition 4.1 (Circuit Description given a predicate 𝑃). We con-

sider a circuit C that takes w = (𝑥, 𝑟dcp) as input and yields output

(out1, . . . , out𝑛) such that if 𝑃 (𝑥) = 1, then out𝑗 = sh𝑗 , otherwise

out𝑗 = ⊥ for all 𝑗 ∈ [𝑛] where (sh1, . . . , sh𝑛) ← Enc(w).

Let us begin by considering how a prover with inputw can prove

to a single verifier, denotedV𝑗 , that two specific properties hold

for w. A simple approach would be to use any zero-knowledge

7
While a simple approach might involve a circuit that outputs 0 or 1, we instead

output the shares of 𝑥 , as this facilitates consistency checks to verify the validity of

the shares in subsequent steps.

proof to demonstrate these properties to each verifier. However,

this method is insufficient because a dishonest prover could use

different inputs for different verifiers that satisfy the predicate —

ensuring that each proof passes verification while leading to an

inconsistent sharing among the verifiers. To prevent this, we must

ensure that the prover uses the same input across all verifiers when

generating both the shares and the proof. In other words, the shares

must remain consistent with respect to a given encoding scheme

across all verifiers as well as with the proof. To enforce this, we

structure the proof in two parts, with the second part specifically

verifying share consistency.

• A common proof, valid for all verifiers, which shows that

the input w satisfies the predicate.

• A verifier-specific proof, which ensures that the same input

w used in the common proof was also used to generate the

shares for each verifier, and that these shares match the

shares held by the verifiers. In particular, we need to ensure

that sh𝑗 = [𝐶 (w)] 𝑗 where share sh𝑗 is possessed by verifier

V𝑗 , and [𝐶 (w)] 𝑗 is the 𝑗𝑡ℎ output of the circuit on input𝑤 .

The common portion of the proof can be generated using any

zero-knowledge proof. We instantiate this using the Ligero proof

system and show how to modify it to efficiently prove the verifier-

specific portion of the proof. At a high-level, the prover can execute

the Ligero proof generationwith respect to the circuit𝐶 and inputw.
All constraints imposed by the circuit are enforced via code, linear,

and quadratic tests (described in Appendix B.1). For the verifier-

specific proof, we show that it suffices to augment the Ligero proof

with an additional linear check enforcing the constraint sh𝑗 =

[𝐶 (w)] 𝑗 for every verifier V𝑗 . Details on proof generation and

Ligero are in Appendix B.

However, naively repeating this proof generation process for

each of the 𝑛 verifiers would violate the zero-knowledge property.

The additional linear test (in the verifier-specific portion of the

proof) differs across verifiers, leading to different randomness gen-

erated for different verifiers when the Fiat-Shamir transformation
8

is applied. In more detail, this will result in different columns of

the encoded extended witness
910

are opened to each verifier. Con-

sequently, an adversary controlling up to 𝑡 verifiers could observe

too many columns, potentially leaking information about the wit-

ness w and violating the zero-knowledge property. To prevent this,

we ensure that all verifiers generate a common randomness when

applying the Fiat-Shamir transform - ensuring they open the same

columns. We achieve this by constructing a Merkle tree, where the

leaves consist of the outputs of the additional linear test, augmented

with nonces for privacy. This Merkle root, say com′, is then used

in the Fiat-Shamir transform.

In summary, the additional linear test for share-consistency and

the modification of the Fiat-Shamir transform allow us to extend

the Ligero proof system to accommodate multiple verifiers. Lever-

aging this, we can construct a dCP protocol as follows. During the

8
Used to obtain the non-interactive variant of the Ligero Proof system

9
In the Ligero proof system, the prover generates an extended witness from the

witnessw and arranges it as a matrix. Each row of the matrix is then encoded using the

Reed-Solomon codes, forming what we refer to this as the encoded extended witness.

10
During Ligero proof generation, a column check is performed, where a random

subset of columns of the encoded extended witness are opened and checked for con-

sistency. In the non-interactive variant, the randomness determining which columns

are opened is derived via the Fiat-Shamir transform.
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Protocol ΠdCP

This protocol involves a prover P and 𝑛 verifiers V = {V1, . . . ,V𝑛 }. It is parameterized by 𝑛 relations (R1, . . . , R𝑛 ) , which are determined by a

circuit C : Fn1 → Fn2 . The circuit C takes as input w = (x, 𝑟dcp ) and produces the output (out1, . . . , out𝑛 ) , where each out𝑗 = [C(w) ] 𝑗 represents
the 𝑗 th component of the circuit’s output.

We employ a zero-knowledge proof (ZKP) scheme with (Setup, Prove,Verify) algorithms that is instantiated with a slight variant of Ligero proof

system. We assume that the prover and verifiers execute the Setup procedure to generate the public parameters pp. For details on the ZKP instantiation

and a self-contained description of Ligero, refer to Appendix B.1.

Input & Output The prover has input w ∈ Fn1 and the verifiers have no inputs. Each verifier V𝑗 ∈ V outputs either (out𝑗 , accept) or reject. If V𝑗

outputs (out𝑗 , accept) , then it must hold that (out𝑗 ,w) ∈ R 𝑗 .

Commit Phase: This phase proceeds as follows.
(1) The prover P runs the algorithm Prove0 (pp,w) to obtain the commitment portion, denoted as com, and a state st.
(2) P sends (Commit, sid, P, com) to all verifiers V , where each verifier V𝑗 ∈ V receives a corresponding commitment com𝑗 .

(3) Each verifier V𝑗 broadcasts its received commitment com𝑗 to all other verifiers.

(4) The verifiers collectively check whether there exists a commitment com★
that matches at least 𝑛 − 𝑡 of the broadcast commitments com𝑗 . If

no such com★
is found, they set com★ = ⊥.

Prove Phase: In this phase, the prover convinces the verifiers of the validity of its input with respect to their assigned relations.

(1) The prover P computes the shares (sh1, . . . , sh𝑛 ) ← Enc(w) . If computed correctly, these shares correspond to the circuit output

(out1, . . . , out𝑛 ) , as defined in Definition 4.1.

(2) To prove to each verifier V𝑗 ∈ V that (sh𝑗 ,w) ∈ R 𝑗 , the prover runs Prove1 (pp, st,w) to generate the proof, consisting of a common portion

𝜋1 and verifier-specific portions 𝜋
𝑗

2
.

(3) The prover then sends the proof

(
𝜋1, 𝜋

𝑗

2

)
and the share sh𝑗 to each verifier V𝑗 .

(4) Each verifier V𝑗 verifies the proof by running

Verify(pp, sh𝑗 , com★, 𝜋1, 𝜋
𝑗

2
) .

If verification succeeds (i.e., the output is 1), V𝑗 outputs (accept, out𝑗 ) . Otherwise, it outputs reject. Note that if com★ = ⊥, the verification
automatically fails.

Figure 2: A Distributed Commit-and-Prove Protocol

Commit phase, the prover commits to the proof oracle correspond-

ing to circuit C and input w using the Merkle tree-based hash. The

resulting Merkle root is then broadcasted to all the verifiers. Sub-

sequently, during the Prove phase, the prover generates the proof

following the extension of Ligero to multiple verifiers and forwards

the proof, along with the respective shares, to each of the verifiers.

We provide more details of the instantiation in Appendix B.2.

Lastly, in the dCP protocol, the prover could broadcast the com-

mitment to all verifiers during the commit phase. However, imple-

menting such a broadcast would require the prover to participate

in multiple rounds. Since our goal is to limit the prover’s partici-

pation to a single round, we optimize the protocol by leveraging

the broadcast channel between the verifiers. Instead of broadcast-

ing the commitment directly, the prover sends it to each verifier

individually over a point-to-point channel and then each verifier

can broadcast the commitment to all other verifiers. The verifiers

then collectively decide the output by verifying two conditions: (1)

The proof verification passes. (2) The commitment received from

the prover matches at least 𝑛 − 𝑡 commitments broadcast by other

verifiers. The verifiers output reject if these conditions fail.
The ideal functionality for dCP, represented by FdCP, is provided

in Figure 10 of Appendix A. The corresponding protocol ΠdCP,

which securely implements FdCP, is detailed in Figure 2. Next, we

will establish the following definition to specify a set of relations

(R1, . . . ,R𝑛) via a circuit C, which will be used in the dCP con-

struction and formal theorem.

Definition 4.2 (Determination of Distributed Relations from Cir-
cuits). Consider a circuit C : Fin → Fout that takes an input w and

produces (out1, . . . , out𝑛), where out𝑗 = [𝐶 (w)] 𝑗 represents the
𝑗𝑡ℎ output of the circuit with input w. For each 𝑗 ∈ [𝑛], we define
a relation R 𝑗 as follows: A pair (out𝑗 ,w) belongs to R 𝑗 if and only

if [C(w)] 𝑗 ≠ ⊥. Furthermore, we say that a distributed relation

(R1, . . . ,R𝑛) is determined by a circuit C if (out𝑗 ,w) belongs to R 𝑗

for each 𝑗 ∈ [𝑛].

With the established terminology, we now present an informal

theorem for the dCP protocol. The full proof is provided in Appen-

dix C.

Theorem 4.3. (Informal) Given a predicate 𝑃 : Fd → {0, 1}, we
first instantiate the circuit 𝐶 and distributed relation (R1, . . . ,R𝑛) as
per definitions 4.1 and 4.2.

Then, theΠdCP protocol, given in Figure 2, involving a proverP and
𝑛 verifiersV1, . . . ,V𝑛 , securely realizes the FdCP functionality (given
in Figure 10) against a static malicious adversaryA who controls the
prover and at most 𝑡 verifiers in random oracle model.

The communication between the prover and verifierV𝑖 is𝑂 ( |out𝑖 |+√︁
|C| · 𝜅 + ℎ) field elements and each verifier broadcasts BC(ℎ) field

elements where 𝜅 is the security parameter, |C| is the number of mul-
tiplication gates in circuit C and ℎ is the output length of the hash
function (in bits).

421



Proceedings on Privacy Enhancing Technologies 2025(3) Su et al.

Communication efficiency. The prover initially sends the com-

mitments com, the root of a Merkle tree which is ℎ-bits long, incur-

ring a cost of 𝑂 (ℎ). During the proof phase, the prover sends the
input share and the proof to each verifier. The input share sent to

each verifierV𝑖 is of size 𝑂 ( |out𝑖 |). The proof size is 𝑂 (
√︁
|C| · 𝜅)

(follows from the Ligero proof system). The additional linear test

and authentication paths in our variant of Ligero do not alter the

costs asymptotically. Then, each verifier broadcasts its received

commitment to all other verifiers. Thus, the total costs match those

outlined in Theorem 4.3. Additionally, we observe that the proof

size scales with

(𝑛
𝑡

)
, as the size of the circuit C depends on its output

sh𝑗 , which has a size of

(𝑛
𝑡

)
.

4.2 Verifiable Relation Sharing (VRS) from dCP
The problem of Verifiable Relation Sharing (VRS), introduced by [4],

allows a client (prover) to share a vector of secret data items among

multiple servers (the verifiers) while proving in zero knowledge

that the shared data adheres to certain properties. This combined

task of sharing and proving generalizes notions like verifiable secret

sharing and zero-knowledge proofs over secret-shared data.

We use the framework established by [6], which demonstrates

the construction of a Verifiable Random Secret (VRS) from a dCP. At

a high level, the VRS construction involves the prover invoking the

dCP ideal functionality with its input. Note that the dCP is weaker

than a VRS in that some honest verifiers might output "accept"

while others output “reject.” In contrast, a VRS requires unanimous

agreement among honest verifiers: either all accept and hold a valid

share, or all reject.

To ensure this unanimous agreement in a VRS, we implement a

share recovery mechanism whenever a verifier gets “reject” from

the dCP functionality invoked by the prover. This mechanism en-

sures that verifiers are able to recover their shares or collectively

discard the prover and output “reject.” At a high level, this recovery

process involves all verifiers masking their input shares with a ran-

dom share pre-computed during the offline phase using a Verifiable

Secret Sharing (VSS) scheme. These masked shares are broadcasted

and subsequently used by the verifiers to either unanimously reject

(if the masked shares are malformed) or to recover their respective

shares.

Our construction is similar to that in [6], but it uses replicated

secret sharing instead of Shamir’s secret sharing scheme. We chose

replicated secret sharing for its simplicity and because it allows for

an offline phase that can be reused across executions, with a cost

that is independent of input size, unlike the approach in [6]. The

ideal VRS functionality is provided in Figure 11 of Appendix A and

our VRS construction is given in Figure 3.

4.3 Secure Aggregation from VRS
This section presents our secure aggregation protocol, leveraging

the VRS functionality discussed earlier. At its core, our protocol

consists of two primary phases:

• Input Sharing: Clients share their input using the VRS func-

tionality FVRS. Here, each client acts as a prover and servers

act as verifiers At the end of each invocation of FdCP by a

client, the servers receive accept/reject along with the input

share associated with this client.

• Output Reconstruction: The servers determine a set of valid

clients if they received the output accept from FdCP. Then,
they sum the shares received from invocation of FdCP cor-
responding to all the valid clients and send their aggregate

shares to the output party, who then error-corrects and re-

constructs the final aggregate.

For completeness, we provide a detailed description of the proto-

col using VRS in Figure 4, as taken verbatim from [6]. The theorem

statement is provided below.

Theorem 4.4. (Informal) Let ns, ts, d ∈ N such that ts < ns/3
and 𝑃 : Fd → {0, 1} be an arbitrary predicate. Let FAgg be the
ideal functionality given in Figure 1. The protocol ΠAgg, as outlined
in Figure 4, securely realizes FAgg in the FVRS-hybrid model among
nc clients each holding input vectors of length d with elements in
some finite field F, ns servers, and an output party O, which is secure
against a static, rushing adversary that can maliciously corrupt an
arbitrary number of clients, up to ts servers and the output party and
ensures guaranteed output delivery. Additionally, a client is required
to engage in only a single round of communication.

The communication between the prover and each of the verifiers is
𝑂 (d ·

(ns−1
ts

)
+ 𝜌) field elements where 𝜌 =√︃

(d ·
(ns−1

ts

)
+ |𝑃 |) · 𝜅 and |𝑃 | is the number of gates in the circuit

associated with predicate 𝑃 .
The total communication among the servers is as follows (in terms

of field elements):
– Offline phase: 𝑂 (n3s + ns · BC(n2s ))
– Online phase in the worst case:𝑂 (nc ·ns · 𝜌 +nc ·ns · BC(ℎ) +
·nc · ns · d · BC(

(ns−1
ts

)
))11

– Online phase in the optimistic setting (when all the servers are
honest) and 𝛾-fraction of the clients are malicious: 𝑂 (nc · ns ·
(d ·

(ns−1
ts

)
+ 𝜌) + nc · ns · BC(ℎ) +𝛾 · nc · ns · d · BC(

(ns−1
ts

)
)).

12

where ℎ is the output length (in bits) of the hash function and 𝜅 is the
security parameter.

The costs in the above theorem are derived by scaling the costs in

Theorem D.1 by a factor of nc. This theorem parallels Theorem 4.4

in [6], but incorporates replicated secret sharing and the Ligero

proof system. For further details, refer to [6].

5 Implementation and Evaluation
We demonstrate the efficacy, performance, and practicality of our

protocol through an implementation that we call SCIF. The core aim

of our implementation is to enable analysts to easily and securely

compute aggregate statistics over data that is distributed potentially

across a large number of parties. SCIF is ready-to-deploy software

released under a permissive open-source license, and is available

for use now at https://anonymous.4open.science/r/scif/.

We begin by describing SCIF’s architecture and operation (Sec-

tion 5.1). We then explore the operational costs of using SCIF via a

real-world deployment consisting of hundreds of distributed clients

11
Recall that BC(𝑛) represents the communication cost, measured in the number

of field elements, required to broadcast a message of length 𝑛 bits.

12
The main difference between optimistic and worst case settings is the additional

𝛾 factor in the second term of the cost expression where 𝛾 is the fraction of malicious

clients, which is less than 1.)
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Protocol ΠVRS

This protocol allows a prover P with input 𝑥 ∈ F to verifiably secret share 𝑥 ∈ F among 𝑛 verifiers V = {V1, . . . ,V𝑛 } and prove that 𝑃 (𝑥 ) = 1 to

all the verifiers.

Public Parameters. It is parameterized by a bound 𝑛 ≥ 3𝑡 + 1 where 𝑛 is the number of verifiers, 𝑡 is the number of corrupt verifiers and a predicate

𝑃 : F→ {0, 1}. For the predicate 𝑃 , we can obtain a circuit C : F𝑡+1 → Fn2 and 𝑛 relations (R1, . . . , R𝑛 ) as per Definition 4.2. All the parties

have access to a dCP ideal functionality FdCP, which is parameterized by (R1, . . . , R𝑛 ) .
Input & Output. P has an input 𝑥 ∈ F and the verifiers V have no inputs. If 𝑃 (𝑥 ) = 1 holds, then each verifier V𝑗 ∈ V outputs (Share𝑗 , accept)

where (Share1, . . . , Share𝑛 ) ← Enc(𝑥 ) . Otherwise, all verifiers output reject.

Offline Phase. The parties interactively generate a valid RSS sharings of 𝑛 keys 𝑘 (1) , . . . , 𝑘 (𝑛) where each 𝑘 (𝑖 ) is associated with V𝑖 . Each verifier

V𝑖 ∈ V performs the following steps:

(1) Acting as a dealer, secret share a random key, say 𝑘 (𝑖 ) among the verifiers using RSS.

(2) The verifiers run a pair-wise consistency check where the parties exchange the common values between their shares. If there are any

inconsistencies, broadcast a complaint with identities of the pair of parties. Then, the dealer broadcasts all the shares held by the pair of parties

against whom a complaint was raised.

After completing these steps, each verifier holds RSS sharings of 𝑛 keys 𝑘 (1) , . . . , 𝑘 (𝑛) , each originally shared by a different verifier. Whenever a

fresh random RSS sharing is needed, the following procedure is performed:

(1) The existing RSS key shares can be used to derive 𝑛 RSS sharings { (rsh(𝑖 )
1

, . . . , rsh(𝑖 )𝑛 }𝑖∈𝑛 (as described in Section 3.3).

(2) By summing up these 𝑛 RSS shares locally (using the linearity property of RSS), we can generate the final random RSS sharing (rsh1, . . . , rsh𝑛 )
non-interactively.

This process can be repeated as needed to generate an many random RSS sharings for use later during the sharing phase.

Sharing Phase.
(1) [Input Sharing] Prover P with a secret 𝑥 proceeds as follows.

• Sample randomness 𝑟vrs and encode the input 𝑥 as follows: (sh1, . . . , sh𝑛 ) ← Enc(𝑥 ; 𝑟vrs ) . Let (sh1, . . . , sh𝑛 ) be denoted by Shares.
• Invoke the Commit Phase of FdCP as the prover with input (Commit, sid, P, 𝑥, 𝑟vrs ) .
• Invoke the Prove phase of FdCP as a prover with input (Prove, sid, P,V𝑗 , sh𝑗 ) .

(2) Upon receiving the message (Proof, sid, sh𝑗 , happy𝑗 ) from FdCP, each verifier V𝑗 proceed as follows.

• If happy𝑗 = accept, then broadcast (Masked-Share, sid,V𝑗 ,msh𝑗 ) where the masked share msh𝑗 := sh𝑗 + rsh𝑗

• Otherwise, set msh𝑗 := ⊥ and broadcast nothing.

(3) [Consistency Check] Let the broadcasted message from each verifier V𝑗 ∈ V be denoted by (Masked-Share, sid,V𝑗 ,msh′𝑗 ) . The verifiers
perform a consistency check to ensure that the masked shares obtained from the verifiers’ broadcasts, (msh′

1
, . . . ,msh′𝑛 ) , form a valid encoding.

This is verified by checking whether decoding succeeds on the collected shares (msh′
1
, . . . ,msh′𝑛 ) .

(4) [Share Recovery] Each verifier V𝑗 locally computes its output as follows:

(a) If the consistency check fails, then set Share𝑗 := ⊥ and output (reject,⊥) .
(b) If the consistency check passes, then V𝑗 outputs (accept, Share𝑗 ) where Share𝑗 is computed as follows:

(i) Keep Existing Share: If happy𝑗 = accept, then set Share𝑗 := sh𝑗 , or

(ii) Recover Share: If happy𝑗 = reject, then V𝑗 needs to recover its share by computing Share𝑗 :=msh′′𝑗 − rsh𝑗 where (msh′′
1
, . . . ,msh′′𝑛 )

is obtained by error-correcting (msh′
1
, . . . ,msh′𝑛 ) .

Figure 3: A VRS Protocol for predicate 𝑃

(Section 5.2). Finally, we describe a case-study in which we use SCIF

to securely and privately compute statistics about the performance

of a private Tor network (Section 5.3).

5.1 Architecture and Operation
SCIF is constructed with security, scalability, and ease-of-use as

principle design goals. We build SCIF in 7.7k lines (as measured by

scc) of Go and make extensive use of the language’s memory safety

and parallelism features (i.e., goroutines) to optimize CPU resources

and support large numbers of clients. Cryptographic functions

used Go’s crypto package, including crypto/tls, crypto/sha256, and

crypto/rand, and PRFs were constructed using ChaCha20.

For our implementation, we prioritized simplicity, focusing on

essential features and deployment. We built our protocol in a mod-

ular fashion, with separate packages for packed secret sharing,

replicated secret sharing (RSS), and the Ligero proof system. Some

choices we made, while simplifying the process, might not be ideal:

(1) We used a the näive polynomial interpolation algorithm that

runs in quadratic time for packed secret sharing instead of a more

efficient Fast Fourier Transform (FFT)-based approach that runs

in quasilinear time. As we built our code in a modular fashion,

we can easily replace the packed secret sharing protocol with the

FFT-based approach, enhancing performance without major code

overhauls. (2) We opted for RSS due to its simplicity and efficiency,

especially suitable for a small number of servers and field sizes. RSS

facilitates an offline phase independent of input size and enables

non-interactive random sharing generation for share recovery. If

alternative schemes become more suitable, RSS can be easily sub-

stituted, given our modular implementation.

The high-level architecture of SCIF is shown in Figure 5. The

three principle components—clients, servers, and the output party—

are all implemented as web services, and use an object-relational

mapping (ORM) model to persist program state. SCIF is compatible
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Input-Certified Secure Aggregation Protocol ΠAgg

Public parameters. Field F, input vector length d, server corruption threshold ts, predicate 𝑃 : F→ {0, 1}.
Parties. Clients U = {U1, . . . ,Unc } , servers S = {S1, . . . , Sns } and an output party O.
Input & Output. {𝑥1, . . . , 𝑥nc } where 𝑥𝑖 ∈ F is client U𝑖 ’s input. The output party O receives

∑
U𝑖 ∈U 𝑃 (𝑥𝑖 ) · 𝑥𝑖 .

Setup. Each client has a point-to-point private, authenticated channel with every server. Also, the servers have point-to-point, private authenticated

channels with all other servers and a broadcast channel.

Input Sharing. [U → S] The input sharing proceeds as follows.
(1) Each client U𝑖 acts as a dealer and invokes an instance of the VRS functionality FVRS with input 𝑥𝑖 ∈ F. This calls for the client U𝑖 to send

the tuple (Input, sid,U𝑖 , 𝑥𝑖 , 𝑟vrs,𝑖 ) to FVRS where 𝑟vrs,𝑖 is the randomness sampled by the U𝑖 .

(2) Each server S𝑗 participates in FVRS as a verifier and receives the tuple

(
Output, sid, S𝑗 , Share(𝑖 )𝑗 , happy(𝑖 )

𝑗

)
for all 𝑗 ∈ [ns ]. As per the

properties of the FVRS, all servers output the same happy bit i.e., happy(𝑖 )
𝑗

= happy(𝑖 )
𝑗 ′ for 𝑗, 𝑗 ′ ∈ [ns ]. So, we drop the subscript 𝑗 while

referring to the happy bit.

Output Reconstruction. [S → O]
(1) At the end of all the invocations to FVRS, the servers define a set Valid to comprise of all clients U𝑖 such that happy(𝑖 ) = accept.
(2) Each server S𝑗 sums the shares it received from all clients in the set Valid i.e., osh𝑗 =

∑
U𝑖 ∈Valid Share

(𝑖 )
𝑗

and sends its output share osh𝑗 to

the output party.

(3) The output party collects shares of the output osh𝑗 from each server S𝑗 ∈ S. If no share is received from the server S𝑗 , then the output party

sets osh𝑗 := ⊥. Finally, the output party error-corrects the vector (osh1, . . . , osh𝑛𝑠 ) to reconstruct Y and sets Y as the output.

Figure 4: An Input-Certified Secure Aggregation Protocol from VRS

Clients

HTTPS

HTTPS2

3

4
HTTPS

1

Bootstrapping
Service

(external to SCIF)

SCIF Servers

Output Party

Figure 5: High-level architecture of SCIF. After bootstrapping
(❶), clients send secret shares and proofs to each server (❷).
Servers then construct their outputs (❸) and communicate
their outputs to the output party (❹).

with any backend supported by GORM [29]; we use MySQL 8.0.36

for servers and the output party. Messages exchanged between par-

ties are transmitted via HTTPS (i.e., TLSv1.3). SCIF supports using

its own PKI, but for simplicity, we use certificates from LetsEncrypt

in our test deployment.

SCIF assumes a bootstrapping phase in which participants (clients,
servers, and the output party) receive the parameters and creden-

tials that are necessary to participate in an experiment (Figure 5,

❶). The use of credentials is explained below. Parameters include a

unique experiment ID (exp); the time by which clients must sub-

mit their inputs’ shares; the times by which servers must submit

their complaints, the masked shares of clients that correspond to

received complaints, and aggregates of clients’ shares; the public

parameters for the Ligero proof system; and the network identifiers

(e.g., hostnames) and public keys of the SCIF servers.

To restrict which clients may participate in a particular exper-

iment, SCIF supports optional client authentication via a mod-

ular authentication API. The API consists of a single function,

⊤/⊥ ← auth(exp, cred), where auth returns true (⊤) iff the cre-

dential cred is valid for an experiment exp. We have implemented a

simple token-based authentication scheme. Adding support for ad-

ditional authentication mechanisms (e.g., a university login) simply

requires overloading the auth function.

Importantly, distributing the parameters and credentials is han-

dled externally to SCIF. This provides maximum flexibility as it

allows distribution to be carried out using mechanisms that best

match the particular deployment (e.g., over-the-air updates for an

experiment involving smartphone users vs. a browser extension

that contains experiment configurations for web users).

After the bootstrapping phase, SCIF performs the operations de-

scribed in Section 4. Clients submit their shares and proofs to each

SCIF server (❷) and optionally include an authentication credential

with their submission. Servers verify the credential (if applicable),

and perform proof verification and complaint generation (if neces-

sary) when shares are received. After the shares are due, the servers

initiate a server processing phase (❸) in which they first broad-

cast their complaints and then perform masked share generation

and broadcasting, followed by share correction
13
, and aggregation.

In the current implementation, we did not implement a protocol

to realize broadcast between the servers but rather accomplished

broadcasting by sending point-to-point messages. After the server

processing phase, the servers send their output (aggregate shares)

to the output party (❹) which then computes the aggregate result.

5.2 Distributed Cloud Deployment
To evaluate its performance under real-world conditions, we de-

ployed SCIF across multiple data centers and geographic locations

using Google Cloud.

13
Servers issue complaints against a client if the proof associated with the client

fails to verify (see Section 4). The share recovery phase, which includesmask generation

and correction, is executed by the servers for clients who have had complaints raised

against them.
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Setup. SCIF servers and the output party used fixed instances

in the us-east1 (South Carolina) and us-west1 (Oregon) regions,

while clients were located on regions selected randomly from those

available in Google Cloud. SCIF uses TLS for secure communication;

we registered domain names for the servers and the output party

and configured our SCIF instances with certificates issued from

LetsEncrypt. Servers and the output party were c2d-standard-32

instances with 32 VCPUs (16 cores) and 128 GB of RAM. Unless

otherwise specified, each client was an e2-standard-8 instance with

8 VCPUs (4 cores) and 32 GB of RAM. All machines ran Ubuntu

22.04 with kernel 6.5.0-1020-gcp.

The values of clients’ inputs were generated uniformly at random.

The input validity predicate used in evaluation ensures that each

input elements is a bit (i.e., 0 or 1). The implementation can be

extended to arbitrary predicates represented as a circuit such as

range checks or bounded norms. SCIF’s performance and operation

do not depend on the particular inputs chosen by clients. (We do

explore how the size of clients’ inputs affects SCIF’s performance.)

SCIF utilizes deadlines (i.e., for clients’ input shares submissions,

servers’ complaints, and masked shares and aggregate shares sub-

missions) to achieve synchronization among all parties. Through

extensive experiments, we found optimal deadlines that minimize

the waiting time at each phase. When measuring the execution time

of the system, we subtract the waiting time from our results. Our

results thus are informative of how quickly experiments could be

carried out (under our experimental setup). We emphasize that SCIF

supports parallel experiments, and thus the cost of idling could be

amortized away if several measurements are conducted in parallel.

The current system did not implement offline phase sowe assume

the pairwise PRF keys were already available for the system to

use. This is a one-time setup cost that can be used across multiple

experiments and therefore will not affect our benchmarks.

The performance of SCIF depends on the client’s input length,

number of servers, and public parameters for the Ligero proof

system. The default values of these parameters, as used in our

experiments, are listed in Appendix E.

Proof generation and verification. The operations for generating
and verifying proofs occur at the client and the servers respectively.

Figure 6 shows the median time required to generate (top) and
verify (bottom) a proof for varying client input sizes. Error bars

represent the range of values across five executions. (Many error

bars are not visible due to their low magnitude.)

We find that the generation and verification times are modest

and our measurements confirm that they grow sublinearly with

respect to input length (note that the x-axis in Figure 6 is in log-

scale). Generating and verifying a client’s input of 10,000 values

requires less than two seconds in total. Even with very large inputs

consisting of 10
6
values, the median time for the client to generate

the proof is 65 seconds. Verification time, at the server, for the proof

over 10
6
values is only 13 seconds. In Appendix F, we show similar

results using 10 clients and 7 servers.

Performance in the presence of malicious behavior.We test

our system’s performance in the presence of a malicious adversary

as follows. We simulate malicious clients that send a malformed

message, such as an input share or proof, to the server. Since our

system’s performance depends on the number of the clients for

which the share recovery mechanism is triggered, we study the

performance of our system by varying the percentage of clients

involved and we trigger the share recovery by having malicious

clients send malformed proofs to a server. We simulate various

malicious server behaviors, such as dropout, sending malformed

shares, failing to complain, and complaining unnecessarily. While

we simulated these scenarios, we did not report them since they did

not add overhead beyond what malicious clients caused, though

they demonstrate our system can handle them.

To evaluate SCIF’s performance when a fraction of the clients

behave maliciously and transmit malformed proofs to one of the

servers, our experiments use four servers and 500 clients, the latter

of which were distributed across six machines. Each of the client

machines was provisioned with 16 cores and 128 GB of RAM.

SCIF’s performance when 50 (10%) of the clients are malicious is

presented in Figure 7 (top). The Figure shows the constituent costs
of SCIF’s operations; the overall cost is shown as “total”. When

each client’s input vector has 10
5
values, the total execution time

for a server is 442.38 seconds, which involves verifying 500 proofs

in parallel, generating 500 complaints, executing share recovery

for 50 malicious clients’ shares, aggregating all valid shares, and

then sending the aggregated shares to the output party, as well as

any time due to network communication. The offline phase
14
is not

factored into the server costs as this is a one-time expense and can

be reused across multiple experiments.

We also explored how the system scales with various percentages

of malicious clients. As the percentage of malicious clients increases

from 10 to 40%, the total execution time grows linearly, as is shown

in Figure 7 (bottom). Even when 40% of the clients provide malicious

inputs, the total execution time is less than 1.5 minutes.

Communication cost. A practical secure aggregation system

should not impose excessively high communication costs. To un-

derstand SCIF’s communication overhead, we examine the total

communication cost produced by our system for each party, as

measured by (pcap) packet traces we record on each node. Our

experimental setup consisted of four servers, one output party, and

500 clients; 50 (10%) of the clients were configured to be malicious.

The results are shown in Figure 8. For client input vectors of 10
5

values, the total communication cost for a client is 4.95 MB (Figure 8,

top), which includes transmitting the shares and proof. This cost

accounts for communication with all 4 servers. The total commu-

nication cost for a server is 181.62 MB (Figure 8, bottom), which

consists of sending complaints for 500 clients to each of the three

other servers, masked shares for 50 malicious clients to each of the

other servers, and aggregates of 500 clients’ shares to the output

party. In summary, we consider the communication costs to be

minimal for clients and modest for servers.

Comparison with Prio. Previous multi-server protocols such as

Prio [20] and Elsa [38] validate inputs in the presence of semi-honest

servers. We compare SCIF to Prio, as both implementations support

verifying whether inputs are 0 or 1, but not to Elsa, which does not

support such input validation. We use the Prio [18] prototype in

14
Recall that during the offline phase, each server verifiably secret shares the

PRF keys as per the replicated secret-sharing scheme. These keys are later used to

locally generate a secret sharing of the masks when required for the share recovery

mechanism.
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Figure 6: The time required for a client
to generate a proof (top) and for a server
to verify a client’s proof (bottom) for var-
ious sized client inputs (in log-scale).

Figure 7: Top: Execution time (log-scale)
with 500 clients and varying client input
lengths, when 50 clients (10%) submit in-
valid proofs. Bottom: Execution time for
various percentages of malicious clients,
and a client input length of 104.

Figure 8: Top: Client communication cost
as the input length varies (log-scale). Bot-
tom: Server communication cost for 500
clients with varied input lengths (log-
scale). Fifty (10%) of the clients are mali-
cious.

Client Server

Runtime Comm. Runtime Comm.

Prio [20] 3.64s 1.9MB 14s 0.45MB

SCIF 1.16s 1.32MB 38.52s (55.88s) 0.2MB (17.95MB)

Table 1: Comparison of Prio with SCIF. Result for Prio shows
semi-honest performance with input validation, while the
result for SCIF is malicious performance with input valida-
tion. For both systems, we set ns = 4, nc = 500 and d = 10

4. For
SCIF, values within the parentheses are reflective of when 50
clients (10%) submit invalid inputs; otherwise, it shows when
all clients submit valid inputs.

Go from the Prio authors and configure it to evaluate runtime and

communication cost of the clients and servers.

Table 1 shows the results of our comparison. The client runtime

in SCIF is about 3× faster than Prio, and each client sends slightly

less data to the servers in SCIF compared to Prio. However, SCIF’s

server runtime is slower due to additional procedures for input vali-

dation in the presence of malicious servers, while Prio only handles

semi-honest servers. Since Prio’s implementation does not simulate

malicious client behavior, we compare server communication cost

assuming all clients behave honestly. In this scenario, the data sent

by each server in Prio is about 2× more than SCIF. In SCIF, the

server communication cost increases with the number of clients for

which share recovery is triggered, during which all servers need

to broadcast the masked shares associated with a specific client.

Assuming semi-honest corruptions of the servers, then the server

communication cost increases with the number of malicious clients.

5.3 Simulation Study: Safely Measuring Tor
As a case study, we use SCIF to measure the performance of nodes

in a simulated Tor network [22]. Tor enables anonymous communi-

cation by forwarding its users’ traffic through a series of routers (or

in Tor parlance, relays). The use of encrypted message headers pre-

vents relays and network eavesdroppers from learning the network

locations (i.e., IP addresses) of the communicants.

We chose Tor as an illustrative use-case because its adversarial

model assumes both malicious users and relays [42]. Tor’s Directory

Authorities are not assumed to be honest and Tor uses a consensus

protocol to handle potential misbehavior. Adding measurement

capabilities to Tor requires robust security protections and the

avoidance of trusted parties. SCIF fits this by tolerating misbehavior

from users, as well as from relays or Directory Authorities acting

as the parties to conduct the measurements, while ensuring output

delivery despite such misbehavior.
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We perform measurements on a private Tor network which we

deploy in Shadow [26, 27], a high-fidelity discrete-event simulator.

Shadow allows us to operate SCIF on all Tor clients and relays,

which would not be possible on the live Tor network without buy-

in from both its maintainers and its users. Notably, Shadow runs

unmodified binaries, including Tor and SCIF, on a virtualized net-

working layer without requiring any modifications to either.

As a proof of concept, we instantiated a Tor network in Shadow

that consists of 100 Tor relays, 25 of which are exit relays that route
Tor’s egress traffic to the final destination. Each exit relay also

operated a SCIF client. We additionally introduced six SCIF servers

and one SCIF output party into the network. As a workload for

our two hour experiment, we used the tgen [26] traffic generator

to cause Tor clients to periodically fetch web pages through the

anonymity network.

Integrating Tor and SCIF took minimal effort. We wrote a short

(∼80 lines) Python script that executed on each Tor instance. The

script listens to Tor’s control port for system events and maintains

the desired statistic (explained below). To facilitate SCIF measure-

ments, the script constructs a binary vector where each element

in the vector corresponds to bin in a histogram. This mirrors the

approach of prior work on privacy-preserving measurements for

Tor [33]. The script communicates this vector to the SCIF client

that is running on the same node, which in turn participates in the

distributed SCIF protocol with the SCIF servers.

The aggregate statistics, as computed by the SCIF output party,

are shown in Figure 9. (We manually verified the results are con-

sistent with the individual measurements from the relays.) We

consider two statistics that are of interest to the Tor community:

the rate of TCP connections established by exit relays (i.e., the rate

of TCP flows anonymized through Tor) and the observed rate of

Tor egress traffic. These are respectively depicted in the left- and

right-hand sides of Figure 9. The empirically measured distribution

of connections and throughput generally follow the bandwidth

capacities of the exit relays; this is unsurprising since Tor employs

a bandwidth-weighted relay selection strategy [22].

Our case study highlights one potential path for instrumenting

other applications to use SCIF. Network simulators, such as Shadow,

that execute unmodified code provide a proving ground for “glue-

ing” applications together with SCIF. In the case of Tor, this took

minimal effort and less than 100 lines of code. Our future work

entails real-world experimentation with SCIF-equipped Tor—work

that we believe will be critical for improving our understanding of

how privacy-sensitive systems are used in practice.

6 Discussion and Future Work
In this work, we presented a practical secure aggregation protocol

with input validation that ensures output delivery and input inclu-

sion in the presence of malicious servers and malicious clients. Our

end-to-end system implementation is lightweight, and the evalua-

tion in a real-world setting demonstrates client overhead remains

minimal, a critical factor for practical applications. Although the

overhead of servers rises to ensure full security, it remains moderate

and manageable in practice. Here are a few directions for improving

and extending our work in the future.

Figure 9: Histogramof the number of connections perminute
observed by Tor exit relays (left) and the observed throughput
of the exit relays (right).

Improving implementation scalability. Our current implemen-

tation is not memory-optimized and stores all shares and proofs in

memory, which imposes a limitation on the server’s computational

resource, resulting in reduced efficiency. One possible solution is us-

ing in-memory (but disk-backed) solutions (e.g.,via Redis) to enable

larger testing setups, and better memory management to reduce

the state that must be maintained. The other solution is to leverage

improved Ligero ZK system such as Ligetron [43], which scales to

billions of gates and run efficiently even inside of a browser.

Deployment for real-world applications. While privacy pre-

serving statistics collection have many uses, we focus on two for

SCIF. Embedded as a browser extension, SCIF could facilitate studies

that examine online ad networks, the selection of content on users’

social networking feeds, or users’ web browsing behavior. And, as

explored above, SCIF is a natural fit for performing measurements

of anonymous networks and/or censorship-resistant technologies.

Our future work will explore these and other use cases.
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A Ideal Functionalities for dCP and VRS
We present the ideal functionality of dCP in Figure 10 and VRS in

Figure 11, as described in [6].

B Ligero Proof System Overview and
Instantiations

B.1 Ligero Proof System Overview
In this appendix, we give a self-contained description of the Ligero

system [2]. This description is reused from FLAG [7]. For ease

of exposition, we will describe it in the Interactive Oracle Proofs

(IOP) model [10]. First, we recall some basic notation definitions

of the codes used in the Ligero system. Coding notation. For a

code 𝐶 ⊆ Σ𝑛 and vector 𝑣 ∈ Σ𝑛 , denote by 𝑑 (𝑣,𝐶) the minimal

distance of 𝑣 from 𝐶 , namely the number of positions in which

𝑣 differs from the closest codeword in 𝐶 , and by Δ(𝑣,𝐶) the set

of positions in which 𝑣 differs from such a closest codeword (in

case of ties, take the lexicographically first closest codeword), and

by Δ(𝑉 ,𝐶) = ⋃
𝑣∈𝑉 {Δ(𝑣,𝐶)}. We further denote by 𝑑 (𝑉 ,𝐶) the

minimal distance between a vector set 𝑉 and a code 𝐶 , namely

𝑑 (𝑉 ,𝐶) =min𝑣∈𝑉 {𝑑 (𝑣,𝐶)}. Our IOP protocol uses Reed-Solomon

(RS) codes, defined next.

Definition B.1 (Reed-Solomon Code). For positive integers 𝑛, 𝑘 ,
finite field F, and a vector 𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ F𝑛 of distinct field ele-

ments, the code RSF,𝑛,𝑘,𝜂 is the [𝑛, 𝑘, 𝑛−𝑘+1] linear code over F that

consists of all 𝑛-tuples (𝑝 (𝜂1), . . . , 𝑝 (𝜂𝑛)) where 𝑝 is a polynomial

of degree < 𝑘 over F.

Definition B.2 (Encoded message). Let 𝐿 = RSF,𝑛,𝑘,𝜂 be an RS

code and 𝜁 = (𝜁1, . . . , 𝜁ℓ ) be a sequence of distinct elements of F
for ℓ ≤ 𝑘 . For 𝑢 ∈ 𝐿 we define the message Decode𝐿,𝜁 (𝑢) to be

(𝑝𝑢 (𝜁1), . . . , 𝑝𝑢 (𝜁ℓ )), where 𝑝𝑢 is the polynomial (of degree < 𝑘)

corresponding to 𝑢. For 𝑈 ∈ 𝐿𝑚 with rows 𝑢1, . . . , 𝑢𝑚 ∈ 𝐿, we let
Decode𝐿𝑚 ,𝜁 (𝑈 ) be the length-𝑚ℓ vector 𝑥 = (𝑥11, . . . , 𝑥1ℓ , . . . , 𝑥𝑚1,

. . . , 𝑥𝑚ℓ ) such that (𝑥𝑖1, . . . , 𝑥𝑖ℓ ) = Decode𝐿,𝜁 (𝑢𝑖 ) for 𝑖 ∈ [𝑚]. Fi-
nally, when 𝜁 is clear from the context, we say that𝑈 encodes 𝑥 if

𝑥 = Decode𝐿𝑚𝜁 (𝑈 ). All our codes will employ the same F, 𝑛, 𝜂 and

we will simply refer the code by RS𝑘 .

At a very high level, the Ligero IOP protocol proves the satisfia-

bility of an arithmetic circuit C of size 𝑠 in the following way. The

prover arranges (a slightly redundant representation of) the 𝑠 wire

values of C on a satisfying assignment in a matrix, and encodes

each row of this matrix using the Reed-Solomon code. The verifier

challenges the prover to reveal linear combinations of the entries

of the codeword matrix and checks their consistency with 𝑛open
randomly selected columns of this matrix.

For convenience, we provide a list of our parameters in Table 2.

Table 2: Description of our parameters.

Parameter Description

wext Extended witness

𝑈 Encoded extended witness

𝑚 # of rows in the extended witness

ℓ # of columns in the extended witness

𝑠 Circuit size

𝑛 Codeword length

𝑛open # of queries on𝑈

𝜅 Security parameter

Formal description of the Ligero IOP(C, F). This section pro-

vides a self-contained description of the Ligero IOP for an arithmetic

circuit over a (sufficiently large) field F. We remark that the exposi-

tion here is a variant of the system described in [2] that is optimized

for a proof length and prover’s computation.

• Input: The prover P and the verifier V share a common

input arithmetic circuit C : F𝑁 → F and input statement

𝑥 . P additionally has input w = (w1, . . . ,w𝑁 ) such that

C(w) = 1. P and V agree on an encoding RSF,𝑛,𝑘,𝜂 and 𝜁 .

In fact, we will assume there are public algorithms that can

generate 𝜁 and 𝜂 given F, 𝑛 and 𝑘 .

• Oracle: Let𝑚, ℓ be integers such that𝑚 · ℓ > 𝑁 +𝑠 where 𝑠 is
the number of multiplication gates in the circuit. For simplic-

ity, we will assume 𝑁 and 𝑠 are multiples of ℓ . Then P gen-

erates an extended witness wext ∈ F𝑚ℓ
to be w concatenated

with the internal wire values, namely w1, . . . ,w𝑁 , 𝛼1, . . . , 𝛼𝑠 ,

𝛽1, . . . , 𝛽𝑠 , 𝛾1, . . . , 𝛾𝑠 where (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ) are the left input, right
input and output values of the 𝑖𝑡ℎ multiplication gate when

evaluating C(w). All affine constraints on the wire values

can be encoded via (𝐴,𝑏) where 𝐴 ∈ F𝑚ℓ×𝑚ℓ , 𝑏 ∈ F𝑚ℓ
such

that for any w that satisfies C, we have 𝐴 · w = 𝑏.

The prover samples a random codeword𝑈 ∈ 𝐿𝑚 where 𝐿 =

RS𝑘 subject to w = Decode𝐿𝑚 ,𝜁 (𝑈 ) where 𝜁 = (𝜁1, . . . , 𝜁ℓ )
is a sequence of distinct elements disjoint from (𝜂1, . . . , 𝜂𝑛).
P sets the oracle as𝑈 ∈ 𝐿𝑚 . Depending on the context, we

may view 𝑈 either as a matrix in F𝑚×𝑛 in which each row

𝑈𝑖 is a purported 𝐿-codeword, or as a sequence of 𝑛 symbols

(𝑈 [1], . . . ,𝑈 [𝑛]),𝑈 [ 𝑗] ∈ F𝑚 .

• Interactive Protocol:

(1) V picks randomness:
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Functionality FdCP
FdCP runs among the Prover P and 𝑛 Verifiers V = {V1, . . . ,V𝑛 } and an adversary Sim. It is parameterized by 𝑛 relations (R1, . . . , R𝑛 ) . FdCP
proceeds as follows.

Commit Phase. Upon receiving a message (Commit, sid, P,w) from the prover P, record the valuesw and P, and send the message (receipt, sid, P)
to the verifiers in V and Sim. (If a commit message has already been received, then ignore any other messages with the same sid.)

Prove Phase. Upon receiving a message (Prove, sid, P,V𝑗 , sh𝑗 ) from the prover P, then proceed as follows:

• If (sh𝑗 ,w) ∈ R 𝑗 , send the message (Proof, sid, P,V𝑗 , sh𝑗 , accept) to the verifier V𝑗 and Sim. V𝑗 outputs (accept, sh𝑗 ) .
• Otherwise, send (Proof, sid, P,V𝑗 ,⊥, reject) to the verifier V𝑗 and Sim. V𝑗 outputs reject.

Figure 10: Ideal Functionality for Distributed Commit-and-Prove

Functionality FVRS
The functionality FVRS communicates with a dealer D, a set of 𝑛 verifiers V = {V1, . . . ,V𝑛 }, and an adversary A. It is parameterized by a verifier

corruption-threshold 𝑡 , 𝑑 is the length of input vector, and predicate 𝑃 : F𝑑 → {0, 1}.
Inputs. The Dealer D has input 𝑥 ∈ F𝑑 and randomness 𝑟vrs. The verifiers V do not have any inputs. The dealer sends the message

(Input, sid,D, 𝑥, 𝑟vrs ) to FVRS.
Output. Upon receiving the input from D, FVRS proceeds as follows.

• Compute the shares (Share1, . . . , Share𝑛 ) ← Enc(𝑥 ; 𝑟vrs )
• If 𝑃 (𝑥 ) = 1 holds, then send (Output, sid,D,V𝑗 , Share𝑗 , accept) to each verifier V𝑗 , who then outputs (accept, Share𝑗 ) , for all 𝑖 ∈ [𝑛].
• Otherwise, send (Output, sid,D,V𝑗 ,⊥, reject) to all the verifiers and the verifiers output (reject, ⊥) .

Figure 11: Ideal FVRS Functionality for Reed Solomon encoding

(a) [Code test:] 𝑟1 ∈ F𝑚 ,
(b) [Linear test:] 𝑟2 ∈ F𝑚ℓ

,

(c) [Quadratic test:] 𝑟3 ∈ F𝑠/ℓ .
and sends (𝑟1, 𝑟2, 𝑟3) to P.

(2) P responds with (𝑞code, 𝑞lin, 𝑞quad) where:
(a) [Code test:] 𝑞code ∈ F𝑛 is computed as

𝑞code = 𝑟
𝑇
1
·𝑈 , (1)

(b) [Linear test:] 𝑞lin ∈ F𝑛 is computed as

𝑞lin [ 𝑗] = (𝑅2 [ 𝑗])𝑇 ·𝑈 [ 𝑗] (2)

for 𝑗 ∈ [𝑛] where 𝑅2 is the unique matrix such that

Decode𝐿𝑚
1
,𝜁 (𝑅2) = 𝑟𝑇2 · 𝐴 (3)

where 𝐿1 = RSℓ .

(c) [Quadratic test:] 𝑞quad ∈ F𝑛 is computed as

𝑞quad =

𝑠/ℓ∑︁
𝑖=1

(𝑟3)𝑖 · (𝑈left𝑖 ⊙ 𝑈right𝑖 −𝑈out𝑖 ) (4)

Recall that Decode𝐿𝑚 ,𝜁 (𝑈 ) = (w1, . . . ,w𝑁 , 𝛼1, . . . , 𝛼𝑠 ,

𝛽1, . . . , 𝛽𝑠 , 𝛾1, . . . , 𝛾𝑠 ). Setting (left𝑖 , right𝑖 , out𝑖 ) = ( 𝑁ℓ +
𝑖, 𝑁+𝑠

ℓ
+ 𝑖, 𝑁+2·𝑠

ℓ
+ 𝑖) we have

Decode𝐿,𝜁 (𝑈left𝑖 ) = (𝛼ℓ · (𝑖−1)+1, . . . , 𝛼ℓ ·𝑖 )
Decode𝐿,𝜁 (𝑈right𝑖 ) = (𝛽ℓ · (𝑖−1)+1, . . . , 𝛽ℓ ·𝑖 )
Decode𝐿,𝜁 (𝑈out𝑖 ) = (𝛾ℓ · (𝑖−1)+1, . . . , 𝛾ℓ ·𝑖 )

(3) V queries a set 𝑄 ⊂ [𝑛] of 𝑛open random symbols 𝑈 [ 𝑗],
𝑗 ∈ 𝑄 and accepts iff the following conditions hold:

(a) Code test: 𝑞code is a valid codeword, i.e. 𝑞code ∈ 𝐿 and

for every 𝑗 ∈ 𝑄 , 𝑞code [ 𝑗] =
∑𝑚

𝑖=1 (𝑟1)𝑖 ·𝑈𝑖 [ 𝑗].

(b) Linear test: Let 𝑣 = Decode𝐿2,𝜁 (𝑞lin) where 𝐿2 = RS𝑘+ℓ .
Then the verifier checks if the values in 𝑣 add up to

𝑟𝑇
2
· 𝑏, i.e. ∑ℓ

𝑖=1 𝑣𝑖 = 𝑟
𝑇
2
· 𝑏 and for every 𝑗 ∈ 𝑄 , 𝑞lin [ 𝑗] =

(𝑅2 [ 𝑗])𝑇 · 𝑈 [ 𝑗] where 𝑅2 is as defined above (noting

here that the verifier can locally compute 𝑅2).

(c) Quadratic test: Let 𝑣 ′ = Decode𝐿3,𝜁 (𝑞quad) where 𝐿3 =
RS2·𝑘 . The verifier checks that every entry of 𝑣 ′ is 0 and
it holds that 𝑞quad [ 𝑗] =

∑𝑚
𝑖=1 (𝑟3)𝑖 · (𝑈left𝑖 [ 𝑗] ·𝑈right𝑖 [ 𝑗] −

𝑈out𝑖 [ 𝑗]).
The soundness analysis has been argued in [3] and is formally

stated in the following lemma,

Lemma B.3. Let 𝑒 be a positive integer such that 𝑒 < 𝑑/3 and
suppose that there exists no 𝛼 such that C(𝛼) = 1. Then, for any
maliciously formed oracle𝑈 ∗ and any malicious prover strategy, the
verifier rejects except with at most (𝑑/|F|)𝜎 +2/|F|𝜎 ′+(1−𝑒/𝑛)𝑛open+
2((𝑒+2𝑘)/𝑛)𝑛open probability where 𝜎 is the number of times the code
test is repeated and 𝜎 ′ is the number of times the linear and quadratic
tests are repeated.

Achieving Zero-knowledge. Note first that the verifier obtains
two types of information in two different building blocks of the IPCP.

First, it obtains linear combinations of codewords in a linear code 𝐿.

Second, it probes a small number of symbols from each codeword.

Since codewords are used to encode the NP witness, both types

of information give the verifier partial information about the NP

witness, and thus the basic IOP we described is not zero-knowledge.

Fortunately, ensuring zero-knowledge only requires introducing

small modifications to the construction and analysis. Specifically,

the second type of “local” information about the codewords is made

harmless by making the encoding randomized, so that probing just

a few symbols in each codeword reveals no information about the
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encoded message. The high level idea for making the first type

of information harmless is to use an additional random codeword

for blinding the linear combination of codewords revealed to the

verifier. However, this needs to be done in a way that does not

compromise soundness.

Compiling the Ligero IOP to a SNARK. Compiling the IOP to a

SNARK follows a standard compilation [10, 31] using commitments

and Fiat-Shamir heuristic. In slightly more detail, generating a com-

mitment to the proof oracle proceeds as follows: (1) Compute the𝑈

matrix that is an encoding of wext and (2) Compute a commitment

to𝑈 [ 𝑗] for all 𝑗 ∈ [𝑛]15. The prover can commit and reveal specific

locations of the proof oracle and the random oracle instantiated via

a hash function to generate the verifier’s random challenges and

queries to the oracle and complete the execution (computing its

own messages) based on the emulated verifier’s messages. Namely,

relying on Merkle-tree commitment for the proof oracle, including

a challenge-response round at the end to reveal𝑈 [ 𝑗] ( 𝑗 ∈ 𝑄) using
Merkle decommitments and Fiat-Shamir to generate the verifier’s

challenges in Round 1 and generate the set 𝑄 at the end.

B.2 Instantiating ZKP for Distributed Relation
We instantiate the zero-knowledge proof (ZKP) for distributed rela-

tions using the Ligero proof system. Below, we describe the setup,

proof generation, and verification procedures.

• Setup: The public parameters pp comprise the hash func-

tion and error-correcting codes used in proof generation,

following the Ligero framework.

• Proof Generation: The proof consists of three components:

(1) com: Commitment to the proof oracle.

(2) 𝜋1: Common proof shared among all verifiers.

(3) (𝜋1

2
, . . . , 𝜋𝑛

2
): Verifier-specific proof whre 𝜋 𝑗

2
is sent to ver-

ifierV𝑗

We now describe the algorithms (Prove0, Prove1) that gen-
erate the above mentioned three components.

– Prove0 generates the commitment to the proof oracle by

using a standard transformation of an IOP to SNARKs

(briefly described in Appendix B.1). An overview is pro-

vided below:

∗ Compute the extended witness wext.

∗ Encode wext row-wise using Reed-Solomon coding.

∗ Commit to the encoded witness wext column-wise us-

ing a Merkle-tree-based hash. Each column forms a leaf

node, and the root com serves as the proof oracle com-

mitment.

Note that Prove0 also outputs state information st for use
by Prove1 which includes the randomness used to generate

the Merkle-tree based commitment.

– Prove1 generates the common portion 𝜋1. This portion is

shared by all verifiers and ensures that the input 𝑥 satisfies

the predicate 𝑃 and the standard Ligero proof system can

be used as is to prove this. As per the Ligero specification,

𝜋1 comprises of:

∗ Standard Ligero checks for the circuit C: code, linear,
quadratic, and linear-share tests.

15
In Ligero, the 𝑛 commitments are further used to build a Merkle tree and the

root of the Merkle tree is used as the commitment of the proof oracle.

∗ Column consistency check and authentication paths for

opening committed columns.

– Prove1 also generates the Verifier-specific portion

((𝜋1

2
, . . . , 𝜋𝑛

2
)) of the proof. Individual proofs 𝜋 𝑗

2
are sent

to each verifierV𝑗 and ensure share consistency between

sh𝑗 (received by verifier V𝑗 ) and the computed output

out𝑗 = [𝐶 (w)] 𝑗 , which is included in the extended wit-

ness. Broadly, 𝜋
𝑗

2
is generated using the following steps

(and deviates slightly from Ligero):

∗ Conduct an additional linear test to verify that sh𝑗 =

out𝑗 , where sh𝑗 is the received share and out𝑗 is the
circuit output.

∗ Construct a second Merkle tree with leaves correspond-

ing to the outputs of the additional linear test (aug-

mented with a nonce for privacy), generating a new

root com′.
∗ Provide authentication paths from the new root com′ to
each verifier, ensuring the integrity of their respective

proof components.

• Verification: Each verifierV𝑗 runs:

Verify(pp, sh𝑗 , com, 𝜋1, 𝜋
𝑗

2
) → {0, 1}

Verification follows Ligero to verify both the common and

verifier-specific portions of the proof. All the tests (including

the additional linear check in 𝜋
𝑗

2
) is verified by following the

Ligero verification procedure. Additionally, the authentica-

tion paths provided for the additional linear test with respect

to commitment com′ is also verifier.

C Proof of Theorem 4.3
Let A represent a malicious probabilistic polynomial-time adver-

sary in the real model. We describe an ideal model adversary S𝑖𝑚
which simulates the real execution of the protocols ΠdCP with A
such that no environmentZ can distinguish ΠdCP withA from the

ideal model withS𝑖𝑚 and FdCP.S𝑖𝑚 invokes a copy ofA internally

and then simulates the interaction betweenA and 𝑍 . We provide a

detailed description of S𝑖𝑚 below, covering both the honest prover

and corrupted prover scenarios. Let C denote the set of verifiers

corrupted by A.

C.1 Case I: Prover is Honest

Simulating the communication withZ:WhenZ writes a value

on S𝑖𝑚’s input tape, S𝑖𝑚 writes this value on A’s input tape. The

values on A’s output tape are copied to S𝑖𝑚’s output tape.

Finally, Sim sends c̃om16
to the verifiers on behalf of the honest

prover P.

Simulating the Prove Phase:Whenever an honest P sends the

(Prove, sid,P,V𝑗 , sh𝑗 ) message to FdCP, Sim receives the message

(Proof, sid,P,V𝑗 , sh𝑗 , accept) from FdCP on behalf ofV𝑗 ∈ C. For
each V𝑗 ∈ C, then Sim internally sends the message (sh𝑗 , 𝜋 𝑗 ) to
A on behalf of P, where 𝜋 𝑗 is the simulated proof associated with

verifierV𝑗 ∈ C. Since the dCP is built upon the Ligero proof system,

16
The tilde notation indicates the simulated versions of the variable.
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we first outline how to adapt the Ligero simulator to ensure zero-

knowledge in our setting. Here, the simulator must generate proofs

for each corrupt verifier.

Recall that our approach deviates from the standard Ligero proof

system in two key ways. First, the prover sends a distinct proof to

each verifier, differing only in the output of an additional linear test

that we introduce. The common portion of the proof, shared across

all verifiers, is simulated as in Ligero and remains unchanged for

all verifiers. Before simulating the additional linear test, we first

generate simulated shares for the malicious verifiers, denoted as

{s̃h𝑖 }𝑖∈C . These shares are chosen randomly in a way that ensures

consistency under the sharing scheme (RSS, in our case) but remains

independent of the actual input. The additional linear test for each

corrupt verifier is then simulated similarly to Ligero’s linear test,

ensuring consistency with the newly generated shares.

Second, the outputs of these additional linear tests are committed

using a Merkle tree. Specifically, the Merkle root, the linear test

outputs, and their corresponding authentication paths are revealed

to their respective verifiers. To simulate the Merkle root, denoted as

c̃om′, we proceed as follows: the leaf nodes corresponding to mali-

cious verifiers are computed correctly with respect to the simulated

shares and their associated linear test outputs, with nonces added.

Meanwhile, the leaf nodes corresponding to honest verifiers are

chosen randomly. The authentication paths are then derived from

this constructed Merkle tree. Importantly, the adversary only learns

the authentication paths associated with the malicious verifiers.

We now describe the simulation of different components of the

Ligero proof system, including the outputs of the correctness tests

and the columns revealed during the column check.

• Simulating the correctness tests: We simulate the outputs of

the following three correctness tests as follows:

– Code test: The encoding at the end of the degree test

is simulated so that it is independent of the P’s inputs
while being consistent with the view of the adversary

up to this point as well as the columns revealed during

the proof. More specifically, S𝑖𝑚 chooses the encoding

at the end of the degree test to be a random 𝐿-encoding�𝑞code = (𝑞1code, . . . , 𝑞𝑛code) under the constraint that 𝑞𝑖code =
𝑟𝑇𝑈 [𝑖] + 𝛽code [𝑖] for each 𝑖 ∈ C ∪𝑄 where 𝑄 is the set of

revealed columns and 𝛽code is the blinding factor added to

the output of the code test.

– Linear test: This is similar to the previous test where the

encoding at the end of the linear test is made indepen-

dent of the protocol execution such that it is consistent

with the view of the adversary as well as the columns re-

vealed during the proof. The output of the linear tests

𝑞lin = (𝑞1lin, . . . , 𝑞
𝑛
lin) under the constraint that 𝑞𝑖lin for

𝑖 ∈ C𝑠 ∪ 𝑄 is consistent with the adversary’s view i.e.,

𝑞𝑖lin = (𝑟1 (𝜁𝑠 ), ..., 𝑟𝑏 (𝜁𝑠 ))𝑇Clinear [𝑖] + 𝛽lin [𝑖] for each 𝑖 ∈
C𝑠 ∪𝑄 and the 𝑞lin is an 𝐿-encoding of a block of random

values that sum up to 0. Here, 𝛽lin is the blinding factor

added to the output of the linear test.

– Quadratic test: This test is also similar to the previous test

where the encoding at the end of the quadratic test �𝑞quad
is chosen to be a random 𝐿′-encoding of a block of 2𝑙 zeros
such that it is consistent with the view of the adversary

up to this point as well as the columns revealed during

the proof.

• Simulating the revealed columns and column hashes: S𝑖𝑚
randomly samples the set 𝑄 ⊆ [𝑛] of size 𝑡 ′ to represent

the revealed columns. The simulator randomly samples ele-

ments and reveals them as columns of the encoded extended

witness, i.e., {𝑈 [𝑖]}𝑖∈C∪𝑄 , which are sent to the adversary

A. Finally, Sim programs the random oracle such that (i) the

challenge set 𝑄 aligns exactly with the revealed columns in

the proof transcript and (ii) the authentication paths used

to verify these columns correctly are consistent with with

commitment c̃om revealed during the commit phase.

Simulating the Commit Phase: When an honest prover P com-

mits to a value w, Sim receives a message (receipt, sid,P). Upon
receiving this message, Sim simulates th commitment c̃om by con-

structing a Merkle tree. The leaf nodes for the revealed columns

were computed from those sampled during the proof simulation,

while the remaining leaf nodes are chosen randomly. The Merkle

root is then computed from these leaves, using a hash function

modeled as a random oracle.

We now prove that the real world view is computationally in-

distinguishable from the ideal world view. At a high-level, when

the prover is honest, the key difference between the ideal and real

executions is that the commitment c̃om and proof {𝜋 𝑗 }V𝑗 ∈C are

both simulated in the former and generated as per the protocol

in the latter. It follows from the zero-knowledge property of the

Ligero proof system that views of the environment in the real and

ideal worlds are indistinguishable. We denote REALΠdCP,A,Z (𝑛) to
be the output of the environmentZ after the real execution of the

protocol ΠdCP with adversary A, with security parameter 𝑛. We

denote IDEALFdCP,Sim,Z (𝑛) to be the output of the environmentZ
after an ideal execution with the simulator Sim (i.e., ideal adversary)

and ideal functionality FdCP, with security parameter 𝑛.

We state correctness of the simulation in the following lemma.

Lemma C.1. The following two distribution ensembles are compu-
tationally indistinguishable,{

REALΠdCP,A,Z (𝑛)
}
𝑛∈N ≈

{
IDEALFdCP,Sim,Z (𝑛)

}
𝑛∈N .

Towards proving this indistinguishability, we consider a se-

quence of intermediate hybrid experiments and apply a standard

hybrid argument. For each hybrid experiment Hybrid 𝐻𝑖 , we de-

fine the random variable hyb𝑖 (𝑛) that denotes the output of the
experiment.

Hybrid 𝐻0: This hybrid is the real world execution of the protocol

ΠdCP. By construction, we have hyb
0
(𝑛) ≡ REALΠdCP,A,Z (𝑛).

Hybrid 𝐻1: This hybrid is similar to the previous hybrid with the

exception that the corrupted verifier shares are generated

independently of the real input. Specifically:

• The shares {s̃h𝑖 }𝑖∈C received by the corrupted verifiers are

chosen randomly in a way that ensures consistency under

the sharing scheme, which is RSS in our dCP construction.

• The shares for honest verifiers are then computed given the

real input and the corrupted verifiers’ shares.

This guarantees that the shares of corrupted verifiers do not

depend on the real input.
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Lemma C.2. {hyb
0
(𝑛)}𝑛∈N and {hyb

1
(𝑛)}𝑛∈N are statistically

indistinguishable in the random oracle model.

Proof. The key observation is that secret sharing ensures

privacy against adversaries controlling up to 𝑡 parties, where

𝑡 is the corruption threshold. This means that the adversary

cannot distinguish whether:

• The real input was secret-shared first, and shares were then

assigned to corrupted verifiers.

• The shares for corrupted verifiers were sampled indepen-

dently, and the shares for honest verifiers were derived

accordingly to be consistent with the real inputs.

Since the privacy threshold of the secret-sharing scheme ex-

ceeds 𝑡 (i.e., the number of corrupted verifiers), the adversary’s

view remains statistically indistinguishable between the two

hybrids.

□

Hybrid 𝐻2: In this hybrid, S𝑖𝑚2 is similar toHybrid 𝐻1 with that

exception the S𝑖𝑚1 simulates the the subset 𝑄 of columns

of 𝑈 that are revealed as part of the proof; this simulation

is done as described in the simulator. Also, the c̃om (and the

authentication paths for the revealed columns) is generated as

described in the simulation of the commit phase.

Lemma C.3. {hyb
1
(𝑛)}𝑛∈N and {hyb

2
(𝑛)}𝑛∈N are statistically

indistinguishable in the random oracle model.

Proof. Note that computing row-wise random encoding of

the extended witness first and then revealing the columns is

equivalent to choosing the columns of𝑈 first and then choos-

ing a polynomial consistent with the extended with witness

and the revealed columns as the degree of the polynomial used

for row-wise encoding deg > 𝑡 + 𝑡 ′ + ℓ where 𝑡 = |C|, 𝑡 ′ = |𝑄 |
and ℓ is the packing factor per row.

Furthermore, the Merkle-based commitment c̃om is computed

using a hash function modeled as a random oracle. The authen-

tication paths are revealed for columns in set 𝑄 are computed

similarly in both the hybrids and hence the adversary’s view re-

mains statistically indistinguishable between the two hybrids

in the random oracle model.

□

Hybrid 𝐻3: In this hybrid, S𝑖𝑚3 simulates the prover similar to

Hybrid 𝐻2 with the exception that S𝑖𝑚3 simulates the encod-

ing 𝑞code at the end of the code test sent to all the verifiers such

that it is independent of the rest of protocol execution while

being consistent with adversary’s view up to this point (as

described in the simulator). More specifically, S𝑖𝑚3 chooses

𝑞code to be a random 𝐿-encoding under the constraint that the

shares corresponding to columns 𝑖 ∈ C ∪ 𝑄 are consistent

with the adversary’s view i.e. 𝑞code = 𝑟
𝑇𝑈 [𝑖] + 𝛽code [𝑖].

Lemma C.4. {hyb
2
(𝑛)}𝑛∈N and {hyb

3
(𝑛)}𝑛∈N are statistically

indistinguishable.

Proof. The only difference between the two hybrids is the

way in which the encoding at the end of the code test on an

honest prover’s input is generated. InHybrid𝐻3, the encoding

𝑞code is generated first as random encoding that is consistent

with the view of the adversary. Then the encoding 𝛽code is

determined using 𝑞code as follows 𝛽code = 𝑞code − 𝑟𝑇𝑈 . This
results in the same view of the adversary as sampling 𝛽code to

be random 𝐿-encoding and then computing 𝑞code as inHybrid
𝐻2. Therefore the two encodings are statistically indistinguish-

able. □

Hybrid 𝐻4: This hybrid is similar to the previous hybrid with the

exception that the outputs of the linear test (both from the com-

mon portion of the proof i.e., 𝜋1 and verifier-specific portions

(𝜋1

2
, . . . , 𝜋𝑛

2
)) are made independent of the rest of protocol exe-

cution while being consistent with adversary’s view up to this

point. Further, the commitment c̃om′ is simulated as described

in the simulation.

Hybrid 𝐻5: This hybrid is similar to the previous hybrid with the

exception that the output of the quadratic test is made indepen-

dent of the rest of protocol execution while being consistent

with adversary’s view up to this point.

Lemma C.5. {hyb
3
(𝑛)}𝑛∈N, {hyb4 (𝑛)}𝑛∈N and {hyb

5
(𝑛)}𝑛∈N

are statistically indistinguishable.

This lemma can be proven using reasoning similar to that of

Lemma C.4.

Hybrid 𝐻6: This hybrid is similar to the previous hybrid with

the exception that the commitment c̃om′ are simulated as

described in the simulation.

Lemma C.6. {hyb
6
(𝑛)}𝑛∈N, {hyb5 (𝑛)}𝑛∈N and {hyb

5
(𝑛)}𝑛∈N

are statistically indistinguishable in the random oracle model.

This follows from the fact that the Merkle-based commitment

c̃om′ is computed using a random oracle with appropriately

randomized leaf nodes (by adding nonces).

Hybrid 𝐻7: This hybrid is similar to the previous hybrid except

that prover’s input is to set to default value that satisfies the

predicate (e.g. a vector of zeros). This hybrid experiment iden-

tical to the S𝑖𝑚 where the environmentZ interacts with S𝑖𝑚
and the functionality FdCP. By construction, we have that

hyb
7
(𝑛) ≡ IDEALFdCP,A,Z (𝑛).

Lemma C.7. {hyb
6
(𝑛)}𝑛∈N and {hyb

7
(𝑛)}𝑛∈N are statistically

indistinguishable.

Proof. During the course of an execution of the protocol, the

adversary corrupting at most 𝑡 verifiers learns at most 𝑡 shares

{s̃h𝑖 }𝑖∈C , the proof 𝜋1 and {𝜋 𝑗

2
} 𝑗∈C , commitments c̃om and

c̃om′, and authentication paths revealed as part of the proof. It

follows from the privacy property of the secret sharing scheme

that the adversary cannot learn any information about the

prover’s input from these 𝑡 shares. The remaining components

also do not reveal any information as they have been simu-

lated independent of the prover’s inputs. Thus, the hybrids

{hyb
6
(𝑛)}𝑛∈N and {hyb

7
(𝑛)}𝑛∈N are indistinguishable. □

C.2 Case II: Prover is Corrupted

Simulating the Commit Phase: Whenever A (controlling P)
wants to commit to a value, Sim obtains the commitment com that

A sent to all verifiers. Since the proof system is non-interactive and

operates in the random oracle model, then Sim can observe all of

the queries that P makes to the random oracle while constructing
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the proof, and uses it to extract the witness w. Then, Sim externally

sends the message (commit, sid,P,w) to FdCP and keeps track of

the value w.

Simulating the Prove Phase: Whenever A wants to prove a

statement to a verifierV𝑗 , Sim receives from A the share sh𝑗 and

the proof (𝜋1, 𝜋 𝑗

2
) on behalf of the honest verifierV𝑗 . Sim verifies

(𝜋1, 𝜋 𝑗

2
) as per the verification steps described in Appendix B and

proceeds as follows:

• If the proof verification fails, Sim aborts.

• If the proof verification passes but R 𝑗 (sh𝑗 ,w) ≠ 1 for any of

the honest verifiersV𝑗 , meaning that the revealed share is

inconsistent with the extracted witness, then Sim aborts.

• If Sim does not abort, it externally sends the message

(Prove, sid,P,V𝑗 , sh𝑗 ) to FdCP on behalf of A for each hon-

est verifierV𝑗 .

Finally, Sim outputs whatever A outputs and halts.

We now prove that the real world view is computationally indis-

tinguishable from the ideal world view.

We state correctness of the simulation in the following lemma.

Lemma C.8. The following two distribution ensembles are compu-
tationally indistinguishable,{

REALΠ𝐴𝑔𝑔,A,Z (𝑛)
}
𝑛∈N ≈

{
IDEALF𝐴𝑔𝑔,Sim,Z (𝑛)

}
𝑛∈N .

Towards proving this indistinguishability, we consider a se-

quence of intermediate hybrid experiments and apply a standard

hybrid argument. For each hybrid experiment Hybrid 𝐻𝑖 , we de-

fine the random variable hyb𝑖 (𝑛) that denotes the output of the
experiment.

Hybrid 𝐻0: This hybrid is the real world execution of the protocol

Π𝐴𝑔𝑔 . By construction, we have that hyb
0
(𝑛) ≡Π𝐴𝑔𝑔,A,Z (𝑛).

Hybrid 𝐻1: In this experiment, a simulator S𝑖𝑚1 is similar to the

previous hybrid Hybrid 𝐻0, except the Sim1 additionally ex-

tracts the input𝑤 as described in the simulation of the commit

phase. Additionally, S𝑖𝑚 checks the following: If the proof

verification passes for some verifierV𝑗 , but the (sh𝑗 ,𝑤) ∉ R 𝑗 ,

the Sim1 aborts.

LemmaC.9. {hyb
0
(𝑛)}𝑛∈N and {hyb

1
(𝑛)}𝑛∈N are indistinguish-

able except with negligible probability by appropriately setting
the parameters.

Proof. When the prover is corrupted, we first claim that Sim1

aborts with negligible probability: if R 𝑗 (sh𝑗 ,w) ≠ 1, then

proof verification on input (sh𝑗 , com, 𝜋1, 𝜋
𝑗

2
) corresponding to

an honest verifierV𝑗 fails, except with negligible probability.

This follows from the soundness of Ligero proof system (see

Theorem 4.6, [3]).

□

Hybrid 𝐻2: This hybrid experiment identical to theS𝑖𝑚 where the

environmentZ interacts with S𝑖𝑚 and the functionality F𝐴𝑔𝑔 .
By construction, we have that hyb

9
(𝑛) ≡ IDEALF𝐴𝑔𝑔,A,Z (𝑛).

Lemma C.10. {hyb
2
(𝑛)}𝑛∈N and {hyb

1
(𝑛)}𝑛∈N are statistically

indistinguishable.

Proof. Assuming that Sim does not abort, we need to show

that the outputs of the honest verifiers are the same in both

the real execution withA and the ideal execution with Sim. In

the ideal execution, upon receiving (sh𝑗 , 𝜋 𝑗 ) internally from

A, Sim will send (dCP-Prove, sid,P,V𝑗 , sh𝑗 ) to FdCP for each
honest verifier V𝑗 . Recall that during the simulation, if the

proof verification passes, then R 𝑗 (sh𝑗 ,w) = 1; similarly, if the

proof verification fails, R 𝑗 (sh𝑗 ,w) ≠ 1. This holds because

we assume Sim does not abort. As per the simulation, FdCP
functionality sends (Proof, sid,P,V𝑗 , sh𝑗 , accept) whenever
R 𝑗 (sh𝑗 ,w) = 1 (equivalently, when proof verification passes);

otherwise sends (Proof, sid,P,V𝑗 ,⊥, reject) to each honest

verifierV𝑗 . Therefore, the accept/reject outcome depends on

whether the proof verification passes or fails in both the real

and ideal world executions. As a result, the honest parties

have the same output in both worlds, assuming Sim does not

abort. □

D Verifiable Relation Sharing (VRS) Theorem
Theorem D.1. (Informal) Let 𝑡, 𝑛 ∈ N such that 𝑡 < 𝑛/3 and 𝑃 is a

predicate. Then, the protocol ΠVRS between a dealerD and 𝑛 verifiers
V1, . . . ,V𝑛 described in Figure 3 securely realizes FVRS functionality
in the FdCP-hybrid model where we instantiate the encoding scheme
Enc(·) via replicated secret sharing scheme parameterized by (𝑛, 𝑡).
The communication between the prover and each of the verifiers is
𝑂
(
d ·

(𝑛−1
𝑡

)
+ 𝜌 + ℎ

)
field elements. The total communication of all

the servers in each phase is as follows:
– Offline phase: 𝑂 (𝑛3 + 𝑛 · BC(𝑛2)) field elements
– Online phase: 𝑂

(
𝑛 · 𝜌 + 𝑛 · BC(ℎ) + 𝑛 · d · BC(

(𝑛−1
𝑡

)
)
)
field

elements
– Online phase in the optimistic setting17 (where prover and all
verifiers are honest): 𝑂 (𝑛 · d ·

(𝑛−1
𝑡

)
+ 𝑛 · 𝜌 + 𝑛 · BC(ℎ)) field

elements

where 𝜅 is the security parameter, 𝜌 =

√︃
(d ·

(𝑛−1
𝑡

)
+ |𝑃 |) · 𝜅, |𝑃 | is

the number of gates in the circuit associated with predicate 𝑃 and ℎ
is the output length (in bits) of the hash function.

The above theorem is similar to Theorem 4.3 in [6] but with

the costs adapted to using replicated secret sharing and Ligero

proof system to instantiate the dCP protocol. We have analysed the

communication efficiency in more detail below. For detailed proof,

we refer to [6], specifically Appendix 𝐾 .

The above theorem closely resembles Theorem 4.3 in [6], but

with costs adapted for the use of replicated secret sharing and the

Ligero proof system to instantiate the dCP protocol. Below, we

provide a more detailed analysis of the communication efficiency.

For the full proof, see Appendix K of [6].

Communication efficiency. The prover sends to each of the veri-

fiers the dCP proof, which costs 𝑂 (
√︃
(d ·

(𝑛−1
𝑡

)
+ |𝑃 |) · 𝜅 + ℎ) and

an input share of size𝑂 (d ·
(𝑛−1

𝑡

)
). The offline phase, run among the

verifiers, involves 𝑛 parallel invocations of VSS to secret-share one

field element. We use the VSS scheme from [5], which has a com-

munication cost of 𝑂 (𝑛2 + BC(𝑛2)) field elements to secret-share

a single field element among 𝑛 parties. Thus, the total offline com-

munication is 𝑛 times the cost of a single VSS. In the online phase,

17
Offline phase communication costs are independent of whether the setting is

optimistic or not.
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each verifier receives an input share and proof, then broadcasts

the commitment in the optimistic case. In the worst case, share

recovery will be triggered, and the verifiers will additionally broad-

cast the masked shares. The costs in the theorem are computed by

summing these costs.

E Experiment Parameters
The default values of the parameters, as used in our experiments

(see Section 5.2) are presented in Table 3 and Table 4.

Table 3: Experiment Parameters

Parameter Description Value

ns # of servers 4

ts # of malicious server 1

𝑛open # of queries on𝑈 a
240

d input length see Table 4

𝑚 # of rows in the extended witness
a

see Table 4

a
refer to Ligero proof generation in Appendix B.1

Table 4: Number of rows in the extended witness (𝑚) for
various input lengths (𝑑)

d 10
0

10
1

10
2

10
3

10
4

10
5

10
6

𝑚 1 2 4 8 20 100 2000

F Additional Evaluation Results
To understand the computation cost when the number of servers

increases, we measured the cost of generating and verifying proofs

using 7 servers. Figure 12 presents the results. When input length

is within 10,000, generating and verifying a proof is completed in

5 seconds, compared to 2 seconds when using four servers. Even

with an input length of 10
5
, the median time for a client to generate

a proof is 35 seconds and for a server to verify it is 12 seconds,

compared to 10 seconds and 6 seconds when using four servers.

Overall, SCIF is adaptable to different numbers of servers. When

the total number of servers increases, more malicious servers could

be tolerated as long as ts < ns/3.

Figure 12: The time required for a client to generate a proof
and for a server to verify a client’s proof for various sized
client inputs (in log-scale).
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