
Unbalanced Private Set Intersection from Client-Independent
Relaxed Oblivious PRF

Xiaodong Wang

Tsinghua University

Beijing Institute of Mathematical Sciences and

Applications

wangxd22@mails.tsinghua.edu.cn

Zijie Lu

Beijing Institute of Mathematical Sciences and

Applications

luzijie@bimsa.cn

Bei Liang

Beijing Institute of Mathematical Sciences and

Applications

lbei@bimsa.cn

Shengzhe Meng

Tsinghua University

Beijing Institute of Mathematical Sciences and

Applications

msz22@mails.tsinghua.edu.cn

Abstract
Private Set Intersection (PSI) enables parties to compute the inter-

section of their input sets while preserving privacy. While most PSI

protocols are designed for balanced scenarios with sets of similar

sizes, unbalanced PSI addresses situations where a server with a

large database (e.g., millions of records) performs PSI with multiple

clients, each with a set of only a few hundred elements. In this

scenario, it is desirable for the server’s computation on its large

set to be performed offline and reusable, which we refer to as the

“Client-Independent” property. However, existing offline/online un-

balanced PSI protocols rely on less efficient OPRF constructions,

which involve either computationally expensive exponential opera-

tions or communication-intensive garbled circuits.

In this work, we present a framework for offline/online unbal-

anced PSI, with its core component being a novel functionality

called Client-Independent Relaxed OPRF (ci-rOPRF). The key in-

sight behind ci-rOPRF is to capture the requirements for OPRF

in offline/online scenarios. To realize this functionality, we pro-

pose two constructions of ci-rOPRF, inspired by the top-performing

CM-OPRF (CRYPTO ’20) and VOLE-OPRF (EUROCRYPT ’21), re-

spectively. Leveraging these efficient ci-rOPRF constructions, we

design highly efficient offline/online unbalanced PSI protocols. Fur-

thermore, we extend this framework with two enhancements: one

supports set updates, while the other reduces offline communication

costs.

Our C++ implementation demonstrates highly efficient perfor-

mance. For instance, in the online phase, our fastest unbalanced PSI

protocol computes the intersection of a client set with 2
12
elements

and a server set with 2
28
elements in just 0.55 seconds and 0.62 MiB

of communication on a 100 Mbps WiFi connection. Comparisons

with state-of-the-art unbalanced PSI protocols show that our proto-

cols significantly outperform existing solutions in the semi-honest

model on most metrics.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(3), 475–493
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0109

Keywords
unbalanced PSI, OPRF, secure multiparty computation

1 Introduction
Private Set Intersection (PSI) enables two parties, the sender and

the receiver, with input sets 𝑋 and 𝑌 , respectively, to compute the

intersection 𝑋 ∩ 𝑌 without revealing any information about items

that are not part of the intersection. PSI has numerous applications,

including private contact discovery [23, 26], privacy-preserving

location sharing [35], and botnet detection [33].

The first and simplest PSI protocols, which elegantly follow from

the Diffie-Hellman (DH) key agreement scheme, were introduced

by Huberman et al. [24] and can be traced back to the 1980s [32].

The primary advantage of DH-based protocols lies in their low

communication cost. However, these protocols require a number

of exponentiations proportional to the size of the input set, making

them less practical due to their high computational overhead. An-

other category of PSI protocols is based on oblivious transfer (OT)

[18, 37], where PSI computation is reduced to multiple instances of

OT. This approach has been proven to be highly efficient in practice,

due to the OT extension (OTe) protocols [25, 30] that use only a

small constant number of public-key operations. As is well known,

OT-based protocols incur higher communication costs compared to

DH-based protocols but are significantly faster. The connection be-

tween oblivious pseudorandom functions (OPRFs) and PSI was first

pointed out in [20]. Building on this insight, Kolesnikov et al. [31]

demonstrated that the aforementioned OT-based protocols could be

reframed in terms of OPRF. Expanding on this perspective, Pinkas

et al. [36] proposed a PSI protocol based on a multi-point OPRF,

achieving a better balance between computation and communica-

tion. Chase and Miao [12] later introduced a new multi-point OPRF

protocol for PSI based on lightweight operations, which serves as

one of the foundations of our work.

Recently, a correlation called Vector Oblivious Linear Evaluation

(VOLE), which can be viewed as a generalization of OT, has been ex-

tensively studied. Significant progress has been made in developing

VOLE generators with sublinear communication. Boyle et al. [8]

introduced the first such protocols based on the LPN assumption,

with subsequent work improving efficiency and offering practical

475

https://orcid.org/0009-0006-9976-2866
https://orcid.org/0009-0001-2509-917X
https://orcid.org/0000-0002-8622-8596
https://orcid.org/0009-0006-7896-3538
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0109

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

implementations [9, 44, 48]. Due to the highly sublinear cost of gen-

erating VOLE, this correlation has been quickly adopted to enhance

the efficiency of PSI. VOLE-based PSI protocols, combined with

oblivious key-value store (OKVS) [21], were proposed in [43] and

further refined in [40]. These protocols can be seen as VOLE-based

variants of the OT-based PSI protocol in [21]. Similarly, many recent

VOLE-based protocols [10] can be viewed as extensions of existing

OT-based protocols [31].

However, the PSI protocols aforementioned are designed for

scenarios where both sets are of similar size and the parties in-

volved have comparable computational and storage capabilities.

In real-world applications, it is common for one party’s set to be

significantly larger than the other’s, as seen in typical Client-Server
settings. In such cases, the Client might be a mobile device with

limited computing power and storage, while the Server is a high-
performance machine. Additionally, bandwidth between the Server
and Client may also be constrained. Below, we illustrate application

scenarios where the Client’s input set is much smaller than the

Server’s.
Mobile Private Contact Discovery. In [23, 26], the server rep-

resents a messaging service hosting a large database of user infor-

mation. When a mobile user installs the app, it performs contact

discovery, enabling the user to connect with existing users whose

phone numbers are in their address book. The user’s contact list is

typically much smaller than the server’s database. Moreover, the

messaging service must handle dynamic updates, such as new users

registering or old users unregistering.

Discovery of Leaked Passwords. A database storing compro-

mised passwords may offer a service for users to check if their

passwords are included in the breached data. Here, the user’s pass-

word set is far smaller than the server’s database, which is regularly

updated with new leaks. In [46], a protocol is proposed that pre-

serves user privacy while hiding the server’s list of compromised

credentials. This ensures that users can identify compromised pass-

words without revealing their own passwords, enhancing security.

In these examples, when the Server interacts withmultipleClients
or processes repeated requests from a single Client, it is desirable for
the Server’s computation on its large set to be reusable. Motivated

by this, Kiss et al. [28] proposed PSI protocols with separate offline

and online phases. In the offline phase, the Server precomputes

OPRF values for its large set, independent of the Client’s input,
and sends them to the Client. During the online phase, the Client
computes OPRF values for its small set (the cost is linear in small

set size), and identifies the intersection.

Unfortunately, state-of-the-art PSI protocols, such as VOLE-

based protocols [6, 40] and OT-based protocols [12, 31], cannot be

applied to this setting. This is because the OPRF keys in all protocols

depend on the Client’s input set, so that it is infeasible for Server to
precomputes OPRF on its set offline, which implies that they are

not kind of “Client-Independent” OPRFs. Existing offline/online PSI

protocols [26, 28] rely on less efficient OPRF constructions, such as

the computation-heavy NR-OPRF [34] or communication-intensive

Garbled-Circuit-based OPRF [38]. This raises the question:

Canwe leverage state-of-the-art OPRF protocols to construct “Client-
Independent” OPRF protocols and apply them to PSI in the offline/online
setting, thereby resulting in more efficient unbalanced PSI protocols?

1.1 Our Contributions
In this paper, we make an affirmative answer to the above question.

Our contributions can be summarized as follows:

• As the keystone of our methodology, we introduce a new func-

tionality called “Client-Independent Relaxed OPRF” (ci-rOPRF),

which captures the requirements for OPRF in offline/online sce-

narios. We analyze its relationship with existing OPRF notions.

• We provide two constructions of ci-rOPRF, abbreviated as CI-

CM and CI-VOLE Relaxed OPRF, inspired by CM-OPRF [12]

and VOLE-OPRF [43] respectively. Both constructions are secure

against semi-honest adversaries.

• Based on the Client-Independent Relaxed OPRF, we construct the
offline/online unbalanced PSI protocol and provide two extended

versions, one of which is to support set updates while the other

is to reduce the offline communication overhead.

• We implement our protocol in C++ and conduct detailed exper-

iments with sets of varying sizes to evaluate its performance.

The experiments show that our protocol achieves a highly effi-

cient online phase, requiring only 0.55 seconds and 0.62 MiB of

communication for our fastest protocol when computing the in-

tersection between a Client with a set size of 2
12
and a Server with

a large dataset of 2
28
entries, measured on aWiFi connection with

100 Mbps bandwidth. Moreover, we perform a comprehensive

comparison with state-of-the-art unbalanced PSI protocols. The

experimental results demonstrate that our protocol significantly

outperforms existing protocols in the semi-honest model.

1.2 Related Work
In this section, we introduce some related works on unbalanced

PSI. The work related to PSI in balanced scenarios was briefly in-

troduced above. Existing unbalanced PSI protocols can be mainly

categorized into two types: those based on the OPRF paradigm

and those constructed using Fully Homomorphic Encryption (FHE).

Generally speaking, in the offline/online setting, OPRF-based PSI

protocols have lower computational costs compared to FHE-based

protocols, and the computation and communication costs in the

online phase are almost unaffected by the size of the Server’s large
set. Our work also falls within the OPRF paradigm. On the other

hand, FHE-based protocols offer advantages such as lower commu-

nication and Client storage costs, but their major disadvantage is

that the computation and communication costs in the online phase

scale linearly with the size of the Server’s set. As a result, FHE-based
protocols are better suited for scenarios with smaller Server sets or
when the Client’s storage capacity is limited.

OPRF based protocols. Kiss et al. [28] introduced the idea of

performing an offline precomputation phase, which is only related

to the Server’s large input set, in unbalanced PSI scenarios to enable

an efficient online intersection computation. They transform four

existing OPRF-based PSI protocols, secure in the semi-honest model,

into a precomputation form, where the cost in the offline phase

is linear only in the size of the larger input set, and the cost in

the online phase is linear in the size of the smaller input set. This

offline/online paradigm serves as the foundation for subsequent

work.

Resende et al. [41] use techniques similar to [28], but replace

Bloom filters [7] with the more efficient and versatile Cuckoo filters

476

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

[19] to efficiently store the OPRF values. However, in their imple-

mentation, they set very aggressive Cuckoo filter parameters for

a false positive probability (FPP) of 𝜀 ≈ 2
−13

. In contrast, in our

work, we use the Cuckoo filter parameters as in [26], with a FPP of

𝜀 ≈ 2
−29

.

For the purpose of mobile private contact discovery, Kales et al.

[26] made further optimizations to the NR-PSI [22] and GC-PSI [38]

protocols presented in [28]. Their improvements include the use of

more efficient OT preprocessing techniques, better Cuckoo filter

parameters, and a specialized cipher (LowMC) [1] for the GC-PSI

protocol. The optimized protocols are referred to as LowMC-GC

and ECC-NR, respectively.

Most recently, Sun et al. [45] constructed a maliciously secure un-

balanced PSI protocol using the Dodis-Yampolskiy PRF [17]. Their

key technique involves encoding the Server’s set with a oblivious

verifiable pseudorandom function (OVRF) and sending it to the

Client. The Client can then execute the PSI protocol with the Server,
with complexity linear in the size of the Client’s set. The advantage
of this approach, compared to directly using OPRF-based protocols,

lies in achieving malicious security through verifiability. However,

the trade-off is a higher computational and communication cost.

Specifically, when the Client’s set size is 2
10
, the communication

cost of the online phase reaches 63.23 MB, while our protocols

requires less than 1 MB.

Directly usingOPRF-based protocols requires sending the Server’s
OPRF values to the Client. When the Client’s storage capacity is

limited, a variant that combines private information retrieval (PIR)

can be considered. The combination of two-server PIR and PSI for

private contact discovery was first proposed in [16] with PIR-PSI.

Their protocol achieves sublinear communication complexity in the

Server’s set size but requires online computation that is linear in the

Server’s set size for each query. By leveraging PIR preprocessing,

Hetz et al. [23] present a newmobile private contact discovery proto-

col based on unbalanced PSI [26] and offline/online PIR [29], which

achieves both sublinear communication cost and online runtime in

the Server’s set size. The advantage of these PIR-based protocols

[16, 23] is that the Client does not need to store the Server’s OPRF
values. However, this comes at the cost of increased online runtime.

FHE based protocols. Chen et al. [14] present a PSI protocol

with low communication complexity based on Fully Homomorphic

Encryption, where the majority of the tasks are handled by the

Server, while the Clients only perform encryption and decryption.

This work was later refined in [13], improving both performance

and security, and extending the protocol to the labeled PSI set-

ting with arbitrary length labels. Later, Cong et al. [15] introduced

several optimizations to the protocols in [13, 14], resulting in im-

proved running time and communication complexity in terms of

the Server’s set size. Most recently, Wu and Yuen [47] propose new

techniques called “VBF” and “POL” to resolve the long item issue

in FHE-based PSI protocols. Compared to [15], their unbalanced

PSI protocol can save 42.04% to 58.85% in communication costs and

accelerate the receiver’s query time.

As mentioned above, the advantage of the protocols presented

in [13–15, 47] is that their communication complexity is sublinear,

rather than linear, in the size of the Server’s set. However, these
protocols require longer computation times when the Server’s set
is large.

2 Preliminaries
2.1 Notation
Throughout the paper we use the following notation: We denote

the parties as 𝑆𝑒𝑟𝑣𝑒𝑟 and𝐶𝑙𝑖𝑒𝑛𝑡 , and their respective input sets as𝑋

and𝑌 with |𝑋 | = 𝑁𝑠 and |𝑌 | = 𝑁𝑐 . The intersection𝑋∩𝑌 is denoted

as 𝐼 . We use 𝜅, 𝜆 to denote the computational and statistical security

parameters, respectively. We use [𝑚] to denote the set {1, 2, . . . ,𝑚}.
For a vector 𝑣 of length ℓ , we use 𝑣 [𝑖] to denote the 𝑖-th element of

the vector. For a matrix𝑀 of dimension𝑚×𝑤 , we use𝑀𝑖 to denote

its 𝑖-th column vector (𝑖 ∈ [𝑤]). For some set 𝑆 , the notation 𝑠
$← 𝑆

means that 𝑠 is assigned a uniformly random element from 𝑆 . By

negl(𝜅) we denote a negligible function, i.e., a function 𝑓 such that

𝑓 (𝜅) < 1/𝑝 (𝜅) holds for any polynomial 𝑝 (·) and sufficiently large

𝜅.

2.2 Oblivious Transfer
Oblivious Transfer (OT) is a central cryptographic primitive in the

area of secure computation, which was introduced by Rabin [39].

1-out-of-2 OT refers to the setting where a sender has two input

strings (𝑚0,𝑚1) and a receiver has an input choice bit 𝑏 ∈ {0, 1}.
As the result of the OT protocol, the receiver learns𝑚𝑏 without

learning anything about 𝑚1−𝑏 while the sender learns nothing

about 𝑏. This primitive requires expensive public-key operations.

However, with OT extension (OTe) protocol [25], a small number

(e.g., 128) of “base OTs” can be extended to a large number of OTs

using only efficient symmetric cryptographic operations.

There exist other flavors of OTe with reduced communication

complexity [3]. In random OT (R-OT), neither party inputs any

values, but the inputs of sender and receiver are randomly chosen

by the protocol. It is feasible to precompute oblivious transfers in

such a way that all computationally intensive tasks are executed in

advance using R-OTs [4]. Subsequently, the random values obtained

through R-OTs are used to mask the actual inputs, requiring only

inexpensive XOR operations in the style of one-time-pad encryp-

tion.

2.3 Vector Oblivious Linear Evaluation
The random subfield Vector Oblivious Linear Evaluation (VOLE)

functionality Fr−sVOLE is presented in Fig. 1. Let F be an extension

field over base field B. The Client obtains random vectors

−→
𝐴

$← F𝑚

and

−→
𝐵

$← B𝑚 . The Server obtains a random element Δ
$← F and

the vector

−→
𝐶 =
−→
𝐴 + Δ−→𝐵 .

A naive implementation of a VOLE generator would involve

running a two-party multiplication protocol with communication

linear in𝑚. Recently, significant advances have been made in de-

veloping VOLE generators with sub-linear communication. Boyle

et al. [8] presented the first protocols in that direction based on the

LPN assumption. The subsequent work further improved efficiency

and provided effective implementations [9, 44, 48].

In this paper, we will use a variant of subfield VOLE, where the

Server can choose the input Δ, and the Client can choose the inputs

−→
𝐴,
−→
𝐵 , and finally the Server obtains

−→
𝐶 =
−→
𝐴 +Δ−→𝐵 . The chosen-input

variant VOLE protocol (depicted in Fig. 2) can be constructed from

the random VOLE protocol [8].

477

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

Parameters: There are two parties, a Server and a Client. Let F be

an extension field over base field B. Let𝑚 denote the size of the

output vectors.

Functionality: Upon input (Server,sid) from the Server and

(Client,sid) from the Client.

Sample

−→
𝐴

$← F𝑚 ,
−→
𝐵

$← B𝑚 , Δ
$← F and compute

−→
𝐶 :=

−→
𝐴 + Δ

−→
𝐵 .

The functionality sends Δ,
−→
𝐶 to the 𝑆𝑒𝑟𝑣𝑒𝑟 and

−→
𝐴,
−→
𝐵 to the 𝐶𝑙𝑖𝑒𝑛𝑡 .

Figure 1: Ideal functionality for random subfield VOLE
Fr−sVOLE.

Inputs: The Server’s input Δ ∈ F and the Client’s input

−→
𝐴 ∈

F𝑚,
−→
𝐵 ∈ B𝑚 .

Outputs: The Client has no output; the Server’s output is given by

−→
𝐶 :=

−→
𝐴 + Δ−→𝐵 .

Protocol Steps: Upon input (Server,sid) from the Server and

(Client,sid) from the Client, the protocol specifies the following:
(1) The Server and Client invoke the functionality Fr−sVOLE. The

Server obtains Δ′ ∈ F and

−→
𝐶 ′ =

−→
𝐴 ′ + Δ

−→
𝐵 ′. The Client obtains−→

𝐴 ′ ∈ F𝑚 and

−→
𝐵 ′ ∈ B𝑚 .

(2) The Server sends𝑚Δ := Δ − Δ′ to the Client.
(3) The Client sends𝑚𝐵 :=

−→
𝐵 −−→𝐵 ′ and𝑚𝐴 :=

−→
𝐴 −−→𝐴 ′ +𝑚Δ

−→
𝐵 to the

Server.
(4) The Server outputs

−→
𝐶 :=

−→
𝐶 ′ +𝑚𝐵Δ

′ +𝑚𝐴 .

Figure 2: Random VOLE to VOLE.

The correctness follows from

−→
𝐶 =
−→
𝐶 ′ +𝑚𝐵Δ

′ +𝑚𝐴

= (−→𝐴 ′ + Δ′−→𝐵 ′) + (−→𝐵 − −→𝐵 ′)Δ′ + (−→𝐴 − −→𝐴 ′ + (Δ − Δ′)−→𝐵)

=
−→
𝐴 + Δ−→𝐵

The security proof can be found in [8] (Proposition 10).

2.4 Oblivious Key-Value Store
The concept of an oblivious key-value store (OKVS) was introduced

by Garimella et al. [21]. At a high level, an OKVS enables the en-

coding of 𝑛 pairs of key-value pairs in such a way that an adversary

cannot reverse-engineer the original input keys from the encoding,

assuming the input values are random.

Definition 2.1. A oblivious key-value store (OKVS) is param-

eterized by a set K of keys, a setV of values, and consists of two

algorithms:

• Encode: Takes as input a set of (𝑘𝑖 , 𝑣𝑖) key-value pairs and outputs
an object 𝑇 (or, with statistically negligible probability, an error

indicator ⊥).
• Decode: Takes as input an object 𝑇 , a key 𝑘 , and outputs a value

𝑣 .

An OKVS is correct if, for all 𝐴 ⊆ K ×V with distinct keys:

(𝑘, 𝑣) ∈ 𝐴 and ⊥≠ 𝑇 ← Encode(𝐴) =⇒ Decode(𝑇, 𝑘) = 𝑣

AnOKVS is computationally oblivious, if for all distinct

{
𝑘0

1
, . . . , 𝑘0

𝑛

}
and distinct

{
𝑘1

1
, . . . , 𝑘1

𝑛

}
, if Encode does not output⊥ for

(
𝑘0

1
, . . . , 𝑘0

𝑛

)
or

(
𝑘1

1
, . . . , 𝑘1

𝑛

)
, then the output of ExpA

(
K =

(
𝑘0

1
, . . . , 𝑘0

𝑛

))
is com-

putationally indistinguishable to that of ExpA
(
K =

(
𝑘1

1
, . . . , 𝑘1

𝑛

))
,

where:

ExpA (K = (𝑘1, . . . , 𝑘𝑛)):
(1) for 𝑖 ∈ [𝑛] : choose uniform 𝑣𝑖 ←V
(2) return A (Encode ({(𝑘1, 𝑣1) , . . . (𝑘𝑛, 𝑣𝑛)}))

Additional property. In our construction, we need an OKVS

with homomorphic properties. Specifically, we need Decode(·, 𝑘)
to be a linear function for all 𝑘 .

Definition 2.2. An OKVS is linear (over a field F) if V = F
("values" are elements of F), the output of Encode is a vector 𝑇 in

F𝑚 , and the Decode function is defined as:

Decode(𝑇, 𝑘) = ⟨d(𝑘),𝑇 ⟩ def

=

𝑚∑︁
𝑗=1

d(𝑘) 𝑗𝑇𝑗

for some function d : K → F𝑚 . Hence Decode (·, 𝑘) is a linear map

from F𝑚 to F.

2.5 Cuckoo Filter
A Cuckoo filter (CF) [19] is a space-efficient probabilistic data struc-

ture designed for fast membership testing, like a Bloom filter (BF)

[7] does. It has a controllable false positive probability (FPP), but

false negatives do not occur. The Cuckoo filter was used for con-

structing unbalanced PSI protocols in [23, 26, 41].

The use of Cuckoo filters has several advantages:

• The Cuckoo filter supports adding and removing items dynami-

cally, but Bloom filters do not.

• It provides higher lookup performance than traditional Bloom

filters.

• It uses less space than Bloom filters in many practical applica-

tions.

A Cuckoo filter uses a hash table based on Cuckoo hashing to

store the tags (fingerprints) of items, where each tag is located in a

bucket and each bucket contains up to 𝑏 tags.

To insert the tag of an item 𝑥 , we need to find the two potential

buckets 𝑝1 (𝑥) and 𝑝2 (𝑥) using the technique called “partial-key

Cuckoo hashing”, it can derive an item’s alternate location only

based on its tag and current position. More specifically, these posi-

tions of the buckets are calculated using the formula:

𝑝1 (𝑥) = 𝐻 (𝑥)
𝑝2 (𝑥) = 𝑝1 (𝑥) ⊕ 𝐻 (𝑡𝑥)

Note that we can determine the other candidate bucket 𝑝 𝑗 just from

knowing its tag 𝑡𝑥 and the current position 𝑝𝑖 using the relation:

𝑝 𝑗 (𝑥) = 𝑝𝑖 (𝑥) ⊕ 𝐻 (𝑡𝑥). The tag of 𝑥 is placed into one of the two

buckets, if both buckets are full, then randomly select one of the

two buckets, evict one of the 𝑏 tags from that bucket using Cuckoo

hashing and place it into the other bucket where it can go.

To check whether an item is contained in the Cuckoo filter,

one calculates its tag and checks both potential bucket locations,

comparing the stored tags for equality. To delete the item, the

corresponding tag is removed from the filter.

478

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

3 Client-independent Relaxed OPRF
3.1 Ideal Functionality
Oblivious Pseudorandom Function (OPRF) is a central primitive for

constructing protocols such as private set intersection (PSI), oblivi-

ous keyword search (KS), and password-protected secret sharing

(PPSS), and many variants have emerged based on different applica-

tion requirements. However, many references that utilize the con-

cept of OPRF do not explicitly provide a formal definition, leading

to ambiguity. Therefore, before providing our definition of Client-

Independent Relaxed OPRF, we will first clarify the meaning of

“Relaxed”. Then we analyze the demand for OPRF in the unbalanced

PSI scenario and introduce the concept of Client-Independence. Fi-

nally, we formalize the novel functionality of “Client-Independent

Relaxed OPRF” and explain its relationship with existing concepts

related to OPRF.

3.1.1 Strong OPRF and Relaxed OPRF. The concept of oblivious
pseudorandom function (OPRF) was formally introduced by Freed-

man et al. in [20]. In the strongest definition of OPRF, an OPRF

protocol for the PRF 𝑓𝑘 (·) is a secure computation of the functional-

ity (𝑘,𝑌) → (⊥, {𝑓𝑘 (𝑦) |𝑦 ∈ 𝑌 }). In other words, an OPRF protocol

allows the Client to receive the output of a PRF 𝑓𝑘 (·) on the input

set 𝑌 , using a key 𝑘 held by the Server, while keeping the input 𝑌
hidden from the Server. At the same time, the Client learns nothing
about the PRF key 𝑘 beyond what is revealed by {𝑓𝑘 (𝑦) |𝑦 ∈ 𝑌 }.

However, some natural and efficient OPRF protocols do not sat-

isfy the strong definition. Here, we illustrate with the example

from [20]. Consider the following pseudo-random function based

on the Naor-Reingold construction: The key 𝑟 consists of two sets

𝑥1, . . . , 𝑥𝑚 and 𝑦1, . . . , 𝑦𝑚 ; the function is defined for inputs (𝑖, 𝑗)
such that 1 ≤ 𝑖, 𝑗 ≤ 𝑚, and its value is 𝑓𝑟 (𝑖, 𝑗) = 𝑔𝑥𝑖𝑦 𝑗 in a group

where the DDH assumption holds and 𝑔 is a generator. Consider

the OPRF protocol where a client whose input is (𝑖, 𝑗) learns 𝑥𝑖 and
𝑦 𝑗 and uses them to compute 𝑓𝑟 (𝑖, 𝑗). Although these values reveal

part of the key 𝑟 to the Client, the other outputs of the function
remain pseudorandom.

In most application scenarios, we only need the evaluation of

the PRF 𝑓𝑘 (·) on all other inputs to remain pseudorandom in the

view of the Client (rather than 𝑘). Based on the above observations,

Freedman et al. (Definition 6 in [20]) introduced the concept of

Relaxed OPRF. Roughly speaking, the Client obtains no additional

information about the outputs of a PRF 𝑓𝑘 (·) beyond what follows

from a legitimate set of queries. (Recall that the strong definition

requires that no information be learned about the PRF key 𝑘 .)

Nevertheless, in many works that construct PSI protocols from

OPRF, the definition of the underlying OPRF are not explicitly

specified. In fact, the OPRF schemes [12, 31, 36, 43] particularly

developed for building PSI merely satisfy the definition of Relaxed

OPRF. In the contrary, OPRFs based on algebraic constructions

[20, 24] can satisfy the definition of Strong OPRF. (For more details

on existing OPRF constructions and variants, please refer to [11]

for a systematic summary.)

3.1.2 Client-Independent OPRF. To introduce the requirement of

Client-Independence for OPRF, let’s first recall the framework for

constructing PSI from OPRFs, which mainly consists of following

steps (here we omit the step of hashing). The Client with inputs set

Table 1: Comparison of different OPRF schemes designed for
PSI.

Reference Client-Independent Strong/Relaxed

KKRT16 [31] × Relaxed

KLSAP17 [28] ✓ Strong

PRTY19 [36] × Relaxed

KRSSW19 [26] ✓ Strong

CM20 [12] × Relaxed

RS21 [43] × Relaxed

Parameters: There is a Server S with input set 𝑋 and Clients
C1, C2, . . . with input sets 𝑌1, 𝑌2, . . . , respectively. Let F be a field.

Let 𝑜𝑢𝑡 ∈ Z be the output bit length.

Functionality: Upon input (Server,sid, 𝑋) from the Server S, the
functionality samples 𝐹 : F→ {0, 1}𝑜𝑢𝑡 and sendsΨ𝑋 := {𝐹 (𝑥) | 𝑥 ∈
𝑋 } to S.
Subsequently, upon input (Server,sid) and (Client,sid, 𝑌𝑖) from the

Client C𝑖 , the functionality sends Ψ𝑌𝑖 := {𝐹 (𝑦) | 𝑦 ∈ 𝑌𝑖 } to the C𝑖 .

Figure 3: Ideal functionality for Client-Independent Relaxed
OPRF Fci−rOPRF.

𝑌 and the Server with no input invoke the functionality of OPRF

and as a result Client learns 𝑓𝑘 (𝑦) for 𝑦 ∈ 𝑌 while Server learns
a random PRF seed 𝑘 . The Server can then compute and send the

OPRF values {𝑓𝑘 (𝑥) |𝑥 ∈ 𝑋 } which allows the Client to identify the

common items.

In the case of unbalanced PSI where the parties have unequal

set sizes: Often the Server that has a database of millions of records

performs PSI with multiple Clients, each with a set of a few hundred

elements. In this setting, to avoid the computational overhead that

scales linearly with the size of the Server’s set, it is desirable for the
OPRF values obtained by the Server to be reusable with different

Clients. Therefore, this requires that the PRF key 𝑘 is independent

of the Client’s input sets. After selecting the PRF key in a Client-

Independent manner, the Server only needs to compute the OPRF

values once on its large set 𝑋 during the offline phase, which can

be securely reused by multiple clients to identify the intersection.

We notice that the Relaxed OPRF schemes in [12, 31, 36, 43]

are not Client-Independent. In contrast, Strong OPRFs based on

algebraic constructions [20, 24] are Client-Independent.

In Tab. 1,We surveymost widely usedOPRF schemes constructed

for the PSI protocol, and summaries the properties they achieve,

including the “Client-Independent” property and security level, i.e.,

satisfying “Relaxed” or “Strong” security conditions.

We observe that the existing relaxed OPRFs employed in con-

structing top-performing PSI schemes [12, 36, 40, 43] do not satisfy

the “Client-Independent” property, making it impossible to compute

the Server’s OPRF values offline. In this paper, we aim to propose a

Client-Independent Relaxed OPRF.

3.1.3 Client-Independent RelaxedOPRF. We formalize the function-

ality of Client-Independent Relaxed OPRF Fci−rOPRF in Fig. 3. It can

479

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

be seen as a variant of the OPRF functionality of Rindal and Schopp-

mann [43]. The main difference with their functionality is that in

our ideal functionality, the Server can independently generate its

OPRF values before the Client participates in the protocol. Specif-

ically, at the start of the protocol, the Server only needs to input

(Server,sid, 𝑋), after which the Server will obtain the OPRF values

for set 𝑋 . Subsequently, when the Client C𝑖 inputs (Client,sid, 𝑌𝑖)
and the Server inputs (Server,sid) (this process is independent of
the Server’s set 𝑋 , but requires the Server’s random tape), the Client
C𝑖 obtains the OPRF values for his set 𝑌𝑖 .

Currently, the "Client-Independent" OPRF schemes designed for

unbalanced PSI scenarios [26, 28] rely on techniques that involve

computationally expensive exponential operations or the construc-

tion of garbled circuits, leading to significant communication costs.

If we consider that the Server and Client only execute the PSI pro-

tocol only once, the protocol in [26, 28] will have much poorer

performance compared to the top-performing PSI schemes.

To this end, in the next two subsections, we utilize the struc-

tures of the best-performing OPRF protocols, e.g. CM-OPRF [12]

and VOLE-OPRF [43] respectively, to construct efficient "Client-

Independent Relaxed OPRF" protocols.

3.2 CI-CM Relaxed OPRF
Our first Client-Independent Relaxed OPRF construction is an adap-

tion of the the OT-based Relaxed OPRF of Chase and Miao [12].

We describe our CI-CM Relaxed OPRF protocol in Fig.4. In their

original protocol (see Appendix B), the choice of the key used in the

OPRF protocol is determined by the Client’s input set and Server’s
random choice in the OT correlation, which does not meet the

condition for “Client-Independent”.

To address the issue, at a high level, we use a random binary

matrix 𝑅 ∈ {0, 1}𝑚×𝑤 selected by the Server as the OPRF key. For
each element 𝑥 in its input set 𝑋 , the Server computes the OPRF

value as H (𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]]), where 𝑣 is the “position vec-

tor” computed as 𝑣 = 𝐹𝑘 (𝑥)1. The Server can perform this process

locally with no need to interact with the Client.
To enable the Client to compute the OPRF values for the input

set 𝑌 , the Server masks the matrix 𝑅 as 𝑃 = 𝑅 ⊕ 𝐶 and sends

𝑃 to the Client. The construction of matrix 𝐶 (in steps 4, 5, and

6) is the same as in CM-OPRF. Specifically, for Server’s random

string 𝑠
$← {0, 1}𝑤 , define a matrix 𝑆 (with dimension𝑚 ×𝑤), the

𝑖-th column 𝑆𝑖 = 1
𝑚
if 𝑠 [𝑖] = 1, otherwise 𝑆𝑖 = 0

𝑚
. We have the

relationship:𝐶 = 𝐴 ⊕ (𝐷 ∧𝑆) through oblivious transfer. Therefore,

it holds that 𝑃 = 𝑅 ⊕ 𝐴 ⊕ (𝐷 ∧ 𝑆).
The Client can eliminate the matrix𝐴 in 𝑃 (in step 8) to compute

𝑄 = 𝐴 ⊕ 𝑃 = 𝐴 ⊕ 𝑅 ⊕ 𝐶
= 𝐴 ⊕ 𝑅 ⊕ (𝐴 ⊕ (𝐷 ∧ 𝑆)) = 𝑅 ⊕ (𝐷 ∧ 𝑆)

and calculate its OPRF values as 𝐻 (𝑄1 [𝑣 [1]] ∥ . . . ∥𝑄𝑤 [𝑣 [𝑤]]) for
𝑦 ∈ 𝑌 and 𝑣 = 𝐹𝑘 (𝑦).

The correctness follows from the fact that for 𝑦 ∈ 𝑌 and 𝑣 =

𝐹𝑘 (𝑦), it holds that𝐷𝑖 [𝑣 [𝑖]] = 0, thusH (𝑄1 [𝑣 [1]] ∥ . . . ∥𝑄𝑤 [𝑣 [𝑤]]) =
H (𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]]).

1𝐹 is a pseudorandom function 𝐹 : {0, 1}𝜅 × {0, 1}∗ → [𝑚]𝑤 .

Roughly speaking, the obliviousness follows from the fact that

the Client does not know the bit string 𝑠 chosen by the Server in
OT.

Formally, we state the following theorem, with the proof pro-

vided in Appendix A.2.

Theorem 1. Assuming that the Clients do not collude. if 𝐹 is a
PRF, and 𝐻 is modeled as a random oracle, the oblivious transfer
protocol is secure in the semi-honest model, then the protocol in Fig. 4
securely realizes Fci−rOPRF in the semi-honest model when parameters
𝑚,𝑤 are chosen such that for 𝑥 ∈ 𝑋 , there are at least 𝜅 1’s in
𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]] where 𝑣 = 𝐹 (𝑥) and 𝐹 is a random function,
with all but negligible probability.

3.3 CI-VOLE Relaxed OPRF
We propose another Client-Independent Relaxed OPRF construc-

tion based on VOLE. Our approach is inspired by the VOLE-OPRF

[43], which uses VOLE to generate correlations (instead of OT)

and coordinates with OKVS to embed the Client’s set information.

In [43], Rindal and Schoppmann first constructed an OPRF using

VOLE and PaXoS (a specialized OKVS, which was further abstracted

as an OKVS data structure in [21] by Garimella et al.) and applied it

to PSI. Subsequent works have built on such a paradigm, improving

components such as VOLE and OKVS [6, 40]. In [40], Raghuraman

and Rindal constructed an improved OKVS and employed subfield

VOLE to reduce communication, which is also used in our imple-

mentation. In the aforementioned VOLE-OPRF construction, the

OPRF key depends on the Client’s input, which means it does not

satisfy the “client-independent” property. We describe our CI-VOLE

Relaxed OPRF protocol in Fig.5.

In the CI-VOLE protocol, we use a random vector

−→
𝑅 ∈ F𝑚 as

the OPRF key, rather than a binary random matrix in the CI-CM

protocol. The Server chooses a random element Δ ∈ F and computes

the OPRF value for 𝑥 ∈ 𝑋 as H𝑜
(
Decode(−→𝑅 , 𝑥) + ΔHB (𝑥)

)
. This

procedure doesn’t require any interaction with the Client.
In the CI-CM protocol, the matrix 𝐴 is a random matrix and the

matrix 𝐵 is generated as 𝐵 := 𝐴 ⊕ 𝐷 . In our CI-VOLE protocol, the

matrix 𝐵 is the encoded vector of OKVS. Specifically, 𝐵 is an OKVS

generated by encoding key-value pairs (𝑦,H (𝐴[𝑦]))2, for 𝑦 ∈ 𝑌 .
The decode algorithm can be seen as Decode(𝐵,𝑦′) = H (𝐵 [𝑦′]).
More precisely, in the CI-VOLE protocol, we choose

−→
𝐴 as a random

vector, while

−→
𝐵 is taken as the OKVS encoded by key-value pairs

(𝑦,HB (𝑦)) for 𝑦 ∈ 𝑌 . (We use the subfield B here to further reduce

the communication cost.) Through the subfield VOLE, where the

Server inputsΔ and theClient inputs
−→
𝐴 and

−→
𝐵 , the Server will obtain

−→
𝐶 =
−→
𝐴 + Δ−→𝐵 . Using

−→
𝐶 as a mask, the Server sends

−→
𝑃 =
−→
𝑅 + −→𝐶 to

the Client. It holds that
−→
𝑃 =
−→
𝑅 +−→𝐶 =

−→
𝑅 +−→𝐴 +Δ−→𝐵 , thus the Client

can eliminate

−→
𝐴 to obtain

−→
𝑄 =
−→
𝑃 − −→𝐴 =

−→
𝑅 + Δ−→𝐵 . Then the Client

can compute the OPRF value for 𝑦 ∈ 𝑌 as H𝑜
(
Decode(−→𝑄 ,𝑦)

)
.

The correctness follows from that for𝑦 ∈ 𝑌 ,H𝑜
(
Decode(−→𝑄 ,𝑦)

)
=

H𝑜
(
Decode(−→𝑅 + Δ−→𝐵 ,𝑦)

)
= H𝑜

(
Decode(−→𝑅 ,𝑦) + ΔHB (𝑦)

)
. (This

utilizes the linear properties of OKVS.)

2
For convenience, we abbreviate H (𝐴1 [𝑣 [1]] ∥ . . . ∥𝐴𝑤 [𝑣 [𝑤]]) as H (𝐴[𝑦]) ,
where 𝑣 = 𝐹𝑘 (𝑦) .

480

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

Inputs: Server’s set 𝑋 = {𝑥𝑖 }𝑖∈[𝑁𝑠] and Client’s set 𝑌 = {𝑦 𝑗 } 𝑗∈[𝑁𝑐] .
Parameters: Computational and statistical security parameter 𝜅, 𝜆, the set sizes 𝑁𝑠 and 𝑁𝑐 , the protocol parameters𝑚,𝑤, 𝑜𝑢𝑡 , random

oracle H : {0, 1}∗ → {0, 1}𝑜𝑢𝑡 , pseudorandom function 𝐹 : {0, 1}𝜅 × {0, 1}∗ → [𝑚]𝑤 .
Protocol Steps: Upon input (Server,sid, 𝑋) from the Server, the protocol specifies the following:

(1) The Server samples a binary random matrix 𝑅
$← {0, 1}𝑚×𝑤 and a random PRF key 𝑘

$← {0, 1}𝜅 .
(2) The Server outputs Ψ𝑋 := {H (𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]]) | 𝑣 = 𝐹𝑘 (𝑥) , 𝑥 ∈ 𝑋 }.

Subsequently, upon input (Server,sid) and (Client,sid, 𝑌) from the Client, the protocol specifies the following:
(3) The Server sends the PRF key 𝑘 to Client.
(4) The Client initialize an 𝑚 × 𝑤 binary matrix 𝐷 to all 1’s. Denote its column vectors by 𝐷1, . . . , 𝐷𝑤 . Then, for each 𝑦 ∈ 𝑌 , computes

𝑣 = 𝐹𝑘 (𝑦) and sets 𝐷𝑖 [𝑣 [𝑖]] = 0 for all 𝑖 ∈ [𝑤].
(5) The Client randomly samples an𝑚 ×𝑤 binary matrix 𝐴

$← {0, 1}𝑚×𝑤 and defines the matrix 𝐵 := 𝐴 ⊕ 𝐷 .
(6) The Server samples a random string 𝑠

$← {0, 1}𝑤 and run𝑤 oblivious transfers where the 𝐶𝑙𝑖𝑒𝑛𝑡 is the sender with inputs {𝐴𝑖 , 𝐵𝑖 }𝑖∈[𝑤]
and the 𝑆𝑒𝑟𝑣𝑒𝑟 is the receiver with inputs 𝑠 [1], . . . , 𝑠 [𝑤]. As a result, the 𝑆𝑒𝑟𝑣𝑒𝑟 obtains𝑤 number of𝑚-bit strings as the column vectors

of matrix 𝐶 .

(7) The 𝑆𝑒𝑟𝑣𝑒𝑟 defines matrix 𝑃 := 𝑅 ⊕ 𝐶 and sends it to the 𝐶𝑙𝑖𝑒𝑛𝑡 .

(8) The 𝐶𝑙𝑖𝑒𝑛𝑡 defines matrix 𝑄 := 𝐴 ⊕ 𝑃 . Then the Client outputs Ψ𝑌 := {H (𝑄1 [𝑣 [1]] ∥ . . . ∥𝑄𝑤 [𝑣 [𝑤]]) | 𝑣 = 𝐹𝑘 (𝑦) , 𝑦 ∈ 𝑌 }.

Figure 4: The CI-CM Relaxed OPRF protocol.

Inputs: Server’s set 𝑋 = {𝑥𝑖 }𝑖∈[𝑁𝑠] ⊆ F and Client’s set 𝑌 = {𝑦 𝑗 } 𝑗∈[𝑁𝑐] ⊆ F.
Parameters: Computational and statistical security parameter 𝜅, 𝜆. The set sizes 𝑁𝑠 and 𝑁𝑐 . Let B be a field with extension F such that

|F| =𝑂 (2𝜅). Let HB
: {0, 1}∗ → B, H𝑜 : {0, 1}∗ → {0, 1}𝑜𝑢𝑡 be random oracles. The linear OKVS scheme denoted as (Encode,Decode).

Protocol Steps: Upon input (Server,sid, 𝑋) from the Server, the protocol specifies the following:

(1) The Server samples a random vector

−→
𝑅

$← F𝑚 and an random element Δ
$← F. (𝑚 is determined by 𝑁𝑐 and the OKVS scheme)

(2) The Server outputs Ψ𝑋 :=

{
H𝑜

(
Decode(−→𝑅 , 𝑥) + ΔHB (𝑥)

)
| 𝑥 ∈ 𝑋

}
.

Subsequently, upon input (Server,sid) and (Client,sid, 𝑌) from the Client, the protocol specifies the following:

(3) The Client randomly samples an vector

−→
𝐴

$← F𝑚 and computes the vector

−→
𝐵 := Encode(𝑌,HB (𝑌)).

(4) The Server and the Client run the subfield VOLE protocol, where the 𝐶𝑙𝑖𝑒𝑛𝑡 has inputs
−→
𝐴 ∈ F𝑚 and

−→
𝐵 ∈ B𝑚 , and the 𝑆𝑒𝑟𝑣𝑒𝑟 has input Δ.

As a result, the Server obtains a vector
−→
𝐶 :=

−→
𝐴 + Δ−→𝐵 .

(5) The 𝑆𝑒𝑟𝑣𝑒𝑟 defines vector
−→
𝑃 :=

−→
𝑅 + −→𝐶 and sends it to the 𝐶𝑙𝑖𝑒𝑛𝑡 .

(6) The 𝐶𝑙𝑖𝑒𝑛𝑡 defines vector
−→
𝑄 :=

−→
𝑃 − −→𝐴 . Then the Client outputs Ψ𝑌 :=

{
H𝑜

(
Decode(−→𝑄 ,𝑦)

)
| 𝑦 ∈ 𝑌

}
.

Figure 5: The CI-VOLE Relaxed OPRF protocol.

Similar to the previous subsection, obliviousness arises from the

randomness of Δ, which is unknown to the Client.
Formally, we state the following theorem, with the proof pro-

vided in Appendix A.3.

Theorem 2. Assuming that the Clients do not collude. If 𝐻 is
modeled as a random oracle, the OKVS scheme is linear, the parameters
|B| ≥ 2

𝜆+log
2
𝑁𝑠+log

2
𝑁𝑐 and |F| ≥ 2

𝜅 , the subfield VOLE protocol is
secure in the semi-honest model, then the protocol in Fig. 5 securely
realizes Fci−rOPRF in the semi-honest model.

Remarks.
• Since our CI-CM protocol enables the Server to choose 𝑠 during

interacting with the Client, the Server can select different 𝑠 values

for multiple Clients to enhance security. In contrast, the CI-VOLE

protocol requires Δ to be determined during the precomputation

phase. Further security discussions on these two protocols can

be found in Appendix E.

• In our CI-VOLE protocol, we use subfield VOLE to reduce com-

munication, the method is derived from [40].

4 Unbalanced PSI in the Offline/Online Setting
In this section, we use the Fci−rOPRF functionality from the pre-

vious section to construct the unbalanced PSI protocol in the of-

fline/online setting. We also propose two extended versions, one

of which is to support set updates while the other is to reduce the

offline communication overhead.

Before presenting the protocol, we first analyze the challenges

faced when performing PSI in an unbalanced scenario. The ideal

functionality for PSI is given in Fig. 6. When performing the PSI

protocol, if the Server’s dataset is significantly larger than that of

481

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

Parameters: Server’s input set size |𝑋 | = 𝑁𝑠 and Client’s input set
size |𝑌 | = 𝑁𝑐 .

Functionality: Upon input (Server,sid, 𝑋) from the Server and

(Client,sid, 𝑌) from the Client, the functionality outputs 𝐼 = 𝑋 ∩ 𝑌
to the Client.

Figure 6: Ideal functionality for Private Set Intersection FPSI.

the Client, we have to consider the limited computational power and

storage capacity of the Client compared to the Server. It is desirable
to design PSI protocols that share following common properties:

• The Server performs the computationally expensive tasks;

• All computationally expensive and communication intensive

tasks are performed only once;

• The actual intersection computation is very fast and also allows

for efficient updates.

The traditional approach to constructing unbalanced PSI [26, 28,

47] which can achieve above requirements is to divide the protocol

into two phases: the offline phase and the online phase. The offline
phase is a pre-computation stage conducted before interacting with

the Client and is client-independent. In this phase, the computa-

tional and communication costs are dependent on the Server’s set
size. Since the Server’s set is much larger than that of the Client’s,
the cost of this stage is typically quite high. In the online phase,
after the Client provides its input set, the pre-computed results

from the offline phase enable the efficient calculation of the inter-

section, which is then output to the Client. The computational and

communication costs in this phase mainly depend on the Client’s
set size.

3

In practical applications such as private contact discovery, the

offline stage corresponds to the process of downloading the applica-

tion software, which can be completed during idle time. The online

stage corresponds to using the software to calculate the private set

intersection, which requires highly efficient performance.

4.1 Unbalanced PSI Protocol from ci-rOPRF
By leveraging Fci−rOPRF and the Cuckoo filter, we present our un-

balanced PSI protocol in Fig. 7. In the offline phase, the Server
obtains the OPRF values Ψ𝑋 for its set 𝑋 from Fci−rOPRF

4
, inserts

them into a Cuckoo filter 𝐶𝐹 , and sends the filter 𝐶𝐹 to the Client.
Then, in the online phase, the Client inputs its set 𝑌 and obtains

the OPRF values Ψ𝑌 for set 𝑌 by running Fci−rOPRF with the Server.
The Client then uses the Cuckoo filter to look up and obtain the

output 𝐼 := {𝑦 | 𝐹 (𝑦) is contained in 𝐶𝐹,𝑦 ∈ 𝑌 }. The correctness
and privacy of the protocol are straightforward.

Remarks.
• The advantage of using a Cuckoo filter is that, compared to

directly transmitting Ψ𝑋 to the Client, it allows the Server to

incur a slightly higher computational cost (computing the Cuckoo

filter for Ψ𝑋), thereby reducing the cost of a single query for the

3
In some protocols, a sublinear complexity term may depend on the Server’s set size
in the online phase.

4
The OPRF output length is set to 𝑜𝑢𝑡 = 𝜆 + log

2
(𝑁𝑠) + log

2
(𝑁𝑐) . Using the union

bound, it is straightforward to show that the probability of spurious collisions between

Ψ𝑋 and Ψ𝑌 is bounded by 2
−𝜆

.

Inputs: Server’s set 𝑋 = {𝑥𝑖 }𝑖∈[𝑁𝑠] ⊆ F and Client’s set 𝑌 =

{𝑦 𝑗 } 𝑗∈[𝑁𝑐] ⊆ F.
Parameters: Let Fci−rOPRF be the Client-Independent Relaxed

OPRF functionality with 𝑜𝑢𝑡 = 𝜆 + log
2
(𝑁𝑠) + log

2
(𝑁𝑐). Let𝐶𝐹 be

the Cuckoo filter with false positive probability 𝜀.

Protocol:
I. Offline phase.

(a) The Server sends (Server,sid, 𝑋) to Fci−rOPRF and receives

back Ψ𝑋 := {𝐹 (𝑥) | 𝑥 ∈ 𝑋 }.
(b) The Server inserts Ψ𝑋 into the Cuckoo filter 𝐶𝐹 . Upon re-

ceiving (Client,sid) from the Client, the Server sends 𝐶𝐹 to

the Client.
II. Online phase.

(a) The Server sends (Server,sid) and the Client sends

(Client,sid, 𝑌) to Fci−rOPRF. The Client receives back Ψ𝑌 :=

{𝐹 (𝑦) | 𝑦 ∈ 𝑌 }.
(b) For each 𝑦 ∈ 𝑌 , the Client checks if the Cuckoo

filter 𝐶𝐹 contains 𝐹 (𝑦), and then outputs 𝐼 :=

{𝑦 | 𝐹 (𝑦) is contained in 𝐶𝐹,𝑦 ∈ 𝑌 }.

Figure 7: The unbalanced PSI protocol in offline/online set-
ting from ci-rOPRF.

Client from O(𝑁𝑠) to O(1). Additionally, since the false positive
probability (FPP) of the Cuckoo filter can be adjusted based on

different application scenarios, in some less sensitive contexts,

a larger FPP can be chosen in benefit for a Cuckoo filter that

occupies less space.

• The main purpose of dividing unbalanced PSI into an offline and

an online phase is that, when handling multiple queries from

the Clients, this offline stage only needs to be performed once,

so only the efficient online phase is executed for each query.

However, it should be noted that when facing multiple queries,

an increased number of queries will lead to a reduction in the

security parameter. Therefore, after a certain number of queries,

the offline phase needs to be re-executed.

4.2 Extensions
In practical applications of unbalanced PSI, we need to consider the

requirements of different scenarios and extend the basic protocol

accordingly. In this subsection, we propose two extensions: one

introduces an update phase to handle scenarios with frequent set

updates, while the other leverages Private Information Retrieval

(PIR) to reduce offline communication costs for scenarios involving

very large Server sets.

4.2.1 Unbalanced PSI with Update Phase. In many applications

of unbalanced PSI, the sets of the Server and Client may undergo

frequent updates, which introduces new challenges for protocol

design. For example, in private contact discovery, the messaging

service should allow new users to register and old users to unregis-

ter. Since the Client’s set is relatively small, rerunning the online

phase after updates to the Client’s set can quickly yield new results.

However, when the Server’s set is updated, an efficient solution re-

quires that the computational and communication costs during the

482

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

update phase be linear with respect to the size of the updates to the

Server’s set, without needing to rerun the offline phase. To achieve

this, we follow the approach of Kiss et al. [28], further dividing the

unbalanced PSI protocol into the following four phases.

Base phase includes the data-independent precomputation and

must be performed in order to setup the underlying primitives

within the protocol.

Setup phase only needs Server’s input data. In our protocol, it

involves calculating Server’s OPRF values and inserting them

into a Cuckoo filter for compact representation, which is sent

to the Client.
Online phase is the stage where the intersection is computed.

In our protocol, it involves OT and calculating Client’s OPRF
values. The Client then looks up its OPRF values in the Cuckoo

filter to determine the intersection.

Update phase is used to modify the results obtained during the

previous setup phase. In our protocol, it involves updating the

Cuckoo filter.

The distinction between these four phases and the protocol in

Fig. 7 is that the offline phase is further divided into a base phase

and a setup phase, while the online phase remains unchanged, and

an update phase is added. Leveraging the functionality of Fci−rOPRF

and the dynamic add-and-remove capabilities of the Cuckoo filter,

our protocol can easily incorporate an update phase. In this update

phase, since the Server’s OPRF key is “Client-Independent”, adding

elements is straightforward: the Server simply computes the OPRF

value for each new element and sends the corresponding tag, po-

sition in the Cuckoo filter, and an “Insert” command to the Client,
who can then update the Cuckoo filter for subsequent operations.

To remove elements, the Server provides the tag and position of

the element’s OPRF value in the Cuckoo filter along with a “Delete”

command, allowing the Client to adjust the filter accordingly.

In Appendix D.1, we provide the functionality of the unbalanced

PSI with an update phase. Then, in Appendix D.2, we present de-

tailed protocol diagrams for unbalanced PSI with an update phase,

implemented based on CI-CM-rOPRF and CI-VOLE-rOPRF, respec-

tively.

4.2.2 Reducing Offline Communication. In some application sce-

narios, the Server’s set size can reach tens of millions or even hun-

dreds of millions, as seen in the user base of social media platforms

like WhatsApp. In such cases, directly applying the protocol in

Fig. 7 would generate and send a Cuckoo filter during the offline

phase that requires substantial storage. For instance, with a Server
set size of 𝑁𝑠 = 2

28
and a FPP of 𝜀 ≈ 2

−29
, the size of the Cuckoo

filter would be 1072 MiB, which imposes significant transmission

and storage demands on the Client.
In these scenarios, it becomes essential to balance computa-

tional and communication costs. The significant communication

cost arises because the Server must send the Cuckoo filter contain-

ing the OPRF values for its set X, denoted as Ψ𝑋 , to the Client. Only
then can the Client check which elements of Ψ𝑌 are present in Ψ𝑋
to determine the intersection. A straightforward approach would

be to employ PIR for querying, rather than directly transmitting

the Cuckoo filter.

In [23], Hetz et al. proposed a solution for the private contact

discovery scenario, leveraging offline-online PIR (OO-PIR) [29] com-

bined with the unbalanced PSI approach from Kales et al. [26]. This

scheme achieves a total communication overhead that is sublin-

ear relative to the Server’s set size. This approach is compatible

with any Client-Independent OPRF, allowing our protocol to simi-

larly leverage OO-PIR to reduce communication costs during the

offline phase. However, this benefit comes with trade-offs: it incurs

higher computational costs and requires the assumption of two

non-colluding servers. Below, we briefly introduce the concept of

OO-PIR and explain how it can be applied to our protocol.

Protocols for PIR allow a Client to privately retrieve a record

from a public database without revealing the requested item to the

Server. It is well-known that the Server’s computational cost must

inherently scale linearly with the size of the database [5]. Therefore,

to achieve sublinear online complexity relative to the database

size, we need to shift these linear-complexity computations to the

offline phase. In the OO-PIR protocol in [29], two Servers, 𝑆𝑜 𝑓 𝑓
and 𝑆𝑜𝑛 , each store a copy of the database 𝐷𝐵. During the offline

phase, 𝑆𝑜 𝑓 𝑓 randomly selects 𝜆
√︁
|𝐷𝐵 | sets, each containing

√︁
|𝐷𝐵 |

database indices, computes the parity of each subset, and sends

these sets (compressed using a puncturable PRF to save space) along

with the parities as “hints” to the Client. This process ensures with
overwhelming probability that every database index is included

in at least one set, and it requires one offline phase per unique

Client. In the online phase, for each queried index 𝑖𝑑𝑦 , the Client
locates the hint containing 𝑖𝑑𝑦 and uses a “puncturing” process to

remove 𝑖𝑑𝑦 from this subset, and then send the punctured set to 𝑆𝑜𝑛 .

𝑆𝑜𝑛 returns the parity of this received set. By XORing the parities,

the Client retrieves 𝐷𝐵 [𝑖𝑑𝑦]. Please note that many details were

omitted in the above protocol description. For a comprehensive

explanation, refer to [23, 29].

In our scheme, the database is the Server’s Cuckoo filter 𝐶𝐹 con-

taining the OPRF values Ψ𝑋 , and the Client’s queries correspond
to the positions in the Cuckoo filter associated with elements in

Ψ𝑌 . By embedding OO-PIR into the unbalanced PSI protocol as

demonstrated in [23], we can reduce the offline phase communica-

tion to O(
√
𝑁𝑠), at the cost of an additional O(

√
𝑁𝑠) online phase

computation. Specifically, with a Server set size of 𝑁𝑠 = 2
28
and a

FPP of 𝜀 ≈ 2
−29

, the offline phase communication required is only

66 MiB—representing a 24× reduction compared to the original

approach. This enhancement is particularly valuable in scenarios

with limited network bandwidth.

5 Implementation and Performance
Comparison

5.1 Concrete Parameter Choices
We use a computational security parameter of 𝜅 = 128 and a statis-

tical security parameter of 𝜆 = 40.

Choice of𝑚,𝑤 in CI-CM PSI. The parameters𝑚,𝑤 in our CM-

OPRF based protocol are chosen such that for each 𝑥 ∈ 𝑋 , there
are at least 𝜅 1’s in 𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]] where 𝑣 = 𝐹 (𝑥) and 𝐹

is a random function, with all but negligible probability. The same

analytical approach as in [12] is put to use here. First, we fix𝑚, and

then determine𝑤 as follows. Consider each column 𝐷𝑖 , initialized

as 1
𝑚
. Then, for each 𝑦 ∈ 𝑌 , the Client computes 𝑣 = 𝐹 (𝑦) and

483

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

sets 𝐷𝑖 [𝑣 [𝑖]] = 0. After this, since 𝐹 is a random function, the

probability Pr[𝐷𝑖 [𝑗] = 1] =
(
1 − 1

𝑚

)𝑁𝑐
(denoted as 𝑝) is the same

for all 𝑗 ∈ [𝑚]. Thus, for any 𝑥 ∈ 𝑋 and 𝑣 = 𝐹𝐾 (𝑥), the number of

1’s in 𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]] follows a binomial distribution, and

the probability of having fewer than 𝜅 1’s is

∑𝜅−1

𝑘=0

(𝑤
𝑘

)
𝑝𝑘 (1− 𝑝)𝑤−𝑘 .

By the union bound, it is sufficient for the following probability to

be negligible:

𝑁𝑠 ·
𝜅−1∑︁
𝑘=0

(
𝑤

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑤−𝑘 ≤ 𝑛𝑒𝑔𝑙 (𝜆)

where 𝑝 =
(
1 − 1

𝑚

)𝑁𝑐
. From this we can derive a proper𝑤 for some

𝑚.

We list different choices of the parameters in Appendix C (Tab. 5).

The protocol is flexible in that we can set these parameters differ-

ently to trade-off between computation and communication. Intu-

itively, for fixed set size 𝑁𝑠 and 𝑁𝑐 , the bigger𝑚 will lead to smaller

𝑤 and requires less computation of the pseudorandom function 𝐹𝑘 ,

thus speeding up the offline phase. However, simultaneously, the

size of the matrix𝑚 ×𝑤 may increase, leading to higher commu-

nication costs and a longer online phase time. In our experiment,

we will set𝑚 = 𝑁𝑐 for all settings, since it achieves nearly optimal

communication and has the fastest online phase among all choices

of𝑚.

Choice of B, F in CI-VOLE PSI. As shown in [40], when using

subfield VOLE to construct the PSI protocol, the parameter choice

that results in the fastest runtime in practice is: B =𝐺𝐹 (2𝜅), and
F = B. However, to minimize communication costs, B can be set as

the smallest field such that |B| ≥ 2
𝜆+log

2
𝑁𝑠+log

2
𝑁𝑐

and |F| ≥ 2
𝜅
. In

our implementation, to achieve faster runtime, we choose B = F =

𝐺𝐹 (2𝜅).
Choice of Cuckoo Filter. We use the parameter recommenda-

tions in [26] with bucket size 𝑏 = 3 and tag size 𝑓 = 32 for a false

positive probability of 𝜀 ≈ 2
−29

. This false positive probability is

sufficient to meet the requirements of most realistic scenarios.

Once the above parameter choices are made and 𝑁𝑠 , 𝑁𝑐 is deter-

mined, the remaining parameters required are explicitly provided

in the protocols.

5.2 Implementation Details
We implement our protocols in C++ using libOTe [42] and the

Cuckoo filter from [26]. We employ IKNP [25] for OT extension

and BLAKE2 as the hash function. For the implementation of the

pseudorandom function, to improve concrete efficiency, we apply

the technique by Chase andMiao [12] to parallelize the computation

over multiple elements as much as possible, thereby making opti-

mal use of the hardware-optimized AES-ECBmode implementation.

Specifically, we require 𝐹 : {0, 1}𝜅 × {0, 1}ℓ → [𝑚]𝑤 . For elements

of length ℓ = 128 (longer elements need to be hashed first), let

𝐺 : {0, 1}𝜅 × {0, 1}𝜅 → {0, 1}𝜅 be a pseudorandom function (instan-

tiated by AES) and PRG : {0, 1}𝜅 → {0, 1}𝑡 ·𝜅 be a pseudorandom

generator where 𝑡 =

⌈
𝑤 ·log𝑚

𝜅

⌉
. On a key 𝑘 and input 𝑥 ,

𝐹𝑘 (𝑥) =𝐺𝑘1
(𝑥) | |𝐺𝑘2

(𝑥) | | . . . | |𝐺𝑘𝑡 (𝑥)

Table 2: Offline phase computation cost (in seconds) and
communication cost (in MiB) for different Server set size 𝑁𝑠
in the CI-CM PSI and CI-VOLE PSI protocols. Best results are
marked in bold.

𝑁𝑠 Protocol

Offline Offline

Comp. [s] Comm. [MiB]

2
20

CI-CM PSI 2.43

4.19

CI-VOLE PSI 0.87

2
24

CI-CM PSI 40.16

67.01

CI-VOLE PSI 13.49

2
28

CI-CM PSI 641.60

1072.14

CI-VOLE PSI 219.55

where 𝑘1 | |𝑘2 | | . . . | |𝑘𝑡 ←− PRG(𝑘).5 Now PRG (instantiated by AES-

CTR mode) is only applied once on the key 𝑘 , and 𝐺𝑘𝑖 (·) are all
parallelizable by AES-ECB mode. We use a binary OKVS with a

weight of 3 from [40] and silent VOLE from [42]. The implementa-

tion is single-threaded, but most computations can be parallelized.

Therefore, we expect that the offline time can achieve approximately

linear speedup when using multi-threading.
6

5.3 Benchmark
In this subsection, we present benchmarks for the offline and on-

line phases of the PSI protocol implemented using two different

ci-rOPRFs from Sec. 3 (denoted as CI-CM PSI and CI-VOLE PSI).

The experiments were run on a desktop computer with AMD 3950X

CPU and 32GB RAM. We considered localhost environment and

simulated different WAN network settings using the Linux tc com-

mand.

In Tab. 2, we present a benchmark of the computational and

communication costs for the offline phase. Note that this phase

is client-independent, we evaluate it for different Server set sizes
𝑁𝑠 ∈ {220, 224, 228}. The offline computation includes the time re-

quired to compute the Server’s OPRF values Ψ𝑋 and the time spent

constructing the Cuckoo filter𝐶𝐹 , while the offline communication

refers to the cost of sending𝐶𝐹 to the Client. From the experimental

results, we observe that in all settings, the CI-VOLE PSI protocol

achieves approximately a 3× speedup in computation time com-

pared to the CI-CM PSI protocol. Since the Cuckoo filter size is

the same across different protocols for the same 𝑁𝑠 , the offline

communication cost remains identical.

In Tab. 3, we present a benchmark of the computational and

communication costs for the online phase. We fix 𝑁𝑠 = 2
28

and

conduct experiments for both protocols with 𝑁𝑐 ∈ {28, 212, 216}
under different network bandwidths, with Round-trip time (RTT)

set to 200 ms, reflecting latency close to that of intercontinental

communication in the real world. The computation time includes

the time to calculate the Client’s OPRF values Ψ𝑌 , as well as the
time for looking up values in the Cuckoo filter. The cost of the

online phase primarily depends on 𝑁𝑐 , with the size of 𝑁𝑠 having

5
The construction we use is a simplified version of the one presented in [12]. The

detailed security proof can be found in Appendix A.4.

6
Our implementation is available at https://github.com/lzjluzijie/upsi.

484

https://github.com/lzjluzijie/upsi

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

Table 3: Online phase communication cost (in MiB) and run-
ning time (in seconds) for varying Client set sizes 𝑁𝑐 and
network bandwidths in the CI-CM PSI and CI-VOLE PSI pro-
tocols. In all experiments, 𝑁𝑠 = 2

28 and RTT is set to 200 ms.
Best results are marked in bold.

𝑁𝑐 Protocol Comm. [MiB]

Time [s]

localhost 1000Mbps 100Mbps 10Mbps

2
8

CI-CM PSI 0.05 0.01 0.61 0.61 0.65
CI-VOLE PSI 0.54 0.09 1.47 1.50 1.61

2
12

CI-CM PSI 0.62 0.03 1.25 1.27 1.65
CI-VOLE PSI 0.75 0.24 1.49 1.53 1.80

2
16

CI-CM PSI 9.72 1.16 3.38 3.79 11.37

CI-VOLE PSI 3.14 0.61 2.01 2.17 3.97

little impact (only influencing the size of matrix 𝐵 in the CI-CM pro-

tocol or the size of field B in the CI-VOLE protocol logarithmically).

From the experimental results, we observe that when 𝑁𝑐 is small,

the CI-CM PSI protocol has an evident advantage in both com-

munication and runtime over the CI-VOLE PSI protocol. However,

as 𝑁𝑐 becomes larger, the CI-VOLE PSI protocol is more advanta-

geous. When 𝑁𝑐 = 2
12
, the performance of both protocols is not

significantly different. This phenomenon occurs because the cost

of generating VOLE is highly sublinear, and its amortized overhead

quickly diminishes as 𝑁𝑐 increases.

5.4 Comparison to Related Work
In this subsection, we compare the performance of our protocol

with several state-of-the-art unbalanced PSI protocols, including

LowMC-GC and ECC-NR based onOPRF from [26], andVBF+slicing

and PoL based on FHE from [47]. Since the code for the protocol

in [47] is not open-source, we performed our comparison on in-

put sizes 𝑁𝑠 ∈ {224, 220} and 𝑁𝑐 ∈ {11041, 5535} to match the

parameters used in [47]. We used the same RTT as in [47], and all

experiments were conducted using a single thread. While the ex-

periments in [47] were run on an Intel(R) Xeon(R) Gold 6226R CPU

with 236GB of RAM, we ran our protocol on our own hardware

with an AMD 3950X CPU and 32GB of RAM. Our CPU performance

is slightly better than that of [47], but their RAM is significantly

larger than ours. Regardless, as observed from the subsequent ex-

periments, the performance gap between the protocols is much

larger than the differences in CPU and RAM between the hardware

used in the experiments. The detailed results of the experiments

are provided in Tab. 4.

ComparisonswithOPRF based protocols [26].Our protocols
(CI-CM and CI-VOLE), as well as LowMC-GC and ECC-NR from

[26], are all based on the OPRF paradigm for PSI. Therefore, under

the same security parameters, the length of the OPRF values is

identical, resulting in the same offline phase communication cost.

In all other aspects, our protocol significantly outperforms both

LowMC-GC and ECC-NR. This can be attributed to the fact that the

LowMC-GC protocol requires building a garbled circuit during the

offline phase, which leads to a high communication cost. In contrast,

the ECC-NR protocol requires multiple exponentiations in both

the offline and online phases, resulting in a high computational

cost. Compared to these protocols, our approach is based on top-

performing PSI protocols, where most operations are lightweight,

and the communication cost is lower.

However, it is important to note that in terms of security, our

protocol only supports security in the semi-honest setting for both

parties, while LowMC-GC and ECC-NR can easily achieve security

against a malicious Client 7
(but not against a malicious Server) by

replacing the OT extension protocol with a maliciously secure OT

extension protocol. Since OT extension contributes only a small

percentage to the total runtime of the PSI protocols, and today’s

maliciously secure OT extension [2, 27] protocols are only slightly

less efficient than their semi-honest counterparts, replacing the OT

extension protocol does not result in a noticeable increase in the

total runtime of the PSI protocols.

Regarding the different levels of security mentioned above, we

would like to argue the following:

• Many realistic scenarios do correspond to semi-honest attack

behavior. One such example is computing with players who are

trusted to act honestly, but cannot fully guarantee that their

storage might not be compromised in the future. Therefore, in

many application scenarios, semi-honest security is sufficient to

meet the requirements.

• Even in the face of more powerful adversaries, by applying hash

functions to the elements before running the protocol, the infor-

mation leaked to the adversary reveals no more than what would

be exposed through a naïve hashing approach for PSI.

• Semi-honest protocols often serve as a basis for protocols in more

robust settings with more powerful attackers.

Comparisons with FHE based protocols [47]. The protocols
in [47] (VBF+slicing and PoL) are unbalanced PSI protocols based

on fully homomorphic encryption, with the main advantage of

not requiring any offline communication. However, this comes at

the cost of the Server needing to perform computations that are

linear in the size of the large database for each client during the

online phase. Additionally, due to the high computational cost of

FHE, the offline phase of the protocol takes significantly longer.

As observed in Tab. 4, as the Server set size 𝑁𝑠 increases, both

the communication and computation costs in the online phase of

the protocol from [47] increase accordingly, while the costs in the

online phase of OPRF-based protocols are minimally affected by

𝑁𝑠 . Therefore, FHE-based protocols are more suitable for scenarios

where the client’s storage capability is limited, and the size of 𝑁𝑠 is

not too large. In terms of security, [47] claims to provide one-sided

simulatability against a malicious adversary, which is a relaxed

level of security where one corruption case is simulatable, and for

the other party, only privacy is guaranteed. However, no formal

security proof is provided.

Overall, in the semi-honest setting, the performance of the online

phase of our protocol significantly outperforms all known existing

unbalanced PSI protocols, including those not explicitly compared

in this section, such as [16, 28, 41]. Therefore, in scenarios where

both parties have a high level of trust or efficiency is a key concern,

our protocol and the extensions presented in Sec. 4 (including

the update phase or the reduction of offline communication) are

7
A malicious adversary may arbitrarily deviate from the prescribed protocol in an

attempt to break the security.

485

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

Table 4: Comparison results between our unbalanced PSI protocols and other protocols in various settings. The best results are
highlighted in bold. All experiments were conducted in a single-threaded environment, with network latency set to 0.05 ms for
consistency with [47].

Cardinality

Protocol

Online Online Time [s] Offline Offline

𝑁𝑠 𝑁𝑐 Comm. [MiB] 10 Gbps 100 Mbps 10 Mbps 1 Mbps Comp. [s] Comm. [MiB]

2
24

11041

LowMC-GC [26] 253.75 12.43 53.46 413.13 4248.98 85.49 67.01

ECC-NR [26] 65.24 4.85 12.09 114.12 1154.91 2048.49 67.01

VBF+slicing [47] 11.76 21.35 21.42 22.01 34.58 660.13 0
PoL [47] 6.15 16.43 16.42 17.22 33.65 5143.96 0

Ours (CI-CM PSI) 1.68 0.07 0.19 1.49 14.19 41.41 67.01

Ours (CI-VOLE PSI) 1.03 0.29 0.37 1.11 9.10 13.90 67.01

5535

LowMC-GC [26] 127.22 5.13 25.82 215.32 2133.24 87.85 67.01

ECC-NR [26] 32.71 2.64 8.99 86.23 871.78 2418.46 67.01

VBF+slicing [47] 6.86 16.73 16.83 17.17 25.75 683.48 0
PoL [47] 4.29 14.51 14.55 15.00 22.16 4918.41 0

Ours (CI-CM PSI) 0.85 0.03 0.11 0.73 7.20 41.41 67.01

Ours (CI-VOLE PSI) 0.81 0.25 0.30 0.87 7.19 13.90 67.01

2
20

11041

LowMC-GC [26] 253.75 11.61 52.79 430.21 4359.08 5.48 4.19

ECC-NR [26] 65.24 4.52 12.09 114.12 1151.91 151.05 4.19

VBF+slicing [47] 8.84 5.01 5.09 5.64 25.18 26.56 0
PoL [47] 4.50 3.85 3.99 4.66 24.46 88.04 0

Ours (CI-CM PSI) 1.65 0.06 0.20 1.46 13.94 2.53 4.19

Ours (CI-VOLE PSI) 1.03 0.29 0.37 1.10 9.10 0.81 4.19

5535

LowMC-GC [26] 127.22 4.89 25.56 215.23 2136.56 5.35 4.19

ECC-NR [26] 32.71 2.35 8.99 86.23 871.78 150.67 4.19

VBF+slicing [47] 5.30 3.63 3.68 3.94 18.68 26.27 0
PoL [47] 3.13 3.15 3.21 3.63 18.30 93.09 0

Ours (CI-CM PSI) 0.83 0.03 0.10 0.73 7.05 2.53 4.19

Ours (CI-VOLE PSI) 0.81 0.24 0.30 0.87 7.17 0.81 4.19

the better choice. On the other hand, in the malicious setting, if

the Server’s set is large and the Client has sufficient storage, the

protocol in [26] (LowMC-GC and ECC-NR) should be considered.

If the Client’s storage is limited, the PIR-based version in [23] that

reduces offline communication can be a good alternative. When

the Server’s set is not very large, the FHE based protocols in [47]

outperforms the protocols in [26], and it does not require additional

storage from the Client.

6 Conclusion and Future Work
In this paper, we propose the “Client-Independent Relaxed OPRF”

functionality, which captures the requirements for OPRF in unbal-

anced PSI within the offline/online setting. We then construct the

CI-CM and CI-VOLE Relaxed OPRF protocols, which securely real-

izes Fci−rOPRF in the semi-honest model. We apply these protocols

to unbalanced PSI and analyze extensions with an update phase

and in combination with PIR. Finally, we implement the protocols

and conduct a detailed comparison with related work. The exper-

imental results show that our protocols significantly outperform

others in the semi-honest model. However, our protocols cannot

be directly extended to the malicious model, so improving their

security will be part of our future work. Additionally, we note that

recent advances in more efficient offline-online PIR protocols, when

combined with our unbalanced PSI protocols, can lead to more ef-

ficient contact discovery schemes. The selection of suitable PIR

protocols and their implementation will also be an important area

for future exploration.

Acknowledgments
This work is supported by National Key R&D Program of China

No. 2023YFC3305501.

References
[1] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In EUROCRYPT 2015, Proceed-
ings, Part I. Springer, 430–454.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2015.

More efficient oblivious transfer extensions with security for malicious adver-

saries. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 673–701.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2017.

More efficient oblivious transfer extensions. Journal of Cryptology 30 (2017),

805–858.

[4] Donald Beaver. 1995. Precomputing oblivious transfer. In CRYPTO 1995. Springer,
97–109.

[5] Amos Beimel, Yuval Ishai, and Tal Malkin. 2000. Reducing the servers compu-

tation in private information retrieval: PIR with preprocessing. In Advances in
Cryptology—CRYPTO 2000. Springer, 55–73.

[6] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. {Near-
Optimal} Oblivious {Key-Value} Stores for Efficient {PSI},{PSU} and {Volume-

Hiding}{Multi-Maps}. In 32nd USENIX Security Symposium (USENIX Security
23). 301–318.

486

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

[7] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable

errors. Commun. ACM 13, 7 (1970), 422–426.

[8] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing

vector OLE. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 896–912.

[9] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,

and Peter Scholl. 2019. Efficient two-round OT extension and silent non-

interactive secure computation. In Proceedings of the 2019 ACM SIGSACConference
on Computer and Communications Security. 291–308.

[10] Dung Bui and Geoffroy Couteau. 2023. Improved private set intersection for sets

with small entries. In IACR International Conference on Public-Key Cryptography.
Springer, 190–220.

[11] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. 2022. SoK: oblivious pseudo-

random functions. In 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). IEEE, 625–646.

[12] Melissa Chase and Peihan Miao. 2020. Private set intersection in the internet

setting from lightweight oblivious PRF. In CRYPTO 2020, Proceedings, Part III 40.
Springer, 34–63.

[13] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from

fully homomorphic encryption with malicious security. In Proceedings of the ACM
CCS 2018. 1223–1237.

[14] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast private set intersection from

homomorphic encryption. In Proceedings of the ACM CCS 2017. 1243–1255.
[15] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia

Iliashenko, Kim Laine, and Michael Rosenberg. 2021. Labeled PSI from homomor-

phic encryption with reduced computation and communication. In Proceedings
of the ACM CCS 2021. 1135–1150.

[16] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. 2018. PIR-PSI: scaling

private contact discovery. Proceedings on Privacy Enhancing Technologies (2018).
[17] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A verifiable random function

with short proofs and keys. In International Workshop on Public Key Cryptography.
Springer, 416–431.

[18] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection

meets big data: an efficient and scalable protocol. In Proceedings of the ACM CCS
2013. 789–800.

[19] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
75–88.

[20] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word search and oblivious pseudorandom functions. In TCC 2005. Springer, 303–
324.

[21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

2021. Oblivious key-value stores and amplification for private set intersection.

In CRYPTO 2021, Proceedings, Part II 41. Springer, 395–425.
[22] Carmit Hazay and Yehuda Lindell. 2010. Efficient protocols for set intersection

and pattern matching with security against malicious and covert adversaries.

Journal of cryptology 23, 3 (2010), 422–456.

[23] Laura Hetz, Thomas Schneider, and Christian Weinert. 2023. Scaling mobile

private contact discovery to billions of users. In European Symposium on Research
in Computer Security. Springer, 455–476.

[24] Bernardo A Huberman, Matt Franklin, and Tad Hogg. 1999. Enhancing privacy

and trust in electronic communities. In Proceedings of the 1st ACM conference on
Electronic commerce. 78–86.

[25] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious

transfers efficiently. In CRYPTO 2003. Springer, 145–161.
[26] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and

Christian Weinert. 2019. Mobile private contact discovery at scale. In USENIX
Security 19. 1447–1464.

[27] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively secure OT

extension with optimal overhead. In Annual Cryptology Conference. Springer,
724–741.

[28] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and Benny Pinkas. 2017.

Private set intersection for unequal set sizes with mobile applications. In Privacy
Enhancing Technologies Symposium. De Gruyter, 177–197.

[29] Dmitry Kogan and Henry Corrigan-Gibbs. 2021. Private blocklist lookups with

checklist. In 30th USENIX security symposium (USENIX Security 21). 875–892.
[30] Vladimir Kolesnikov and Ranjit Kumaresan. 2013. Improved OT extension for

transferring short secrets. In CRYPTO 2013, Proceedings, Part II. Springer, 54–70.
[31] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient batched oblivious PRF with applications to private set intersection. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 818–829.

[32] Catherine Meadows. 1986. A more efficient cryptographic matchmaking protocol

for use in the absence of a continuously available third party. In 1986 IEEE
Symposium on Security and Privacy. IEEE, 134–134.

[33] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita

Borisov. 2010. {BotGrep}: Finding {P2P} Bots with Structured Graph Analysis.

In USENIX Security 10.
[34] Moni Naor and Omer Reingold. 2004. Number-theoretic constructions of efficient

pseudo-random functions. Journal of the ACM (JACM) 51, 2 (2004), 231–262.
[35] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg,

Dan Boneh, et al. 2011. Location privacy via private proximity testing.. In NDSS,
Vol. 11.

[36] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. SpOT-light:

lightweight private set intersection from sparse OT extension. In CRYPTO 2019,
Proceedings, Part III 39. Springer, 401–431.

[37] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:

Private set intersection using permutation-based hashing. In 24th USENIX Security
Symposium (USENIX Security 15). 515–530.

[38] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C Williams. 2009.

Secure two-party computation is practical. InAdvances in Cryptology–ASIACRYPT
2009: 15th International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 250–267.

[39] Michael O Rabin. 2005. How to exchange secrets with oblivious transfer. Cryp-
tology ePrint Archive (2005).

[40] Srinivasan Raghuraman and Peter Rindal. 2022. Blazing fast PSI from improved

OKVS and subfield VOLE. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 2505–2517.

[41] Amanda C Davi Resende and Diego F Aranha. 2018. Faster unbalanced private

set intersection. In Financial Cryptography and Data Security, FC 2018, Revised
Selected Papers 22. Springer, 203–221.

[42] Peter Rindal and Lance Roy. 2024. libOTe: An Efficient, Portable, and Easy to Use

Oblivious Transfer Library. https://github.com/osu-crypto/libOTe.

[43] Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: fast OPRF and circuit-

PSI from vector-OLE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 901–930.

[44] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova.

2019. Distributed vector-OLE: Improved constructions and implementation. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1055–1072.

[45] Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao

Wang. 2024. Actively Secure Private Set Intersection in the Client-Server Set-

ting. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security. 1478–1492.

[46] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage

Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,

et al. 2019. Protecting accounts from credential stuffing with password breach

alerting. In USENIX Security 19. 1556–1571.
[47] Mingli Wu and Tsz Hon Yuen. 2023. Efficient unbalanced private set intersection

cardinality and user-friendly privacy-preserving contact tracing. In 32nd USENIX
Security Symposium (USENIX Security 23). 283–300.

[48] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret:

Fast extension for correlated OT with small communication. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security.
1607–1626.

A Security Proofs
A.1 Security Model
A semi-honest adversary is the corrupted party that follows the

protocol as specified. In other words, the corrupt party runs the

protocol honestly but may try to learn as much as possible from

the messages it receives from the other party.

The protocol is secure against a semi-honest adversary means

that it guarantees the corrupt party can never learn any information

about the other party’s input, other than what is revealed through

its own output, as long as it follows the protocol.

Definition 1. Let Π be a two-party protocol computing 𝑓 =

(𝑓1, 𝑓2) and viewΠ

𝑖 (𝑥,𝑦) be the view of P𝑖 (the entire distribution
that P𝑖 can see), outΠ (𝑥,𝑦) = (outΠ

1
(𝑥,𝑦), outΠ

2
(𝑥,𝑦)) be the output

of the protocol where 𝑥 and 𝑦 are inputs of 𝑃1 and 𝑃2, respectively.

We say Π has semi-honest security if there exist PPT simulators S1,

S2, and the following holds for all inputs 𝑥,𝑦:(
viewΠ

1
(𝑥,𝑦), outΠ (𝑥,𝑦)

)
c≈
(
S1

(
1
𝜆, 𝑥, 𝑓1 (𝑥,𝑦)

)
, 𝑓 (𝑥,𝑦)

)
(
viewΠ

2
(𝑥,𝑦), outΠ (𝑥,𝑦)

)
c≈
(
S2

(
1
𝜆, 𝑦, 𝑓2 (𝑥,𝑦)

)
, 𝑓 (𝑥,𝑦)

)
487

https://github.com/osu-crypto/libOTe

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

A.2 The Security Proof for CI-CM Relaxed
OPRF

Theorem 1. Assuming that the Clients do not collude, if 𝐹 is a
PRF, and 𝐻 is modeled as a random oracle, the oblivious transfer
protocol is secure in the semi-honest model, then the protocol in Fig. 4
securely realizes Fci−rOPRF in the semi-honest model when parameters
𝑚,𝑤 are chosen such that for 𝑥 ∈ 𝑋 , there are at least 𝜅 1’s in
𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]] where 𝑣 = 𝐹 (𝑥) and 𝐹 is a random function,
with all but negligible probability.

Proof. Since the Clients do not collude, we only need to con-

sider the interaction between the Server and one of the Clients.
Security against corrupt Server. We construct S1 as follows. It is

given Server’s input set𝑋 and corresponding output {𝐹 (𝑥) | 𝑥 ∈ 𝑋 }.
S1 runs the honest Server’s protocol to generate its viewwith the fol-

lowing exceptions: In Step 2, for the query𝑞 = 𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]]
where 𝑣 = 𝐹𝑘 (𝑥), 𝑥 ∈ 𝑋 ,S1 programsH(𝑞) to 𝐹 (𝑥) (the output from
functionality). Otherwise H responds normally. For the oblivious

transfer in Step 6, The simulator generates Server’s random string

𝑠
$← {0, 1}𝑤 and chooses a random matrix𝐶 ∈ {0, 1}𝑚×𝑤 , and runs

the OT simulator to simulate the view for an OT receiver with

inputs 𝑠 [1], . . . , 𝑠 [𝑤] and outputs 𝐶1, . . . ,𝐶𝑤 . Finally S1 outputs

Server’s view.
Denote the output of Server and Client in the functionality

Fci−rOPRF as 𝑓 (𝑋,𝑌) = (𝑓1 (𝑋,𝑌), 𝑓2 (𝑋,𝑌)). We prove that

{S1 (1𝜅 , 𝑋, 𝑁𝑐 , 𝑓1 (𝑋,𝑌)) , 𝑓 (𝑋,𝑌)}
c≈
{
viewΠ

1
(𝑋,𝑌), outΠ (𝑋,𝑌)

}
via the following hybrid argument:

• Hybrid
0
: The Server’s view and Client’s output in the real proto-

col.

• Hybrid
1
: Same as Hybrid

0
except that on Client’s side, for each

𝑖 ∈ [𝑤], if 𝑠 [𝑖] = 0, then sample 𝐴𝑖
$← {0, 1}𝑚 and compute

𝐵𝑖 = 𝐴𝑖 ⊕ 𝐷𝑖 ; otherwise sample 𝐵𝑖
$← {0, 1}𝑚 and compute

𝐴𝑖 = 𝐵𝑖 ⊕ 𝐷𝑖 . This hybrid is identical to Hybrid
0
.

• Hybrid
2
: Same as Hybrid

1
except that S1 samples the matrix 𝐶

and runs the OT simulator to simulate the view of an OT receiver

for Server. This modification is indistinguishable from Hybrid
1

by security of the OT protocol.

• Hybrid
3
: The simulated view ofS1 and 𝑓 (𝑋,𝑌) (i.e. {𝐹 (𝑥) |𝑥 ∈ 𝑋 }

and {𝐹 (𝑦) |𝑥 ∈ 𝑌 }, for a random function 𝐹). The only difference

fromHybrid
2
is that the output outΠ (𝑋,𝑌) is replaced by 𝑓 (𝑋,𝑌).

Note that as mentioned above, for 𝑦 ∈ 𝑌 , if 𝑣 = 𝐹𝑘 (𝑦), then
H (𝑄1 [𝑣 [1]] ∥ . . . ∥𝑄𝑤 [𝑣 [𝑤]]) = H (𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]]).
Therefore, for the elements in𝑋 ∪𝑌 , the output can be considered
as computed through the random matrix 𝑅 in the real execution.

Specifically, we have

ΨΠ
𝑋

:= {H (𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]]) |𝑣 = 𝐹𝑘 (𝑥) , 𝑥 ∈ 𝑋 }
and

ΨΠ
𝑌

:= {H (𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]]) | 𝑣 = 𝐹𝑘 (𝑦) , 𝑦 ∈ 𝑌 } 8
, the

real output outΠ (𝑋,𝑌) = (ΨΠ
𝑋
,ΨΠ
𝑌
). Due to the randomness of 𝑅

and H as a random oracle, if ΨΠ
𝑋
is programmed to 𝑓1 (𝑋,𝑌), then

outΠ (𝑋,𝑌) is computationally indistinguishable from 𝑓 (𝑋,𝑌).

8
In the following proof, we denote the output in the real protocol as ΨΠ

𝑋
for the set 𝑋

and𝜓Π
𝑥 for the element 𝑥 .

Therefore, this hybrid is computationally indistinguishable from

Hybrid
2
.

Security against corrupt Client.We construct S2 as follows. It is

given Client’s input set 𝑌 and corresponding output {𝐹 (𝑦) | 𝑦 ∈ 𝑌 }.
S2 runs the honest Client’s protocol to generate its view with the

following exceptions: In Step 3, S2 sends a uniformly random PRF

key 𝑘 to Client. For the oblivious transfer in Step 6, S2 computes

the matrices𝐴 and 𝐵 honestly and run the OT simulator to produce

a simulated view for the OT sender. In Step 7, S2 samples a random

string 𝑠
$← {0, 1}𝑤 and computes the matrix 𝑆 as follows: if 𝑠 [𝑖] = 1,

then the 𝑖-th column 𝑆𝑖 = 1
𝑚
, otherwise 𝑆𝑖 = 0

𝑚
. S2 samples the

random matrix 𝑅 and computes 𝑃 = 𝑅 ⊕ 𝐴 ⊕ (𝐷 ∧ 𝑆) and sends it

to the Client. In Step 8, for the query 𝑞 =𝑄1 [𝑣 [1]] ∥ . . . ∥𝑄𝑤 [𝑣 [𝑤]]
where 𝑣 = 𝐹𝑘 (𝑦), 𝑦 ∈ 𝑌 , S2 programsH(𝑞) to 𝐹 (𝑦) (the output from
functionality). Finally S2 outputs Client’s view.

We prove that

{S2 (1𝜅 , 𝑌 , 𝑁𝑠 , 𝑓2 (𝑋,𝑌)) , 𝑓 (𝑋,𝑌)}
c≈
{
viewΠ

2
(𝑋,𝑌), outΠ (𝑋,𝑌)

}
via the following hybrid argument:

• Hybrid
0
: The Client’s view and Server’s output in the real proto-

col.

• Hybrid
1
: Same as Hybrid

0
except that S2 (instead of Server)

chooses the random PRF key 𝑘 . This hybrid is statistically identi-

cal to Hybrid
0
.

• Hybrid
2
: Same asHybrid

1
except thatS2 runs the OT simulator to

produce a simulated view of an OT sender for Client. This hybrid
is computationally indistinguishable from Hybrid

1
by security

of the OT protocol.

• Hybrid
3
: Same as Hybrid

2
but the protocol aborts if there ex-

ists 𝑥 ∈ 𝑋 such that, for 𝑣 = 𝐹𝑘 (𝑥), there are fewer than 𝜅

1’s in 𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]]. The parameters𝑚,𝑤 are chosen

such that if 𝐹 is a random function, then the aborting probabil-

ity is negligible. If the aborting probability in Hybrid
3
is non-

negligible, then we can construct a probabilistic polynomial-time

distinguisher D to distinguish the PRF from a random function.

More specifically, given the sets 𝑋 and 𝑌 , it computes the ma-

trix 𝐷 as in Step 4. For the input function 𝑓 , the distinguisher

D computes 𝑣 = 𝑓 (𝑥) and 𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]] for each

𝑥 ∈ 𝑋 \ 𝐼 . If there exists 𝑥 such that, there are fewer than 𝜅

1’s in 𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]], then output “𝑓 is PRF”, otherwise

output “𝑓 is random function”. The output is correctly with prob-

ability
1

2
+ non-negl, it breaks the security of PRF. Hence, the

protocol aborts with negligible probability in Hybrid
3
.

• Hybrid
4
: Same as Hybrid

3
except that S2 samples random string

𝑠 and random matrix 𝑅 and computes 𝑃 = 𝑅 ⊕ 𝐴 ⊕ (𝐷 ∧ 𝑆) in
Step 7. Due to the randomness of 𝑅, this hybrid is statistically

indistinguishable from the previous.

• Hybrid
5
: The simulated view of S2 and 𝑓 (𝑋,𝑌). The only differ-

ence from Hybrid
4
is that the output outΠ (𝑋,𝑌) is replaced by

𝑓 (𝑋,𝑌). Note that H is a random oracle, and ΨΠ
𝑌
is programmed

to output 𝑓2 (𝑋,𝑌). We only need to show that ΨΠ
𝑋
is computation-

ally indistinguishable from {𝐹 (𝑥) |𝑥 ∈ 𝑋 }. As mentioned above,

it holds that 𝑅 =𝑄 ⊕ (𝐷∧𝑆). Since 𝑠 is randomly sampled and un-

known to the Client, and, at the same time, for 𝑥 ∈ 𝑋 , if 𝑣 = 𝐹𝑘 (𝑥),
there will be more than 𝜅 1’s in 𝐷1 [𝑣 [1]], . . . , 𝐷𝑤 [𝑣 [𝑤]]. For

488

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

𝑥 ∉ 𝑌 , 𝜓Π
𝑥 (the output for 𝑥 in the real protocol) appears ran-

dom to the Client, and for 𝑥 ∈ 𝑌 , 𝜓Π
𝑥 ∈ ΨΠ

𝑌
. Therefore, ΨΠ

𝑋
is

computationally indistinguishable from {𝐹 (𝑥) |𝑥 ∈ 𝑋 }.
□

A.3 The Security Proof for the CI-VOLE Relaxed
OPRF

Theorem 2. Assuming that the Clients do not collude, if 𝐻 is
modeled as a random oracle, the OKVS scheme is linear, the parameters
|B| ≥ 2

𝜆+log
2
𝑁𝑠+log

2
𝑁𝑐 and |F| ≥ 2

𝜅 , the subfield VOLE protocol is
secure in the semi-honest model, then the protocol in Fig. 5 securely
realizes Fci−rOPRF in the semi-honest model.

Proof. Security against corrupt Server.We construct S1 as

follows. It is given Server’s input set 𝑋 and corresponding output

{𝐹 (𝑥) | 𝑥 ∈ 𝑋 }. S1 runs the honest Server’s protocol to generate

its view with the following exceptions: In Step 2, for the query

𝑞 = Decode(−→𝑅 , 𝑥)+ΔHB (𝑥),S1 programsH(𝑞) to 𝐹 (𝑥). Otherwise
H responds normally. For the subfield VOLE in Step 4, The simulator

generates Server’s random element Δ and chooses a random vector

−→
𝐶 , and runs the subfield VOLE simulator to simulate the view with

inputs Δ and output

−→
𝐶 . Finally S1 outputs Server’s view. We prove

that

{S1 (1𝜅 , 𝑋, 𝑁𝑐 , 𝑓1 (𝑋,𝑌)) , 𝑓 (𝑋,𝑌)}
c≈
{
viewΠ

1
(𝑋,𝑌), outΠ (𝑋,𝑌)

}
via the following hybrid argument:

• Hybrid
0
: The Server’s view and Client’s output in the real proto-

col.

• Hybrid
1
: Same as Hybrid

0
except that S1 samples the vector

−→
𝐶

and runs the subfield VOLE simulator to simulate the view. Note

that in the real execution,

−→
𝐴 is a random vector, so

−→
𝐶 is also

a random vector. This modification is indistinguishable from

Hybrid
0
due to the security of the subfield VOLE protocol.

• Hybrid
2
: The simulated view of S1 and 𝑓 (𝑋,𝑌). The only differ-

ence from Hybrid
1
is that the output outΠ (𝑋,𝑌) is replaced by

𝑓 (𝑋,𝑌). Note thatH is a random oracle, andΨΠ
𝑋
is programmed to

output 𝑓1 (𝑋,𝑌).We only need to show thatΨΠ
𝑌
is computationally

indistinguishable from {𝐹 (𝑦) |𝑦 ∈ 𝑌 }. Note that 𝐵 is encoded by

HB (𝑌) and is unknown to the Server. Therefore, for 𝑦 ∉ 𝑋 ,𝜓Π
𝑦 :=

Decode(−→𝑄 ,𝑦) = Decode(−→𝑅 +Δ−→𝐵 ,𝑦) = Decode(−→𝑅 ,𝑦) +ΔHB (𝑦)
appears random to the Server, and for 𝑦 ∉ 𝑋 ,𝜓Π

𝑦 ∈ ΨΠ
𝑋
, so ΨΠ

𝑌
is

computationally indistinguishable from {𝐹 (𝑦) |𝑥 ∈ 𝑌 }.
Security against corrupt Client.We construct S2 as follows. It is

given Client’s input set 𝑌 and corresponding output {𝐹 (𝑦) | 𝑦 ∈ 𝑌 }.
S2 runs the honest Client’s protocol to generate its view with the

following exceptions: For the subfield VOLE in Step 4, S2 computes

the vectors

−→
𝐴 and

−→
𝐵 honestly and run the OT simulator to produce

a simulated view. In Step 5, S2 samples a random vector

−→
𝑃 and

sends it to the Client. In Step 6, for the query 𝑞 = Decode(−→𝑄 ,𝑦), S2

programs H𝑜 (𝑞) to 𝐹 (𝑦). Finally S2 outputs Client’s view.
We prove that

{S2 (1𝜅 , 𝑌 , 𝑁𝑠 , 𝑓2 (𝑋,𝑌)) , 𝑓 (𝑋,𝑌)}
c≈
{
viewΠ

2
(𝑋,𝑌), outΠ (𝑋,𝑌)

}
via the following hybrid argument:

• Hybrid
0
: The Client’s view and Server’s output in the real proto-

col.

• Hybrid
1
: Same as Hybrid

0
except that S2 runs the subfield VOLE

simulator with input

−→
𝐴 and

−→
𝐵 to produce a simulated view for

the Client. This hybrid is computationally indistinguishable from

Hybrid
0
by security of the subfield VOLE protocol.

• Hybrid
2
: Same as Hybrid

1
but the protocol aborts if there exists

𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , and 𝑥 ≠ 𝑦 such that HB (𝑥) = HB (𝑦). The prob-
ability of this is at most

𝑁𝑠 ·𝑁𝑐

|B | , and the parameter B is chosen

such that |B| ≥ 2
𝜆+log

2
𝑁𝑠+log

2
𝑁𝑐
. Therefore, the probability of

aborting is at most 2
−𝜆
, which is negligible with respect to the

statistical security parameter.

• Hybrid
3
: Same as Hybrid

2
but the protocol aborts if Encode(𝑌,

HB (𝑌)) = ⊥. The OKVS scheme guarantees that the probability

of this aborting is negligible with respect to the statistical security

parameter.

• Hybrid
4
: Same as Hybrid

3
except that S2 samples the random

vector

−→
𝑃 in Step 5. Due to the randomness of

−→
𝑅 , this hybrid is

statistically indistinguishable from the previous.

• Hybrid
5
: The simulated view of S2 and 𝑓 (𝑋,𝑌). The only differ-

ence from Hybrid
4
is that the output outΠ (𝑋,𝑌) is replaced by

𝑓 (𝑋,𝑌). Note that H𝑜 is a random oracle, and ΨΠ
𝑌
is programmed

to output 𝑓2 (𝑋,𝑌). We only need to show that ΨΠ
𝑋
is computa-

tionally indistinguishable from {𝐹 (𝑥) |𝑥 ∈ 𝑋 }. Note that in the

real protocol, it holds that 𝜓Π
𝑥 := Decode(−→𝑅 , 𝑥) + ΔHB (𝑥) =

Decode(−→𝑄 , 𝑥) +Δ(HB (𝑥) −Decode(−→𝐵 , 𝑥)). Since Δ is randomly

sampled and unknown to the Client, and HB,H𝑜 are random ora-

cles, for 𝑥 ∉ 𝑌 ,𝜓Π
𝑥 appears random to the Client, and for 𝑥 ∈ 𝑌 ,

𝜓Π
𝑥 ∈ ΨΠ

𝑌
. Therefore, ΨΠ

𝑋
is computationally indistinguishable

from {𝐹 (𝑥) |𝑥 ∈ 𝑋 }.

□

A.4 The Security Proof for the PRF 𝐹

The pseudorandom function 𝐹 we used is a simplified version of the

construction by Chase and Miao [12]. Since [12] considers the case

of a malicious server, the adversary’s input is extracted through

the use of a random oracle, i.e., 𝐹𝑘 (𝐻 (𝑥)), where 𝐻 is a random

oracle (instantiated by hash function) and 𝐹𝑘 is the pseudorandom

function. Therefore, they set the input length of the pseudorandom

function (i.e., the output length of 𝐻 (𝑥)) to be 256 bits to ensure

collision resistance. In contrast, when only considering semi-honest

adversaries, there is no need to extract the input, so our scheme

directly computes 𝐹𝑘 (𝑥), with an input length of 128 bits, which

can be used directly as input for AES.

The security proof of our construction is similar to that in [12].

For completeness, we provide the formal security proof below.

Theorem 3. Let 𝐺 : {0, 1}𝜅 × {0, 1}𝜅 → {0, 1}𝜅 be a pseudoran-
dom function and PRG : {0, 1}𝜅 → {0, 1}𝑡 ·𝜅 be a pseudorandom
generator. On a key 𝑘 and input 𝑥 , define

𝐹𝑘 (𝑥) :=𝐺𝑘1
(𝑥) | |𝐺𝑘2

(𝑥) | | . . . | |𝐺𝑘𝑡 (𝑥)

where 𝑘1 | |𝑘2 | | . . . | |𝑘𝑡 ←− PRG(𝑘). Then 𝐹𝑘 (𝑥) is also a pseudoran-
dom function.

489

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

Proof. We show that any PPT adversary A cannot distinguish

𝐹𝑘 (𝑥) from a random function via a sequence of hybrids:

• Hybrid
0
: The adversary A has access to 𝐹𝑘 (𝑥).

• Hybrid
1
: The adversary A has access to the following function

𝐺𝑘1
(𝑥) | |𝐺𝑘2

(𝑥) | | . . . | |𝐺𝑘𝑡 (𝑥)

where 𝑘1, . . . , 𝑘𝑡
$← {0, 1}𝜅 are sampled uniformly at random.

If A can distinguish between Hybrid
0
and Hybrid

1
, then we can

construct another PPT adversary B that breaks the security of

PRG. In particular, B first gets 𝑘1 | |𝑘2 | | . . . | |𝑘𝑡 from the PRG chal-

lenger. On query 𝑥 fromA,B responds with𝐺𝑘1
(𝑥) | |𝐺𝑘2

(𝑥) | | . . .
| |𝐺𝑘𝑡 (𝑥). Finally B outputs whatever A outputs.

If the PRG challenger generates 𝑘1 | |𝑘2 | | . . . | |𝑘𝑡 from PRG, then
A is accessing Hybrid

0
; otherwise, the challenger generates

𝑘1 | |𝑘2 | | . . . | |𝑘𝑡 uniformly at random, thenA is accessingHybrid
0
.

Hence, if A can distinguish between Hybrid
0
and Hybrid

1
, then

B can break the PRG security.

• Hybrid
2
: The adversary A has access to the following function

𝐺1 (𝑥) | |𝐺2 (𝑥) | | . . . | |𝐺𝑡 (𝑥)

where𝐺1, . . . ,𝐺𝑡 are all independent random functions. We argue

that Hybrid
2
is computationally indistinguishable from Hybrid

1

via a sequence of hybrids, whereHybrid
2,0 = Hybrid

1
andHybrid

2,𝑡

= Hybrid
2
:

Hybrid
2,𝑖 : The adversaryA has access to the following function

𝐺1 (𝑥) | | . . . | |𝐺𝑖 (𝑥) | |𝐺𝑘𝑖+1
(𝑥) | | . . . | |𝐺𝑘𝑡 (𝑥)

where 𝐺1, . . . ,𝐺𝑖 are independent random functions, and 𝑘𝑖+1,

. . . , 𝑘𝑡 are sampled uniformly at random.

If A can distinguish between Hybrid
2,𝑖−1

and Hybrid
2,𝑖 for any

1 ≤ 𝑖 ≤ 𝑡 , then we can construct another PPT adversary B that

breaks the PRF security of 𝐺𝑖 . In particular, B first randomly

samples 𝑘𝑖+1, . . . , 𝑘𝑡 , and then starts the experiment with A.

On query 𝑥 from A, B computes 𝐺𝑘𝑖+1
(𝑥) | | . . . | |𝐺𝑘𝑡 (𝑥) and

randomly samples the outputs of 𝐺1 (𝑥), . . . ,𝐺𝑖−1 (𝑥). Note that
if 𝑥 already appears as an input to𝐺1, . . . ,𝐺𝑖−1 before, B uses

the previous outputs. Then B queries the PRF challenger on

input 𝑥 for an output 𝑠 , and sends the following back to A:

𝐺1 (𝑥) | | . . . | |𝑠 | |𝐺𝑘𝑖+1
(𝑥) | | . . . | |𝐺𝑘𝑡 (𝑥).

Finally B outputs whatever A outputs.

If the PRF challenger chooses PRF, thenA is accessingHybrid
2,𝑖−1

;

otherwiseA is accessing Hybrid
2,𝑖 . Hence, ifA can distinguish

between Hybrid
2,𝑖−1

and Hybrid
2,𝑖 , then B can distinguish PRF

from a random function.

• Hybrid
3
: The adversaryA has access to a random function 𝐹 (𝑥).

Let the queries fromA be 𝑥1, . . . , 𝑥𝑛 , and assumeWLOG that they

are all distinct queries. We argue thatHybrid
2
is computationally

indistinguishable from Hybrid
3
via a sequence of hybrids, where

Hybrid
3,0 = Hybrid

2
and Hybrid

3,𝑛 = Hybrid
3
:

Hybrid
3,𝑖 : For the first 𝑖 queries 𝑥1, . . . , 𝑥𝑖 from A, choose the

outputs 𝑟1, . . . , 𝑟𝑖 independently at random. For each 𝑗 ∈ [𝑖],
store the implied table for𝐺1, . . . ,𝐺𝑡 , namely store𝐺1 (𝑥) | |𝐺2 (𝑥)
| | . . . | |𝐺𝑡 (𝑥) = 𝑟 𝑗 . After the first 𝑖 queries, compute the output

according to this 𝐺1, . . . ,𝐺𝑡 .

The Hybrid
3,𝑖 is identical to Hybrid

3,𝑖−1
unless the 𝑖-th query

from A collides with a previous query 𝑥 𝑗 . However, the proba-

bility that A can find such a collision is negligible.

□

B CM-OPRF
Chase and Miao [12] present an efficient relaxed OPRF protocol

that is based on lightweight operations, in which the PRF key is an

𝑚 ×𝑤 binary matrix 𝐶 where𝑚 and 𝑤 is depend on the Client’s
input size and security parameters.

At the beginning of the protocol, the Client generates two𝑚 ×𝑤
binary matrices 𝐴 and 𝐵, where 𝐴 is a random matrix while 𝐵 =

𝐴 ⊕ 𝐷 is generated according to matrix 𝐴 and the Client’s input
set 𝑌 . Specifically, for each element 𝑦 ∈ 𝑌 , let 𝑣 = 𝐹𝑘 (𝑦) in which

𝐹 : {0, 1}𝜅 × {0, 1}∗ → [𝑚]𝑤 is a pseudorandom function and 𝑘

is known to both parties, the matrix 𝐷 is constructed such that

𝐷𝑖 [𝑣 [𝑖]] = 0 for all 𝑖 ∈ [𝑤] and the remaining positions are 1. After

that, the Server can obtain the matrix 𝐶 (which is the key of this

OPRF) where𝐶𝑖 is either equal to𝐴𝑖 or𝐵𝑖 by using oblivious transfer.

When the Server wants to do OPRF evaluation on some 𝑥 , it com-

putes𝑢 = 𝐹𝑘 (𝑥) and its OPRF value is𝐻 (𝐶1 [𝑢 [1]] ∥ . . . ∥𝐶𝑤 [𝑢 [𝑤]])
where 𝐻 is a hash function. For each 𝑦 ∈ 𝑌 , the Client can get its

OPRF value 𝐻 (𝐴1 [𝑣 [1]] ∥ . . . ∥𝐴𝑤 [𝑣 [𝑤]]) where 𝑣 = 𝐹𝑘 (𝑦).
The correctness of this protocol is follows from that for each

element 𝑦 ∈ 𝑌 and 𝑣 = 𝐹𝑘 (𝑦), it holds that 𝐴𝑖 [𝑣 [𝑖]] = 𝐵𝑖 [𝑣 [𝑖]] =
𝐶𝑖 [𝑣 [𝑖]] for 𝑖 ∈ [𝑤]. It can be seen that the Client can only compute

OPRF values on its own input elements since the Client knows
nothing about the Server’s random chooses about 𝐴𝑖 or 𝐵𝑖 , while

the Server cannot learn anything about Client’s input set.

C Choice of Parameters
In this section, we present the specific parameter choices for CI-CM

PSI under different values of 𝑁𝑠 , 𝑁𝑐 . The following table is derived

from the inequality

𝑁𝑠 ·
𝜅−1∑︁
𝑘=0

(
𝑤

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑤−𝑘 ≤ 𝑛𝑒𝑔𝑙 (𝜆)

where 𝑝 =
(
1 − 1

𝑚

)𝑁𝑐
.

Table 5: Parameters for Server’s set size 𝑁𝑠 , Client’s set size
𝑁𝑐 , matrix height𝑚, matrix width𝑤 , and output length 𝑜𝑢𝑡

in bits of the hash function 𝐻 .

𝑁𝑠 𝑁𝑐 𝑚 𝑤 𝑜𝑢𝑡

2
20

2
8 𝑁𝑐 623 68

2
12 𝑁𝑐 621 72

2
16 𝑁𝑐 621 76

2
24

2
8 𝑁𝑐 635 72

2
12 𝑁𝑐 633 76

2
16 𝑁𝑐 633 80

2
28

2
8 𝑁𝑐 646 76

2
12

0.5𝑁𝑐 1887 80

2
12 𝑁𝑐 645 80

2
12

2𝑁𝑐 355 80

2
16 𝑁𝑐 645 84

490

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

D The Unbalanced PSI Protocol with Update
Phase

D.1 Ideal Functionality
In Fig. 8, we present the ideal functionality of the unbalanced PSI

protocol with an update phase. We only consider updates to the

Server’s set, as updates to the Client’s set can be efficiently han-

dled through the online phase of the unbalanced PSI protocol by

rerunning it. In the scenario we consider, after the Server and Client
obtain the intersection of their initial sets 𝑋0 and 𝑌0 via PSI, the

Server can add or remove elements on day 𝑑 , denoted as 𝑋𝑎𝑑𝑑
𝑑

and

𝑋𝑑𝑒𝑙
𝑑

, respectively. The functionality computes the intersection of

the updated elements with the Client’s set and outputs 𝐼𝑎𝑑𝑑
𝑑

and 𝐼𝑑𝑒𝑙
𝑑

to the Client. From this, the Client can compute the intersection

𝐼𝑑 = (𝐼𝑑−1 ∪ 𝐼𝑎𝑑𝑑𝑑
) \ 𝐼𝑑𝑒𝑙

𝑑
for day 𝑑 .

Inputs: Server’s initial input set 𝑋0 and Client’s initial input set 𝑌0.

On day 𝑑 , the set of elements added by the Server is 𝑋𝑎𝑑𝑑
𝑑

, and the

set of elements deleted is 𝑋𝑑𝑒𝑙
𝑑

.

Functionality:
I. Initial intersection.
Upon input (Server,sid, 𝑋0) from the Server and (Client,sid, 𝑌0)
from the Client, the functionality outputs 𝐼0 = 𝑋0 ∩ 𝑌0 to the

Client.
II. Update phase.

Day 𝑑:
Upon input (Server,sid, (𝑋𝑎𝑑𝑑

𝑑
, 𝑋𝑑𝑒𝑙
𝑑
)) from the Server and

(Client,sid) from the Client, the functionality outputs 𝐼𝑎𝑑𝑑
𝑑

=

𝑋𝑎𝑑𝑑
𝑑
∩ 𝑌0 and 𝐼

𝑑𝑒𝑙
𝑑

= 𝑋𝑑𝑒𝑙
𝑑
∩ 𝑌0 to the Client.

The Client computes the intersection as 𝐼𝑑 = (𝐼𝑑−1 ∪ 𝐼𝑎𝑑𝑑𝑑
) \ 𝐼𝑑𝑒𝑙

𝑑
.

Figure 8: The ideal functionality for unbalanced PSI protocol
with update phase.

D.2 Protocols
In Fig. 9 and Fig. 10, we present the protocol diagrams for the

extended unbalanced PSI protocol with an update phase, built upon

our ci-rOPRF protocols (CI-CM and CI-VOLE).

E Discussion
The two ci-rOPRF constructions in our paper assume that the clients

do not collude, and we provide formal security proofs for this

setting. In this section, we discuss the scenario where the clients

may collude.
9

When considering the scenario where multiple Clients collude,
we expect the CI-CMOPRF to remain secure, whereas directly using

the CI-VOLE OPRF would no longer be secure. The key point, as

mentioned in Sec. 3.3, is that the CI-CM OPRF allows the Server to
select 𝑠 during the online phase, enabling different values of 𝑠 to be

chosen for different Clients. In contrast, the CI-VOLE OPRF requires

9
By the way, collusion between the Server and a Client clearly does not leak any

information about other Clients. This is because there is no interaction between the

Clients, so the Server cannot obtain any additional information about the other Clients
from the Client it colludes with.

the Server to choose Δ in the offline phase, and using the same Δ
for colluding Clients would leak the Server’s privacy. Specifically,
after the two colluding clients, C1 and C2, execute the CI-VOLE

OPRF protocol with the Server, C1 will obtain 𝑅 + Δ𝐵1 and C2 will

obtain 𝑅 + Δ𝐵2, where 𝐵𝑖 (𝑖 ∈ {1, 2}) is the OKVS encoding of the
elements of Client C𝑖 ’s set. As a result, the adversary could deduce

(𝑅 + Δ𝐵1) − (𝑅 + Δ𝐵2) = Δ(𝐵1 − 𝐵2). Since the adversary knows

𝐵1−𝐵2, it can then compute the Server’s secret Δ. In contrast, the CI-
CM OPRF can avoid this issue by using different values of 𝑠 for each

Client. Therefore, we expect CI-CM OPRF to remain secure even

in the presence of multiple colluding clients. However, a rigorous

security proof is still required, and we consider this as part of future

work.

Although directly using CI-VOLE OPRF is not secure when mul-

tiple clients collude, we can address this issue by selecting different

Δ values for each Client. However, this would require re-executing

the offline phase for each Client. Nonetheless, the offline phase

remains client-independent, meaning it does not depend on the

Client’s data. It is worth noting that this process does not incur

significant costs. On one hand, the offline phase of the CI-VOLE

OPRF is already quite efficient (taking only around 13 seconds for

a set of size 2
24
). More importantly, in this case, we can further sig-

nificantly reduce the computational cost by reusing the computed

results. Specifically, during the offline phase, the OPRF values for

the Server’s set 𝑋 are computed using the following expression:

Ψ𝑋 :=

{
H𝑜

(
Decode(−→𝑅 , 𝑥) + ΔHB (𝑥)

)
| 𝑥 ∈ 𝑋

}
.

Each computation requires: one OKVS decoding, two hash opera-

tions, one field addition, and one field multiplication. The primary

computational cost comes from theOKVS decoding. However, when

different values of Δ are selected and the expression is recomputed,

the OKVS decoding and the hash operation HB (𝑥) can be reused,

meaning that only a minimal additional computational cost is in-

curred.

491

Proceedings on Privacy Enhancing Technologies 2025(3) X. Wang et al.

Server Client

𝑖𝑛𝑝𝑢𝑡 : 𝑋 = {𝑥1, ..., 𝑥𝑁𝑠 } 𝑖𝑛𝑝𝑢𝑡 : 𝑌 = {𝑦1, ..., 𝑦𝑁𝑐 }
𝑜𝑢𝑡𝑝𝑢𝑡 : ⊥ 𝑜𝑢𝑡𝑝𝑢𝑡 : 𝑋 ∩𝑌

Base Phase
Agree on𝑚,𝑤,𝑜𝑢𝑡

and PRF key 𝑘

Setup Phase
Initialize Cuckoo filter CF
with parameters 𝑁𝑠 , 𝜀, 𝑓 , 𝑏, 𝐻𝑓

sample matrix 𝑅
$← {0, 1}𝑚×𝑤

For 𝑖 = 1 to 𝑁𝑠 :

compute 𝑣 = 𝐹𝑘 (𝑥𝑖)
𝜓 =𝐻 (𝑅1 [𝑣 [1]] ∥ . . . ∥𝑅𝑤 [𝑣 [𝑤]])
CF.insert(𝜓)

𝐶𝐹

Online Phase

sample 𝑠
$← {0, 1}𝑤 Initialize 𝐷 to all 1’s matrix

For 𝑖 = 1 to 𝑁𝑐 :

compute 𝑣𝑖 = 𝐹𝑘 (𝑦𝑖)
For 𝑗 = 1 to 𝑤:

set 𝐷 𝑗 [𝑣𝑖 [𝑗]] = 0

sample 𝐴
$← {0, 1}𝑚×𝑤

compute 𝐵 =𝐴 ⊕ 𝐷
For 𝑖 = 1 to 𝑤:

𝑠 [𝑖] Run OTs via

OT Extension

𝐴𝑖 , 𝐵𝑖

𝐶𝑖

compute 𝑃 = 𝑅 ⊕ 𝐶 𝑃
compute𝑄 =𝐴 ⊕ 𝑃
𝐼 := {}
For 𝑖 = 1 to 𝑁𝑐 :

𝜓 =𝐻 (𝑄1 [𝑣𝑖 [1]] ∥ . . . ∥𝑄𝑤 [𝑣𝑖 [𝑤]])
If𝐶𝐹 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜓) :

put 𝑦𝑖 to 𝐼

output 𝐼

Update Phase
Insert/Delete 𝑁𝑢 itemsU := {}

Let 𝑜𝑝 ∈ {Insert,Delete}
For 𝑖 = 1 to 𝑁𝑢 :

compute OPRF value𝜓𝑖

compute tag 𝑡𝑖 and position

𝑝𝑖 for𝜓𝑖

put (𝑡𝑖 , 𝑝𝑖) into U U, 𝑜𝑝
For 𝑖 = 1 to 𝑁𝑢 :

Insert/Delete 𝑡𝑖 in CF at

position 𝑝𝑖 or 𝑝𝑖 ⊕ 𝐻𝑓 (𝑡𝑖)

Figure 9: Unbalanced PSI protocol with update phase from CI-CM Relaxed OPRF.

492

Unbalanced PSI from Client-Independent Relaxed Oblivious PRF Proceedings on Privacy Enhancing Technologies 2025(3)

Server Client

𝑖𝑛𝑝𝑢𝑡 : 𝑋 = {𝑥1, ..., 𝑥𝑁𝑠 } 𝑖𝑛𝑝𝑢𝑡 : 𝑌 = {𝑦1, ..., 𝑦𝑁𝑐 }
𝑜𝑢𝑡𝑝𝑢𝑡 : ⊥ 𝑜𝑢𝑡𝑝𝑢𝑡 : 𝑋 ∩𝑌

Base Phase
Agree on B, F

and OKVS scheme (Encode,Decode)

Let HB
: {0, 1}∗ → B,

H𝑜
: {0, 1}∗ → {0, 1}𝑜𝑢𝑡 be random oracles

Setup Phase
Initialize Cuckoo filter CF
with parameters 𝑁𝑠 , 𝜀, 𝑓 , 𝑏, 𝐻𝑓

sample vector 𝑅
$← F𝑚 , Δ

$← F

For 𝑖 = 1 to 𝑁𝑠 :

compute𝜓 = H𝑜
(
Decode(𝑅, 𝑥𝑖) + ΔHB (𝑥𝑖)

)
CF.insert(𝜓)

𝐶𝐹

Online Phase

sample 𝐴
$← F𝑚

compute 𝐵 := Encode(𝑌,HB (𝑌))
Δ (subfield)

VOLE

𝐴, 𝐵

𝐶 :=𝐴 + Δ𝐵

compute 𝑃 = 𝑅 +𝐶 𝑃
compute𝑄 = 𝑃 − 𝐴
𝐼 := {}
For 𝑖 = 1 to 𝑁𝑐 :

𝜓 = H𝑜 (Decode(𝑄, 𝑦𝑖))
If𝐶𝐹 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜓) :

put 𝑦𝑖 to 𝐼

output 𝐼

Update Phase
Insert/Delete 𝑁𝑢 itemsU := {}

Let 𝑜𝑝 ∈ {Insert,Delete}
For 𝑖 = 1 to 𝑁𝑢 :

compute OPRF value𝜓𝑖

compute tag 𝑡𝑖 and position

𝑝𝑖 for𝜓𝑖

put (𝑡𝑖 , 𝑝𝑖) into U U, 𝑜𝑝
For 𝑖 = 1 to 𝑁𝑢 :

Insert/Delete 𝑡𝑖 in CF at

position 𝑝𝑖 or 𝑝𝑖 ⊕ 𝐻𝑓 (𝑡𝑖)

Figure 10: Unbalanced PSI protocol with update phase from CI-VOLE Relaxed OPRF.

493

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Oblivious Transfer
	2.3 Vector Oblivious Linear Evaluation
	2.4 Oblivious Key-Value Store
	2.5 Cuckoo Filter

	3 Client-independent Relaxed OPRF
	3.1 Ideal Functionality
	3.2 CI-CM Relaxed OPRF
	3.3 CI-VOLE Relaxed OPRF

	4 Unbalanced PSI in the Offline/Online Setting
	4.1 Unbalanced PSI Protocol from ci-rOPRF
	4.2 Extensions

	5 Implementation and Performance Comparison
	5.1 Concrete Parameter Choices
	5.2 Implementation Details
	5.3 Benchmark
	5.4 Comparison to Related Work

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Security Proofs
	A.1 Security Model
	A.2 The Security Proof for CI-CM Relaxed OPRF
	A.3 The Security Proof for the CI-VOLE Relaxed OPRF
	A.4 The Security Proof for the PRF F

	B CM-OPRF
	C Choice of Parameters
	D The Unbalanced PSI Protocol with Update Phase
	D.1 Ideal Functionality
	D.2 Protocols

	E Discussion

