
Stochastic Models for Remote Timing Attacks
Simone Bozzolan

Università Ca’ Foscari Venezia

simone.bozzolan@unive.it

Diletta Olliaro

Università Ca’ Foscari Venezia

diletta.olliaro@unive.it

Stefano Calzavara

Università Ca’ Foscari Venezia

stefano.calzavara@unive.it

Andrea Marin

Università Ca’ Foscari Venezia

marin@unive.it

Gianfranco Balbo

Università di Torino

balbo@di.unito.it

Matteo Sereno

Università di Torino

matteo.sereno@unito.it

Abstract
In this paper, we present the first remote timing attack based on

formal stochastic models. Our attack uses queuing models from

the field of performance evaluation to estimate the service times

of different classes of network requests. By using Bayesian statis-

tics, we then identify opportunities for remote timing attacks by

answering the following inverse question: what is the probability

that a given network request belongs to a target class, given an es-

timate of its service time? Our experimental evaluation on popular

web applications and websites shows that our investigation is not

just a theoretical exercise, because our attack outperforms existing

empirical approaches in terms of standard performance figures. We

believe that the formal foundations put forward in this paper can

be successfully applied to the creation of principled remote timing

attacks which are more effective, because better equipped to deal

with the complexity of the problem they are trying to solve.

Keywords
web privacy, queuing theory, remote timing attacks

1 Introduction
Timing attacks abuse timing information to infer private informa-

tion about a target system. Timing attacks on the Internet are called

remote timing attacks and have been proven to have significant prac-

tical consequences [7]. For instance, Brumley and Boneh showed

that an attacker could measure the response-time variances of a

remote web server to reconstruct its RSA private key and thus break

cryptography [5]. In the privacy setting, Felten and Schneider used

a cache-based timing attack to track web users [8]. Their idea is that

once a user visits a static page, their cache causes the page to load

faster on subsequent visits. Later work in the field abused remote

timing attacks to disclose sensitive information about target users,

such as the existence of active accounts [3] and the authentication

state of a victim [25]. This line of work is important because it

proved the practicality of remote timing attacks, which may sound

far-fetched on paper; yet, prior work is based on simple empirical

observations with limited scientific underpinnings. At a high level,

prior work leverages the same intuitive idea: response times are

collected and undergo some form of statistical analysis to determine

whether they reveal any information about the target system. The

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(3), 545–559
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2025-0112

key differences between different proposals lie in the attack’s ob-

jectives, the details about data collection, and the specific nature of

the statistical analysis, e.g., a simple visual inspection of histograms

rather than the adoption of a statistical test like the t-test.

Inspired by the rich research line on queuing theory [2, 30],

in this paper we put forward a novel approach to remote timing

attacks based on stochastic modeling. Queuing theory is a popu-

lar branch of applied mathematics widely used for performance

engineering tasks. It resorts to stochastic models to predict quanti-

tative behaviors of systems such as their response times. At first

glance, queuing models may seem to rely on strong assumptions for

numerical tractability, but experience in engineering practice has

demonstrated their remarkable robustness allowing practitioners

to adopt it for many purposes [22]. A queuing model can predict

the expected response time of a network request given its type,

e.g., a payment request. Here, we propose a novel approach that

combines Bayesian statistics with queuing modeling to address the

inverse problem: determining the likely type of a network request

based on its observed response time.

This approach offers a potential new foundation for remote

timing attacks by outlining a general framework that may help

distinguish different types of requests based on timing information.

Notably, the relevance of this perspective is not purely theoretical;

it also offers practical advantages. Our method appears naturally

suited to handle the complexities that make performance evalu-

ation challenging, such as the impact of the load factor on the

target system’s response times — factors that can sometimes limit

the robustness of purely empirical attacks. Moreover, our attack

establishes quantitative probability estimates about the predicted

request type, thus providing a formal assurance about the estimated

accuracy of the attack, and leverages the generality of our key idea

to be uniformly applied to different settings. Even from a purely ex-

perimental perspective, our attack is superior to the state of the art.

It outperforms the classic box test by Crosby et al. [7] in terms of

number of successful predictions and the BakingTimer attack [25]

in terms of all the considered performance measures. We believe

that the formal foundations put forward in this paper can be suc-

cessfully applied to the creation of principled remote timing attacks

which are more effective in practice, because better equipped to

deal with the complexity of the problem they are trying to solve.

Contributions
In this paper, we make the following contributions:

(1) We propose a new timing attack strategy that builds on the

combined use of Bayesian statistics and queuing modeling

to improve existing empirical approaches proposed in the

545

https://orcid.org/0009-0009-1054-1234
https://orcid.org/0000-0002-7361-819X
https://orcid.org/0000-0001-9179-8270
https://orcid.org/0000-0002-5958-1204
https://orcid.org/0000-0001-8719-9267
https://orcid.org/0000-0002-5339-3456
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0112

Proceedings on Privacy Enhancing Technologies 2025(3) Bozzolan et al.

literature (Section 3). By leveraging the quantitative analy-

sis supported by stochastic models, our approach aims to

address key limitations in current methods, offering a more

robust framework for timing attacks (Section 4).

(2) We propose a specific instantiation of the stochastic model

supporting our timing attack based on a M/M/1 Processor

Sharing (M/M/1/PS) queuing system [11, 17]. We use stan-

dard mathematical tools to support quantitative analyses

designed to implement effective remote timing attacks in

practice (Section 5).

(3) We implement our new timing attack and we compare its

effectiveness against existing state-of-the-art attacks, dis-

cussing the key advantages enabled by the adoption of our

proposal (Section 6).

To support reproducibility and fully comply with open science

policies, we make the code of our research and the collected data

available for review [4].

2 Background
Wehere review selected technical ingredients required to appreciate

the paper. We also introduce the key terminology and notation.

2.1 Remote Timing Attacks
In a remote timing attack, the attacker infers information about

server-side computations based on measured response times, e.g.,

to determine state information about other users of the system [7].

More specifically, we assume that each computation belongs to

one of 𝑘 ≥ 2 possible classes and that the attacker measures the

response times of network requests to determine the class of the cor-

responding remote computation. For simplicity, we refer to the class

of a request as the class of the associated server-side computation.

To make the explanation concrete, we focus on the web security

setting and we assume that the attacker interacts with a remote

web application using a web browser, but our approach is more

general and works for any remote timing attack. Following the

terminology by Bortz and Boneh [3], the attacker may perform two

main classes of attacks:

• Direct timing attacks: the attacker sends arbitrary requests

towards a target web application from their own browser

and measures the response times to infer information about

server-side secrets. For example, a web application support-

ing a login functionality may take more time to perform

login attempts when the attacker provides a username asso-

ciated with an existing account, as opposed to an invalid one.

This way, the attacker may craft a list of target usernames

to test and identify those corresponding to an existing ac-

count on the server by abusing the timing channel. Such

attacks pose significant privacy risks, by allowing attackers

to determine whether a specific individual has an account

on sensitive websites, such as those related to adult con-

tent or political parties, information that users would likely

wish to keep private. Furthermore, these attacks can enhance

other malicious strategies, such as crafting personalized and

more persuasive phishing attempts, thereby increasing the

chances of successful exploitation.

• Cross-site timing attacks: the attacker sends arbitrary re-

quests towards a target web application from the victim’s

browser, e.g., by serving JavaScript on a malicious web page,

and measures the response times to infer information about

the victim’s state on the server. For example, a web applica-

tion implementing a private area might take more time to

generate a valid profile page than an error page denying ac-

cess to the profile. This way, the attacker may send a request

to the profile page from the victim’s browser and determine

the victim’s authentication state on the server by abusing the

timing channel. These attacks pose a serious threat to user

privacy. For example, if an attacker targets a specialized med-

ical center, such as one for HIV treatment or mental health

services, determining that a user is logged in could expose

highly sensitive health information, as it reveals their active

and ongoing medical engagement. This exposure could lead

to discrimination, blackmail, or significant distress if the

information is misused.

Direct timing attacks are straightforward to attempt in practice,

because everything is under the attacker’s control. Cross-site tim-

ing attacks, instead, may be performed by any attacker with the

(limited) capabilities of a traditional web attacker [1]. This attacker
owns a malicious website hosting HTML and JavaScript, which is

assumed to be visited by the victim. The attacker may target casual

visitors or use social engineering techniques like phishing to lure

selected victims into their website. Even though the victim uses a

standard web browser that correctly enforces the Same Origin Pol-

icy (SOP), the attacker can measure timing information by means

of JavaScript APIs such as the Performance API.

2.2 Terminology
This section introduces the terminology used throughout the paper,

with a particular focus on concepts related to queuing theory. A

queuing system is a mathematical abstraction of a facility providing

a certain service to requests. Requests arrive at the system according

to a random process, compete for access to resources and once they

obtain the desired service, they leave the system. The scheduling

discipline governs the assignment of the resources to the requests.

In our model, we consider a system under the Processor Sharing
(PS) scheduling policy [11, 17]. This scheduling policy is particu-

larly important when representing real systems as it serves as the

most straightforward abstraction of the often-used Round-robin

approach. PS evenly distributes computational resources to pending

requests. Hereafter, we introduce some important definitions.

Service time: this is the time that would be spent by a request

at the system if there were no other competing requests.

This is a random variable, since the system’s internal be-

havior (e.g., caching policies, garbage collection, etc.) intro-

duces some unpredictable delays that can be known only

through their statistics. Coherently with the literature, we

denote with 𝜇 the service rate, i.e., the average number of

jobs served per second. Hence, the average service time 𝜇−1

is the reciprocal of the service rate.

546

Stochastic Models for Remote Timing Attacks Proceedings on Privacy Enhancing Technologies 2025(3)

Response time: this is the time spent between the formula-

tion of a request and its reply, without considering the net-

work round-trip time. From the modeling perspective, this

is a random variable denoted with the letter 𝑅.

Waiting time: this is the time a request spends in the system

competing for the server’s capacity with other requests. It

excludes the actual service time the request would experi-

ence if it were the only one present. In a PS system, this

time accounts for delays caused by simultaneous sharing of

the server’s resources with other active requests, and it is

computed as the difference between the response and ser-

vice times. In our queuing model, this is a random variable

denoted with the letter𝑊 .

Arrival rate: The arrival rate is the expected number of re-

quests arriving at the system per unit of time. We denote

this quantity by 𝜆.

Load factor: The load factor is the ratio between the arrival

rate 𝜆 and the maximum service capacity of the system. This

is denoted by 𝜌 and is a pure number. For single server

systems, 𝜌 = 𝜆/𝜇 and 1 − 𝜌 is the probability of the empty

system for stable systems, i.e., systems where the arrival rate

is less than the service rate (𝜌 < 1).

Stationary system: Intuitively, a stable system is considered

stationary when 𝜌 remains constant over a sufficiently long

period. It is important to note that 𝜌 refers to an average

value, so requiring it to be constant does not mean that the

resource occupancy is unchanging at every moment. Fluctua-

tions can still occur (and in fact, they often do), but over time,

the statistical properties of these fluctuations become stable.

This assumption, while standard in queuing theory, is also

crucial for applying most of its results. In fact, these results

are typically derived under the premise that the system’s

statistical behavior does not change over time. Stationar-

ity not only simplifies the mathematical analysis but also

ensures that key performance metrics, such as waiting and

response times, are well-defined and meaningful. Through-

out the rest of this paper, we will assume that the systems

under consideration are stationary.

3 Motivation and Contribution
Remote timing attacks leverage the observation that the response

times of network requests may reveal information about server-

side computations. Existing remote timing attacks are all based

on the same high-level idea: response times are collected and un-

dergo some form of statistical analysis to determine whether they

reveal some information about the target. The innovative aspect

of the approach proposed in this paper lies in its departure from

simply collecting response times. Instead, it leverages stochastic

models (such as queuing models and Bayesian models) in a novel

way to enhance and complement the information gathered from

response times. By doing so, it addresses the limitations of previous

approaches that relied solely on basic response time collection. This

approach provides a more robust framework for analyzing system

performance by integrating stochastic modeling, thus improving on

the inherent constraints of existing methods. Specifically, the pro-

posed approach enhances the accuracy and practicality of remote

timing attacks by accounting for the server’s load factor, leading to

a highly predictive model reducing the number of requests required

to carry out a successful attack.

3.1 Response Time vs. Service Time
A key observation of our research is that timing attacks are dif-

ficult to carry out in practice because they abuse differences in

the service time, but the attacker can only measure the response

time. These two notions roughly coincide when the target web

application is under a low load factor 𝜌 ≈ 0, but the response time

may significantly differ from the service time when the load factor

increases and gets closer to 1. To understand this from an intuitive

perspective, assume that the attacker infers a time difference of 10

ms between authenticated and unauthenticated requests based on

observations drawn at 9 AM. Later in the day, say at 5 PM when

the target web application is under a higher load factor, the victim

accesses the attacker’s website and the attacker mounts a timing

attack on the target web application. Since the response time of

the web application is inflated, a difference of 10 ms may not be

as statistically significant as the one observed for the lower load

factor observed at 9 AM. This issue has only been marginally con-

sidered in prior work and just from an empirical perspective, e.g.,

the authors of the BakingTimer attack [25] present a small-scale

experiment showing that the time of the day has limited impact

on the effectiveness of their attack, but this informal and limited

evaluation should be considered with some reservations.

To clarify that our criticism is not just a speculation, Figure 1

reports the mean response times computed for two classes of re-

quests (authenticated vs. unauthenticated) of a local installation of

the popular WordPress web application. Intuitively, the difference

in the response times may be abused to carry out a cross-site timing

attack breaching the victim’s privacy by inferring their authenti-

cation state. The figure shows that the load factor 𝜌 may have a

significant impact on the precision of the attack. For 𝜌 = 0.4, the

two distributions already have a significant overlap when they are

estimated by collecting the response times of 16 requests for each

class (Figure 1a). Increasing the number of requests to 100 miti-

gates this issue and allows one to more effectively discriminate

the two distributions (Figure 1b). Unfortunately, when the load

factor increases to 𝜌 = 0.7, discriminating the two distributions is

virtually impossible by collecting the response times of 16 requests

(Figure 1c) and still difficult when increasing the sampling to 100

requests (Figure 1d). Existing empirical attacks take the number

of requests to perform as a parameter, but our experiment shows

that this is impractical, because the attacker has no proper way to

set this parameter a priori. The straw-man approach of performing

as many requests as possible is sub-optimal, because sending too

many requests may lead to rate limiting, thus making the attack

ineffective. Moreover, the attacker may only have a limited time

window to carry out their attack, e.g., because the victim navigates

away from the attacker’s page.

3.2 Proposed Approach
Figure 2 sketches the attack methodology proposed in our paper.

Rather than using the measured response times directly to draw

conclusions, the attacker uses them to construct a queuing model

547

Proceedings on Privacy Enhancing Technologies 2025(3) Bozzolan et al.

(a) 𝝁 = 40 j/s, 𝝆 = 0.4 (b) 𝝁 = 40 j/s, 𝝆 = 0.4

(c) 𝝁 = 40 j/s, 𝝆 = 0.7 (d) 𝝁 = 40 j/s, 𝝆 = 0.7

Figure 1: Response time distributions under different load factors 𝝆 for a fixed service rate 𝝁.

of the target web application. Traditionally, queuing systems take

the arrival rate 𝜆 and service rate 𝜇 as input parameters to compute

key performance metrics such as the system’s average response

and waiting times. By contrast, with our approach we reverse this

process: by collecting response time data from a real system, we

leverage queuing theory to estimate these parameters, and construct

an abstraction of the real system. The queuing model obtained from

the estimated parameters determines the probability distribution of

service times for requests in different classes. This information can

then be given as input to a Bayesian statistical model that addresses

the question: given a set of observed times, what is the probability

that a request belongs to a particular class?

This approach has many distinctive advantages. Besides its built-

in support for the challenges posed by the load factor, it uses quan-

titative probability estimates to determine when enough requests

have been sent to be confident about the outcome of the attack,

hence no a priori bound on the number of requests to send is re-

quired. Our experimental evaluation in Section 6 shows that the

number of requests required to achieve strong probabilistic guaran-

tees is small and significantly lower than for state-of-the-art attacks.

Moreover, our attack is general, because it uniformly supports both

direct timing attacks and cross-site timing attacks, while making

few assumptions about the attacker’s capabilities. Our attack can

target any scenario where server-side computations can be classi-

fied in 𝑘 ≥ 2 classes based on their service times. We require that

the attacker can use their own browser to send HTTP requests

belonging to the 𝑘 classes, e.g., authenticated requests including

cookies and unauthenticated requests without cookies. However,

the attacker does not know in advance whether these requests are

useful to discriminate the classes, but rather uses the stochastic

model constructed from the response times to identify potential

room for exploitation. After the model is constructed, the attacker

may determine the class associated with a given set of requests

based on their measured response times alone.

4 Attack Description
Our attack operates in two phases, called exploration and exploita-
tion, respectively. During the exploration phase, the attacker collects
timing information about the target web application at different

times and for different classes of requests. The exploitation phase

leverages the information collected in the exploration phase to

build a stochastic model of the target web application and actually

mount the attack. In particular, the attacker measures the response

times of requests of an unknown class and uses the model to recon-

struct their class. While we describe the attack assuming that the

548

Stochastic Models for Remote Timing Attacks Proceedings on Privacy Enhancing Technologies 2025(3)

Queuing model
construction

Discovery observations

Estimated parameters
(service times for the different
 classes and system's load factor)

Queuing model
analysis

Attack observations

Probability of the observations
given that they belong
to a certain class

Statistical
inference

Probability of a
certain class given
the observations

Ex
pl
or

at
io
n

Ex
pl
oi
ta
tio

n

Figure 2: Sketch of the methodology proposed in this paper.

attacker wants to discriminate two possible classes for simplicity,

the extension to 𝑘 > 2 classes is straightforward.

4.1 Preliminaries
We present the two phases of our attack using pseudo-code. Both

the exploration phase and the exploitation phase need to measure

response times, which are then fed to our stochastic model. How-

ever, when we measure the time between an HTTP request and its

response, we are also measuring the round-trip time (𝑅𝑇𝑇). Since

our model does not account for 𝑅𝑇𝑇 or its variability, we need to

eliminate its impact from our measurements. We achieve this by em-

pirically measuring it and subtracting it from our data. To obtain a

reliable estimate of response times, we employ two sub-procedures.

The first sub-procedure TimeReqest(𝑢) sends an HTTP re-

quest to the URL 𝑢 and estimates its response time. This sub-

procedure is used in the exploitation phase and is implemented as

follows. We first send an HTTP request 𝑟 to 𝑢 and we measure the

time 𝑡𝑟 until its response. 𝑡𝑟 includes both the response time of 𝑟

and 𝑅𝑇𝑇 . Along with request 𝑟 , we craft another one 𝑟 ′, whose time

until response 𝑡 ′𝑟 serves as a possible estimate of 𝑅𝑇𝑇 . An example

of requests that are a suitable choice for this purpose are those

triggering a redirect. The reason behind this is that redirects often

require negligible server-side computation. One effective way to

craft a redirect request is by modifying the protocol of URL 𝑢 from

HTTPS to HTTP. If the target site does not enforce HTTP Strict

Transport Security (HSTS), this HTTP request is likely to trigger a

redirect to the HTTPS version of the site. We can then estimate the

response time of 𝑟 by subtracting the estimated 𝑅𝑇𝑇 from 𝑡𝑟 .

The second sub-procedure TimeReqestWithClass(𝑢, 𝑖) sends
an HTTP request of class 𝑖 to the URL 𝑢 and estimates its response

time. This sub-procedure is used in the exploration phase, hence it

assumes that the attacker is able to craft a request of class 𝑖 . The way

Algorithm 1 Exploration Phase

1: function Explore(𝑢, 𝑒𝑛𝑑𝑡𝑖𝑚𝑒, 𝑡𝑖𝑐𝑘, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

2: 𝑅0 ← {} ⊲ Response times for class 0 (empty dict.)

3: 𝑅1 ← {} ⊲ Response times for class 1 (empty dict.)

4: 𝑏0 ← +∞ ⊲ Service time estimate for class 0

5: 𝑏1 ← +∞ ⊲ Service time estimate for class 1

6: 𝑡0 ← 0

7: 𝑡1 ← 0

8: 𝑡 ← GetCurrentTime() ⊲ Start time of exploration

9: while 𝑡 ≤ 𝑒𝑛𝑑𝑡𝑖𝑚𝑒 do
10: 𝑅0 [𝑡] ← [] ⊲ 𝑅0 [𝑡] is initialized to the empty list

11: 𝑅1 [𝑡] ← [] ⊲ 𝑅1 [𝑡] is initialized to the empty list

12: 𝑟𝑒𝑞𝑠 ← 0

13: while 𝑟𝑒𝑞𝑠 < 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do
14: 𝑡𝑟 ← TimeReqestWithClass(𝑢, 0)
15: 𝑅0 [𝑡] ← 𝑡𝑟 :: 𝑅0 [𝑡] ⊲ Append 𝑡𝑟 to the list 𝑅0 [𝑡]
16: 𝑡𝑟 ← TimeReqestWithClass(𝑢, 1)
17: 𝑅1 [𝑡] ← 𝑡𝑟 :: 𝑅1 [𝑡] ⊲ Append 𝑡1 to the list 𝑅1 [𝑡]
18: 𝑟𝑒𝑞𝑠 ← 𝑟𝑒𝑞𝑠 + 1
19: if Mean(𝑅0 [𝑡]) < 𝑏0 then
20: 𝑏0 ← Mean(𝑅0 [𝑡])
21: 𝑡0 ← 𝑡

22: if Mean(𝑅1 [𝑡]) < 𝑏1 then
23: 𝑏1 ← Mean(𝑅1 [𝑡])
24: 𝑡1 ← 𝑡

25: 𝑡 ← 𝑡 + 𝑡𝑖𝑐𝑘
26: WaitUntil(𝑡) ⊲ Wait until the next tick

27: return (𝑅0 [𝑡0], 𝑅1 [𝑡1], 𝑅0 [𝑡])

the attacker does that depends on the specific class of requests. For

example, authenticated requests require the attacker to be able to

login to the target web application, while unauthenticated requests

can always be forged. The estimate of the response time is per-

formed using the same technique proposed for theTimeReqest(𝑢)
sub-procedure, just the format of the request 𝑟 will be different de-

pending on its class.

Finally, our pseudo-code relies on the construction of a stochas-

tic model𝑀 , which is queried to determine probability estimates

of the class of a target request. Model construction and interro-

gation are implemented by the sub-procedures BuildModel and

EstimateProba, which are discussed in Section 5. In this section,

we consider the model𝑀 as a black-box. Additional implementation

details of our attack are described in Appendix A.

4.2 Exploration Phase
In the exploration phase, the attacker collects timing information

about the target web application, which is used to construct the

stochastic model underlying the exploitation phase. The exploration

phase is done from the attacker’s browser. We present exploration

before exploitation because model construction is a precondition to

exploitation, however the attacker can extend the exploration phase

to run it concurrently with the exploitation phase. This way, the

attacker constantly collects up-to-date timing information leading

to the creation of more accurate models for the exploitation phase.

549

Proceedings on Privacy Enhancing Technologies 2025(3) Bozzolan et al.

Algorithm 2 Exploitation Phase

1: function Exploit(𝑢,𝑋 0, 𝑋 1, 𝑋𝑅, 𝛼, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

2: 𝑐𝑙𝑎𝑠𝑠 ← ⊥ ⊲ The request class is initially unknown

3: 𝑋𝐴 ← [] ⊲ Response times used to mount the attack

4: 𝑟𝑒𝑞𝑠 ← 0

5: 𝑀 ← BuildModel(𝑋 0, 𝑋 1, 𝑋𝑅)
6: while 𝑐𝑙𝑎𝑠𝑠 = ⊥ ∧ 𝑟𝑒𝑞𝑠 < 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do
7: 𝑡𝑟 ← TimeReqest(𝑢)
8: 𝑋𝐴 ← 𝑡𝑟 :: 𝑋

𝐴 ⊲ Append 𝑡𝑟 to the list 𝑋𝐴

9: (𝑝0, 𝑝1) ← EstimateProba(𝑀,𝑋𝐴)
10: if 𝑝0 ≥ 𝛼 ∨ 𝑝1 ≥ 𝛼 then
11: 𝑐𝑙𝑎𝑠𝑠 ← argmax𝑖∈{0,1} (𝑝𝑖)
12: 𝑟𝑒𝑞𝑠 ← 𝑟𝑒𝑞𝑠 + 1
13: return 𝑐𝑙𝑎𝑠𝑠

The Explore procedure shown in Algorithm 1 takes as input the

target URL 𝑢, the end time of the exploration phase 𝑒𝑛𝑑𝑡𝑖𝑚𝑒 , a time

delta 𝑡𝑖𝑐𝑘 defining the frequency of the data collection, and the

number of response time estimates 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 to collect for each class

at each tick. The procedure uses dictionaries 𝑅0, 𝑅1 associating to

each time tick 𝑡 a list of response times for the two request classes.

It computes 𝑏0, 𝑏1, for class 0 and class 1 respectively, by looking for

the time ticks 𝑡0, 𝑡1 where the mean of the response times is smallest,

i.e., the load factor of the target system is the lowest observable. The

procedure returns three lists of timing observations: 𝑅0 [𝑡0] is a list
of response times for class 0 under the lowest observed load factor,

𝑅1 [𝑡1] is a list of response times for class 1 under the lowest observed

load factor, and 𝑅0 [𝑡] contains the most recently measured response

times for the class 0. The three lists are subsequently passed as

inputs 𝑋 0, 𝑋 1
and 𝑋𝑅 of the Exploit procedure, presented in the

next section.

If the exploration phase starts at time 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 , the total number

of requests sent to the target URL is 2· ⌊(𝑒𝑛𝑑𝑡𝑖𝑚𝑒−𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒)/𝑡𝑖𝑐𝑘⌋ ·
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . Data collection is performed periodically to be able to

reconstruct accurate estimates of the load factor at different times,

leading to the construction of constantly updated models.

4.3 Exploitation Phase
In the exploitation phase, the attacker uses the information collected

in the exploration phase to build a stochastic model used to infer the

class of the target requests. In direct timing attacks, the exploitation

is carried out from the attacker’s browser. Conversely, in cross-site

timing attacks, the exploitation occurs from the victim’s browser.

The Exploit procedure shown in Algorithm 2 takes as input the

target URL 𝑢, the lists of timing observations 𝑋 0, 𝑋 1, 𝑋𝑅 coming

from the exploration phase, the confidence 𝛼 ∈ (0, 1] and the

maximum number of requests 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 that the attack can perform.

The attack starts by using parameters 𝑋 0, 𝑋 1
, and 𝑋𝑅 to build the

stochastic model𝑀 used to perform the attack. Intuitively, 𝑋 0, 𝑋 1

are used to estimate the service times of the two classes, while 𝑋𝑅

is used to estimate the most recent load factor.

The attack is implemented by means of a loop, which stops when

either the class of the target requests has been disclosed or the

maximum number of requests has been sent. Each iteration of the

loop estimates the response time at 𝑢 and uses the stochastic model

𝑀 to determine the probabilities (𝑝0, 𝑝1) of the two classes based
on the collected response times 𝑋𝐴. If one of these probabilities

reaches the confidence 𝛼 , the corresponding class is returned.When

the desired confidence is not reached within the maximum number

of iterations, the unknown class ⊥ is returned.

5 Stochastic Models
We finally present the formal models used in our attack. We first

introduce the queuing model used to represent the target web

application. Since this model needs to be initialized with appro-

priate parameters to predict service times, we then discuss how

we estimate such parameters from black-box observations of the

target web application. Finally, we present the statistical model that

leverages the queuing model to answer its inverse question, i.e.,

what is the likely class of a request given an estimate of its service

time. These two models are the ones used by the BuildModel and

EstimateProba sub-procedures respectively (Section 4).

5.1 Queuing Model
Let us model the system under consideration with a M/M/1/PS

queuing model [11, 17]. This means we assume that the system is

composed of one single server, and it is subject to a Poisson arrival

process, i.e., in an interval of Δ𝑡 seconds, the number of requests

that arrive at the system is distributed according to an independent

Poisson random variable with mean 𝜆Δ𝑡 , where 𝜆 (measured in

requests per second) is the arrival rate. Jobs are served according

to a Processor Sharing (PS) policy, with service time distributed

according to a negative-exponential random variable with mean

𝜇−1, so that 𝜇 is the jobs’ service rate. PS is a service policy often

studied in queuing theory where all jobs are served concurrently,

with each one receiving an equal share of the available service

capacity, which is a realistic assumption for modern web servers. In

this system, every job begins receiving service immediately, thereby

eliminating the time spent waiting in a queue. So, in the setting we

are describing, the waiting time for each job is considered to be the

difference between each job’s effective service time and its response

time. Both the assumption of the system being subject to a Poisson

arrival process and the service time being distributed according to

a negative-exponential random variable are standard assumptions

that allow tractability and have been shown to be robust [20, 27].

Although real systems are not usually single servers, M/M/1/PS

can be successfully used to understand their quantitative behavior,

assuming that the single server abstraction accounts for the entire

service capacity of the real system [6, 27]. While this simplification

remains effective also for distributed systems as confirmed in this

paper, the actual number of servers behind a web application is

often unknown, and requestsmay be routed to different serverswith

varying workloads. This means the model may not fully capture

the exact workloads across all servers involved, which, in some

cases, could result in a loss of prediction accuracy.

This specific queuing system has been extensively studied in

the literature, and as a result, many key performance metrics have

well-known analytical expressions, under the assumption that the

system is stationary. This assumption is not only standard in the

queuing theory literature but also reasonable in this particular

setup, because load variations tend to fluctuate over time but do

550

Stochastic Models for Remote Timing Attacks Proceedings on Privacy Enhancing Technologies 2025(3)

so quite slowly with respect to service times [29]. The equations

we are about to present give the core quantities required for our

methodology. Eq. (1)-(3) are essential for the procedure detailed

in Section 5.2, which estimates the system parameters 𝜆 and 𝜇. In

general, considering a specific job with a deterministic service time

𝜏 , the expectation of the response time is given by:

𝐸 [𝑅 |𝜏] = 𝜏

1 − 𝜌 . (1)

The probability of finding the system empty is computed as:

𝜋0 = 1 − 𝜌 , (2)

thus, the probability for an incoming job to have waiting time equal

to 0 can be expressed as:

Pr {𝑊 = 0} = 𝜋0e−𝜆𝜏 , (3)

that represents the probability of both finding the system empty

and ensuring that no other job arrives before the specific observed

job is completed. Additionally, the literature provides also the

Laplace-Stieltjes transform of the waiting time distribution for an

arriving job in a M/M/1/PS system, conditioned on the deterministic

service time required by that specific job. This expression was first

given in [15, Eq. (30)] and it is further detailed in Appendix B, while

here we simply denote it as:

𝐹𝑊 (𝑥 |𝜏) = 𝑃𝑟 {waiting time ≤ 𝑥 |service time = 𝜏} . (4)

𝐹𝑊 (𝑥 |𝜏) is used in Section 5.3 to estimate the probability density of

an observation of the waiting time 𝑥 given an instance of the service

time 𝜏 . As reported in the Appendix, this expression depends on

the system parameters 𝜆 and 𝜇 and can be numerically evaluated

for each 𝑥 starting from the expression of [15, Eq. (30)].

Remark. Figure 3 illustrates the response time distribution of a

M/M/1/PS conditioned to the deterministic service time of a job.

This corresponds to the scenario in which an observer can mea-

sure the response time of a job whose service time is known, but

the other incoming traffic maintains its stochastic nature. The ob-

served task belongs to one of the two classes of requests under

study (identified as 0 and 1), computed under different load factors.

The deterministic service times distinguishing these classes are

derived from empirical observations. The solid lines represent the

probability density function (pdf) of the response times computed

using the results derived in [15]. In practice, when the plots, for a

certain response time, show similar densities (e.g., the values be-

tween 85ms and 110ms in Figure 3b), it is very hard to distinguish

between the two different classes of service. However, notice that

in both cases there exists an area between the service time of class

0 and that of class 1 where it is possible to distinguish between the

two service classes clearly. However, the probability of this area

becomes small as the load factor increases. Coherently with the

observations proposed for Figure 1, it is shown that the distinction

of the two classes becomes more challenging as the load factor

increases. This trend is evident when comparing Figures 3a and 3b,

which correspond to load factors 𝜌 = 0.4 and 𝜌 = 0.7, respectively.

As shown, at higher load factors, overlapping regions between the

classes are more prevalent.

(a) 𝝀 = 16 j/s, 𝝁 = 40 j/s, 𝝆 = 0.4

(b) 𝝀 = 28 j/s, 𝝁 = 40 j/s, 𝝆 = 0.7

Figure 3: Response time distributions for deterministic ser-
vice times.

It is worth noticing that the behavior of the pdf of the response

time has some spikes. These are placed at the occurrences of the

integer multiples 𝑛 of the service times and correspond to the

events in which the observed jobs arrive at the system with 𝑛

jobs in service, without any other arrivals or departures during

their service. These observations are important to understand the

Bayesian model presented in Section 5.3 where, differently from

here, we consider the possibility of noisy measurements as it usually

happens in real-world scenarios.

5.2 Parameter Estimation
In this section, we present the methodology that we use to estimate

the parameters needed for the model. In particular, we estimate

parameters 𝜆, 𝜇, and the two classes of requests service times by

recording the following collections of measurements:

• 𝑋 0 = (𝑋 0

1
, 𝑋 0

2
, . . . , 𝑋 0

𝑁 0
): response times measured for re-

quests of class 0 under the lowest observed load factor.

• 𝑋 1 = (𝑋 1

1
, 𝑋 1

2
, . . . , 𝑋 1

𝑁 1
): response times measured for re-

quests of class 1 under the lowest observed load factor.

• 𝑋𝑅 = (𝑋𝑅
1
, 𝑋𝑅

2
, . . . , 𝑋𝑅

𝑁𝑅
): response times for requests of class

0 under the most recent load factor.

Since the system appears as a black-box to the attacker, it is

not possible to precisely determine the system’s load factor at any

given moment or other quantitative characteristics. Consequently,

551

Proceedings on Privacy Enhancing Technologies 2025(3) Bozzolan et al.

parameter estimation relies on a series of reasonable assumptions

and leverages properties of the collected observations. As discussed

in Section 4.2, the vectors 𝑋 0
and 𝑋 1

are inferred from a subset

of observations with the lowest averages. These observations are

selected to represent conditions of zero waiting time, providing

the most accurate estimates of the service times for the classes

under minimal load conditions. Similarly, the vector 𝑋𝑅 is taken

from the most recent set of observations, capturing the system’s

latest operational state. This approach facilitates the estimation of

service times for both classes and the system’s load factor using

the methodology outlined below.

Estimation of the service time distributions. The first step in our

procedure consists of estimating the distribution of the service

times for class ℓ , where ℓ = 0, 1.

• We start by grouping observations 𝑋 ℓ into bins, each rep-

resented by a centroid and an associated probability. This

approach allows us to account for the variability inherent in

real service times. We define:

𝑋 ℓ
min

= min

1≤𝑖≤𝑁 ℓ
{𝑋 ℓ𝑖 } and 𝑋 ℓ

max
= max

1≤𝑖≤𝑁 ℓ
{𝑋 ℓ𝑖 }.

• We partition the range 𝑋 ℓ
max
− 𝑋 ℓ

min
into 𝐾 contiguous and

non-overlapping subranges, namely bins. We denote them as

𝐵ℓ𝑗 , 𝑗 = 1, 2, . . . , 𝐾 . We group the 𝑋 ℓ observations according

to the ranges of values associated with each bin and denote

with 𝑁 ℓ
𝑗 the number of observations that belong to the 𝑗−th

bin. The empirical probability of each bin is then defined as:

𝑝ℓ𝑗 =
𝑁 ℓ
𝑗

𝑁 ℓ
, 𝑗 = 1, . . . , 𝐾 .

We denote with 𝐶ℓ𝑗 , the centroid of 𝐵ℓ𝑗 , 𝑗 = 1, . . . , 𝐾 , i.e., the

average of observations belonging to 𝐵ℓ𝑗 .

Figure 4: Discretization of the empirical service time distri-
bution for a particular instance of class 0 and 1.

In this way, we obtain a discretization of the empirical service time

distribution for both classes as illustrated in Figure 4. Notice that

this phase must be done only once.

Estimation of 𝜌, 𝜆, �̂�. In this phase, we estimate the model

parameters that depend on the work that is being performed by the

system in a certain moment, namely, the load factor as well as the

arrival and service rates. We need to consider just one of the two

classes, e.g., class 0.

• The system’s load factor, given 𝑋𝑅
1
= 𝑥𝑅

1
, . . . , 𝑋𝑅

𝑁 0
= 𝑥𝑅

𝑁 0
, is:

𝜌 = 1 −
∑𝐾
𝑗=1𝐶

0

𝑗 𝑝
0

𝑗(∑𝑁𝑅

𝑗=1 𝑥
𝑅
𝑗

)
/𝑁𝑅

. (5)

This expression can be derived from Eq. (1). In fact, the ex-

pression

∑𝑁𝑅

𝑗=1 𝑥
𝑅
𝑗 /𝑁𝑅

is the estimate of the average response

time
�𝐸 [𝑅], thus we have, by the law of total probability ap-

plied to Eq. (1):

�𝐸 [𝑅] = ∑𝐾
𝑗=1𝐶

0

𝑗𝑝
0

𝑗

1 − 𝜌 .

It is now sufficient to explicit 𝜌 to obtain Eq. (5).

• We now estimate the probability for a user to observe zero (or

very low) waiting time. Since we do not know the exact value

of the service time for the requests belonging to class 0, but

only an estimate characterized by an empirical distribution

given by the above bins, we can first compute an estimate

of P̂r𝑗 {𝑊 = 0}, 𝑗 = 1, . . . , 𝐾 by successively conditioning

on the reference value of the 𝑗-th centroid as service time.

This is done by computing the proportion of𝑋𝑅 observations

falling inside the interval [𝐶0

𝑗 (1−𝛿),𝐶0

𝑗 (1+𝛿)],∀𝑗 = 1, . . . , 𝐾 ,

and where 𝛿 denotes a small, arbitrarily chosen threshold.

• Having computed 𝜌 and P̂r𝑗 {𝑊 = 0}, we are now able to

invert Eq. (3) and obtain a value 𝜆 𝑗 for each specific 𝜏 𝑗 (=𝐶0

𝑗)
by inverting Eq. (3), explicitly:

𝜆 𝑗 = −
1

𝐶0

𝑗

ln

(
P̂r𝑗 {𝑊 = 0}

1 − 𝜌

)
, 𝑗 = 1, . . . , 𝐾 .

So to obtain 𝜆 as follows:

𝜆 =

𝐾∑︁
𝑖=1

𝑝0𝑖 𝜆𝑖 .

Once we have done this last step, it is straightforward to com-

pute �̂� from the load factor relationship given by 𝜌 = 𝜆/𝜇. The
methodology described in this section is included in Algorithm 2

through the BuildModel sub-procedure.

5.3 Statistical Model
In this section, we present the statistical model designed to estimate

the posterior probabilities that a user belongs to a specific class,

based on observations of response times and system parameters

estimated in the previous section. This model will be used by the

EstimateProba sub-procedure (Algorithm 2) which implements

the evaluation of Eq. (9). Hereafter, we show the mathematical

derivation of the result.

The model uses the estimated parameters 𝜆 (arrival rate) and �̂�

(service rate) to account for the load factor of the underlying queu-

ing model. The queuing model enables us to derive the response

time conditioned on the observed job service time. We adopt a

552

Stochastic Models for Remote Timing Attacks Proceedings on Privacy Enhancing Technologies 2025(3)

Bayesian framework where the parameter Θ is a random variable

restricted to the discrete space Ω = {𝜏0, 𝜏1}. Recall that the response
time 𝑅 consists of the sum of the service time, determined by the

specific instance of the parameter Θ, and the waiting time𝑊 .

𝐹𝑅 (𝑥 |Θ) =
{
𝐹𝑊 (𝑥 − Θ|Θ) if 𝑥 − Θ > 0

0 otherwise

.

Hereafter, we consider that the observations of the response times

do not include the network round-trip times. We define the proba-

bility density function of an observation 𝑥 as:

𝑓𝑋 (𝑥 |Θ) =
𝐹𝑅 ((𝑥 + 𝜖) |Θ) − 𝐹𝑅 ((𝑥 − 𝜖) |Θ))

2𝜖
, (6)

for some positive small 𝜖 . Basically, Eq. (6) is a smoothed pdf with re-

spect to 𝜕𝐹𝑅 (𝑥 |Θ)/𝜕𝑥 that does not change the mean of the random

variable 𝑅 given Θ. The importance of the smoothening is evident

from the plots reported in Figure 3, where we can see that, espe-

cially for low load factors, the response time pdf concentrates heavy

masses of probability around some spikes. Using the difference be-

tween the values of the cumulative distribution functions makes

the evaluation of 𝐹𝑅 (·|Θ) more robust to measurement errors. The

choice of an appropriate value of 𝜖 depends on the measurement

settings, such as the variability of the measured round-trip time.

During our attack, we collect a set of observations 𝑋𝐴 (recall

that these vectors do not contain the round-trip times), and the

aim of the Bayesian estimation is to infer the probability Θ = 𝜏1
or, equivalently, its complement. The likelihood function of the

sequence is:

𝑓𝑋𝐴 (𝑥𝐴
1
, . . . 𝑥𝐴

𝑁𝐴 |Θ) =
𝑛∏
𝑖=1

𝑓𝑋 (𝑥𝐴𝑖 |Θ) , (7)

where the 𝑥𝐴𝑖 are the actual values of the collection of observations

that we denoted with 𝑋𝐴. Let 𝑃𝑟 {Θ = 𝜏1} = 𝑃𝜏1 be the prior prob-
ability of 𝜏1, and 𝑃𝑟 {Θ = 𝜏0} = 1 − 𝑃𝑟 {Θ = 𝜏1} = 𝑃𝜏0 the prior

probability of 𝜏0.
1

According to Bayesian statistics, the probability Θ = 𝜏1 (Θ = 𝜏0),
given the observations, i.e., the posterior probability, is:

𝑔𝑋𝐴 (𝜃 |𝑥𝐴
1
, . . . , 𝑥𝐴

𝑁𝐴) =
𝑓𝑋 (𝑥𝐴1 , . . . , 𝑥𝐴𝑁𝐴

|𝜃)𝑃𝜃
𝐺

, (8)

where 𝜃 ∈ {𝜏1, 𝜏0} and 𝐺 is a probability normalizing constant

defined as:

𝐺 = 𝑓𝑋 (𝑥𝐴1 , . . . , 𝑥𝐴𝑁𝐴 |𝜏1)𝑃𝜏1 + 𝑓𝑋 (𝑥𝐴1 , . . . , 𝑥𝐴𝑁𝐴 |𝜏0)𝑃𝜏0 .
The following theorem shows that the method that we propose is

sound and that, with a sufficient number of observations, converges

almost surely (i.e., with probability 1) to the correct answer. It

uses the notion of consistent estimator. Intuitively, an estimator is

consistent if, as the number of samples grows, it becomes more and

more accurate. Informally, Theorem 5.1 states that if it is possible

to infer the correct value of Θ by collecting the observations of the

response times, then our procedure will converge there, i.e., the

1
Notice that, without any prior knowledge of the system 𝑃𝜏

0
= 𝑃𝜏

1
= 1/2. However,

in different scenarios, it may be useful to set these parameters differently. For example,

if it is known that only 10% of users are expected to belong to the class whose service

time is 𝜏1 , then the model can encompass this knowledge in its estimations. In our

experiments, we always assume the most challenging scenario for the model, i.e., 1/2
for both.

posterior distributionwill concentrate around the correct parameter

value, as more data is observed.

Theorem 5.1. For sufficiently small 𝜖 , formally 𝜖 → 0, given the
indicator function:

𝐼𝐴 (Θ) =
{
1 if Θ = 𝐴

0 otherwise
.

If there exists a consistent estimator of the parameter Θ, then the
posterior probability given by Eq. (8) converges almost surely, i.e.,
with probability 1, as 𝑛 →∞, to 𝐼𝐴 (Θ), where 𝐴 = 𝜏1 or 𝐴 = 𝜏0.

The result is an immediate application of Doob’s theorem (see,

e.g., [26, Th. 7.78]). Notice that Theorem 5.1 requires the existence

of a consistent estimator, hence we provide the following theorem:

Theorem 5.2. For sufficiently small values of 𝜖 , formally (𝜖 → 0),
there exists a consistent estimator for Θ.

Proof. It is sufficient to notice that under the assumption 𝜖 → 0,

𝑓𝑋 (·|Θ) as defined by Eq. (6) is the probability density function of

the random variable modeling the response time of the system. As

a consequence, there exists the consistent estimator given by the

Maximum Likelihood method as proved in [26, Th. 7.48]. □

The statements of Theorems 5.1 and 5.2 hold under milder but

more technical assumptions. It is sufficient that 𝜖 does not change

the pdf of Eq. (6) with respect to the correct one 𝑓𝑅 (𝑥 |Θ) in such a

way that we cannot distinguish 𝑓𝑋 (𝑥 |𝜏0) from 𝑓𝑋 (𝑥 |𝜏1) anymore.

For a given number of attack observations, 𝑁𝐴
, we apply Eq. (8)

to compute the probability that the parameter Θ is 𝜏1 (𝜏0). More

specifically, we iterate over all possible combinations of the previ-

ously computed centroids for the service time distributions, 𝐶0

𝑖 ,𝐶
1

𝑗 ,

where 𝑖, 𝑗 = 1, . . . , 𝐾 , weighting the results by the product of the

probability associated with the two centroids, that is:

𝑃𝑟 {Θ = 𝜏1 |𝑥𝐴1 , . . . , 𝑥𝐴𝑛 } ≃
𝐾∑︁
𝑗=1

𝐾∑︁
𝑖=1

𝑝0𝑗𝑝
1

𝑖 𝑔𝑋𝐴 (𝐶1

𝑖 |𝑥𝐴1 , . . . , 𝑥𝐴𝑁) . (9)

The denominator of Eq. (8) is computed at each iteration using 𝐶0

𝑖

and 𝐶1

𝑗 for 𝜏0 and 𝜏1, respectively. Further implementation details

can be found in Appendix C.

6 Experimental Evaluation
In this section, we demonstrate our attack and compare its effec-

tiveness against existing baselines. Research ethics are discussed in

Appendix D.

6.1 Experimental Setup
We test the effectiveness of our attack in two different settings.

The first setting is controlled, i.e., we target local installations of
two popular web applications (HotCRP and WordPress). The use of

a controlled environment has several benefits. First, we have full

control over the system’s load factor. Since a key motivation of our

research is that the load factor may negatively affect the accuracy

of remote timing attacks, testing different load factors is useful to

confirm this hypothesis. Moreover, the use of local installations

allows us to factor out network delays and other sources of non-

determinism introduced by network communication. This way, we

553

Proceedings on Privacy Enhancing Technologies 2025(3) Bozzolan et al.

can assess the quality of our model under ideal conditions, which

is important to confirm that the choice of our formalism is well-

grounded. In the second part of our experimental evaluation, we

move away from our controlled environment and we test our attack

against 20 popular websites of the Tranco ranking [24]. By doing

this, we confirm that our attack can successfully target unknown

web applications served over the Internet.

Our evaluation considers both direct timing attacks and cross-

site timing attacks, where the attacker’s goal is to disclose the class

of an unknown request. We consider just two request classes, that

we refer to as positive and negative. We compare the effectiveness

of our attack against appropriate baselines from the literature using

standard performance measures.

6.1.1 Baselines. Existing remote timing attacks are often infor-

mally presented and they are difficult to reproduce. Starting from

the description in the original papers [7, 25], we re-implemented

two existing attacks as specific instantiations of a general attack

strategy, where the attacker collects some sets of timing obser-

vations and uses statistical tests to infer the request class. More

concretely, the attacker first collects sets of timing observations

𝑌1, 𝑌2 for the two classes to discriminate. If a statistical test deter-

mines that 𝑌1 and 𝑌2 likely come from different distributions, the

attack can take place. The attacker then collects a set of timing

observations 𝑍 of some unknown class, which they want to dis-

close. Finally, 𝑍 undergoes a statistical test against both 𝑌1 and 𝑌2.

If exactly one of the two tests succeeds, the attacker performs the

prediction recommended by the successful test, otherwise there is

not enough statistical evidence to predict any class (abstention).

In the case of direct timing attacks, we consider an attack based

on the classic box test proposed by Crosby et al. in their seminal

analysis of remote timing attacks [7]. This test was introduced in

a formal analysis designed to better understand previous attacks

showing that it was possible to exfiltrate RSA private keys based on

measured response times [5], hence it is a representative example

of a direct timing attack. The goal of the box test is to determine

whether two sets of response times 𝑍 and 𝑌 come from the same

distribution or not. The box test is parametrized by two quantiles

𝑖, 𝑗 , normally chosen from the low part of the distribution of the

response times. To perform the box test, 𝑍 and 𝑌 are sorted and

two intervals are formed from their quantiles: [𝑞𝑖 (𝑍), 𝑞 𝑗 (𝑍)] and
[𝑞𝑖 (𝑌), 𝑞 𝑗 (𝑌)]. The box test considers 𝑍 and 𝑌 to come from differ-

ent distributions if and only if the two intervals do not overlap.

As for cross-site timing attacks, we compare the effectiveness

of our attack against BakingTimer, a state-of-the-art web timing

attack [25]. In the case of BakingTimer, the set 𝑍 contains “time

deltas” estimating the server-side computation time in terms of the

differences between a set of response times and a set of estimates

of the network round-trip time, similar to what we do in our attack.

Computing the set of time deltas 𝑍 requires sending 2 · |𝑍 | requests.
BakingTimer uses the classic t-test to disclose the class of network

requests in a cross-site setting, based on the time deltas 𝑌1, 𝑌2 of

the two target classes.

6.1.2 Hyper-Parameters. Table 1 reports the hyper-parameters of

the different attack strategies considered in our evaluation. We

motivate the choice of the hyper-parameters as follows.

Table 1: Hyper-parameters of the experimental evaluation.

Attack Parameter Value

Box Test [7]

Quantiles 3%-5%

Number of requests 50

Our Attack

(Direct timing)

Probability threshold 90%

Max. number of requests 50

BakingTimer [25]

Significance level 0.05

Number of requests 40

Our Attack

(Cross-site timing)

Probability threshold 90%

Max. number of requests 40

For the box test attack, we set the two quantiles to 3% and 5%

respectively, because the original paper recommends using values

below 6% [7]. The number of requests is set to 50, so that we have

enough observations to compute meaningful percentiles. For Bak-

ingTimer, we set the significance level for the t-test at 0.05, as it is

a standard recommended practice, and we compare the resulting

p-value to this threshold to determine statistical significance. The

number of requests is set to 20, because the original paper reports

satisfactory performance for any number between 10 and 50 [25].

We chose 20 requests as it represents a compromise between attack

effectiveness and realism, considering the victim may remain on

the attacker’s page just for a short duration. Note that the use of

20 requests in the attack actually requires sending 40 requests to

compute the time deltas, as reported in the table. Finally, for our

attack we set the probability threshold 𝛼 to 0.90, i.e., we require

that the predicted class is assigned a probability of at least 90%.

The maximum number of HTTP requests to send is set to the same

number as its competitor to enable a fair comparison.

6.1.3 Measures. We compare the performance of different attacks

using standard measures. We consider the true positive rate (TPR),
i.e., the number of correct predictions out of all the attempted pre-

dictions with positive class, and the true negative rate (TNR), i.e., the
number of correct predictions out of all the attempted predictions

with negative class. Finally, the abstention rate (AR) measures the

number of cases where the attacker does not predict any class out

of all the possible attack attempts, due to insufficient statistical

evidence about the correct class. We additionally compare attacks

in terms of the number of sent requests, which is an important re-

quirement for their practicality. Given that this is a difficult aspect

to evaluate in a fair manner, we defer discussion to Section 6.4.

6.2 Experiments in a Controlled Setting
We first describe a set of experiments performed on local installa-

tions of HotCRP and WordPress. We experiment with direct timing

attacks by mounting the account detection attack by Bortz and

Boneh [3]. In direct timing attacks, both exploration and exploita-

tion are performed from the attacker’s browser. To conduct exper-

iments in a controlled setting, the web applications were run on

a server connected to the same wired network as the attacker’s

computer. For each web application, we register a new account

and we forge an invalid username that does not correspond to any

554

Stochastic Models for Remote Timing Attacks Proceedings on Privacy Enhancing Technologies 2025(3)

Table 2: Comparison of the box test and our attack on key
performance measures.

Measure Box Test Our Attack

HotCRP

TPR 1.00 1.00

TNR 1.00 1.00

AR 0.39 0.00

WordPress

TPR 1.00 1.00

TNR 1.00 1.00

AR 0.44 0.00

registered user of the system. The attacker’s goal is timing failed lo-

gin attempts to determine whether a target username is associated

with an account registered on the web application, so as to breach

privacy. We compare the effectiveness of our attack against the box

test attack, a classic representative of the family of direct timing

attacks. We estimate the false positives and false negatives of the

two attacks by conducting twenty attack attempts: ten with the

existing account and ten with the invalid username. We replicate

the experiments for four different values of the load factor obtained

by increasing the number of users through the Grafana k6 load

tester [18], leading to 80 attack attempts in total.

Table 2 reports the average results of our experiments. The re-

sults are similar for the two considered web applications. Both

the box test and our attack are very accurate, because their TPR

and TNR are 1 for all the different numbers of users, i.e., all the

performed predictions are correct, irrespective of the load factor.

However, there is a significant gap in the AR of the two meth-

ods: our attack is always able to make a correct prediction, while

the box test cannot reliably make any prediction in approximately

40%− 44% of the cases. After checking the breakdown of the absten-

tion rates for different numbers of users, we observe that the box

test is heavily affected by the load of the system, as its abstention

rate significantly fluctuates with changes in load. For example, in

the case of HotCRP, we observe an abstention rate of approximately

20% and 50% under the lowest and highest loads respectively. In

contrast, our attack is robust to variations in the load factor and is

always able to perform reliable predictions.

6.3 Experiments in the Wild
We now move away from our controlled setting and we test the

effectiveness of our attack against real-world websites. We experi-

ment with cross-site timing attacks by mounting the login detec-

tion attack by Bortz and Boneh [3]. In cross-site timing attacks, the

exploration is carried out from the attacker’s browser, while the

exploitation occurs from the victim’s browser. To conduct these

experiments we used two separate computers, one for the victim

and one for the attacker, both connected to the same wired network

and sending requests to the target website over the Internet. As a

result, packets likely traveled through different paths and networks

in this setup. The attacker’s goal is to determine whether a target

user is logged in on the web application or not, by collecting re-

sponse times. We compare the effectiveness of our attack against

BakingTimer [25], which is the latest variant of such cross-site login

detection attacks. We estimate the false positives and false nega-

tives of each attack by conducting sixteen attack attempts: eight

in the logged-in state and eight in the logged-out state. We focus

our investigation on the top 20 websites of the Tranco ranking [24]

providing access to a private area and we assess their vulnerabil-

ity to cross-site timing attacks. We manually navigate websites

in decreasing order of popularity until we identify a login form,

discarding websites where a login form is not identified within a

reasonable amount of time or where registration cannot be readily

performed, e.g., the website requires a paid subscription. For each

website, we register a new account (if we do not already have one)

and we perform login. After accessing the private area, we delete

from the browser all the cookies whose SameSite attribute is not set

to None and we manually check whether we are still logged in to

the website. Websites which fail this manual test are not vulnerable

to cross-site timing attacks, because their sessions cannot be estab-

lished through cross-site requests [16]. Table 8 (Appendix E) reports

the full list of websites where we successfully registered an account

and logged in, including the potentially vulnerable ones. Perhaps

surprisingly, 13 out of 20 analyzed websites establish sessions using

cookies with the SameSite attribute deactivated.

We perform the two attacks against the 13 potentially vulnerable

websites and we compare their effectiveness. Attacks are conducted

on each website at different times of the day to account for fluctua-

tions in the server’s load during daily operations, and the attacks’

results are then averaged together. In three websites, both attacks

showed an abstention rate of at least 75%, meaning that the com-

puted timing observations cannot be exploited by existing remote

timing attacks, i.e., the two classes are too hard to discriminate in

practice. Table 3 reports the average performance measures of the

two attacks on the remaining ten websites. Our attack outperforms

BakingTimer: not only it has a much lower abstention rate (0.06

vs. 0.37), meaning that it can be more broadly applied in practice,

but it also has superior true positive rate (0.83 vs. 0.78) and true

negative rate (0.93 vs. 0.92). Since we performed the same number

of experiments for all websites, there is no single case outweighing

the others and biasing the results in our favor. The performance

of our attack is generally superior to that of BakingTimer across

all our case studies, with the notable exception of LinkedIn, the

only website where BakingTimer performs consistently better than

our attack. After careful investigation, we observed that this might

be explained by the fact that LinkedIn uses a microservice archi-

tecture [23]. This indicates that there is a significant probability

that distinct servers are responsible for processing authenticated

and unauthenticated requests. However, our estimate of the load

factor is computed by considering just unauthenticated requests,

meaning that our estimate of 𝜌 may be incorrect for authenticated

requests. This problem can likely be fixed by extending our attack

to estimate two load factors 𝜌1, 𝜌2 for the different request classes.

6.4 Number of Requests
The number of requests to send is an important requirement for

the practicality of a remote timing attack. Prior work in the field

considered the number of requests as a hyper-parameter to set a

priori, while our attack is designed to stop after a sufficient number

555

Proceedings on Privacy Enhancing Technologies 2025(3) Bozzolan et al.

Table 3: Comparison of BakingTimer and our attack on key
performance measures.

Measure BakingTimer Our Attack

TPR 0.78 0.83

TNR 0.92 0.93

AR 0.37 0.06

Table 4: Comparison of the box test with and without the
request cap on key performance measures.

Measure Box Test
Box Test

with Request Cap

HotCRP

TPR 1.00 1.00

TNR 1.00 1.00

AR 0.39 0.26

WordPress

TPR 1.00 1.00

TNR 1.00 0.84

AR 0.44 0.34

of requests have been sent to draw reliable conclusions. This com-

plicates a fair comparison with competitors. In our experimental

evaluation, the number of requests sent by the box test attack and

BakingTimer has been set to 50 and 40, respectively. To assess how

our competitors would fare with a number of requests similar to

our attack, we estimate their performance using the same number

of requests required by our attack to reach a conclusion.

Tables 4 and 5 compare, respectively, the average accuracy of the

box test and BakingTimer attacks before and after capping the num-

ber of requests. BakingTimer’s performance significantly declined

and the attack became ineffective, as it not only lost accuracy, but

also abstained from drawing conclusions in over 70% of cases. Such

behavior aligns with findings reported in the original paper [25],

which observed a substantial decrease in performance with a lower

number of observations. This outcome is reasonable, as Baking-

Timer relies on a statistical test that requires several observations

to produce reliable results.

Conversely, the box test’s abstention rate decreased, though at

the cost of some performance loss. This is probably because, when

only a subset of measurements is considered, the interval defined

by the two quantiles is likely smaller than that computed using the

full set of measurements. A smaller interval is prone to overlapping

with only one of the two intervals defined by the two baselines, par-

ticularly if the baselines’ intervals are close to each other. This could

explain the decrease in the abstention rate, while the reduction in

precision is presumably due to the decreased reliability associated

with considering only a limited number of measurements. Con-

sequently, especially when the baseline intervals are close to one

another, this can increase the likelihood of errors.

6.5 Robustness Analysis
To assess the robustness of our proposed attack against factors such

as network jitter and distributed server architectures, we conduct

two additional experiments. These experiments are performed in

Table 5: Comparison of BakingTimer with and without the
request cap on key performance measures.

Measure BakingTimer
BakingTimer

with Request Cap

TPR 0.78 0.50

TNR 0.92 0.60

AR 0.37 0.71

a controlled environment to isolate specific factors of interest and

minimize external interferences. First, we conduct an experiment

using our local HotCRP installation with four different loads, fol-

lowing the same approach as in the controlled setting experiments.

In this scenario, the actual 𝑅𝑇𝑇 is negligible, thus to investigate

the impact of the network on our model’s accuracy we consider a

synthetic 𝑅𝑇𝑇 defined as the sum of a deterministic component and

a variable one. As highlighted by the authors of [7], the 𝑅𝑇𝑇 distri-

bution often exhibits a spike, which we account for by setting the

deterministic part to 40ms – approximately the average measured

𝑅𝑇𝑇 in Europe, as reported in [21]. To ensure the robustness of our

approach under different noise conditions we consider two different

probability distributions, Gaussian and Log-Normal, to model the

variable part of the 𝑅𝑇𝑇 . The Gaussian distribution represents a sce-

nario in which 𝑅𝑇𝑇 observations are mostly clustered around the

mean, whereas the Log-Normal distribution introduces a long tail,

embedding situations where 𝑅𝑇𝑇 values are more skewed towards

larger values. We set the mean of the Gaussian distribution to 0, and

the logarithm of the scale parameter of the Log-Normal distribution

to 0.5. The remaining parameters for both distributions are selected

to obtain standard deviation values of 0.3 ms, 7 ms, and 21 ms. In

particular, we shift Log-Normal observations to obtain a zero mean.

Standard deviations in real-world measurements are usually small,

as shown in the dataset referred in [21], which is the rationale

behind the experiment with standard deviation 0.3 ms. To further

assess the robustness of our model, we also evaluate scenarios with

significantly larger standard deviations, even though these values

exceed those commonly observed in real environments. As shown

in Table 6, our method consistently achieves accurate predictions

across all tested standard deviation values, experiencing a slight

decline in accuracy only for the highest tested value. This is due to

the model’s ability to effectively distinguish response time patterns

across different request types, and the inclusion of an 𝑅𝑇𝑇 with

reasonable variability does not clutter these patterns beyond the

model’s capabilities.

In the second experiment, we simulated a distributed system

with a load balancer by duplicating our HotCRP installation in two

different servers and randomly sending requests to one of the two

servers when estimating the response times. To isolate the experi-

ment, both servers and the attacker’s computer were placed within

the same local network. The two servers had different hardware

configurations (AMD Ryzen 5 5600G with 32 GB RAM vs. Intel

Xeon Gold 5220R with 16 GB RAM), and one server was subjected

to a simulated load. The experiment was repeated with four differ-

ent loads obtained by increasing the number of users through the

load tester, following the same approach as in the controlled setting

556

Stochastic Models for Remote Timing Attacks Proceedings on Privacy Enhancing Technologies 2025(3)

Table 6: Comparison of the simulated 𝑹𝑻𝑻 with varying dis-
tributions and variances on key performance measures.

Measure
Std Dev
0.3 ms

Std Dev
7 ms

Std Dev
21 ms

Gaussian

TPR 1.00 1.00 0.88

TNR 1.00 1.00 0.98

AR 0.00 0.00 0.09

Log Normal

TPR 1.00 1.00 1.00

TNR 1.00 1.00 0.93

AR 0.00 0.00 0.00

Table 7: Comparison of our attack with and without the load
balancer on key performance measures.

Measure No load balancing With load balancing

TPR 1.00 1.00

TNR 1.00 1.00

AR 0.00 0.03

experiments. This setup aimed to replicate the varying response

times and workloads that real-world distributed systems experi-

ence, effectively modeling a challenging scenario where the load

factor is not evenly distributed on the different machines. Table 7

presents the results of our attack on both the single-server and

multi-server installations of HotCRP, averaged across all loads. As

shown, the abstention rate increases only negligibly (+0.03) when

experimenting with two servers, demonstrating the generality of

our attack and its effectiveness across different architectures. We

attribute the effectiveness of our attack to the model’s ability to

uniformly abstract the two servers within a single representation

providing a reasonable approximation of both of them.

7 Related Work
Remote timing attacks received significant attention from the re-

search community. Felten and Schneider showed that it is possible

to abuse the performance improvement offered by web caches to

determine whether a target user visited a given web page [8]. More

recent work similarly abused web caches to reconstruct the geo-

location of a target user [14]. Our work does not directly apply

to cache-based timing attacks, because the timing side-channel

modeled by our framework is the time required for server-side

computation. The pioneers of remote timing attacks enabled by

the server-side computation time were Bortz and Boneh, who pre-

sented different attacks against web applications [3]. More recent

work generalized their ideas to cover additional attack vectors in-

troduced in modern browsers [19, 28] and proposed new timing

attacks designed to more effectively breach users’ privacy [10, 25].

A key difference of our work with respect to existing attacks is

the use of formal modeling to deal with the complexities of remote

timing attacks, as discussed in Section 3. As a matter of fact, our

experimental evaluation showed that the effectiveness of empirical

state-of-the-art attacks like BakingTimer [25] is sub-optimal. Our

attack is more robust to variations in the load factor of the target

web application and significantly more precise even when tested

against real-world websites.

The only paper taking a more rigorous look into the formal

theory of remote timing attacks is the seminal work by Crosby et

al. [7]. Here, the authors recognize the importance of accounting

for the server load factor when measuring response times, and this

impact is evaluated as an additive jitter effect on the measurements.

However, the scenario proposed in [7] is significantly different

from ours. First, it is assumed that the service time is a known

constant for the classes: while this may be reasonable for the kind

of observations they focus on, in the case of web services, this is

known to be generally untrue because the state of the machine

has an impact on the processing time due to the complexity of

these services (see, e.g., Figure 4 or [9]). Second, the jitter effect is

additive with respect to the service time which is more appropriate

for a First-In First-Out scheduling rather than a Round-robin as we

consider here. Round-robin is more accurate in describing the real

behavior of schedulers in nowadays web servers. In Section 6, we

compared our approach with the box test proposed in [7] showing

that, for the timing attacks considered in this paper, we provide

more accuracy in the class prediction.

8 Conclusion
In this paper, we proposed the use of stochastic models to improve

the effectiveness of remote timing attacks. Our approach starts from

a queuing model of the target web application to attack and uses

Bayesian statistics to infer the unknown class of specific network

requests of interest. Compared to prior empirical approaches, our

attack is more precise, provides quantitative probability bounds,

and requires a smaller number of requests. As future work, we

would like to experiment with other types of queuing models be-

sides the M/M/1/PS model considered in this paper. In particular, we

plan to further investigate the challenges posed by microservice ar-

chitectures, by refining our approach for tuning model parameters

as previously mentioned. Moreover, we will explore possibilities

to enhance our analytical model by incorporating more complex

queueing network frameworks. In fact, supporting different types

of models would be important to generalize to different web applica-

tions and settings, e.g., the attacker may perform preliminary tests

to determine what is the most appropriate model of the target web

application. We also plan to improve our experimental evaluation

by extending its scale and by testing the robustness of our method

against different disruptive factors, e.g., to assess the impact of

geo-location on the effectiveness of our attack.

Acknowledgments
We thank the reviewers for their constructive feedback, which

has greatly contributed to the improvement of this paper. This

research was supported by project SERICS (PE00000014) under

the MUR National Recovery and Resilience Plan funded by the

European Union - Next-GenerationEU CUP N.H73C22000890001

and by Agenzia per la cybersicurezza nazionale under the 2024-2025

funding programme for promotion of XL cycle PhD research in

cybersecurity – CUP N.H71J24001710005. The views expressed are

those of the authors and do not necessarily represent the funding

institution.

557

Proceedings on Privacy Enhancing Technologies 2025(3) Bozzolan et al.

References
[1] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn

Song. 2010. Towards a Formal Foundation of Web Security. In Proceedings of
the 23rd IEEE Computer Security Foundations Symposium, CSF 2010, Edinburgh,
United Kingdom, July 17-19, 2010. IEEE Computer Society, 290–304. https://doi.

org/10.1109/CSF.2010.27

[2] François Baccelli, Bruno Kauffmann, and Darryl Veitch. 2009. Inverse problems

in queueing theory and Internet probing. Queueing Syst. Theory Appl. 63, 1-4
(2009), 59–107. https://doi.org/10.1007/S11134-009-9150-9

[3] Andrew Bortz and Dan Boneh. 2007. Exposing private information by timing web

applications. In Proceedings of the 16th International Conference on World Wide
Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, Carey L. Williamson,

Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy (Eds.). ACM,

621–628. https://doi.org/10.1145/1242572.1242656

[4] Simone Bozzolan, Diletta Olliaro, Stefano Calzavara, Andrea Marin, Gianfranco

Balbo, and Matteo Sereno. 2025. Artifacts. https://github.com/Asterius27/SecPerf-

Artifacts. Repository containing all of the artifacts related to this paper.

[5] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.

Comput. Networks 48, 5 (2005), 701–716. https://doi.org/10.1016/J.COMNET.2005.

01.010

[6] Jianhua Cao, Mikael Andersson, Christian Nyberg, and Maria Kihl. 2003. Web

server performance modeling using an M/G/1/K*PS queue. In Proceedings of the
10th International Conference on Telecommunications (ICT), Vol. 2. IEEE, 1501 –
1506 vol.2. https://doi.org/10.1109/ICTEL.2003.1191656

[7] Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. 2009. Opportunities and

Limits of Remote Timing Attacks. ACM Trans. Inf. Syst. Secur. 12, 3 (2009),

17:1–17:29. https://doi.org/10.1145/1455526.1455530

[8] Edward W. Felten and Michael A. Schneider. 2000. Timing attacks on Web

privacy. In CCS 2000, Proceedings of the 7th ACM Conference on Computer and
Communications Security, Athens, Greece, November 1-4, 2000, Dimitris Gritzalis,

Sushil Jajodia, and Pierangela Samarati (Eds.). ACM, 25–32. https://doi.org/10.

1145/352600.352606

[9] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, Mark Velednitsky, and

Samuel Zbarsky. 2017. Redundancy-d: The Power of d Choices for Redundancy.

Oper. Res. 65, 4 (2017), 1078–1094. https://doi.org/10.1287/OPRE.2016.1582

[10] Nethanel Gelernter and Amir Herzberg. 2015. Cross-Site Search Attacks. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li, and
Christopher Kruegel (Eds.). ACM, 1394–1405. https://doi.org/10.1145/2810103.

2813688

[11] Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems:
Queueing Theory in Action. Cambridge University Press.

[12] Gabor Horvath. 2024. A CME-based numerical inverse Laplace transformation

method. https://it.mathworks.com/matlabcentral/fileexchange/71511-a-cme-

based-numerical-inverse-laplace-transformation-method. MathWorks.

[13] Gábor Horváth, Illés Horváth, Salah Al-Deen Almousa, and Miklós Telek. 2020.

Numerical inverse Laplace transformation using concentrated matrix exponential

distributions. Perform. Evaluation 137 (2020), 1–22. https://doi.org/10.1016/J.

PEVA.2019.102067

[14] Yaoqi Jia, Xinshu Dong, Zhenkai Liang, and Prateek Saxena. 2015. I KnowWhere

You’ve Been: Geo-Inference Attacks via the Browser Cache. IEEE Internet Comput.
19, 1 (2015), 44–53. https://doi.org/10.1109/MIC.2014.103

[15] Edward G. Coffman Jr., Richard R. Muntz, and Hale F. Trotter. 1970. Waiting

Time Distributions for Processor-Sharing Systems. J. ACM 17, 1 (1970), 123–130.

https://doi.org/10.1145/321556.321568

[16] Soheil Khodayari and Giancarlo Pellegrino. 2022. The State of the SameSite:

Studying the Usage, Effectiveness, and Adequacy of SameSite Cookies. In 43rd
IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, May
22-26, 2022. IEEE, 1590–1607. https://doi.org/10.1109/SP46214.2022.9833637

[17] Leonard Kleinrock. 1975. Queueing Systems, Volume 1: Theory. Wiley-

Interscience.

[18] Grafana Labs. 2024. Grafana k6. https://k6.io/.

[19] Sangho Lee, Hyungsub Kim, and Jong Kim. 2015. Identifying Cross-origin Re-

source Status Using Application Cache. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015. The Internet Society, 12 pages. https://doi.org/10.14722/ndss.2015.23027

[20] Henry H. Liu. 2011. Oracle Database Performance and Scalability: A Quantitative
Approach. Wiley-IEEE Computer Society Press.

[21] GonzaloMartínez, José Alberto Hernández, Pedro Reviriego, and Paul Reinheimer.

2024. Round Trip Time (RTT) Delay in the Internet: Analysis and Trends. IEEE
Network 38, 2 (2024), 280–285. https://doi.org/10.1109/MNET004.2300008

[22] Daniel A. Menascé, Virgilio Almeida, and LawrenceW. Dowdy. 2004. Performance
by Design. Pearson.

[23] Karan Parikh and Steven Ihde. 2015. From a Monolith to Microservices +

REST: the Evolution of LinkedIn’s Service Architecture. https://www.infoq.

com/presentations/linkedin-microservices-urn/.

[24] Victor Le Pochat, Tom van Goethem, Samaneh Tajalizadehkhoob, Maciej Kor-

czyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites Rank-

ing Hardened Against Manipulation. In 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 1–15. https://doi.org/10.14722/ndss.2019.23386

[25] Iskander Sánchez-Rola, Davide Balzarotti, and Igor Santos. 2019. BakingTimer:

privacy analysis of server-side request processing time. In Proceedings of the
35th Annual Computer Security Applications Conference, ACSAC 2019, San Juan,
PR, USA, December 09-13, 2019, David M. Balenson (Ed.). ACM, 478–488. https:

//doi.org/10.1145/3359789.3359803

[26] Mark J. Schervish. 1997. Theory of Statistics. Springer.
[27] Connie U. Smith and Lloyd G. Williams. 2001. Performance Solutions: A Practical

Guide to Creating Responsive, Scalable Software. Addison-Wesley Professional.

[28] Tom van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is Still

Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.).

ACM, 1382–1393. https://doi.org/10.1145/2810103.2813632

[29] Jóakim von Kistowski, Nikolas Herbst, Samuel Kounev, Henning Groenda,

Christian Stier, and Sebastian Lehrig. 2017. Modeling and Extracting Load

Intensity Profiles. ACM Trans. Auton. Adapt. Syst. 11, 4 (2017), 23:1–23:28.

https://doi.org/10.1145/3019596

[30] Weikun Wang, Giuliano Casale, Ajay Kattepur, and Manoj Nambiar. 2018. QMLE:

A Methodology for Statistical Inference of Service Demands from Queueing

Data. ACM Trans. Model. Perform. Evaluation Comput. Syst. 3, 4 (2018), 17:1–17:28.
https://doi.org/10.1145/3233180

A Attack Implementation Details
Measurement inaccuracies are an inherent aspect of any empir-

ical analysis, arising from various factors such as limitations in

measurement tools, environmental noise, and observer variability.

While these errors cannot be completely avoided, they can often

be mitigated through careful data processing. Here, we discuss

methods used to address these issues. First, we deal with outliers,

which may result from measurement errors, rare events, or unique

conditions. These outliers can distort statistical analyses, so we it-

eratively filter out values that deviate from the mean by more than

twice the standard deviation. This process continues recursively

until all remaining values are within the threshold, ensuring only

typical data points are retained.

Another challenge arises from the inability to precisely measure

round-trip times (𝑅𝑇𝑇 s). In fact, subtracting 𝑅𝑇𝑇 values from the

measurements could lead to zero or negative values because this

quantity may not precisely represent the network delay, leading to

imprecise or even impossible response time estimates. To address

this, we subtract the minimum 𝑅𝑇𝑇 from all observation vectors

(𝑋 0, 𝑋 1, 𝑋𝑅, 𝑋𝐴). If any negative or zero values remain, we set them

to a minimum threshold of 0.1 to avoid unrealistic results.

B Response Time Distribution in M/M/1/PS
Given a non-negative random variable𝑋 , we use 𝑓𝑋 (𝑡) and 𝐹𝑋 (𝑡) to
denote its probability density function (pdf) and cumulative density

function (CDF), respectively. The pdf can be expressed in terms of

its Laplace-Stieltjes transform (LST):

𝑓 ∗𝑋 (𝑠) = L(𝑓𝑋 (𝑡)) = 𝐸 [𝑒−𝑠𝑋] =
∫ ∞

0

𝑒−𝑠𝑡𝑑𝐹𝑋 (𝑡) ,

where 𝐸 denotes the expectation operator. For instance, if 𝑋 is

exponentially distributed with mean 𝜇−1, its CDF and Laplace-

Stieltjes transform are given by:

𝐹𝑋 (𝑡) = 1 − 𝑒−𝜇𝑡 , 𝑓 ∗𝑋 (𝑠) =
𝜇

𝜇 + 𝑠 .

558

https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1007/S11134-009-9150-9
https://doi.org/10.1145/1242572.1242656
https://github.com/Asterius27/SecPerf-Artifacts
https://github.com/Asterius27/SecPerf-Artifacts
https://doi.org/10.1016/J.COMNET.2005.01.010
https://doi.org/10.1016/J.COMNET.2005.01.010
https://doi.org/10.1109/ICTEL.2003.1191656
https://doi.org/10.1145/1455526.1455530
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1287/OPRE.2016.1582
https://doi.org/10.1145/2810103.2813688
https://doi.org/10.1145/2810103.2813688
https://it.mathworks.com/matlabcentral/fileexchange/71511-a-cme-based-numerical-inverse-laplace-transformation-method
https://it.mathworks.com/matlabcentral/fileexchange/71511-a-cme-based-numerical-inverse-laplace-transformation-method
https://doi.org/10.1016/J.PEVA.2019.102067
https://doi.org/10.1016/J.PEVA.2019.102067
https://doi.org/10.1109/MIC.2014.103
https://doi.org/10.1145/321556.321568
https://doi.org/10.1109/SP46214.2022.9833637
https://k6.io/
https://doi.org/10.14722/ndss.2015.23027
https://doi.org/10.1109/MNET004.2300008
https://www.infoq.com/presentations/linkedin-microservices-urn/
https://www.infoq.com/presentations/linkedin-microservices-urn/
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/3359789.3359803
https://doi.org/10.1145/3359789.3359803
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/3019596
https://doi.org/10.1145/3233180

Stochastic Models for Remote Timing Attacks Proceedings on Privacy Enhancing Technologies 2025(3)

Additionally, the Laplace-Stieltjes transform of the CDF can be ob-

tained as 𝑓 ∗ (𝑠)/𝑠 . Knowing either the CDF of a distribution or its

Laplace transform is sufficient to characterize it completely, as one

can theoretically convert between the two. However, in many prac-

tical cases, inverting a Laplace transform is only feasible through

numerical methods, requiring specialized algorithms developed for

this purpose, as hinted in C.

If the LST 𝑓 ∗
𝑋
(𝑠) is known, the probability 𝑃𝑟 {𝑎 ≤ 𝑋 ≤ 𝑏} can be

computed using:

𝑃𝑟 {𝑎 ≤ 𝑋 < 𝑏} = L−1
(
𝑓𝑋 (𝑠)
𝑠

)
(𝑏) − L−1

(
𝑓𝑋 (𝑠)
𝑠

)
(𝑎) , (10)

where L−1 denotes the inverse Laplace transform.

In particular, in this work we leverage the well-known analyt-

ical expression for the LST of the waiting time distribution in an

M/M/1/PS system, of an arriving job conditioned on the determin-

istic service time it requires. This expression, originally derived

in [15, Eq. (30)], is given by the following equation:

𝐹 ∗W (𝜏, 𝑠) =
(1 − 𝜌) (1 − 𝜌𝑟 2)e−𝜆 (1−𝑟)𝜏

(1 − 𝜌𝑟)2 − 𝜌 (1 − 𝑟)2e
−𝜇𝜏 (1−𝜌𝑟2)

𝑟

. (11)

with:

𝑟 =
𝜆 + 𝜇 + 𝑠 − [(𝜆 + 𝜇 + 𝑠)2 − 4𝜇𝜆]1/2

2𝜆
.

C Model Implementation Details
In order to address measurement uncertainties, we introduce two

thresholds, 𝜖 and 𝛿 , as discussed in Section 5.2 and 5.3. In our

experiments, we set 𝛿 = 0.05, recognizing that due to measurement

errors, the exact service time centroid is unlikely to match the

observed value exactly. This threshold defines a small range within

which observations are considered comparable to those associated

with zero waiting time. The second threshold, 𝜖 , is used in Eq. (6)

to accommodate peaks observed in Figure 3 and to account for

measurement uncertainty, allowing us to consider a range of values

within which the true response time is expected to lie.

To compute the numerical inversion of the transform described

in Appendix B, we employed the Concentrated Matrix Exponential

(CME) method, as detailed in [13]. This method is known for its

excellent numerical stability and smooth approximation compared

to other widely used techniques. Our implementation leverages

the robust MATLAB package provided in [12]. The computational

time for a single iteration of Eq. (8), considering one combination

of class 0 and class 1 parameters, ranges between 120 ms and 180

ms.

An important aspect of our implementation is ensuring physi-

cally meaningful outputs, particularly in scenarios where certain

conditions cannot occur. For instance, since waiting times cannot

be negative, any negative value due to measurement problems that

may be given as input to the numerical inversion is automatically

set to zero, reflecting the fact that negative waiting times have

zero probability of occurrence. Similarly, if measurement errors

lead to an estimated load factor of zero, we bypass the numerical

transform inversion entirely. Instead, we use an indicator function

to assign a probability of 0 or 1, where an observation of waiting

time is considered feasible only when it is zero. In this case, we

assign a probability of 1, while all other possibilities are deemed

physically unrealistic and assigned a probability of 0. Additionally,

our computations involve subtracting two values obtained from

the numerical inversion, as described in Eq. (6). In cases where the

two functions yield nearly identical values, small numerical errors

may arise due to floating-point precision, resulting in values close

to zero but slightly positive or negative. To address this, we apply a

correction by setting differences smaller than 10
−4

to zero, thereby

preventing the propagation of insignificant numerical discrepancies

in subsequent calculations.

Finally, for Eq. (9), situations may arise where the two classes

are numerically indistinguishable for a given centroid combination,

making the computation of Eq. (8) numerically unstable. In such

cases, the corresponding centroid combination is excluded, and the

final results are normalized accordingly to account for its omission.

D Research Ethics
Our experiments in a controlled setting have no ethical implica-

tions, because we only targeted local installations of HotCRP and

WordPress. Our experiments in the wild are more delicate from

an ethical perspective, but we did our best to minimize harm and

ensure that the benefits outweigh the risks. Our cross-site attacks

only targeted our own sessions, i.e., we mounted our attacks against

ourselves, without breaching the privacy of any web user. All iden-

tified vulnerabilities have been responsibly disclosed to the correct

points of contact.

E Analyzed Websites
Table 8 reports the full list of websites where we successfully regis-

tered an account and logged in using the methodology described

in Section 6.3, including the potentially vulnerable ones.

Table 8: Analyzed websites

Domain Name Tranco Rank Potentially Vulnerable

google.com 1 No

microsoft.com 2 Yes

facebook.com 3 Yes

youtube.com 8 No

twitter.com 14 Yes

instagram.com 15 No

cloudflare.com 16 No

office.com 19 Yes

linkedin.com 20 Yes

live.com 22 Yes

amazon.com 28 No

wikipedia.org 32 Yes

bing.com 36 Yes

github.com 46 No

pinterest.com 50 Yes

adobe.com 56 Yes

goo.gl 58 No

spotify.com 60 Yes

vimeo.com 61 Yes

skype.com 64 Yes

559

	Abstract
	1 Introduction
	2 Background
	2.1 Remote Timing Attacks
	2.2 Terminology

	3 Motivation and Contribution
	3.1 Response Time vs. Service Time
	3.2 Proposed Approach

	4 Attack Description
	4.1 Preliminaries
	4.2 Exploration Phase
	4.3 Exploitation Phase

	5 Stochastic Models
	5.1 Queuing Model
	5.2 Parameter Estimation
	5.3 Statistical Model

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experiments in a Controlled Setting
	6.3 Experiments in the Wild
	6.4 Number of Requests
	6.5 Robustness Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Attack Implementation Details
	B Response Time Distribution in M/M/1/PS
	C Model Implementation Details
	D Research Ethics
	E Analyzed Websites

